Identifying Common Genetic Variants Associated With Disease Risk And Clinical Outcome In Epithelial Ovarian Cancer

By

Lydia Quaye

Thesis submitted to University College London in fulfilment of the requirement for the degree of Doctor of Philosophy

Declaration

I, Lydia Quaye, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Abstract

Combinations of common germline low-moderate susceptibility alleles may be responsible for some of the 90% of ovarian cancer (OC) cases not explained by known risk genes. These alleles may also affect survival of OC patients.

The effects of 34 tagging single nucleotide polymorphisms (tSNPs) from candidate oncogenes (*BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA*) and 63 tSNPs from "functionally" relevant genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) on the risk and survival of OC sufferers were evaluated with ~1,800 cases and 3,045 controls. Associations were found between disease risk and *NMI* rs11683487 (P-_{dominant}=0.004) and *RUVBL1* rs13063604 (P-_{trend}=0.0192). These associations were not independently validated with additional samples, however, they remained significant when the results from both stages of genotyping were combined (P<0.05). Global tests of association with OC risk were significant for *BRAF*, *ERBB2*, *CASP5* and *RUVBL1* (P-_{global}<0.05). However, there was no evidence of an excess of significant associations from 340 SNPs investigated with the admixture maximum likelihood test (P-_{trend}=0.068).

BRAF, *FILIP1L*, *KRAS*, *RBBP8* and *RUVBL1* were also associated with the survival of all OC cases (P<0.05). When analysis was restricted to the 4 main histological subtypes of OC, additional associations were identified. Although these results are of particular interest, they were based on relatively small numbers of samples and have not been corrected for multiple testing, therefore they should be treated with

caution. The results from the secondary objective of the project, to evaluate whole genome amplification (WGA) of DNA and SNP multiplex platforms, are also described.

To conclude, associations were identified between candidate oncogenes and functionally relevant genes on the survival and susceptibility of ovarian cancer. The performance of WGA DNA on SNP multiplex genotyping platforms highlighted the importance of comparing WGA DNA with corresponding gDNA in order to ascertain quality of genotyping on the platform.

Contents

Declaration	2
Abstract	
Contents	5
List of Figures	9
List of Tables	11
Dedication	19
Acknowledgements	20
Publications from this thesis	21
Chapter 1: Introduction	22
1.1: Background	22
1.2: Symptoms and diagnosis of ovarian cancer	22
1.3: Histological pathology of ovarian cancer	23
1.3.1: Histological subtypes	23
1.3.2: Stages of ovarian cancer	25
1.3.3: Grading of ovarian cancer	25
1.4: Treatment and survival of ovarian cancer patients	26
1.5: Risk and protective factors of epithelial ovarian cancer	
1.6: Incessant ovulation and ovarian cancer	
1.7: Animal models of ovarian cancer	
1.8: Genetics of epithelial ovarian cancer	
1.8.1: Oncogenes	
1.8.2: Tumour suppressor genes	
1.8.3: Epithelial ovarian cancer and inheritance	42
1.8.4: High risk/high penetrance genes	43
1.8.5: Ovarian cancer and high susceptibility genes	44
1.8.6: Moderate/low penetrance risk susceptibility	47
1.8.7: Polygenic model of ovarian cancer	48
1.9: Linkage and case-control studies	48
1.9.1: Single nucleotide polymorphisms	49
1.9.2: Hardy-Weinberg equilibrium	
1.9.3: Linkage disequilibrium	54
1.9.4: The International HapMap Project	55
1.10: Association study approaches	56
	5

1.10.1: Functional SNP, candidate gene approach	56
1.10.2: Functional SNP, candidate pathways approach	60
1.10.3: Tagging SNPs, candidate pathways approach	60
1.10.4: Consortium approach	62
1.10.5: Genome-wide, consortium approach	63
1.11: Survival analysis	65
1.12: The admixture maximum likelihood test	71
1.13: DNA amplification and genotyping platforms	72
1.13.1: Whole genome amplification	73
1.13.2: SNP multiplex genotyping platforms	77
1.14: Project aims	78
Chapter 2: Materials and Methods	80
2.1: Introduction	80
2.1.1: Ethics Statement	80
2.2: Study individuals	80
2.3: Gene and tagging SNP selection of candidate oncogenes	90
2.4: Microcell-mediated chromosome transfer of chromosome 18	92
2.5: Gene and tagging SNP selection of "functional" candidate genes	94
2.6: Selection of genes tagging SNPs analysed with admixture maximum likelihood test	
	95
likelihood test	95 97
likelihood test	95 97 97
likelihood test	95 97 97 97 98
 likelihood test	95 97 97 98 98
 likelihood test	95 97 97 98 98 98 99
 likelihood test	95 97 97 98 98 98 99 99 99
 likelihood test	

2.13.2: Admixture maximum likelihood test
2.13.3: Survival analysis
2.13.4: Kaplan-Meier survival estimates
Chapter 3: Results - The effects of common SNPs and haplotypes variants of
oncogenes and functional candidate genes on the risk of ovarian cancer124
3.1: Introduction
3.2: Investigation of the effect of candidate oncogenes on risk of ovarian cancer
3.2.1: Candidate oncogene and tSNP selection
3.2.2: Oncogenes - Samples and methods
3.2.3: Quality control
3.2.4: Associations between candidate genes and ovarian cancer risk
3.3: The Effect of tagging SNPs and haplotypes of functional candidate genes on risk of ovarian cancer
3.3.1: Gene and tSNP selection of functional candidate genes
3.3.2: MMCT-18 samples and methods161
3.3.3: Ovarian cancer risks associated with common genetic variation in functional candidate genes
3.4: Admixture Maximum Likelihood test results
3.4.1: Samples and methods
3.4.2: Logistic regression results (unadjusted)186
3.4.3: AML results (adjusted for population stratification)191
3.5: Summary195
Chapter 4: Results - Common germline variants in candidate ovarian cancer genes and survival of patients with invasive epithelial ovarian cancer199
4.1: Introduction
4.2: Survival analyses of variants and haplotypes of candidate oncogenes201
4.2.1: Univariate survival analysis results of BRAF
4.2.2: Univariate survival analysis results of KRAS
4.2.3: Univariate survival analysis results of <i>PIK3CA</i>
4.2.3: The influence of clinical prognostic factors on survival
4.2.4: Multivariate survival analysis results of oncogene variants
4.2.5: Multivariate survival analysis results of BRAF oncogene
4.2.6: Multivariate survival analysis results of KRAS oncogene
4.3: Survival analyses of variants and haplotypes of functional candidates219
4.3.1: Association between clinical prognostic factors and survival for "functional" candidate genes

4.3.2: Effect of "functional" candidate ovarian cancer genes on survival of	
ovarian cancer patients	
4.3.3: Multivariate survival analysis results of <i>AIFM2</i>	
4.3.4: Multivariate survival analysis results of CASP5	
4.3.5: Multivariate survival analysis results of <i>RGC32</i>	
Multivariate survival analysis results of FILIP1L	227
4.3.6: Multivariate survival analysis results of <i>RBBP8</i>	230
4.3.7: Multivariate survival analysis results of <i>RUVBL1</i>	238
4.4: Summary	238
Chapter 5: Results Evaluating whole genome amplification methods and SI multiplex genotyping platforms	
5.1: Introduction	241
5.2: Whole genome amplification	241
5.2.1: Comparison of the ease of use of whole genome amplification metho	ds
5.2.2: Quantities of whole genome amplified products	
5.3: Comparison of SNP multiplex genotyping platforms	244
5.3.1: OpenArray	245
5.3.2: iPLEX	249
5.4: Concordance of WGA products with genomic DNA on Taqman	251
5.5: The performance of genomic and amplified DNA on SNP multiplex genotyping platforms	256
5.5.1: Call rates	256
5.5.2: Concordance rates from iPLEX genotyping	257
5.5.3: Assays with discordances in more than one amplification method	
5.5.4: The performance of gDNA and WGA-DNA on SNPlex	261
5.5.5: Concordance between gDNA and WGA-DNA on SNPlex	262
5.5.6: The performance of gDNA and WGA-DNA on OpenArray	266
5.5.7: Reproducibility of the OpenArray genotyping data	268
5.5.8: Comparison of rs10487888 genotypes from iPLEX and OpenArray	269
5.6: Direct comparison of the multiplexing methods	271
5.7: Genotyping on iPLEX gold system	273
5.8: Summary	
Chapter 6: Discussion and conclusions	
References	
Appendices	

List of Figures

Figure 1.1: Trend of mortality rates for ovarian, breast and cervical cancer (1971-2003)
Figure 1.2: Age-distribution of new ovarian cancer cases in 2006 (UK)29
Figure 1.3: Accumulation of mutations leading cancer development32
Figure 1.4: Contribution of high-risk susceptibility genes to epithelial ovarian cancer
Figure 1.5: A single nucleotide polymorphism and it's possible genotypes50
Figure 1.6: Different allele and genotype frequencies in different populations52
Figure 1.7: Principles of tagging SNPs
Figure 1.8: Schematic diagram of whole genome amplification with GenomePlex.75
Figure 1.9: Schematic diagram of multiple strand displacement76
Figure 1.10: The binding of biotinylated amplicons to streptavidin-coated SNPlex hybridisation plate
Figure 2.1: Schematic diagram of microcell-mediated chromosome transfer (MMCT)
Figure 2.2: Sections of the OpenArray sample plate
Figure 3.1: Forest plots of tSNP rs11683487 in the <i>NMI</i> gene in ovarian cancer case-control populations
Figure 3.2: Haplotype blocks of <i>KRAS</i> SNPs genotyped137
Figure 3.3: Common haplotypes of KRAS
Figure 3.5: Forest plots of <i>RUVBL1</i> rs7650365 (serous subtype)171
Figure 3.6: Quantile-quantile plot of the univariate trend test results
Figure 4.1: Kaplan-Meier survival estimates of <i>BRAF</i> rs6944385 (all cases)202
Figure 4.2: Kaplan-Meier survival curves
Figure 4.3: tSNPs in <i>BRAF</i> haplotype block216
Figure 4.4: Kaplan-Meier survival estimates of <i>RBBP8</i> (a) rs4474794; (b) rs9304261 (all subtypes combined)233
Figure 5.1: The transfer of sections of sample plates to an OpenArray plate246
Figure 5.2: OpenArray cluster (auto-call)
Figure 5.3: Examples of iPLEX clustering
Figure 5.4: Examples of iPLEX genotype call statuses
Figure 5.5: Clustering of genomic and corresponding REPLI-g-amplified samples with rs602652
Figure 5.6: Types of discordances

Figure 5.7: Unequal amplification of REPLI-g amplified DNA	255
Figure 5.8: Discrepant auto-calling of SNPlex platform	
Figure 5.9: Examples of auto-calling with OpenArray Genotype Analysis	
Figure 5.10: Shift in clusters on iPLEX clusters	

List of Tables

Table 1.1: Oncogenes and tumour suppressor genes involved in ovarian cancer
development
Table 1.2: Published susceptibility association studies on ovarian cancer (positive
results)
Table 1.3: Response to treatment and clinical outcome publications (significant
SNPs)
Table 2.1: Ovarian cancer case-control populations used in study
Table 3.1: Number of tagging SNPs of candidate oncogenes
Table 3.2: SNP panels from iPLEX assay design software
Table 3.3: Samples used in oncogene study
Table 3.4: Genotype-specific risks of pooled stage 1 oncogene data
Table 3.5: The effect of NMI rs11683487 on the risk of ovarian cancer in Stages 1
& 2 cases
Table 3.6: Haplotype analysis results for BRAF, ERBB2, KRAS, NMI and PIK3CA
Table 3.7: The effect of NMI rs11683487 on the risk of ovarian cancer in Stages 1 &
2 cases
Table 3.8: Haplotype analysis results for NMI (P<0.05) 142
Table 3.9: Genotype-specific risks of KRAS tSNPs (P<0.05)144
Table 3.10: Haplotype analysis results for KRAS (P<0.05)145
Table 3.11: Genotype-specific risks of common <i>BRAF</i> tSNPs (P<0.05)148
Table 3.12: Haplotype analysis results for BRAF (P<0.05)
Table 3.13: Genotype-specific risks of common ERBB2 tSNPs (P<0.05)
Table 3.14: Haplotype analysis results for ERBB2 (P<0.05)
Table 3.15: Genotype-specific risks of common PIK3CA tSNPs (P<0.05)153
Table 3.16: Haplotype analysis results for PIK3CA (P<0.05)
Table 3.17: Candidate "functional" genes from MMCT-18 study
Table 3.18: Ovarian cancer case-control populations included in functional study162
Table 3.19: Genotype-specific risks of MMCT-18 candidate genes
Table 3.20: Genotype-specific risks of variants of RUVBL1 (P<0.05)
11

Table 3.21: Genotype-specific risks of RUVBL1 rs13063604 and rs7650365 (by
genotyping stage)
Table 3.22: MMCT-18 susceptibility - haplotype results (all subtypes)
Table 3.23: Haplotype-specific results of AIFM2 (P<0.05)
Table 3.24: Genotype-specific risks of RGC32 (P<0.05) 177
Table 3.25: Haplotype-specific results of RGC32 (P<0.05)
Table 3.26: Haplotype-specific risks of common AXIN2 (P<0.05)
Table 3.27: Genotype-specific risks of common <i>FILIP1L</i> variants (P<0.05)181
Table 3.28: Haplotype-specific risks of FILIP1L (P<0.05)182
Table 3.29: Haplotype-specific risks of STAG3 (P<0.05)182
Table 3.30: Genotype-specific risks of an AKTIP tSNP (P<0.05)
Table 3.31: Haplotype-specific risks for AKTIP (P<0.05)
Table 3.32: AML - SNPs with significant associations (trend test for association) 189
Table 3.33: AML experiment-wise test results for genotyping groups
Table 4.1: Univariate Cox regression results of <i>BRAF</i> rs6944385, by histology 203
Table 4.2: Univariate Cox regression results of common tSNPs of KRAS (P<0.05)
Table 4.3: Univariate Cox regression results of KRAS haplotypes (P<0.05)205
Table 4.4: Univariate Cox regression results of <i>PIK3CA</i> rs7651265 (by histology)
Table 4.5: Univariate Cox regression results of a PIK3CA haplotype (by histology)
Table 4.6: Results of univariate Cox regression survival analysis of clinical
prognostic factors (oncogene dataset)
Table 4.7: Univariate and multivariate Cox regression results of <i>BRAF</i> tSNPs, by
histology
Table 4.8: Univariate and multivariate Cox regression results of <i>BRAF</i> haplotypes
(P<0.05)
Table 4.9: Univariate and multivariate survival results of KRAS rs10842513218
Table 4.10: Univariate and multivariate survival results of KRAS haplotype block 2
(P<0.05)
Table 4.11: Cox regression survival analysis results of clinical prognostic factors
(MMCT-18 dataset)
12

Table 4.12: Univariate and multivariate survival results of AIFM2 tSNPs (P<0.05)
Table 4.13: Effects of AIFM2 haplotypes on survival from ovarian cancer (P<0.05)
Table 4.14: Effect of CASP5 rs2282657 on survival from ovarian cancer
Table 4.15: Univaraite and multivariate survival results of CASP5 haplotype
(P<0.05)
Table 4.16: Univariate and multivariate survival results of RGC32 tSNPs (P<0.05)
Table 4.17: Univariate and multivariate survival results of FILIP1L tSNPs (P<0.05)
Table 4.18: Univariate and multivariate survival results of FILIP1L haplotype block
2 (P<0.05)
Table 4.19 Univariate and multivariate survival results of <i>RBBP8</i> tSNPs (P<0.05)
Table 4.20: Univariate and multivariate survival results of <i>RBBP8</i> haplotypes
(P<0.05)
Table 4.21: Cox regresssion results of RUVBL1 rs4857836237
Table 5.1: Comparison of whole genome amplification methods 243
Table 5.2: Average fold increase in DNA quantities after WGA 244
Table 5.3: Ease of use of SNP multiplex genotyping platforms 247
Table 5.4: iPLEX call rates by DNA amplification method 257
Table 5.5: Overall discordance per WGA method on iPLEX platform
Table 5.6: Types of discordances found with iPLEX (by WGA method)260
Table 5.7: SNPlex assay pass rates (by WGA method)
Table 5.8: OpenArray call rates 266
Table 5.9: Reproducibility of genotypes from OpenArray platform
Table 5.10: Comparison of iPLEX Gold with OpenArray genotypes for rs10487888
Table 5.11: Average call rate and discordances for each method
Table 5.12: Types of discordances identified with each WGA method and platform

