Byass, P;
Kahn, K;
Fottrell, E;
Collinson, MA;
Tollman, SM;
(2010)
Moving from Data on Deaths to Public Health Policy in Agincourt, South Africa: Approaches to Analysing and Understanding Verbal Autopsy Findings.
PLOS MEDICINE
, 7
(8)
, Article e1000325. 10.1371/journal.pmed.1000325.
Preview |
PDF
1314730.pdf Download (123kB) |
Abstract
Background: Cause of death data are an essential source for public health planning, but their availability and quality are lacking in many parts of the world. Interviewing family and friends after a death has occurred (a procedure known as verbal autopsy) provides a source of data where deaths otherwise go unregistered; but sound methods for interpreting and analysing the ensuing data are essential. Two main approaches are commonly used: either physicians review individual interview material to arrive at probable cause of death, or probabilistic models process the data into likely cause(s). Here we compare and contrast these approaches as applied to a series of 6,153 deaths which occurred in a rural South African population from 1992 to 2005. We do not attempt to validate either approach in absolute terms.Methods and Findings: The InterVA probabilistic model was applied to a series of 6,153 deaths which had previously been reviewed by physicians. Physicians used a total of 250 cause-of-death codes, many of which occurred very rarely, while the model used 33. Cause-specific mortality fractions, overall and for population subgroups, were derived from the model's output, and the physician causes coded into comparable categories. The ten highest-ranking causes accounted for 83% and 88% of all deaths by physician interpretation and probabilistic modelling respectively, and eight of the highest ten causes were common to both approaches. Top-ranking causes of death were classified by population subgroup and period, as done previously for the physician-interpreted material. Uncertainty around the cause(s) of individual deaths was recognised as an important concept that should be reflected in overall analyses. One notably discrepant group involved pulmonary tuberculosis as a cause of death in adults aged over 65, and these cases are discussed in more detail, but the group only accounted for 3.5% of overall deaths.Conclusions: There were no differences between physician interpretation and probabilistic modelling that might have led to substantially different public health policy conclusions at the population level. Physician interpretation was more nuanced than the model, for example in identifying cancers at particular sites, but did not capture the uncertainty associated with individual cases. Probabilistic modelling was substantially cheaper and faster, and completely internally consistent. Both approaches characterised the rise of HIV-related mortality in this population during the period observed, and reached similar findings on other major causes of mortality. For many purposes probabilistic modelling appears to be the best available means of moving from data on deaths to public health actions.
Type: | Article |
---|---|
Title: | Moving from Data on Deaths to Public Health Policy in Agincourt, South Africa: Approaches to Analysing and Understanding Verbal Autopsy Findings |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1371/journal.pmed.1000325 |
Publisher version: | http://dx.doi.org/10.1371/journal.pmed.1000325 |
Language: | English |
Additional information: | © 2010 Byass et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Keywords: | INTERVA MODEL, MORTALITY, TUBERCULOSIS, POPULATION, TRANSITION, CARE |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health |
URI: | https://discovery.ucl.ac.uk/id/eprint/1314730 |
Archive Staff Only
View Item |