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Background. Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific,
are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches.
Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have
homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that
a hypothetical gene is expressed and, if so, to determine the putative function of the protein. Methodology/Principal

Findings. We have developed ‘‘QIPP’’ (‘‘Quality Index for Predicted Proteins’’), an index that scores the ‘‘quality’’ of a protein
based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on
comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the
proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies
many high-scoring orphans as potentially ‘‘authentic’’ (expressed) orphans. There are significant differences in the
distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved
genes to have lower QIPP scores. Conclusions. The implication of this work is that QIPP scores can be used to further annotate
predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates
for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/
orphan_mine.

Citation: Wilson GA, Feil EJ, Lilley AK, Field D (2007) Large-Scale Comparative Genomic Ranking of Taxonomically Restricted Genes (TRGs) in Bacterial
and Archaeal Genomes. PLoS ONE 2(3): e324. doi:10.1371/journal.pone.0000324

INTRODUCTION
The availability of hundreds of complete bacterial genome

sequences has made it possible to explore how the evolutionary

diversification of gene content reflects the ecological needs and

opportunities of different taxa. It is well known that the gene

content of bacterial and archaeal genomes can vary widely and

that only a very few genes are truly universal [1–3]. As

a consequence, genes can differ significantly in their taxonomic

distributions, with more broadly conserved genes having ‘house-

keeping’ functions and less conserved genes being responsible for

the phenotypic differences observed between organisms. Lineage-

specific, or ‘‘taxonomically restricted’’ genes (TRGs), are defined

as being exclusively restricted to a particular taxonomic group [4].

In such a framework, genes may be TRGs at any taxonomic level

(i.e. domain-, family, genus-, species- or strain-specific). TRGs at

the species and strain-levels are of most interest in the search for

genotypes which help define exclusive ecological adaptations to

particular niches.

The study of narrowly distributed TRG’s is confounded by the

fact that many are short, repetitive or have unusual A+T contents

[5], and the assumption that many such short coding sequences

(CDS) represent annotation errors [6]. Over-annotation of

genomes, resulting in an excess of small predicted proteins is

clearly evident in certain genomes (e.g the initial annotation of

Aeropyrum pernix [7]) and is proposed to be an unfortunate feature of

many genomic annotations [6,8,9]. This overannotation could

mask intergenic regions containing small non-coding RNAs. It is

also possible that many TRGs remain ‘orphaned’ for no other

reason than the sampling bias in public genome databases [10]. It

is well-known that the current collection is highly biased towards

certain organisms (most notably pathogens, c-Proteobacteria, and

Firmicutes) [11]. This results in the trend that taxonomic isolation

is correlated with an increased percentage of orphans [8]. It is

therefore expected that homologues for many orphan predicted

proteins in taxonomically isolated lineages that lack close relatives

in genomic databases will be found once the taxonomic gaps in the

genomic database begin to be filled [10].

Despite potential errors in our current estimation of the

numbers and identities of narrowly distributed TRGs, there is

growing evidence that many, including those that are currently

orphaned, are of biological significance. Hence there is a growing

need to untangle erroneous CDS from authentic species- and

strain-level TRGs [12–14]. Dispersed examples of the latter are

most frequently found as the result of in depth in silico [5] or

empirical studies [12] of a particular organism or small group of

organisms. Increasingly, examples are being identified as the result

of whole genome sequencing [14]. One example to come from

complete genome sequencing is the TCP virulence locus of Vibrio

cholerae Tor N16961. Once a cluster of largely orphaned CDS,
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a homologous region has recently been found in the squid

symbiont Vibrio fischeri [15]. The TCP genes code for the toxin co-

regulated pili in V. cholerae and serve as its critical intestinal

colonisation factor, providing the receptor for entry of the temper-

ate filamentous phage CTXW, which contains the cholera toxin

genes, ctxAB [16] into the cell [17]. Likewise, the sequencing of

many genomes is confirming the presence of many strain-specific

genes which form the ‘‘pan-genome’’ of many species [18,19].

