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Abstract 
 

Intervertebral disc degeneration is related to chronic back pain and 

functional incapacity. Magnetic Resonance Imaging (MRI) is the modality of 

choice for diagnosing this condition, providing both morphological and 

biochemical information for the disc tissue. In clinical practice, grading schemes 

based on qualitative descriptions of disc image features such as the signal 

intensity and disc height are commonly used for disc degeneration severity 

evaluation.  However, these grading schemes have a limited number of 

degeneration severity classes which impairs the detection of small changes. 

Additionally, this grading is susceptible to inter and intra observer variabilities.  

To deal with these issues, this study introduces a system for the automated 

quantification and computer aided diagnosis of disc degeneration severity from 

spine MRI. The proposed system consists of a segmentation method, a 

quantification process, and a classification scheme. An atlas-based segmentation 

approach, combining prior anatomical knowledge provided by means of a 

probabilistic disc atlas with fuzzy clustering techniques, was designed for 

extracting the disc region from the images. In the quantification process, texture 

and shape descriptors are calculated from the segmented disc region aiming to 

capture structural and biochemical alterations of the tissue related to degeneration. 

Finally, the classification scheme exploits this information for differentiating 

between degeneration severity grades. The system is tested on a case sample of 

255 discs from conventional T2-weighted MR images acquired by a 3 Tesla 

scanner.  

Results indicate that the atlas-based method provides accurate disc 

segmentation, texture descriptors measuring intensity inhomogeneity can serve 

the quantification of degeneration severity, and the computer aided diagnosis 

scheme achieves high agreement to clinical diagnosis. 

Concluding, the proposed system could be a valuable tool in hands of 

physicians to support clinical diagnosis of disc degeneration, track the evolution 

of disease progress and monitor the response to treatment in a simple, precise and 

repeatable manner. 
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Chapter 1. Introduction   
    

 The present study introduces an automated system for the quantification 

and computer aided diagnosis of intervertebral disc degeneration, from 

conventional T2-weighted magnetic resonance images of the lumbar spine. In 

addition, it works towards the segmentation of intervertebral discs as a step prior 

to degeneration quantification.   

Section 1.1 gives an introduction to the clinical problem and briefly 

summarizes the current research in the fields of intervertebral disc segmentation, 

quantification and computer aided diagnosis. The aims and objectives of this 

study are analyzed in detail in section 1.2.  
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1.1 Introduction and brief summary of current research 

 

 Intervertebral disc degeneration is an age associated condition related to 

chronic back pain and functional incapacity [MODI2007]. It affects a significant 

proportion of the population and imposes a tremendous socioeconomic burden. In 

the UK, low back pain is the number one reason for absence from work, while the 

public healthcare cost of low back pain treatment is estimated at ₤1.6 billions per 

year [MANI2000]. The mechanism of degeneration is complex and involves 

structural disruption and cell mediated changes in disc composition [ADAM2006].  

 Various modalities are used for imaging the spine, with Magnetic 

Resonance Imaging (MRI) being a good modality for evaluating intervertebral 

disc degeneration. MRI is non invasive and does not use ionizing radiation, but 

more importantly it offers good soft tissue contrast which allows visualization of 

the disc’s internal structure [PARI2007]. Clinical imaging relies on multislice 2-

Dimensional protocols which offer fast acquisition time but with relatively low 

interslice resolution. 3D protocols provide high resolution volumetric data but 

their clinical use for spine imaging is limited, due to their long acquisition times 

and subsequent susceptibility to motion artefacts [WOLA2005]. However, the lack 

of 3D data is not a problem when clinically evaluating disc degeneration, as the 

disease severity can be assessed by the mid-sagittal slice of T2-weighted images 

[LUOM2000, PFIR2001]. T2-weighted images provide both biochemical and 

morphological information for the disc tissue. Here, the term biochemical tissue 

alterations refers to the disc’s water and proteoglycan content which is reflected in 

MR signal intensity of T2-weighted images. On the other hand disc shape 

information allows the assessment of disc narrowing, fissuring or herniation 

[TERT1991, PARI2007].  

In clinical practice, the evaluation of disc degeneration severity is based on 

grading schemes utilizing qualitative descriptions of disc features such as the 

signal intensity, height and distinction between the disc’s nucleus and annulus. 

However, this qualitative evaluation is susceptible to inter and intra observer 

variabilities [RAIN1995, KETT2006]. In addition, the limited number of 

degeneration severity classes used by grading schemes (typically 3-5 classes) 
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impairs the detection of small changes in the intervertebral disc [NIEM2008]. More 

importantly, as disc pathology treatment is shifting from surgical procedures 

towards treating the underlying aetiologic process the clinical requirements for 

disc degeneration diagnosis are changing [MWAL2008]. The development of 

emerging treatment technologies, such as nucleus replacement, cell therapy, and 

growth factor therapy, creates a need for more objective diagnostic methods that 

would allow tracking the evolution of disease and monitoring the response to 

treatment [AUER2006].   

MRI quantification has great potential as a tool for the diagnosis of disc 

pathology. Quantitative measurements can offer a more objective and 

reproducible way to evaluate degeneration. Moreover, the continuous nature of 

these measures renders them more sensitive to detecting small changes, a task 

particularly important when monitoring the effect of treatment [MWAL2008, 

NEIM2008].  

Currently, the most common method for disc degeneration quantification 

relies on the measurement of disc’s mean signal intensity from mid-sagittal T2-

weighted MR Images. The decrease of disc’s mean signal intensity may be the 

earliest degenerative change seen in MRI and is a sensitive and reliable measure 

of degeneration severity. The disc signal intensity value needs to be normalized 

by using an intrabody reference, most commonly a region within the cerebrospinal 

fluid. The great advantage of the adjusted mean signal intensity quantification 

method is that it utilizes conventional T2 images for quantification, and thus can 

be easily applied in clinical routine [LUOM2001, BENN2005, NIEM2008]. 

Alternative approaches to disc degeneration quantification include the 

measurement of T1, T1ρ and T2 relaxation times and of the apparent diffusion 

coefficient [MWAL2008]. These methods provide additional information to the 

conventional T2-weighted images, regarding both the biochemical composition 

and structural integrity of the intervertebral discs. However, this does not come 

without a cost. These quantification methods require specific image acquisition 

protocols which are not widely available and require relatively long acquisition 

times implicating their application in clinical routine [KERT2001b, AUER2006]. 
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Before quantifying disc information, the intervertebral disc needs to be 

segmented from the image. Disc segmentation, apart from being a step prior to the 

quantification process, it could additionally serve computer assisted spine surgery 

[SEIF2006]. So far, studies dealing with the quantification of disc features for 

diagnostic or surgical purposes have been based on manually segmented data 

[TSAI2002, NIEM2008]. However, manual segmentation is a tedious and time-

consuming process which lacks repeatability. A limited number of studies deal 

with the automatic segmentation of intervertebral discs, while most of them focus 

on the automated detection of the disc rather than the segmentation process itself 

[SEIF2006, CHEV2007, SHI2007]. Moreover, to the best of our knowledge the 

segmentation of degenerated intervertebral discs remains an open issue. Disc 

quantification and computer aided diagnosis require a segmentation method 

capable of accurately delineating intervertebral discs at various stages of disease 

(from normal to severely degenerated). With respect to the required segmentation 

accuracy, the clinically acceptable mean error for both diagnostic and surgical 

purposes has been indicated to be 1-2mm [personal communication with Elias 

Panagiotopoulos, Professor of Orthopaedic Surgery, University of Patras, Greece]. 

Moving on to the Computer Aided Diagnosis (CAD) task, CAD systems 

are designed for assisting physicians in the interpretation of medical images. CAD 

has been exploited for a variety of diagnostic problems, with common 

applications in the fields of breast cancer diagnosis from x-ray mammography and 

lung cancer diagnosis from computer tomography of the chest. Nowadays CAD 

systems are intended to support clinical diagnosis when being used as second 

readers. The clinical requirement is for a CAD system to increase diagnostic 

accuracy and improve agreement between observers [DOI2007, GIGE2008]. Spine 

imaging is a new field for CAD applications, with most studies appearing in the 

last decade [TSAI2002, CHAR2004, KOMP2006]. Moreover, there is a single very 

recent study from the Computer Aided Diagnosis and Interventions Research 

Group at the University of Buffalo, focusing specifically on computer aided 

diagnosis of intervertebral disc pathology from MR images [ALOM2010].  
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1.2. Aims and Objectives    

 

The main aims of this study are presented in Table 1.1. The first aim is to 

develop a disc segmentation method which is intended to serve the quantification 

task by extracting the intervertebral disc regions from the MR images. A novel 

atlas based segmentation method has been developed for this purpose and its 

accuracy has been tested on both normal and degenerated discs. The proposed 

segmentation method is developed in 2D and tested on the midsagittal slices of 

conventional T2-weighted image data. This fulfils the clinical requirements for 

evaluating disc degeneration, but a 3D method could also be useful for assessing 

specific disc pathologies such as lumbar disc herniation or even surgical planning 

purposes. However, as 3D data were not available, a pseudo-3D segmentation 

approach applied on interpolated 2D data was developed to demonstrate the 

feasibility of expanding the atlas-based segmentation method to 3D.  

The second aim is the quantification of intervertebral disc degeneration 

from clinical MR Images.  An alternative quantification approach to the standard 

mean signal intensity quantification is presented here. Disc image texture and 

shape features are exploited for degeneration severity quantification, aiming to 

provide additional information with respect to the degenerative process and 

provide a more precise description of the stage of disease. MR Image texture is 

known to be particularly sensitive for the assessment of pathology [LERS1993], 

while shape information is related to the disc’s structural integrity [MODI2007]. 

Our working hypothesis is that the quantification of such information can aid in 

diagnosing disc degeneration and evaluating the progression of this disease.  

The final aim of this study is to develop a computer aided diagnosis 

system intended to serve as a second reader to support clinical diagnosis of disc 

degeneration severity. The method presented here exploits texture and shape 

features extracted from the segmented disc region in the quantification step of this 

study for training a hierarchical classification scheme which assigns the disc to 

one of four) degeneration severity classes. Since spine imaging is a new field for 

CAD applications only a small number of studies have been published so far and 
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to the best of our knowledge the present study is the first to report disc 

degeneration severity classification.  

  

Table 1.1. Aims  
 

1. To develop a segmentation method for delineating the intervertebral discs 

(both normal and degenerated) from magnetic resonance images of the 

lumbar spine.  

2. To quantify intervertebral disc degeneration severity exploiting texture and 

shape properties of the segmented disc regions. 

3. To design a computer aided diagnosis system putting together the 

segmentation and quantification steps along with a classification scheme for 

categorizing the discs to degeneration severity classes. 

 

 

Table 1.2 presents a detailed analysis of research objectives which can be 

seen as smaller steps working towards the aims of this study. Finally, Table 1.3 

presents the hypotheses that are to be tested. The theory behind theses hypotheses 

is described later in the thesis.  

 

Table 1.2. Research Objectives  
 

Sample Collection / Clinical Grading of Disc Degeneration 

1. To collect clinical datasets consisting of conventional T2-weighted MR 

images of the lumbar spine presenting various degrees of degeneration 

severity 

2. To select / design in collaboration with clinical experts a grading scheme for 

the description of qualitative image features related to disc degeneration. To 

have the images diagnosed by clinical experts according to this scheme. To 

test the reliability of clinical grading through the agreement between expert 

readers. Also obtain a severity grading ground truth based on clinical experts 

consensus to serve the disc degeneration quantification task 
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Intervertebral Disc Segmentation 

3. To develop computerized methods for segmenting the intervertebral discs 

(both normal and degenerated).  
 

4.  To evaluate the segmentation accuracy of these methods against a gold 

standard produced by manual disc segmentation. 
 

Disc Degeneration Quantification 

5. To calculate image features describing textural and shape properties of the 

disc region in order to quantify disc degeneration severity. 

6. To investigate the ability of quantitative features in evaluating disc 

degeneration by calculating their association to degeneration severity as 

defined by radiologists consensus grading. 

7. To compare textural and shape features’ performance to the performance of 

the mean signal intensity quantification method in the task of disc 

degeneration quantification. 

8. To test the repeatability of quantitative features measurements. 

Computer Aided Diagnosis of Disc Degeneration 

9. To design a computer aided diagnosis system putting together the 

segmentation and quantification steps with a classification scheme for 

categorizing the discs to degeneration severity grades. 

10. To develop methods for training and testing the CAD system using 

radiologists consensus as ground truth, and evaluating its classification 

performance.  

11. To apply the CAD system in a new dataset and test its influence on the 

radiologist’s opinion when the system is used as a second reader. 

 

 

 

 

 

 

 



 
 

Chapter 1. Introduction 

   24 
 

 
 

Table 1.3. Research Hypotheses  
 

Intervertebral Disc Segmentation 

1. Atlas based methods would provide improved segmentation accuracy in 

comparison to methods relying solely on grey level intensity. This is 

because the incorporation of shape information in the segmentation process 

would help control boundary leakage towards surrounding structures.  

2. The correction of inhomogeneity field in MRI would facilitate the 

segmentation process and improve accuracy. 
 

Disc Degeneration Quantification 

3. Textural and shape image features are suitable for describing intervertebral 

disc degeneration severity. This would be confirmed if these features 

values are statistically significantly correlated to the clinical diagnosis 

(grading) of disease. 

4. Textural features are more suitable than shape features for evaluating the 

early stages of degeneration. This is because in the early stages of disease 

only the internal disc structure is affected but its outline remains almost 

intact. Moreover, shape features are more suitable that texture features for 

assessing the more advanced stages of disease, when internally the disc has 

become fibrotic.  

Computer Aided Diagnosis of Disc Degeneration 

5. The CAD system can help improve diagnostic accuracy when used as a 

second reader. This would be supported if the disagreement between 

different clinical experts decreases when using the CAD. 
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1.3. Thesis Layout  

 

The layout of this thesis is as follows: 

 Chapter 2 analyzes the medical background of the current study. It starts 

with an overview of spinal anatomy and continues with a description of 

intervertebral disc degeneration. Section 2.4 discusses the modalities used for 

imaging the spine, and Section 2.5 gives a literature review on methods developed 

for the evaluation of disc degeneration from MR images.  

 Chapter 3 presents the clinical data collected, together with methods used 

for the evaluation of degeneration severity. Finally, the results of qualitative 

grading of degeneration are given in Section 3.3.  

 Chapter 4 presents the segmentation methods and results of the current 

study. It starts with an overview of medical image segmentation followed by a 

short literature review on intervertebral disc segmentation methods. Section 4.3 

discusses the requirements and challenges for lumbar disc segmentation, while 

Section 4.4 analyses the methods developed for segmenting the intervertebral 

discs in the present study. Finally, Section 4.5 presents the segmentation results 

and discusses the merits and weaknesses of each segmentation method.  

 Chapter 5 presents the methods developed in this study for disc 

degeneration quantification. It starts with an overview of texture and shape 

quantification methods and describes how these methods were exploited in the 

present study for disc degeneration quantification. Sections 5.3 and 5.4 present the 

quantification results and discuss on the suitability of texture and shape analysis 

methods for evaluating degeneration.  

 Chapter 6 presents the Computer Aided Diagnosis system designed for 

disc degeneration severity evaluation. The chapter starts with an introduction to 

CAD systems their design and classification algorithms followed by a short 

literature review on spine CAD. Section 6.3 presents the CAD system developed 

in the present study followed by the CAD results and discussion in Section 6.4. 

Chapter 7 gives an overall conclusion summarizing the contributions and 

limitations of this study and offering suggestions for future research.
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Chapter 2. Medical Background       

 
 This chapter gives a short introduction to the medical knowledge related to 

the present study, to support reading for non-medical experts. Section 2.1 

introduces the anatomical terms of location, while Section 2.2 presents a basic 

description of spine anatomy. Section 2.3 discusses on the current understanding 

of intervertebral disc degeneration. Section 2.4 presents methods used for imaging 

the spine, discussing on the suitability of each method for evaluating 

intervertebral disc degeneration. Finally, section 2.5 gives a literature review on 

methods developed for the evaluation of disc degeneration from MR images 

Readers with a medical background shall move forward to Section 2.5.  
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2.1. Body Planes 

 

Before describing the anatomy of the spine it is important to introduce the 

terms used for specifying relative anatomical locations. Figure 2.1 gives a 

diagram of body planes and anatomical terms of location. A position within the 

body is identified by three dimensions. The terms superior and inferior are used 

for describing the position along the main body axis (representing top and 

bottom). Horizontally, the terms anterior-posterior are used for the front and back 

of the body while right and left is used for description of lateral points.  In 

addition, two-dimensional planes are used for describing cross-sections of the 

body. The sagittal plane is parallel to the body axis and divides the body into left 

and right sections. The coronal plane is also parallel to the body axis and it divides 

the body to anterior and posterior sections. Finally, the axial plane also known as 

transverse plane is perpendicular to the body axis and divides it to superior and 

inferior sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.1. The body planes and anatomical terms of location – adapted from 
wikimedia commons [WIKI2010]. 

Axial Plane 

Coronal Plane 

Sagittal Plane 

superior 

inferior 

 posterior 

anterior right 
left 



 
 

Chapter 2. Medical Background 

   28 
 

 
 

2.2. Spinal Anatomy       

 

The spine is a bony structure in the middle of the back which extends from 

the skull to the pelvis and normally consists of 33 vertebrae. It is divided into five 

sections, the cervical, thoracic, lumbar, sacral and coccygeal spine, as shown in 

Figure 2.2. This study focuses on the lumbar spine which is in the low back area 

and consists of five 5 vertebrae (named L1 – L5). The vertebrae are joined axially 

by intervertebral discs which provide stability and flexibility to the spine, while 

the column is additionally stabilized by ligaments and muscles. The spinal cord 

and nerve roots pass through a longitudinal cavity called spinal canal, which is 

also the draining passage of the cerebrospinal fluid [BODG1997, DRAK2004]. 

Figure 2.3 illustrates a spinal segment showing the positions of intervertebral 

discs and the spinal cord relative to the vertebral bodies. The following sections 

describe in brief the main components of the spine, giving a more detailed 

description for the intervertebral discs.  

 

Figure 2.2. The human spine divided in five spine segments (left) and the 
corresponding abbreviations of the vertebrae (right) [WIKI2010].  
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Figure 2.3. A spine segment, illustrating the vertebral bodies and intervertebral 
discs together with the spinal cord and nerves [WIKI2010].  
 

 

2.2.1. The vertebrae: Anatomy and Function 

  

 The main components of typical vertebrae are their vertebral body and the 

vertebral arch. Figure 2.4 illustrates typical vertebrae in lateral and superior views. 

The vertebral body is the anterior portion of the vertebra, it has a nearly 

cylindrical shape with flat superior and interior surfaces. It consists of an external 

shell of cortical bone surrounding a core of trabecular bone. It is the main load 

bearing structure, supporting most of the axial compression of the body weight. 

The vertebral arch is the posterior portion of the vertebra with its processes 

articulating with those of adjacent vertebrae and creating joints that guide and 

limit spinal motion. The vertebral arch together with the posterior surface of the 

vertebral body forms the spinal canal, a bony ring that protects the spinal cord 

from injury [DRAK2008, BELK2007]. 
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Figure 2.4. Lithographies of vertebrae from the 1918 version of Gray’s anatomy 

[GRAY1918].  

  

 

2.2.2. The intervertebral discs: Anatomy and Function 

  

 The intervertebral discs are cylindrical pads of fibrocartilage lying in 

between the vertebral bodies. Each disc is fused to the adjacent vertebral bodies 

through cartilaginous endplates and together they form a functional unit known as 

spinal segment. Figure 2.5 gives a schematic representation of a spinal segment in 

sagittal view. The discs connect adjacent vertebra providing stability and 

flexibility to the spine. They are responsible for load distribution and they also act 

as shock absorbers.   

  

 

 

 

 

 

 

 

 
Figure 2.5. Schematic representation of a mid-sagittal cut of a spinal segment 
demonstrating its major anatomical components. 
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 Each intervertebral disc consists of two major components: the nucleus 

pulposus, a hydrogel in the centre of the disc, and the annulus fibrosus, a 

collagenous ring surrounding the nucleus, as shown above in Figure 2.5. The 

nucleus pulposus consists primarily of water, proteoglycans and collagen 

molecules. Water accounts for over 80% of the nucleus weight in children and 

young adults. The proteoglycans are the macromolecules responsible for attracting 

and retaining water thus keeping the nucleus pulposus hydrated. [KERT2001a, 

URBA2003]. The annulus fibrosus is formed of multiple concentric collagenous 

layers called lamellae which surround the nucleus. These lamellae are composed 

by aligned collagen fibres in alternating orientations as shown in Figure 2.6. The 

primary component of the annulus is also water, but on a lower concentration than 

in the disc’s nucleus (60-70%). On the other hand the annulus has a higher 

concentration of collagen (about 50% dry weight), which is responsible for the 

disc’s strength. [KERT2001a].  

 The nucleus and annulus work together as a functional unit to evenly 

distribute the compressive load of the body weight, and resist shears and tensile 

loads resulting from flexion extension and rotation [ADAM2006, BELK2007]. With 

aging the intervertebral disc undergoes alterations in its composition and structure 

which greatly affect its functionality. A detailed description of these biochemical 

and structural disc alterations is given in section 2.3  

 

 
Figure 2.6. Lithography illustrating an axial section of the spine showing the 
position of the intervertebral disc (left), and a simple intervertebral disc model 
showing the alternating orientation of collagen fibres in the lamellas (right) 
[GRAY1918, NEUR2010]. 
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2.2.3. The spinal cord and spinal nerves 
 

The spinal cord is a nearly cylindrical bundle of nerves within the spinal 

canal. It extends from the brain down to the lumbar spine and it terminates on the 

first segment of the coccyx, as shown in Figure 2.7. From a functional point of 

view, the spinal cord forms part of the central nervous system and it is the main 

pathway that connects the brain to the peripheral nervous system.  

The spinal nerves branch out from the spinal cord connecting the central 

nervous system to the peripheral nervous system. Each nerve is connected to the 

spinal cord by either anterior of posterior roots as shown in Figure 2.8. Nerves 

connected to posterior roots carry sensory information to the central nervous 

system. Sensory neurons transmit information from body segments called 

dermatomes. The anterior roots form the starting points of most motor neurons, 

which carry signals away from the central nervous system and innervate the 

muscles in order to control motion [DRAK2004].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Lithographies depicting: a sagittal section of the vertebral canal, 
showing the lower end of the spinal cord [GRAY1918].  
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Figure 2.8. Lithography depicting an axial section of the spinal cord along with 
the anterior and posterior neural roots [GRAY1918].  

 

 

2.2.4. The spinal ligaments: Anatomy and Function 

 

The ligaments of the spine are composed of collagen and elastin fibres and 

contribute to spinal stability. They guide the joint motion and provide flexibility, 

while at the same time limiting excess motion that could harm the spinal cord. 

The major ligaments of the lumbar spine are depicted in Figure 2.9 [DRAK2004, 

BELK2007].  

 

Figure 2.9. Lithography of a midsagittal section of the lumbar spine depicting two 
vertebrae together with their corresponding ligaments [GRAY1918]. 
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2.2.5. The spinal muscles 

 

 The spinal muscles are a complex muscle group extending from the pelvis 

to the skull called deep muscles of the back. They work together with the 

ligaments to hold and support the spine and to control movement. They are 

categorized with respect to their function to forward and lateral flexors, extensors 

and rotators [DRAK2004].  
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2.3 Spine Pathology: Intervertebral Disc Degeneration 

2.3.1 Introduction 

 

 Intervertebral disc degeneration was recently defined as an “aberrant cell 

mediated response to progressive structural failure” [ADAM2006]. The 

degenerative process involves dehydration of the disc’s nucleus, and weakening 

of the annulus. This results in reduced load bearing and shock absorbing abilities, 

diminishing the disc’s functionality.  

 

 

2.3.2 Aetiology 

 

  The understanding of disc degeneration and its aetiology has changed 

tremendously within the last decade. In the past injuries related to physical 

loading were sought as the main causes of disc degeneration. However, newer 

studies on the effect of genetic influences to the progression of disc degeneration 

have demonstrated that heredity plays a dominant role [BATT1995, BATT2004].  In 

addition, it has become clear that degenerative changes are part of the aging 

process [AN2004].  Degenerative changes appear as early as the second decade of 

life, with 20% of teenagers having mild signs of degeneration. The progress of 

degeneration increases steeply with age and 60% of all discs are severely 

degenerated by the age of 70 [URBA2003]. Other influences affecting the progress 

of disc degeneration include mechanical, occupational, traumatic and nutritional 

factors [LUOM2000, URBA2003, MODI2007].  

 

 

2.3.3 Biochemical Alterations 

 

The degenerative process begins when catabolism exceeds synthesis of 

matrix proteins [AN2004]. Moreover, proteoglycan fragmentation results in 

smaller fragments which can leak out of the disc tissue. The reduction of disc’s 
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proteoglycan content is the most significant change due to degeneration since it 

directly affects the disc’s ability to retain water [ADAM2006].   

 

 

2.3.4 Morphology and Function 

 

According to the Nomenclature Project guidelines, the term Intervertebral 

Disc Degeneration includes any or all of the following: “real or apparent 

desiccation, fibrosis, narrowing of the disc space, diffuse bulging of the annulus 

beyond the disk space, extensive fissuring (i.e. numerous annular tears) and 

mucoid degeneration of the annulus, defects and sclerosis of the endplates, and 

osteophytes at the vertebral apophyses” [MILE1997, FARD2001].  

These alterations of the disc tissue are related to the biochemical changes 

described in the previous section. The loss of proteoglycan content, results in disc 

dehydration which causes shrinkage of the nucleus. This leads to narrowing of the 

disc space and bulging of the annulus. At the same time the annulus dehydration 

makes the tissue stiffer and weaker. The annulus progressively encroaches the 

nucleus resulting in loss of the nucleus-annulus distinction. The disc becomes less 

elastic and thus more prone to fissuring [ADAM2006, PARI2007].   

Figure 2.10 illustrates some of the most common morphological 

alterations related to disc degeneration. These macroscopic changes are 

manifestations of the architectural distortion and structural failure of the 

intervertebral disc. Disc narrowing is the direct result of dehydration, and volume 

reduction of the nucleus. Annular tears also know as fissures are cracks in the 

annulus fibrosus. Disc bulging is a broad displacement of disc material, covering 

50-100% of its circumference, while disc herniation as defined by the 

nomenclature project is a localized displacement of disc material beyond the 

limits of the intervertebral disc space [FARD2001].  

Finally, from the functional point of view, dehydration adversely affects 

the disc’s ability to withstand compressive loads. The disc becomes stiffer and its 

shock absorbing ability diminishes. Disc space narrowing reduces the space 

between adjacent neural arches. A greater proportion of the compressive load 
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needs to be taken by the arches and this is related with osteoarthritis of the 

zygapophyseal joints. In addition, the alteration of stress distribution, results in the 

formation of bony spurs called osteophytes around the vertebral bodies’ margins. 