Table 5.13: Number of SNPs with call rates \ge 90% and discordances $<$ 2% for the second seco	or each
method	273
Table 5.14: Distribution of discordances of rs523104 (Infinium vs iPLEX C	Gold vs
Taqman)	278
Table 5.15: Distribution of discordances of rs7650365 (Infinium vs iPLEX	Gold vs
Taqman)	279
Table 5.16: Discordances between iPLEX Gold and Infinium	

List of Appendices

Appendix I: MMCT-18 master-list
Appendix II-A: Genotype distributions of tagging SNPs in BRAF, ERBB2, KRAS,
<i>NMI</i> and <i>PIK3CA</i> (by study)
Appendix II-B: Genotype distributions of tSNPs in AIFM2, AKTIP, AXIN2, CASP5,
FILIP1L, RBBP8, RGC32, RUVBL1 and STAG3
Appendix III-A: Genotype specific ratios of <i>BRAF</i> tSNPs on ovarian cancer
susceptibility
Appendix III-B: Haplotype-specific risks of <i>BRAF</i> on ovarian cancer susceptibility
Appendix III-C: Genotype specific risks of <i>ERBB2</i> tSNPs on ovarian cancer
susceptibility
Appendix III-D: Haplotype-specific risks of <i>ERBB2</i> on ovarian cancer susceptibility
Appendix III-E: Genotype specific ratios of KRAS tSNPs on ovarian cancer
susceptibility
Appendix III-F: Haplotype-specific risks of <i>KRAS</i> on ovarian cancer susceptibility
Appendix III-G: Genotypic specific risks of <i>NMI</i> tSNPs on ovarian cancer
susceptibility
Appendix III-H: Haplotype-specific risks of <i>NMI</i> on ovarian cancer susceptibility393
Appendix III-I: Genotypic specific risks of <i>PIK3CA</i> tSNPs on ovarian cancer
susceptibility
Appendix III-J: Haplotype-specific risks of PIK3CA on ovarian cancer susceptibility
Appendix IV-A: Genotypic specific ratios of AIFM2 tSNPs on ovarian cancer
susceptibility
Appendix IV-B: Haplotype-specific risks of AIFM2 on ovarian cancer susceptibility
Appendix IV-C: Genotypic specific ratios of AKTIP tSNPs on ovarian cancer
susceptibility
Appendix IV-D: Haplotype-specific risks of <i>AKTIP</i> on ovarian cancer susceptibility
Appendix IV-E: Genotypic specific ratios of AXIN2 tSNPs on ovarian cancer
susceptibility
Appendix IV-F: Haplotype-specific risks of <i>AXIN2</i> on ovarian cancer susceptibility
406
Appendix IV-G: Genotypic specific ratios of CASP5 tSNPs on ovarian cancer
susceptibility

Appendix IV-H: Haplotype-specific risks of CASP5 on ovarian cancer susceptibility
Appendix IV-J: Haplotype-specific risks of <i>FILIP1L</i> on ovarian cancer susceptibility
Appendix IV-K: Genotypic specific ratios of <i>RBBP8</i> tSNPs on ovarian cancer susceptibility
Appendix IV-L: Haplotype-specific risks of <i>RBBP8</i> on ovarian cancer susceptibility
Appendix IV-M: Genotypic specific ratios of RGC32 tSNPs on ovarian cancer susceptibility 418
Appendix IV-N: Haplotype-specific risks of <i>RGC32</i> on ovarian cancer susceptibility
Appendix IV-O: Genotypic specific ratios of RUVBL1 tSNPs on ovarian cancer susceptibility 422
Appendix IV-P: Haplotype-specific risks of <i>RUVBL1</i> on ovarian cancer susceptibility
Appendix IV-Q: Genotype specific ratios of <i>STAG3</i> tSNPs on ovarian cancer susceptibility
Appendix IV-R: Haplotype-specific risks of <i>STAG3</i> on ovarian cancer susceptibility
Appendix V: Genotype distributions of tagging SNPs in candidate genes analysed with AML test
Appendix VI: Genotype-specific risks of all SNPs analysed with AML method451 Appendix VII-A: Univariate and multivariate Cox regression results of <i>BRAF</i> tSNPs
Appendix VII-B: Univariate and multivariate Cox regression results of <i>BRAF</i> haplotypes
Appendix VII-C: Univariate and multivariate Cox regression results of <i>ERBB2</i> tSNPs
Appendix VII-D: Univariate and multivariate Cox regression results of <i>ERBB2</i> haplotypes
Appendix VII-E: Univariate and multivariate Cox regression results of <i>KRAS</i> tSNPs
Appendix VII-F: Univariate and multivariate Cox regression results of <i>KRAS</i> haplotypes
Appendix VII-G: Univariate and multivariate Cox regression results of <i>NMI</i> tSNPs
Appendix VII-H: Univariate and multivariate Cox regression results of <i>NMI</i> haplotypes
Appendix VII-I: Univariate and multivariate Cox regression results of <i>PIK3CA</i> tSNPs
16

Appendix VII-J: Univariate and multivariate Cox regression results of <i>PIK3CA</i> haplotypes	87
Appendix VIII-A: Univariate and multivariate Cox regression results of <i>AIFM2</i>	02
tSNPs	84
Appendix VIII-B: Univariate and multivariate Cox regression results of <i>AIFM2</i>	07
haplotypes	8/
Appendix VIII-C: Univariate and multivariate Cox regression results of <i>AKTIP</i> tSNPs	91
Appendix VIII-D: Univariate and multivariate Cox regression results of AKTIP	
haplotypes4	92
Appendix VIII-E: Univariate and multivariate Cox regression results of <i>AXIN2</i> tSNPs	93
Appendix VIII-F: Univariate and multivariate Cox regression results of AXIN2	
haplotypes	95
Appendix VIII-G: Univariate and multivariate Cox regression results of <i>CASP5</i>	/5
tSNPs	98
Appendix VIII-H: Univariate and multivariate Cox regression results of <i>CASP5</i>	70
haplotypes	00
Appendix VIII-I: Univariate and multivariate Cox regression results of <i>FILIP1L</i>	
tSNPs	03
Appendix VIII-J: Univariate and multivariate Cox regression results of <i>FILIP1L</i>	
haplotypes	05
Appendix VIII-K: Univariate and multivariate Cox regression results of <i>RBBP8</i>	
tSNPs	07
Appendix VIII-L: Univariate and multivariate Cox regression results of <i>RBBP8</i>	
haplotypes	08
Appendix VIII-M: Univariate and multivariate Cox regression results of <i>RGC32</i> tSNPs	10
Appendix VIII-N: Univariate and multivariate Cox regression results of <i>RGC32</i>	10
haplotypes	12
Appendix VIII-O: Univariate and multivariate Cox regression results of <i>RUVBL1</i>	14
tSNPs	14
Appendix VIII-P: Univariate and multivariate Cox regression results of <i>RUVBL1</i>	11
haplotypes	16
Appendix VIII-Q: Univariate and multivariate Cox regression results of <i>STAG3</i>	10
tSNPs	18
Appendix VIII-R: Univariate and multivariate Cox regression results of <i>STAG3</i>	10
haplotypes	19
Appendix IX-A: Call rates and concordance of WGA samples vs gDNA genotyped	
with TaqMan	
Appendix IX-B: Call rates of assays genotyped on iPLEX (by amplification	_0
method)	21
Appendix IX-C: Discordance rates on iPLEX (by WGA method)	
••	17

Appendix IX-D: Call rates of SNPs genotyped on SNPlex (by WGA method)523
Appendix IX-E: Discordance rates of WGA-DNA on SNPlex (auto-call genotypes)
Appendix IX-F: Types of discordances found with SNPlex (by WDA method) 525
Appendix IX-G: Call rates of polymorphisms genotyped on OpenArray (by WGA
method)
Appendix IX-H: Discordance rates of polymorphisms genotyped on OpenArray (by
WGA method)
Appendix IX-I: Types of discordances on OpenArray528
Appendix IX-J: Reproducibility of genotyping on OpenArray - comparison of
duplicates
Appendix X-K: iPLEX gold vs Illumina genome-wide association data (based on SEARCH and UKOPS cases only

Dedication

For my parents, Benedicta (née Maison) and Brian Barrett-Stone, and my grandmother, Angela Maison, to whom I owe everything. My endless gratitude for your love, support and guidance. Thank you for being with me every step of the way.

Acknowledgements

I would like to thank Dr Simon Gayther and Dr Susan Ramus for their supervision, help and guidance, without which this project would not have been possible. I would also like to thank my colleagues, the members of the Ovarian Cancer Association Consortium. Special thanks to Dr Honglin Song, who has been an excellent person to collaborate with over the past few years. Thank you very much, Honglin, for all your help and patience for far too many things to mention here. Thanks also to Leigh Pearce, Jonathan Tyrer and Paul Pharaoh for help with the statistics and running STATA; Susanne Krüger Kjaer and Estrid Hogdall for their encouragement and for allowing me to use their samples for my research.

Special thanks also to the people who fall under the friend and colleague category: Mark Cox, James Morris, Maria Notaridou, Dimitra Dafou, Chris Jones, Jeremy Ford, Ken Choi and everyone I have worked with at the Gynae Oncology Research lab. Thanks to those at Maple House and the Proteomic team for always making me feel welcome. Those at the Molecular Psychiatry lab: Andrew McQuillin, Jonathan Pimms *et al* for the scientific discussions.

I am indebted to Dr Lalaruque Khalique and Miss Eva Wozniak for proofreading this thesis, contributing to some of the work and being fantastic friends. Last but not least, many thanks to my family and friends for all the support and encouragement: Julie, Karen, Kirsty, Hazel, Daniel, the Bradley twins, Anila, Penny Allen, (Sp)Anna, Uncle William, Patricia, Chrystal, Grandma, Grandpa and everyone else who falls into this category.

Publications from this thesis

M Notaridou*, L Quaye*, D Dafou, C Jones, H Song, E Høgdall, SK Kjaer, L Christensen, C Høgdall, J Blaakaer, V McGuire, AH Wu, DJ Van Den Berg, MC Pike, A Gentry-Maharaj, E Wozniak, T Sher, IJ Jacobs, J Tyrer, JM Schildkraut, PG Moorman, ES Iversen, A Jakubowska, K Medrek, J Lubiński, RB Ness, KB Moysich, G Lurie, LR Wilkens, ME Carney, S Wang-Gohrke, JA Doherty, MA Rossing, MW Beckmann, FC Thiel, AB Ekici, X Chen, J Beesley, J Gronwald, PA Fasching, J Chang-Claude, MT Goodman, G Chenevix-Trench, A Berchuck, CL Pearce, AS Whittemore, U Menon, PD Pharoah, SA Gayther, SJ Ramus; The Australian Ovarian Cancer Study Group/Australian Cancer Study (Ovarian Cancer); on behalf of the Ovarian Cancer Association Consortium (2010): Common alleles in candidate susceptibility genes associated with risk and development of epithelial ovarian cancer. *International Journal of Cancer* [in press]

L Quaye*, J Tyrer*, SJ Ramus, H Song, E Wozniak, RA DiCioccio, V McGuire, E Høgdall, C Høgdall, J Blaakaer, EL Goode, JM Schildkraut, DF Easton, S Krüger-Kjaer, AS Whittemore, SA Gayther, PD Pharoah (2009): Association between Common Germline Genetic Variation in 94 Candidate Genes or Regions and Risks of Invasive Epithelial Ovarian Cancer. *PLoS One* **4**(6):e5983.

L Quaye*, D Dafou*, SJ Ramus*, H Song, A Gentry-Maharaj, M Notaridou, E Høgdall, S Krüger-Kjaer, L Christensen, C Høgdall, DF Easton, I Jacobs, U Menon, PD Pharoah, SA Gayther (2009): Functional Complementation Studies Identify Candidate Genes and Common Genetic Variants Associated with Ovarian Cancer Survival. *Human Molecular Genetics* **18**(10):1869-78.

L Quaye, H Song, SJ Ramus, A Gentry-Maharaj, E Høgdall, RA DiCioccio, V McGuire, AH Wu, DJ Van Den Berg, MC Pike, E Wozniak, JA Doherty, MA Rossing, RB Ness, KB Moysich, C Høgdall, J Blaakaer; Ovarian Cancer Association Consortium, DF Easton, BA Ponder, IJ Jacobs, U Menon, AS Whittemore, S Krüger-Kjaer, CL Pearce, PD Pharoah, SA Gayther (2009): Tagging singlenucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer. *British Journal of Cancer* **100**(6):993-1001.

L Quaye, SA Gayther, SJ Ramus, RA Di Cioccio, V McGuire, E Høgdall, C Høgdall, J Blaakaer, DF Easton, BAJ Ponder, I Jacobs, S Krüger-Kjaer, AS Whittemore, CL Pearce, PD Pharoah, H Song (2008): The effects of common genetic variants in oncogenes on ovarian cancer survival. *Clinical Cancer Research* **14**(18):5833-9.

* Joint first authors

Chapter 1: Introduction

1.1: Background

Ovarian cancer is the sixth most common cancer in women worldwide, but the initiation, progression and metastasis of the disease is still poorly understood (Parkin *et al.* 2005). The global incidence of ovarian cancer is approximately 205,000 per year and the death rate is 125,000 a year. Ovarian cancer is more common in Northern Europe, North America and other developed areas of the world (Parkin *et al.* 2005, Sankaranarayanan and Ferlay 2006). Africa and Asia have the lowest incidence of the disease (Parkin *et al.* 2005). The cumulative lifetime risk of ovarian cancer in the general population is 1% by the age of 70 years, but the risk is higher in individuals with a family history of breast or ovarian cancer (Sharma *et al.* 2001). Individuals with an affected first degree relative have a 3.1% chance of developing ovarian cancer (Stratton *et al.* 1998). Aside from age, family history is the strongest known risk factor for ovarian cancer (Ramus *et al.* 2007).

1.2: Symptoms and diagnosis of ovarian cancer

Although there are some symptoms associated with ovarian cancer, these symptoms are usually vague and non-distinct from other conditions such as irritable bowel syndrome. This can lead to a delay in diagnosing and treating ovarian cancer. Symptoms of ovarian cancer include a conspicuous abdominal mass, vaginal bleeding unrelated with menstruation, distended and hard abdomen, and abdominal pain (Lurie *et al.* 2009).

Recently, the "risk of malignancy index" (RMI) has been developed in order to preclinically assess an individual's risk of cancer, before they are referred to a gynaecological oncology clinician, if necessary. In ovarian cancer, the combined results of blood CA-125 levels (the molecular biomarker of ovarian and other cancers), menopausal status and transvaginal ultrasound results are used to estimate a woman's risk of disease before referral to a gynaecological oncologist (http://info.cancerresearchuk.org/cancerstats/types/ovary/symptoms/?a=5441). Definitive diagnosis of ovarian cancer is through histological examination of a suspected tumour.

1.3: Histological pathology of ovarian cancer

Ovarian cancer can occur in the ovarian surface epithelium, germ cells or stroma. Approximately 90% of ovarian cancer cases are of epithelial origin and of these 90% are malignant carcinomas (Auersperg *et al.* 2001, Weiss *et al.* 1977). There are three categories of epithelial ovarian cancer: benign cystadenomas, borderline epithelial ovarian cancer and invasive carcinomas (Scully 1999). Epithelial neoplasms are believed to arise from the ovarian surface epithelium, benign epithelial inclusion cysts and cyst-adenomas (Cheng *et al.* 2004), or in rare cases, from ovarian endometrial foci. There is also a theory proposing that some cases of ovarian cancer initiate from the fallopian tube (Dubeau 2008).

