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Abstract:

Purinergic signalling is important both in short-term control of vascular tone and in longer-term control of cell proliferation,

migration and death involved in vascular remodelling. There is dual control of vascular tone by ATP released from perivascular

nerves and by ATP released from endothelial cells in response to changes in blood flow (shear stress) and hypoxia. Both ATP and its

breakdown product, adenosine, regulate smooth muscle and endothelial cell proliferation. The involvement of these regulatory

mechanisms in pathological conditions, including hypertension, atherosclerosis, restenosis, diabetes and vascular pain, are

discussed.
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tor, NO – nitric oxide, PDGF – platelet-derived growth factor,

SHR – spontaneously hypertensive rats, VEGF – vascular en-

dothelial growth factor

Introduction

The concept of purinergic signalling, i.e. ATP acting

as an extracellular signalling molecule, was proposed

by Burnstock in 1972 when evidence was presented

that ATP was the neurotransmitter in non-adrenergic,

non-cholinergic neuromuscular transmission in the

gut and urinary bladder [21]. Later, it was recognised

as a cotransmitter in sympathetic, parasympathetic,

sensory-motor and enteric nerves [10]. There was early

resistance to this concept (see [12, 22, 26]), but the roles

of nucleotides and nucleosides as extracellular signal-

ling molecules are now well established in both neural

and non-neural tissues [2, 18, 27]. P1 receptors for

adenosine, of which four subtypes (A�, A��, A��, and

A�) have been cloned and characterised, have been

distinguished from P2 receptors for ATP/ADP/UTP

[8], and P2 receptors have been divided into P2X

ligand-gated ion channel and P2Y G protein-coupled

receptor families. Seven subtypes of P2X receptors

and 8 subtypes of P2Y receptors have been cloned and

characterized [19, 79]. The majority of studies involv-

ing purinergic signalling have been concerned with

short-term events, such as neurotransmission or secre-

tion. However, there is growing interest in the long-

term trophic actions of extracellular nucleotides and

nucleosides on cell proliferation and death [1, 75].

ATP and adenosine are very much involved in the

mechanisms underlying local control of vessel tone
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[14, 15, 28] as well as cell migration, proliferation,

differentiation, and death during angiogenesis, athero-

sclerosis, and restenosis following angioplasty [19,

39, 40].

Short-term purinergic signalling

regulating vascular tone

In the vascular system, short-term purinergic signal-

ling events associated with the control of vascular

tone by ATP released from nerves and endothelial

cells have been clearly demonstrated [11, 24, 28] (see

Fig. 1).

ATP released as a cotransmitter with noradrenaline

(NA) from perivascular sympathetic nerves acts

mainly on P2X� receptors on medial vascular smooth

muscle to produce constriction, whereas ATP released

as a cotransmitter from sensory-motor nerves during

‘axon reflex’ activity dilates some vessels [28].

ATP released from endothelial cells during changes

in blood flow (producing shear stress) or hypoxia acts

on P2 receptors on endothelial cells to release nitric

oxide (NO), resulting in relaxation [4, 24]. P2Y� re-

ceptors are dominant in some vessels activated selec-

tively by ADP [79], in other vessels P2Y� receptors

are present that are activated equally by ATP and the

pyrimidine UTP [72]. UTP has also been shown to be

released from endothelial cells by shear stress [85].

Endothelial cells also express other types of puriner-

gic receptors (P2Y� and P2Y�) [78]; and yet another

P2Y receptor subtype (P2Y��) is present on endothe-

lial cells of human mammary artery and umbilical

vein [104]. Endothelial cells of arteries and veins ex-

press different levels of P2X� receptors – high levels

on saphenous veins and low levels on mammary arter-

ies, although the function of this receptor was un-

known [81]. However, Yamamoto et al. [107] re-

ported that, in some blood vessels, P2X� receptors in-

duced vascular dilatation in an NO-dependent

manner. This finding contrasts with another study that

examined P2X� receptors on the endothelium of rat

mesenteric arteries. P2X� receptors mediated endoth-

elial-dependent vasodilation, but a NO synthase in-

hibitor had no effect on dilation [50]. P2X� and P2X�

receptors (perhaps as heteromultimers) were reported

to be associated with VE-cadherin in human endothe-

lial cells, suggesting a role for these receptors in

modulating adhesion junctions between endothelial

cells [46].