Moreover, lumbar disc herniations can cause compression of the nerve roots 

resulting in pain radiating to the lower extremities [FUJI1999, PARI2007].  

  (a)            (b)           (c)       (d) 

Figure 2.10. Schematic representation of disc’s midsagittal cuts illustrating the 
most common morphological alterations affecting the intervertebral discs: (a) a 
normal case, (b) an annular tear, (c) a disc herniation and (d) disc space 
narrowing.  

 

 

2.3.5 Disc Degeneration and Low-Back Pain 

  

The sequelae of disc degeneration are considered to be major causes of 

low back pain [MODI2007]. Despite increasing knowledge about the mechanisms 

of degeneration the actual relationship between degeneration and pain is still 

unclear [AN2004]. Multiple studies show relations between degenerative findings, 

such as disc space narrowing, disc herniation and modic changes in adjacent 

vertebrae, and the occurrence of low back pain [PAAJ1997, BRAI1998, 

LUOM2000]. From a clinical point of view, the degenerative process is considered 

to be responsible for over 90% of surgical spine procedures [AN2004]. However, 

this does not imply that disc degeneration is an indication of pain, or that it 

requires treatment. On the contrary, many degenerative findings are common 

among asymptomatic individuals [JENS1994]. 
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Looking into the socioeconomic aspect of pain, low back pain has been 

described as “a major public health problem in western industrialized societies” 

[URBA2003]. It affects a significant proportion of the population and imposes a 

tremendous economic burden due to patient treatment costs and reduced 

productivity. Its annual incidence in the adult population is between 10% and 

15%, while it affects most individuals at some point in their lifetime [ANDE1999, 

KATZ2006]. It is reported that the cost for low-back pain health care is about £1.6 

billion pounds per year in the UK. And this is only a small proportion of the 

actual cost, since the cost related to production losses is multiple times higher 

(estimated between £5 and £10 billions in the UK). Low back pain is the largest 

cause for absence from work in the UK accounting for 12.5% of all sick-days, 

while similar figures are presented in studies from Sweden [ANDE1999, 

MANI2000].  

 

 

2.3.6 Treatment 

 

Currently, the management of disc degeneration aims at reducing the pain 

and reversing disability. Disc degeneration treatment is conservative and 

palliative. Possible treatment options include: use of analgesic and anti-

inflammatory drugs, manipulation therapies and exercise for strengthening the 

back muscles. Moreover, current guidelines recommend activity and discourage 

bed rest [KOES2001, VANT2007].  

In cases where conservative treatment is not effective, and severe pain 

accompanied by neurological symptoms persists lumbar surgery might be 

undertaken. Interventional options include: spinal decompression, spinal fusion 

and total disc replacement. Surgery has been shown to improve patient outcomes, 

but is recommended only for a small number of patients since the majority of 

cases are improving with conservative treatment. A disadvantage of surgical 

procedures is that they alter spine biomechanics and could result in adjacent levels 

degeneration [KOES2001, HILI2004].  
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New treatment methods such as growth factor and gene therapy aim into 

repairing the intervertebral disc, instead of only dealing with its’ symptoms. 

Growth factor therapy works by modulating the activity of intervertebral disc 

cells. Growth factors are proteins which when injected in the intervertebral disc 

they can stimulate an increase in proteoglycan synthesis. However, this therapy is 

only short term since growth factor levels in the disc decrease over time. On the 

other hand gene therapy can provide a more sustainable solution. Gene therapy 

involves the transfer of genetic material responsible for producing the growth 

factor of interest into target cells. Consequently these cells are implanted into the 

disc, producing growth factors and increasing the synthesis of proteoglycan. 

Currently, these approaches are experimental and have a lot of barriers to 

overcome before being used in clinical practice. A specific treatment might 

currently be out of reach, yet these approaches hold good potential into becoming 

the future treatments for disc degeneration [URBA2003, VADA2007]. 
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2.4 Clinical Imaging of the Lumbar Spine 

2.4.1 Introduction  

 

 The diagnosis of disc degeneration involves clinical investigation and 

imaging of the spine. A variety of imaging modalities, such as X-rays, Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) are used for this 

purpose. Additional imaging approaches include myelography and discography, 

combined with either X-rays or CT [PARI2007]. This section gives a brief 

summary on the use of these modalities for imaging disc degeneration and 

discusses their merits and weaknesses. 

 

 

2.4.2 Plain radiographs 

 

 In plain radiographs, the intervertebral disc has no apparent optical density 

due to its soft tissue nature and thus cannot be directly visualized. However, the 

adjacent vertebral bodies provide indirect information regarding the disc tissue. 

Specifically, plain radiographs are used for evaluating a variety of conditions 

related with disc degeneration such as disc space narrowing, endplate sclerosis 

and the development of osteophytes on adjacent vertebrae [MODI1988, PARI2007]. 

Disc space narrowing was sought as a good indicator of progressing disc 

degeneration. However its validity is questioned from studies showing that the 

disc space is narrower in young than middle-aged men [LUOMA2001, ROBE1997]. 

Figure 2.11 presents a lateral radiograph of a lumbar spine with extensive 

presence of osteophytes. 

 Plain radiographs are very useful when assessing the vertebrae and offer a 

non invasive and cost effective way to image the spine. However, they have a 

limited role when assessing intervertebral disc changes. Radiographs can show 

gross morphological changes of the disc affecting surrounding structures, but are 

rather insensitive to early degenerative changes. Moreover, there is no firm 

relationship between radiographic findings and low back pain [MODI1989, 

PARI2007].  
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Figure 2.11. Lateral radiograph of a lumbar spine [WIKI2010]. 
 

 

2.4.3 Computed Tomography 

 

 Computed tomography provides excellent visualization of the bony 

structures of the spine, and it additionally depicts the intervertebral discs. In spine 

CT the disc’s outer annulus appears slightly denser than the nucleus and inner 

annulus probably due to its higher collagen content. The degenerative findings 

depicted in CT are: disc space narrowing, bulging, herniation, calcification, the 

vacuum phenomenon, as well as osteophytes on adjacent vertebrae. CT provides 

good visualization of disc herniation as shown in Figure 2.12. Moreover, being a 

volumetric imaging modality, it allows visualization of the spine in any plane. 

Spine CT is a non invasive and fast method for imaging the spine in 3D. Although 

it is used less frequently nowadays due to the advances in MR imaging, it still has 

an important role in evaluating disc disease. CT is particularly useful for imaging 

patients who cannot have an MR scan such as patients with claustrophobia, 

implants or pacemakers.  
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 On the down side, the major limitation of spine CT with respect to 

evaluating disc degeneration is the limited soft tissue contrast of this modality. CT 

cannot accurately depict the internal disc structure, and thus is insensitive to early 

degenerative changes that do not affect the disc’s configuration. In addition, it 

utilizes ionizing radiation with an exposure dose of 6mSv per scan (equivalent to 

60 chest X-rays or 2 years background radiation). Finally, with respect to low 

back pain, spine CT (as well as X-rays and MRI) cannot distinguish between 

symptomatic and incidental findings [MODI1988, TALL1998, KERT2001a, 

PARI2007, RADI2010].  

 

 

 

 

 

 

 

 

 
Figure 2.12. Spine CT with an intervertebral disc herniation (arrow) [NEUR2010]. 
 

   

2.4.4 Myelography 

 

 Myelography is performed by injecting contrast material in the 

subarachnoid space using fluoroscopy for guidance. In the past myelography was 

obtained by fluoroscopic examination, or plain radiographs, but nowadays it is 

combined with CT for 3D visualization of the spine structures. Myelography 

provides good visualization of the spinal cord and nerve roots. It is particularly 

useful for the diagnosis of disc herniations causing nerve root compromise. 

However, it is an invasive method using ionizing radiation. In recent years the use 

of Myelography declines, although it is still indicated for selected patient cases 

and especially when MRI findings do not justify the clinical symptoms 

[BART1998, SHAF1999]. 
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2.4.5 Discography  

 

 In discography, contrast medium is initially injected percutaneously to the 

centre of the intervertebral disc followed by a CT scan and assessment of pain 

provocation. Discography depicts the disc’s internal structure and provides good 

visualization of fissures and herniations thus assisting the evaluation of disc 

integrity. In addition, the injected medium can reproduce pain helping to define 

the disc levels responsible for the patient’s symptoms. Thus pain provocation is 

additionally assessed and discography is the only method directly relating the 

disc’s integrity to patient’s symptoms [MODI1988, PARI2007]. 

 Looking into the disadvantages of discography, it is an invasive method 

which carries a risk of infection and utilizes ionizing radiation with a moderate 

dose exposure. In addition, it may induce long-term symptoms, especially in 

patients with chronic back pain. Its reliability is questioned since abnormal 

discographies have been reported in normal asymptomatic volunteers. More 

importantly, a recent matched cohort study with 10 years follow-up provided 

evidence that disc injections accelerate the degenerative progress. Due to its 

controversial nature and the advances of other imaging modalities discography 

has fallen out of favour [PARI2007, CARR2009a]. 

 

2.4.6. Magnetic Resonance Imaging  

 

 MRI is a good modality for imaging the spine and the most sensitive 

method for evaluating intervertebral disc degeneration. It provides high soft tissue 

contrast, allowing good visualization of the intervertebral disc as well as the 

surrounding nerves, ligaments and muscles. In addition, it is non-invasive, does 

not use ionizing radiation, and is capable of multiplanar imaging [MODI1988, 

HAUG2006, MODI2007, PARI2007].  

 MRI provides both morphological and biochemical information of the 

internal disc structure facilitating the evaluation of disc degeneration. Specifically, 

morphological alterations such as the loss of nucleus annulus distinction, disc 

space narrowing, disc fissuring, bulging and herniation are clearly depicted in 
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MRI. Moreover, biochemical information is encoded in MR signal intensity 

offering an indirect evaluation of the disc’s water and proteoglycan content 

[KERT2001a, MODI2007]. 

 In clinical practice the standard MRI protocols for imaging the lumbar 

spine consist of sagittal T1 and T2 weighted images, supplemented by axial T1 or 

T2 weighted images at selected levels [WOLA2005]. Figure 2.13 illustrates two 

mid-sagittal images of the lumbar spine. T1-weighted images show low signal 

intensity from the cerebrospinal fluid (CSF) and cortical bone and high signal 

intensity from the bone marrow. They clearly depict spine anatomy and are used 

for inspecting the vertebral bodies (Figure 2.13a). On the other hand, T2-weighted 

images show high signal intensity from structures with high water content such as 

the CSF and the disc’s nucleus. T2-weighted images are used for inspecting the 

intervertebral discs and assessing their structural integrity (Figure 2.13b). 

Moreover, they are commonly used for classifying the disc according to the 

severity of degeneration.  

 In sagittal T2-weighted images, a normal intervertebral disc appears as a 

bright ellipse the nucleus surrounded by a dark ring the annulus while the end 

plates and ligaments also appear dark as shown in Figure 2.14a. Looking in more 

detail into the natural course of disc degeneration, a young healthy disc is well 

hydrated and appears with a bright homogeneous nucleus in MRI. With aging the  

          (a)                 (b) 

Figure 2.13. Examples of (a) T1-weighted and (b) T2-weighted midsagittal MR 
images of the lumbar spine. 
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      (a)                                                     (b) 
Figure 2.14. Examples of (a) a normal and (b) a degenerated intervertebral disc as 
depicted in T2 weighted MR images. 
 

 

fibrous   transformation  of  nucleus   matrix  creates  an  intranuclear  cleft  which 

appears as a dark band in T2-weighted images. Progressive degeneration involves 

further dehydration of the disc and encroachment of the annulus into the nucleus. 

A degenerated disc appears darker since dehydration results in decreased signal 

intensity as shown in Figure 2.14b. End plate damage is also clearly depicted in 

MRI, while the excellent visualization of disc herniation and bulging allows 

accurate diagnosis of these conditions. Moreover, MRI can show vertebral 

endplate changes (also known as Modic changes) which are related to fissuring 

and disruption of end plates, as well as degeneration of the bone marrow. This is 

actually the only modality depicting Modic changes which are a useful indication 

of low-back pain. [BRAI1998, KERT2001a, PFIR2001, KJAE2006]. 

 Although MRI provides accurate depiction of disc morphology, its value 

in low back pain diagnosis is limited by its low specificity. This is due to the high 

prevalence of degenerative findings such as dehydration, fissuring and bulging in 

asymptomatic individuals. Consequently, MRI results should be evaluated in 

conjunction with patients’ clinical symptoms, to avoid over treatment. The same 

is true for CT and X-ray imaging of the spine. Nevertheless there are specific MR 

imaging finding, such as disc extrusions and modic changes which are rare among 

asymptomatic individuals and highly associated to low back pain. An additional 

disadvantage of MRI is its relatively high cost [BODE1996, JENS1994, MODI2007].  

 Recent advances in MRI include magnetic resonance spectroscopy, 

dynamic imaging under load bearing conditions, as well as quantification of T1 

and T2 relaxation times and the apparent diffusion coefficient [HAUG2006]. Disc 
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spectroscopy and dynamic imaging are briefly described in the remaining of this 

section, while disc quantification techniques are analyzed in detail in section 

2.5.2.  

Magnetic resonance spectroscopy can offer a biochemical evaluation of 

the disc tissue. It measures the amount of specific metabolites, such as lactic acid, 

which are related to the degenerative process. However, the application of this 

method in vivo is limited due to its low signal to noise ratio, and further 

technological developments are required before it is applied in clinical practice 

[HAUG2006, MAJU2006].  

Dynamic imaging schemes utilize MR units which scan the patient 

standing upright. This allows imaging the spine under weight-bearing conditions, 

as well as during flexion or extension. Such schemes can detect occult herniations, 

which do not normally appear on recumbent position. Having the patient in a 

clinically relevant position could potentially help better correlate image findings 

with patient symptoms [JINK2006]. 
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2.5. Evaluating Disc Degeneration form Spine MRI 

2.5.1. Qualitative Grading 

 

In clinical practice, the evaluation of disc degeneration severity relies on 

qualitative descriptions of image features such as the signal intensity, and shape of 

the intervertebral disc. A variety of qualitative schemes have been proposed 

aiming to assist the clinicians it the task of grading disc degeneration severity in a 

standardized manner [PFIR2001, BENN2005, KJAE2005]. These grading schemes 

differ with respect to the imaging modality used, the disc features evaluated, as 

well as the number of degeneration severity classes.  

The task of reporting degenerative findings related to lumbar disc 

pathology suffers from great inconsistencies in the terminology used by the 

scientific community. In an effort to establish consensus, the American Society of 

Neuroradiology together with the North American Spine Society and the 

American Society of Spine Radiology published a recommendation on the 

nomenclature and classification of lumbar disc pathology [FARD2001]. However, 

as pointed out by J. Ross in his recent editorial in Radiology, the inconsistencies 

in terminology and the variety of classification schemes used keep complicating 

the communication between clinicians [ROSS2010].  

A major issue in grading disc degeneration is the inter- and intra-observer 

reliability. This is because of the subjective nature of imaging features’ 

description which sometimes results in great variance between the radiologists’ 

gradings. In a review of disc degeneration grading schemes, the authors compare 

the different schemes with respect to their reliability, given by Cohen’s Kappa or 

intraclass correlation coefficients, as well as with respect to their clinical 

feasibility and relevance. They recommend using grading systems with at least 

substantial interobserver agreement (Kappa >0.6) and with 3 to 5 classes of 

degeneration severity. Specifically for the case of magnetic resonance evaluation 

of lumbar disc degeneration the authors recommend the system developed by 

Pfirrmann [KETT2006, PFIR2001]. This system is based on the qualitative 

description of disc’s signal intensity, height as well as the distinction between the 
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nucleus and annulus as described in detail in section 4.3, and has been shown by 

multiple studies to provide good reliability [PFIR2006, CARR2009b, ARAN2010]. 

Apart from suffering from interobserver variability, qualitative grading 

schemes have an additional drawback. They only use a limited number of 

degeneration severity classes (typically 3 to 5) and thus are not suitable for 

describing small changes in intervertebral discs [NEIM2008]. Although in current 

clinical practice a rough description of the degenerative status is sufficient, the 

need for new objecting diagnostic methods that would be sensitive to small 

changes is rapidly increasing. This is due to the development of emerging 

technologies for disc degeneration treatment, which require precise monitoring 

[MWAL2008].  

 

 

2.5.2. Short Review on Disc Degeneration Quantification 

 

The quantification of disc properties can provide an objective and 

reproducible evaluation of degeneration severity and potentially assist the 

physicians in disease diagnosis. Moreover, the continuous nature of quantitative 

measures renders them more sensitive to small changes. Thus disc quantification 

could be employed for tracking the evolution of disease. Moreover, it could be 

used for monitoring the effect of the new treatment methods for disc pathology, 

such as nucleus replacement, cell therapy, and growth factor therapy [VIDE2003, 

MWAL2008, NEIM2008].  In addition, through computerized image analysis it is 

possible to design more comprehensive rating systems that are not limited by the 

time that the physician can spend on each patient [DAM2007].  This section 

provides a short review of disc degeneration quantification methods. 

 

The simplest and most widely used method for degeneration quantification 

relies on the measurement of disc’s mean signal intensity from mid-sagittal T2-

weighted MR Images [LUOM2001, BENN2005, NEIM2008]. Signal intensity 

reflects tissue biochemical composition and is correlated to disc’s proteoglycan 

content [TERT1991, BENN2005]. The decrease of disc’s mean signal intensity may 
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be the earliest degenerative change seen in MRI and is a sensitive and reliable 

measure of degeneration severity. In addition, it is the most highly specific MR 

measure associated with age [NEIM2008]. A great advantage of adjusted mean 

signal intensity is that it relies on conventional T2 images for quantification, and 

thus can be easily applied in clinical routine. On the down side, this method 

requires an intra-body reference for disc signal intensity adjustment. A region 

within the cerebrospinal fluid (CSF) adjacent to the disc level is normally used as 

a reference, but such a region is sometimes unavailable. This is usually due to 

flow artefacts or narrowing of the dural sack as demonstrated in Figure 2.15, 

which hinder the use of the adjusted mean signal intensity method [LUOM2001, 

NEIM2008].  

 

Alternative approaches to disc degeneration quantification make use of 

specific imaging protocols for measuring physical properties of the disc tissue 

such as the relaxation times and diffusion coefficients [MWAL2008].  

The T2 relaxation time, also known as transverse relaxation time can be 

measured using a multiecho sequence. This sequence acquires multiple images at 

different time points of the same signal decay (echoes). The relaxation time can be 

calculated by fitting the decay of the signal intensity from the different echoes to 

an exponential model. In the case of intervertebral discs, multiple studies have 

been conducted measuring the disc’s T2 relaxation time both on low and high 

field MRI. Cadaveric studies looking at the correlation between the T2 relaxation  

 

 

 

 
 
 
 

(a)                                                     (b) 
Figure 2.15. Examples of cases where a CSF reference sample in unavailable due 
to (a) flow artefacts resulting in locally decreased signal in CSF and (b) narrowing 
of the dural sac. 
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time and the disc’s biochemical composition show a decrease of the T2 time with 

decreasing water and proteoglycan content [MARI2009]. This is in agreement with 

in vivo studies showing a decrease in T2 with progressing degeneration 

[PERR2006, BLUM2010]. In addition, the T2 time has been shown to be influenced 

by tissue anisotropy such as the orientation of collagen fibres and is suggested that 

it could consequently be useful for evaluating the structural integrity of the disc 

tissue [PERR2006].  

The T1ρ relaxation time reflects the interactions between macromolecules 

and bulk water, and has been exploited for the quantification of disc degeneration. 

A cadaveric study indicated that the T1ρ time is significantly correlated to disc’s 

proteoglycan content [JOHA2006]. Moreover, an in vivo study on 10 volunteers 

demonstrated a significant correlation between the T1ρ values and disc clinical 

grading of degeneration severity [AUER2006]. This association was also verified 

by a recent study on 16 patients, where the authors concluded that T1ρ time would 

be a useful biomarker for assessing early degenerative changes [BLUM2010]. The 

T1ρ relaxation times are longer than the corresponding T2 and thus the T1ρ 

quantification approach has an increased dynamic range. However, its main 

drawback is the long acquisition time (about 30 minutes) which is near the 

patients’ tolerance level [AUER2006]. 

The Apparent Diffusion Coefficient (ADC) of intervertebral discs has also 

been studied as a biomarker for evaluating disc degeneration. The intervertebral 

disc lacks vascularity and thus diffusion is its main source of nutrient, with 

diffusion patterns playing a crucial role in disc’s integrity [ADAM2006]. In vivo 

measurements on healthy and degenerated discs have shown a decrease in ADCs 

values over the x and y axes indicating a different diffusion pattern between the 

two disc groups on the axial plane. Moreover, the ADC values have been shown 

to correlate with disc water and proteoglycan content in this direction dependant 

manner. It has been suggested that decreased ADC values reflect the lost integrity 

of the disc and thus ADC could also be used for early diagnosis of degeneration 

[KERT2001b, MWAL2008].  

Overall, these quantitative approaches are believed to provide additional 

information to the conventional T2-weighted images, regarding both the 
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biochemical composition and structural integrity of the intervertebral discs. 

However, this does not come without a cost. The T2, T1ρ and ADC quantification 

approaches require specific image acquisition protocols which are not widely 

available since they do not form part of the standardized clinical protocols. An 

additional disadvantage of these methods is that they require additional and in 

some times long acquisition times, which makes their application in clinical 

routine more time consuming [KERT2001b, AUER2006].  
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2.6. Summary 

 

This chapter described the medical background related to this study. The key 

points presented in this chapter are summarized in the following list: 

 

 The intervertebral discs are pads of fibrocartilage lying in-between the 

vertebral bodies and acting as shock absorbers while providing flexibility 

to the spine 
 

 Disc degeneration is related to dehydration of the nucleus and weakening 

of the annulus which affect the disc functionality 
 

 The relation between disc degeneration and low back pain is unclear, 

however degenerative alterations are considered responsible for over 90% 

of spine surgery. 
 

 MRI is a good modality for evaluating disc degeneration because it is non 

invasive and provides good soft tissue contrast without using ionizing 

radiation.  
 

 MRI clearly depicts the disc morphology and internal structure. Moreover, 

MR signal intensity is associated to the disc’s water and proteoglycan 

content, thus providing biochemical tissue information. MRI is highly 

sensitive in detecting early degenerative changes.  
 

 In clinical practice the evaluation of disc degeneration severity relies on 

qualitative grading of disc signal intensity and shape from midsagittal T2-

weighted MR images, which is subjective and susceptible to interobserver 

variability. 
 

 Disc quantification can provide a more objective and reproducible 

evaluation of degeneration severity, which is particularly useful for 

tracking the evolution of disease and monitoring the effect of treatment.  
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 The standard method for disc quantification is based on measuring the 

disc’s mean signal intensity from conventional T2-weighted images. This 

intensity value is normalized using a reference region from the CSF.  
 

 Alternative approaches to disc degeneration quantification include the 

measurement of T1, T1ρ and T2 relaxation times, as well as the 

measurement of the apparent diffusion coefficient. However, these 

approaches require specific imaging protocols and additional image 

acquisition time. 
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Chapter 3. Clinical Data Collection and Analysis 

 

This chapter presents the data collected in the present study and discusses 

on the methods used for clinical diagnosis of degeneration. Section 3.1. provides 

details on the data acquisition protocols, while Section 3.2. describes the grading 

schemes utilized by the clinical experts for qualitatively evaluating disc 

degeneration severity. Finally, Section 3.3. presents the results of this qualitative 

analysis, discusses on interobserver agreement and establishes a severity grading 

ground truth to serve as basis for subsequent analysis, and testing the 

quantification results. 
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3.1. Summary of data sets collected 

 

The present study aims in the quantification of intervertebral disc 

degeneration from conventional T2-weighted MR images. Sections 2.4.6 and 

2.5.1 of the medical background chapter provide detailed descriptions about these 

images and the information they provide with respect to disc degeneration. Based 

on this information, the motivation for choosing T2-weighted images to serve the 

current quantification task is summarized by the following:  

 T2-weighted images form part of the standard spine imaging protocols. 

Their wide availability means that the quantification method designed 

could be directly applicable without requiring specific imaging protocols 

or additional acquisition time. 

 T2-weighted images form the basis of clinical diagnosis of disc 

degeneration and thus a qualitative severity grading ground truth can be 

established to be used for testing the quantification results. 

 These images provide both morphological and biochemical (water and 

proteoglycan content) information of the disc and depict even the early 

stages of degeneration. 

 

In this study lumbar spine MR scans were acquired from patients referred 

to the diagnostic centre with low-back pain symptoms. Specifically, two data sets 

were collected and analyzed independently, due to equipment and clinical time 

availability. The first dataset comprised 170 intervertebral discs from 34 

midsagittal T2-weighted MR images acquired by a 1.5 Tesla scanner (Signa, 

General Electric Medical Systems, Milwaukee, WI) using a Fast Relaxation Fast 

Spin Echo imaging sequence with the following acquisition parameters: TR 

=3100msec, TE=115msec, flip angle = 90°, field of view = 32cm, slice thickness 

= 4mm, slice spacing=0.8mm, matrix = 512x512, number of averages = 1. 

 The second dataset comprised 255 intervertebral discs from 51 midsagittal 

T2-weighted MR images acquired by a 3.0 Tesla scanner (Signa, General 

Electric Medical Systems, Milwaukee, WI) using again a Fast Relaxation Fast 

Spin Echo imaging sequence with the following acquisition parameters: TR = 
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3000-3400ms, TE = 102-109ms, flip angle = 90°, field of view = 28 cm, slice 

thickness = 3 mm, slice spacing= 1 mm, matrix = 512x512, number of averages = 

1. Figure 3.1 illustrates example images of the two data sets. Both datasets are 

acquired by multislice 2D protocols, with non-isotropic voxels. The two image 

acquisition protocols are very similar, but images acquired by the 3.0 Tesla 

scanner have slightly increased resolution in comparison to those acquired by the 

1.5 Tesla one (3T voxel size =0.547x0.547x3mm3, while 1.5T voxel 

size=0.625x0.625x4mm3). The segmentation method presented in this thesis was 

initially developed for the 1.5T dataset and later translated to the 3T dataset. To 

test the validity of this translation, the accuracy of the proposed segmentation 

method was quantitatively assessed against golden standard segmentations for all 

discs of the 3T dataset (in addition to the 1.5T dataset segmentation accuracy 

verification). The corresponding results are summarized in Tables 4.5 and 4.6. 