1.3.1: Histological subtypes

There are several histological subtypes of invasive epithelial ovarian cancer. The histological classification of ovarian cancer is reviewed in Kaku *et al.* (2003) and

Christie and Oehler (2006). These include serous adenocarcinoma, mucinous adenocarcinoma, endometrioid adenocarcinoma and clear cell carcinoma (McCluggage 2008). The serous histological subtype of ovarian cancer is the most common subtype, occurring in approximately 50% of malignant cases (Koonings *et al.* 1989; Seidman *et al.* 2004). Kooning *et al* found that there were differences in the age distributions of histological subtypes. There is conflicting data on whether the mucinous or the endometrioid is the second most common histological subtype. Seidman *et al.* 10%, 6% and 10%, respectively, from a sample of 220 cases (Seidman *et al.* 2004). However, Kooning *et al* established from 180 patients that the frequencies of endometrioid and clear cell histological subtypes were 11%, 9% and 4%, respectively. Each histological subtype has a different underlying pathogenesis and "natural behaviour" in terms of disease progression. However, it has been shown that there is an element of subjectivity in the pathological typing of some samples (McCluggage 2008).

The differences in the underlying pathogenesis and behaviour of the tumours have led to the suggestion that the histological subtypes of ovarian cancer are different diseases, rather than different forms of the same disease. This suggestion is supported by the distinct molecular changes found in the different histological subtypes of ovarian cancer. *KRAS* mutations are predominantly found in mucinous tumours. However, alterations of *PTEN* and *CTNNB1* are found in low grade endometrioid carcinomas; and *BRCA1*, *BRCA2*, *TGFBR2* and *HNF1B* are associated with the clear cell subtype. The serous subtype can be separated into low and high grade carcinomas, which correlate with different molecular changes. Whilst

mutations in *TP53*, *BRCA1* and *BRCA2* are associated with high grade serous carcinomas, mutations in *BRAF* and *KRAS* are found in low grade serous tumours (Christie and Oehler 2006).

1.3.2: Stages of ovarian cancer

Staging of ovarian tumours is the definitive method of confirming ovarian cancer diagnosis. Staging ovarian cancer involves a pathological examination of the size of the tumour and whether the tumour has spread. The Fédération Internationale de Gynécologie et d'Obstétrique (FIGO) staging system is commonly used for this purpose. There are four major stages of ovarian cancer, and within each stage there are 3 sub-groups, except stage IV. In stage I (early stage) ovarian cancer the tumour is confined to either or both ovaries. Stage II comprises of tumours in one or both ovaries with pelvic extension. Stage III involves ovarian tumour(s) with microscopically confirmed peritoneal metastases outside of the pelvis and or regional lymph node metastases. Stage IV, the most advanced, involves distant metastases (http://info.cancerresearchuk.org/cancerstats/types/ovary/symptoms/?a=5441).

1.3.3: Grading of ovarian cancer

The grade of an ovarian tumour is based on the appearance of the cells under a microscope. There are 3 grades given to tumours, grade 1 (low-grade) contains well-differentiated cells, which look similar to normal cells. Grade 1 cells are slow-growing and are unlikely to spread. Grade 2 cells are moderately differentiated and appear more abnormal than the low grade cells. Grade 3 cells are poorly differentiated and fast-growing, with a high likelihood of spreading.

The stage, grade and histological subtype of the tumour are used for diagnostic purposes and to provide a prognosis. The pathological information is also used to evaluate the most appropriate treatment to use.

1.4: Treatment and survival of ovarian cancer patients

The primary treatment for the vast majority of ovarian cancer is surgical removal of the tumour. However, the full course of treatment is based on the type of ovarian cancer and also the stage of the tumour. Patients with borderline or low grade stage I tumours are likely to only require surgery, while those with stages II or III usually have surgery, followed by adjuvant, platinum-based combination chemotherapy(Cancer Research UK

http://www.cancerhelp.org.uk/help/default.asp?page=3084). Patients with stage IV ovarian tumours tend to require more aggressive treatment, if the patient is well enough. Treatment of stage IV tumours typically involves shrinking the tumour with chemotherapy before and after debulking surgery. Radiotherapy is also used, in some cases, to relieve symptoms

(http://www.cancerhelp.org.uk/help/default.asp?page=3084).

The five-year survival rate for ovarian cancer is between 20-30%, which is not different from around 30 years ago, and overall, 60% of ovarian cancer sufferers die from their disease (Vanderhyden *et al.* 2003). The relatively unvarying mortality rate for ovarian cancer over the past 30 years is a sharp contrast to the mortality rates of breast and cervical cancer over the same time period (see Figure 1.1). Thus, although the mortality rates of breast and cervical cancers were greater than that of

ovarian cancer in 1971, there have been consistent and significant reductions in the mortality rates for breast and cervical cancers since 1990 and 1976, respectively (Figure 1.1). As a consequence of these reductions, the mortality rate of cervical cancer has been less than ovarian cancer since 1988, and in the year 2003 the rate for cervical cancer was approximately 5 deaths per 100,000 patients compared with 12 per 100,000 for ovarian cancer.

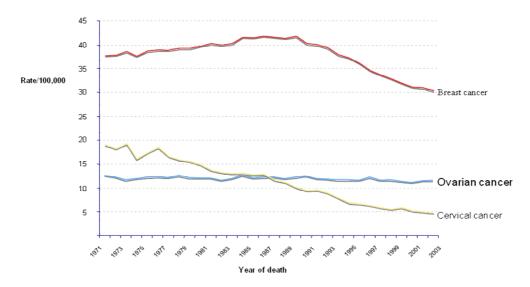


Figure 1.1: Trend of mortality rates for ovarian, breast and cervical cancer (1971-2003)

Engel and colleagues found 10-year survival rates between 32 and 34% for their ovarian cancer study participants, who were Caucasians from Germany. They also reported that despite improvements in the treatment of the disease and better survival of patients with FIGO stages I and II; the same did not apply to those with FIGO stages III-IV, and overall, there was no significant increase in the survival rate of ovarian cancer sufferers (Engel *et al.* 2002).

The pathological stage of ovarian tumours at diagnosis has the strongest effect on survival. Patients with late stage (FIGO III or IV) tumours have lower survival probabilities and thus worse prognosis, than those with early stage disease. The 5-year survival rate for ovarian cancer diagnosed in the early stages is greater than 70%. However, only 20% of ovarian cancer sufferers are diagnosed with early stage disease. In contrast, the 5-year survival rate reduces to approximately 15% for late stage disease with distant metastases, which affects a third of patients diagnosed (Cancer Research UK

http://info.cancerresearchuk.org/cancerstats/types/ovary/survival/). Ovarian cancer is normally diagnosed when the disease is at an advanced stage, at which point, the prognosis is poor. This contributes to the high mortality from the disease. The age of the patient at diagnosis is also a determinant of survival. Older patients have poorer prognosis, compared with younger patients. However, this could be due to younger patients, despite their illness, being generally healthier than older patients.

1.5: Risk and protective factors of epithelial ovarian cancer

Aside from age, family history is the strongest risk factor for ovarian cancer (Amos and Struewing 1993). In families with affected individuals, the risk is conferred by the inheritance of a germline mutation. Other risk factors for ovarian cancer include early menarche, late menopause, infertility, nulliparity and low parity (Hildreth *et al.* 1981; Mori *et al.* 1988; DePasquale *et al.* 1998). Age has the strongest impact on the risk of ovarian cancer; as age increases, so does the risk of the disease. Greater than 80% (5,506 out of 6,596) of new ovarian cancer cases diagnosed in the UK in 2006 were at least 50 years old (Cancer Research UK). The age distribution of new ovarian cancer cases in the UK are shown in Figure 1.2. Many of these other risk factors are a result of continuous ovulation, which encompasses early menarche, late menopause, nulliparity and low parity.

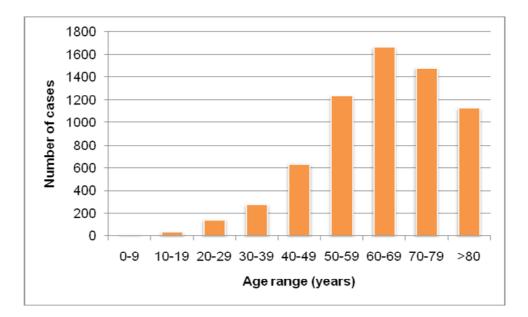


Figure 1.2: Age-distribution of new ovarian cancer cases in 2006 (UK) N=6,596

There is conflicting evidence for the association between talcum powder use and ovarian cancer risk. Some studies have found that talcum powder use is associated with a moderate increase in ovarian cancer risk (Cramer *et al.* 1999, Gertig *et al.* 2000, Mills *et al.* 2004), but meta-analyses have not found a statistically significant association (Gross and Berg 1995, Huncharek *et al.* 2003). Studies of menopausal women on hormone replacement therapy have found that there is an increased risk of ovarian cancer in women who use oestrogen only treatment for more than 10 years, but the mechanisms through which the tumours arise are unknown (Folsom *et al.* 2004, Lacey *et al.* 2002, Rodriguez *et al.* 2001). Furthermore, there is also

conflicting data on whether factors such as consumption of alcohol, coffee, calcium, lactose, fibre or smoking increase susceptibility to ovarian cancer (Mori *et al.* 1988; Whittemore *et al.* 1988; Cramer 1989).

Use of the oral contraceptive pill is known to be a protective factor against the development of ovarian cancer (Casagrande *et al.* 1979; Franceschi *et al.* 1991). The oral contraceptive pill prevents ovulation by mimicking the levels of hormones normally present during pregnancy. Other factors such as high parity, increased duration of breast feeding, hysterectomy and tubal ligation have also been associated with reduced risk of the disease (Hildreth *et al.* 1981; Cramer *et al.* 1983; Whittemore *et al.* 1992; Hankinson *et al.* 1993).

1.6: Incessant ovulation and ovarian cancer

The ovarian surface epithelium is a monolayer of cells which covers the outside of the ovary (Vanderhyden *et al.* 2003) and ovarian cancer is believed to arise as a result of the continuous rupturing and mitotic repairing of the ovarian surface epithelium throughout a woman's life (Auersperg *et al.* 2001). Humans and chickens are two of very few animals known to spontaneously develop ovarian cancer. Fathalla was the first person to suggest a connection between incessant ovulation and ovarian cancer in women and hens (Fathalla 1971).

Every time mitosis occurs, there is a risk of DNA mutation. During ovulation, a follicle ruptures, releasing an ovum from the ovary. The ruptured follicle is subsequently a wound, which must be repaired by mitosis. This knowledge

combined with the fact that every time mitosis occurs there is a risk of DNA mutation, suggests a mechanism for the development of neoplasm in the ovaries. It has been proposed that the constant rupturing and repairing of the wounds on the ovarian surface throughout a woman's reproductive life contributes to the lifetime risk of ovarian cancer.

Ovarian cancer is primarily seen in perimenopausal and postmenopausal women. Greater than 90% of ovarian cancer cases are seen in women who are over 40 years old and the average age at which women in the general population are diagnosed is 60 years, and 50 years for familial cases (Holschneider and Berek 2000). This and other ovarian cancer risk factors, such as high parity, oral contraception use, support the incessant ovulation theory for the mechanism through which the disease arises (Casagrande *et al.* 1979).

1.7: Animal models of ovarian cancer

Little is known about the initiation, progression and metastasis of ovarian cancer despite research using ascites, primary ovarian tumour cell lines and animal models. Two varieties of animal models are used: those which spontaneously develop ovarian cancer (such as hens, some strains of mice, Wistar and Sprague-Dawley rats) and those which can be induced to develop ovarian cancer (sheep, guinea pig, rabbits) (Vanderhyden *et al.* 2003). Animal models used in ovarian cancer research are reviewed by Vanderhyden *et al.* (2003). Animal models have been useful in elucidating; the mechanism through which ovulation occurs, how inclusion cysts develop and the affects of steroids *in vivo*, but some of the results are conflicting,

and the disease is still poorly understood.

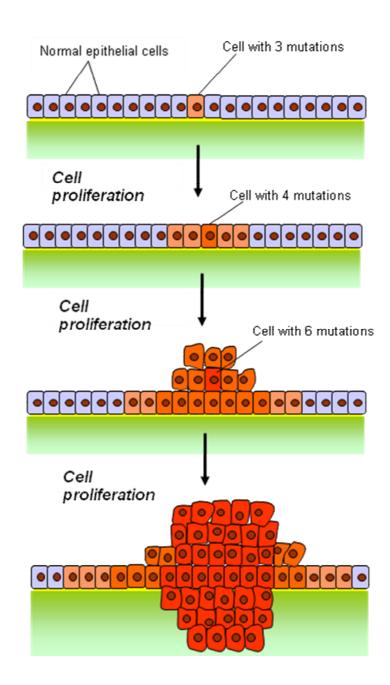


Figure 1.3: Accumulation of mutations leading cancer development

(Figure adapted from (Alberts 1994))

1.8: Genetics of epithelial ovarian cancer

Although the genetics of the initiation, progression and metastasis of ovarian cancer are poorly characterised, the general development of cancer is better understood. Normal cells are believed to transform into neoplastic cells after the acquisition of several mutations. Figure 1.3 shows the schematic progression of a tumour from a single mutated cell to a clump of mutated cells in a process known as clonal evolution (Alberts 1994). The mutation of some genes such as *BRCA1*, *BRCA2* and *TP53* have been proposed to lead to genomic instability, where the rate of gene mutation is accelerated due to the loss of genomic integrity and also the loss of a cell's ability to regulate normal cellular processes. The single mutated cell must have a mutation that gives it a growth advantage over the surrounding cells. The successive proliferation of the mutated cell and its daughter cells tend to lead to additional mutations. The clones with mutations for a growth advantage are continuously selected for and may become malignant.

Although the acquisition of mutations is essential for tumour development, the accumulation of mutations is not enough to cause cancer. A cell with the prerequisite genetic changes for cancer must be able to: evade apoptosis and the host's immune system; either have an increased rate of cell proliferation, or a decreased rate of cell death; become insensitive to internal and external inhibitory signals (i.e. cell-to-cell contact inhibition, anti-growth signals); become self sufficient in growth signals and either prevent cell differentiation; or promote cell de-differentiation (Boon 1993, Hanahan and Weinberg 2000). Angiogenesis must also occur in order for a tumour mass to get sufficient nutrients to grow beyond a

critical size. Ovarian cancer and other malignancies occur as a result of the accumulation of genetic alterations and favouring environment for tumour growth. Two groups of genes which are implicated in ovarian cancer development are oncogenes and tumour suppressor genes.

1.8.1: Oncogenes

Proto-oncogenes are essential in the normal functioning of cells, particularly in the regulation of cell division, proliferation, survival, motility and apoptosis. In adults, proto-oncogenes respond to stimuli from wound sites to repair the damage by stimulating growth factors. Oncogenes are mutated forms of proto-oncogenes. Some activating mutations can be within coding regions or regulatory elements. Proto-oncogenes can also be transformed by amplification of the region. Chemical carcinogens, ionising radiation, errors in DNA replication and faulty DNA damage repair can also cause the activating mutations (Balmain *et al.* 2003). Mutated oncogenes may still be able to elevate growth factor production and stimulate cell mitosis, but the activity may be poorly regulated, and this lack of regulation can lead to the transformation of normal cells into tumour cells (Hogdall *et al.* 2003a, Rhim 1988). Proto-oncogenes primarily have a dominant effect on cells, therefore the mutation of a single copy of the gene is sufficient for the gene to become an oncogene (Aunoble *et al.* 2000).

A number of oncogenes have been implicated in the development of ovarian cancer. These oncogenes include *AKT2*, *BCL2*, *BRAF*, *CDKN2A*, *MYC*, *CSF1R*, *CTNNB1*, *EGFR*, *ERBB2*, *FGF3*, *HRAS*, *KRAS*, *MDM2* and *PIK3CA*.

BCL2, which is located on chromosome 18q21.3, is involved in inhibiting apoptosis (White and Gilmore 1996). *BCL2* has been found to be over-expressed in 39% of ovarian tumours (Baekelandt *et al.* 1999).

