
 
 
 
 
 
 
 
 
 
 

Research Note 
RN/11/12  

 
Search Based Optimization of Requirements Interaction 

Management 
29 April 2011 

 

Yuanyuan Zhang 

Mark Harman 

Soo Ling Lim 
 
 
 
 
 
 
 

Abstract 
 
 
Requirements optimization has been widely studied in the SBSE literature. However, 
previous approaches have not handled requirements interactions, such as the dependencies 
that may exist between requirements, and, or, precedence, cost  and value based constraints. 
To introduce and evaluate a Multi-Objective Search Based Requirements Selection technique, 
using chromosome repair and to evaluate it on both synthetic and real world data sets, in order 
to assess its effectiveness and scalability. The paper extends and improves upon our previous 
conference paper on Requirements Interaction Management. The popular Multi-Objective 
Evolutionary Algorithm NSGA-II was used to produce baseline data for each data set in order 
to determine how many solutions on the Pareto front fail to meet five different requirement 
interaction constraints. The results for this baseline data are compared to those obtained using 
the Archive based approach previously studied and the repair based approach introduced in 
this paper. The repair based approach was found to produce more points on the Pareto front 
and a better spread of results than the previously studied Archive-based approach. The repair
based approach was also found to scale almost as well as the previous approach. There is 
evidence to indicate that the repair based algorithm introduced in this paper is a suitable 
technique for extending previous work on Requirements Optimization to handle the 
requirement interaction constraints inherent in requirement interactions arising from 
dependencies, and, or, precedence, cost  and value based constraints. 

UCL DEPARTMENT OF 
COMPUTER SCIENCE 
 



RN/11/12 Research
29 April 2011 Note

Search Based Optimization of Requirements Interaction Management

Yuanyuan Zhang, Mark Harman & Soo Ling Lim

Telephone: +44 (0) 20 7679 1056
Fax: +44 (0)171 387 1397

Electronic Mail: {yuanyuan.zhang, m.harman, sooling.lim}@cs.ucl.ac.uk
URL: http://www.cs.ucl.ac.uk/people/Yuanyuan.Zhang.html

Abstract

Requirements optimization has been widely studied in the SBSE literature. However, previous approach-
es have not handled requirements interactions, such as the dependencies that may exist between require-
ments, and, or, precedence, cost– and value–based constraints. To introduce and evaluate a Multi-
Objective Search Based Requirements Selection technique, using chromosome repair and to evaluate it
on both synthetic and real world data sets, in order to assess its effectiveness and scalability. The paper
extends and improves upon our previous conference paper on Requirements Interaction Management.
The popular Multi-Objective Evolutionary Algorithm NSGA-II was used to produce baseline data for
each data set in order to determine how many solutions on the Pareto front fail to meet five different re-
quirement interaction constraints. The results for this baseline data are compared to those obtained using
the Archive–based approach previously studied and the repair–based approach introduced in this paper.
The repair–based approach was found to produce more points on the Pareto front and a better spread of
results than the previously studied Archive-based approach. The repair–based approach was also found
to scale almost as well as the previous approach. There is evidence to indicate that the repair–based
algorithm introduced in this paper is a suitable technique for extending previous work on Requirements
Optimization to handle the requirement interaction constraints inherent in requirement interactions aris-
ing from dependencies, and, or, precedence, cost– and value–based constraints.

Keywords
Requirements, RIM, NSGA-II, repair method, dependency, Search-based Software Engineering

Department of Computer Science
University College London
Gower Street
London WC1E 6BT, UK



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

1 Introduction

In the release planning for software development, the requirements interdependency relationship is an important
element which reflects how requirements interact with each other in a software system. Furthermore, it also directly
affects requirements selection activity as well as requirements traceability management, reuse and the evolution
process.

According to Carlshamre et al.,

“The task of finding an optimal selection of requirements for the next release of a software system is
difficult as requirements may depend on each other in complex ways” [5].

Some requirements might have technical, structural or functional correlations that need to be fulfilled together or
separately, or one requirement might be the prerequisite of another. The analysis and management of dependencies
among requirements is called Requirements Interaction Management (RIM) which is defined as

“the set of activities directed towards the discovery, management, and disposition of critical relationships
among sets of requirements” [35].

Robinson et al. [35] defined requirements interaction as:

“Two requirements R1 and R2 is said to interact if (and only if) the satisfaction of one requirement
affects the satisfaction of the other.”

RIM consists of a series of activities related to requirement dependencies which are complex and challenging tasks.

Few previous authors [3, 12, 15] focus on the role of requirements dependencies in the solution space. However,
dependencies can have a very strong impact on the development process in a typical real world project. Bagnall et
al. [3] only considered the Precedence dependency type, representing the relationship as a directed, acyclic graph.
Its vertices are denoted as individual requirements and its edges, directed from one vertex to another, are denoted
as the Precedence dependency between the requirements. Greer and Ruhe [15] extended the work by adding the
And dependency type together with Precedence as the constraints in their EVOLVE model. Franch and Maiden [12]
applied the i* approach to model dependencies for COTS component selection.

Requirements dependency management can be considered as a constraint satisfaction problem from a new perspec-
tive. In this paper, the Search-based approaches allow for the most common types of requirement dependencies.
The objective is to investigate the influences of requirement dependencies on the automated requirements selection
process for release planning.

Although search based techniques can find good solutions for unconstrained or simple constrained optimization
problems, they might encounter difficulties while solving highly constrained problems. In terms of the RIM, the
strength of constraints depends on the number and complexity of interactions between the requirements. The tighter
the constraints are, the more difficult the problem is to solve. In order to meet the challenge and to generate feasible
optimal solutions, two improved techniques are used: one is an archive based version of NSGA-II; the other is a
standard evolutionary algorithm with constraint handling technique – the ‘repair’ method. A real world large scale
data set RALIC and the synthetic data sets previously studied [41] are adopted in this paper to evaluate the approach.

The study is based on the assumption that the dependence identification activity has been completed. Here we present
the most common interaction types found in the requirements literature. These will be studied in this paper. The paper
will show how multi-objective SBSE can be adapted to take account of RIM.

And Given requirementR1 is selected, then requirementR2 has to be chosen.

Or RequirementsR1 and R2 are conflicting to each other, only one of R1, R2 can be selected (Exclusive
OR).

Precedence Given requirementR1 has to be implemented before requirementR2.

Value-related Given requirementR1 is selected, then this selection affects the value of requirementR2 to the stake-
holder.

RN/11/12 Page 1



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

Cost-related Given requirement R1 is selected, then this selection affects the cost of implementing requirement
R2.

The rest of the paper is organized as follows. In Section 2 the problem is formalized as an SBSE problem, while Sec-
tion 3 describes the data sets and algorithms used. Section 4 presents the results for dependence aware requirements
optimization and discusses the findings. Section 5 describes the context of related work in which the current paper is
located. Section 6 concludes the paper.

2 Fitness Function

In the context of Value/Cost-based requirements assignments analysis, the dependencies among requirements need to
be accounted for within the fitness function. This section describes our fitness computation and how we incorporate
RIM into this fitness.