Although 3D data would be desirable not so much for the quantification of 

degeneration as for measuring with better accuracy disc morphology related 

pathologies such as narrowing and herniation, their use in clinical practice is 

limited, mostly due to the long acquisition times, which are near the patients’ 

tolerance making the images more susceptible to motion artefacts [WOLA2005]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
                 (a)                               (b) 

Figure 3.1. Midsagittal T2-weighted images acquired (a) by the 1.5 Tesla scanner 
and (b) by the 3.0 Tesla scanner.  
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3.2. Clinical Grading of Disc Degeneration 

 

The 1.5 Tesla dataset was obtained first and the images were initially 

reviewed by an experienced orthopaedist, who characterized the intervertebral 

discs as normal or degenerated according to the recommendations of the 

American Association of Neuroradiology [MILE1997, FARD2001]. More 

specifically, a disc was characterized as degenerated if it demonstrated at least one 

of the following imaging findings: desiccation, fibrosis, narrowing of the disc 

space, diffuse bulging of the annulus beyond the disc space, extensive fissuring 

(i.e. numerous annular tears), defects and sclerosis of the end-plates, or 

osteophytes at the vertebral apophyses. From a total of 170 lumbar intervertebral 

discs, 78 were characterized as degenerated, while the remaining 92 discs were 

characterized as normal. Next, the grading system shown in Table 3.1 was used 

for evaluating disc degeneration severity. This is a simplified version of the 

system introduced by Kjaer describing disc signal intensity in a qualitative 

manner [KJAER2005]. Two clinical experts (a radiologist and a neurosurgeon) 

reviewed the images and graded the discs as normal (0), mildly (1) or severely 

degenerated (2). This clinical grading was intended to serve as ground truth for 

training and testing the computer aided diagnosis system but was found to be 

unreliable. Detailed results of disc degeneration grading are presented in section 

3.3. Cohen’s Kappa with quadratic weighting was utilized for evaluating inter-

observer agreement [KUND2003]. Results indicated only poor agreement between 

the two experts, which could be attributed to the subjectiveness of the grading 

scheme. This raised questions with respect to the reliability of the ground truth, 

and was not further exploited. 
 

 

Table 3.1. The grading system used for evaluating disc degeneration severity of 
the 1.5 Tesla dataset 

Disc Degeneration Grading Qualitative Description 

Grade 0  normal disc 
Grade 1  intermediate degeneration 
Grade 2  severe degeneration 

Hyperintense disc signal (higher than vb) 
Intermediate signal intensity (similar to vb) 
Hypointense disc signal (lower than vb) 

vb: vertebral bodies 
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For the 3.0 Tesla dataset, three radiologists independently reviewed the 

images and qualitatively evaluated disc degeneration severity. Reviewer 1 

(Aikaterini Vassiou, Assistant Professor of Anatomy, University of Thessaly) is a 

radiologist with 15 years of experience in reading MR images. Reviewer 2 

(Marianna Vlychou, Assistant Professor or Radiology, University of Thessaly) is 

a specialized musculoskeletal radiologist who also has 15 years experience. 

Finally, Reviewer 3 (Alexandra Kazantzi, Trained Radiologist, University of 

Patras) has 6 years of experience in reading MRI. A different grading scheme was 

used this time, aiming to improve interobserver agreement. For this purpose the 

five grade scheme described in Table 3.2 was utilized. This scheme was 

introduced by Pfirrmann and gives a more explicit description of the intervertebral 

disc accounting for signal intensity, nucleus annulus distinction and disc height 

[PFIR2001]. It has been shown to provide repeatable results by two independent 

studies, and is also recommended by a review paper for disc degeneration grading 

from MRI [CARR2009b, ARAN2010, KETT2006]. Again Cohen’s Kappa was used 

for evaluating interobserver agreement. The interpretation of inter-observer 

agreement results was based on the method introduced by Landis and Koch as 

given in Table 3.3 [LAND1977].  
 

Table 3.2. Pfirrmann’s scheme used for grading disc degeneration severity of 
the 3.0 Tesla data set 

Disc Degeneration Grading Qualitative Description 

Grade 1  normal disc 
 
 
 
Grade 2  normal disc 
 
 
 
Grade 3  mild degeneration 
 
 
 
Grade 4  moderate degeneration 
 
 
 
Grade 5  severe degeneration 

Hyperintense signal with homogenous bright 
white nucleus, clear nucleus annulus 
distinction, normal disc height 
 
Hyperintense signal with visible intranuclear 
cleft, clear nucleus annulus distinction, normal 
disc height 
 
Intermediate signal intensity, unclear nucleus 
annulus distinction, normal to slightly 
decreased disc height 
 
Intermediate to hypointense signal, lost 
nucleus annulus distinction, normal to 
moderately decreased disc height 
 
Hypointense signal, lost nucleus annulus 
distinction, collapsed disc space 
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Table 3.3. The Landis and Koch’s kappa values interpretation 
κ Interpretation 

< 0 No agreement 
0.0 — 0.20 Slight agreement 

0.21 — 0.40 Fair agreement 
0.41 — 0.60 Moderate agreement 
0.61 — 0.80 Substantial agreement 
0.81 — 1.00 Almost perfect agreement 

 

The 3T clinical grading was found to be reliable and served as ground 

truth for evaluating disc degeneration severity quantification and also training and 

testing the computer aided diagnosis system. More specifically, readers’ 

consensus (given by the majority of three gradings) was calculated, putting 

together the clinical knowledge and experience of all three radiologists. 

Radiologists’ consensus was used for establishing a severity grading for each 

individual disc, which formed the ground truth of clinical evaluation.  
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3.3. Clinical Data Grading Results and Observers’ Agreement 

 

 The 170 discs of the 1.5 Tesla dataset were reviewed by two clinical 

experts and discs were described as normal (0), mildly (1) or severely (2) 

degenerated. The resulting evaluations are presented as a contingency matrix in 

Table 3.4. The experts agreed in 50.5% of all cases, while they disagreed by 1 

grade in 42.4 % and by 2 grades in 7.1%. The Kappa coefficient for interobserver 

agreement was found to be 0.380 indicating poor agreement between the two 

experts. This can be attributed to the subjective nature of the clinical grading 

scheme, which is based on the qualitative description of disc signal intensity as 

hyperintense, intermediate or hypointense. Moreover, the different clinical 

backgrounds of the two experts (a radiologist and a neurosurgeon) could be an 

additional reason for the low interobserver agreement. However, as the reliability 

of this grading is questioned due to the poor agreement between observers, a 

different grading scheme was utilized for the new 3.0 Tesla dataset as described in 

section 3.2. and the corresponding results are analyzed below.  

 

 

 

 

 

 

 The 255 discs of the 3.0 Tesla dataset were reviewed by three radiologists 

and degeneration severity was evaluated utilizing Pfirrmann’s grading scheme. 

Figure 3.2 illustrates representative examples of discs assigned to the different 

grades of degeneration severity. The resulting interobserver evaluations are 

presented in the form of contingency matrices in Tables 3.5., 3.6. and 3.7. The 

greatest proportion of disagreement between the three experts was observed 

between Grade 2 and Grade 3. The Kappa coefficients of inter-observer 

agreement are given in Table 3.8. The average Kappa value is 0.698, indicating 

substantial agreement between observers, and thus this grading scheme is 

considered reliable to serve as ground truth for testing the quantification results. 

Table 3.4. Contingency matrix for the 1.5 Tesla 
dataset clinical grading results of the 2 reviewers 
                Reviewer 1 
Reviewer  2 

 
Grade 0 

 
Grade 1 

 
Grade 2 

Grade 0 24 21 7 
Grade 1 9 37 14 
Grade 2 5 28 25 
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Figure 3.2. Examples of discs with different degrees of degeneration severity. 
From left to right, the discs become darker and the distinction between nucleus 
and annulus is reduced.  
 

 

 

    

 

Table 3.5. Contingency matrix for the 3.0 Tesla dataset clinical grading results 
of reviewers 1 and 2  
                 Reviewer 2 
Reviewer  1 

 
Grade I 

 
Grade II 

 
Grade III 

 
Grade IV 

 
Grade V 

Grade I 0 0 0 0 0 
Grade II 6 25 3 1 0 
Grade III 0 23 66 5 0 
Grade IV 0 0 12 82 2 
Grade V 0 0 1 6 23 

Table 3.6. Contingency matrix for the 3.0 Tesla dataset clinical grading results 
of reviewers 1 and 3  
                Reviewer 1 
Reviewer  3 

 
Grade I 

 
Grade II 

 
Grade III 

 
Grade IV 

 
Grade V 

Grade I 0 0 0 0 0 
Grade II 0 21 14 0 0 
Grade III 0 46 45 3 0 
Grade IV 0 9 53 29 5 
Grade V 0 1 4 5 20 

Table 3.7. Contingency matrix for the 3.0 Tesla dataset clinical grading results 
of reviewers 2 and 3  
             Reviewer 3 
Reviewer  2 

 
Grade I 

 
Grade II 

 
Grade III 

 
Grade IV 

 
Grade V 

Grade I 0 4 2 0 0 
Grade II 0 32 16 0 0 
Grade III 0 31 48 3 0 
Grade IV 0 10 47 32 5 
Grade V 0 0 3 2 20 
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Also, this interobserver agreement value is comparable to that of the study by 

Carrino et al. (Kappa=0.66), where 4 expert radiologists graded 111 patients’ 

discs utilizing Pfirrmann’s grading scheme [CARR2009b].  

The severity grading ground truth was established on the basis of 

radiologists’ consensus, assigning to each disc the grade given by the majority of 

experts (Table 3.9.). This consensus grading served as basis for validating the disc 

degeneration quantification results, as well as training and testing the CAD 

system. Although, it would be desirable to have more clinical experts reviewing 

the data, clinical time availability was limited, yet interobserver agreement was 

found to be substantial providing confidence in the validity of clinical consensus 

grading.  

As described in section 3.2 the three radiologists who reviewed the data 

shared different levels of experience in MR images interpretation. It is worth 

noting that the interobserver agreement results presented in Table 3.8. show the 

highest agreement between the two most experienced radiologists (Reviewers 1 

and 2) and lower agreement for the less experienced (Reviewer 3). 

 

Table 3.8. Kappa values for Interobserver Agreement 
Observers Test Kappa 95% Confidense Interval 
Reviewer 1 – Reviewer 2 0.8587 [0.7156 ,    1.0000] 
Reviewer 1 – Reviewer 3 0.5895 [0.3596 ,    0.8194] 
Reviewer 2 – Reviewer 3 0.6470 [0.4339 ,    0.8601] 
Average Value 0.6980  

 
 
Table 3.9. Consensus grading of disc degeneration severity 

Grade I Grade II Grade III Grade IV Grade V 
0 52 90 88 25 
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3.4 Summary and Analysis of objectives 
 

This chapter presented the datasets collected in this study together with the 

qualitative analysis methods used from clinically evaluating degeneration 

severity. Table 3.10. presents an analysis of objectives related to data collection 

and clinical grading summarizing this chapter. 

 

Table 3.10. Research Objectives Summary and Discussion  
 

Sample Collection / Clinical Grading of Disc Degeneration 

1. To collect a clinical sample consisting of conventional T2-weighted MR 

images of the lumbar spine representative of various degrees of disc 

degeneration severity 
 

Two datasets were collected, the first comprising 170 intervertebral discs 

from 34 images acquired by a 1.5 Tesla scanner, and the second comprising 

255 discs from 51 images acquired by a 3.0 Tesla scanner. Both datasets 

represented various degrees of degeneration, from normal to severely 

degenerated discs.  
 

2. To select / design in collaboration with clinical experts a grading scheme for 

the qualitative description of image features related to disc degeneration. To 

have the images diagnosed by clinical experts according to the selected 

grading scheme. To test the clinical grading reliability through the agreement 

between expert readers. Also obtain a ground truth based on clinical experts 

consensus to serve the quantification and computer aided diagnosis tasks. 
 

Two different schemes were selected. The first scheme (Table 4.1) was based 

on qualitative descriptions of disc signal intensity. It resulted in poor 

agreement between the clinical experts’ gradings on the 1.5 T dataset 

(κ=0.380), and thus was not considered reliable to serve as severity grading 

ground truth. The second scheme (Table 4.2) was based on descriptions of 

disc intensity, nucleus annulus distinction and height and comprised five 

classes of degeneration severity. This scheme was utilized by three 

radiologists for grading the 255 discs of the 3.0 Tesla dataset. Interobserver 
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repeatability among the three radiologists was found to be substantial 

(κ=0.698) in this case and radiologists’ consensus was calculated to serve as 

ground truth for the quantification task.  
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Chapter 4. Intervertebral Disc Segmentation 
 

 

This chapter presents the intervertebral disc segmentation methods and 

results. The chapter starts with an overview of segmentation methods used in 

medical imaging and continues with a literature review on methods focusing on 

intervertebral disc segmentation. Next the requirements and challenges of disc 

segmentation from conventional T2-weighted MR images are analyzed. In 

addition, the methods developed in the present study for disc segmentation are 

described in detail starting with the simple fuzzy clustering approach and moving 

on to atlas based segmentation. Finally, the disc segmentation results are 

presented and discussed.  
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4.1. Segmentation Methods Overview 

 

 Segmentation is the partitioning of an image into multiple regions that are 

homogeneous with respect to some characteristic, such as grey level or texture 

[HARA1985]. In medical images, these regions correspond to anatomical 

structures or structures demonstrating certain pathologies (e.g. tumours).  

 The task of segmentation is to provide a meaningful and easier to analyze 

image representation [SHAP2001]. In medical imaging applications, segmentation 

algorithms are utilized for accurate quantification and disease diagnosis, 

pathology localization, study of anatomical structures, treatment planning and 

computer aided surgery [PHAM2000]. 

 Segmentation methods can be divided in two major categories with respect 

to the image-derived information exploited for segmentation. The first category 

includes methods solely based on grey level image information or methods 

utilizing textural information for image segmentation. The second includes model 

based methods, which incorporate spatial information using shape constrains in 

the segmentation process [REED1993, PHAM2000]. 

 The selection of an appropriate segmentation method for a specific image 

type is considered to be a challenging task [PAL1993]. It is widely recognized that 

no single method is suitable for all images, while the performance of each method 

depends on the specific application [PAL1993]. In addition, different segmentation 

methods are often combined in order to achieve improved performance 

[PHAM2000]. 

 This section provides a short overview to commonly used grey-level based 

segmentation methods and methods incorporating spatial information, while fuzzy 

clustering and atlas based segmentation approaches, which are utilized in the this 

study are presented in more detail.  
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4.1.1. Grey Level Based Segmentation Methods 

 

 Thresholding and clustering are the two major categories of grey level 

based segmentation methods. In thresholding, an image is divided into groups of 

pixels having grey level values less than a threshold, and groups of pixels with 

values greater or equal to it. On the other hand, clustering methods partition an 

image into groups of pixels (clusters) having similar grey level values 

[ROGO2000].  

 

4.1.1.1. Thresholding 

 Thresholding methods include simple approaches based on the image 

histogram and more complicated ones that adaptively calculate local thresholds 

[PRAT2001]. The simplest thresholding approach is global thresholding. In this 

approach a single image threshold is calculated and used for thresholding the 

image according to the following transformation: 

 

                                      S(x,y) =                                               (4.1) 

 

where f(x,y) is a pixel of the initial image, T is the threshold value and S(x,y) is the 

thresholded image. 

 

 Image threshold values can be calculated through various methods, with 

the minimization of intraclass variance proposed by Otsu being a highly popular 

one [OTSU1979]. Global thresholding is a computationally inexpensive method 

that works well when the image objects have relatively uniform grey level values 

and good contrast to the background. However, global thresholding fails in cases 

of low contrast and noisy images [ROGO2000]. To deal with such cases adaptive 

thresholding methods have been developed. These methods either calculate local 

threshold values by splitting an image to sub regions or calculate a different 

threshold for each pixel taking into account the grey level values in the pixel’s 

neighbourhood. Locally adaptive thresholding can deal with background and 
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contrast variations but is more computationally intensive than global thresholding 

[ROGO2000].  

 

4.1.1.2. Clustering 

 Clustering methods partition image pixels into groups through an iterative 

procedure. The simplest clustering method is the k-means algorithm that clusters 

data by iteratively computing a mean intensity for each class and segmenting the 

image by classifying each pixel in the class with the closest mean grey-level value 

[COLE1979, PHAM2000].  

 A different approach to segmentation by data clustering is fuzzy 

clustering. This approach is based on the fuzzy sets theory, introduced as a way to 

represent vagueness. In contrast to conventional sets, whose members satisfy 

precise properties, fuzzy sets correspond to functions measuring the degree to 

which the sets’ members satisfy imprecisely defined properties [BEZD1993]. 

Fuzzy clustering techniques are a common approach to soft image 

segmentation. Soft segmentation allows uncertainty in the location of object 

boundaries and permits regions to overlap. In contrast to hard segmentation where 

the characteristic function of an image takes binary values showing whether a 

pixel is either inside (1) or outside (0) a given object/region, in soft segmentation 

the characteristic function takes continuous values in the range [0-1]. Thus, soft 

segmentation techniques are particularly useful in addressing partial volume 

effects [PHAM2000], where there are pixels containing more than one tissue types, 

and thus partly belonging to more than one tissue classes.  

Fuzzy connectedness goes a step further from fuzzy clustering as it is not a 

purely grey level based technique. The underlying assumption here is that regions 

which are close to each other and have similar grey-levels are more likely to 

belong to the same anatomical structure (object). This method calculates the 

strength of connectedness for each pair of pixels within the image. This strength is 

a measure putting together the pixels’ proximity in space (fuzzy adjacency) and 

their grey level values’ similarity (fuzzy affinity). Consequently, a fuzzy 

connectedness map is created encoding the strength of connectedness between a 

given image pixel and every other pixel within the image to be segmented. 
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Finally, object segmentation can be performed by thresholding the fuzzy 

connectedness map [UDUP1996].  

 

 

4.1.2. Model based segmentation methods 

  

In many segmentation applications grey level information is not sufficient 

to distinguish between various structures. This is often the case with low contrast 

images, or when there are overlapping grey-level values between neighbouring 

structures. Different anatomical structures often have similar grey level values and 

only differ from one another with respect to their location. In these cases spatial 

information needs to be incorporated in the segmentation process [ROHF2005]. 

Model based methods such as, active contours, statistical shape models and atlas 

based approaches put together grey level, edge and shape information for 

segmentation purposes 

 

4.1.2.1. Active contours 

 “Active contours” or “Snakes” are curves on the image plane which 

deform under the influence of internal forces depending on the curve parameters 

and external forces computed from the image data [MCIN1996, XU1998]. They 

were introduced in 1988 [KASS1988] and have since been successfully used in 

many medical imaging applications [MCIN2000a]. In addition, various methods 

have been proposed for improving active contours by introducing topological 

flexibility [MCIN2000b].  

 

4.1.2.2. Statistical shape models 

 Statistical shape models (also known as active shape models) are a highly 

popular segmentation method for both medical imaging and computer vision. A 

statistical shape model is constructed by analyzing the positions of a set of 

landmark points annotated by a human expert in a set of training images. More 

specifically, the shape variation over the training set is analyzed and a model that 

can mimic this variation is built. To segment a new image, the model parameters 
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are adjusted in order to match a model instance as closely to the image as possible 

[COOT1992, COOT2000]. Statistical shape models have been used in a variety of 

medical applications, and have proven to be particularly useful in segmenting 

regions with a well defined shape, such as bones and organs [COOT2000].   

 

4.1.2.3. Atlas-based segmentation 

 Atlas-based methods utilize prior anatomical knowledge in the 

segmentation process. An atlas is a description of shapes, locations and/or 

neighbourhood relationships of anatomical structures within the image. Atlas-

based segmentation (or segmentation by registration) is achieved by mapping the 

atlas to the image to be segmented in an anatomically correct way [ROHF2005]. 

 Atlas-based segmentation methods utilize various atlas selection strategies 

and registration algorithms. The simplest selection strategy is based on a simple 

anatomical atlas constructed by manually segmenting a single image and labelling 

the different structures. Image segmentation and labelling is achieved by 

registering this atlas to the image to be segmented and transferring its pixel labels 

to the corresponding image pixels.  

 A more advanced method involves the use of multiple individual atlases 

originating from different images corresponding to multiple subjects [ROHF2005]. 

Each atlas is registered to the image to be segmented, and similarity criteria are 

used to find the atlas that best fits the image and thus, is likely to produce the best 

segmentation. An important advantage of this method is that by using atlases from 

different subjects it takes into account the anatomical variation within the 

population. However this method is computationally expensive since it requires 

multiple registration procedures. 

 A different approach is exploiting a probabilistic atlas. Such an atlas is 

usually constructed on the basis of multiple manually segmented image templates. 

First, one template is selected as reference and the remaining templates are 

registered to the reference. The average template is constructed by superimposing 

all registered templates [SLUI2005]. This average template is called the 

“probabilistic atlas” because its pixel values indicate the probability of a given 

pixel belonging to a given object within an image [PARK2003]. When used for 
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segmentation, the probabilistic atlas has to be registered to the image to be 

segmented and finally, the segmented image is obtained by thresholding the 

outcome. The main disadvantage of this method is the requirement of multiple 

manually segmented image templates for constructing the atlas. However, thanks 

to these templates this method manages to capture normal anatomical variation, 

which can help improve segmentation accuracy [SLUI2005]. In addition, it is not 

computationally expensive since it only requires a single registration per 

segmentation. 

 In conclusion, atlas-based methods are particularly useful in cases where 

grey level information is not sufficient for segmenting an image, since they 

incorporate prior anatomical knowledge in terms of shape in the segmentation 

process by means of the atlas model. In the present study, a probabilistic disc atlas 

is utilized to introduce spatial information in the segmentation process aiming to 

deal with overlapping grey-level values between neighbouring tissue classes. 
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4.2. Literature Review on Lumbar Disc Segmentation Methods 

 

 Lumbar discs segmentation is the first step towards the quantification of 

disc features for diagnostic or surgical purposes. Up to date, studies dealing with 

this task rely on manual segmentation which is a tedious and time-consuming 

process [TSAI2002, NIEM2008]. Moreover, manual segmentation depends on 

user’s experience and lacks repeatability. On the other hand, automated 

segmentation methods provide repeatable results, while alleviating the need and 

reducing the time of manual interaction. Segmentation methods are becoming 

crucial elements of medical image analysis particularly in the fields of computer 

aided diagnosis, image guided surgery and radiotherapy planning [PHAM2000].  

 This section presents a short literature review of methods designed for 

lumbar disc segmentation from MR images, in chronological order.   

 In a 1997 study, Roberts et al. present a fully automatic lumbar disc 

segmentation algorithm based on watershed techniques [ROBE1997]. This 

algorithm combined information from sagittal Proton Density (PD) weighted and 

T2 weighted images. Proton density images can serve the delineation of 

intervertebral discs due to the signal voids on the vertebral bodies’ endplates. 

Moreover, the T2 weighted images give high signal intensity for the discs, which 

can be used for guiding the segmentation algorithm. In the prepossessing step of 

this segmentation algorithm the PD and T2 images were filtered by means of the 

top hat algorithm and combined by subtraction. Next the watershed algorithm was 

used for delineating the local maxima within the image and a set of heuristic rules 

was employed for selecting the ones that correspond to lumbar discs. The method 

was tested on 40 patients’ datasets. The authors report that the proposed 

segmentation method works well on non-degenerated discs, but not so good on 

degenerated ones as it requires high signal intensity for identifying the discs. 

However, this study does not include any evaluation of segmentation accuracy.  

 Shi et al. present a study on the automatic detection and segmentation of 

intervertebral discs from sagittal whole spine MR images [SHI2007]. The main 

focus of this study is the localization of discs, while the segmentation process is 

only briefly described. The proposed segmentation algorithm comprises a 
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preprocessing step, a spinal cord extraction process, and a scheme for 

intervertebral discs’ localization. Image preprocessing is preformed using a 

median filter for noise reduction. Next the edge image is calculated using the 

Sobel operator and the line of the spinal cord is detected by means of the Hough 

transform. Finally, the intervertebral discs are localized using a self adaptive 

rectangle window moving along the spinal cord curve. Intervertebral discs 

segmentation is performed using edge detection within the localization window. 

The algorithm is tested on 50 patient whole body MR images acquired by a two 

station sequence with a combined field of view of 70x35cm2. The method 

achieved a disc detection rate of 96%, while no evaluation of disc segmentation 

accuracy is reported. 

Chevrefils et al. report on the segmentation of intervertebral discs for 

scoliotic patients [CHEV2007, CHEV2009]. This is a challenging task because of 

the complex spinal curves of patients with scoliosis. The group has published two 

studies on this task, which will be summarized in the remaining of this paragraph. 

The first study presents a segmentation method utilizing watershed techniques. In 

this approach, first morphological operations together with thresholding 

techniques are utilized for detecting local maxima, which are assumed to 

correspond to the intervertebral discs. Next, these regions are segmented using the 

watershed transform. The method is tested on magnetic resonance images 

acquired using the Multi Echo Data Image Combination sequence, which obtains 

volumetric data (voxel size = 1mm3). The authors report that this segmentation 

method provides fast and accurate disc segmentation, but it suffers from over-

segmentation problems, which are augmented in images of scoliotic spines 

[CHEV2007]. To deal with the problem of over-segmentation, the authors designed 

a classification scheme to find which of the segmented regions correspond to 

intervertebral discs. This classification scheme is presented in detail in their 

second study [CHEV2009]. This study extracts a set of textural features from each 

closed region in order to characterize the underlying tissue properties and uses a 

k-Nearest Neighbour classifier for distinguishing between intervertebral discs and 

background regions. The classification scheme was tested on 505 images of three 

patients (multiple slices per patient) and achieved disc detection accuracies in the 
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range of 80%-88%. The classification scheme is reported to reduce the over-

segmentation error. Again this study does not provide any evaluation of 

segmentation accuracy for the proposed method, while the images provided 

indicate that only disc nucleus is actually segmented and not the entire disc 

structure.  

It should be noticed, that although these methods work towards the 

segmentation of intervertebral discs, they focus more on the localization/ 

identification of discs than the actual segmentation process. On the other hand, a 

study conducted by Seifert and Wachter reports more extensively on the 

segmentation process [SEIF2006, SEIF2009]. This study presents a method for 

segmenting the intervertebral discs, spinal cord and trachea from 3D MRI data of 

the cervical spine, and providing a framework for reconstruction of the spine. The 

study is published in two papers, the first reporting on the segmentation algorithm 

[SEIF2006], while the second additionally presenting a validation of segmentation 

results [SEIF2009]. The algorithm starts with a disc localization step and next 

active contours are employed for identifying the boundaries between the trachea, 

spinal column and spinal cord. Finally, a combination of active shape models 

(where the disc shape is modelled as an ellipse) and fuzzy connectedness methods 

is used for segmenting the structures of interest. The method was tested on a 

dataset of 9 patients comprising both T1 and T2 weighted images of the cervical 

spine acquired using 3D imaging protocols with a slice thickness of 1.16mm. The 

authors report that the algorithm demonstrated robust performance. The 

segmentation accuracy is evaluated on a single midsagittal image with the ground 

truth provided through manual segmentation by an expert.  