The v-raf murine sarcoma viral oncogene homologue B1 (BRAF) is a protooncogene located on chromosome 7q34. The gene encodes a 84.4kDa protein, which acts as an effecter downstream of KRAS in the RAS-RAFmitogen/extracellular signal-regulated kinase (MEK)-extracellular signal regulated kinase (ERK), and mitogen-activated protein kinase (MAPK) pathway. This pathway is critical in the transduction of cell growth signals from the cytoplasm into the nucleus (Russell and McCluggage 2004). Over-expression of BRAF has been found in ovarian, as well as a variety of other cancers, including melanomas, colorectal and thyroid cancer (Sieben et al. 2004). Mutations in BRAF in ovarian cancer have been reported to be as high as 36% (Sieben et al. 2004). However, according to the Catalogue Of Somatic Mutations In Cancer (COSMIC), a database from the Sanger Institute which catalogues mutations reported in ovarian and other malignancies, BRAF is one of the most mutated genes in ovarian cancer, with a frequency of 12% (www.sanger.ac.uk/genetics/CGP/cosmic/). Activating mutations of BRAF are more common in early stage ovarian cancer. BRAF mutations are predominantly found in tumours of the low grade serous histological subtype (Ho et al. 2001, Sieben et al. 2004). Mutations in BRAF have previously been shown to be associated with poor survival in patients diagnosed with papillary thyroid cancer and colon cancer (Abubaker et al. 2007, Samowitz et al. 2005).

The v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue (KRAS) is located on chromosome 12p12.1. The proto-oncogene encodes a 21.6 kDa protein, which is upstream of BRAF in the RAS-RAF-MEK-ERK-MAP kinase pathway (Russell and McCluggage 2004). Mutations in one of three RAS proto-oncogenes (KRAS, HRAS or NRAS), which result in the genes becoming activated are found in approximately 25% of human cancers (Gemignani et al. 2003). KRAS, like BRAF, is one of the most mutated genes found in ovarian cancer tumours and cell lines, with a frequency of 15% (Forbes et al. 2006). Codons 12 and 13 of the oncogene appear to be mutation "hotspots". Mutations in KRAS are predominantly found in mucinous histological subtype of ovarian cancer (50-68%), however mutations in codons 12 and 13 have also been observed in some non-mucinous ovarian cancers (Cuatrecasas et al. 1997, Cuatrecasas et al. 1998, Gemignani et al. 2003). Like BRAF, KRAS mutations tend to be detected in stage 1 tumours (Gemignani et al. 2003, Ho et al. 2001, Sieben et al. 2004). Furthermore, somatic alterations in KRAS have been associated with poor survival in patients with colorectal, lung and pancreatic cancers (De Roock et al. 2007, Kim et al. 2008, Lievre et al. 2006).

CDKN2A is a cell cycle control gene on chromosome 9p21.3. *CDKN2A* induces cell cycle arrest at G1 and G2/M checkpoints. *CDKN2A* is mutated in 10% of ovarian tumours and cell lines (<u>www.sanger.ac.uk/genetics/CGP/cosmic/</u>).

CTNNB1 is located on chromosome 3p22-p21.3 and is involved in cell proliferation. This gene encodes β -catenin, which is a member of the Wnt signal transduction pathway. Approximately 30% of endometrioid ovarian carcinomas have *CTNNB1* mutations. It has been demonstrated that the β -catenin is normally degraded by *APC*. However, mutant forms are resistant to the degradation, and thus accumulate in the cytoplasm. β -catenin may form complexes with transcription factors such as TCF/Lef-1, which translocates into the nucleus and activates transcription of genes, such as *MYC*, *CCND1* (also known as cyclin D1), *C-JUN* and *FRA-1* (Christie and Oehler 2006, Schlosshauer *et al.* 2002).

The v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2 (ERBB2), also known as human epidermal growth factor receptor-2 (HER-2) and neuro/glioblastoma derived oncogene homologue (NEU) is a proto-oncogene located on chromosome 17q21.1. The ERBB2 proto-oncogene encodes a transmembrane protein, which acts as a growth factor receptor and is involved in cell proliferation and cell differentiation (Wu et al. 2004). The over-expression of ERBB2 is believed to cause the transcriptional activation of genes involved in cell proliferation (Aunoble et al. 2000). Ovarian, breast, prostate, lung, gastrointestinal, kidney, liver and bladder cancers have been shown to over-express *ERBB2* (Wu *et al.* 2004). For ovarian cancer, between 20-30% of stage III and IV tumours, primary tumour cells and cell lines over-express ERBB2 (Hellstrom et al. 2001). Protein expression using antibody staining on a subset of ovarian tumours from the MALOVA study showed that 39% of the carcinomas over-expressed ERBB2 (Hogdall et al. 2003). These findings are indicative of a tumour growth advantage when ERBB2 is overexpressed (Hellstrom *et al.* 2001). The variations in ERBB2 expression in the MALOVA study correlated with survival; where over-expression of ERBB2 was associated with poor clinical outcome (Hogdall et al. 2003). It has also been found that ovarian cancer cases homozygous for a polymorphism in ERBB2, I655V, which results in the production of the valine amino acid instead of isoleucine, have a

shorter survival period compared with the common homozygotes (who produce the isoleucine amino acid) (Pinto *et al.* 2005). Associations between ERBB2 overexpression in tumours and survival have also been reported for breast and colon cancers (Fritz *et al.* 2005).

The catalytic Class IA p110-alpha subunit of phosphatidylinositol 3-kinase (PIK3), which is known as *PIK3CA* is located on chromosome 3q26.3. This oncogene is a lipid kinase, which is involved in the regulation of cell proliferation, adhesion transformation, survival, apoptosis, and motility (Cantley 2002, Fruman et al. 1998, Volinia et al. 1994). There are two "hot spots" in which mutations in PIK3CA cluster – exons 9 and 20. Exon 9 contains the sequence for the helical domain, and exon 20 encodes the kinase domain. Mutations in these "hot spots" of the gene have been found in primary tumours and cell lines of cancers such as ovary, breast, lung, brain, colon and stomach (Muller et al. 2007). Shayesteh et al. initially identified the over-expression of PIK3CA in 7 out of 9 ovarian carcinoma cell lines. This overexpression correlated with fluorescent in situ hybridisation (FISH) data, which showed that *PIK3CA* was amplified in approximately 58% of the primary ovarian tumours (Shayesteh et al. 1999). The role of PIK3CA in tumour progression is reviewed in (Roymans and Slegers 2001, Samuels and Ericson 2006). In addition, mutations in the gene or over-expression of the gene may be correlated with worse clinical outcome in patients with ovarian, breast, thyroid, lung and colon cancer (Abubaker et al. 2007, Kato et al. 2007, Li et al. 2006, Woenckhaus et al. 2007).

MYC is a transcription factor which has a major role in neoplastic transformation. *MYC* over-expression caused by gene amplification induces uncontrolled hyperproliferation and occurs in approximately 30% of epithelial ovarian cancers (Aunoble *et al.* 2000). Some of the oncogenes and tumour suppressor genes implicated in ovarian cancer are shown in Table 1.1.

1.8.2: Tumour suppressor genes

Tumour suppressor genes (TSGs) are responsible for the inhibition of cell proliferation. The inactivation of a TSG results in a decrease in the expression of the TSG, which may lead to neoplastic growth. It has been proposed that there are two categories of TSGs: gatekeepers and caretakers. Gatekeepers are genes which act directly to regulate cell proliferation (Levitt and Hickson 2002). The retinoblastoma (RB1) and adenomatous polyposis coli (APC) genes are gatekeepers. The normal RB1 protein represses cell proliferation and also regulates transcription (Classon and Harlow 2002). Loss of function mutations in both copies of RB1 may result in a mutated form of the protein being produced, which is incapable of performing its normal function. Mutations in the RB1 gene can lead to retinoblastoma, osteosarcoma and small-cell lung cancer (Taya 1997). APC is believed to inhibit the β-catenin protein, which is involved in the regulation of cell signal transduction, growth and adhesion (Fearnhead et al. 2002). The loss of these functions can lead to cells developing the anchorage independent characteristic of cancer cells and unregulated cell proliferation. Mutations in APC may lead to familial adenomatous polyposis coli and sporadic colon cancer (Seitz et al. 2003).

Table 1.1: Oncogene	es and tumour suppressor	genes involved in ovarian cancer
		-

development

Gene	Chromosome	Function	Mutations (%)				
Oncogenes							
AKT2	19q13.2	Regulation of cell proliferation. AKT is a major mediator of survival signals that protect cells from undergoing apoptosis.	17*				
BCL2	12q15	Acts as an ubiquitin ligase promoting proteasome dependent degradation of p53. Transcriptional target of p53.	39*				
BRAF	7q34	Involved in the transduction of mitogenic signals from the cell membrane to the nucleus.	12				
CDKN2A	9p21.3	Induces cell cycle arrest at G1 and G2/M checkpoints, blocking them from phosphorylating RB1 and preventing exit from G1 phase of the cell cycle. P16-INK4a could act as a negative regulator of normal cells proliferation.	10				
МҮС	8q24.21	Transcription factor. Involved in regulation of gene expression.	30*				
CSF1R	5q32	Receptor. CSF1R activation by CSF1 results in increased growth, proliferation and differentiation.	4				
ERBB2	17q11.2-q12, 17q21.1	Receptor tyrosine kinase. Transmembrane receptor.	1				
KRAS	12p12.1	Involved in the transduction of mitogenic signals from the cell membrane to the nucleus.	15				
PIK3CA	3q26.3	Signal transduction. Activated by growth factors.	8				
		Tumour suppressor genes					
BRCA1	17q21	Transcription factor. Plays essential role in DNA repair. Needed for cell arrest after DNA damage.	3				
BRCA2	13q12.3	Transcription factor. Involved in DNA double strand break repair and homologous recombination.	2				
PTEN	10q23.31	A phosphatase that negatively regulates the AKT/PKB pathway. Involved in cell cycle progression and cell survival.	8				
<i>TP53</i>	17p13.1	Transcription factor. Induces cell growth arrest/apoptosis.	28				
APC	5q21-q22	Antagonist of the Wnt signalling pathway. Involved in cell migration, cell adhesion, transcriptional activation, and apoptosis.	9				
RB1	13q14.2	Negative regulator of the cell cycle. Regulates transcription.	10				

* over-expressed/amplified.

Caretaker tumour suppressor genes, such as *BRCA1*, *BRCA2* and *TP53*, encode proteins which are involved in the regulation of DNA replication, gene transcription, DNA repair or cell cycle checkpoints. All of these processes help maintain the integrity of the genome (Levitt and Hickson 2002). The *BRCA1*, *BRCA2* and *TP53* tumour suppressors are important in ovarian and breast cancers. *BRCA1* and *BRCA2* have many functions within the cell, which include DNA damage repair, DNA recombination, transcription and cell cycle checkpoint regulation (Venkitaraman 2002). Mutations in *BRCA1* and *BRCA2* can lead to the accumulation of mutations within a cell because of the loss of the appropriate DNA repair mechanism. This allows cells containing mutations to progress through cell cycle checkpoints. The *BRCA1* and *BRCA2* genes are very important in familial cases of breast and ovarian cancer, and their expression is reduced in some sporadic cancers, however mutations in these genes are relatively low (3% and 2%, respectively) when all ovarian cancers are considered (www.sanger.ac.uk/genetics/CGP/cosmic/).

PTEN is mutated in 8% of ovarian tumours

(www.sanger.ac.uk/genetics/CGP/cosmic/). The TSG is located on chromosome 10q23.3, which encodes a phosphatase protein that inhibits the AKT/PKB signal transduction pathway. The protein is involved in cell cycle progression and cell survival. The expression of the gene can lead to cell cycle arrest, apoptosis and a reduction of cell motility (Christie and Oehler 2006).

The *TP53* protein is crucial for transcription, DNA repair, cell cycle control and apoptosis (French *et al.* 2001, Hulla *et al.* 2001). *TP53* is one of the most often mutated genes in human cancer – over 50% of sporadic tumours have an alteration in

the *TP53* gene (www-p53.iarc.fr). Twenty-eight per cent of ovarian cancers contain *TP53* mutations (www.sanger.ac.uk/genetics/CGP/cosmic/). *TP53* is also the causal gene of Li-Fraumeni syndrome, which is characterised by an increased susceptibility to cancers. Mutations in *TP53* are predominantly found in the DNA binding domain of the gene, which disrupts the ability of the protein to bind DNA and activate transcription (Iwakuma *et al.* 2005).

1.8.3: Epithelial ovarian cancer and inheritance

Meta-analyses of case-control and cohort studies has demonstrated that an individual with an affected first degree relative has a 3% risk of developing ovarian cancer (Stratton *et al.* 1998). This value is greater than the risk for a woman in the general population developing ovarian cancer (1%). Since twins, both monozygotic and dizygotic, generally share the same environment *in utero* and after birth, twin studies enable the estimation of the overall contribution of inherited genes to the development of cancers. Monozygotic twins are genetically identical, and dizygotic twins share approximately 50% of their segregating genes.

Twins who are concordant for a cancer have a tumour of the same anatomical site. It can be said that genetics plays an important role in the development of cancer if the proportion of monozygotic twins concordant for a cancer is greater than that of dizygotic twins. A twin study published in 2000 compared the concordance of cancer in monozygotic and dizygotic twins. They found that genetic factors made a major contribution to susceptibility of cancers such as breast, stomach, lung, colorectal and prostate as well as ovarian cancer. From Lichtenstein's study, the heritability of ovarian cancer was estimated to be 22% (Lichtenstein *et al.* 2000).

Approximately 5-10% of ovarian cancer cases are inherited. Familial ovarian cancer is subdivided into three categories: (i) site specific ovarian cancer, (ii) breast and ovarian cancer syndrome, and (iii) hereditary non-polyposis colorectal cancer (HNPCC, also known as Lynch II syndrome) (Prat *et al.* 2005). Site-specific ovarian cancer and inherited breast and ovarian cancer syndrome are deemed to be part of the same disease syndrome spectrum because they are associated with germ-line *BRCA1* and *BRCA2* mutations (Prat *et al.* 2005).

Linkage analysis of breast and ovarian cancer families have shown that ovarian cancer is caused by *BRCA1* and *BRCA2* in the majority (> 90%) of breast and ovarian cancer syndrome families with more than 3 affected individuals. It has been demonstrated that mutations in *BRCA1* or *BRCA2* co-segregate with the disease within families. Mutations in the DNA mismatch repair genes, *MSH2*, *MLH1*, *PMS1*, *PMS2* and *MSH6/GTBP* inherited from HNPCC families account for approximately 10% of familial cases of ovarian cancer (Sharma *et al.* 2001).

1.8.4: High risk/high penetrance genes

Mutations in some genes cause a very high risk of developing a cancer. These genes are known as high risk susceptibility genes, and in cancer, most appear to have a dominant effect on the development of the cancer. The inheritance of a mutated form of the high risk gene results in a greater chance of developing the disease. Normally, the Mendelian dominant mode of inheritance means that the inheritance of one mutated copy of the causal gene is sufficient to cause the disease in the offspring. In hereditary cancer, an affected individual usually inherits a mutated copy of the gene (such as *BRCA1* or *BRCA2*), this is known as the first hit. The second copy of the gene is lost by another mechanism, such as somatic mutation, loss of heterozygosity or methylation (the second hit) (Knudson 1971). These form the basis of the two-hit hypothesis, which was proposed as a possible explanation of the development of cancer.

Familial cancers appear at an earlier onset because the affected individuals already have a mutated gene (first hit), therefore it is assumed that it requires less time to acquire the second hit compared with sporadic cases, who need to attain both hits through somatic mutation. The dominant effects of genes on cancer development are demonstrated by the adenomatous polyposis coli (*APC*) gene and familial adenomatous polyposis (FAP) syndrome. FAP is characterised by the presence of hundreds to thousands of polyps in the colon or rectum before 40 years of age. FAP is caused by mutations in the *APC* gene. The children of FAP patients have a 50% chance of inheriting the mutated gene. Colorectal tumours from FAP patients show that in addition to the germline mutated copy of the *APC* gene, somatic mutation results in the inactivation of the normal gene copy (Fearnhead *et al.* 2002).

1.8.5: Ovarian cancer and high susceptibility genes

A gene which confers increased susceptibility to ovarian cancer alone has not been isolated. *BRCA1* and *BRCA2* are large genes which co-segregate with the majority of hereditary breast and ovarian cancer. *BRCA1* and *BRCA2* were both mapped through linkage analysis of families with breast and ovarian cancer syndrome. *BRCA1* is an 81.09 kb tumour suppressor gene which was mapped to chromosome 17q12-21 in 1994 (Miki *et al.* 1994). *BRCA2* (84.19kb) was mapped to chromosome

13q12-13 in 1995 and the gene was identified on chromosome 13q12.3 in 1996 (Wooster *et al.* 1995). *BRCA1* and *BRCA2* consist of 24 and 28 exons, respectively, and exon 11 from both genes constitute 60% of their coding DNA sequences (Kote-Jarai and Eeles 1999).