Given the potential significance of orphaned and narrow-range

TRGs and the confounding sources of error associated with

currently annotated genomes, it is clear that a reliable objective

measure of the potential ‘quality’ of a given CDS would be useful

[See 20 for the scoring of CDS with homology]. This could be

used to prioritize it either as a candidate for further characteriza-

tion or as an error. Motivated by this requirement, and with

a specific focus on orphans and narrow-range TRGs, we have

devised a scoring system that allows the ‘ranking’ of predicted

proteins based on a variety of features, reflecting the likelihood

that a given CDS encodes a protein.

We previously reported that the absolute number of single-copy

TRGs from the complete and published genomes of Bacteria and

Archaea is increasing [4]. The most phylogenetically and

ecologically unique species contribute the most unique genes, in

part due to undersampling of these genetic lineages [4]. For that

study we generated two datasets. The first contained all orphans as

defined by BLAST (using a threshold of 1023), the second applied

an arbitrary length cutoff of $150 amino acids and excluded all

CDS with low complexity (highly repetitive) regions to remove

likely CDS enriched in artefacts. The method of scoring CDS

described here extends this ‘selective filtering’ approach and is

called the ‘Quality Index for Predicted Proteins’ (QIPP). We

describe the use of QIPP as it is applied to the reanalysis of this data

set based on the inclusion of five criteria selected for their presumed

ability to detect purifying selection and CDS which are unlikely to

occur by chance alone. These are length [6], percentage low

complexity (a measure of the degree of repetition) [21], difference

in G+C composition of sequence and genome [22], average amino

acid cost [23,24] and neighbourhood distribution (ND) [25].

RESULTS

The orphan and non-orphan components of many

proteomes have different overall characteristics
To examine whether orphaned CDS, which are expected to be on

average smaller [6] and more A+T rich [5,26] have significantly

different QIPP scores than non-orphans, we re-examined our

original data set [4]. QIPP scores were calculated for each protein

in this data set of 122 proteomes [4] as described in the Materials

& Methods. In total, the distributions of all five criteria (length, low

complexity, G+C content, amino acid cost and neighbourhood

distribution (Table 1)) differ significantly between orphans and

non-orphans in 61 of the 122 species examined (p,0.05, Mann-

Whitney). 3 or more criteria are significant in 117/122 species.

Four of the remaining five species contained fewer than 10

orphans, and when all such genomes (n = 6) were excluded 115 of

the remaining 116 species had orphans that differed significantly

from the non-orphans for three or more criteria. The strikingly

different values for Escherichia coli K12 can be seen in Figure 1 as an

example of these trends. The distribution of the QIPP scores for

orphan and non-orphan TRG’s were found to be significantly

different for 119 of the 122 genomes (p,0.05, Mann-Whitney).

The remaining three genomes contained 2 or less orphans and

thus could not provide significant discriminatory power. Overall,

the QIPP scores for all orphan (mean = 0.38, +0.14) and non-

orphan (mean = 0.54, +0.14) TRG’s were significantly different

(p = 0.000, Mann-Whitney). These results confirm that the criteria

used for the QIPP scores can reliably distinguish between

‘‘orphan-like’’ (less well conserved) and ‘‘non-orphan-like’’ (more

widely conserved) genes.

Ranking orphan CDS using QIPP scores
The distribution of QIPP scores across the orphans in this data set

was examined to determine if there was sufficient variation to rank

them. Figure 2a shows that QIPP scores range from 0.0 to 0.9 (out

of a possible range from zero to one) and so the index does have

discriminatory power. The overall QIPP scores for each proteome

deviate from the normal distribution for all five reference genomes,

with too few high-scoring CDS and a longer than expected left-

hand tail of low-scoring proteins (Darling-Anderson p,.005). This

is due to the fact that for each criterion (with the exception of low

complexity) there are few proteins with very high ranks (Figure 2b–f).

We then examined the quality of the highest-scoring orphans to

see if our list contained a significant number of potentially ‘authentic’

orphans–i.e. those unlikely to occur by chance. The extreme right

hand distribution of these QIPP scores contains a total of 2,010

single-copy TRGs ($95th percentile with a minimum score of 0.62),

1,260 are longer than 200 amino acids, a criterion that when used in

isolation, is generally accepted to signify ‘authentic’ CDS [6].