This section presented a literature review on lumbar disc segmentation 

methods from MRI. Out of the four studies working on this task, only the last one 

reports on the evaluation of segmentation accuracy, but this is only for a single 

spine image. Moreover, none of these studies reports on the segmentation of 

degenerated discs, which to the best of our knowledge remains an open issue.  
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4.3 Lumbar disc segmentation from clinical T2-weighted MR Images: 
Requirements and challenges 
 

The present study focuses on segmenting intervertebral discs from MR 

images. This segmentation is intended to serve our quantification task, and the 

specific requirements are described in the following list. 

 

 Midsagittal T2-weighted images need to be segmented, and thus a 2D 

segmentation method is required. 

 The method should be able to segment both normal and degenerated 

discs 

 Segmentation accuracy is highly important, and the target is a mean 

segmentation error of 1-2mm 

 

The requirement for segmenting the discs from T2-weighted MR images is 

in accordance with clinical standards since disc degeneration diagnosis relies on 

the evaluation of these images [PFIR2001, LUOM2001, NIEM2008]. According to 

these studies the midsagittal slice is utilized for grading degeneration severity and 

thus a 2D segmentation method is required.  

Moreover, since this project aims at disc quantification, the segmentation 

method should work well with discs at various degenerative stages. Thus, a single 

method that can effectively segment both normal and degenerated discs while no 

prior knowledge of the disc’s state is required.  

Finally, in order for the segmentation method to serve well the diagnostic 

task under question it should provide adequate accuracy. Specifically, as 

discussed in the introduction of this thesis, a collaborating orthopaedic surgeon 

indicated that a mean error of 1-2 mm would be acceptable for both diagnostic 

and surgical purposes [personal communication with Elias Panagiotopoulos, 

Professor of Orthopaedic Surgery, University of  Patras, Greece]. 

The disc segmentation task is challenging because clinical images suffer from: 

 Partial volume effects 

 Grey- level overlapping between neighbouring tissues 
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 Clinical MR images are acquired using multislice 2D protocols with 

relatively large slice thickness (3-4mm). These protocols obtain data with 

adequate signal to noise ratio and short acquisition times. However, this results in 

images of relatively low resolution and with non-isotropic voxels (a typical voxel 

size is 0.6250.6254 mm3). The voxel size and shape plays an important role in 

the segmentation task due to the partial volume effect. The term partial volume 

effect is used for describing the presence of more than one kinds of tissue within 

the same voxel. In images with large non-isotropic voxels partial volume effects 

are augmented resulting in blurring of intensity across object boundaries (Figure 

4.1a, b) [PHAM2000].  

In addition, in spine MRI there is no unique correspondence of grey level 

ranges to different tissue classes. In other words, these images suffer from 

overlapping grey level values between neighbouring tissues [PARV2006]. More 

specifically, the annulus fibrosus has grey level values similar to those of the 

anterior and posterior ligaments, while the grey level values of the disc’s nucleus 

lay within the range of the vertebral bodies’ grey level values (Figure 4.1c). 

Consequently, simple grey-level based techniques are not adequate for 

segmenting the discs, since grey-level overlapping would result in boundary 

leakage towards neighbouring tissues.  

The next section describes the methods developed in the present study for 

segmenting the intervertebral discs and dealing with the abovementioned 

challenges. 

                    (a)           (b)       (c) 

Figure 4.1. Examples of intervertebral discs demonstrating (a and b) partial 
volume effects causing blurring of intensity across boundaries, shown by white  
solid arrows (c) overlapping grey levels between neighbouring tissue classes: 
solid white arrows in point to the annulus fibrosus and anterior longitudinal 
ligament which have similar grey level values, while diamond tailed white arrows 
point to the nucleus pulposus and vertebral bodies.  
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4.4. Methods: What Do we Propose for disc segmentation?   

4.4.1. Proposed Methods Overview   

 

 In this study, atlas based segmentation together with fuzzy clustering 

techniques are exploited for segmenting intervertebral discs from midsagittal T2-

weighted MRI. The proposed segmentation methods are developed in 2D in 

accordance to clinical requirements for degeneration evaluation, and tested on 

midsagittal T2-weighted MR images. However, a pseudo-3D approach (applied 

on interpolated multislice 2D-data) is additionally presented to demonstrate the 

feasibility of expanding the current methods to 3D.  

  As described in the previous section, a single method able to segment 

both normal and degenerated discs is required. Disc appearance in MRI is 

characterized by increased variability both in terms of signal intensity and 

boundary shape, as shown in Figure 4.2. Normal discs have a bright nucleus, 

whereas in degenerated discs the nucleus is darker and merges with the annulus. 

However, in all cases the annulus always appears as a low intensity ring 

surrounding the disc in T2-weighted MRI and this can be exploited for 

segmenting the disc structure. More specifically, by detecting the external 

boundary of the annulus fibrosus, which is also the boundary of the intervertebral 

disc, accurate disc segmentation can be achieved independently of the 

degenerative stage of the disc. 

 A variety of segmentation methods were tested in the present study, 

starting with clustering techniques and moving on to fuzzy connectedness and 

atlas based segmentation. A constructive approach is followed here demonstrating 

how each method is built upon the previous one aiming to improve segmentation 

accuracy.  

  

 

 
 
 
Figure 4.2. Examples of (a) a normal, (b) a moderately and (c) a severely 
degenerated disc. 
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Initially, k-means clustering was employed to distinguish between bone, 

disc and cerebrospinal fluid, while Fuzzy c-means (FCM) was utilized aiming to 

compensate for blurred edges due to partial volume effects. However, clustering 

methods suffered from border leakage towards surrounding structures especially 

across the anterior disc boundary.  

In an effort to reduce border leakage, fuzzy connectedness was tested to 

additionally account for spatial relationships between pixels. However, this 

proved problematic because in many cases the disc annulus and surrounding 

structures near the anterior disc boundary (the anterior longitudinal ligament and 

neighbouring vessels) are in close proximity and have very similar grey-level 

values (see Figure 4.3). Consequently, the strength of connectedness between the 

disc and surrounding tissues in that area was no different than that among the disc 

pixels. As a result fuzzy connectedness was no more successful in disc delineation 

than fuzzy c-means clustering, while unnecessarily complicating the segmentation 

task.  

An alternative approach towards reducing border leakage was undertaken 

next. Atlas-based methods were tested aiming to introduce prior anatomical 

knowledge in the segmentation process. Specifically, a probabilistic disc atlas 

acting as shape prior was utilized combined with fuzzy clustering in a method we 

called Atlas-FCM. Next, smoothness constrains were introduced by the robust-

fuzzy clustering approach combined together with the atlas to help improve 

robustness to noise (Atlas-RFCM). Finally, inhomogeneity correction was applied 

as a pre-processing step in MR images to correct for the bias field, which can 

adversely affect the performance of automated segmentation [VOVK2007].  

 The present study focuses on disc segmentation accuracy since the 

segmentation method needs to serve well the task of disc degeneration 

quantification. For this reason, segmentation accuracy here is quantitatively 

evaluated against manually obtained gold standard.  

 

 

 

 
Figure 4.3. Disc examples the anterior disc border is unclear. 
 



 
 

Chapter 4. Intervertebral Disc Segmentation 

   79 
 

 
 

This is in contrast to previous disc segmentation studies which focused more on 

discs’ automatic localization rather than segmentation performance [ROBE1997, 

SHI2007, CHEV2007]. However, as disc localization is not a requirement in the 

present study, the methods developed here work for a user defined disc location. 

The FCM, Atlas-FCM and Atlas-RFCM segmentation methods are 

presented in detail in the remaining of this chapter. These methods were initially 

tested on the 1.5 Tesla dataset while the corresponding results were presented in 

the IEEE Medical Imaging Conference 2008, and later published in the IEEE 

Transactions on Biomedical Engineering Journal. Moreover, the optimal 

segmentation method was applied on the 3.0 Tesla dataset, where the 

inhomogeneity correction approaches were also tested. Finally, the pseudo-3D 

approach was tested on a subset of the same sample.  

 

 

4.4.2. The Fuzzy Clustering  Method (FCM) 

 

The first segmentation method presented here is based on the Fuzzy c-

Means algorithm (FCM). The FCM is commonly used for medical image 

segmentation [BEZD1993, PHAM2000]. It was selected to serve the current 

segmentation task, due to its ability to account for partial volume effects. Section 

4.4.2.1 provides a short description of the FCM algorithm, while section 4.4.2.2 

describes how this method was applied on intervertebral disc segmentation.  

 

4.4.2.1 Fuzzy c-Means  

The FCM method assigns tissue class membership values in each pixel 

within the image [BEZD1984]. The membership values indicate the amount of 

each tissue type within the voxel or equivalently they indicate the probability that 

the given voxel could belong to the specified tissue class [PARV2006]. This 

algorithm is designed to minimize an overall objective function F with respect to 

the class centres and membership functions. Equation 4.1 provides the overall 

objective function, while Equation 4.2 provides the function which upgrades 
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cluster centre values in every iteration and Equation 4.3. gives the function for 

calculating membership values.  

                                                                        (4.1) 

     

(4.2) 

 

 (4.3) 

 
where, xi is the intensity of pixel i, s is the number of clusters or classes, w is 
number of pixels within the image and the parameter m determines the amount of 
fuzziness of the resulting classification. In addition, μik is the membership values 
of a pixel i to each class k, while vk is the value of the cluster centres of class k. 
 

4.4.2.2 Using FCM for Intervertebral Disc Segmentation  

 Figure 4.4. outlines the application of FCM for disc segmentation. Three 

classes were assumed for this purpose, corresponding to the three tissue types 

within the image: bone, disc and cerebrospinal fluid. In the beginning, the user is 

asked to manually define the approximate disc centre within the image for disc 

localization. Next, a fixed dimensions ROI, centred on the user defined disc centre 

is cropped from the image and given as input to the FCM algorithm. The 

dimensions of the disc-ROI have  been  chosen to be larger  than  the  largest  disc  

within the sample (150×100pixels2). The FCM algorithm calculates three class 

membership values (μbone, μdisc, μCSF)  for each pixel within the disc-ROI and 

constructs the corresponding membership matrices (Mbone, Mdisc, MCSF) shown in 

Figure 4.4. The segmented disc   template  is  obtained  by  thresholding  the  Mdisc 

 
Mdisc  
 
 
Mbone                   
       
 
 

MCSF 
 

Figure 4.4.  An ROI along with the membership matrices. 
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matrix, with a threshold value automatically calculated through minimization of 

the intraclass variance according to the method introduced by Otsu [OTSU1979]. 

Finally, a flood-fill operation is employed for filling holes within the disc 

template and morphological opening (using a circular object with 2 pixels radius) 

is utilized to smooth the resulting boundary.  

 

4.4.3. Atlas Based Segmentation  

 

  Two atlas based methods were developed aiming to improve segmentation 

accuracy by introducing prior anatomical knowledge in terms of disc shape in the 

segmentation process. A probabilistic disc atlas was exploited to compensate for 

boundary leakage resulting from FCM segmentation due to grey-level overlapping 

between neighbouring tissues. The first atlas based method was named Atlas-

FCM as it combined the probabilistic atlas with the output of the FCM algorithm. 

The second method was called Atlas-RFCM (where RFCM stands for Robust-

FCM) and it exploited a modified fuzzy clustering approach to improve the 

segmentation robustness to noise. Section 4.4.3.1. describes the atlas design while 

sections 4.4.3.2. and 4.4.3.3. provide the details of the Atlas-FCM and Atlas 

RFCM methods’ design.   

 

4.4.3.1 Building a Probabilistic Disc Atlas  

 A probabilistic atlas was designed to serve as a shape prior aiming to assist 

the segmentation process. The choice of a probabilistic atlas, instead of a single 

reference model was made in an effort to take into account the normal variation in 

tissue shape [SLUI2005]. The atlas was built on the basis of 50 normal 

intervertebral discs superimposed through a landmark-based rigid registration 

process.  

First, one disc image was selected to serve as reference. To avoid bias 

towards a specific disc type the orthopaedist was asked to select as reference the 

image that best represented the population [PARK2003]. Next, the remaining 49 

discs were registered to the reference through the registration process described in 

section 4.4.3.2.  Finally, the registered intervertebral discs were manually 
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delineated and the resulting binary templates were superimposed to construct the 

probabilistic disc atlas, which is shown as part of the segmentation method in 

Figure 4.5. 

A limitation of the atlas construction is that only normal discs were 

selected to serve as templates. Thus shape variation related to degenerative 

alterations was not modelled in the atlas, since such an effort would require a very 

large database to model all types of degenerative alterations. 

 

4.4.3.2 Rigid Landmark Based Registration 

A landmark based registration process was employed for the construction 

of the probabilistic atlas, and for wrapping the atlas to the MR image during 

segmentation. In this process, the leftmost and rightmost disc points along the 

disc’s middle axis are interactively selected by the user in the image to be 

registered, to serve as landmarks for disc registration. Next, an automatic 

landmark refinement process is utilized in order to increase segmentation 

tolerance to erroneous positioning of landmarks within a small scale. In this 

process the normalized cross-correlation is calculated for a rectangular region of 

interest surrounding the initial landmark and the corresponding one in the 

reference image. The refined landmark position in the image to be registered 

corresponded to the position that maximized cross-correlation [KOVE2000]. 

Finally, a rigid transformation (Equations 4.4, 4.5) involving translation, rotation 

and scaling is used for registering the disc image to the reference image 

[BROW1992]. 

                                                                                      (4.4) 

 

(4.5) 

 

where 0p is the initial coordinate vector, p is the transformed coordinate vector, 

t  is the translation vector, s is the scaling factor and R is the rotation matrix, with 
θ being the rotation angle. 
 

The rigid registration method was chosen here on the merit of simplicity 

and fast processing time. An elastic registration method was also tested in cascade 
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to rigid registration as part of the segmentation process. Elastic deformation was 

performed by assuming a locally affine and globally smooth transformation 

according to the method developed by Periaswamy and using their publicly 

available algorithm [PERI2003]. Incorporating this elastic registration approach in 

the current study, offered a very small but not statistically significant increase in 

segmentation accuracy (please see IEEE TBME paper). However, as the increase 

in processing time when using elastic registration was disproportional to the 

benefit, this method was considered impractical for clinical application.  

 

4.4.3.3. The Atlas-FCM segmentation approach 

 The Atlas-FCM approach is an atlas based segmentation method which 

combines the probabilistic disc atlas with fuzzy clustering. A flowchart of this 

method is outlined in Figure 4.5. First the user is asked to define two landmarks 

for wrapping the atlas to the MR image according to the process described in 

section 4.4.3.2. Next, a ROI surrounding the disc is automatically defined on the 

basis of these landmarks and the FCM algorithm is used to calculate the 

membership matrices for this disc-ROI. The registered probabilistic disc atlas is 

multiplied pixel by pixel with the Mdisc membership matrix of the disc-ROI in 

order to calculate the combined probability matrix. The combined (joint)  

Figure 4.5. An outline of the Atlas-FCM segmentation method. Bright pixels in 
the Mdisc and combined probability matrices indicate high probability, while dark 
pixels correspond to low probability.  
 

            Disc-ROI 

Probablistic Disc Atlas 

Combined Probability FCM – Mdisc

Atlas-FCM 
Atlas FCM
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probability matrix is given by the multiplication of the disc atlas (representing 

spatial probability) and the Mdisc matrix corresponding to tissue class membership 

probability. Finally, the segmented disc is obtained by thresholding the combined 

probability matrix, using again the method proposed by Otsu and the same 

morphological operations as described in the FCM method [OTSU1979].  

 

4.4.3.4. Atlas combined with Robust Fuzzy Clustering (Atlas-RFCM) 

This method is similar to the Atlas-FCM approach, the only difference being that 

Bezdek’s FCM algorithm is replaced by Pham’s RFCM [PHAM1999, 

PHAM2001]. RFCM stands for Robust Fuzzy C-Means. It is an extension of the 

FCM method, which incorporates a penalty term in the objective function forcing 

the membership values to be similar to neighbouring values. In this way, the 

RFCM produces spatially smooth membership functions and achieves robustness 

to image noise. The RFCM objective function is given by equation 4.6. The 

strength of the penalty term is determined using a cross-validation criterion to 

calculate parameter β [PHAM2001]. A flowchart of the Atlas-RFCM method is 

provided in Figure 4.6.  

 
Figure 4.6. An outline of the Atlas-RFCM segmentation method. Again bright 
pixels in the Mdisc and combined probability matrices indicate high probability of 
the pixel belonging to the disc tissue, while dark pixels correspond to low 
probability.  
 

RFCM – Mdisc

Atlas-RFCM 

Disc-ROI

Probablistic Disc Atlas
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(4.6)  

       

where, again xi is the intensity of pixel i, s is the number of clusters or classes, w 
is number of pixels within the image and the parameter m determines the amount 
of fuzziness of the resulting classification. In addition, μik is the membership 
values of a pixel i to each class k, while vk is the value of the cluster centres of 
class k. Finally, β is the parameter controlling the smoothness of membership 
functions, Ni is the set of neighbours of pixel i and Pk=[{1…s} excluding k]. 
 
 

 

4.4.4. Pseudo-3D Disc Segmentation                

  

Both data samples used in this study are acquired by multislice 2D 

protocols. More specifically, for the 3.0 Tesla sample, which is of higher 

resolution each dataset consists of 8-13 slices with 3mm slice thickness each and 

1mm spacing. The pixel size for each image is 0.5469x0.5469 mm, which means 

that the in-plane resolution is approximately 7 times higher than the between-

slices resolution (i.e. equivalent voxel size 1x1x7). This anisotropy is the main 

limitation for applying 3D segmentation methods in this data sample. 

However, in order to test the applicability of atlas based segmentation to 

segment 3D data, a pseudo-3D approach was developed by expanding the 2D 

segmentation method and testing it on interpolated data. More specifically, linear 

data interpolation was employed for producing isotropic 3D disc volumes from 

the 2D slices. Interpolated data cannot really make up for the lack of true 3D data, 

but can serve as a proof of concept by accommodating our pseudo-3D 

segmentation approach. 

The pseudo-3D segmentation approach combines fuzzy clustering applied 

on the interpolated disc volume, with spatial information propagation between 

neighbouring slices. In this approach, the midsagittal slice is first segmented by 

combining fuzzy membership information with the 2-D probabilistic Atlas. Next, 

the probabilistic atlas is modified by addition of the segmented midsagittal disc 

template. The result is a “biased-atlas” which gives higher probability weighting 

to pixels belonging to the midsagittal disc template. The “biased-atlas” is used for 
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segmenting the neighbouring slices. This process is repeated until the entire disc 

volume is segmented as shown in Figure 4.7. 

 

   

 

 

4.4.5. Inhomogeneity Correction 

 

Intensity inhomogeneity is a smooth intensity variation in MR images 

caused by poor RF coil uniformity, eddy currents and patient anatomy 

[SLED1998].  In clinical MR scanners, this intensity variation is often subtle 

enough that it is difficult to be detected by visual inspection, and has little impact 

on visual image interpretation and diagnosis. However, it can adversely affect the 

performance of automated image analysis techniques and particularly 

segmentation techniques that assume homogeneity of intensity within each tissue 

class [VOVK2007].  

A variety of algorithms have been designed for intensity inhomogeneity 

correction, while different approaches have been shown to perform better on 

different types of anatomical images and acquisition protocols [VOVK2007]. It has 

been suggested that our study might benefit from inhomogeneity correction, 

which could help improving the algorithms’ segmentation accuracy. Thus, three 

well-established methods were tested and quantitatively compared in order to 

identify the most suitable one for correcting inhomogeneity in lumbar spine MRI 

in order to facilitate the lumbar disc segmentation process. The three methods 

tested are: 

Figure 4.7. Layout of the Pseudo-3D approach. 
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 Entropy Minimization, which assumes that intensity inhomogeneity 

introduces additional information to the image that can be removed by 

constrained entropy minimization [LIKA2000]. 

 N3 (Nonparametric Nonuniform intensity Normalization), which assumes 

a smooth multiplicative model for the intensity inhomogeneity field and 

corrects the image by maximizing its high frequency content [SLED1998]. 

 Homeomorphic Filtering, which removes low frequency information 

corresponding to the smoothly varying inhomogeneity field [BRIN1998]. 

 

The three methods were quantitatively tested on a randomly selected set of 

five T2-weighted mid-sagittal spine images from the 3.0 Tesla dataset (25 

intervertebral discs). Direct evaluation was performed by measuring intensity 

variation, while indirect evaluation was performed by investigating the effect of 

inhomogeneity correction on intervertebral discs segmentation accuracy. The 

most suitable method was identified and used as a pre-processing step for 

intervertebral disc segmentation.  

 

4.4.5.1. Intensity Variation Based Evaluation of inhomogeneity Correction  

Intensity inhomogeneity correction is expected to reduce the intensity 

distribution variance for a tissue of interest within the image. In addition, intensity 

scaling, due to inhomogeneity correction can be expressed by the change in mean 

tissue intensity. The Coefficient of Variation (CV) combines these measures and 

can be used to quantitatively evaluate the effect of an inhomogeneity correction 

strategy on a specific image. In addition, the Coefficient of Joint Variation is used 

for estimating the grey-level overlap between different tissue classes (i.e. t1=disc 

and t2=bone) [VOVK2007]. 

 Coefficient of Variation:          
)(
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            Coefficient of Joint Variation:          (4.8) 

 
where σ and μ are the standard deviation and mean value of the selected tissue 
class t.  
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4.4.5.2. Segmentation Based Evaluation of Inhomogeneity Correction  

Intensity inhomogeneity correction can be evaluated indirectly by its effect 

on image segmentation [VOVK2007]. In this case the performance of the 

segmentation algorithm is evaluated on initial (uncorrected) and inhomogeneity 

corrected images by means of the quantitative measures described in the next 

section. The comparison of these measures values offers an estimate of the effect 

of inhomogeneity correction on image segmentation.  
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4.4.6. Segmentation Accuracy Evaluation                           

 

 Segmentation accuracy of all methods was quantitatively evaluated against 

manually segmented data, considered as the ground truth. Manual segmentations 

of 120 discs from the 1.5 Tesla data sample as well as the 255 discs from the 3.0 

Tesla data sample were utilized, while all discs were segmented twice (by two 

independent users) in order to additionally evaluate inter-observer accuracy.  

An area and a boundary metric were utilized for evaluating segmentation 

accuracy. The area metric is called Dice Similarity Index (DSI) based on the 

kappa coefficient theory [ZIDJ2004]. DSI measures the pixel-by-pixel 

classification agreement between manually (M) and automatically (A) segmented 

data, correcting for agreement by chance (equation 4.9). The boundary metric is 

Dmean and it is a measure assessing the difference in boundary shape (equation 

4.10) [KORF2007]. Moreover, the same metrics are utilized for comparing the 

manually segmented data of the two users to each other, to get an estimate of 

interobserver variability [CHAL1997]. Finally, Student’s t-test is employed to 

investigate whether the differences in the performance of the segmentation 

methods are statistically significant. In addition, the discs were separated in 

classes of degeneration severity following the clinical grading and segmentation 

accuracy was independently calculated for early and severe degeneration classes. 

 

                (4.9)                             

 

(4.10) 

 

 
where M is the area of the manually segmented disc, A is the area of the computer 
segmented disc,  Dq is the distance of pixel q on A boundary to the closest one on 
M boundary and p is the total number of boundary pixels on A. 
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4.5. Segmentation Results and Discussion 

 

This section presents the disc segmentation results, and discusses on the 

merits and weaknesses of each one of the three segmentation methods developed 

in this study (FCM, Atlas-FCM, Atlas-RFCM). Section 4.5.1 discusses on the 

performance of each method illustrating representative segmentation examples, 

while section 4.5.2 presents the quantitative evaluation results. Finally, section 

4.5.3 presents results of the pseudo-3D approach 

 
 
4.5.1. Disc Segmentation Results- Image Examples 

    
The FCM method was rather successful in discriminating between the 

disc, bone and CSF tissues. However, FCM was unable to separate the disc from 

the longitudinal ligaments and other surrounding soft tissues such as vessels. As a 

result the FCM suffered from severe border leakage, mostly towards the anterior 

disc side as shown in Figure 4.8. This border leakage resulted from overlapping 

grey level values of the intervertebral disc’s annulus with those of neighbouring 

ligaments and muscles. 

The second method (Atlas-FCM method) combined the fuzzy clustering 

approach with a probabilistic disc atlas in order to deal with overlapping grey 

level values and control border leakage. A combined probability matrix was 

employed putting together anatomical information by means of the disc atlas with 

tissue class membership information from the FCM, thus providing higher 

weighting to the disc pixels. The Atlas-FCM method managed to control border 

leakage in the anterior disc side improving the segmentation outcome, as shown in 

Figure 4.8.  

 The third segmentation method is called Atlas-RFCM and it is a simple 

modification of the Atlas-FCM approach, where the FCM algorithm was replaced 

by the Robust-FCM one. This Robust-FCM algorithm introduces smoothness 

constraints in the fuzzy membership function rendering the segmentation method 

more robust to border leakage related to image noise. 

 



 
 

Chapter 4. Intervertebral Disc Segmentation 

   91 
 

 
 

Figure 4.8. Comparative segmentation examples: the initial image (a) followed by 
the segmentation results of the FCM (b) and the Atlas-FCM (c) methods. The 
white arrows point to regions with boundary leakage. 
  
 

Figures 4.9. and 4.10. illustrate the segmentation results of the Atlas-FCM 

and Atlas-RFCM methods together with manual segmentation for a normal and a 

degenerated disc. Both atlas based methods perform well with the resulting 

segmentation being very close to the manual ground truth, while they also 

accurately delineate the disc herniation shown by the black arrow in Figure 4.10.  

 However, small segmentation errors are still present. As shown in Figure 

4.9., the Atlas-FCM method results in a slight leakage of the bottom disc 

boundary. This boundary is accurately segmented by the Atlas-RFCM method 

possibly due to its robustness to noise. Overall, the Atlas-RFCM provided further 

improvement in disc segmentation performance.  

As seen in Figures 4.8.-4.10. the final segmentation boundaries are not very 

smooth. Although more intense boundary smoothing could be applied (i.e. by 

using a larger element for morphological opening) this could result in loss of 

information as demonstrated in Figure 4.11. A small amount of smoothing is 

beneficial (see Figures 4.11.c1-c2), but when more smoothing is applied the 

endplates shape changes and disc herniations almost disappear (see Figures 

4.11.d1-d2). Thus, a compromise between boundary smoothness and retaining 

diagnostic information needs to be made. 