Assume that the set of possible software requirements is denoted by:

! = {r1, . . . , rn}

The requirements array R is defined by:

R =







































r(1, 1) r(1, 2) · · · r(1, i) · · · r(1, n)
r(2, 1) r(2, 2) · · · r(2, i) · · · r(2, n)
...

...
. . .

...
...

...
r(j, 1) r(j, 2) · · · r(j, i) · · · r(j, n)
...

...
...

...
. . .

...
r(n, 1) r(n, 2) · · · r(n, i) · · · r(n, n)







































First, we formalize the RIM constraints that were listed informally in the introduction to this paper.

And Define an equivalence relation ξ on the requirements array R such that r(i, j) ∈ ξ means that ri is
selected if and only if requirement rj has to be chosen.

Or Define an equivalence relation ϕ on the requirements array R such that r(i, j) ∈ ϕ (equivalently
r(j, i) ∈ ϕ) means that at most one of ri, rj can be selected.

Precedence Define a partial order χ on the requirements array R such that r(i, j) ∈ χ means that requirement ri
has to be implemented before requirement rj .

Value-related Define a partial order ψ on the requirements array R such that r(i, j) ∈ ψ means that if the require-
ment ri is selected, then its inclusion affects the value of requirement rj for the stakeholder.

Cost-related Define a partial order ω on the requirements array R such that r(i, j) ∈ ω means that if the require-
ment ri is selected, then its inclusion affects the cost of implementing requirement rj .

In addition, the relations ξ, ϕ and χ should satisfy

ξ
⋂

ϕ = ∅ ∧ ξ
⋂

χ = ∅

in order to guarantee consistency in the requirements dependency relationship.

A set of stakeholders for a software system or service denoted by C = {c1, . . . , cm}. Each stakeholder may have a
degree of importance for the company that can be reflected by a weight factor. The set of relative weights associated
with each stakeholder cj (1 ≤ j ≤ m) is denoted by a weight set: Weight = {w1, . . . , wm} where wj ∈ [0, 1] and
∑m

j=1
wj = 1.

The resources needed to implement a particular requirement can be transformed into cost terms. The resultant cost
vector for the set of requirements ri (1 ≤ i ≤ n) is denoted by: Cost = {cost1, . . . , costn}

RN/11/12 Page 2



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

In the real world, different stakeholders have different needs and perspectives. That is, not all requirements are
equally important for a given stakeholder. Each stakeholder cj (1 ≤ j ≤ m) assigns a value to requirement ri
(1 ≤ i ≤ n) denoted by: v(ri, cj) where v(ri, cj) > 0 if stakeholder cj desires implementation of the requirement
ri and 0 otherwise.

The overall score of a given requirement ri (1 ≤ i ≤ n) can be calculated by:

scorei =
m
∑

j=1

wj · v(ri, cj) (1)

The ‘score’ of a given requirement is represented as its overall ‘value’ for the company.

The fitness function with dependency constraints is defined as follows:

Maximize f1(−→x ) =
n
∑

i=1

scorei · xi (2)

Maximize f2(−→x ) = −
n
∑

i=1

costi · xi (3)

subject to

xi = xj for all pairs r(i, j) ∈ ξ (And constraints)

xi %= xj ∨ xi = xj = 0 for all pairs r(i, j) ∈ ϕ (Or constraints)

xi = 1 ∧ xj = 1 ∨ xi = 1 ∧ xj = 0 ∨ xi = xj = 0

for all pairs r(i, j) ∈ χ (Precedence constraints)

In terms of Value-related and Cost-related requirements dependencies, they cannot be transformed from dependencies
into constraints. So the fitness values of a solution are changed directly when there exists a Value-related or Cost-
related dependency, as follows:

If xi = xj = 1 for all pairs r(i, j) ∈ ψ ⇒

Update Fitness Value of f1(−→x )

If xi = xj = 1 for all pairs r(i, j) ∈ ω ⇒

Update Fitness Value of f2(−→x )

3 Experimental Set Up

To assess the likely impact of requirements dependencies on the automated requirements selection process, a set
of empirical studies were carried out. This section describes the test data sets used and the search-based algorithm
applied to requirements interaction management.

3.1 Data Sets

3.1.1 RALIC data sets

The RALIC project was a software project in University College London (UCL), initiated to replace the existing
access control systems at UCL and consolidate the new system with library access and borrowing [24]. RALIC
stands for Replacement Access, Library and ID Card. It was a combination of development and customization of an
off-the-shelf system. The project duration was 2.5 years and the system has been in deployment for over two years.

The stakeholder priority data for RALIC was collected in previous work using the StakeNet stakeholder analysis
method [25] as follows. The stakeholders were asked to recommend people whom they think are stakeholders in the
project. Their recommendations were then used to build a social network, where the stakeholders were nodes and

RN/11/12 Page 3



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

their recommendationswere links. Finally, social networkmeasures such as betweenness centrality, degree centrality,
and PageRank were used to rank the stakeholders. The output was a prioritized list of stakeholders and their roles.
In this paper, the output produced by PageRank was used to weight the stakeholders, as previous study found it to be
effective [25]. The PageRank weight of the stakeholder j is the wj in equation 1.

PageRank is the algorithm used by Google to rank documents [30]. Using PageRank, stakeholders who were strongly
recommended by many important stakeholders were important, and the recommendations of a highly important
stakeholder were given more weight, which, in turn, made their recommended stakeholders more important.

The stakeholder requirements data sets were collected in previous work using the StakeRare requirements elicitation
method [24] described as follows. Two data sets were used in this work: PointP and RankP.

• For the PointP dataset, there are 143 requirements and 77 stakeholders. Each stakeholder identified by StakeNet
was asked to distribute 100 points among the requirements they want [24]. The stakeholders were asked to
allocate more points to the requirements that were more important to them. Some stakeholders made arithmetic
errors while allocating points such that their total points were greater or less than 100. As such, the ratings
were normalized such that each stakeholder’s allocated points added up to 100. The PointP value for each
stakeholder used in this paper is divided by 100 so that all the values are within the same range of 0 to 1.

• For the RankP dataset, there are 143 requirements and 79 stakeholders. Each stakeholder identified by StakeNet
were asked to provide a list of requirements, and rank the requirements with numeric priorities (1 for the most
important requirement) [24]. Stakeholders also marked “X” for requirements they actively do not want. The
rankings were normalized such that the sum of all the ranks from each stakeholder adds up to 1. The rating
“X” (from stakeholders actively not wanting a requirement) was converted to 0.

The RALIC data sets are publicly available at

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html. Detail descriptions about the data sets can be found in [23].

In the previous work, the requirements in RankP and PointP are organized into a hierarchy of three levels: project
objective, requirement, and specific requirement [24]. Achieving all the leaf requirements implies that the parent
requirement is achieved. As such, the leaf requirements with the same parent requirement have And relationships
among each other. Only the leaf requirements are considered in this work, as the higher level requirements are
achieved when the leaf requirements are achieved. Some requirements are in conflict, i.e., stakeholders pointed out
that achieving the requirement means that another requirement cannot be achieved. Conflicting requirements have
Or relationships between one another.