Relaxing the QIPP score threshold, and using only length as

a criterion, a total of 9858 (22.66%) single-copy TRGs are found in

this data set which are $200 amino acids. A subset of these, 2,445

(5.62%), are $400 amino acids.

When interpreting the origins of such high-quality single-copy

TRGs, the taxonomic uniqueness of each parent genome must be

considered. Of those with QIPP scores above the 95th percentile

(. = 0.62), only 467 (23%) are from 62 species (8 per genome)

sampled down to the species level (i.e. another species from the

same genus is available in the data set) (average QIPP

score = 0.66). In contrast, 1,543 (77%) originate from 60 species

Table 1. Criteria used for the calculation of QIPP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optimality Criteria Desirable Values Ranked by

Length Long Distribution of absolute lengths of non-orphans

Complexity Complex Distribution of percent low complexity in non-orphans

Cost Low Distribution of the average cost per amino acid of non-orphans

G+C Composition Average composition Distribution of the difference in G+C content of non-orphans and the genome G+C
compostion

Neighbourhood Distribution Location among genes with a broad
distribution

Average of the number of genomes with homologues to the 5 genes flanking either side
of a gene.

doi:10.1371/journal.pone.0000324.t001..
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Figure 1. Distributions of orphans and non-orphans in E.coli K12. The predicted proteins in E.coli K12 that were found to be unique (light gray)
when compared to 122 bacterial proteomes (shown in Table S1) were designated as orphans (n = 174). All remaining proteins (dark gray) were non-
orphans (n = 4137). Distributions of values for both groups were calculated as a percentage for (a) length, (b) percent low complexity, (c) G+C
difference from the mean, (d) Cost and (e) Neighbourhood Distribution.
doi:10.1371/journal.pone.0000324.g001

Ranking of TRGs using QIPP
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which only have more distant relatives in this data set. It is

presumed that these genomes include many TRGs exclusive to

higher taxonomic levels; 24 genomes are unique at the genus level

(259 orphans, 11 per genome, average QIPP score = 0.66), 30 at

the family level (931 orphans, 31 per genome, average QIPP

score = 0.67) and 6 at the division level (353 orphans, 59 per

genome, average QIPP score = 0.67). Of those larger than 200

amino acids, 2,878 (29%) are from 62 species (46 per genome)

sampled down to the species with an average QIPP score of 0.43.

The remaining 6,980 (71%), originate from 60 species unique at

the genus level (1,439 total, 60 orphans per genome, average QIPP

score = 0.44), the family level (4,263 total, 142 orphans per

genome, average QIPP score = 0.48) and the division level (1,278

total, 213 orphans per genome, average QIPP score = 0.50).

Figure 2. QIPP and Criterion Distributions of orphans in 122 bacterial genomes. The orphans (n = 43513) obtained from 122 bacterial genomes
were scored and the distribution plotted according to (a) QIPP and the individual criteria that constitute QIPP: (b) length, (c) percent low complexity,
(d) G+C difference from the mean, (e) cost and (f) Neighbourhood Distribution.
doi:10.1371/journal.pone.0000324.g002

Ranking of TRGs using QIPP

PLoS ONE | www.plosone.org 4 March 2007 | Issue 3 | e324



When plotted against genetic similarity, more distantly related

genomes contribute on average more high-quality, single-copy

TRGs (Table S1 and Figure S1). Chi-squared tests were used to

identify genomes that made a greater contribution than expected

to the top 50% of the ranked list (Figure 3). Genomes that did not

contain enough orphans (.5) to perform a chi-squared test were

removed from the analysis (n = 6). Genomes that contribute more

high ranking QIPP scores are more distantly related (Figure 3,

Anova p = 0.000) but only a low proportion of variability in top-

ranking scores is explained by a regression analysis (p = 0.000, R-

squared = 10.63%).