               (a1)               (b1)            (c1)                   

               (a2)              (b2)           (c2)                   
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                     (a)                     (b) 

                     (c)                     (d) 

Figure 4.9. Segmentation example for a normal intervertebral disc. The initial 
image is given in the top left corner (a), followed by ground truth provided by 
manual segmentation (b), as well as the Atlas-FCM (c) and Atlas-RFCM (d) 
segmentation results.  
 

Figure 4.10. Segmentation example for a degenerated intervertebral disc with a 
posterior herniation. Again the initial image is given in the top left corner (a), 
followed by ground truth provided by manual segmentation (b), as well as the 
Atlas-FCM (c) and Atlas-RFCM (d) segmentation results. The black arrows point 
to the disc herniation, while the white arrow points a region with boundary errors. 
 
 

                    (c)               (d)

                     (a)                 (b) 
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             (a1)            (b1)          (c1)                           (d1) 

 

 

            (a2)           (b2)          (c2)                           (d2) 

Figure 4.11. Examples of disc segmentation with increasing boundary smoothing: 
(a) initial disc image, (b) no boundary smoothing, (c) a small amount of boundary 
smoothing (morphological opening with a circular element with 2 pixels radius) 
and (d) a lot of smoothing (morphological opening with a circular element with 6 
pixels radius). White arrows point to areas where too much smoothing results in 
loss of information, such as the shape of the endplates and the disc herniation. 
 

 

Results presented so far are for the 1.5 Tesla dataset. Figures 4.12.–4.14. 

illustrate results of the Atlas-RFCM method applied on the 3.0 Tesla dataset, 

together with the manual delineation. Specifically, Figure 4.12. illustrates the 

segmentation on of a severely degenerated disc (Grade V), which is completely 

flattened. Moreover, Figure 4.13. illustrates a disc with a large posterior 

herniation shown by the black arrow. The Atlas-RFCM approach provides good 

delineation of the disc hernia. Finally, Figure 4.14. shows a disc case where the 

upper disc boundary, on the interface with the vertebral body is not very clear. As 

shown by the white arrows the segmentation method fails to detect this border and 

leaks towards the upper vertebra.  
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Figure 4.12. Segmentation example for a severely degenerated disc illustrating 
the initial image (a), the manual segmentation results (b), as well as the Atlas- 
Atlas-RFCM segmentation result (c).  
 
 

Figure 4.13. Segmentation example for a herniated intervertebral disc illustrating 
the initial image (a), the manual segmentation results (b), as well as the Atlas- 
Atlas-RFCM segmentation result (c). The black arrow points to the disc 
herniation, while the white arrow points to a region with boundary errors. 
 
 

Figure 4.14. Example of mis-segmentation of the disc-vertebra boundary 
illustrating the initial image (a), the manual segmentation results (b), as well as 
the Atlas-RFCM segmentation result (c). The white arrows points to mis-
segmented areas in the disc-vertebra interface. 
 

 

4.5.2. Quantitative Results and Analysis 

 
 This section presents results from the quantitative evaluation of 

segmentation accuracy, versus a ground truth provided by manually segmented 

data and discusses on methods’ performance. Section 4.5.2.1. compares the three 

segmentation methods performances to each other, as well as to the interobserver 

      (a)     (b)               (c) 

        (a)    (b)              (c) 

(a) (b) (c)
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accuracy, for the 1.5 Tesla dataset. Moreover, Section 4.5.2.2. outlines the 

segmentation results of the optimal method for the 3.0 Tesla dataset. Section 

4.5.2.3. outlines the effect of inhomogeneity correction on Atlas-RFCM 

segmentation accuracy for the Homeomorphic Filtering, Entropy Minimization 

and N3 methods (described in Section 4.4.5.).  

 

4.5.2.1. Segmentation methods comparison through quantitative accuracy 

evaluation  

 This section presents results from the quantitative evaluation of 

intervertebral disc segmentation accuracy for the 1.5 Tesla dataset. Out of the 170 

discs of this dataset, 50 were used in the design of the probabilistic disc atlas, and 

the remaining 120 were employed for validating the segmentation performance. 

 

 Table 4.1. lists the average segmentation results for the three methods 

along with the interobserver results for the same 120 discs. Results show that the 

FCM method has the worst overall performance and a rather large mean boundary 

error, which can be attributed to boundary leakage towards surrounding structures. 

On the other hand the Atlas-FCM and Atlas-RFCM methods provide improved 

segmentation performance, with the Atlas-RFCM yielding the highest overall 

accuracy. The Atlas-RFCM method performs statistically significantly better than 

FCM and Atlas-FCM methods, as indicated by Student’s paired t-test (p<<0.01).  

Comparing the Atlas-RFCM segmentation results to interobserver 

accuracy it should be noted that the mean DSI value is 6% lower for the proposed 

method, while the mean boundary error is approximately 0.6 pixels higher. The 

clinically acceptable error in boundary detection is 1-2mm as indicated by an 

expert  orthopaedist.  The  Atlas-RFCM  method  results in  mean  boundary error 

Table 4.1. Average segmentation performance of the three methods and 
interobserver accuracy for the 120 discs of the 1.5Tesla dataset  
All Discs DSI % Dmean (pixels) 
 mean std mean Std 
FCM 66.7 15.2 7.79 3.90 
Atlas-FCM 86.1 5.1 1.58 0.59 
Atlas-RFCM 88.4 3.5 1.28 0.35 
Interobserver 94.4 2.8 0.69 0.25 
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which is well within this range (Dmean=1.28 pixels corresponding to 0.8mm), 

showing that its accuracy is within clinically acceptable limits.  

Tables 4.2. and 4.3. list the average results for normal and degenerated 

discs separately (following the grading of the nomenclature project). It can be 

observed that segmentation accuracy is lower in the case of degenerated discs 

compared to normal discs. This can be attributed to the increased shape variability 

of degenerated discs, which often differ a lot from the normal discs used for the 

atlas construction. In addition, the inter-observer DSI was found to be slightly 

lower for degenerated discs (93.9%) in comparison to normal discs (95.3%). 

Although this difference is not large, it is statistically significant (p<0.001) and in 

agreement with both physicians’ comments that manual segmentation of 

degenerated discs was more difficult than normal discs’ segmentation. 

 

Table 4.2. Average segmentation performance of the three methods and 
interobserver accuracy for 42 normal discs 
Normal Discs DSI % Dmean (pixels) 

 Mean std mean std 
FCM 67.2 17.4 7.72 4.54 

Atlas-FCM 89.2 4.5 1.23 0.53 
Atlas-RFCM 91.6 3.2 0.98 0.37 
Interobserver 95.3 1.2 0.61 0.24 

Table 4.3. Average segmentation performance of the three methods and 
interobserver accuracy for 78 degenerated discs 
Degenerated 
Discs 

DSI % Dmean (pixels) 

 Mean std mean std 
FCM 66.5 13.8 7.83 3.51 
Atlas-FCM 84.4 5.4 1.77 0.62 
Atlas-RFCM 87.2 3.6 1.44 0.34 
Interobserver 93.9 3.0 0.74 0.25 
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The DSI results are graphically represented in the scatter chart in Figure 

4.15. This chart summarizes the segmentation performance results, showing the 

progressive improvement of segmentation accuracy when moving from the simple 

FCM to the Atlas-FCM and the Atlas-RFCM method. Finally, Table 4.4. gives the 

manual segmentation time for a trained radiologist and the corresponding 

computer processing times. The automated segmentation methods provide 

important time savings, by greatly reducing the manual interaction time and 

relieving the user from the tedious manual delineation task.  

 
 

 
Figure 4.15. Scatter chart summarizing the DSI mean values and standard 
deviations of both normal and degenerated discs for the developed segmentation 
methods and the interobserver accuracy. 
 

Table 4.4. The manual interaction and processing times for disc segmentation 
Processing times estimated for a PC (1.8GHz Dual Core CPU and 3GB RAM) 

 Manual Interaction Time (s) Processing Time (s) 
Manual Segmentation 124 - 
FCM 2 1 
Atlas-FCM 6 1 
Atlas-RFCM 6 2 
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4.5.2.2. Segmentation accuracy of the Atlas-RFCM on the 3.0 Tesla dataset  

The accuracy of the Atlas-RFCM, which is the optimal segmentation 

method was additionally tested on a set of 255 discs comprising the 3.0 Tesla data 

sample. The average segmentation results for this dataset are listed in Table 4.5. 

together with the interobserver accuracies, while Table 4.6. presents results for 

discs separated in two groups of degeneration severity. 

The probabilistic atlas used for segmentation was built on templates taken 

from the 1.5 Tesla dataset. However, this does not seem to adversely affect the 

segmentation outcome, since the Atlas-RFCM accuracy for the 3.0 Tesla dataset 

is actually slightly higher (1%) than the corresponding accuracy for the 1.5 Tesla 

dataset. A direct comparison is inappropriate, due to the heterogeneity of the two 

datasets with respect to clinical sample characteristics, image resolution and 

acquisition parameters. 

 

 
 

 
 
4.5.2.3. Segmentation accuracy with and without Inhomogeneity correction  

As described in Section 4.4.5. three different inhomogeneity correction 

methods were tested in order to remove the field bias prior to segmentation. These 

are the Entropy Minimization, Homeomorphic Filtering and N3 methods. The 

performance of these methods in correcting image intensity inhomogeneity was 

evaluated on a randomly selected disc subset (comprising 25 discs), derived from 

Table 4.5. Average segmentation performance of the Atlas-RFCM method and 
interobserver accuracy for the 255 discs of the 3.0 Tesla dataset  

All Discs DSI % Dmean 
 Mean std mean std 
Atlas-RFCM 89.4 6.9 1.30 0.85 
Interobserver 93.5 2.6 0.82 0.27 

Table 4.6. Average disc segmentation performance in classes of degeneration 
severity  

 
Normal and Mild Degeneration 

(Grades II and III) 
Moderate and Severe 

Degeneration (Grades IV ad V) 
 DSI % Dmean (px) DSI % Dmean (px) 
 mean std mean std mean std mean std 
Atlas-RFCM 90.3 6.5 1.19 0.49 88.3 7.3 1.45 1.14 
Interobserver 94.4 1.8 0.75 0.23 92.3 3.1 0.91 0.30 



 
 

Chapter 4. Intervertebral Disc Segmentation 

   99 
 

 
 

5 patient scans, using the coefficient of variation and coefficient of joint variation, 

while the corresponding results are given in Table 4.7. All three methods resulted 

in slightly improved image homogeneity, as indicated by the reduced values of the 

coefficients of variation. Moreover, the separability between disc and bone tissues 

increased yielding reduced values for the coefficients of joint variation.  

In addition, the effect of inhomogeneity correction on disc segmentation 

accuracy was tested using the Dmean and DSI measures and the corresponding 

results are summarized in Table 4.8. The N3 method provided the best overall 

performance with respect to facilitating the segmentation algorithm when used as 

a preprocessing step and thus providing improved segmentation accuracy. The 

effect of inhomogeneity correction on disc segmentation performance is very 

small (0.9%). This can be attributed to the small size of the disc structure, which 

is only slightly affected by the slowly varying inhomogeneity field.  However, this 

marginal accuracy improvement is statistically significant (p<0.001). Thus to 

exploit this effect, the N3 method was selected to be used as a preprocessing step 

for correcting image inhomogeneity prior to disc segmentation. 

 

Table 4.7. Indicative intensity variation values results for the uncorrected 
image and the corresponding inhomogeneity corrected images  
Correction Method Intensity Variation 
 CVdisc CVbone CJV 
Initial Images 0.297 0.556 0.774 
Entropy Minimization 0.294 0.534 0.773 
N3 0.279 0.552 0.760 
Homeomorphic Filtering 0.274 0.537 0.760 

 

Table 4.8. Mean segmentation evaluation results for initial and inhomogeneity 
corrected images 
Correction Method Segmentation Accuracy 
 DSI % Dmean (px) Paired t-test 
Initial Images 92.3 1.08 - 
Entropy Minimization 92.3 1.08 p=0.11 
N3 93.2 0.95 p<0.001 
Homeomorphic Filtering 92.6 1.03 p<0.001 
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4.5.3. Segmentation accuracy of the Pseudo-3D segmentation method 

 

The pseudo-3D segmentation method is applied on 3D volumes 

constructed by interpolating our 2D data as described in section 4.4.4.  This 

method was validated against a data set of 10 randomly selected intervertebral 

discs and the corresponding accuracy evaluation results are given in Table 4.9. 

Moreover, representative results of the pseudo 3D segmentation method for 

multiple slices of interpolated volumes are illustrated in Figures 4.16-4.17.  

Specifically, Figure 4.16 illustrates a herniated disc demonstrating the 

adaptability of the algorithm to the disc shape which results in a rather good 

delineation of the hernia. White arrows in the leftmost slice point to areas where 

the disc boundary is unclear, as this slice corresponds to the end of the disc and 

thus contains a superimposition of disc and surrounding tissues.   

 

 
Figure 4.16. The pseudo 3D segmentation results for a normal intervertebral disc. 
The images correspond to equidistant slices of the interpolated data volume, with 
1 being the leftmost slice and 9 being the rightmost one. White arrows in the 
leftmost slice show an area where the disc boundary appears unclear.    
 

 

Table 4.9. Pseudo-3D segmentation performance 
 DSI % Dmean (px) 
 mean std mean std 
Pseudo-3D 89.4 7.7 1.42 1.06 

1 2 3

987

654
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Figure 4.17 also illustrates segmentation results in multiple slices of an 

interpolated volume, with white arrows pointing to mis-segmented areas. Finally, 

Figure 4.18 illustrates the surface rendering of the segmented disc volume 

displayed in Figure 4.17. 

The pseudo-3D approach was designed in order to test if the proposed 

atlas-based method can be expanded to serve disc segmentation in 3D. As shown 

in Table 4.9, the mean DSI segmentation accuracy is 89.4% which is similar to 

the accuracy of the 2D atlas based segmentation. Moreover the mean boundary 

error is 1.48pixels (which is equivalent to 0.85mm) and this accuracy meets 

clinical requirements. Thus this method appears capable to serve 3D 

segmentation, however further investigation and testing on volumetric data is 

required for the complete evaluation of this approach.  

Figure 4.17. Pseudo-3D segmentation results for a normal intervertebral disc. 
Again, the images correspond to equidistant slices of the interpolated data 
volume, with 1 being the leftmost slice and 9 being the rightmost one, while white 
arrows point to mis-segmented disc areas.   
 
 
 
 
 
 
 
 
 
Figure 4.18. Surface rendering of the segmented disc volume displayed above. 
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4.6. Segmentation Summary and Conclusion 

 

This chapter presented the methods developed for segmenting the 

intervertebral discs from spine MR images. In the present study, disc 

segmentation is aimed to serve the quantification of degeneration severity, and 

thus 2D segmentation methods were developed for extracting the discs from the 

midsagittal slice of conventional T2-weighted MR images.  

Three segmentation methods were presented here, the FCM, Atlas-FCM 

and Atlas-RFCM, each one building upon the previous method to correct errors 

and improve accuracy. Moreover, three inhomogeneity correction approaches 

where tested in order to remove the bias MR field and facilitate the segmentation 

process. Finally, a pseudo-3D approach was presented expanding the atlas-based 

method and demonstrating its’ ability to serve 3D disc segmentation.  

As shown by the quantitative analysis of segmentation accuracy, the Atlas-

RFCM method provided the best overall performance for both the 1.5 Tesla and 

3.0 Tesla datasets. The following list presents some key points of the Atlas-RFCM 

performance.  

 This method resulted in accurate segmentation for both normal and 

degenerated discs, and good delineation of specific disc pathologies such 

as disc narrowing and herniation. However, there are cases where the 

Atlas-RFCM method misses the disc-vertebra interface and this can be 

related to low image contrast and shape bias introduced by the atlas.   

 Quantitative results evaluation yielded a mean boundary error < 1mm, 

which meets clinical requirements 

 This automated segmentation offers important interaction time savings in 

comparison to the manual delineation process.  

  

 With respect to intensity inhomogeneity, among the three methods tested 

the N3 approach was shown to provide the optimal bias field correction. When 

this method is used prior to disc segmentation it facilitates this process resulting in 

a small but statistically significant improvement in segmentation accuracy.    
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 A direct comparison of the proposed method’s accuracy with disc 

segmentation methods presented in the literature is not feasible. The majority of 

these methods focus on disc localization and they do not carry out any evaluation 

of segmentation accuracy [ROBE1997, CHEV2007, SHI2007]. However, a recent 

study by Seifert and Wachter reports quantitative results on the segmentation of 

cervical intervertebral discs [SEIF2009]. Evaluation was performed on a 

midsagittal slice of the T1w cervical spine image acquired with a 3D protocol. 

Direct comparison would be inappropriate, due to the data heterogeneity, yet the 

quantitative values are given just as an indication. The study by Seifert reports a 

mean DSI value equal to 91% with mean boundary error of 1.51 pixels (2.4 mm) 

averaged over nine normal intervertebral discs of a single dataset.  

In conclusion, the proposed Atlas-RFCM approach incorporates prior 

anatomical information in the segmentation process, using a probabilistic disc 

atlas, combined with fuzzy clustering techniques and smoothness constraints. This 

method provides accurate segmentation for both normal and degenerated 

intervertebral discs, which meets clinical requirements, and offers important 

interaction time savings.  
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4.7. Analysis of Objectives and Hypotheses for Disc Segmentation 

 
This section analyses the aims and objectives of the present study with 

respect to the lumbar disc segmentation task. Table 4.10 presents a list of 

objectives and discusses on the extent to which these objectives were met. In 

addition, Table 4.11 discusses on the hypotheses of this study.  

 
Table 4.10. Research Objectives Summary : Intervertebral Disc Segmentation 

3. To develop computerized methods for segmenting the intervertebral discs 

Three segmentation methods were developed, with each new method building 

upon the previous one aiming to provide accurate segmentation of both 

normal and degenerated discs. The optimal method is Atlas-RFCM which 

combines spatial information by means of a probabilistic atlas with fuzzy 

clustering techniques. In addition, the N3 inhomogeneity correction method 

was used for correcting the MR bias field and facilitating the segmentation 

process. Disc segmentation was developed in 2D and tested on midsagittal 

MR images, since this method is intended to serve disc degeneration 

quantification. Moreover, a pseudo-3D approach has been tested 

demonstrating how the Atlas-RFCM can be extended to 3D.  
 

4.  To utilize quantitative methods for evaluating segmentation accuracy of the 

computerized methods against a gold standard produced by manual disc 

segmentation  

The gold standard was obtained by manual delineation of all data by two 

independent users. Disc segmentation accuracy was evaluated against 

manually segmented data by means of the DSI and Dmean measures. Results 

indicated high segmentation accuracy for the Atlas-RFCM approach meeting 

clinical requirements (mean boundary error <1mm). Although the automated 

segmentation accuracy is not as high as manual interobserver accuracy (the 

DSI is on average 4.1% lower for the 3T dataset), it meets clinical needs 

while offering important interaction time savings.  
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Table 4.11. Research Hypotheses Intervertebral Disc Segmentation 

1. Atlas based methods would provide improved segmentation accuracy in 

comparison to methods relying solely on grey level intensity. This is because 

the incorporation of shape information in the segmentation process would 

help control boundary leakage towards surrounding structures.  
 

Confirmed: the Atlas-FCM and Atlas-RFCM methods managed to control 

boundary leakage and provided statistically significantly improvement in 

segmentation accuracy in comparison to the FCM method as shown in Tables 

4.1. and 4.4. 
 

2. The correction of the inhomogeneity field in MRI would facilitate the 

segmentation process and improve accuracy. 
 

Confirmed: Inhomogeneity correction prior to segmentation using the N3 

method resulted in a very small but statistically significant improvement of 

segmentation accuracy as shown in Table 4.7. (p<0.001).  
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Chapter 5. Disc Quantification 

 

 This chapter presents the disc quantification methods and results. It starts 

with an overview of texture and shape quantification methods, followed by a 

discussion on the requirements and challenges of disc quantification. The methods 

developed for disc quantification in the present study are analyzed in Section 5.2, 

while the corresponding results are presented and discussed in Sections 5.3 and 

5.4. Finally, Section 5.5 analyzes the research objectives and hypotheses.
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5.1. Quantification Methods Background     

5.1.1. Introduction to Quantification       

    

Texture and shape are among the most informative visual cues for the 

diagnostic interpretation of medical images [BANK2000]. The different anatomical 

regions are characterized by different textures and shapes, which are qualitatively 

evaluated by the physicians in order to discriminate between normal and abnormal 

state [CAST2004]. Image analysis systems are designed to quantify texture and 

shape information and assist physicians to make a decision on the underlying 

pathology [COST2005]. 

 

 

5.1.2. Texture Quantification              

  

Image texture is a rich source of visual information and a key component 

in image analysis and understanding in humans [DURG1996]. In digital images, 

the notion of texture is associated with the spatial distribution of pixel intensity 

variations, and is related to image properties such as smoothness, coarseness and 

regularity. Texture analysis is ultimately concerned with automated methods that 

can quantify image information [TOUR1999]. Image texture has been utilized for 

distinguishing between healthy and pathological tissue in a variety of clinical 

problems and a wide range of imaging modalities starting from X-ray and moving 

to CT, MRI and Ultrasound [CAST2004, TOUR1999]. Common applications 

include the classification of normal and benign tissue from X-ray and MRI 

mammograms [KARA2007, CHEN2007], the detection and quantification of lung 

nodules and interstitial pneumonia patterns in lung CT [KIM2003, KORF2009], as 

well as and the characterization of intracranial tumours in MRI [SCHA1993, 

KJAE1995]. In musculoskeletal imaging, texture analysis has been successfully 

used for the quantification of osteoarthritis from hip X-rays and knee MRI 

[BONI2006, QAZI2006]. 

In the present study, texture analysis algorithms are utilized for extracting 

quantitative image information from lumbar spine MRI, aiming to quantify 
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intervertebral disc degeneration severity. The remaining part of this section 

describes commonly used features for texture characterization, while the 

equations defining these features are given in Appendix 1.  

 

5.1.2.1. First order features 

 First order textural features are extracted from the image histogram and 

thus encode information regarding the frequency of appearance of each grey-level 

within the image. More specifically, these features quantify the mean and standard 

deviation of grey-level values within the image, as well as the skewness and 

kurtosis of the histogram [THEO2003].  

 

5.1.2.2. Co-occurrence features  

Co-occurrence features are perhaps the most widely used method of 

texture analysis, while their popularity is attributed to their good performance 

[LERS1993, NIXO2002]. Co-occurrence matrices (also known as grey-level spatial 

dependence matrices) describe the frequency in which two grey-levels of an 

image appear together at a certain distance (D) and in a particular direction 

[HARA1979]. The features extracted from these co-occurrence matrices describe 

different characteristics of texture such as image homogeneity, contrast or the 

level of randomness within the image. However, it is not always easy to identify 

which specific textural characteristic is represented by each of the co-occurrence 

features, as not all of them convey a clear physical or perceptual sense of texture 

[HARA1973, RANG2005].  

  
5.1.2.3. Run-length matrix features 

These features were introduced by Galloway and are calculated from run-

length matrices extracted from the image [GALL1975]. A run is a set of 

consecutive pixels that have the same grey-level value, aligned in a given 

orientation. The "grey-level run length matrix" rθ(i,j) shows the frequency of each 

run with length j of each grey-level i in the image, along the direction θ. Features 

extracted from these run-length matrices describe the distribution of grey-level 

runs within the image. Thus these features quantify properties such the presence 

of linear structures and grey-level uniformity in the image.  
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5.1.2.4. Laws texture energy features 

These features are extracted from a set of Texture Energy Images, which 

are computed by applying small convolution kernels to the ROI [LAWS1980]. 

Texture Energy Images are considered to be associated to the inherent 

microstructure of the ROI. Features extracted from Texture Energy Images can be 

used for quantifying image microstructure. First order statistics are most 

commonly used for this purpose, although run length features can also be 

extracted aiming to capture additional image information [BONI2007b].  

 

 

5.1.3. Shape Features 

 

 In clinical practice, qualitative evaluation of shape information and semi-

quantitative measurements (such as the intervertebral disc height) are generally 

utilized for discriminating between normal and abnormal status. The automatic 

quantification of shape information could provide accurate and reproducible 

measures to aid clinical diagnosis and planning of surgical treatment [BANK2000]. 

Simple techniques for 2D quantification of shape information, such as region 

measures, statistical moments and Fourier descriptors are summarized in the 

following sections. The equations defining shape features are given in Appendix 

1.  

 

5.1.3.1. Fourier Descriptors 

Fourier descriptors are calculated from the boundary of an object by 

means of the Discrete Fourier Transform (DFT). The Fourier description of an 

object gives a set of spatial frequencies that fit this boundary. Low order 

descriptors represent information such as the object centroid and size, while 

higher order descriptors are associated with higher spatial frequencies and thus 

describe increasingly higher detail [NIXO2002].  
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5.1.3.2. Statistical Moments 

Statistical moments can be used for representing spatial image 

distributions. Their values depend on the position, orientation and size of the 

object within the image. However, many applications require an object 

representation that is invariant to translation, scale and rotation [BANK2000]. 

Position invariance is achieved by defining the moments with respect to the image 

centroid, and the resulting measures are called central moments. Moreover, scale 

invariance is achieved by reducing the object to unit axis, while the resulting 

measures can be combined to produce rotation invariance moments according to 

the method introduced by Hu [HU1962].  

 

5.1.3.3. Region Properties 

The simplest shape features are region properties calculated from a binary 

template of the region of interest. Some basic region properties are listed in table 

5.1. [NIXO2002, MATL2010].  

 

Table 5.1. The basic region properties together with a short description for each 

Property Description 
Area The number of pixels within the ROI 
Perimeter The number of pixels surrounding the ROI 
Eccentricity The eccentricity of the ellipse that has the same second 

moments as the ROI 
Major Axis Length The major axis length of the ellipse that has the same 

normalized second central moments as the ROI 
Minor Axis Length  The minor axis length of the ellipse that has the same 

normalized second central moments as the ROI 
Convex Area The number of pixels of the smallest convex polygon that 

can contain the ROI 
Solidity The proportion of ROI pixels in the convex area 

calculated as Area/Convex Area 
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5.2. Methods: What Do we Propose for Disc Quantification? 
  

Currently, the standard method for disc quantification relies on the 

measurement of the disc mean signal intensity from midsagittal T2-weighted 

MRI. As discussed in section 2.5.2 this mean signal intensity reflects the water 

and proteoglycan content of the intervertebral disc [TERT1991] and is a sensitive 

measure of degeneration severity [NIEM2008].  However, although it is a good 

measure of biochemical changes within the disc, it does not account for 

morphological and structural disc changes.  