These two genes account for approximately 45% of epithelial ovarian cancer familial cases (Ramus *et al.* 2007). Most cases (approximately 90%) with greater than 3 first-degree relatives with ovarian cancer and breast cancer are due to *BRCA1* and *BRCA2* mutations (Pharoah and Ponder 2002). However, there are some large ovarian cancer families, which are not linked to *BRCA1* or *BRCA2* (Ramus *et al.* 2007). Some of the remaining high penetrance familial cases are linked to mutations in mismatch repair genes in hereditary non-polyposis colorectal cancer (HNPCC) cases (Lakhani and Flanagan 2002). The mutations and linkage analysis studies are reviewed in (Pharoah and Ponder 2002, Prat *et al.* 2005).

Although *BRCA1* and *BRCA2* germline mutations in breast cancer occur with equal frequency, *BRCA1* mutations are approximately four times more common than *BRCA2* mutations in ovarian cancer (Gayther *et al.* 1999). *BRCA1* mutation carriers from breast and ovarian cancer families have a greater than 40% lifetime risk of ovarian cancer, and *BRCA2* mutation carriers have a 10% risk of ovarian cancer. The fact that not all individuals with a *BRCA1* or *BRCA2* mutation develop ovarian or breast cancer suggests that the genes are not fully penetrant – a mutation does not correlate to the development of a malignancy in all mutation-carriers. The incomplete penetrance of *BRCA1* and *BRCA2* may be explained by the position of the mutation within the genes, modifying genes and environmental factors, which

affect the chances of a *BRCA1* and *BRCA2* mutation carrier developing ovarian cancer (Thompson and Easton 2002). It has been demonstrated that *BRCA1* and *BRCA2* mutation carriers on long term oral contraceptive pills have a reduced risk of ovarian cancer (Whittemore *et al.* 2004).

The diagnosis of cancer is at a younger age for mutation carriers when compared with non-carriers (Laplace-Marieze *et al.* 1999, Pharoah and Ponder 2002). There is also evidence suggesting that *BRCA1* mutation carriers are more likely to have serous adenocarcinoma histological subtype tumours than non-familial cases (Lakhani and Flanagan 2002, Rubin *et al.* 1996). Furthermore, there is inconclusive data for survival in *BRCA1* and *BRCA2* mutation carriers. Some studies have reported that *BRCA1* and *BRCA2* carriers with ovarian cancer have better long-term survival compared with non-carriers (Boyd *et al.* 2000; Chetrit *et al.* 2008). However, others have demonstrated survival advantage, which were not statistically significant between *BRCA1* and *BRCA2* mutation carriers and non-carriers (Pharoah *et al.* 1999, Ramus *et al.* 2001).

To conclude, these high risk susceptibility genes account for approximately 10% of all ovarian cancer cases (see Figure 1.4). This poses the important question – "is a proportion of the remaining ovarian cancer cases attributable to moderate or low penetrance genes?"

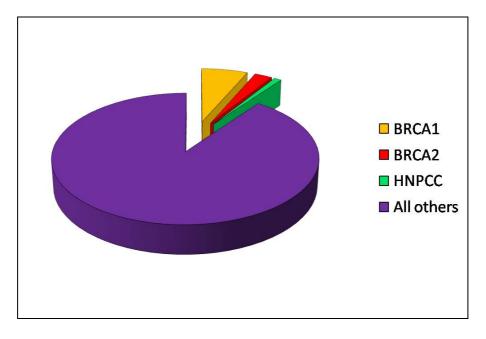


Figure 1.4: Contribution of high-risk susceptibility genes to epithelial ovarian cancer

HNPCC - genes associated with hereditary non-polyposis colon cancer

1.8.6: Moderate/low penetrance risk susceptibility

Statistical modelling using data from high-risk families and population-based ovarian cancer cases, have suggested that a dominant or recessive high susceptibility gene predisposing to ovarian cancer is unlikely (Antoniou *et al.* 2000). There was no significant difference between simulation of a hypothetical high risk gene with *BRCA1* and *BRCA2* and simulation without the hypothetical gene. The modelling also showed that common genes with low penetrance or rare alleles with higher risks were compatible with the observed data. However, the results from simulations of a model of relatively common alleles with moderate penetrance were inconsistent with the observed data. These suggest that some of the familial risks could be due to environmental, or modifying genetic factors (Antoniou *et al.* 2000).

1.8.7: Polygenic model of ovarian cancer

Linkage and segregation analysis of non-*BRCA1* and *-BRCA2* families and epidemiological modelling have suggested that ovarian cancer may be a polygenic disease. This polygenic theory is attractive because ovarian cancer, as with other complex diseases, is likely to be influenced by many genes, as well as environmental factors. The common variant: common disease hypothesis is correlated with the polygenic model (Risch, N. and Merikangas 1996; Chakravarti 1999). The hypothesis proposes that some genetic variants, with moderate effects, become common over time. These variants may predispose to common diseases and the combinations of the variants may affect differences in disease susceptibility (Pharoah *et al.* 2004).

In light that it is unlikely that there is another high-risk ovarian cancer susceptibility gene, and twin studies have suggested that genes are more important than shared environment in ovarian cancer development, it is feasible that polymorphisms of candidate genes may confer moderate- or low-penetrance susceptibility. This project aims to evaluate the risks of ovarian cancer associated with common genetic polymorphisms of candidate genes.

1.9: Linkage and case-control studies

Linkage analysis led to the discovery of mutations in *BRCA1* and *BRCA2* in breast and ovarian cancer syndrome families. However, linkage analysis and segregation analyses have not been successful in identifying other high-risk ovarian cancer susceptibility genes. Genetic susceptibility association studies involve the

comparison of the frequencies of candidate susceptibility variants in ovarian cancer cases with matched (by age, ethnicity, area of residence, sometimes socio-ecomonic status, parity, oral contraceptive use and other epidemiological factors depending on the number of study participants), unaffected controls to ascertain whether there are significant differences between cases and controls. Association studies can also be used to identify genetic factors which may influence response to treatment or overall survival from the disease. In survival association studies, comparisons are made between the frequencies of the genetic variables of individuals still alive, and those who have died, within a specified period of time.

As ovarian cancer has late onset and poor survival, there are insufficient numbers of older members of pedigrees to perform associations with families. Thus, casecontrols association studies have greater statistical power than familial association studies to detect ovarian cancer susceptibility variants with moderate effects. Statistical power refers to the probability of rejecting a false null hypothesis. As statistical power increases, the likelihood of obtaining a false negative result (type II error) decreases, therefore increasing the chance of finding a true association. Type I error is the rejection of the null hypothesis due to chance findings. For example, the 5% significance level suggests that there is a 5 in 100 probability of obtaining a positive result by chance.

<u>1.9.1: Single nucleotide polymorphisms</u>

A single nucleotide polymorphism (SNP) is variation at a single base in a DNA sequence, which occurs with a frequency of $\geq 1\%$ in the population. SNPs with allele frequencies greater than 5% are called common polymorphisms. SNPs are the

most abundant polymorphisms in humans, with approximately 10 million variants in the human genome (Sobrino *et al.* 2005). The vast majority of SNPs are bi-allelic, which means there are two variants for the particular SNP, with one copy inherited from each parent (Doris 2002), see Figure 1.5.

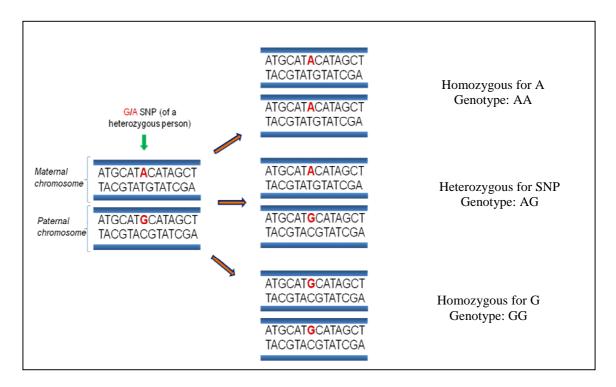


Figure 1.5: A single nucleotide polymorphism and it's possible genotypes

Between 3-5% of the human genome encode proteins, therefore the majority of SNPs are in non-coding regions of the genome, such as the introns of genes, between genes or in regions without open reading frames. SNPs within coding regions of genes are of particular interest because there is a greater chance that they may result in a variation of the biological function of the protein either by altering the folding of the protein, or the binding of the protein. A SNP can be coding or non-coding. Coding SNPs are located in the exons of genes and can be transcribed into amino acids. Coding SNPs can be synonymous or non-synonymous. The alleles of a synonymous SNP result in the same amino acid being produced, due to the redundancy of amino acid codons. However, non-synonymous SNPs result in different amino acids being produced. These are known as missense SNPs. The amino acids translated from missense SNPs may have different charges, which may affect protein folding and binding, and subsequently the function of the protein. Another type of non-synonymous SNP exists, nonsense SNPs – these result in one of the alleles encoding a STOP codon, which may lead to a truncated protein being produced, if at all. However, most nonsense SNPs are mutations rather than polymorphisms.

SNPs in the untranslated regions (UTR) 5' or 3' of genes are also of interest. SNPs in the 5' UTR may contain sequences involved in promoting translation initiation. 5' UTRs often contain binding sites for proteins which may influence mRNA stability or translation. SNPs in 3' UTR may also be part of sequences for binding sites for proteins involved in mRNA stability or location of proteins within the cell.

Within a population, the frequencies of the alleles may be different; however the proportions of the genotypes add up to one in a population in Hardy-Weinberg equilibrium (HWE) (this is discussed below). The more frequent allele is known as the common or major allele, and the less frequent is the rare/minor allele. As shown in Figure 1.6, the allele frequencies of a SNP may be different within different populations. These differences in the allele frequencies between different

populations highlight the importance of ascertaining the ethnicity of study participants and stratifying populations during analysis.

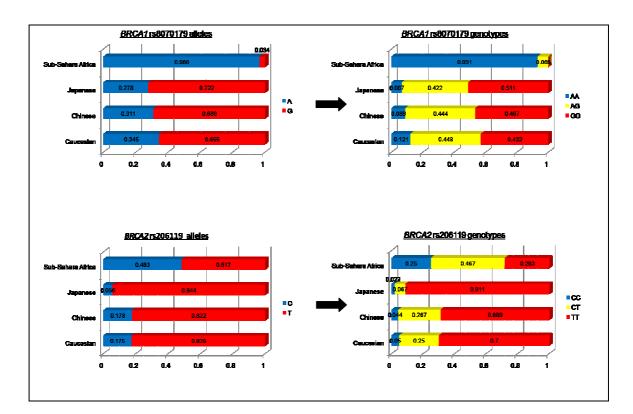


Figure 1.6: Different allele and genotype frequencies in different populations

1.9.2: Hardy-Weinberg equilibrium

The Hardy-Weinberg principle states that allele and genotype frequencies at an autosomal locus within an infinitely large population will reach equilibrium in a single generation where there is random mating, and there are no selective pressures, mutations, migration/emigration or random genetic drift or flow. The Hardy-Weinberg method has been demonstrated to be robust when estimating the allele frequencies of SNPs which are not "physiologically meaningful", such as the polymorphisms which encode the ABO blood groups, enzymes and DNA markers (Elston *et al.* 2002). The term "physiologically meaningful" refers to the fact that,

for example, blood performs the same function, regardless of the ABO group. It must be taken into consideration that despite the same function being performed, there are differences which prevent the transfer of blood from an individual with blood group A or B to a person whose blood group is O. The Hardy-Weinberg method is robust despite the fact that the chances of any population being able to meet all the conditions of the Hardy-Weinberg principle at any one time are very small. HWE is extensively used because the statistical power of detecting deviation from the HWE within large populations is also very small as a result of minute deviations (Chakraborty and Rao 1972; Elston *et al.* 2002).

If a bi-allelic SNP is considered, where the common allele is denoted by "*A*", the rare allele by "*a*", with allele frequencies *p* and *q*, respectively; when a population is in HWE, the frequency of "*A*" is *p*; the frequency of "a" is *q*, and p+q=1. The Punnett square below shows how genotypes can be derived from parents heterozygous at a SNP.

	Female	gametes
	A(p)	a (q)

 $AA(p^2)$

Aa (pq)

Punnett square for Hardy-Weinberg equilibrium (HWE)

Therefore, if a population is in equilibrium, the frequencies the genotypes would be:

Aa (pg`

AA (common homozygot	es) =	p^2 ;
Aa (rare homozygotes)	=	q^2 ;
Aa (heterozygotes)	=	2pq.

A(p)

a (q)

Male

gametes

<u>1.9.3:</u> Linkage disequilibrium

Linkage disequilibrium (LD) is the non-random association of alleles at two or more loci. Neighbouring SNPs tend to be in LD – the SNPs are correlated with each other. The term "tag" is sometimes used to describe the correlation between SNPs with the same or similar minor allele frequencies (MAF). The correlation between neighbouring SNPs makes it unnecessary to genotype all the SNPs within a gene or chromosomal locus in order to test for association with disease. SNP tagging is described in detail in section 1.9.8 on page 60. There are two main ways of measuring LD between SNPs: disequilibrium coefficient (r^2), and normalised measure of Lewontin (D'). r^2 is a measure of the statistical correlation between two loci. For example, at two bi-allelic SNP loci on the same chromosome, if the common and rare alleles of the first locus are denoted as *A* and *a*, respectively, and the alleles of the second locus is *B* and *b*. When r^2 is used to calculate the LD between the alleles, the allele frequencies for *A*, *a*, *B* and *b*, are written as π_A , π_a , π_B and π_b , respectively, and the frequencies of the haplotypes (the combinations of the alleles of the two loci) are π_{AB} , π_{Ab} , π_{aB} and π_{ab} . Then

$$r^2 \equiv \frac{(\pi_{AB} - \pi_A \pi_B)^2}{\pi_A \pi_a \pi_B \pi_b}$$

(Pritchard and Przeworski 2001)

D' is derived from D, which measures the deviation of the frequencies of alleles or haplotypes from the equilibrium state. Therefore, D is calculated by subtraction the expected allele frequency from the observed frequency. For haplotype frequencies $D=\pi_{AB}\pi_{ab}-\pi_{Ab}\pi_{aB}$ D is significantly greater than 0 when there is LD between alleles. D' is the absolute ratio of D compared with its minimum value, when D<0, or its maximum value, when D \geq 0. D' is calculated by:

$$D' = \frac{D}{\sqrt{\pi_{+A}\pi_{B+}}}$$

(Devlin and Risch 1995). When two loci are in complete LD, $r^2=1$ and D'=1, and both r^2 and D' tends towards 0 as the degree of correlation decreases; "0" corresponds to no LD/correlation. r^2 and D' can be calculated in terms of each other and allele frequencies, and r^2 can be calculated from D by the equation:

$$\mathbf{r}^2 = \frac{D^2}{\pi_A \pi_a \pi_B \pi_b}$$

(Hedrick and Kumar 2001). r^2 is more commonly used in genetic association studies because it is inversely correlated to the sample size needed, given a fixed genetic effect. Therefore, the genotypes of a SNP can be predicted from a genotyped SNP with an $r^2 \ge 0.8$ correlation. An $r^2 \ge 0.8$ suggests a $\ge 80\%$ correlation between the SNPs.

1.9.4: The International HapMap Project

The International HapMap Project records genetic variants, genotypes and sequences of 30 sets of (2 parents and an adult child) trios of Yoruba people from Ibadan, Nigeria; 30 trios of north and west European descent – from the Centre d'Etude du Polymorphisme Humain (CEPH) research in the United States of America; 45 unrelated individuals from Beijing, China; and 45 unrelated individuals from Tokyo, Japan. The results are freely available to researchers and they may be used as a reference for genetic association studies. The project aims to identify and record all differences and similarities within the subjects in the project (www.hapmap.org).