Adenosine produced after breakdown of released

ATP from nerves and endothelial cells causes vaso-

dilatation via smooth muscle P1 (usually A� subtype)

receptors. ATP release from red blood cells is in-

creased in pathological conditions such as subarach-

noid hemorrhage, largely because there is widespread

blood cell lysis [92]. This leads to transient constric-

tion of arterioles via P2X receptors and sustained con-

striction of large cerebral vessels, largely through

P2Y� receptors. The differences in purinergic receptor
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distribution between macro- and microvessels in the

cerebral circulation are likely to have important con-

sequences in pathological conditions.

Long-term purinergic signalling involved

in proliferation of smooth muscle and

endothelial cells

Smooth muscle

An early study reported that adenosine produces

changes in cyclic AMP and DNA synthesis in cultured

arterial smooth muscle cells and suggested that this

might result in the regulation of cell proliferation

[57]. The authors speculated that adenosine could be

one of several regulatory factors in the development

of atherosclerosis and might also regulate the release

of a smooth muscle mitogen, platelet-derived growth

factor (PDGF), from platelets. There is now good evi-

dence that adenosine, an ectoenzymatic breakdown

product of ATP, does regulate smooth muscle cell pro-

liferation, but its properties differ from those for ATP

and ADP. Adenosine inhibits vascular smooth muscle

cell proliferation by A�� receptor activation via the

elevation of cyclic AMP [37] and a selective A� re-

ceptor agonist, 2-octynyladenosine, reduced neointi-

mal thickening in a rat femoral artery injury model

[95].

ATP and ADP stimulate DNA synthesis and cell

proliferation of cultured porcine artery vascular

smooth muscle cells, an action that was shown to be

mediated by P2Y receptors [103]. It was speculated

that this mechanism was involved in the regulation of

vascular smooth muscle cell proliferation during em-

bryonic and early postnatal development, after injury,

and in arteriosclerosis. It was further suggested that

the ATP released from endothelial cells causes not

only autocrine mitogenic stimulation of the endothe-

lial cells themselves but also paracrine stimulation of

the smooth muscle cells that migrate to the intima af-

ter injury. Exogenous ATP and UTP also induce a lim-

ited cell cycle progression in arterial smooth muscle

cells as well as having powerful mitogenic actions,

probably via P2Y� or P2Y� receptors [41, 68, 71].

Sympathetic nerves have been shown to exert a tro-

phic influence on vascular smooth muscle [3, 90].

From her studies of pulmonary artery denervated of

sympathetic nerves, Bevan [3] concluded that sympa-

thetic transmitters exert slow trophic as well as fast

signalling actions on cell growth and division by in-

fluencing protein, DNA, and RNA synthesis. Since

ATP as well as NA and neuropeptide Y (NPY) are

known to be released as cotransmitters from sympa-

thetic nerves [15], this was consistent with the possi-

bility that ATP and/or its breakdown product, adeno-

sine, might be involved in these trophic actions.

ADP contributes significantly in synergy with the

peptide growth factors PDGF, epidermal growth fac-

tor, and transforming growth factor-�, to the platelet-

induced proliferation of vascular smooth muscle [33].

The mitogenic effect of ATP on vascular smooth mus-

cle cells is synergistic with other mitogens, including

insulin and insulin-like growth factor-1 [103]. In

a study of the mechanisms involved in ATP-induced

proliferation of vascular smooth muscle cells [108], it

was shown that P2Y receptor activation of smooth

muscle was coupled to a pertussis toxin-insensitive

G� protein, triggering phosphoinositide hydrolysis

and subsequent activation of PKC, Raf 1 and MAPK.