Less conserved genes have lower QIPP scores
The difference between orphan and non-orphan QIPP scores

suggests that it might be possible to predict a priori how conserved

a particular CDS might be using QIPP scores in the absence of

homology. To explore this further, we selected a subset of five

reference genomes from the best-sampled taxa in our original

dataset for which intra-specific comparisons yielding high numbers

of strain-specific orphans were also available (Table 2). For each

reference genome the taxonomic distribution of all predicted

proteins at the Archaea/Bacteria level, domain, division, family,

genus, species and strain level (Figure 4) was determined.

The average QIPP scores and percentages of predicted proteins

exclusive to each of these taxonomic levels are given in Table 3.

Overall, average scores are relatively uniform across the five genomes

at each of the 7 taxonomic levels examined. Scores range from an

average of 0.60 for proteins conserved across bacteria and archaea

down to 0.35 for proteins conserved at the strain-level. These average

scores are significantly different across TRG’s exclusive to different

taxonomic levels (Anova, p = 0.000 for every genome). The data

show an overall decrease in QIPP score as the degree of conservation

narrows (Figure 4). For the five genomes, when all CDS are taken into

account, a regression analysis provides a p-value of 0.000 with R-

squared values ranging from 20.3% to 36.3%.

The differences in mean QIPP scores between different groups

of TRG’s are largest for comparisons between groups of CDS

conserved above the level of division and those conserved at the

species- and strain-level (Table 3). Still, average QIPP scores, are

significantly different between all higher TRG groups when

compared to the average for species-level TRGs, while groups of

species- and strain-level TRGs cannot be distinguished (Table 4).

Interestingly, scores from the gene prediction software Glimmer

could be used to separate only 7 of the 15 comparisons presented

in Table 4. Hence QIPP provides additional information which is

useful for post-processing gene predictions such as those made by

Glimmer, in the absence of homology.

In addition to using QIPP to rank individual CDS, we also

investigated whether the data had biological meaning. Using quartile

analysis, 50% of the CDS in each of these genomes fall uniformly

between the absolute values of 0.43 and 0.64 (Table 3), suggesting

rule of thumb cut-offs for QIPP scores associated with the least

(below 0.43) and most (above 0.64) highly conserved CDS in

a genome. The data further suggest that the most extreme values of

QIPP have the highest degree of predictive power for level of

conservation (Figure 4). For example, using a minimum threshold

score of $0.8, 98% of all CDS are members of the most conserved

gene families (above the division-level). A total of 58% of CDS with

scores less than 0.2 are species- and strain-specific TRGs.

To observe the range of QIPP scores that might be expected from

the most highly conserved CDS we examined a subset of universally

conserved genes [3]. We found the homologues of these 31

previously defined protein families [3] in the E. coli K12 genome

and examined their QIPP scores. These QIPP scores range from 0.5

to 0.87 with a mean of 0.69 (60.099). A large number of these

proteins are ribosomal proteins, which are all of shorter than average

size for E. coli. QIPP score is very poorly correlated with the overall

length of these proteins (R-squared = 0.012) suggesting that QIPP is

not overly sensitive to any one component criterion. The two

highest-scoring proteins, both with a QIPP score of 0.89, are

extremely different in length (1,138 for the DNA-directed RNA

Figure 3. Genomes which are more taxonomically isolated have
larger numbers of high-scoring orphan predicted proteins. Chi-
squared tests were used to determine which genomes had significantly
more predicted proteins in the top 50% of the list of ranked orphan
predicted proteins than would be expected by chance (21 = signifi-
cantly less orphans than expected in top 50% rank, 0 = no significant
difference and 1 = significantly more orphans than expected in top 50%
rank).
doi:10.1371/journal.pone.0000324.g003

Table 2. Numbers and percentages of species-specific and strain-specific genes after the addition of a second strain in five bacterial
species.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference Genome Second Genome
Orphan genes
(N = 122)

Species-specific
(N = 122+1)

Strain-specific (orphan
genes) (N = 122+1)

Escherichia coli K12 (NC_000913) Escherichia coli UPEC-CFT073 (NC_004431) 174 52 (29.89%) 122 (70.11%)

Helicobacter pylori 26695 (NC_000915) Helicobacter pylori J99 (NC_000921) 258 181 (70.16%) 77 (29.84%)