1.10: Association study approaches

The vast majority of association studies in ovarian cancer have been conducted on candidate genes from pathways which have been implicated in neoplastic transformation, such as mismatch repair, cell cycle control and oestrogen pathways (Gayther *et al.* 2007, Goodman J. E. *et al.* 2000, Goodman M. T. *et al.* 2001b, Song *et al.* 2006a, Song *et al.* 2006b, Spurdle *et al.* 2000). Table 1.2 shows some significant genetic association studies in ovarian cancer.

<u>1.10.1: Functional SNP, candidate gene approach</u>

The first association studies in ovarian cancer were conducted on single nucleotide polymorphisms (SNPs), with variants which result in different amino acids. It was believed that association studies of these functional SNPs would be successful in identifying ovarian cancer susceptibility genes. However, the approach was not as successful as expected and resulted in the identification of an association with a variant (I31 allele of F31I) of *STK-15*, a putative oncogene (Dicioccio *et al.* 2004). This approach was also used in a study which found that the V108M polymorphism of the *catechol*-O-*methyltransferase* (*COMT*) gene was not associated with ovarian cancer risk (Goodman, J. E. *et al.* 2000).

Gene	SNP	No. cases	No. controls	OR (95% CI)	P-value	Study approach	Population	Reference
P53	A72Arg	51	30	4.16	0.0058	а	Greek	(Agorastos et al. 2004)
CYP1A1	Ile CYP1A1*3 Val	117	202	6.08 (3.73–10.95)	<1x10 ⁻³	а	Turkey	(Aktas et al. 2002)
BRCA2	N372H	1121	2643	1.36 (1.04–1.77)	0.03	а	UK, Australia	(Auranen et al. 2003)
XRCC2	R188H	1600	4241	0.3 (0.1-0.9)	0.003	а	Caucasian (Denmark, UK, USA)	(Auranen et al. 2005)
XRCC3	rs1799796	1600	4241	0.08 (0.7–0.9)	0.049	а	Caucasian (Denmark, UK, USA)	(Auranen et al. 2005)
GST	GSTM1 null	293	219	1.54 (1.06–2.14)	0.025	а	UK	(Baxter <i>et al.</i> 2001)
PGR	+331G/A	973	802	0.46 (0.09-0.97)	-	а	White American, Australian	(Berchuck et al. 2004)
STK15	F31I	1821	2467	1.17 (1.02-1.35)	0.03	а	Caucasian (Denmark, UK, USA)	(Dicioccio et al. 2004)
MLH1	G>A nt-93	899	931	1.5 (1.3–1.9)	5x10 ⁻⁵	а	Canadian mixed	(Harley <i>et al.</i> 2008)
TGFBR1	TGFBR1*6 A	1155	983	1.53 (1.07-2.17)	0.017	а	Italy, Jamaica, UK, USA	(Kaklamani et al. 2003)
PgR	+331G/A (rs10895068	490	534	1.68 (1.09–2.59)	-	а	USA - mixed	(Risch, H. A. et al. 2006)

Table 1.2: Published susceptibility association studies on ovarian cancer (positive results)

Gene	SNP	No. cases	No. controls	OR (95% CI)	P-value	Study approach	Population	Reference
EPHX	Tyr113His	545	287	0.38 (0.17–0.87)	-	а	Australia	(Spurdle et al. 2001)
PGR	V660L	987	1034	0.70 (0.57-0.85)	-	а	White USA	(Terry <i>et al.</i> 2005)
FSHR	Thr307Ala	202	266	2.60 (1.56–4.34)	< 0.0005	а	China	(Yang et al. 2006)
FSHR	Asn680Ser	202	266	2.89 (1.73-4.84)	<0.0005	а	China	(Yang et al. 2006)
BRCA1	Q356R	312	401	0.9 (0.5-1.4)	0.64	а	Caucasian, African American	(Wenham <i>et al.</i> 2003)
CYP17	A2	200	241	1.86 (1.26-2.75)*	0.002	a/b	Caucasian	(Garner et al. 2002)
CYP1B1	V432L	129	144	3.8 (1.2-11.4)	0.005	a/b	White, Asian, Hawaiian	(Goodman, M. T. <i>et al.</i> 2001a)
XRCC2	R188H	1600	4241	0.3 (0.1-0.9)	-	b	Caucasian (Denmark, UK, USA)	(Auranen <i>et al.</i> 2005)
VDR	rs7975232	72	148	2.8 (1.2–7.0)	0.02	b	USA Caucasian	(Lurie et al. 2007)
VDR	rs10735810	72	148	2.5 (1.3–4.8)	0.04	b	USA Caucasian	(Lurie et al. 2007)
SOD2	Val-9ala	125	193	2.1 (1.1-4.0)	0.04	b	USA - mixed	(Olson <i>et al</i> . 2004)
VDR	rs11568820	94	173	0.5 (0.3–0.9)	0.03	b	USA Japanese	Lurie et al. 2007)

Gene	SNP	No. cases	No. controls	OR (95% CI)	P-value	Study approach	Population	Reference
RB1	rs2854344	1514	2415	0.73 (0.61-0.89)	0.0009	b/c	Caucasian (Denmark, UK, USA)	(Song <i>et al.</i> 2006b)
RB1	rs4151620	1514	2415	0.19 (0.07-0.53	0.00005	b/c	Caucasian (Denmark, UK, USA)	(Song <i>et al.</i> 2006b)
SHMT1	rs9909104	829	941	1.2 (1.0–1.4)	0.02	С	USA Caucasian	(Kelemen et al. 2008)
PMS2	rs7797466	1531	2570	1.17 (1.03–1.33)	0.013	С	Caucasian (Denmark, UK, USA)	(Song et al. 2006a)
CDKN1B	rs2066827	4526	6913	0.93 (0.87-0.995)	0.036	d	Caucasian, African American, Asian, Hawaiian	(Gayther et al. 2007)
CDKN2A	rs3731257	4526	6913	0.91 (0.85-0.98)	0.008	d	Caucasian, African American, Asian, Hawaiian	(Gayther et al. 2007)
PgR	rs1042838	7614	651^{\dagger}	1.17 (1.01–1.36)	0.036	d	USA – mixed, UK, Denmark	(Pearce <i>et al.</i> 2008)
AURKA	rs2273535	4624	8113	1.12 (1.01–1.24)	0.03	d	Caucasian – Denmark, UK, USA	(Ramus et al. 2008a)
RB1	rs2854344	4624	8113	0.87 (0.76–0.98)	0.025	d	Caucasian – Denmark, UK, USA	(Ramus et al. 2008a)
9p22	rs3814113	4487	7021	0.82 (0.79-0.86)	5.1 x 10 ⁻¹⁹	е	Caucasian – Denmark, UK, USA, Australia	(Song et al. 2009b)

-; P-value not given; a: functional SNP, candidate gene; b: functional SNP, candidate pathway; c: tSNPs, candidate pathway; d: consortium; e: genome-wide, consortium;

1.10.2: Functional SNP, candidate pathways approach

The functional SNP approach was then used on candidate genes from molecular pathways which were believed to be involved in ovarian cancer development. Auranen *et al* (2005) conducted an association study on genes (*BRCA1*, *NBS1*, *RAD51*, *RAD52*, *XRCC2* and *XBCC3*) involved in the DNA double strand break repair pathways. They found evidence for a decrease in ovarian cancer risk with the rare variants in *XRCC2* and *XRCC3* (R188H and rs1799796, respectively) (Auranen *et al.* 2005). Associations between ovarian cancer risk and genes involved in steroid hormone metabolism and catecholestrogen formation have also been investigated. Individuals who carried the leucine allele for the V432L polymorphism in *CYP1B1* had an increased risk of ovarian cancer (Goodman, M. T. *et al.* 2001b).

1.10.3: Tagging SNPs, candidate pathways approach

The next SNP association study approach involved the use of tagging SNPs (tSNPs) from candidate genes within a pathway. The tagging SNP approach takes advantage of the LD between neighbouring SNPs. SNPs in complete LD ($r^2=1$) are said to tag each other. Therefore, the genotype of a SNP which is tagged by another can be determined from the genotype of the tagging SNP (if they have the same minor allele frequencies [MAF]). SNPs which are in strong LD are inherited together, but their polymorphisms may have different MAF. The pairwise correlation coefficient (r^2_p) is the best way to measure how well a SNP tags another SNP. r^2_p takes into account the loss of power incurred by using the tSNP as a marker, rather than as the causal SNP. r^2_s is a measure of how well a haplotype of tSNPs tags a single SNP that is inefficiently tagged by single SNPs (Song *et al.* 2006a). The SNP which is

genotyped is known as the tagging SNP (tSNP). Figure 1.7 shows the principle of tagging SNPs.

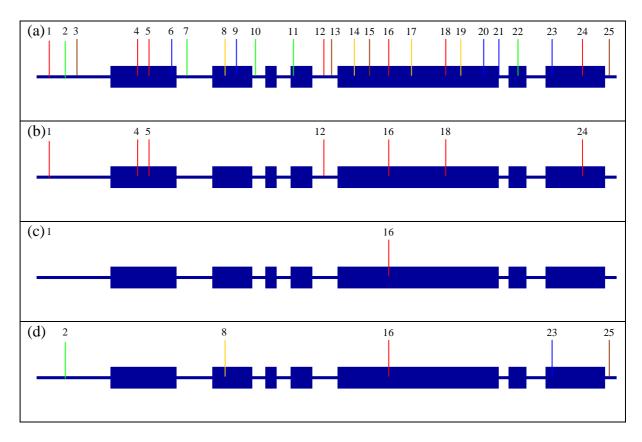


Figure 1.7: Principles of tagging SNPs

(a) This hypothetical gene contains 25 SNPs. (b) SNPs of the same colour are correlated, thus tag each other, (c) therefore only 1 SNP needs to be genotyped to gain information about all the SNPs it tags. (d) Therefore only 5 SNPs in the gene need to be genotyped in order to acquire information about all 25 SNPs in the gene.

The correlation between two SNPs is measured by r^2 . Normally an r^2 of 0.8 is chosen, which means there is at least 80% correlation between the tSNP and all the SNPs it tags. This approach ensures that not all 10 million SNPs need to be genotyped in order to ascertain the genotypes of each SNP. Only approximately 500,000 tSNPs need to be genotyped to gain information about the remaining 9.5 million variants. The tSNP may be a marker of the causative SNP. This approach was used to evaluate associations between *MLH1*, *MLH3*, *MSH2*, *MSH6*, *PMS1* and *PMS2* from the mismatch repair pathway and ovarian cancer. The rare alleles of *MSH6* (rs3136245) and *MSH3* (rs6151662) were associated with a decrease in ovarian cancer risk, and *PMS2* (rs7797466) was associated with an increase in ovarian cancer risk (Song *et al.* 2006a). This approach has also been used to identify a positive association between a variant in *SHMT1*, a member of the one-carbon transfer pathway, and an increase in ovarian cancer susceptibility (Kelemen *et al.* 2008).

<u>1.10.4: Consortium approach</u>

The consortia approach is currently the most popular strategy for genetic association studies in ovarian cancer research. This approach allows staged genotyping designs in a multi-centre collaboration. The initial stage is the genotyping of the tSNPs from the candidate genes by a group or a small number of groups within a consortium. Positive associations are genotyped by the remaining groups within the consortium to validate or refute the findings of the initial stage of research. This approach gives more statistical power to a study, reducing type I error.

The Ovarian Cancer Associations Consortium (OCAC) is a multinational consortium which co-ordinates ovarian cancer research. The group ensures that research is not duplicated unnecessarily and allows easy sharing of data. At present, the OCAC consists of 20 groups, which have published a two-stage study on candidate genes from the cell cycle control pathway (Gayther *et al.* 2007). In the first stage of the study, 88 tSNPs in 13 genes were genotyped in three study populations (MALOVA, SEARCH and GEOCS [previously FROC], also known as Stanford) consisting of

approximately 1,500 cases and 2,500 controls. There were 13 statistically significant associations found between the variants and ovarian cancer. Approximately 50% of the significant SNPs conferred an increased risk of ovarian cancer. Stage 2 of the study involved the genotyping of the five most significant tSNPs from stage 1 on approximately 2,000 cases and 3,200 controls by the remaining groups within the OCAC. The five most significant tSNPs from stage 1 were not significant with the stage 2 samples alone. There were only significant associations between ovarian cancer risk and the rare variants from *CDKN2A* (rs3731257) and *CDKN1B* (rs2066827) SNPs when the data from stages 1 and 2 were pooled (Gayther *et al.* 2007).

The consortium approach has also been used in other studies: seven best candidates from publication (Ramus *et al.* 2008), progesterone receptor (Pearce *et al.* 2008). These studies have highlighted the importance of validating results in larger studies. The lack of replication of statistically significant associations independently in later stages/studies suggests that the initial associations may have been chance findings. The larger sample sizes from consortia also allow stratification of samples by histology, race, grade, stage etc. for further analysis. Another advantage of this approach is that negative results can also be confirmed with additional samples.

<u>1.10.5:</u> Genome-wide, consortium approach

Genome-wide association studies have proved to be a success in the identification of genes which may be associated with ovarian, breast, colon and prostate cancer risks (Easton *et al.* 2007, Song *et al.* 2009, Thomas *et al.* 2008, Yeager *et al.* 2007, Zanke *et al.* 2007). In genome-wide association studies, the tagging SNP approach is used

to genotype evenly distributed SNPs within the genome and evaluate the effect of the genotyped tSNPs on disease risk. These studies tend to use a staged-design, whereby highly significant associations are further assessed in succeeding stages with additional studies. The data from the different stages are combined to increase the statistical power of detecting associations.

Genome-wide association studies have also been used in the investigation of susceptibility genes in other complex disorders such as diabetes and heart disease (Cupples *et al.* 2007, Sladek *et al.* 2007). Some of the results from these studies have been highly significant. In the breast cancer genome-wide association study, an association was found between a variant in *FGFR2* (a fibroblast growth factor receptor) and an increase in breast cancer risk, $P=2x10^{-76}$ (Easton *et al.* 2007). Genome-wide association studies involve the genotyping of thousands of SNPs throughout the human genome and performing association analyses on the SNPs genotyped.

Recently, the OCAC has published results from genome-wide association studies of ovarian cancer. The study also used the consortia approach in a 3-stage design. In the first stage 507,094 SNPs were genotyped in 1,817 invasive epithelial ovarian cancer cases and 2,353 unaffected controls. The 22,790 top ranked significantly associated polymorphisms were genotyped in an additional 4,274 ovarian cancer cases and 4,809 controls. Moreover, stage 3 involved genotyping the most significant SNPs from stage 2 in a further 2,670 cases and 4,668 controls. The data from all three stages were combined to increase the power of the study. The rare allele of the most significant SNP, rs3814113, was associated with a reduced risk of

ovarian cancer (combined stage 1-3 OR=0.82 (0.79-0.86), $P_{trend} = 5.1 \times 10^{-19}$) (Song *et al.* 2009c).

<u>1.11: Survival analysis</u>

There is substantial evidence showing that cancer patients have different responses to the same treatment (McGuire *et al.* 1996; Piccart *et al.* 2000), and chemotherapy resistance remains a very important issue; chemotherapy resistance is reviewed by (Lage and Denkert 2007). There have also been reports suggesting that chemotherapy resistance may be affected by germline genetic variation (Marsh 2005, Villafranca *et al.* 2001). These findings indicate that it is feasible that genetic polymorphisms may influence a patient's response to treatment, and thus survival from the disease. The effects may be attributed to polymorphisms in genes encoding drug targets, drug-metabolising enzymes and/or drug transporters (Pinto *et al.* 2005). Molecular markers such as *ERBB2* and *TYMS* have been identified for predicting overall survival after diagnosis of cancer ERBB2-positive breast cancer, and serous ovarian cancer (Hsu *et al.* 2004; Piccart-Gebhart *et al.* 2005; Romond *et al.* 2005). Although there have been improvements in the response to adjuvant chemotherapy, the majority of ovarian cancer patients go into remission, developing recurrent disease. Some of these recurrent cases are drug-resistant (Bristow *et al.* 2002).