Alternative quantification methods include the measurement of T1, T1ρ 

and T2 relaxation times, as well as the ADC. As discussed in section 2.5.2 these 

methods provide additional information about the disc tissue, but their application 

is limited by the requirement for specific acquisition protocols and additional 

imaging time.  

The present study aims in developing new measures for the quantification 

of disc degeneration from conventional T2-weighted MR images. In this context, 

texture and shape descriptors are utilized aiming to capture additional image 

information. Texture descriptors are exploited for assessing degenerative changes 

resulting from biochemical tissue alterations (water and proteoglycan content), 

while shape descriptors were used for assessing gross anatomical and structural 

changes of the disc tissue. Moreover, the spinal level of each disc (ranging from 

L1-L2 to L5-S1) is used as an additional feature encoding prior knowledge of the 

disc’s location representing anatomical information. The motivation behind using 

a conventional imaging protocol (T2-weighted MRI), is to produce a method that 

could be applicable in widely available clinical protocols for spine imaging, 

without the constrains of specific imaging protocols. 

A preliminary study on disc degeneration quantification was performed 

with the 1.5 Tesla dataset and the corresponding results were presented in 

UKRC2009. The full texture and shape analysis was conducted using the 3.0 

Tesla dataset (because this had a more reliable severity grading ground truth). 

Texture analysis results have been accepted for publication in Acta Radiologica.  
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The disc quantification methods and results presented here were applied 

on the 255 intervertebral discs of the 3.0 Tesla dataset. This section summarizes 

the quantitative features calculated from each segmented disc ROI, and describes 

the feature selection process used for identifying the most descriptive features 

with respect to disc degeneration. Next the statistical analysis methods used for 

testing the descriptive ability of the texture and shape descriptors and comparing 

their performance to the standard method (based on mean disc intensity) are 

presented. 

 

 

5.2.1 Methods: Quantitative Features Calculation 

 
All 255 discs of the 3.0 Tesla dataset were segmented by the Atlas-RFCM 

method, and a set of 89 textural and 32 shape descriptors together with a location 

descriptor (the disc level) was extracted from each segmented disc region. The 

background of texture and shape analysis is given in Section 5.1, while features 

definitions can be found in Appendix 1. The set of descriptors extracted from each 

segmented disc ROI comprised:    
 

- 4 first order features - the mean, standard deviation, skewness and 
kurtosis 

 

- 24 co-occurrence features - first co-occurrence matrices were 
calculated for four different directions(0°, 45°, 90° and 135°) with a 
pixel distance d=2, and from these matrices the mean values and 
ranges of the 12 co-occurrence features over the four directions where 
calculated 

 

- 5 run length features - the short run emphasis, long run emphasis, grey-
level non uniformity, run length non uniformity and run percentage 

 

- 56 Laws texture energy features - the mean, standard deviation, 
skewness and kurtosis of each one of the 14 Laws Texture Energy 
Images calculated from the disc-ROI 

 

- 7 region descriptors - the area, perimeter, eccentricity, major axis 
length, minor axis length, convex area and solidity  

 
- 8 central moments - the μ00, μ11, μ02, μ20, μ12, μ21, μ03, μ30 were 

calculated from the binary template of the disc-ROI  
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- 7 Hu’s invariant moments - the φ1-φ7 measures where calculated from 
the binary template of the disc-ROI 

 
- 10 Fourier descriptors – the first ten Fourier coefficients were 

calculated from the disc-ROI boundary  
 

- 1 location descriptor – the disc level, taking values in the range [1-5] 
corresponding to lumbar disc levels (L1-L2, L2-L3, L3-L4, L4-L5,L5-
S1). 

 

 

5.2.2. Methods: Optimal Feature Selection 

 

In the disc quantification process, a set of 122 texture and shape features 

have been calculated from each segmented disc-ROI. These features contain a lot 

of redundant information, which would unnecessarily complicate the 

classification process, and could adversely affect the outcome. The objective of 

dimensionality reduction is to obtain an accurate data representation while 

eliminating redundant components. Thus, the dimensionality reduction methods 

need to identify or construct uncorrelated features with high information content. 

Dimensionality reduction methods can help improve classification performance 

and alleviate the curse of dimensionality in cases where the number of training 

samples is limited. In addition, they can reduce computational complexity and 

enable better understanding of the underlying process [JAIN2000, THEO2003]. 

Here two methods are tested and compared to help identify the most 

descriptive feature set with respect to disc degeneration severity, which is the 

classification task of the present study. These methods are Principal Component 

Analysis (PCA) and  Stepwise Discriminant Analysis (SDA) which are briefly 

outlined below. The reduced feature sets produced by the two methods were used 

for the classification of disc degeneration severity and their performance was 

assessed using ROC analysis as described in section 6.3.4.  

 

Stepwise Discriminant Analysis 

SDA is a well established method, which is highly popular with CAD 

applications [TOUR2001]. This method aims to reduce the number of features 

utilized by a classification system while preserving as much of the class 
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discriminatory information as possible. In this context, only the most important 

features of a given dataset are selected aiming to maximize class separability, 

while features bearing no additional information are removed. SDA has been 

utilized in a variety of classification problems such as the characterization of 

masses and microcalcifications in X-ray mammography, the characterization of 

pulmonary nodules in lung CT and the identification of subcellular patterns from 

human cell arrays [CHAN1998, MCNI1999, CONR2004, KARA2007]. 

SDA works by identifying the features that maximize the interclass 

distance, while keeping the classes as tightly clustered as possible (minimize 

within class variance). This is achieved by minimizing the Wilks’ ratio Λ 

(Equation 5.1).  

(5.1) 

where x is the feature vector, Sw is the within class scatter matrix and ST is the 
total scatter matrix. 
 

Λ equals zero for perfect discrimination while it equals one in case of no 

discrimination between classes. The SDA procedure starts with the full feature set 

and it sequentially selects to remove and add features (dimensions) from the 

model in order to minimize Λ and thus increase the model’s discrimination 

ability. Features are removed from the model if the F-to-remove value is smaller 

than the corresponding F-to-remove-threshold, while they are added if the F-to-

enter value is larger than a predefined F-to-enter threshold. These F-to-enter and 

F-to-remove values give the statistical significance of change in Λ resulting from 

the feature addition or removal according to the F-statistic (Equations 5.2, 5.3) 

[LINE2007]. Here, the probability to enter and probability to remove features 

were set to penter=0.05 and premove=0.10. 

(5.2) 

 

 (5.3) 

 

 (5.4) 

where n is the number of data points, q is the number of classes, p is the number 
of features and ΔΛ is the partial Λ statistic given by equation 5.4. 
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Principal Component Analysis 
This is the best know dimensionality reduction method. It is widely used 

in pattern recognition applications, while a variety of non-linear techniques based 

on PCA have also been developed [JAIN2000]. However, PCA still remains the 

golden standard as the more complex non-linear techniques have not yet been 

shown to outperform it [MAAT2007].   

PCA performs dimensionality reduction while retaining as much variance 

in the feature space as possible. Since high variance is related to high information 

content, this method can “compact information” to fewer dimensions by 

identifying the dimensions of maximum variance. PCA has been used in a variety 

of CAD applications such as breast cancer diagnosis from X-ray mammography, 

pulmonary nodules diagnosis from CT images and the diagnosis of Alzheimer’s 

from PET and SPECT [AYRE2005, LIU2009, WAY2009, LOPE2009].  

PCA performs an orthogonal transformation from the initial feature space 

to a new set of uncorrelated variables which are called principal components. A 

complete description is beyond the scope of this thesis, a good tutorial is given in 

[SHLE2005]. Equation 5.5 outlines the PCA transformation with X being the 

original dataset, Y the transformed dataset and P the principal components matrix. 

In order to maximize variance, while minimizing redundancy the principal 

components (p1,p2,…pn) which compose the transformation matrix P must be the 

eigenvectors of the covariance matrix given by equation 5.6.    

XPY                                                           (5.5) 

T
X XX

n
C 




1

1
                                                 (5.6) 

 

The first principal component lies in the direction of maximum variance, 

the second in the next highest variance direction and so on. As a consequence 

most information is retained within the first few dimensions of the transformed 

space and thus dimensionality reduction can be performed with small information 

loss. 
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5.2.3. Methods: Disc Quantification Comparison to the Standard Method 

 

The texture and shape features performance in evaluating intervertebral disc 

degeneration were compared to those of the adjusted mean disc signal, which is 

sought as the standard method for quantifying degeneration. For this purpose, the 

adjusted disc signal intensity was calculated as the ratio of the mean disc over the 

mean CSF signal intensities. The mean CSF signal was calculated by selecting a 

rectangular region of size 3x5pixels within the CSF in the anterior part of the 

dural sac adjacent to the disc as shown in Figure 5.1. In cases where the CSF 

signal intensity measurement was considered unreliable, due to flow artefacts or 

narrowing of the dural sack, the observation was recorded as missing and was 

removed from the case sample analyzed [LUOM2001, NEIM2008].  

 
 
 
 
 
 
 
 
 
 
Figure 5.1. The segmented disc region (delineated by the white line) along with 
the manually defined CSF-ROI (black rectangle) used for adjusting disc signal 
intensity.  
 
5.2.4. Methods: Statistical Analysis for Quantification Results Interpretation 

 

Statistical analysis was used to determine the ability of SDA selected 

features to quantify disc degeneration severity. The radiologists’ consensus 

grading presented in Chapter 3 served as ground truth for testing the features 

discriminating ability.  

Spearman’s ρ correlation coefficient was employed for measuring the 

association between the ground truth and quantitative features values. This 

correlation is used for assessing the validity of texture and shape features for disc 

degeneration severity quantification. Moreover, The Kruskal-Wallis one way 
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analysis of variance was used for statistically testing the overall ability of these 

features to distinguish between discs belonging to different grades of degeneration 

severity. The statistical significance level was set to p<0.05. In addition, the same 

statistical comparison with a Bonferroni correction (adjusting for multiple tests) 

was employed for testing the separability of neighbouring degeneration severity 

classes. This would provide information with respect to descriptors ability to 

evaluate early or advanced degenerative changes. Moreover, the texture and shape 

features’ effectiveness in quantifying disc degeneration was compared to that of 

the standard quantification method based on disc’s adjusted signal intensity. 

 

 

5.2.5. Methods: Testing Quantitative Measurements Repeatability 

 

The repeatability of quantitative measurements was tested using Intraclass 

correlation coefficients. The quantitative feature values are subject to small 

variations in the segmentation and CSF-ROI selection processes. Specifically, the 

atlas-based disc segmentation method requires manual selection of 2 initialization 

landmarks. This landmark selection can affect the segmentation result and thus 

impose small changes in the texture and shape feature values calculated from the 

segmented disc region. Additionally, the CSF-ROI selection requires manual 

input of a single landmark corresponding to the centre of the ROI. This could 

result in a small variation of the calculated mean CSF value and consequently 

affect the value of the adjusted mean intensity descriptor. To test the effect of 

manual landmark selection on the quantitative feature values, the manual 

positioning of disc and CSF-ROI landmarks was performed twice on a subset of 

50 randomly selected intervertebral discs. Consequently, two measurements of 

these quantitative values were acquired and intraclass correlation coefficients 

were calculated between these measurements in order to test their repeatability. 
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5.3. Results and Discussion: Disc Quantification and Association to 
Pathology  
 

As discussed in Section 2.5.2 the quantification of disc characteristics can 

provide an objective and reproducible evaluation of degeneration severity, which 

is sensitive to small changes. This is particularly important for evaluating the 

disease progress and monitoring the response to treatment [AUER2006]. 

 In this study the quantification of degeneration severity was based on 

conventional T2-weighted magnetic resonance images of the lumbar spine. These 

images encode both biochemical and morphological information about the disc 

tissue allowing the detection of early degenerative changes [MODI2007, 

NEIM2008]. Here, texture and shape features were extracted from the image, while 

the validity and reliability of these features in disc degeneration quantification 

was evaluated by: (i) testing their association to clinical grading of disc 

degeneration severity, (ii) comparing correlation results to those of the standard 

quantification method based on adjusted disc mean signal intensity, (iii) 

evaluating features ability to distinguish between discs from different 

degeneration severity grades and finally (iv) testing measurements repeatability.  

Both PCA and SDA methods were tested for dimensionality reduction, 

aiming to find the most descriptive feature set with respect to disc degeneration 

severity. Both methods yielded very similar results (see Appendix 3), and SDA 

was selected here to form the basis of the proposed CAD system. This selection 

was based on the requirement for meaningful quantitative measures [TOUR2000]. 

Specifically, the principal components calculated by PCA are linear combinations 

of the initially calculated feature set, and thus do not convey a clear physical 

meaning. On the other hand SDA simply selects a subset of these initially 

calculated features, which is straight forward to interpret. 

Specifically, SDA yielded a set of 7 features which are sought as the most 

appropriate for characterizing disc degeneration severity. The selected feature set 

is presented in Section 5.3.1., while features association to clinical grading of 

degeneration is discussed in Section 5.3.2. Moreover, Section 5.3.3. presents the 

ANOVA and Multicomparison results commenting on features ability to 



 
 

Chapter 5. Disc Quantification 

   119 
 

 
 

distinguish between early and advanced stages of degeneration, while Section 

5.3.4. discusses on measurements repeatability.  

 

 

5.3.1. Results and Discussion: The selected feature set 

 

This section provides a brief description of the 7 quantitative features 

selected by the SDA method: 

 

1. Sum of Squares: this is a co-occurrence derived feature that quantifies the 

variance of grey-level spatial dependencies within the image and its value 

decreases for increasing image homogeneity. 
 

2. Information Measure of Correlation 1: this feature is also derived from co-

occurrence matrices and it describes linear dependencies between the grey-

levels within the ROI and its value increases with increasing image 

homogeneity. 
 

3. Range Sum of Squares: another co-occurrence derived feature that quantifies 

the changes in variance across different image directions. 
 

4. Range of Entropy: a feature quantifying changes in grey-level randomness 

across the different image directions [HARA1979]. 
 

5. Grey Level Non Uniformity: this is a run-length feature that quantifies the 

uniformity of grey level run lengths within the image. Its value increases for 

non-isotropically distributed runs along the different grey levels [GALL1975, 

KARA2009].  
 

6. Solidity: this is a shape feature that represents the ratio of the disc-ROI area 

over the area of the smallest polygon than can inscribe the ROI, and thus is 

can be seen as a measure of image compactness [MATL2010].  
 

7. Disc Level: this feature introduces useful anatomical information, as the lower 

lumbar levels are more prone to degeneration, due to spinal anatomy and the 

increased compressive load applied to the corresponding discs [BATT2004].   
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5.3.2 Results and Discussion: Quantitative Features Association to Clinical 

Grading Ground Truth 

 

The suitability of the selected textural and shape features for quantifying 

disc degeneration severity was investigated through their association to 

radiologists’ consensus grading. As described in Section 5.2. Spearman’s 

correlation coefficients were utilized for this task, while the correlation to mean 

disc signal intensity, which is sought as a reference method was also calculated 

for comparison reasons. Table 5.2. summarizes the results of this correlation 

analysis, while the key points are analyzed in the bullet points list below. 

 

Table 5.2. Features Correlation to Clinical Grading 

Quantitative Features 
Association to Clinical 

Grading 
Feature Class Feature Name Spearman ρ p < 0.001 

    
Method of Reference   

 Adjusted Mean Intensity -0.5567  
    
New Approach   

Sum of Squares -0.812  
Information Measure of 
Correlation 1 

0.799  

Range Sum of Squares -0.397  
Co-occurrence 

Range Entropy -0.730  

Run-Length Grey Level Non Uniformity 0.439  

Region Solidity -0.450  

Location Disc Level 0.224 X 
 

Looking at the method of reference: 
 

 

 Mean Disc Signal Intensity displays a negative correlation to disc 

degeneration severity. This does not come as a surprise, since progressive 

degeneration is related to disc dehydration resulting in lower disc signal in T2-

weighted images. The strength of correlation is statistically significant 

(p<0.001). 
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And at the selected feature set: 
 

 The correlation signs between textural features values and clinical grading of 

degeneration indicate that the disc image becomes more homogeneous with 

increasing severity of degeneration. The strength of correlation is statistically 

significant, and these features appear to provide good measures of 

degeneration severity. 
 

 Three of the textural features analysed (Sum of Squares, Information Measure 

of Correlation 1 and Range Entropy) display stronger correlation to 

degeneration severity than Mean Disc Signal Intensity does.  
 

 The negative association of the Solidity feature to degeneration severity 

indicates a decrease in disc shape compactness with progressing degeneration.  
 

 The positive correlation between the Disc Level and clinical grading indicates 

that the lower disc levels tend to be more severely degenerated. However, this 

correlation is not statistically significant. 

 

5.3.2.1 Disc Degeneration and Image Homogeneity – The role of texture 

The correlation analysis results indicate an increase in disc image 

homogeneity with progressive degeneration. Here, the connection between image 

homogeneity and the degenerative alterations of the disc is analysed and the role 

of texture in evaluating degeneration severity is discussed.  

As outlined in chapter 2, the degenerative process results in nucleus 

dehydration (due to proteoglycan fragmentation) and the disc progressively 

becomes more fibrous [AN2004]. This is why degenerated discs appear darker in 

T2 weighted MR images, while the nucleus-annulus distinction progressively 

decreases [PFIR2001]. These degenerative alterations result in a decrease of grey 

levels variation with progressive degeneration, and the disc image appears more 

homogeneous. An example for this is provided in Figure 5.2, where grey-level 

histograms for discs assigned to Grades II, III, IV and V are illustrated. Moving 

from Grade  II  to  Grade  V  we  can  see  how the histogram shifts towards lower  
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Figure 5.2. Representative histograms of discs for the different grades of 
degeneration severity. The more degenerated the disc the lower the mean value 
and the narrower the histogram (fewer frequent intensities are dominant). 

 

signal intensity values indicating disc dehydration. Grades II and III are 

characterized by bimodal distributions, with the peaks corresponding to the mean 

annulus (left) and nucleus (right) grey-levels. The histograms of Grades IV and V 

are unimodal distributions indicating the complete loss of nucleus annulus 

distinction. When moving from Grade II to Grade III, the peak corresponding to 

the disc’s nucleus gradually shifts towards lower grey-level values, while in Grade 

IV the two peaks merge indicating the progressive loss of distinction between disc 

nucleus and annulus. This loss of distinction results in narrowing of the histogram 

when moving to higher grades of degeneration indicating a decrease in image grey 

level range (i.e. the disc image becomes more homogeneous).  

Textural features have the ability to measure image homogeneity and thus 

quantify the progressive loss of nucleus annulus distinction, which is an important 

factor in the degenerative process. As shown in Table 5.2, the strength of 

correlation between three of the five textural features (namely the Sum of Squares, 

Information Measure of Correlation 1 and Range Entropy) and clinical diagnosis 

of degeneration severity is actually higher than the corresponding one for discs’ 
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adjusted mean signal intensity. This can be attributed to the ability of these 

features to represent additional image information regarding the grey-level 

variation.  

The effectiveness of texture quantification may be related to biochemical 

and structural tissue alterations. In the degenerative process, proteoglycan 

fragmentation results in reduced water binding capacity of the nucleus. In 

addition, a slow substitution of the fine type II collagen fibres of the inner nucleus 

by coarser type I fibres is taking place. These alterations lead to nucleus 

dehydration and annulus encroaching on the nucleus, which macroscopically 

appear as a loss of nucleus annulus distinction [AN2004]. In MRI this results in an 

increase of image homogeneity, which can be captured by textural features. Thus, 

these features can indirectly evaluate disc alterations resulting in loss of 

distinction between nucleus and annulus by measuring the grey-level variations 

within the image. By this we do not imply that the use of textural features should 

substitute the adjusted mean intensity quantification method, but they should 

rather be used together to obtain the maximum amount of information regarding 

disc degeneration severity. 

 
5.3.3. Results and Discussion: Features discriminating ability in early versus 

severe degeneration  

 

The properties of quantitative features were further investigated by 

analyzing their ability to differentiate between the different degeneration severity 

grades. Table 5.3. summarizes the results of the Kruskal-Wallis ANOVA, as well 

as the comparison between neighbouring grades. The key points of this analysis 

are outlined in the following list.  
 

Looking at the method of reference: 
 

 Mean Disc Signal Intensity demonstrates statistically significant differences 

along the range of different degeneration severity grades. However, when 

looking into neighbouring grades, this method can distinguish normal from 

mild and moderate degeneration (Grades II, III and IV), but not between the 

moderate and severe stages (Grades IV and V).  
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Looking at the selected feature set: 
 

 All seven features comprising the selected feature set demonstrated 

statistically significant differences along the range of different degeneration 

grades.  
 

 Looking into neighbouring grades, textural features can generally distinguish 

between the early stages of disease, but not between moderate and severe 

degeneration (Grades IV and V).  
 

 In contrast, the Solidity and Disc Level features cannot effectively distinguish 

between the early stages of degeneration, but they display statistically 

significant differences between the moderate and severe stages (Grades IV and 

V). 

 

 

Table 5.3. ANOVA and Multicomparison Results 
Quantitative Features Kruskal –Wallis 

ANOVA 
 

Comparison between 
neighbouring Grades  

(Bonferroni and p<0.05) 
Feature 
Class 

Feature Name Chi 
square 

p<0.05 Grade II 
Grade III 

Grade III 
Grade IV 

Grade IV 
Grade V 

       
Reference Method      

 
Adjusted Mean 
Intensity 

64    X 
       
New Approach      

Sum of 
Squares 

137    X 
Information 
Measure of 

Correlation 1 
132    X 

Range Sum of 
Squares 

68   X X 

 
Co-
occurrence 

Range Entropy 112    X 

Run-
Length 

Grey Level 
Non 

Uniformity 
47  X  X 

Region Solidity 48  X   
Location 

Disc Level 
 

24  X X  
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5.3.3.1 Degeneration severity stages - the role of texture and shape analysis 

The multicomparison results in Table 5.3. indicate that mean disc signal 

intensity and textural features offer good measures for early and intermediate 

degeneration. On the other hand looking at the separability of Grades IV and V 

these measures cannot distinguish between moderately and severely degenerated 

discs. This was somewhat expected for the textural features, since Grade IV and V 

discs are fibrous and have completely lost their nucleus-annulus distinction 

appearing homogeneous in MRI.  

Although textural information does not help distinguishing among the 

more advanced stages of degeneration, shape quantification can assist in this task. 

Solidity effectively distinguishes between Grade IV and Grade V discs (p<0.05). 

This can be explained by the morphological differences between these grades as 

defined by Pfirrmann [PFIR2001]. Grade IV corresponds to discs with normal 

height or a moderate height decrease, with a rather smooth elliptical outline. On 

the other hand, Grade V represents a collapsed disc space where endplate damage 

yields an irregular and less compact outline for the disc. This change in disc shape 

compactness is reflected in Solidity values, which is thus providing a good 

measure for advanced degeneration stages.  

 

 

5.3.4. Results and Discussion: Quantitative measurements repeatability 

 

Intra-class correlation coefficients values used for testing measurements’ 

repeatability were found to be over 0.97 for both adjusted mean signal intensity 

and the selected textural and shape descriptors values, indicating very high 

repeatability.  
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5.4. Discussion on Quantification Methods and Results 

 

The correlation analysis and ANOVA results presented in this chapter 

indicated that the proposed texture and shape features provide good measures of 

degeneration severity. An advantage of the proposed texture quantification in 

comparison to the reference method, is that the textural features used are 

independent of grey level shifting and thus do not require an intra-body reference 

for grey-level adjustment. Consequently, texture quantification can be used for 

evaluating disc degeneration severity, even in cases where the adjusted mean 

intensity method cannot be calculated due to the lack of a CSF reference. The lack 

of such a reference can be due to flow artefacts or narrowing of the dural sac 

[NIEM2008], which in our data sample affected 19% of all cases. However, it 

should be pointed out that the use of inhomogeneity correction techniques, such as 

those described in section 4.4.4., could potentially alleviate the CSF reference 

problem. In addition, looking into shape quantification, Solidity is a scale 

invariant feature and thus the corresponding results are independent of patient 

size. 

In addition, since the proposed quantification approach utilizes 

conventional T2-weighted MR images it could be easily applicable in clinical 

practice, in contrast with quantification approaches, such as the measurement of 

ADCs or T1 and T2 relaxation times that require specific imaging protocols. A 

limitation of this quantification study is the lack of Grade I discs (according to 

Pfirmann’s scale), which represent the normal young population. 

The proposed quantification method was directly compared to the adjusted 

mean signal intensity method, but a similar comparison with other quantification 

approaches is not possible with our data set. However, some correlation 

coefficient values from other studies, which also used Pfirrmann’s method as their 

grading standard, will be given here as an indication. In a 2006 study by Auerbach 

et al. on a set of 50 lumbar discs (10 patients), the T1ρ quantification measure was 

found to be statistically significantly correlated to the clinical grading of 

degeneration, yielding a correlation coefficient value equal to -0.51 [AUER2006]. 

In addition, in a 2010 study by Blumenkrantz et al. conducted on a set of 80 



 
 

Chapter 5. Disc Quantification 

   127 
 

 
 

lumbar discs (16 patients), both T1ρ and T2 relaxation times were found to be 

significantly associated to clinical grading of degeneration. Specifically, 

correlation coefficient values for the T2 time were equal to -0.61 while for the 

T1ρ time equal to -0.84 [BLUM2010]. In the present study, on a data set of 255 

discs (51 patients) multiple features resulted in statistically significant correlation 

to clinical grading, while the strongest overall association was observed for the 

Sum of Squares feature which yielding a correlation coefficient equal to -0.81.  
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5.5. Summary and Analysis of Research Objectives 

 

This section demonstrated the strong potential of disc texture and shape 

features in quantifying intervertebral disc degeneration from conventional T2-

weighted MR images. Textural features are particularly sensitive to early stages of 

degeneration and thus could potentially be useful in evaluating the outcome of 

new treatment methods, such as growth factor therapy. On the other hand the 

Solidity shape feature is a good measure for distinguishing between moderate and 

severe degeneration. The proposed approach provides simple, fast and highly 

repeatable quantification of disc degeneration, from conventional MR images. 

Overall, disc image texture and shape quantification could be a valuable tool for 

tracking the evolution of disc degeneration and monitoring the response to 

treatment.   

Table 5.4. summarizes the quantification results by analysing the research 

objectives for disc quantification, while Table 5.5. discusses on the quantification 

hypotheses tested.  

 

Table 5.4. Research Objectives Summary and Discussion  
  

Disc Degeneration Quantification 

5. To calculate image features describing textural and shape properties of the 

disc region in order to quantify disc degeneration severity 
 

First and second order textural features, along with shape features 

describing the disc region properties, statistical moments and Fourier 

descriptors were extracted from each segmented disc region aiming to 

quantify disc degeneration severity. Stepwise discriminant analysis was used 

for selecting the most descriptive feature set.  