A later study presented evidence indicating that ATP-

stimulated vascular smooth muscle cell proliferation

requires independent ERK and phosphatidylinositol

3-kinase–signalling pathways [105]. There are 2 phe-

notypes of smooth muscle: the contractile phenotype

and the synthetic (proliferative) phenotype [30]. In

a study of cultures expressing these 2 phenotypes us-

ing quantitative reverse transcription-polymerase

chain reaction, it was shown that P2X� receptors were

strongly expressed in the contractile phenotype. In the

synthetic (proliferative) phenotype, the mitogenic

P2Y� and P2Y� receptor transcripts were upregulated

342- and 8-fold, respectively, whereas the contractile

P2X� receptor was totally down-regulated, while the

P2Y� and P2Y� receptors were unchanged [40]. Fur-

thermore, MAPK kinase-dependent growth factor in-

duced the upregulation of P2Y� receptors in vascular

smooth muscle cells, which the authors suggested

may be of importance in atherosclerosis and neointi-

mal formation after balloon angioplasty [53].

Endothelial cells

Long-term administration of adenosine was reported

to induce capillary endothelial cell proliferation in the

heart [54]. Adenosine has also been shown to induce

dose-dependent proliferation of endothelial cells ob-

tained from the aorta [98], from coronary vessels
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[111] and from human umbilical veins [42]. It has also

been shown to stimulate canine retinal microvascular

endothelial cell migration and tube formation [67].

The action of adenosine in producing endothelial cell

proliferation is mediated by A�� and A�� receptors

partly by the modulation of vascular endothelial

growth factor (VEGF) [48, 88]. The addition of an an-

tisense oligonucleotide complementary to the A�� re-

ceptor mRNA inhibited VEGF production. Augmen-

tation by adenosine of the expression of VEGF has

been described in cerebral [43] and retinal [94] micro-

vascular endothelial cells. The selective A�� receptor

antagonists enprofylline and 3-isobutyl-8-pyrro-

lidinoxanthine inhibited 5’-(N-ethylcarboxamido)-

adenosine-stimulated proliferation of human retinal

endothelial cells, ERK activation, cell migration, and

capillary tube formation [47].

ADP was shown to be one of several agonists that

induced cultured endothelial cell migration and prolif-

eration [70]. Angiogenesis (or neovascularization) be-

gins with the migration of endothelial cells, originat-

ing from capillaries, into the tissue being vascular-

ized. ADP and, to a lesser extent, adenosine and

adenine showed strong chemotactic activity and were

postulated to be angiogenesis factors in vivo [96].

Adenine nucleotides were shown to have a mitogenic

action on aortic endothelial cells, probably via P2Y

receptors [97]. ATP has also been shown to produce

proliferation of cultured bovine corneal endothelial

cells [31]. The source of the purines involved in these

trophic actions is largely from the endothelial cells,

suggesting an autocrine mechanism [66]. ADP re-

leased from aggregating platelets may also play a role

[99]. Stretch-induced changes in endothelial cell

shape [106] and changes produced by hypoxic stress

may be mediated by the ATP (and adenosine after ec-

toenzymatic breakdown) released from endothelial

cells under both these conditions (see [5]).

There is increasing evidence that cell proliferation

and programmed cell death (apoptosis) are linked

[35]. For example, VEGF turns on cell proliferation,

but inhibits apoptosis [69]. Distinct signal transduc-

tion cascades, composed of at least 3 protein kinases,

mediate cell proliferation and differentiation, growth

arrest, and apoptosis [73]. In diseases such as carcino-

genesis, degenerative disorders, and ischemia/reper-

fusion injury, there is an imbalance between cell divi-

sion and cell death. Extracellular ATP and adenosine

have been shown to cause apoptosis of pulmonary ar-

tery endothelial cells [34]. It has been speculated that

ATP released from cells undergoing cytolysis or de-

granulation may cause endothelial cell death, perhaps

by inhibition of methyltransferase activity and that

this may be important in acute vascular injury or in

limiting angiogenesis [84]. ATP converts necrosis to

apoptosis in oxidant-injured bovine pulmonary artery

endothelial cells [65]. In a study of porcine aortic en-

dothelial cells, extracellular ATP and ADP, probably

acting through P2X� receptors, were shown to acti-

vate nuclear factor-�B, a transcription factor, and in-

duce apoptosis [102].