Differences in survival of ovarian cancer patients have been found between *BRCA1* and *BRCA2* mutation carriers and non-mutation carriers (Chetrit *et al.* 2008, Tan *et al.* 2008). There are also publications, including findings from this project, on the effects of common genetic polymorphisms from candidate genes in mismatch repair

and cell cycle control pathways; and combinations of variants in the vascular endothelial growth factor (*EGF*) gene (Hefler *et al.* 2007, Mann *et al.* 2008, Nagle *et al.* 2007, Quaye *et al.* 2009, Quaye *et al.* 2008, Song *et al.* 2008). All of these results suggest that it is feasible that common genetic variants may affect survival from ovarian cancer.

As well as establishing associations between genetic polymorphisms and susceptibility to developing a disease, association studies can also be used to identify genetic variants that may influence survival from the disease. To do this, follow-up data is required to ascertain the vital statistics of the patients recruited into a study over a period of time (usually over 10 years). Although participating patients may die from other causes, such as heart failure, stroke etc, many are likely to die from ovarian cancer. It is also likely that the sufferers would eventually die from the disease, particularly because many cases are diagnosed in the advanced stages of disease.

In survival analyses, the frequencies of genotypes are compared between the patients which have, unfortunately, died and those still alive over a time period. Variants of SNPs are said to be associated with survival if a statistically significant difference is observed between the frequencies of the genotypes/alleles within the groups of survivors and those who die over the time period. Survival is measured by the hazard ratio (HR), which essentially, is a measure of the risk of death, based on the individual's genotype. Survival analyses using genetic polymorphisms as variables have the potential of identifying genotypes which may predict a patient's survival

over a period of time. This has the potential of becoming a prognostic tool and may also be used for identifying suitable individuals for targeted therapy.

Survival analysis may also be used to establish response to therapy or overall clinical outcome. The former could potentially be used for targeted treatment, and the latter for prognostic purposes. There are studies which have investigated and, in some instances, identified associations between SNPs and response to treatment, progression-free survival and overall clinical outcome.

Associations have been found between variants of genes such as *ABCB1*, *ERCC1* and *IL8* and response to treatment. *ABCB1* is a transporter protein, which is involved in multi-drug resistance. Associations have been found between variants of *ABCB1* in the tumour DNA of ovarian cancer cases and response to paclitaxel and carboplatin (Green *et al.* 2008). Associations between progression-free survival and ovarian cancer patients and polymorphisms of *ABCB1* in germline DNA have also been reported (Johnatty *et al.* 2008). Similar associations have been observed between *ECCR1* and response to platinum-based treatment (with tumour and germline DNA) and progression-free survival (Krivak *et al.* 2008). *ECCR1* is a component of the nucleotide excision repair pathway. The gene is involved in the repair of DNA lesions, such as those caused by ultraviolet light and electrophilic compounds. Cisplatin, a platinum-based chemotherapy agent which is used to treat many different types of cancer, including ovarian cancer, is an electrophilic compound. The drug results in the cross-linking of DNA, which consequently triggers the apoptosis pathway.

Although the findings of these publications are of interest, the results should be treated with caution since many of the findings are based on small numbers of samples (<200) (Green *et al.* 2006; Kang *et al.* 2006; Saldivar *et al.* 2007; Green *et al.* 2008; Schultheis *et al.* 2008; Steffensen *et al.* 2008). Some of the publications reporting significant findings between a common polymorphism and response to treatment or survival are listed in Table 1.3 (page 69).

Survival association studies have also been conducted on the effect of common polymorphism on overall survival from ovarian cancer (Dhar *et al.* 1999; Spurdle *et al.* 2001; Hefler *et al.* 2003; Hogdall *et al.* 2003; Li *et al.* 2005; Pinto *et al.* 2005; Beeghly *et al.* 2006; Gadducci *et al.* 2006; Green *et al.* 2006; Higashi *et al.* 2006; Kang *et al.* 2006; Obata *et al.* 2006; Santos *et al.* 2006; Six *et al.* 2006; Hefler *et al.* 2007; Nagle *et al.* 2007a; Nagle *et al.* 2007b; Mann *et al.* 2008; Song *et al.* 2008), with some statistically significant results (Dhar *et al.* 1999; Hefler *et al.* 2003; Hogdall *et al.* 2003; Li *et al.* 2005; Pinto *et al.* 2005; Beeghly *et al.* 2006; Green *et al.* 2006; Higashi *et al.* 2006; Obata *et al.* 2006; Santos *et al.* 2005; Beeghly *et al.* 2006; Green *et al.* 2006; Higashi *et al.* 2006; Obata *et al.* 2007b; Mann *et al.* 2006; Six *et al.* 2006; Green *et al.* 2006; Higashi *et al.* 2006; Obata *et al.* 2006; Santos *et al.* 2006; Six *et al.* 2006; Six *et al.* 2006; Magle *et al.* 2007a; Nagle *et al.* 2007b; Mann *et al.* 2008; Song *et al.* 2008). Some of these are shown in Table 1.3.

Gene	SNP	No. cases	lo. cases HR/response rates		Treatment/	Population	Reference/ source of DNA
				Response	to treatment		
IL-8	T251A	53	AA* (19%); AT* (0%); vs TT* (50%)	0.006	Cyclophosphamide & bevacizumab	USA: 45 Caucasian, 8 other	(Schultheis et al. 2008)
ERCC1	Codon 118 SNP	159	TT* (44%), CT* (41%), CC* (15%)	0.045	Platinum-based	Danish	(Steffensen et al. 2008)
ERCC1	Asn118Asn	60	OR=0.17 (0.04-0.74)	0.018	Platinum-taxane	Korean	(Kang <i>et al</i> . 2006) [§]
				Progression	n-free survival		
CXCR2	C+785T	53	(CC*, CT*) – 7.4months vs (TT*)- 3.7 months	0.026	Cyclophosphamide & bevacizumab	USA: 45 Caucasian, 8 other	(Schultheis et al. 2008)
ABCB1	2677 G>T/A	914	0.7 (0.46-1.04)	0.039	Paclitaxel & carboplatin, docetaxel	Australia	(Johnatty et al. 2008)
ERCC1	C8092A	233	1.44 (1.06-1.94)	0.018	Paclitaxel & cisplatin	USA: 214 Caucasian; 19 other	(Krivak <i>et al</i> . 2008)
XP	XPG	146	(GG*) 8.3 months vs 24.6 months	0.006	Carboplatin	USA: 135 Caucasian, 21 other	(Saldivar <i>et al.</i> 2007)
				Overal	ll survival		
ERCC1	C8092A	233	1.5 (1.07-2.09)	0.018	Cisplatin & paclitaxel	USA: 214 Caucasian; 19 other	(Krivak <i>et al.</i> 2008)
VEFG	Haplotype of 634C/C, 1154G/G, 2578C/C)	563	2.1 (1.1-3.9)	0.02	Platinum-based	Austria, Germany	(Hefler <i>et al.</i> 2007)
TP53	codon 72	114	HR>1	0.011	Cisplatinum & paclitaxel	Portugal	(Santos et al. 2006)
PMS2	rs2228006	1473	0.84 (0.71–0.99)	0.04^{\pm}	Unknown	Caucasian UK, USA, Denmark	(Mann <i>et al</i> . 2008)

Table 1.3: Response to treatment and clinical outcome publications (significant SNPs)

Gene	SNP	No. cases	HR/response rates	P-value	Treatment/	Population	Reference/ source of DNA
CCND2	rs3217933; rs3217901; rs3217862	1,488 1,489 1,480	1.16 (1.03-1.31) 1.14 (1.02-1.27) 0.85 (0.73-1.00)	0.02 0.024 0.043	Unknown	Caucasian UK, USA, Denmark	(Song et al. 2008)
CCNE1	rs3218038	1,489	1.39 (1.04-1.85)	0.033	Unknown	Caucasian UK, USA, Denmark	(Song <i>et al.</i> 2008)
CYP17	5' UTR C allele	454	1.30 (1.02–1.68)	0.04	Platinum based	Australian	(Nagle et al. 2007a)
GSTP1	Ile105Val	448	0.77 (0.61-0.99)	0.04	Platinum based	Australian	(Nagle et al. 2007a)
VDR	FokI	101	0.18 (0.005-0.61)	0.006	Paclitaxel & carboplatin,	Japan	(Tamez <i>et al</i> . 2009) [§]

HR – hazard ratio; mo – months; \$ - based on tumour DNA; *Genotype; [±]No longer significant after adjusting for prognostic factors, however the effect became more pronounced.

1.12: The admixture maximum likelihood test

To date, there has been limited success in identifying germline variants associated with ovarian cancer predisposition. Many of the statistically significant associations are based on relatively small numbers of samples, where the statistical power to detect true positives is reduced. Furthermore, very few of the published results are corrected for multiple testing. One possible reason for the lack of multiple testing correction is that there is a lack of agreement on the most suitable test to use, because of the correlation between many of the polymorphisms evaluated within a project. This increasingly important issue has resulted in much discussion and investigation in the most appropriate method for assessing and correcting for this "experiment-wise" type I error.

The need for correction for experiment-wise type I error has led to a proposal of a global null hypothesis of no associations between any of the genetic variants from a project, and an alternative hypothesis that there are true positive significant associations between the SNPs and disease risk. A number of methods have been proposed with the aim of testing whether the null hypothesis can be rejected. The simple Bonferroni correction for multiple testing only performed best when there were only three statistically significant SNPs or 5% of the total number of SNPs tested, whichever is smaller (Pharoah *et al.* 2007, Tyrer *et al.* 2006).

Some of the proposed methods for testing the global significance of association studies include those described in (Hoh *et al.* 2001; Schaid *et al.* 2005), as well as the improved Bonferroni procedure (Simes 1986), truncated product (Zaykin *et al.* 2002), ranked truncated product of P-values (Dudbridge and Koeleman 2003). The

admixture likelihood (AML) test is a method that was created in order to assess whether there are statistically significant differences between the proportion of significant SNPs from a group/selection genotyped, and that which would be expected by chance (Tyrer *et al.* 2006).

The AML method has been tested against many of the tests currently available for controlling for multiple testing over a variety of scenarios for the alternative hypothesis, and it was found to have the same or improved statistical power than all the other methods tested (rank truncated product, unrestricted maximum likelihood, restricted space maximum likelihood, most significant SNP, Global χ^2 , Best subset χ^2) ((Tyrer *et al.* 2006), (Pharoah *et al.* 2007)). The AML test has already been used on genotyping data from breast cancer association studies. In the study, the 710 common polymorphisms of 117 candidate genes were evaluated with AML to establish the global association between the variants and susceptibility to breast cancer (Pharoah *et al.* 2007). The test found that although the effects of individual SNPs are likely to be small, there were some variants which are associated with risk of breast cancer (Pharoah *et al.* 2007). The AML method will be used to evaluate whether a statistically significant proportion of SNPs were found to be associated with ovarian cancer risk from genotyping data spanning the past few years, and the effect size of these associations.

1.13: DNA amplification and genotyping platforms

Along with the evolution of the approaches used in genetic association studies of ovarian cancer, there have been developments in genotyping platforms. Genotyping platforms are used to ascertain the genotype of an individual. Although TaqMan®

and other single SNP genotyping platforms are still popular with research groups, there is an increasing need for multiplex genotyping platforms to be used. Multiplex platforms enable the genotyping of more than one SNP in a single reaction. The multiplex levels currently available differ widely from 12-plex (up to 12 SNPs genotyped in a single reaction) up to 96-plexes and more. The advent of the chip genotyping technology also allows thousands of SNPs to be genotyped in a single reaction. However, chip genotyping technology is only ever likely to be used for genome-wide association studies or evaluation of whole chromosomes due to the number of SNPs which can be analysed from a single reaction. The SNP multiplex genotyping technique offers the potential of reducing the time, amount of reagents and money spent on genotyping, and in some instances, the quantity of DNA used.

1.13.1: Whole genome amplification

The number of SNPs genotyped has increased exponentially as new approaches are designed. This has highlighted the importance of addressing the issue of limited amount of DNA from study individuals and the increasing number of SNPs from candidate genes which need to be genotyped. Whole genome amplification of DNA samples and SNP multiplex genotyping platforms are possible solutions for these problems. Whole genome amplification (WGA) methods are used to replicate the genome of an individual by varying magnitudes, depending on the method used. The WGA technique offers the potential of producing limitless quantities of DNA from research participants – if the re-amplification claims of some WGA products are to be believed. However there have been conflicting reports of the accuracy of the replication of some WGA methods.

Many research groups have reported complete, or near complete (>99%) concordance between non-amplified genomic material and the corresponding, whole genome-amplified DNA (Jasmine *et al.* 2008, Pan *et al.* 2008, Sorensen *et al.* 2007). However, others have found discordances between the non-amplified and amplified DNA (Pinard *et al.* 2006, Talseth-Palmer *et al.* 2008). These discordances have predominantly been a result of preferential amplification of some alleles at heterozygous loci. The fidelity of the replication of the DNA needs to be assessed due to the small effects expected in low-moderate risk models. There are two major types of WGA techniques, polymerase chain reaction (PCR)-based, and multiple strand displacement.

<u>1.13.1.1.</u> <u>PCR-based whole genome amplification</u>

PCR-based WGA involves the amplification of the genome, using the PCR process, with primers which will result in the amplification of the whole genome, rather than small regions. There are several PCR-based WGA methods commercially available; Primer Extension Preamplification (PEP, (Zhang *et al.* 1992)), GenomePlex (Sigma-Aldrich®) and Degenerate Oligonucleotide PCR (DOP-PCR, (Telenius *et al.* 1992)) are such methods. PEP uses 15-mer random primers and the Taq polymerase, at low annealing temperature (to ensure low stringency binding to genomic sites). DOP-PCR is fairly similar to PEP, however there are some essential differences. Semidegenerate oligonucleotide primers (for example ACG TGC GAG NNN NNN NNN GCT CAT) and a higher PCR annealing temperature is utilised in the DOP-PCR process. The Taq polymerase is also used in DOP-PCR. Taq is known to produce short fragments of amplified material (approximately 3 kilobases [kb]), which is suitable for SNP genotyping studies, however, not for all DNA analysis protocols. GenomePlex® is also a PCR-based WGA method, however, the genomic DNA is converted to an OmniPlex® Library. The OmniPlex Library consists of fragmented DNA, whose flanking regions have been converted to PCR-amplifiable units. The library is amplified with universal primers. The method is said to generate 5-10ug of amplified DNA from nanogram quantities of template DNA (Sigma-Aldrich). The GenomePlex process is illustrated in Figure 1.8.

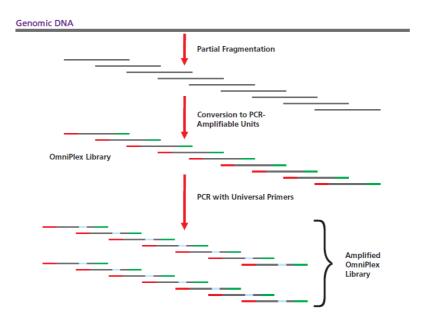


Figure 1.8: Schematic diagram of whole genome amplification with GenomePlex

<u>1.13.1.2.</u> <u>Multiple displacement amplification</u>

Whole genome amplification methods such as GenomiPhi[™] (GE Healthcare, UK) and REPLI-g[™] (Qiagen, UK) come under the multiple displacement amplification category of WGA. Both methods are based on the process illustrated in Figure 1.9.