Neisseria meningitides MC58 (NC_003112) Neisseria meningitides Z2491 (NC_003116) 431 222 (51.51%) 209 (48.49%)

Prochlorococcus marinus CCMP1375
(NC_005042)

Prochlorococcus marinus MIT9313 (NC_005071) 291 40 (13.75%) 251 (86.25%)

Vibrio vulnificus CMCP6
(NC_004459,NC_004560)

Vibrio vulnificus YJ016 (NC_005139,NC_005140) 348 101 (29.02%) 247 (70.98%)

doi:10.1371/journal.pone.0000324.t002..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Ranking of TRGs using QIPP

PLoS ONE | www.plosone.org 5 March 2007 | Issue 3 | e324



Figure 4. Calculated QIPP scores for 5 bacterial genomes split into taxonomic classes. Every predicted protein in (a) E.coli K12, (b) H.pylori 26695,
(c) N.meningitides MC58, (d) P.marinus CCMP1375 and (e) V.vulnificus CMCP6 was put into the taxonomic level at which it was restricted and scored
according to QIPP.
doi:10.1371/journal.pone.0000324.g004

Ranking of TRGs using QIPP
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polymerase, beta subunit versus 323 for the DNA-directed RNA

polymerase, alpha subunit). When length is removed as a component

criterion of QIPP, the scores of the shortest proteins increase by up to

0.16, while those of the very longest proteins decrease by a maximum

of 0.09 giving a new mean value of 0.75 (60.141).

Validation of orphans with low QIPP scores using

results from transcriptomic and proteomic studies
To test whether we could validate the expression of orphans with

low QIPP scores in a well-studied model organism, we searched

the MicrobesOnline database [27] for E.coli K12 orphans

identified in this study. This database provides experimental

microarray results for this organism for four stress conditions: heat

shock [28], pH [29], UV exposure [30] and tryptophan

metabolism [31]. We examined the fifty highest and lowest

ranked species-level TRGs (N = 100). The scores of the top

ranking CDS ranged from 0.41–0.64 and the bottom from 0.02–

0.28. To illustrate the range of CDS involved, the top scoring CDS

was 547 amino acids in length, zero percent low complexity,

average G+C content, but was more costly than average and came

from a poorly characterized region of the genome. By contrast, the

CDS with the lowest score of 0.02 was only 60 amino acids in

length, 35% low complexity, had a highly deviant base

composition, it was also more costly than average and was found

in a poorly characterized region of the genome. Of these 100

orphans, 17 had identifiers not found in the MicrobesOnline

database and were excluded. Of the remaining 83, only one failed

to show any change in expression levels in any of these

experiments. In total there were 46 occasions (involving 35 of

these 100 orphans) when one of these orphans was included in the

list of the 200 proteins reported in Microbes Online showing the

largest (up or down) fold change in expression in one of these

experiments. Of particular interest was the pH stress experiment

where 12 (three in the top and nine from the bottom 50) of the top

100 up-regulated genes were orphans (p = 0.00, chi-square).

E.coli K12 proteomic data sets [32–34] were also searched. When

combined these investigations identified approximately 1,800

expressed proteins. While mRNA was found for 64 of the 174

CDS in E. coli, only 4 proteins could be identified for all 174 single-

copy TRGs in this data set. These four CDS had an average QIPP

score of 0.32 compared to mean score of 0.35 for all E.coli orphans.

DISCUSSION

We have developed an index called ‘‘QIPP’’ (‘‘Quality Index for

Predicted Proteins’’) which can be used to assign a value between

zero and one for a CDS compared to the rest of the genome on the

basis of a set of selective criteria. This provides an objective

measure of the probability that a given CDS either encodes

a protein or is an annotation artefact (incorrect). Very long CDS,

with typical nucleotide and amino-acid compositions, no low

complexity regions, and which are found in well conserved regions

have the highest QIPP scores and are considered most likely to

encode proteins.