Purinergic signalling in vascular

diseases

The migration, proliferation, and death of vascular

smooth muscle and endothelial cells play an impor-

tant role in the development of intimal thickening dur-

ing arterial diseases, such as arteriosclerosis and res-

tenosis after angioplasty, and in the growth of new

vessels that takes place during wound healing and in

tumors [45, 83, 87]. ATP, ADP, UTP, and adenosine

play pivotal signalling roles in these long-term events

[23, 38, 39, 74, 80].

Hypertension

ATP plays a significant cotransmitter role in sympa-

thetic nerves supplying hypertensive blood vessels.

The purinergic component is increased in spontane-

ously hypertensive rats (SHR) [6, 101]. The increase

in sympathetic nerve activity in hypertension is well

established, and there is an associated hyperplasia and

hypertrophy of arterial walls [58]. Also, sympathetic

neurons innervating the vasculature are dependent on

nerve growth factor (NGF) in development, and an in-

crease in NGF gene expression and protein has been

described in spontaneously hypertensive rats (SHR)

[109]. �,�-Methylene ATP has been shown to in-

crease NGF secretion by vascular smooth muscle

cells in SHR [91]. ATP is a rapidly acting hypotensive

agent that compares favourably with sodium nitro-

prusside [63]. ATP-MgCl� is a safe, effective, and

preferential pulmonary vasodilator in children with

pulmonary hypertension secondary to congenital

heart defects; it has also been used for treating pulmo-

nary hypertension after cardiac surgery [7]. ATP ex-
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erts mitogenic actions on human pulmonary artery

smooth muscle cells, which may be relevant to the pa-

thophysiological basis of severe pulmonary hyperten-

sion [59, 110]. Eicosapentaenoic acid, one of the ac-

tive components in fish oil that has antihypertensive

effects, increases the release of ATP from vascular en-

dothelial cells, leading to reduction of the blood pres-

sure rise characteristic of aging [51]. P2X� receptors

are localized in the syncytiotrophoblast, stroma, and

foetal capillary endothelial cells of human placenta.

Placental P2X� receptors are significantly upregulated

in mild preeclampsia [82].

Angiogenesis

The growth of new blood vessels takes place in patho-

logical events such as tumor growth, wound healing,

psoriasis, and the ischemic retinopathies that occur in

diabetes and sickle cell disease. In the adult, the de-

velopment of new blood vessels, or neovasculariza-

tion, occurs by budding from existing blood vessels

and is referred to as angiogenesis (as distinct from

vasculogenesis, which occurs in embryogenic devel-

opment by vessel formation from mesenchyme pre-

cursor cells or angioblasts). Peptide growth factors

such as fibroblast growth factor, transforming growth

factor-�, and VEGF are clearly involved in angio-

genesis, but purines and pyrimidines also contribute

to this process [86]. In rheumatoid arthritis, new cap-

illary blood vessels invade the joint and destroy the

cartilage. In diabetes, new capillaries in the retina in-

vade the vitreous body, bleed, and cause blindness,

and tumor growth and metastasis are angiogenesis de-

pendent [44]. Anginal patients treated chronically

with dipyridamole to increase adenosine levels

showed an increase in coronary angiogenesis [76],

and dipyridamole has also been used for the preven-

tion of stroke [36]. The former action may involve

a preferential effect of adenosine on endothelial cells,

since smooth muscle proliferation was inhibited in

rabbits pre-treated with dipyridamole [55].