 

6. To investigate the ability of quantitative features in evaluating disc 

degeneration by calculating their association to degeneration severity as 

defined by radiologists consensus grading 
 

The quantification methods were applied on 255 discs of the 3.0 Tesla 
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dataset which were accompanied by a ground truth based on three 

radiologists’ consensus gradings. Correlation coefficients were employed for 

testing the validity of quantitative features for evaluating disc degeneration. 

Textural features measuring image homogeneity were highly associated to 

degeneration severity, and could distinguish among the early disease stages. 

In addition, solidity a feature measuring disc shape compactness was found 

to be sensitive in distinguishing among the more advanced stages of 

degeneration.  

 

7. To compare textural and shape features’ performance to the performance of 

the mean signal intensity quantification method in the task of disc 

degeneration quantification. 
 

A subset of textural features were found to be more strongly associated to 

disc degeneration than the mean signal intensity, which is sought as the 

method of reference. These features appear to quantify the progressive loss 

of nucleus annulus distinction, which is an important feature of the 

degenerative process. On the other hand shape features correlation to the 

clinical ground truth was lower than that of the reference method. 

 

8. To test the repeatability of quantitative features measurements 
 

Measurements repeatability was tested utilizing intraclass correlation 

coefficients.  Results indicated that quantitative features measurements are 

highly repeatable (ICC>0.97).  

 
 
Table 5.5. Research Hypotheses Summary and Discussion 
 

Disc Degeneration Quantification 

3. Textural and shape image features are suitable for describing intervertebral 

disc degeneration severity. This would be confirmed if these features values 

are statistically significantly correlated to the clinical diagnosis (grading) of 

disease. 
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Confirmed: as shown in Table 5.2. statistically significant associations were 

found between textural and shape features values, and the clinical grading 

ground truth. This indicates the strong potential of these features in 

evaluating degeneration severity.  

 

4. Textural features are more suitable than shape features for evaluating the 

early stages of degeneration. This is because in the early stages of disease 

only the internal disc structure is affected but its outline remains almost 

intact. Moreover, shape features are more suitable that texture features for 

assessing the more advanced stages of disease, when internally the disc has 

become fibrotic. 
 

Confirmed: as shown in Table 5.3., textural features can discriminate 

between early stages of degeneration (Grades II-IV), while shape features 

are more effective for distinguishing between moderate and severe 

degeneration (Grades IV-V) 
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 Chapter 6. Computer Aided Diagnosis (CAD) 

 

 This chapter presents the computer aided diagnosis methods and results. It 

starts with an introduction to CAD systems in section 6.1, while section 6.2 gives 

an overview of CAD systems development for spine diagnosis. The methods 

developed in the present study for CAD of disc degeneration are analyzed in 

Section 6.3, while the corresponding results are presented and discussed in 

Section 6.4. Finally, Section 6.5 offers a conclusion and analyzes the research 

objectives and hypotheses. 
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6.1. Introduction to CAD  

 

This Section introduces Computer Aided Diagnosis methods in 6.1.1., 

presents the design and main components of CAD applications for tissue 

characterization in 6.1.2. and provides a brief review on supervised classification 

algorithms in 6.1.3.  

 

 

6.1.1. CAD Introduction or what is it good for?  

 

Computer Aided Diagnosis systems utilize pattern recognition methods for 

quantitatively analyzing medical images. These systems aim to detect and 

characterize abnormal findings based on image appearance. The precursor of 

computer aided diagnosis is automated computer diagnosis an idea that emerged 

in the 60s. At that time it was assumed that computerized methods would replace 

the physicians in the task of diagnostic image interpretation. However, the current 

belief is that computerized methods should be utilized by the physicians to help 

them in the decision making process without replacing them, thus the name 

computer aided diagnosis [DOI2007]. Specifically, nowadays CAD is intended to 

be used as “a second reader”, influencing the radiologist’s opinion. The use of 

CAD aims at improving diagnostic accuracy by increasing the sensitivity in 

detection and characterization of lesions and also improving agreement between 

observers [DOI1999].  

 CAD systems are designed for detecting and characterizing abnormal 

findings in medical images and they are divided in two categories. Systems that 

detect suspicious regions in medical images are described by the acronym CADe. 

Moreover, the term CADx describes systems that quantitatively analyze the 

properties of these suspicious regions and characterize them as normal or 

abnormal [GIGE2008].   

 CAD systems have been developed for a variety of diagnostic tasks, 

including breast cancer [CHEN1999, KARA2007], lung cancer and interstitial 

disease [AWAI2004, KORF2009], colon cancer [YOSH2002], liver disease 
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[KATO2007], as well as skeletal disease such as hip and knee osteoarthritis 

[BONI2007a, SHAM2009]. 

 Professor Kunio Doi of the University of Chicago, stated that “CAD has 

become on of the major research subjects in medical imaging and diagnostic 

radiology” [DOI2007]. Nowadays, CAD research is rapidly expanding to other 

imaging modalities and clinical tasks. It is expected that in the future CAD 

systems will be incorporated into diagnostic workstations and used as support 

tools for image interpretation in a variety of tasks in daily clinical work [DOI2007, 

GIGE2008].  

It should be noticed that the benefits of using CAD as a second reader in 

clinical practice are controversial. Taking as an example breast cancer detection 

which is the most widely used CAD application, it has been shown that breast 

CAD systems can detect cancers missed by the clinicians but they also produce a 

number of false positives [BIRD2001]. Looking into the influence of breast CAD 

on the decision making process, results are disappointing. Specifically, CAD has 

been shown to yield an increase of patient recall rates without improving the 

cancer detection rate [TAYL2008]. Although the detection and classification 

accuracy of a CAD system is important, it is actually the system’s influence on 

radiologist’s opinion that matters the most. The following section describes the 

main components of a CAD system, from the point of view of applications 

developed for tissue characterization (CADx). 

 

6.1.2. CAD System Design: The main CADx components 

 

The layout of a typical CADx system is given in Figure 6.1. In CADx it is 

assumed that the location of the region of interest is predefined by either a CADe 

system or the user himself [COST2010]. The CAD main components are: (a) 

preprocessing, (b) segmentation of the region of interest (ROI), (c) quantification 

of ROI properties and (d) classification of the ROI as normal or abnormal or as 

belonging to one of n classes of pathology.  
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Figure 6.1. CAD layout. 

 

The preprocessing step in CAD aims into enhancing the region of interest 

within the image. This can be achieved by the application of image processing 

techniques, such as denoising and contrast enhancement, as well as techniques 

aiming to the reduction of artefacts and correction of field inhomogeneities. It 

should be noticed that preprocessing in CAD aims into facilitating the computer in 

the task of ROI segmentation. This differs from the traditional application of 

image enhancement, which aims into improving the image for the human observer 

[DOI1999]. An example for this is the case of MRI field intensity inhomogeneities, 

which have little impact on visual diagnosis of disease but can greatly affect the 

performance of automatic segmentation algorithms and thus need to be corrected 

prior to segmentation [SLED1998]. Moving on to the segmentation step, its 

accuracy can affect the outcome of the CAD system and thus the segmentation 

performance needs to be validated. 

 The next step in CAD is the quantification of ROI properties, which is also 

known as the “feature extraction process”. In this process a set of features 

describing size, shape and/or textural properties of the ROI are calculated. Feature 

extraction aims at capturing image properties reflecting the underlying pathology. 

These features values are then exploited for differentiating between healthy and 

diseased tissue [COST2010].  

In the design stage of a CAD system, a large number of quantitative 

features is extracted from each ROI. Dimensionality reduction methods are then 

exploited in order to select features maximizing class separability and reduce 

redundant information. This process facilitates training and testing of the CAD 

Preprocessing 
 

denoise, contrast 
enhancement 

 

Input 
 

image, volume, 
patient data 

 

Segmentation 
 

extract the  
region of interest 
 

Quantification 
 
 

texture & shape 
properties 

Classification 
 
 

normal / 
abnormal,  

severity classes

Output 
 
 

diagnosis, 
quantitative 

measurements



 
 

Chapter 6. Computer Aided Diagnosis 

   135 
 

 
 

system by finding which features can effectively differentiate between the healthy 

and diseased state [COST2010].  

The last step of a CAD system is classification. In this step the ROI is 

assigned to the appropriate class according to the output of a classification 

algorithm. The classes represent various stages of health and disease, such as 

benign and malignant lesions as they appear in X-ray mammography, normal, 

ground glass or reticular patterns of interstitial pneumonia in lung CT, or the 

various stages of osteoarthritis in hip X-rays [CHEN1999, KORF2009, BONI2007a].  

 

 

6.1.3. Brief review on classification algorithms 

 

A classification algorithm is used for assigning an input into one of n 

defined output categories called classes. The classifier input is called the “feature 

vector”, and it is a set of quantitative feature values describing the properties of 

the item to be classified. The classification algorithm is trained to distinguish 

among the different classes. In the training process feature vectors of known class 

(the training data) are employed in order to calculate the classifier’s discriminant 

function. This function encodes the knowledge of the system on how to 

distinguish among the different classes on the basis of feature values. The training 

process is also known as “classifier design”. Following this design process, the 

trained classifier is now ready to be used for assigning an output class to every 

new feature vector of unknown class [THEO2003].  

In case of image based CAD systems the classifier input (feature vector) 

encodes quantitative information about a given ROI within the medical image, 

such as its texture, shape or size. The classification algorithm utilizes this 

quantitative information in order to assign an output class to the ROI (e.g. 

normal/abnormal, benign/malignant) [GIGE2008].  

There is a great variety of classification algorithms. Simple classification 

methods include the Minimum Distance, the Bayesian and the Nearest Neighbour 

classifiers, while more elaborate approaches are based on Neural Networks and 

Support Vector Machines [JAIN2000]. The following sections provide short 
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descriptions of some simple classification algorithms, which are used later in this 

study.  

 

6.1.3.1. Minimum Distance Classifier 

 The Minimum Distance (MD) classifier assigns the input feature vector to 

the class whose centre is at the minimum distance from the feature vector.  The 

class centres are calculated as the means of the training data belonging to each 

class. Equation 6.1 gives the discriminant function of the minimum distance 

classifier, based on the Euclidean distance calculation. A limitation of the simple 

minimum distance classifier is that the resulting classification boundary is always 

linear. However, depending on the problem at hand, a more complex solution 

might be better. A simple variation of this classifier is the Mahalanobis minimum 

distance classifier which can give a quadratic classification boundary [DUDA2001, 

GONZ2001]. The corresponding discriminant function is given by equation 6.2.   

 (6.1) 

 

 (6.2) 

 

 (6.3) 

 
 
where mj is the mean vector of class j, xj is the j-th training feature vector of this 
class, Nj is the number of training vectors for class j, Cj is the covariance matrix of 
class j and xin is the input feature vector with T representing the transpose matrix. 
 

6.1.3.2. Nearest Neighbour Classifier 

 The Nearest Neighbour (NN) is a very simple classification algorithm 

which makes a decision based on the neighbours of the input vector. The 

neighbours are the training samples situated closer to the input vector within the 

feature space. In its simplest form this classifier assigns the input vector to the 

class of its nearest neighbour. The k-NN classifier, finds the k nearest neighbours 

and assigns the input vector to the class that represents the majority of these 

neighbours. A variation of the k-NN classifier is the distance weighted k-NN 

described by Dudani [DUDA1976]. In this approach the contribution of each one 
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of the k nearest neighbours is weighted by a factor that is inversely proportional to 

its distance form the input features vector. The distance weighted k-NN has been 

shown to provide improved classification accuracy in comparison to the simple k-

NN and especially in cases of small or moderate size training samples. Just as 

with minimum distance classifiers, various distance measures can be used by the 

k-NN for finding the nearest neighbours, such as the Euclidean, the L1 norm and 

the Mahalanobis distances (Equations 6.4.-6.6.). A drawback of the k-NN is that 

classes with more frequent examples tend to dominate the outcome [NIXO2002]. 

 

 (6.4) 

 (6.5) 

 (6.6) 

 

where Cj is the covariance matrix of class j given by Equation 6.3, xj is the j-th 
training feature vector of this class and  x is the input feature vector. 
 

6.1.3.3. Bayesian Classifier 

 It is a simple probabilistic classification algorithm based on Bayes’ 

theorem, which gives the posterior probability (also know as conditional 

probability) of an event when the prior probabilities and its likelihood are known. 

In case of classification, the posterior probability denotes the probability that the 

input vector belongs to a certain class. The classifier’s discriminant function is 

given in Equation 6.7. The Bayesian classifier provides classification with the 

minimum probability error. It only requires a small amount of training data in 

order to estimate the parameters (means and variances of the features) and this 

makes it a simple and efficient classification algorithm. Its main limitation is the 

requirement for normal distributions of data for each class [THEO2003, 

GONZ2001].  
 

 (6.7) 

 
where mj is the mean vector of class j,  C is mean covariance matrix of all classes 
and x is the input feature vector. 
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6.1.3.4. Probabilistic Neural Network Classifier 

The Probabilistic Neural Network (PNN) classifier combines statistical 

theory with neural networks. Artificial neural networks are highly non-linear 

computational systems that can approximate the behaviour of complex 

phenomena and systems which are difficult to model explicitly. The PNN 

classifier architecture for a two class classification problem is outlined in Figure 

6.2. It is a four layer neural network, starting with an “input layer” and moving on 

to the “pattern layer”, the “summation layer” and finally the “output”. The pattern 

layer has a different neuron for each one of the training feature vectors, and it 

functions by computing the distances between the input vector and each one of the 

training feature vectors. The summation layer has one neuron for each class, 

which provides a weighted summary of distance measure calculated by the pattern 

layer. The outcome layer acts as a threshold providing as classification result the 

class which yielded the highest sum in the summation level.  

Equation 6.8 gives the discriminant function of the PNN classifier. A great 

advantage of this classifier is that it makes no assumptions about data 

distributions. Moreover, it converges to an optimal classifier as the number of the 

training data increases. Finally, being many times faster than traditional neural 

networks, it can be easily retrained every time additional data become available 

[SPEC1990, HAJM2002].  

 

 

(6.8) 

 
 
where x is the unknown feature vector, xj  is the j-th training feature vector, Nj is 
the number of patterns in class j, σ is a smoothing parameter, and p is the number 
of features employed in the feature vector 
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Figure 6.2. Outline of the PNN classifier architecture. 
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6.2. Literature Review on Spine CAD 

 

So far, only a small number of studies work towards computer aided 

diagnosis of spine pathology. These systems investigate various abnormalities 

such as disc space narrowing and herniation, vertebral osteophytes and spinal 

stenosis. This section offers an overview to these spine CAD methods.  

The very first study dates back to 1983 and is entitled “Computer Aided 

Diagnosis of Lumbar Disc Herniation”. It presents an automated system, named 

the “LOWBACK”, which takes as input data the physical findings, clinical results 

and pain history of lumbar spine patients and gives as output a suggestion on the 

most appropriate treatment (conservative or surgery). This system does not 

perform image analysis, but is rather one of the early approaches in computer-

assisted medical decision making [HUDG1983].  

Moving on to studies analyzing medical images, Tsai et al. presented a 

method for evaluating the shape and position of lumbar disc herniation 

[TSAI2002]. This method is applied on axial images of the intervertebral disc and 

the authors suggest it could be used with either CT or MRI data. In this study, a 

B-spline function is used for approximating a “circular” disc boundary, leaving 

out the herniation area. Next, geometrical features describing the distance of this 

herniation area from the disc centre, as well as its orientation are extracted. These 

features are used for classifying the herniation as bulging, protrusion or extrusion. 

Moreover, the orientation features are used for deciding if the herniation is central 

or lateral. The diagnostic results of this CAD system were confirmed by operative 

findings in 16 patients’ lumbar spines with 18 herniations, reporting that all 

hernias were accurately evaluated. The authors conclude that the proposed method 

can be used for accurate classification of lumbar disc herniation and assist surgical 

planning. 

 Charmathy et al. [CHAR2004] presented a computer aided diagnosis 

method for grading disc space narrowing from lateral X-ray images of the cervical 

spine. Their method utilized b-spline interpolation between manually defined 

landmarks for delineating the vertebral bodies. Next quantitative features 

measuring height and area properties of the intervertebral space are calculated in 
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order to characterize the narrowing between adjacent vertebrae. Finally, disc 

space narrowing is classified on the basis of the distance features values using k-

means clustering together with self organizing maps techniques. A four grade 

system is utilized for characterizing the severity of narrowing (normal to 

significant narrowing). The method was tested on 294 discs and results indicated 

classification accuracy of over 82% for all grades, allowing an error of ± one 

grade. Given the similarity of neighbouring grades, the proposed method appears 

to work well on a complex task and could thus serve computer aided evaluation of 

disc space narrowing.  

 A computer aided diagnosis method for the characterization of vertebrae 

as normal or abnormal with respect to the presence of anterior osteophytes from 

lateral X-rays is presented by Cherukuri et al. [CHER2004]. The vertebrae were 

delineated using b-spline interpolation of manually defined landmarks in the same 

way as in [CHAR2004]. Next, area features were calculated from the convex hull 

image of each segmented vertebra, in order to quantify the vertebra’s shape 

variation from its ideal rectangular shape. Finally, a multilayer perceptron was 

used for vertebrae classification. The authors report that results indicated that the 

convex hull features can be used for successfully discriminating between 

vertebrae with and without osteophytes.  

 A study on the computer aided diagnosis of spinal stenosis from lateral X-

rays was presented in [KOOM2006]. In this study, morphological features 

describing the vertebral bodies and intervertebral discs height and width as well as 

the width of the spinal canal are exploited for characterizing a variety of 

conditions related to spinal stenosis. These conditions are posterior osteophytes, 

posterior apophyseal arthropathy, disc space narrowing, spondylolisthesis and 

spinal stenosis. A Bayesian framework was employed for classification purposes. 

A set of 16 images was used for testing the system. Classification accuracies 

ranged between 70% and 80%, which the authors suggest would be suitable for 

screening purposes.  

 Finally, a recent study by Alomari et al. from the University of Buffalo, 

presents a method for computer aided diagnosis of lumbar disc pathology from 

lower spine MRI [ALOM2010]. The authors developed a model of disc appearance 
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by putting together information regarding the grey level values of the disc’s 

neighbourhood, as well as its location and relevant distance from adjacent discs. A 

dataset of 80 cases including discs with various types of pathologies was used for 

testing the model’s ability to distinguish between normal and abnormal discs. The 

average accuracy of the binary classification system was reported to be 91.3%.  
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6.3. CAD for disc degeneration diagnosis 
 

The third and last aim of the present study was to design a computer aided 

diagnosis system exploiting MR image information for evaluating disc 

degeneration severity. The CAD system presented here combines texture and 

shape information extracted from segmented disc regions in order to assign each 

intervertebral disc to the appropriate grade of degeneration severity. This system 

is designed for supporting the clinicians in diagnosing intervertebral disc 

degeneration. It is intended to be used as a second reader aiming to improve 

diagnostic accuracy and reduce disagreement between clinical experts. The 

proposed system is designed to work with conventional T2-weighted MR images 

and thus could be directly applicable in clinical practice.  

This chapter presents the design of the CAD system, along with the 

methods used for validating its performance. The proposed CAD system works by 

classifying the discs to degeneration severity grades, according to Pfirmann’s 

scheme, which is outlined in Table 4.2. The system was trained and tested 

utilizing the 255 discs of the 3 Tesla dataset. Ground truth grading for disc 

degeneration severity was obtained by the three radiologists’ consensus.  

Before designing the current system, a preliminary study on computer aided 

diagnosis of lumbar disc degeneration was conducted using the 170 discs of the 

1.5 Tesla dataset with the three grades evaluation scheme outlined in section 3.2. 

This study was presented in the Computer Assisted Radiology and Surgery 2009 

Conference.  

 

 

6.3.1. Design of the Proposed CAD System 
 

Figure 6.3. presents an outline of the CAD system. The major components 

of this system are the disc segmentation method, the feature extraction process, 

the feature selection method and finally the classification scheme. The disc 

segmentation   method  was  presented  in detail  in  Chapter  4,  while  Chapter  5 

outlined the feature extraction and selection methods used for disc degeneration  
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quantification. This chapter describes the classification scheme together with 

methods used for validating the system’s performance. 

Disc classification is based on the hierarchical scheme depicted in Figure 

6.1, while four different classification algorithms were tested and compared 

aiming to optimize system performance. Finally, the Receiver Operating 

Characteristic Curve Analysis (ROC-Analysis) was employed for assessing the 

CAD performance.  

 

 

6.3.2 Classification Scheme 

 

The classification task of this study is to distinguish between four different 

grades of degeneration severity (II-V, according to the five grade Pfirmann’s 

scheme). A hierarchical classification scheme was designed for this purpose and 
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its outline is illustrated in Figure 6.3. The first level of this classification scheme 

has a single node used for distinguishing light from severe pathology. Thus it is 

classifying normal and mildly degenerated discs (Grades II and III) in one class, 

and moderately and severely degenerated discs (Grades IV and V) in the other. 

The second level has two nodes, one for distinguishing between normal and 

mildly degenerated discs (Grade II from Grade III in node 2a), and the second for 

distinguishing between moderately and severely degenerated discs (Grades IV and 

V in node 2b).  

Four different classification methods were employed and their 

performances were compared in order to identify the most suitable one for disc 

degeneration severity classification. These methods are the Minimum distance, 

Bayesian, Probabilistic Neural Networks and the distance weighted k-Nearest 

Neighbour classifier, which were briefly reviewed in Section 6.1.3. All four 

classification methods were trained and tested on the task of classifying the 255 

intervertebral discs to degeneration severity classes using the hierarchical 

classification scheme. The classifiers’ performance was evaluated using Receiver 

Operator Characteristic Curve Analysis as described in section 6.3.4. 

 

 

6.3.3. Training and Testing the CAD System 

 

The CAD accuracy was validated using a modified version of the leave-

one-out method. This method is commonly used for testing CAD systems’ 

performance [YOSH2002, BONI2006, DOI2007, KARA2007]. In leave-one-out, all 

but one of the data samples (here the intervertebral discs) are used for training the 

classification scheme, and the left-out sample is used for testing. This process is 

repeated recursively until all data samples have been used for testing, and the 

classification accuracy is calculated as the number of correctly classified left-out 

samples over their sum. The leave-one-out is a computationally intensive method, 

but offers the advantage that training is achieved with basically all samples, while 

maintaining the independence of training and testing sets. Thus, it provides an 

unbiased estimate of the classification error probability [JAIN2000, THEO2003].  
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Here, the leave-one-out method was modified by keeping out all five discs 

of each individual patient in each round. This modification was used for 

eliminating any bias that could be introduced in the classification process by using 

data from the same person for training and testing. This is because there might be 

some intra-patient dependence of discs’ appearance and degeneration severity, 

although different image regions are used. The modified version is called leave-

one-patient-out method. According to this method, the 5 lumbar discs of each 

individual patient were left-out of the training sample and the remaining 250 discs 

were used for training the CAD system. The left-out discs were then used for 

testing the systems accuracy and this process was recursively repeated for all 51 

patients in the data sample.  

 

 

6.3.4. CAD Performance Evaluation 
 

A simple way to evaluate the performance of a CAD system is by 

measuring its classification accuracy, which is the fraction of cases that are 

correctly classified. Other simple measures, commonly used for performance 

evaluation are the sensitivity and specificity of the classification system. These 

measures values depend on the selection of a classification threshold. However, in 

most problems the data samples do not fall into one of two clearly defined 

categories, but there is an overlap between the distributions of the two data 

classes. In such cases, there is a trade off between the sensitivity and specificity of 

the classification system depending on the selection of its threshold value. The 

main limitation of the accuracy, sensitivity and specificity measures is that their 

values correspond to an arbitrary selected threshold value and cannot provide a 

global description of classification performance [METZ1988]. 

On the other hand, a different classification performance evaluation 

method called Receiver Operating Characteristic Curve Analysis (ROC-Analysis) 

intentionally forces the decision threshold to vary. The ROC curve is a plot of the 

True Positive Fraction (TPF) versus the False Positive Fraction (FPF). The TPF 

and FPF measures are defined in Equations 6.9-6.10.  Figure 6.4.  depicts  the  
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(6.9) 
 
 

(6.10) 
 
 

where tp represents the number of true positive events, fp the number of false 
positives, tn the number of true negatives and fn the number of false negatives.    
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Figure 6.4. Example of a ROC curve and with points in the curve representing 
strict, moderated and lax thresholds.  
 

ROC-space with a representative example of a ROC curve. Each point in the 

curve corresponds to a different decision threshold. The curve is produced by 

varying the decision threshold of the classification scheme and adding a new point 

pair of TPF and FPF values in the ROC space for each threshold value. The 

advantage of ROC analysis is that it provides a global description of classification 

performance, which is independent of the threshold value [METZ1988]. It provides 

richer information than scalar measures (such as accuracy, sensitivity and 

specificity) allowing more accurate comparison between different classification 

systems [FAWC2006]. 

Classification algorithms’ performances can be compared by means of the 

Area Under the ROC curve (known as AUROC or Az) measure. The AUROC 
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measure gives the probability of classifying a randomly chosen positive instance 

higher than a randomly chosen negative instance. Its values range between 0 and 

1, with 0.5 representing random guessing [FAWC2006]. 

In the present study, ROC Analysis was used for evaluating the 

classification performance of the CAD system. First the performances of four 

different classification algorithms were tested, and the optimal one was selected to 

serve as basis for the CAD as described in section 6.3.2. System validation was 

performed by plotting the ROC curves and calculating the AUROC values for 

each node of the hierarchical classification scheme, together with their confidence 

intervals. In addition, Cohen’s Kappa was used for testing the CAD agreement to 

clinical grading truth provided by radiologists’ consensus, as well as each 

individual reader separately.  
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 6.4. Results and discussion: CAD for Disc Degeneration severity 

classification 

 

The CAD system presented here was trained and tested on a data sample 

of 255 intervertebral discs acquired by a 3 Tesla scanner. Radiologists’ consensus 

served as ground truth, in an effort to incorporate multiple observers’ knowledge 

in the classification process. The CAD system exploited disc textural and shape 

information for discriminating between different grades of disc degeneration. This 

information was given as input to the hierarchical classification scheme which 

classified the intervertebral discs to one of four degeneration severity grades. 

Section 6.4.1 presents the classification results comparing different 

algorithms and justifying the classifier selection approach. Next, Section 6.4.2 

presents the CAD agreement to clinical diagnosis, while Section 6.4.3. discusses 

further the CAD results.  

 

 

6.4.1 Classification Algorithms Performance and Optimal Classifier Selection 

 

 As described in section 6.3.2., four different classification algorithms 

(MD, Bayesian, PNN and k-NN) were tested as part of the hierarchical 

classification scheme in order to identify the algorithm that would optimize the 

performance of the CAD system.  