The distributions of QIPP scores, and trends in the component

variables, confirm that orphans show consistent differences when

compared with well characterised protein-coding genes i.e. they

are short, repetitive, possess atypical G+C content, have high

average cost for amino acids and are located in poorly charac-

terised regions of the genome. The significant differences in the

distributions of QIPP scores between orphan genes and non-

orphan genes confirms that QIPP scores represent a valid means

to rationalise and automate the identification of those CDS most

Table 3. Table showing the average QIPP score for predicted proteins at each taxonomic level for five selected bacterial genomes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bacteria/Archaea
Bacterial
Domain Division Family Genus Species Strain

1st–3rd Quartile
Range

E.coli K12 0.59 (47.75) 0.54 (36.31) 0.47 (4.36) 0.42 (7.54) N/A 0.37 (1.21) 0.34 (2.83) 0.45–0.65

H.pylori 26695 0.58 (43.04) 0.55 (30.58) 0.48 (4.70) 0.40 (2.42) 0.52 (2.86) 0.43 (11.51) 0.35 (4.90) 0.44–0.64

N.meningitidis MC58 0.60 (41.85) 0.53 (35.98) 0.47 (0.58) 0.5 (0.87) N/A 0.37 (10.68) 0.35 (10.05) 0.42–0.64

P.marinus CCMP1375 0.61 (44.10) 0.55 (21.15) 0.44 (19.29) N/A N/A 0.37 (2.13) 0.37 (13.34) 0.42–0.65

V.vulnificus CMCP6 0.58 (44.06) 0.54 (36.96) 0.47 (6.46) N/A 0.46 (4.85) 0.42 (2.23) 0.39 (5.44) 0.44–0.64

The numbers in brackets show the percentage of proteins in that genome at that taxonomic level. Scores are highest for proteins which are most highly conserved and
decrease across taxonomic categories. N/A = genome not available for comparison. The final column shows the values for the CDS of the 2 quartiles around the median
QIPP score in each of the five genomes.
doi:10.1371/journal.pone.0000324.t003..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Table 4. Statistical significance of QIPP (Q) and Glimmer (G) scores when differentiating between species-specific genes and
a respective taxonomic rank.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bacteria/Archaea Bacterial Domain Division Family Genus Species

Q G Q G Q G Q G Q G Q G

E. coli *** *** *** *** *** ** N/A N/A

H. pylori *** *** *** *** *** * ** *** *** *

N. meningitidis *** *** *** *** ** ** N/A N/A

P. marinus *** *** *** *** *** *** N/A N/A N/A N/A

V. vulnificus *** *** *** *** *** N/A N/A ***

*** = p, = 0.001, ** = p, = 0.01, * = p, = 0.05 , N/A = No representative genomes at that taxonomic level.
doi:10.1371/journal.pone.0000324.t004..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
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likely to encode proteins (and find homologues among other

available sequences). Because orphans generally have low QIPP

scores it is also possible to meaningfully rank them as a subset of all

CDS, selectively filter for high-scoring ‘authentic’ orphans, and

begin to address the issue of correcting for the high percentage of

orphans in current databases that are simply an artefact of

sampling bias.

Our data show that the lowest-scoring CDS encode the least

evolutionary conserved proteins, i.e. those orphans restricted to

single strains or species. As such, this approach can also provide

evidence on the likely taxonomic range of a CDS in the absence of

any useful homology. This is particularly significant given the

unrepresentative sampling of the current genomic databases. Low-

scoring, taxonomically restricted orphans are most likely to be

annotation artefacts: we tested this in the case of E. coli K12 by

reference to online transcriptomic and proteomic expression data.

Surprisingly, these data revealed that even these low-scoring CDS

are potentially expressed (given the caveats associated with using

microarray data to validate orphans [6] and the fact that E. coli is

one of the most thoroughly studied organisms) and therefore

suggest that annotation artefacts may not be as common as

previously suspected. It is clear that empirical validation of

genomic annotations is necessary and should be of the highest

priority [35–37]. At a minimum it would appear premature to

dismiss all very low-scoring orphans as having little biological

relevance without further evidence.