The cost data was derived from the RALIC post implementation report. The cost of each requirement was calculated
as the time spent by the project team on the requirement during the project, in terms of person hours. For requirements
that were not implemented, the cost was estimated by finding the cost of implemented requirements with equivalent
effort, and validating the result with the project team.

3.1.2 27 combination random data sets

The “27 combination random data sets” used in previous studies [40] were adopted in this studies. These are the basis
of the data sets we will use in the empirical studies. The “27-random” data sets were generated randomly according
to the problem representation. These synthetic test problems were created by assigning random choices for value and
cost. The range of costs were from 1 through to 9 inclusive (zero cost is not permitted). The range of values were
from 0 to 5 inclusive (zero value is permitted, indicating that the stakeholder places no value on this requirement).

This simulates the situation where a stakeholder ranks the choice of requirements (for value) and the cost is esti-
mated to fall in a range: very low, low, medium, high, very high. The number of stakeholders and the number of
requirements are divided into three situations, namely, small scale, medium scale and large scale; the density of the
stakeholder-requirement matrix is defined as low level, medium and high level. Table 1 lists the combination of all
cases schematically. As can be seen in Table 2, the data set divides the range of a variable into a finite number of
non-overlapping intervals of unequal width.

Any randomly generated, isolated data set clearly cannot reflect real-life scenarios. We do not seek to use our pseudo
random generation of synthetic data as a substitute for real world data. Rather, we seek to generate synthetic data in
order to explore the behavior of our algorithms in certain well defined scenarios. The use of synthetic data allows us
to do this within a laboratory controlled environment. Specifically, we are interested in exploring the way the search

RN/11/12 Page 4



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

Table 1: 27 combination random data sets
Rsmall Rmedium Rlarge

Cs Rs Dlow Cs Rm Dlow Cs Rl Dlow

Csmall Cs Rs Dm Cs Rm Dm Cs Rl Dm

Cs Rs Dh Cs Rm Dh Cs Rl Dh

Cm Rs Dlow Cm Rm Dlow Cm Rl Dlow

Cmedian Cm Rs Dm Cm Rm Dm Cm Rl Dm

Cm Rs Dh Cm Rm Dh Cm Rl Dh

Cl Rs Dlow Cl Rm Dlow Cl Rl Dlow

Clarge Cl Rs Dm Cl Rm Dm Cl Rl Dm

Cl Rs Dh Cl Rm Dh Cl Rl Dh

Table 2: scale range of ‘27-random’ data set
Small Medium Large

No. of Stakeholders 2-5 6-20 21-50
No. of Requirements 1-100 101-250 251-600

Low Medium High
Density of Matrix 0.01-0.33 0.34-0.66 0.67-1.00

responds when the data exhibits a presence or absence of correlation in the data. As well as helping us to better
understand the performance and behavior of our approach in a controlled manner, this also allows us to shed light on
the real world data, comparing results with the synthetic data.

To explore this, in the empirical studies, we generated four data sets exhibiting different scales and densities using the
approach to data set generation depicted in Table 1 and Table 2. We named the sets A, B, C and D. In the A data set,
the parameter choices were chosen to be “medium” and the density of the stakeholder-requirement matrix was also
chosen to be “medium”. The parameters of the data set were randomly generated within the given scale intervals.
More concretely, the number of requirements is 230, the number of stakeholders is 11 and the density of matrix is
0.53. Following the same principle, the B, C and D data sets were generated. The specific scales chosen are listed in
Table 3.

In the four data sets that were generated, all the requirements were initially created to be independent. To introduce
the dependency, relationships among requirements are added randomly but with respect to constraints. Five two-
dimensional arrays And(i, j), Or(i, j), Pre(i, j), V al(i, j) and Cos(i, j) (1 ≤ i ≤ n and 1 ≤ j ≤ n) are defined to
represent the five requirements dependency types.

Table 3: Scale of A, B, C and D data sets: exploration of the configuration space for RIM
Rsmall Rmedium Rlarge

Csmall C: Cs Rl Dm

Cmedian A: Cm Rm Dm

Clarge B: Cl Rs Dm

D: Cl Rl Dh

RN/11/12 Page 5



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

And(i, j), Or(i, j) and Pre(i, j) ∈ {0, 1}

And(i, j) = 1 ∧ And(j, i) = 1 if requirement ri and rj have And dependency and 0 otherwise; Or(i, j) = 1 ∧
Or(j, i) = 1 if requirement ri and rj have Or dependency and 0 otherwise; Pre(i, j) = 1 ∧ Pre(j, i) = 0 if
requirement ri and rj have Precedence dependency.

The above three dependency arrays are bit vectors which compactly store individual boolean values, as flags to
indicate the relationship between requirements. As each random relationship is created, we check to ensure that
the And, Or and Precedence dependence constraints are respected, thereby guaranteeing the generation of a valid
instance.

In the V al(i, j) and Cos(i, j) arrays, the values are not 0 or 1, but rather the extent of impact of the Value or
Cost which are expressed as a numerical percentage. V al(i, j) #= 0 if requirements ri and rj have a Value-related
dependency;Cos(i, j) #= 0 if requirements ri and rj have a Cost-related dependency.

Table 4: synthetic and real world data sets: choosing a variety of RIM distributions
Name of No. of No. of Density of
Data Set Stakeholders Requirements Matrix

Synthetic A 11 230 0.53
B 34 50 0.39
C 4 258 0.51
D 21 412 0.98

Real World PointP 77 143 0.14
RankP 79 143 0.10

The number of requirements, stakeholders and the densities of requirement-stakeholder matrix for all the six (real
world and synthetic) data sets are listed in Table 4.

3.2 Algorithms

The search algorithms used in this work were NSGA-II [11], Archive based NSGA-II and a repair method for con-
straint handling.

The modification of Archive based NSGA-II is inspired by Praditwong and Yao’s Two-Archive multi-objective evo-
lutionary optimization algorithm [33]. Keeping the final set of non-dominated solutions is good enough for general
multi-objective optimization work. However, when we take account for requirements dependencies, the selected
optimal non-dominated solutions might not respect the dependency constraints. As a result some solutions might
have to be eliminated as the infeasible solutions. This may mean rejecting otherwise ‘optimal’ solutions in favor of
previously considered and otherwise less optimal solutions.

In order to preserve these potential candidate solutions, this paper introduces an archive-based variation of the NSGA-
II algorithm to retain near optimal solutions (maintaining diversity and quantity of the solutions) based on weak
constraints.

When solving highly constrained problems, we discovered that the archive based NSGA-II previously used [41] may
fail to maintain diversity and convergence of the Pareto front. Therefore, we introduce a repair method to directly
convert the infeasible solutions to the feasible solutions.

Repair methods is one type of the constraint handling techniques. It is computational effective and performs well in
many combinatorial optimization problems (like the knapsack problem). Because these problems’ constraints and
decision variables are usually easily characterized and an infeasible solution is relatively easy to repair.

