Kueh, JLL;
Raisman, G;
Li, Y;
Stevens, R;
Li, DQ;
(2011)
Comparison of Bulbar and Mucosal Olfactory Ensheathing Cells Using FACS and Simultaneous Antigenic Bivariate Cell Cycle Analysis.
Glia
, 59
(11)
1658 - 1671.
10.1002/glia.21213.
Preview |
Text (Article)
JK MS FOR GLIA.pdf Download (191kB) | Preview |
Preview |
Text (Figure Legends)
LEGENDS.pdf Download (15kB) | Preview |
Preview |
Image (Figure 1)
Fig 1.tif Download (62MB) | Preview |
Preview |
Image (Figure 2)
Fig 2.tif Download (59MB) | Preview |
Preview |
Image (Figure 3)
Fig 3.pdf Download (122kB) | Preview |
Preview |
Image (Figure 4)
Fig 4.pdf Download (11kB) | Preview |
Preview |
Image (Figure 5)
Fig 5.pdf Download (29kB) | Preview |
Preview |
Image (Figure 6)
Fig 6.pdf Download (19kB) | Preview |
Preview |
Image (Figure 7)
Fig 7.pdf Download (14kB) | Preview |
Preview |
Image (Figure 8)
Fig 8.pdf Download (17kB) | Preview |
Preview |
Text (Table 1)
Table 1.pdf Download (17kB) | Preview |
Preview |
Text (Table 2)
Table 2.pdf Download (30kB) | Preview |
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a promising route for CNS repair. There have, however, been major discrepancies between the results from different groups. Part of this can be attributed to variations in cell sources and culture protocols. Accurate estimation of the proportions of OECs and their associated fibroblasts (ONFs) and their evolution with time in culture is an essential baseline for establishing the reparative properties of transplants. In this study, we compare the evolution of cultures from the superficial layers of the olfactory bulb with tissue from the olfactory mucosa, both whole and split into lamina propria and epithelial layer. We used FACS based on p75 and Thy1 to provide a robust and objective numerical estimate of the numbers of OECs and ONFs, respectively in the cultures. A novel four color simultaneous antigenic bivariate cell cycle analysis shows that proliferation of OECs is time-limited, and is unable to prevent an overall loss of OECs with time. Overall, the numbers of OECs in the cultures were inversely correlated with the deposition of fibronectin (FN). Further, culture of the cells purified by flow cytometry shows that, whereas the Thy1 population is terminally differentiated, the p75 population from the mucosal samples generates subpopulations with different antigenic phenotypes, including the reappearance of a subpopulation of p75 cells expressing FN. Culturing epithelial samples at high density reveals an unexpected transient stem cell-like population of rapidly proliferating p75 positive cells. (C) 2011 Wiley-Liss, Inc.
Type: | Article |
---|---|
Title: | Comparison of Bulbar and Mucosal Olfactory Ensheathing Cells Using FACS and Simultaneous Antigenic Bivariate Cell Cycle Analysis |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/glia.21213 |
Publisher version: | http://dx.doi.org/10.1002/glia.21213 |
Language: | English |
Additional information: | This is the peer reviewed version of the following article: Kueh, JLL; Raisman, G; Li, Y; Stevens, R; Li, DQ; (2011) Comparison of Bulbar and Mucosal Olfactory Ensheathing Cells Using FACS and Simultaneous Antigenic Bivariate Cell Cycle Analysis. Glia, 59 (11) 1658 - 1671, which has been published in final form at: http://dx.doi.org/10.1002/glia.21213. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms). |
Keywords: | stem cells, flow cytometry, adult, transplant, repair, culture, Thy1, p75, rat spinal-cord, horizontal basal-cells, low-affinity receptor, nerve growth-factor, adult-rat, stem-cells, schwann-cell, axonal regeneration, glia transplants, lamina-propria |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation |
URI: | https://discovery.ucl.ac.uk/id/eprint/1316930 |
Archive Staff Only
View Item |