In effect, the criteria used in the QIPP score reflect the extent of

purifying selection acting upon a sequence, which, in the absence

of homology, preclude the use of more widely-used methods such

as examination of dN/dS ratios [38]. Purifying selection should

over time preferentially purge substitutions leading to the use of

more metabolically costly amino-acids [39]. Similarly, mutation

pressure tends to move in the direction GC-.AT rather than vice

versa [40,41] and AT enrichment has commonly been cited as

a footprint for relaxed or inefficient purifying selection (but see

[42]). This can explain the high AT content of obligate

endosymbionts or intracellular parasites which are adapted to

a restricted niche, undergo restricted gene exchange, and possibly

mutate at a high rate due to the loss of DNA repair genes [43]. It is

also well documented that phage and other mobile elements tend

to show a higher AT content than the host bacterial genome

[5,39]. As highly conserved proteins are likely to encode essential

housekeeping functions, and therefore be subject to high levels of

purifying selection, the noted correlation between the taxonomic

range and QIPP score can be explained within this selective

framework. This phenomenon also provides further validation for

the use of the QIPP score in identifying ‘‘real’’ genes, as it is

expected that CDS which are simply annotation artefacts should

be evolving neutrally and hence have very low QIPP scores.

This analysis provides proof of principal that the combined use

of different criteria can be a powerful approach to determining the

biological relevance of putative CDS. The power of the QIPP

score could be improved by the use of additional criteria which are

likely to reflect purifying selection, such as codon bias, for

example. It is acknowledged that the criteria presently used are

unlikely to be independent, and multivariate analysis is required to

determine the interactions between the variables and to put

corrections in place to improve the predictive power of the index.

Preliminary analysis on five reference genomes has revealed

a significant correlation (p, = 0.05) between sequence length and

complexity, with longer proteins showing more low complexity

regions. Further, a significant correlation between G+C content

and amino-acid cost was noted in four out of five genomes (the

exception being V. vulnificus; data not shown).

There is a growing need for metrics that offer a deeper

understanding of the detailed content of genomes, especially now

that we have such large numbers [44]. QIPP provides such

a metric and can be used in combination with other in silico

methods that can now be used to sift out potentially authentic

orphans and improve genomic annotation. Such complementary

methods include the analysis and removal of short CDS [6], gene

fragments [45], and pseudogenes [8] and the ranking of CDS

based on the availability of homology-based information [20].

Integration of the information from such studies would provide the

foundation for a single, global list of uncharacterized predicted

proteins that could be used to systematically subject them to

further in silico examination [20,35,37]. This data set could further

be integrated with empirical evidence from a range of experi-

mental studies, especially high throughput ‘omic studies, as is the

case for databases like STRING [46]. In silico studies of predicted

proteins can help identify candidates for further examination, but

any validation of the biological relevance of a particular protein

must be based on empirical evidence [13,35,47,48]. In order to

comply with the principle of the transparent access to data for the

sake of integration [49], all of the data generated in this study is

available online in a searchable database, the OrphanMine, a data-

base that supports wide-scale downloads of data, including lists of

CDS with rich annotations in GFF3 (Generic Feature Format

Version 3) (http://song.sourceforge.net/gff3.shtml) format.

In conclusion, the QIPP index supports an objective rationale

for prioritising predicted genes for further study, including

‘authentic’ single-copy TRGs. Although further work is required

to refine the approach, this represents an important step in the

standardisation and automation of identifying biologically impor-

tant genes in the absence of homology.

MATERIAL AND METHODS

Processing of Genomes and Proteomes
All genomic annotations and proteomes as both amino acid and

DNA were downloaded from the NCBI Refseq FTP site. Orphans

were detected as previously described [4] using NCBI Blast [50]

and a cutoff of 1023 and then loaded into the OrphanMine database

for post-processing. The OrphanMine interface was used to generate

groups of TRGs for each taxonomic level. A custom Perl script

was used to calculate length, G+C content and cost and to parse

blast reports to generate a ‘‘neighbourhood distribution’’ (ND) for

each CDS. All of the data used in this study is publicly available

through the OrphanMine. The code used to generate lists of orphans

from proteomes is available in the YAMAP package (www.

genomics.ceh.ac.uk/yamap/, email: ) and all other code (any

additional Perl scripts) is available on request (gawi@ceh.ac.uk).