RIM based requirements selection and optimization is a multi-objective knapsack problem, for which previous work
[13] has indicated that a repair-based approach is likely to be effective. Hence our repair method is specifically
constructed to produce a good Pareto front for RIM-constrained problem. According to the generic framework
for constrained optimization problem proposed by Venkatraman and Yen [39], there are two phases for solving
constrained optimization problem. Phase one is constraint satisfaction. For any solution, in each generation, it first

RN/11/12 Page 6



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

checks the constraint violation. If the solution is infeasible, the repair method is used to repair the chromosome. The
infeasible solution is replaced by the repaired solution in the population. At this stage, the fitness functions are not
considered and all the solutions’ fitness values are not evaluated. Phase two is constrained optimization. Using fitness
functions and search techniques (NSGA-II in this paper) we seek to find good feasible solutions in one generation.
After iterating the process, the optimal solutions in the last generation will be collected to compare the performance
of the Archive based NSGA-II algorithm.

The repair method works as follows:

∃ xi, xj for pair r(i, j) ∈ ξ (And constraints). If decision vectors xi and xj violate And constraint, then make the
value of xj equal the value of xi;

∃ xi, xj for pair r(i, j) ∈ ϕ (Or constraints). If decision vectors xi and xj violate Or constraint, then make the value
of xj = 0;

∃ xi, xj for pair r(i, j) ∈ χ (Precedence constraints). If decision vectors xi and xj violate Precedence constraint,
then make the value of xj = 0.

All search-based approaches were run for a maximum of 50,000 fitness function evaluations. The population was
set to 500. We used a simple binary GA encoding, with one bit to code for each decision variable (the inclusion or
exclusion of a requirement). The length of a chromosome is thus equivalent to the number of requirements. Each
experimental execution of each algorithm was terminated when the generation number reached 101 (i.e after 50,000
evaluations). All genetic approaches used tournament selection (the tournament size is 5), single-point crossover and
bitwise mutation for binary-coded GAs. The crossover probability was set to Pc = 0.8 and mutation probability to
Pm = 1/n (where n is the string length for binary-coded GAs). In the archive based NSGA-II algorithm, the total
capacity of the archives was set to 500.

4 Empirical Studies and Results

This section presents the experiments carried out to investigate the results in the presence of requirement dependen-
cies and to compare the performance of three methods.

There are two types of empirical study: a Dependency Impact Study (DIS) and a Scale Study (SS). Real world data
sets – RALIC project are used for DIS. Synthetic data sets are applied for both DIS and SS: Data set A is used
throughout the DIS experiments in order to set up a uniform baseline for comparison; data sets B, C and D are used
for SS.

In DIS, the experiment is designed for the purpose of evaluating the impacts of five different dependency types on
the requirements selection process. Because there are only two kinds (And and Or) of dependencies in the RALIC
data sets, we will discuss synthetic data set A and real world data sets RALIC separately.

Three experiments were conducted for data set A in DIS, described as follows:

1. Applying the NSGA-II algorithm to data set A with and without dependencies separately, in order to carry out
the comparison of the results of each dependency type (five types individually).

2. Applying the NSGA-II and archive based NSGA-II to data set A aiming to compare the performances of two
algorithms under the dependency constraints (five types individually).

3. Considering dependence relationships as a whole in order to seek to investigate the difference among the
solutions generated by the two algorithms.

The NSGA-II algorithm, the archive based NSGA-II algorithm and repair method will be applied to the RALIC data
sets to inspect the performance of the approaches and to find the feasible solutions.

In SS, we report results concerning the performance of the three algorithms as the data sets increase in size. There
are three data sets B, C and D with the number of stakeholders ranging from 4 to 34 and the number of requirements
ranging from 50 to 412.

In both studies, the five dependency types can be divided into two categories: fitness-invariant dependency (And,
Or and Precedence) and fitness-affecting dependency (Value-related and Cost-related). Therefore we will discuss
the two scenarios separately in each study. In addition, the same dependency density levels were used for all five
dependencies. That is, we assume that they are equally common in the requirements correlations.

RN/11/12 Page 7



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

There are a number of factors in the empirical studies including data sets, techniques and requirement dependencies.
The detailed information contained in each factor is listed as follow:

• 6 data sets

Synthetic: A, B, C and D
Real world: RALIC PointP and RankP

• 4 techniques

NSGA-II (without considering dependencies – baseline)
NSGA-II (non satisfying solutions deleted)
Archive based NSGA-II
Repair method

• 5 dependencies

And, Or, Precedence, Value-related and Cost-related

This means that there are 120 possible graphs of results. However not all dependencies are relevant for all data sets.
The real world data set, RALIC, only contain And and Or dependencies. So there are 96 sets of results from our
experiments. It is impossible to present all of them in the paper, therefore, DIS and SS are designed to illustrate the
research results.

4.1 Dependency Impact Study

4.1.1 Aims

Three goals need to be achieved in DIS listed as follows:

1. The Pareto front should cover the maximum number of different situations and provide a set of well distributed
solutions.

2. The solutions contained in the Pareto front should be as close as possible to the optimal Pareto front of the
problem.

3. The solutions are required to pass the evaluation without failure to meet constraints.

4.1.2 And, Or and Precedence for Data Set A

In the first part of the section, we present the results of applying the NSGA-II and the archive based NSGA-II
algorithms to handle And, Or and Precedence requirements dependencies for data set A. The results generated by
the standard NSGA-II algorithm are shown in Figures 1, 2 and 3; and the results from the archive based NSGA-II
algorithm are shown in Figures 4, 5 and 6 separately.

The ‘+’, ‘©’ and ‘∗’ symbols plotted in the figures denote the final non-dominated solutions found. Each solution
represents a subset of requirements selected. The ‘+’ symbol represents the solutions found without regard to re-
quirement dependencies. They are also marked in grey to distinguish them from the others (which do take account
of dependencies).

In Figures 1, 2 and 3, we observe that the shapes of Pareto fronts, consisting of a number of grey ‘+’ symbols, are the
same. These are solutions generated by the NSGA-II algorithm without consideration of requirements dependency
relationship and so they are expected to be identical. They are used as the baseline to explore the impact of three
types of dependencies on the requirements selection results.

We illustrate the results in Figure 1 when the And dependency relationships exist among the requirements. ‘©’
symbols indicate solutions which respect the And dependence. As can be seen from the graph, all the ‘©’ solutions
still fall on the Pareto front composed of grey ‘+’ symbols. However, there is a large decrease in the number of
‘©’ solutions compared to the number of ‘+’ solutions. In other words, a few solutions survived and the rest were
eliminated (from the selection) because of the failure to meet dependency constraints. Another obvious observation

RN/11/12 Page 8



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

80 100 120 140 160 180 200
−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
And Dependency

Value

−C
os

t

 

 
NSGA−II without dependency
NSGA−II with dependency

Figure 1: And dependency, data set A, NSGA-II

80 100 120 140 160 180 200
−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
Or Dependency

Value

−C
os

t

 

 
NSGA−II without dependency
NSGA−II with dependency

Figure 2: Or dependency, data set A, NSGA-II

RN/11/12 Page 9



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

80 100 120 140 160 180 200
−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
Precedence Dependency

Value

−C
os

t

 

 
NSGA−II without dependency
NSGA−II with dependency

Figure 3: Precedence dependency, data set A, NSGA-II

drawn from this graph is that the distribution of ‘©’ solutions is neither as smooth nor as uniform as the ‘+’ solutions.
That is, a certain number of big or small gaps exist among them. These two observations indicate that the algorithm
can neither provide good solutions in quantity nor maintain a good diversity (quality) on the Pareto front under And
dependency constraints.