Figure 6.5 gives the ROC curves of these classification algorithms for 

node 1 of the hierarchical classification scheme (Figure 6.3), while Table 6.1 

summarizes the corresponding Area Under ROC values for all four classifiers 

tested. These data represent the classifiers’ ability to distinguish normal and mild 

(Grades II and III) form moderate and severe (Grades IV and V) disc 

degeneration. It is worth noting that there are very small differences between the 

ROC curves of the four classifiers. The k-NN appears to perform marginally 

better and this is also reflected by its slightly higher AUROC value as shown in 

Table 6.1.  
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Figure 6.5. The four classifiers’ ROC curves for Node 1 which distinguishes 
normal and mild discs from moderately and severely degenerated discs (Grades II 
and III from Grades IV and V). The zoom-in box highlights subtle differences 
between classifiers’ performances.  
 
 
Table 6.1. Classification performance for Node 1 by means of AUROC 
Classifier AUROC 

± Standard Error 
95% Confidence interval               

[Lower, upper] 
MD 0.957 ± 0.014 [0.930 , 0.985] 
Bayesian 0.969 ± 0.012 [0.946 , 0.992] 
PNN 0.967 ± 0.012 [0.943 , 0.990] 
k-NN 0.971 ± 0.013 [0.949 , 0.993] 

 
 

Figure 6.6 gives the ROC curves of the classification algorithms for node 

2a of the hierarchical classification scheme. This node is distinguishing normal 

(Grade II) from mild (Grade III) disc degeneration. Table 6.2 summarizes the 

corresponding Area Under ROC values for all four classifiers tested. 
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Figure 6.6. The classifiers’ ROC curves for Node 2a which distinguishes between 
normal discs and discs with mild degeneration (Grade II from Grade III). 

 

Table 6.2. Classification performance for Node 2a by means of AUROC 
Classifier AUROC 

± Standard Error 
95% Confidence interval               

[Lower, upper] 
MD 0.867 ± 0.029 [0.809 , 0.925] 
Bayesian 0.865 ± 0.030 [0.807 , 0.923] 
PNN 0.844 ± 0.032 [0.781 , 0.907] 
k-NN 0.854 ± 0.031 [0.793 , 0.915] 

 

Finally, Figure 6.7 gives the ROC curves of the same classification 

algorithms for node 2b of the hierarchical classification scheme. These curves 

represent the classifiers’ ability to distinguish between moderate and severe disc 

degeneration, Grade IV from Grade V. Finally, Table 6.3 summarizes the 

corresponding Area Under ROC values for all four classifiers tested.  Again the 

differences between the ROC curves of the four classifiers are very small in both 

node 2a and node 2b. In both these cases, the Minimum Distance classifier 

appears to perform marginally better resulting in a slightly higher AUROC value 

that the other three classification algorithms. 
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Figure 6.7. The classifiers’ ROC curves for Node 2b which distinguishes between 
moderate and severe disc degeneration (Grade IV and Grade V). 

 
 

Table 6.3. Classification performance for Node 2b by means of AUROC 
Classifier AUROC 

± Standard Error 
95% Confidence interval               

[Lower, upper] 
MD 0.958 ± 0.017 [0.924 , 0.992] 
Bayesian 0.939 ± 0.021 [0.897 , 0.981] 
PNN 0.910 ± 0.027 [0.857 , 0.963] 
k-NN 0.937 ± 0.022 [0.894 , 0.980] 

 

The performance differences between the four classification algorithms are 

very small, as indicated by the ROC curves and AUROC values. Specifically, the 

k-NN classifier had the highest overall performance for distinguishing normal and 

mild from moderately and severely degenerated discs (Node 1) with the 

corresponding increase in its AUROC value being as small as 0.01. The results 

are similar for Nodes 2a and 2b with the Minimum Distance classifier displaying 

slightly higher AUROC values. However, the differences in AUROC values are 

extremely small with each classifier’s AUROC value lying well within the others’ 

confidence intervals. Consequently, none of the four classifiers appears to perform 
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better than the other, or equivalently all classifiers seem to provide equally good 

solutions.  

For the final design of the CAD system, a single classification algorithm 

will be selected. According to Ockham's razor “entities must not be multiplied 

beyond necessity”, or in other words “the simplest among equally good solutions 

is usually the optimal one” [William of Ockham]. In this case the simplest 

solution from a computational point of view is given by the Minimum Distance 

classifier. Thus, this algorithm was chosen here to serve the current classification 

task on the merit of simplicity but with adequate performance.  

.  

 

6.4.2. CAD Agreement to Clinical Diagnosis  

 

Moving on to further evaluation of the CAD outcome, Table 6.4. gives the 

contingency matrix between CAD classification results and the ground truth 

provided by radiologists’ consensus. The overall classification performance was 

78.8%. The most challenging task was distinguishing normal (Grade II) from 

mildly degenerated discs (Grade III) in node 2a. These grades also yielded the 

greatest proportion of disagreement between the three radiologists’ gradings as 

shown in Section 3.3. 

Looking into the misclassified data, most cases represent a one grade 

difference.  There is also one disc case with an error of two degrees, where a 

Grade II disc has been erroneously classified as Grade IV. Misclassified data are 

equally distributed over and under the principal diagonal of the contingency 

matrix indicating that the CAD does not yield any systematic over- or under-

estimation.  

Table 6.4. Contingency matrix between the CAD output and clinical grading 

            Consensus 
CAD output Grade II Grade III Grade IV Grade V 
Grade II 43 10 0 0 
Grade III 8 68 12 0 
Grade IV 1 12 66 1 
Grade V 0 0 10 24 
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Table 6.5. provides Cohen’s Kappa statistics evaluating the CAD system’s 

agreement to the severity grading ground truth, as well as to each individual 

reader’s grading separately. The average kappa value is equal to 0.87 representing 

almost perfect agreement between the CAD and radiologists’ consensus, 

according to Landis and Koch’s interpretation method summarized in Table 3.3 

[LAND1977].  

In addition, the kappa values for CAD agreement to individual 

radiologists’ grading ranges from 0.69 to 0.88. It is noteworthy that kappa is 

higher for the most experienced radiologist (Reviewer 2), and lower for the least 

experienced one. Moreover, these values are higher than the interobserver 

agreements presented in Table 3.8. Thus the CAD system being trained with 

radiologists’ consensus provides an outcome with higher agreement to the 

individual observers, than their agreement with each other. This is promising with 

respect to the CAD system’s ability to improve interobserver agreement. 

However, the influence of the system on the radiologist’s diagnostic accuracy (i.e. 

when the system acts as a second reader) needs to be evaluated.  

 

 

Table 6.5. CAD  Agreement to Clinical Grading  
Observers Test Kappa 95% Confidence Interval 
CAD- Consensus Grading  0.8719 [0.7398 , 1.0000] 
CAD- Reviewer 1 0.8092 [0.6457 , 0.9727] 
CAD- Reviewer 2 0.8832 [0.7583 , 1.0000] 
CAD- Reviewer 3 0.6867 [0.4892 , 0.8842] 
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6.5 Conclusion and Analysis of Research Objectives
  
 

Up to date, there is only a single other study reporting on CAD for disc 

pathologies from MRI [ALOM2010]. Alomari et al. presented a binary 

classification system distinguishing between normal and abnormal discs, as 

described in Section 6.2. That system is not specific to disc degeneration, since 

disc abnormality as defined by the authors includes various pathologies 

(degeneration, desiccation, herniation). Although the aims of the two systems 

differ, the reported performance appears to be similar. Specifically, Alomari et al. 

report average classification accuracy equal to 91.3%. The corresponding 

accuracy of the study presented in this thesis is 90.2%, when translated to a binary 

classification scheme (separating Grades II, III from Grades IV, V). The study by 

Alomari together with the study presented here, work towards establishing a new 

field for CAD applications, the diagnosis of intervertebral disc pathology from 

MRI.   

Concluding, the CAD system described in the present study exploits 

textural, shape and disc context information for classifying the intervertebral discs 

to classes of degeneration severity. The system resulted in almost perfect 

agreement to the clinical grading provided by expert radiologists’ consensus. This 

CAD system could be a valuable tool in hands of physicians to support clinical 

diagnosis of disc degeneration, but first its effect when used as a second reader 

needs to be tested.  

 Tables 6.6 and 6.7 summarize the objectives and hypotheses of the current 

chapter discussing the extent to which they were tested.  

 

Table 6.6. Research Objectives Summary and Discussion : CAD 

9. To design a computer aided diagnosis system putting together the 

segmentation and quantification steps with a classification scheme for 

categorizing the discs to disc degeneration severity grades 
 

    A CAD system was designed exploiting the segmentation and quantification 

steps for disc degeneration diagnosis. A hierarchical classification scheme 
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was developed for classifying the discs as normal, mildly, moderately, or 

severely degenerated utilizing texture and shape information extracted from 

the segmented disc region.  

 

10. To develop methods for training and testing the CAD system using 

radiologists consensus as grading truth, and evaluating its classification 

performance.  
 

The CAD system was trained and tested using the “leave-one-patient-out” 

method, while ROC analysis was employed for evaluating classification 

performance. Results indicate good classification performance and an 

almost perfect agreement between the CAD output and radiologists’ 

consensus grading (κ=0.87).  

 

11. To apply the CAD system in a new dataset and test its influence on the 

radiologist’s opinion when the system is used as a second reader 
 

   This objective has not been met but the CAD effect in clinical diagnosis is 

currently under investigation. A new dataset comprising 120 intervertebral 

discs from 24 patients’ lumbar scans has been collected. The three 

radiologists are currently on the process of clinically grading disc 

degeneration using the CAD output as a second opinion. The effect of the 

proposed CAD system on clinical diagnosis will be evaluated though the 

resulting changes in observers’ agreement.  

 

Table 6.7. Research Hypotheses Summary and Discussion: CAD 
 

5. The CAD system can help improve diagnostic accuracy when used as a 

second reader. This would be supported if the disagreement between 

different clinical experts decreases when using the CAD.  
 

Not confirmed: this hypothesis is currently being tested by evaluating the 

influence of CAD on radiologists’ decision making using a new dataset 

comprising 120 discs. 
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Chapter 7. Conclusion     

 

This chapter summarizes the results of this thesis and outlines its contributions in 

Section 7.1.  The limitations of this work are presented in Section 7.2, while 

Section 7.3 discusses the open questions and offers a summary of ongoing work 

together with suggestions for future research.   
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7.1. Thesis Contributions 

 

The present study had three main aims: the segmentation of intervertebral 

discs, the quantification of disc properties for evaluating disc degeneration and the 

development of a computer aided diagnostic system for grading degeneration 

severity. The contributions of this thesis with respect to each task are summarized 

in Table 10.3 and discussed below. 
   

Table 7.1. Contributions of this Study 

Intervertebral Disc Segmentation 

A novel atlas-based segmentation method was developed and tested: 

 this method can segment both normal and degenerated discs 

 it provides accurate segmentation meeting clinical requirements  

 it offers important interaction time savings in comparison to manual 

disc segmentation 

Disc Degeneration Quantification 

An alternative approach to disc quantification was introduced for the evaluation 

of  degeneration severity: 

 this method exploits textural and shape features providing additional 

information to the standard method based on mean disc signal intensity 

 textural features measuring disc image homogeneity where found to be 

particularly sensitive in evaluating early degenerative changes  

 disc shape information is be able to distinguish among the advanced 

stages of degeneration 

 the proposed method analyses conventional T2 weighted images, and 

thus can be directly applicable in clinical practice  

Computer Aided Diagnosis 

A CAD system was developed for grading degeneration severity: 

 providing accurate classification into four severity grades 

 resulting in high agreement to the clinical ground truth, yet further 

testing is required to assess the system’s influence on radiologists’ 

opinion 
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With respect to disc segmentation, three different approaches were tested. 

The optimal one is Atlas-RFCM, a method that incorporates prior anatomical 

knowledge in the segmentation process by means of a probabilistic disc atlas, 

combined with fuzzy clustering techniques and smoothness constraints. This 

method resulted in accurate segmentation of both normal and degenerated 

intervertebral discs, meeting the clinical requirements. Moreover, the 

segmentation process is computationally inexpensive offering important time 

savings over manual segmentation. To the best of our knowledge, this is the first 

study working towards the segmentation of degenerated discs and reporting on the 

resulting accuracy. Overall, the proposed method was shown to be a useful tool 

for segmenting the intervertebral discs prior to the quantification and computer-

aided diagnosis tasks.  

Moving on to quantification, an alternative approach to the standard 

method of mean disc intensity quantification was introduced here. Specifically, 

the proposed system exploited texture and shape information extracted from 

conventional T2-weighted magnetic resonance images of the lumbar spine for the 

quantification of degeneration severity. Texture and shape analysis has been 

shown to be a valuable tool in a variety of diagnostic problems, and the present 

study exploited these methods in a new application which showed promising 

results. Specifically, textural features quantifying disc signal intensity 

homogeneity (in this case co-occurrence derived features such as the sum of 

squares and information measure of correlation) were strongly associated to 

intervertebral disc degeneration. These features capture degenerative alterations 

related to the progressive loss of nucleus-annulus distinction, and are particularly 

sensitive to distinguishing among the early stages of disease. Moreover disc shape 

information (expressed by the solidity feature) can help distinguishing between 

the moderate and severe degeneration states, which affect the disc’s outline. The 

proposed approach can support clinical diagnosis of disc degeneration from 

conventional T2-weighted images in a precise and repeatable manner. Disc texture 

and shape quantification could offer a valuable tool for tracking the evolution of 

the disease. Moreover, they could be used for monitoring the response to 
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treatment, a particularly important task for the development of new treatment 

methods. 

Finally, a novel CAD system was designed exploiting the previously 

extracted quantitative information for disc degeneration diagnosis. This is the first 

study reporting on CAD for degeneration severity grading. The CAD system 

presented here provided accurate classification of intervertebral discs to classes 

representing normal, mild, moderate and severe degeneration, performing in high 

agreement to clinical grading provided by expert radiologists. The CAD is 

intended to be used as a second reader aiming to increase diagnostic accuracy and 

improve interobserver agreement, but further investigation is required to test the 

system’s effectiveness in clinical practice. 
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7.2. Thesis Limitations 

 

Table 7.2 presents the limitations of this study. In my opinion the two 

most significant limitations are the severity grading ground truth and CAD testing 

issues, which are further discussed below. 

 

Table 7.2. Limitations of this Study 

Data Collection and Clinical Grading 

 The MR data analysed in this study are 2D, since conventional clinical 

imaging protocols were utilized. However volumetric data obtained by 

3D protocols would be desirable, as further described in the limitations 

for disc quantification. Although 3D imaging of the spine is possible the 

application of 3D protocols in clinical practice is limited.  

 The ground truth for degeneration severity relies on qualitative 

evaluation based on the disc appearance in MRI, yet no histological 

confirmation is available. It is neither ethical nor practicable to obtain 

disc samples for histological examination from low back pain patients, 

as in most cases they follow conservative therapy.  

 There are no Grade I discs, since no young patients data were collected 

in this study. 

Intervertebral Disc Segmentation 

 The segmentation method is working in 2D. However, its extension to 

3D is straightforward as demonstrated by the pseudo-3D approach 

 The probabilistic atlas is designed on the basis of normal discs only, and 

this could introduce shape bias particularly in cases of degenerated discs 

where the boundary shape differs.  

Disc Degeneration Quantification  

 The texture and shape quantification relies on 2D analysis, due to the 

limitations imposed by data. Such limitations would be of particular 

importance in the case of shape analysis for the evaluation of disc space 

narrowing and herniation, as no volumetric information could be 

extracted. 
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Computer Aided Diagnosis 

 The CAD influence in clinical diagnosis when the system is used as a 

second reader remains to be tested 

 

The severity grading ground truth used for evaluating the quantification 

results and training the CAD system, is based on the visual evaluation of MR 

images. A histological confirmation of degenerative findings would be desirable 

in order to establish a more objective ground truth. However, obtaining 

histological samples is difficult and would only be possible in cases of patients 

undergoing spine surgery and only for the levels being treated. Here, in an effort 

to establish a more reliable ground truth three radiologists were asked to review 

the data independently and their consensus grading was utilized. 

 The proposed CAD system has not been adequately tested. Specifically, 

the system yielded good classification accuracy and almost perfect agreement to 

clinical grading, but its effectiveness as a decision making aid remains to be 

tested. It is highly important to evaluate how the CAD system influences the 

radiologist and affects the decision making process when used as a second reader, 

but this was not possible so far due to limited clinical time availability. Currently, 

the three radiologists who carried out the initial gradings of the 3.0 Tesla dataset 

are evaluating a new dataset comprising 120 discs. They review the images first 

without and then with the help of CAD and record both gradings. This evaluation 

aims into investigating the effect of CAD on interobserver agreement.  
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7.3. Open Questions and Future Research  

 

This section summarizes some future research steps in the fields of disc 

segmentation, quantification and computer aided diagnosis, linked to the methods 

and results of this study. Moreover, it offers an outline of the tasks currently being 

investigated in continuation of the work presented in this thesis.  

 

Further work on intervertebral disc segmentation could include: 

 modification of the Atlas-Based segmentation method by incorporating shape 

information in the FCM framework aiming to control the influence of this 

shape prior on the segmentation process and reduce the corresponding bias 

inherent to atlas-based methods [BAZI2007]. 

 testing the proposed atlas-based segmentation on volumetric data, and 

designing a true-3D approach. 

 expanding the current methods for the segmentation of vertebral bodies and/or 

other spinal structures.  

 

For disc quantification: 

 further quantitative features could be tested for quantifying disc degeneration 

severity.  

 the texture and shape information quantified in this study could be exploited 

for evaluating other specific disc pathologies such as narrowing and 

herniation.  

 this quantitative analysis could be applied on 3D data in order to obtain 

volumetric measurements of the disc shape 

 longitudinal studies could be used for further investigating the ability of disc 

quantitative analysis in monitoring the disease progress 

 texture and shape features could be exploited as biomarkers for evaluating the 

effect of new therapeutic methods 

 

With respect to CAD for intervertebral disc degeneration: 

 more elaborate classification schemes could be tested 
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 a larger dataset can be used for training the system (also including Grade I 

discs) 

 and just as with the quantification techniques, the current system could be 

adapted for evaluating other specific disc pathologies such as herniation and 

narrowing 

 

Currently, the tools presented in this thesis are being exploited for further 

evaluating disc pathology. Specifically, in collaboration with the Magnetic 

Resonance and Image Analysis Research Centre (MARIARC) of the University of 

Liverpool the quantification tools presented here are exploited for evaluating the 

effect of Alkaptonuria on the intervertebral discs. Alkaptonuria (AKU) is a 

metabolic disorder, which results in cartilaginous tissue damage [FIND2010]. It is 

a rare condition and little is known about the disease pathways, but our 

collaborators in Liverpool believe that spine is the first structure to be affected 

[personal communication with Dr Lakshminarayan Ranganath, University of 

Liverpool]. Our role in this project is to quantify the disc alterations from MR 

images of AKU patients and provide biomarkers for assessing the disease 

progress. This analysis could be exploited in the future for testing the effect of 

AKU treatment (treatment is currently being tested on an animal model, in 

Liverpool).  

Moreover, the quantification and computer aided diagnosis of disc 

herniation is being tested. Specifically, a preliminary study on hernia 

segmentation and quantification has been conducted on a small dataset (100 

discs). Results indicated that shape analysis methods can provide precise and 

repeatable quantification of the herniation. This study was presented by Professor 

Andrew Todd-Pokropek in UKRC 2010. In addition, the output of this work was 

used for designing a CAD system for lumbar disc hernia characterization. 

Preliminary results were presented in the Computer Assisted Radiology and 

surgery Conference (CARS2010). These studies demonstrated the potential of 

disc shape analysis for hernia quantification and computer aided diagnosis. 

However, 3D data are required for obtaining volumetric measurements of the disc 
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and hernia size and shape, and thus getting a more precise quantitative evaluation 

of this condition.  

Finally, the data collection continues, while as described in the previous 

section a new set of 120 discs is currently being reviewed by the three radiologists 

who reviewed the initial 3.0 Tesla data, in order to test the influence of the CAD 

system on radiologists’ opinions when it is used as a second reader.   
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Appendix 1. Texture and Shape Features Equations 

 

First order features  

Equations A.1.-A.4. give the definitions of first order features 

[THEO2003]. 

  

Mean                                                                                                            (A.1)                             

                          

Standard Deviation                           (A.2) 

                                   

Skewness                   (A.3)                              

                           

Kurtosis             (A.4) 

 
 
where g(i,j) is the pixel intensity in position (i,j) and N is the total number of 
pixels within the ROI. 
 

 

Co-occurrence features  

Equations A.5.-A.16. give the definitions of co-occurrence features as they 

appear in [HARA1979], while the variables used for calculating these features are 

defined by equations A.17.-A.30. 
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Contrast              (A.6) 
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Sum of Squares                    (A.10) 
 
 
Sum Average                                (A.11) 
 
 
Sum Entropy                                (A.12) 
 
 
Sum Variance                     (A.13) 
 
 
Difference Entropy                    (A.14) 
 
 
Information Measure                                                     (A.15) 
of Correlation 1 
 
Information Measure                                (A.16)  
of Correlation 2 
 

 

 

Notation and variables definitions for co-occurrence features calculation: 

p(i,j)   denotes the (i,j)th entry of a co-occurrence matrix P(i,j) normalized by 
the number of neighbouring resolution cell pairs R: RjiPjip /),(),(                    

                                         (A.17) 
                                                                 

Ng  is the number of grey-levels in the ROI (following quantization) 
 

px(i) the ith entry in the marginal probability matrix obtained by summing the 

rows of p(i,j):         
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py(j) the jth entry in the marginal probability matrix obtained by summing the 

columns of p(i,j):         
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μx, μy are the mean values of px and py :  
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σx, σy are the standard deviations of px and py:  
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Run-length matrix features 

Equations A.31-A.35 provide the 5 textural features that can be computed 

from run-lengths matrices as they appear in [GALL1975]. 

 

Short Run Emphasis                                                                                       (A.31) 

 

    

 

Long Run Emphasis                                                                                      (A.32) 

 

 

 

Grey Level Non Uniformity                                                                            (A.33) 
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Run Length Non Uniformity                                                                          (A.34) 

 

   

Run Percentage                                                                                         )                                 (A.35)          

 

where r(i,j) is the run length matrix, Ng is the total number of grey values in the 
image, Nr is the largest possible run and P is the total possible number of runs in 
the image. 
 

 

Fourier Descriptors 

Fourier descriptors are calculated by the complex sequence z(n), which is 

constructed from the contour by expressing the ROI boundary coordinates in 

complex format as shown in Equation A.36. The sequence z(n) is periodic and its 

Fourier series is given as one period of the DFT as defined in Equation A.37. The 

Fourier descriptors are given by the DFT coefficients Z(k) [BANK2000]. 

 

    (A.36) 

                                       
                (A.37) 

    

 
with x(n), y(n) being the coordinates of the nth contour point of the ROI with   {n / 
[0,N-1]}, and Z(k) is the kth Fourier coefficient of this object.  
 

 

Statistical Moments  

Central moments are defined by Equation A.37. When moments are 

computed for binary images only shape information is quantified, whereas when 

computed for grey-scale images information about the grey-levels intensity 

distribution is also retained [BANK2000, RANG2005].  
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    (A.37) 

 
 
where x  and y  are the image centroids, pqm  is the order (p+q) moment of the 

ROI f(x,y) and pq  is the corresponding central moment. 

 

Moreover, Equation A.38 gives scale invariant moments. While finally 

Equations A.39-A.45 give Hu’s moments, which are characterized by translation, 

scaling and rotation invariance [HU1962]. 
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(A.39) 
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(A.41) 

 

(A.42) 

 

(A.43) 

 

(A.44) 

 

(A.45) 

 

 

where pq  is the order (p+q) scale invariant central moment of the image, and x  

representing Hu’s moments. 
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 Appendix 2. Abbreviations 

 

2D    Two Dimensional 

3D    Three Dimensional 

ADC    Apparent Diffusion Coefficient 

ANOVA   Analysis of Variance 

Atlas-FCM   Atlas Combined with Fuzzy Clustering Method 

Atlas-RFCM    Atlas Combined with Robust Fuzzy Clustering  

AUROC   Area Under the ROC curve  

CAD    Computer Aided Diagnosis 

CADe    CAD for abnormality Detection 

CADx    CAD for characterization 

CJV    Coefficient of Joint Variation 

CT    Computed Tomography 

CSF    Cerebrospinal Fluid 

CV    Coefficient of Variation  

DFT    Discrete Fourier Transform 

Dmean     Mean Boundary Distance 

DSI     Dice Similarity Index 

FCM     Fuzzy C Means 

ICC    Intraclass Correlation Coefficient 

k-NN    k- Nearest Neighbours Classifier 

MD    Minimum Distance Classifier 

MEAN   Mean Value 

MEDIC    Multi Echo Data Image Combination 

MR  Magnetic Resonance  

MRI  Magnetic Resonance Imaging 

N3     Nonparametric Nonuniform intensity Normalization 

NN    Nearest Neighbour Classifier 

PD     Proton Density 

PNN    Probabilistic Neural Networks Classifier 

PX    Pixel 
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RF    Radio Frequency  

RFCM   Robust Fuzzy C Means 

ROC    Receiver Operator Characteristic curve 

S    Second 

SDA    Stepwise Discriminant Analysis 

STD    Standard Deviation 

T1    Longitudinal Relaxation Time (spin – lattice) 

T2    Transverse Relaxation Time (spin – spin) 

TE     Echo Time 

TR     Repetition Time 

VB    Vertebral Bodies 

 

 

 Appendix 3. ROC Results for SDA and PCA 

 
Table A3. ROC analysis results for SDA and PCA using the MD classifier 
 SDA PCA 
 AUROC ± 

Standard Error 
95% Conf. Int.    
[Lower, upper] 

AUROC ± 
Standard Error 

95% Conf. Int.     
[Lower, upper] 

Node 1 0.957 ± 0.014   [0.930 , 0.985] 0.956 ± 0.013   [0.931, 0.981] 
Node 2a 0.867 ± 0.029 [0.809 , 0.925] 0.832 ± 0.038 [0.757 , 0.907] 
Node 2b 0.958 ± 0.017 [0.924 , 0.992] 0.943 ± 0.029 [0.903 , 0.983] 

 

 

Appendix 4. Data processing Tools Details 

 
All algorithms where implemented in Matlab (versions 7.04 and 2009b).   
 
The Medical Image Processing Analysis and Visualization (MIPAV) software 
was used for inhomogeneity correction. 
 
Statistical analysis was performed with combined use of Microcal Origin (version 
8.0) and Matlab (Statistics Toolbox version 7). 
 