Calculation of QIPP scores
For each genome and for each of the five selected criteria, the

distribution of non-orphans was generated and the percentiles for

that distribution were calculated. For the criteria of length and ND,

the absolute value of each component criterion (e.g. length of 200

amino acids) was transformed into a sub-score from 0 to 100

depending on the percentile in which it fell (e.g. the 35th percentile

from the shortest CDS found would be given a score of 35). For low

complexity and cost, where more of either actually suggests a less

probable CDS, the score was subtracted from 100 (e.g. a protein with

50% low complexity might fall in the 70th percentile and therefore be

given a low score of 30). G+C content had to be calculated as the

deviation from the mean value. Values above the 50th percentile

were corrected by the equation 100 minus the percentile value

multiplied by two and values below had their percentile doubled.
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Length was calculated as the total number of amino acids and

percentage low complexity regions was calculated from regions

masked with the seg program [21] using default parameters. G+C

content was calculated from the proteome as DNA. The average

amino acid cost of a sequence was calculated using the relative

costs for each amino acid according to the values given in Akashi

& Gojobori [23]. Randomized proteomes (i.e. any sequence

evolving neutrally) are the most costly as purifying selection

appears to select for amino acids that are less metabolically

expensive [23]. ND was calculated by determining the level of

conservation of the five flanking CDS on either side of a particular

CDS. For each of these ten genes, the number of species in which

a similar sequence was found was recorded (maximum of 121 for

this dataset). Those numbers were then summed, averaged and

percentiles generated for the distribution.

The scores from all five criteria are normalized with respect to

each particular genome and can therefore be summed. To obtain

a final QIPP score between zero and 1, the average is taken and

divided by 100. Zero would be the worst possible candidate for

a real gene while 1 would be ideal. Using the interface to the

OrphanMine it is possible to perform user-selected rankings of

subsets of the CDS held in the database on the basis of 1 or all of

the component criteria used in QIPP. To compare QIPP and

Glimmer scores, the five reference genomes were run through

Glimmer (v2.13) [51] with default settings.

Genetic Similarity of genomes and the taxonomic

distribution of TRGs
The Index of Isolation of an Organism (IIO) similarity measure

was calculated by averaging the logarithm of the best e-value for

each CDS in a proteome as described by Fukuchi & Nishikawa

[8]. The taxonomic distribution of each CDS in the five references

genomes (Table 3) was obtained through interrogation of the

OrphanMine database [4]. For each genome, appropriate queries

were performed to find genes restricted to each taxonomic level.

The output was scored and downloaded in a tab-delimited format.

A Perl script was written to parse the output to ensure that every

predicted protein was only counted once and each protein could

be classed according to its lineage specificity.

Obtaining Empirical Data from Microarray and

Proteomic Studies
The MicrobesOnline database [27] was queried for the E.coli

orphan genes using their unique VIMSS ID. A file was provided

by Keith Keller to map the GenBank IDs of the orphan genes

obtained from OrphanMine to the VIMSS ID. EchoBASE is

a database that curates information regarding the genes and gene

products of the model bacterium E. coli K-12, including links to

literature describing proteomic analyses of this bacterium [52].

The ‘b number’ identifiers provided in the literature were used to

map data from the proteomic analyses to the E.coli orphan genes

obtained from OrphanMine. When ‘b numbers’ were not provided,

the gene name, if present, was used.

SUPPORTING INFORMATION

Table S1 The number of predicted proteins, orphans, percent-

age orphans, isolation index and taxonomic uniqueness for each of

the 122 bacterial genomes used in this analysis

Found at: doi:10.1371/journal.pone.0000324.s001 (0.22 MB

DOC)

Figure S1 Relationship between the numbers of orphans as

a percentage of total predicted proteins and Isolation Index of an

Organism. The IIO for each genome in our dataset (full list of

genomes given in Table S1) is plotted against (a) percentage of

orphans, (b) the number of orphans greater than 200 aa’s and (c)

the percentage of total orphans greater than 200 aa’s in length. In

addition, each genome is classed according to the taxonomic level

at which it is the only sequenced representative.

Found at: doi:10.1371/journal.pone.0000324.s002 (3.29 MB TIF)
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