Compared to the results ofOr and Precedence dependencies in Figures 2 and 3, the downward trends in the number of
‘©’ solutions are roughly the same, but the extent is different. Similar observations can be made from the two figures:
the results show a slight decrease in the number of the solutions. Moreover, the distribution is more continuous,
exhibiting a few small gaps among the solutions.

In conclusion, the shapes of Pareto fronts (results) are affected by the different dependency constraints to a different
extent. The And dependency problem appears to denote a tighter constraint than theOr and Precedence dependencies
for search-based requirements optimization. The latter two denote problems for which it is relatively easy to find the
solutions that satisfy the constraints.

To explore these findings in more detail, we designed a more robust adaptive algorithm for both tight and loose
constraints; the archive-based NSGA-II algorithm. The results for three types of constraints are shown in Figures 4,
5 and 6 respectively. The ‘∗’ denotes the solution generated by the archive-based version of the NSGA-II algorithm
and the ‘©’ by NSGA-II.

From Figure 4, we can see the archive based ‘∗’ solutions actually reach all the points on the previous ‘©’ Pareto
front, sharing all the common points generated by NSGA-II. The Pareto front in this problem is orientated towards
the upper right. The improved algorithm provided a degenerated ‘∗’ Pareto front.

The degenerated Pareto front means that the ‘∗’ front generated seems to become worse when compared to the grey
‘+’ front, but it discovers a larger number of good solutions to fill the gaps while meeting the constraints. That is,
the diversity of solutions is significantly improved and the number of solutions on the Pareto front is also increased.
The algorithm generated similar results when dealing with Or and Precedence dependency constraints, as illustrated
in Figures 5 and 6.

Finally, all three dependencies were taken into consideration to access their overall combined impact. In the Figure
7, the ‘©’ solutions denote the final results that satisfy all the dependencies constraints. Combining And, Or and
Precedence dependencies together, the constraints become much tighter. It is easy to see that very few ‘©’ solutions
remain on the Pareto front based on the NSGA-II algorithm. By contrast, Figure 8 shows a smooth, relatively non-
interrupted Pareto front, consisting of ‘∗’ solutions, generated by archive based NSGA-II.

RN/11/12 Page 10



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

80 100 120 140 160 180 200
−800

−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
And Dependency

Value

−C
os

t

 

 
Archive based NSGA−II with dependency
NSGA−II with dependency

Figure 4: And dependency, data set A, NSGA-II and Archive based NSGA-II

80 100 120 140 160 180 200
−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
Or Dependency

Value

−C
os

t

 

 
Archive based NSGA−II with dependency
NSGA−II with dependency

Figure 5: Or dependency, data set A, NSGA-II and Archive based NSGA-II

RN/11/12 Page 11



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

80 100 120 140 160 180 200
−800

−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
Precedence Dependency

Value

−C
os

t

 

 
Archive based NSGA−II with dependency
NSGA−II with dependency

Figure 6: Precedence dependency, data set A, NSGA-II and Archive based NSGA-II

80 100 120 140 160 180 200
−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
And, Or and Precedence Dependencies

Value

−C
os

t

 

 
NSGA−II without dependencies
NSGA−II with dependencies

Figure 7: And, Or and Precedence dependencies, data set A, NSGA-II

RN/11/12 Page 12



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

80 100 120 140 160 180 200
−800

−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

−250
And, Or and Precedence Dependencies

Value

−C
os

t

 

 
Archive based NSGA−II with dependencies
NSGA−II with dependencies

Figure 8: And, Or and Precedence dependencies, data set A, NSGA-II and Archive based NSGA-II

4.1.3 And and Or for Data Set RALIC

In this section we present the results applied to data set RALIC to handle And and Or dependencies. Because of
the highly tight constraints, NSGA-II and archive based NSGA-II could not find a single feasible solution in the
experiments. Feasible solutions that satisfy And andOr constraints only generated successfully by the repair method.
The results are shown in Figure 9 and 10.

The grey ‘+’ symbol represents the solutions found by the NSGA-II algorithm without regard to requirement depen-
dencies. The ‘•’ symbol represents the feasible solutions generated by the repair method. As explained in Section
3.1, the stakeholders in the data set RALIC assigned two kinds of requirements ratings for each requirement, namely,
PointP and RankP. Figure 9 is the PointP data set while Figure 10 is the RankP data set.

As can be seen from Figure 9, unlike the results produced by the archive based NSGA-II algorithm, all the ‘•′

solutions do not completely fall on the Pareto front composed of grey ‘+’ symbols. The repair method explored the
solution space and successfully found solutions in the feasible region. Moreover, there is a substantial increase in the
number of ‘•′ solutions found compared to the number of ‘+’ solutions. Another observation from this graph is that
the diversity of solutions is significantly improved.

Figure 10 presents the results for the RankP data set, also follow a similar pattern and for which we made the same
observations. The Pareto front comprised of ‘•′ solutions is smooth and relatively non-interrupted. The repair method
also helped to find the two extreme points of the Pareto front. An important observation is that the ‘•′ solutions on
the graph dominate the great majority of the ‘+’ solutions (without dependencies), which demonstrates that the repair
method not only can generated the robust solutions for RIM but also can be used to enhance the (convergency) quality
of solutions in the problems without constraints.

In terms of computational effectiveness, we measured the execution time of the NSGA-II algorithm without depen-
dencies and the repair method dealing with And and Or constraints. The results listed in Table 5 are the average value
of 20 executions. The unit of time measured is CPU time.

Data Set NSGA-II Repair method
without dependencies with dependencies

PointP 350.05 359.59
RankP 348.06 362.67

Table 5: Average CPU Time of Data Sets

From the table we can see, the amount of computational time for finding infeasible solutions and repairing them

RN/11/12 Page 13



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−12000

−10000

−8000

−6000

−4000

−2000

0
And and Or Dependencies

Value (PointP)

−C
os

t

 

 
Repair Method with dependencies
NSGA−II without dependencies

Figure 9: And and Or dependencies, RALIC Data Set – PointP, Repair Method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−12000

−10000

−8000

−6000

−4000

−2000

0
And and Or Dependencies

Value (RankP)

−C
os

t

 

 
Repair Method with dependencies
NSGA−II without dependencies

Figure 10: And and Or dependencies, RALIC Data Set – RankP, Repair Method

RN/11/12 Page 14



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

100 120 140 160 180 200 220
−800

−700

−600

−500

−400

−300

−200
No Dependency

Value
(a)

−C
os
t

100 120 140 160 180 200 220
−800

−700

−600

−500

−400

−300

−200
Value−related Dependency

Value
(b)

−C
os
t

100 120 140 160 180 200 220
−800

−700

−600

−500

−400

−300

−200
Cost−related Dependency

Value
(c)

−C
os
t

100 120 140 160 180 200 220
−800

−700

−600

−500

−400

−300

−200
Value & Cost−related Dependencies

Value
(d)

−C
os
t

Figure 11: Value-related and Cost-related dependencies, data set A, NSGA-II

to feasible ones is minor compared to the total execution time. So the repair method is a computationally effective
algorithm for solving this RIM-based highly constrained optimization problem.