Atherosclerosis

Vascular injury represents a critical initiating event in

the pathogenesis of various vascular diseases, includ-

ing organ transplantation, sepsis, and atherosclerosis,

and the events that follow, i.e., vascular cell growth,

migration, proliferation, and death. Since large

amounts of ATP are released from injured cells and

because ATP and its breakdown product, adenosine,

have potent actions in smooth muscle and endothelial

cell growth, migration, proliferation, and death, the

possibility that purines are one of the factors involved

in the development of vascular disease has been con-

sidered. Various models of vascular injury have been

introduced, including denudation of the endothelium

by mechanical injury (balloon or nylon catheters),

diet-induced hypercholesterolemic injury, or immune

injury. A limited number of studies have been carried

out to examine the possible roles of purines in the de-

velopment of the pathology of vessels.

Atherosclerotic damage results in the disappear-

ance of endothelium-dependent vasodilator responses

to ATP [77, 100], whereas the relaxing action of

smooth muscle is unimpaired. The release of ATP

from endothelial cells has been claimed to be im-

paired in atherosclerotic rat caudal arteries [89].

Long-term supplementation with a high cholesterol

diet decreases the release of ATP from the caudal ar-

tery of aged rats [52]. Changes in the dual nervous

and endothelial control of blood flow in hypocholes-

teraemic rabbits have been described [29].

Apoptotic cell death is recognized to occur in

a number of vascular diseases, including atherosclero-

sis, restenosis, and hypertension [69]. Vascular endo-

thelial cells are continuously exposed to variations in

blood flow, which plays an important role in vessel

growth or regression and in the local development of

atherosclerosis. The shear stress that occurs during

changes in blood flow leads to a substantial release of

ATP (and UTP) from endothelial cells [24], and these

purines might mediate alterations in the balance be-

tween proliferation and apoptosis [60]. Occupation of

P2X� receptors leads to the production of proinflam-

matory cytokines [35] and tumor necrosis factor-�

markedly increases endothelial cell apoptosis via the

activation of caspase 3 [69].

Restenosis

In restenosis following balloon angioplasty, there is

a peak in the proliferation and apoptosis of vascular

smooth muscle cells at ~14 days [49]. The first bal-

loon inflation during coronary angioplasty is a pre-

conditioning stimulus leading to a decrease in ische-

mia during later inflations; intracoronary adenosine

administration before coronary angioplasty modifies

the preconditioning effect of the first inflation [62].

Further studies show that adenosine preconditions hu-
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man myocardium against ischemia in vivo [64]. Ische-

mia and hypoxia lead to a substantial release of ATP

from endothelial cells [5] and ATP and adenosine are

released from hypoxic heart and skeletal muscle [13].

Diabetes

Along with its stimulating effect on bovine retinal

capillary endothelial cells, adenosine has been shown

to have an inhibitory effect on retinal pericytes, and it

has been hypothesized that this dual function plays

a role in the pathological neovascularisation process

that takes place in diabetes [56]. Diabetic microangio-

pathy has been implicated as a fundamental feature of

the pathological complications of diabetes, including

retinopathy, neuropathy, and foot ulceration [61].

Vascular pain

P2X� receptors are found on nociceptive sensory

nerve fibres and local release of ATP activates these

fibres sending messages to the pain centres in the

brain (see [20]). Burnstock speculated in 1996 [9] that

vascular pain, such as angina, migraine, ischemic

muscle pain, lumbar pain and pelvic pain, may in-

volve purinergic signalling. It was suggested that fol-

lowing local vasospasm, ATP released from

microvessel endothelial cells during the reactive hy-

peraemia that follows and is known to be associated

with pain, reaches P2X� receptors on the nociceptive

sensory fibres in the adventitia to initiate pain. This

concept was first proposed for the pain occurring in

migraine [17, 25]. In anginal pain, cardiac myocytes

as well as coronary microvessel endothelial cells may

be the source of ATP and adenosine reaching puriner-

gic nociceptors [32, 93].
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