In this way, the repair method can provide stable, fruitful and computationally effective solutions, which are not
merely ‘good enough’ but also ‘robust enough’ under the strict constraints that characterize the problem.

4.1.4 Value-related and Cost-related

In this section we focus on the last two types of requirement dependencies: Value-related and Cost-related. These
two impose no constraint on the fitness function but have direct influence on the fitness value.

The results are illustrated in Figure 11. There are four subgraphs in the figure: (a) is the original Pareto front without
dependency generated by NSGA-II; (b) and (c) show the results under Value-related and Cost-related dependencies
respectively; (d) presents the changed Pareto front when combining these two dependencies.

We observe that the shapes of the four Pareto fronts produced are different. They are not like the previous results of
the first three dependencies: eliminating solutions on the unconstrained Pareto fronts or using a ‘degenerate’ front are
not viable for Value/Cost-related constraints. Value/Cost-related relationships among the requirements can directly
contribute to an increase or a decrease in the fitness values obtained for a selected solution. In this way, the shape of
the Pareto front is changed more than once without dependency.

4.2 Scale Study

In this section, we report on the second empirical study – the Scale Study. The results are presented in the Figures
12, 13 and 14. As described at the beginning of Section 4, the techniques were applied to three data sets B, C and
D generated from the smaller scale to a relatively larger one in terms of the number of stakeholders involved and the
number of requirements fulfilled. The details are listed in Table 3 and Table 4.

In this study, all three dependency constraints are considered together. The results are plotted in one graph for each
data set. In the figures, the grey Pareto front, consisting of a number of ‘+’ solutions, denotes the results without
handling dependencies generated by the NSGA-II algorithm; the ‘©’ solutions are the survivors after selection for
meeting the constraint; the ‘∗’ solutions which are produced by the archive based NSGA-II algorithm constitute the
degenerated Pareto front; ‘•’ solutions are generated by the repair method.

When the problem is gradually scaled up, from the graphs we can see that the number of the ‘©’ solutions consistently

RN/11/12 Page 15



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

5 10 15 20 25 30 35 40 45
−250

−200

−150

−100

−50

0
And, Or and Precedence Dependencies

Value

−C
os

t

 

 
Repair Method with dependencies
Archive based NSGA−II with dependencies
NSGA−II with dependencies
NSGA−II without dependencies

Figure 12: And, Or and Precedence dependencies, data set B, NSGA-II, Archive based NSGA-II and Repair Method

100 120 140 160 180 200 220 240
−800

−750

−700

−650

−600

−550

−500

−450

−400

−350

−300
And, Or and Precedence Dependencies

Value

−C
os

t

 

 
Repair Method with dependencies
Archive based NSGA−II with dependencies
NSGA−II with dependencies
NSGA−II without dependencies

Figure 13: And, Or and Precedence dependencies, data set C, NSGA-II, Archive based NSGA-II and Repair Method

RN/11/12 Page 16



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

250 300 350 400 450 500 550
−1400

−1300

−1200

−1100

−1000

−900

−800

−700

−600
And, Or and Precedence Dependencies

Value

−C
os

t

 

 
Repair Method with dependencies
Archive based NSGA−II with dependencies
NSGA−II with dependencies
NSGA−II without dependencies

Figure 14: And, Or and Precedence dependencies, data set D, NSGA-II, Archive based NSGA-II and Repair Method

and rapidly decreases. As illustrated in Figure 14, the ‘©’ solutions have a poor spread over the Pareto front. The
‘∗’ solutions fill some of the gaps among the ‘©’ solutions and produce a relatively smooth Pareto front. The ‘•’
solutions fill all the gaps among the ‘©’ solutions and constitute the highly continuous Pareto front.

These three data sets B, C and D are considered using the same proportion of possible dependencies (6% of the
number of requirements). Another observation from the three figures is that the distance between the original ‘+’
Pareto front and the degenerated ‘∗’ Pareto front is wider in Figure 14 than in Figure 12. The Pareto fronts move
towards the lower left part of the solution space, in order to find near-optimal solutions that have a good spread as
well as having (more than) enough candidate solutions.

In contrast, the ‘•’ solutions are capable of moving towards the upper right part of the solution space. The repair
method even found a number of solutions that dominate the grey ‘+’ solutions. These results indicate that the repair
method is able to ‘repair’ the gaps which open up in the Pareto front and provide good solutions both in quantity and
in quality (convergency and diversity) when RIM constraints are imposed.

5 Related Work

Dependence analysis is a part of the overall traceability problem for requirements engineering. The task of require-
ment traceability is to identify and document traceability links among requirements and between requirements and
following SE activities in both a forwards and backwards direction [14]. Requirements traceability is crucial for
the success of the system. It enables detection of the conflicting requirements and reduction of missing require-
ments. Furthermore, it can track the progress of a project, assess the impact of various changes and provide complete
information in the SE lifecycle.

There are many ways to represent traceability links. The traceability matrix [34] and cross references [14] are both
regarded as good practice which have been widely used in industry. In addition, a large number of requirements
tools support traceability management [14]. One of the most well known tools is DOORS (Dynamic Object Oriented
Requirements System) [1]. Pohl [31] proposed the traceability meta model to establish a traceability structure, which
included dependence models aiming to describe the relations between trace objects.

Karlsson et al. [20] opened up the discussion on supporting requirements dependencies in the requirements selec-
tion process. Robinson et al. [35] provided the basic concepts and scope of Requirements Interaction Management
(RIM). They introduced the RIM process in general and a historical perspective of RIM. Carlshamre and Regnell [4]
described a two-dimensional (scope and explicitness) representation to investigate different types of dependencies.
Subsequently, Carlshamre et al. [5] extended their work and carried out an industrial survey of requirements inter-
dependencies in software product release planning. A functional and value-related dependence classification scheme
was proposed in detail. The survey also tried to find the possible relationship between the dependence types and de-
velopment contexts. Dahlstedt and Persson [9, 10] provided an overview of research work concerning comparing and
validating the different requirements dependencies classification frameworks. There was some work that suggested

RN/11/12 Page 17



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

that proper treatment of RIM should take account of different types of requirement interactions [5, 15, 20, 9, 36].

In terms of the relevant methods proposed for constraint handling using optimization techniques, there are generally
five types of approaches [7]:

1. penalty functions [37];

2. preserving the feasibility of solutions [21];

3. repair methods [13];

4. separation of constraints and objectives [32];

5. hybrid methods [2].

The most commonly used of these are penalty functions and repair methods [6]. Penalty functions were first intro-
duced by Courant [8], who quantified the extent of constraint violation in an infeasible solution and assign a certain
amount of penalty to the objective functions. Penalty functions can deal with both equality and inequality constraints.
The simplest way to handle infeasible solutions is to discard them for the next iteration. The method is called “death
penalty” and is computationally efficient because no further calculation needed. However, the drawback is no infor-
mation can be extracted from the infeasible solutions to guide the search towards the feasible region.

Homaifar et al. [16] then proposed static penalty methods which refine the degree of constraint violation into different
levels. A weight factor is assigned to each constraint, which is the penalty coefficient defined by the user. The
performance of the method relies heavily on the proper selection of penalty coefficient parameter. In order to reduce
the burden of choosing parameters, several authors have proposed dynamic and adaptive penalty methods. For
example, Michalewicz and Attia [27] and Carlson Skalak et al. [38] presented the methods inspired by the cooling
analog employed by simulated annealing [17]. The penalty is initially small and its impact on the objective functions
is consequently minor. As it subsequently increases over time, infeasible solutions are also gradually penalized more
severely. This mimics the cooling process, in which early stages of the search are less constrained while subsequent
phases become progressively more constraints.

Adaptive penalty methods take a alternative route to alleviate the difficulty of determining a suitable penalty factor
for infeasible solutions. They continue adjusting the penalty factor according to the feedback information from the
search iteration. Stochastic Ranking was introduced by Runarsson and Yao [37]. In this approach, the penalty factor
is not needed. It is substituted by a probability factor Pf that finds a balance between objective functions and the
constraint violations. However, most of these penalty functions have the disadvantage that they may never generate
feasible solutions if the problem is highly constrained.

By contrast, repair methods [13, 29] attempt to directly fix infeasible solutions using heuristics to guide the repair
process. In other words, a feasible solution can be generated from an infeasible one. Compared to penalty functions,
this repair–based approach introduces few additional parameters and can usually return feasible solutions. Combi-
natorial optimization problems such as graph coloring problem [19], knapsack problems [26] and traveling salesman
problems [22] tend to be good candidates for the application of repair methods, because these problems’ constraints
and decision variables are usually easily characterized.

There are several repair heuristic schemes. Liepins et al. [13] first proposed a greedy repair technique for a number
of constrained optimization problems and demonstrated that the computation time for repairing infeasible solutions
is minor compared with overall search process time. Orvosh and Davis [29] presented a probability based greedy
repair method to replace the original infeasible solutions with their corresponding repaired ones in the population.
The method presented by Liepins et al. [13] did not replace the infeasible chromosome in the population so repair
is only used to evaluate the fitness values. This type of method is named Baldwinian repair [18], in contracts to
Lamarckian repair [18], which replaces the infeasible solutions by repaired ones.

Ishibuchi et al. [18] compared these two types of repair (Lamarckian and Baldwinian) on multi-objective 0/1 knap-
sack problems and found that the Baldwinian repair methods outperform the Lamarckian on the knapsack problems
studied.

Michalewicz and Nazhiyath [28] presented a co-evolution and repair system called Genocop III. The idea is to
develop two types of populations. One population maintains feasible solutions (to linear constraints), while the other
maintains a feasible solutions that satisfy all the (linear and nonlinear) constraints. The repair algorithm was used
to convert those infeasible solutions in the first population into feasible ones in the second. Chootinan and Chen [6]
used gradient information extracted from the constraints to repair the infeasible solutions.

RN/11/12 Page 18



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

The overall conclusion of the literature on the use of repair and approaches to handle infeasible solutions indicated
that these constraint–handling issues are inherently problem–specific [7] and that experimentation is required in order
to determine the most promising way to handle constraints in an effective and efficient manner. It is in providing this
experimentation for constraints involved in Requirement Interaction Management that the present paper seeks to
make a contribution.

6 Summary

This paper presented Requirements Interaction Management (RIM) and has taken RIM into consideration in the
automated requirements selection process for the release planning problem. Five basic requirement dependencies
were introduced. The first three types were considered to be constraints within the fitness functions; the latter two
directly involved in the performance.

A real world RALIC project and a “27 combination random data sets” model were adopted to develop a procedure in
order to better understand real world situations. In the synthetic data set, two variable factors were considered in the
data generation model. One is the different levels of data set scales which are related to the number of requirements
and the number of stakeholders; the other is the density of the data sets.

To simulate the release planning selection process under requirements dependencies, two empirical studies were
carried out; the Dependency Impact Study (DIS) which is designed to investigate the influences of five different
dependency types and the Scale Study (SS) which concerns the performance of the two search techniques when the
data sets scale up.

The results of the empirical studies illustrated that the And dependency appears to denote a tighter constraint than
the Or and Precedence dependencies for search-based requirements optimization. When all three dependencies were
taken into consideration to access their overall combined impact, the constraints in this case became much tighter.
For Value-related and Cost-related dependencies, they directly contributed to an increase or a decrease in the fitness
values and further changed the shape of the Pareto front.

In SS, three data sets from smaller scale to a relatively larger one were applied. The results showed that repair method
could produce a smooth, relatively non-interrupted Pareto front compared to NSGA-II and archive based NSGA-II.
When the data set was gradually scaled up, the number of solutions generated by the latter consistently and rapidly
decreases. Instead, repair method could still find better feasible (even dominating) solutions both in quality (diversity
and convergence) and quantity.

RIM is of vital importance from a software release planning point of view. For instance, the certain optional require-
ments can be put into one release or be separated into several releases according to their dependency relationships in
order to save implementation cost and increase revenue.

Aided by search-based automated RIM, the requirements engineer can faster and more easily address this problem.
For any non-trivial problem, many factors need to be considered in the requirements selection process. It is always
important to look at the requirements from different perspectives. Unlike human-based search, automated search
techniques carry with them no bias. They automatically scour the search space for solutions that best fit the (stated)
human assumptions in the fitness function.

References
[1] IBM Rational DOORS (Dynamic Object Oriented Requirements System),

http://www.telelogic.com/Products/doors/.

[2] Hojjat Adeli and Hojjat Adeli. Augmented Lagrangian Genetic Algorithm for Structural Optimization. Journal
of Aerospace Engineering, 7(1):104–118, 1994.

[3] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The Next Release Problem. Information and Software
Technology, 43(14):883–890, December 2001.

[4] Pär Carlshamre and Björn Regnell. Requirements Lifecycle Management and Release Planning in Market-
Driven Requirements Engineering Processes. In Proceedings of the 11th International Workshop on Database
and Expert Systems Applications (DEXA ’00), pages 961–965, London, UK, 4-8 September 2000. IEEE Com-
puter Society.

[5] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and Johan Natt och Dag. An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In Proceedings of the 5th
IEEE International Symposium on Requirements Engineering (RE ’01), 2001.

RN/11/12 Page 19



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

[6] Piya Chootinan and Anthony Chen. Constraint Handling in Genetic Algorithms using A Gradient-based Repair
Method. Computers and Operations Research, 33(8):2263–2281, August 2006.

[7] Carlos A. Coello Coello. Theoretical and Numerical Constraint-handling Techniques used with Evolutionary
Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering,
191(11-12):1245–1287, January 2002.

[8] Richard Courant. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bulletin of
the American Mathematical Society, 49(1):1–23, 1943.

[9] Åsa G. Dahlstedt and Anne Persson. Requirements Interdependencies - Moulding the State of Research into A
Research Agenda. In Proceedings of the 9th InternationalWorkshop on Requirements Engineering: Foundation
for Software Quality (RefsQ ’03), Klagenfurt/Velden, Austria, 16-17 June 2003.

[10] Åsa G. Dahlstedt and Anne Persson. Engineering and Managing Software Requirements, chapter 5 Require-
ments Interdependencies: State of the Art and Future Challenges, pages 95–116. Springer Berlin Heidelberg,
2005.

[11] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, April 2002.

[12] Xavier Franch and Neil A. Maiden. Modelling Component Dependencies to Inform Their Selection. In Pro-
ceedings of the 2nd International Conference on COTS-Based Software Systems (ICCBSS ’03), volume 2580 of
LNCS, pages 81–91, Ottawa, Canada, 10-12 February 2003. Springer.

[13] W.D. Potter G.E. Liepins. A Genetic Algorithm Approach to Multiple-fault Diagnosis, chapter 17, pages 237–
250. Van Nostrand Reinhold, New York, 1991.

[14] Orlena C. Z. Gotel and Anthony Finkelstein. An Analysis of the Requirements Traceability Problem. In Pro-
ceedings of the 1st International Conference on Requirements Engineering (RE ’94), pages 94–101, Colorado
Springs, Colorado, USA, 18-21 April 1994. IEEE Computer Society.

[15] Des Greer and Günther Ruhe. Software Release Planning: An Evolutionary and IterativeApproach. Information
& Software Technology, 46(4):243–253,March 2004.

[16] Abdollah Homaifar, Charlene X. Qi, and Steven H. Lai. Constrained Optimization Via Genetic Algorithms.
International Transactions of the Society for Modeling and Simulation, 62(4):242–253, April 1994.

[17] Chii-Ruey Hwang. Simulated annealing: Theory and applications. Acta ApplicandaeMathematicae, 12(1):108–
111, 1988.

[18] Hisao Ishibuchi, Shiori Kaige, and Kaname Narukawa. Comparison between Lamarckian and Baldwinian
Repair on Multiobjective 0/1 Knapsack Problems. In Proceedings of the 3rd International Conference on
Evolutionary Multi-Criterion Optimization, LNCS 3410, pages 370–385, Guanajuato, Mexico, 9-11 March
2005. Springer.

[19] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. Wiley-Interscience, 1994.

[20] Joachim Karlsson, Stefan Olsson, and Kevin Ryan. Improved Practical Support for Large-scale Requirements
Prioritizing. Requirements Engineering Journal, 2(1):51–60, 1997.

[21] Slawomir Koziel and ZbigniewMichalewicz. EvolutionaryAlgorithms for Constrained Parameter Optimization
Problems. Evolutionary Computation, 7(1):19–44, 1999.

[22] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization. Wiley, 1985.

[23] S.L. Lim. Social Networks and Collaborative Filtering for Large-Scale Requirements Elicitation. PhD thesis,
2010.

[24] S.L. Lim and A. Finkelstein. StakeRare: Using Social Networks and Collaborative Filtering for Large-Scale
Requirements Elicitation. IEEE Transactions on Software Engineering, in press.

[25] S.L. Lim, D. Quercia, and A. Finkelstein. StakeNet: using social networks to analyse the stakeholders of
large-scale software projects. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 295–304. ACM, 2010.

RN/11/12 Page 20



Search Based Optimization of Requirements InteractionManagementYuanyuanZhang, Mark Harman& Soo Ling Lim

[26] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implementations. JohnWiley
& Sons, 1990.

[27] Zbigniew Michalewicz and Naguib F. Attia. Evolutionary Optimization of Constrained Problems. In Proceed-
ings of the 3rd Annual Conference on Evolutionary Programming, pages 98–108. World Scientific, 1994.

[28] Zbigniew Michalewicz and Girish Nazhiyath. Genocop III: A Co-evolutionary Algorithm for Numerical Op-
timization Problems with Nonlinear Constraints. In Proceedings of IEEE International Conference on Evolu-
tionary Computaion (CEC ’95), pages 647–651, Perth, Australia, 29 November - 1 December 1995. IEEE.

[29] David Orvosh and Lawrence Davis. Using a Genetic Algorithm to Optimize Problems with Feasibility Con-
straints. In Proceedings of the 1st IEEE World Congress on Computational Intelligence, pages 548–553, Orlan-
do, USA, 27-29 June 1994.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to the Web.
1999.

[31] Klaus Pohl. Process-Centered Requirements Engineering. Research Studies Press, 1996.

[32] David Powell and Michael M. Skolnick. Using Genetic Algorithms in Engineering Design Optimization with
Non-Linear Constraints. In Proceedings of the 5th International Conference on Genetic Algorithms, pages
424–431, Urbana, USA, 17-21 July 1993. Morgan Kaufmann Publishers Inc.

[33] K. Praditwong and Xin Yao. A New Multi-Objective Evolutionary Optimisation Algorithm: The Two-Archive
Algorithm. In Proceedings of he 2006 International Conference on Computational Intelligence and Security
(CIS ’06), volume 1, pages 286–291, Guangzhou, China, 3-6 November 2006. IEEE Press.

[34] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Implementing Requirements Traceability: A Case Study.
In Proceedings of the 2nd IEEE International Symposium on Requirements Engineering (RE ’95), pages 89–95,
York, UK, 27-29 March 1995. IEEE Computer Society.

[35] William N. Robinson, Suzanne D. Pawlowski, and Vecheslav Volkov. Requirements Interaction Management.
Technical Report 99-7, Georgia State University, August 1999.

[36] William N. Robinson, Suzanne D. Pawlowski, and Vecheslav Volkov. Requirements Interaction Management.
ACM Computing Surveys (CSUR), 35(2):132–190, June 2003.

[37] Thomas P. Runarsson and Xin Yao. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE
Transactions on Evolutionary Computation, 4(3):284–294, September 2000.

[38] S. Carlson Skalak, R. Shonkwiler, S. Babar, and M. Aral. Annealing A Genetic Algorithm Over Constraints.
In Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, pages 3931 – 3936, San
Diego, CA , USA, 11-14 Oct 1998. IEEE.

[39] Sangameswar Venkatraman and Gary G. Yen. A Generic Framework for Constrained Optimization using Ge-
netic Algorithms. IEEE Transactions on Evolutionary Computation, 9(4):424–435, August 2005.

[40] Yuanyuan Zhang, Enrique Alba, Juan J. Durillo, Sigrid Eldh, and Mark Harman. Today/Future Importance
Analysis. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO
’10), pages 1357–1364, Portland, USA, 7-11 July 2010. ACM. To appear.

[41] Yuanyuan Zhang and Mark Harman. Search Based Optimization of Requirements Interaction Management. In
Proceedings of the 2nd International Symposium on Search Based Software Engineering (SSBSE ’10), pages
47–56, Benevento, Italy, 7-9 September 2010. IEEE.

RN/11/12 Page 21