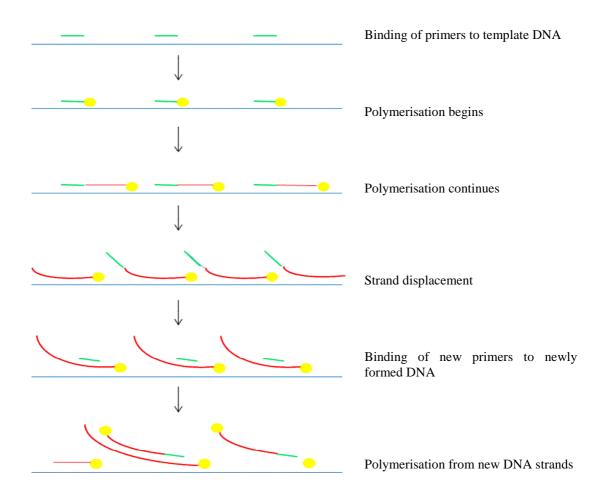
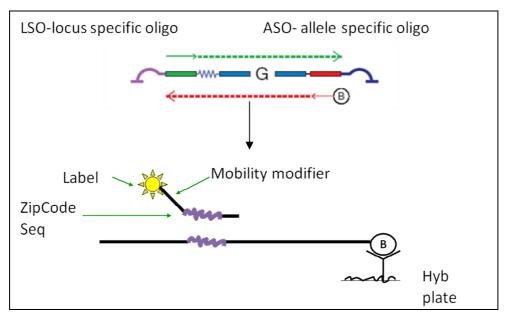
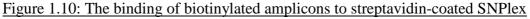


Figure 1.9: Schematic diagram of multiple strand displacement


GenomiPhi and REPLI-g use random hexamers and the bacteriophage Phi29 (φ 29) DNA polymerase, which has 3' to 5' exonuclease proofreading activity. The φ 29 polymerase does not detach from the template during the amplification process, and is thus, capable of producing amplified DNA that is up to 100kb in length. The major differences between GenomiPhi and REPLI-g are that the former uses heat to denature the template DNA, and the latter uses alkaline denaturation. The methods also differ in the quantities of amplified material produced. REPLI-g, apparently


generates up to 45µg of amplified DNA material, however GenomiPhi generates between 4-7µg of product.

1.13.2: SNP multiplex genotyping platforms

SNP multiplex genotyping methods allow the use of relatively low concentrations of DNA for the genotyping of more than one polymorphism, usually greater than 12 SNPs, in single reactions. The use of SNP multiplex genotyping platforms should drastically reduce the time required for laboratory work and the amount of DNA used for the number of SNPs per reaction. There are various ways in which the genotypes of multiple polymorphisms can be ascertained from a single reaction. These include fluorescence, mass and micro-arrays.

There are increasing numbers of multiplex genotyping platforms, such as SNPstream (microarray), SNPlex (fluorescence and mass, see Figure 1.10), OpenArray (microarray), iPLEX (mass), Illumina GoldenPath (microarray) and Fluidigm (microarray). Figure 1.10 shows the binding of a PCR product of a fluorescently tagged allele and a mass modifier which will enable the distinction of different SNPs in a SNPlex reaction. The ZipCode sequence ensures the binding of the PCR product of interest to the complementary ZipChute sequence on the hybridisation plate before the genotype is determined. The performances of the multiplex genotyping platforms need to be assessed to determine the suitability of the available DNA. Therefore, the performance of DNA amplified with four WGA methods: Genomeplex, GenomiPhi, primer extension PCR (PEP) and REPLI-g will be investigated on TaqMan and SNP multiplex genotyping platforms (iPLEX, OpenArray and SNPlex).

hybridisation plate

Probes and linkers are linked together by phosphorylation. Blue- genome equivalent regions, reduniversal reverse priming site, green-universal PCR priming site. After this step, the unbound probes, and bottom parts of linkers are enzymatically digested. The ligated probes and linkers are PCR amplified with biotin tagged universal primers. The products from this are denatured, the supernatant, containing the linker-probe, are removed. Leaving the biotinylated amplicons to bind with streptavidin-coated plates.

1.14: Project aims

The aims of this project are:

1. To determine if there is an effect of common variants and haplotypes of

candidate oncogenes on the risk of invasive epithelial ovarian cancer.

 To determine if there is an effect of common variants and haplotypes of functional candidate genes (associated with neoplastic suppression of ovarian cancer cell lines) on predisposition to ovarian cancer.

- To use the admixture maximum likelihood test to assess if a significant number of associations have been found from ovarian cancer association studies.
- 4. To evaluate the effect of tSNPs and haplotypes from candidate oncogenes on all-cause mortality of ovarian cancer patients.
- 5. To investigate the effect of tSNPs and haplotypes in a series of "functional" candidates identified from *in vitro* studies on all-cause survival of ovarian cancer patients.
- To evaluate the ease of use and quality of whole genome amplification methods.
- To evaluate the performance of non-amplified and whole amplified DNA on multiplex SNP genotyping platforms.

Chapter 2: Materials and Methods

2.1: Introduction

This chapter will describe the materials and methods used in this research. All the samples analysed were Caucasians who were either healthy, unaffected controls or individuals diagnosed with invasive epithelial ovarian cancer.

2.1.1: Ethics Statement

The collection and genetic analysis of all samples was approved by local review boards and ethics committees, and informed written consent was obtained from all study participants.

2.2: Study individuals

Thirteen population-based case control ovarian cancer sample series were used in the analyses, totalling 6,245 cases and 8,787 controls. These studies comprised of residents of the United Kingdom (SEARCH and UKOPS); Australia (AUS); Denmark (MALOVA); Germany (GER, BAVARIA), Poland (POCS, also known as JAC), and the United States of America (GEOCS, USC, DOVE, HOPE, NCOCS and HAWAII). Although many of the sample sets included non-Caucasian individuals, only the genotypes of non-Hispanic Caucasian samples of North European descent were analysed. This decision was taken because there are some significant differences in the allele frequencies of some SNPs within different ethnicities, and some variants are polymorphic in some ethnicities, but not others. The analysis of genotypes of only Caucasian minimises population stratification. This was discussed

in chapter 1. Follow-up data was only available for the GEOCS, MALOVA, SEARCH and UKOPS studies. The DOVE, HOPE, AUSTRALIA, JAC, BAV, GER, HAW and NCOCS studies were only used in the validation of statistically significant findings from stage 1 genotyping results.

The Genetic Epidemiology Ovarian Cancer Study (GEOCS, formerly known as FROC and Stanford) comprised of 327 cases and 429 controls. The cases were invasive epithelial ovarian cancer patients aged between 20 and 64 years, who were diagnosed with the disease between 1997-2002, from Alameda, Contra Costa, Marin, San Francisco, San Mateo and Santa Clara of the Greater Bay Area of San Francisco, USA. The affected individuals were all prevalent cases, therefore, they were recruited into the study after the cancer was diagnosed. The controls were recruited into the GEOCS study through random-digit dial identification from the same towns and cities of the Greater Bay Area Cancer Registry San Francisco as the cases. The controls were age (5-year categories) and ethnicity matched with the cases. The DNA from the study participants was extracted from blood samples and exfoliated buccal cells from mouthwash rinses with the Puregene Kit (Gentra Systems, Minneapolis, MN), (Lum and Le Marchand 1998). The vital status information of the GEOCS cases was obtained from the Greater Bay Cancer Registry, San Francisco twice during the study. The most current follow-up occurred in 2004. Computerised hospital tumour registry data or medical records were used for updated vital status by cancer registry staff. The state's death index was also used to follow the vital status of patients. There was a lag time of approximately 18 months with the state's death index. 147 deaths have occurred to date (45%). The majority

of the genotyping was on DNA that had been whole genome amplified with primer extension pre-amplification (PEP).

The Malignant Ovarian Cancer prediction study (MALOVA) contained 1221 controls and 446 cases from Denmark. The criteria for cases were women aged between 30 and 80 years, who were diagnosed with an invasive epithelial ovarian tumour over the December 1994 and May 1999 time period. Cases were recruited from 18 hospitals from the municipalities of Copenhagen, Frederiksborg, and counties within Copenhagen, Frederiksborg, Roskilde, Western Sealand, Storstrøm, Funen, Southern Jutland and Northern Jutland. All the cases were recruited into the study at surgery before diagnosis of the disease, therefore they are said to be incident cases. Follow-up to establish the patients' vital statistics occurred until 2003. Individuals living in Denmark have a unique personal identification number which was used to identify patients who were alive, as well as those who had died or emigrated. The cause of death of those who died during follow-up was determined by matching medical records with a Danish Hospital Reference System. Currently, there have been 301 (67%) deaths. Unaffected controls were obtained from the general female population within the same areas as the cases and the age range was also 30-80 years. Genomic DNA from both cases and controls were extracted from pre-operative blood samples by Whatman International Ltd with chloroform protocol (Ely, UK).

The UK SEARCH ovarian cancer study (SEARCH), consisted of 1,215cases of ovarian cancer and 1,229 controls from an ongoing, population-based ovarian cancer case-control study covering the regions served by the East Anglia and West

Midlands cancer registries in the UK. The cases were younger than 70 years from East Anglia, West Midlands and Trent regions of England. Prevalent cases diagnosed between 1991 and 1998, of which there were 284 participants, were recruited for the study. The incident cases were recruited from 1998 onwards. Active follow-up was conducted at 3 and 5 years after diagnosis, and then at 5-year intervals by the Eastern and West Midlands cancer registries. The latest update was on 31th August 2007. Follow-up involved searching hospital information systems for recent visits and contacting general practitioners for the patient's vital status if a recent visit had not occurred. There were 230 (27%) deaths at the time of analysis. Healthy individuals, aged between 45 and 74 years, from the EPIC-Norfolk constituent of the European Prospective Investigation of Cancer (EPIC) cohort of 25,000 people were recruited as controls. The controls were from the same geographical region as the cases. The blood DNA of study participants was extracted by Whatman International Ltd.

The participants of the United Kingdom Ovarian Population Study (UKOPS) were recruited from the UK. There were 691 cases and 1,051 controls. The cases were recruited from 10 major Gynaecological Oncology National Health Service centres in England (University College London Hospital, East Kent, Gateshead, Southend, Bristol, Middlesbrough, Manchester and Portsmouth), Wales (North Wales) and Northern Ireland (Belfast), from 2006 onwards. The UKOPS controls, aged 50-76 years from the general population, were apparently healthy postmenopausal females who were recruited into the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) study. However, 75 of the cases were identified through the UKCTOCS study. DNA was extracted with the chloroform extraction method (Sambrook and Russell 2001). The control women were followed up for cancers through the Office of National Statistics. The most current follow-up for the UKCTOCS samples was June 2008, and in August 2008 for the remaining samples. Survival data was available for 401 of the cases at the time of analysis. Of these cases, 148 were diagnosed with ovarian cancer after recruitment into the study, and the remaining were prevalent cases. At the time of analysis, there were 83 deaths (21%) out of the 391 cases with complete follow-up data.

The University of Southern California/Los Angeles County case-control studies of ovarian cancer (USC), from the USA, consisted of 434 ovarian cancer cases and 584 healthy controls, aged between 18-84 years. Recruitment began in 1993 and is ongoing as part of a larger study, known as the Los Angeles County Case-Control Studies of Ovarian Cancer (LAC-CCOC). The cases were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Unaffected study participants (controls) were matched with the cases in terms of age, race, socioeconomic status, parity, oral contraceptive use, geographical residence and other ovarian cancer risk factors, however only non-Hispanic Whites were analysed in this study. DNA was extracted from blood lymphocytes with the chloroform extraction (Sambrook and Russell 2001) process or the Qiagen Blood Kit (Qiagen, Chatsworth, CA, USA). The DNA samples were sent to Molecular Staging, Inc. (New Haven, CT, USA) for whole genome amplification with RepliGTM. There was no follow-up for this study.

Chapter 2: Materials & methods

	Cases				Controls			
Population*	Total	Age (years)	Part. ^{~n} rate (%)	Ascertainment	Total	Age (years)	Part. ^{~n} rate (%)	Ascertainment
MALOVA (Denmark)	446	35-79	79	Incident cases diagnosed 1994 -1999 from municipalities of Copenhagen & Frederiksberg & surrounding counties.	1,221	35-79	67	Random selection of females from the computerized Central Population Register.
SEARCH (UK)	847 (368) [§]	21-74	69	Cases from East Anglian, West Midlands & Trent regions of England. Prevalent cases diagnosed 1991-1998; incident cases diagnosed 1998 onwards.	1,229	39-77	84	Selected from the EPIC-Norfolk cohort of 25000 individuals based in the same geographical regions as the cases.
GEOCS (USA)	327	23-64	75	Consecutive cases diagnosed from 1997- 2002 in Greater Bay Area Cancer Registry San Francisco.	429	19-66	75	Random-digit dial identification from study area. Frequency matched to cases for race/ethnicity & 5 year age group.
USC (USA)	197	18-84	73	Rapid case ascertainment through Los Angeles Cancer Surveillance program from 1999-2004.	224	21-78	73	Neighbourhood recruited controls, frequency matched to cases for age & ethnicity from 1993-2004.
UKOPS (UK)	506 (185) [§]	35-86	86	Cases from 10 gynaecological oncology National Health Service centres throughout the UK, from January 2006 onwards.	595 (467) [§]	50-76	97	Apparently healthy postmenopausal women from the general population participating in the UKCTOCS. Followed up for cancers through the Office of National Statistics.
DOVE (USA)	584	35-74	75	Cases diagnosed with primary invasive ovarian cancer between 2002-2005 from a 13-county area of Western Washington state.	716	35-74	82	Random-digit dial identification from study area. Frequency matched to cases for race/ethnicity & 5 year age group.
BAV (Germany)	228	25-81		Hospital based study from Erlangen, Northern Bavaria, Germany, Recruitment from May 2002 to August 2008.	234	24-86		Random selected woman from Erlangen, Northern Bavaria, Germany Recruitment from May 2002 to August 2008.

Table 2.1: Ovarian cancer case-control populations used in study

Chapter 2: Materials & methods

Population*	Cases				Controls			
	Total	Age (years)	Part. ^{~n} rate (%)	Ascertainment	Total	Age (years)	Part. ^{~n} rate (%)	Ascertainment
GER (Germany)	218	21-74	58	Incident cases diagnosed 1993 -1996 from two study areas in southern Germany and identified through frequent monitoring of hospitals serving the study areas.	416	23-75	51	Two controls per case matched by age and recruitment area were selected from a random sample of the general female population in study area selected using population registries
POCS (Poland)	603	23-82	80	Cases diagnosed with epithelial ovarian cancer in five gynaecological oncology centres in Poland; between 1998 and 2006.	593	24-74	90	Healthy women from the general population were randomly selected and matched to cases with the same year of birth and geographical region.
NCOCS (USA)	622	20-74	70	Identified from 48 counties within Northern California	747	22-75	63	Controls identified from same region. Frequency matched to cases for age and race.
HAWAII (USA)	70	18-84	66	Rapid case ascertainment through Hawaii Tumour Registry.	158	27-86	69	Randomly selected from Hawaii Department of Health Annual Survey of the representatives households.
AUS (Australia)	768	19-79	84	Comprised of Cancer registries of New South Wales and Victoria. Recruited through surgical treatment centres throughout Australia.	1,122	19-79	47	Randomly selected from Commonwealth electoral roll. Frequency matched for age and geographical region.
HOPE (USA)	276	25-80	69	Variable source including physician offices cancer registries & pathology databases from counties of Western PA Eastern OH & Western NY.	636	25-80	81	Identified in same regions as cases. Frequency matched for age & ethnicity. All participants undergo home interviews.
Total	6,245			8,787				

 $\$ - additional samples used in validation of functional candidates results. Part. $\ \ ^n$ - participation.

Diseases of the Ovary and their Evaluation (DOVE) study, also from the USA, is part of the SEER registry. There were 584 cases aged between 35-74 years, diagnosed with primary invasive ovarian cancer between 2002 and 2005 from a thirteen-county area of western Washington State. Controls were selected through random digit dialling. There were 716 controls who were matched to the age groups, race/ethnicity and area of residence as the cases. DNA of the cases and controls was isolated from blood or buccal cell samples.

The Hormones and ovarian cancer prediction study (HOPE) from the USA, recruited study participants from the counties of western Pennsylvania, eastern Ohio and western New York. The 276 invasive epithelial ovarian cancer cases were identified from a variety of sources including physicians' offices, cancer registries and pathology databases from the study region. Both cases and controls were individuals aged between 25 and 80 years. The 636 controls were recruited from the same cities as the cases. The controls were frequency matched for age. The case-control population sets are summarised in Table 2.1.

The Australian (AUS) case-control samples series comprised of sample collections from the Australian Cancer Study (ACS) and the Australian Ovarian Cancer Study (AOCS). There were a total of 768 cases and 1,122 controls when the two studies were amalgamated. The controls of both studies were randomly selected from Commonwealth electoral roll, and age- and geographical region-matched to the cases. The controls were aged between 19 and 81 at the time of recruitment. Participant recruitment occurred between 2002 and 2005 for ACS, and 2002-2006 for AOCS. The cases from the ACS study were recruited from Cancer registries of New South Wales and Victoria; and the cases from the AOCS study were recruited from surgical treatment centres in Australia, and also cancer registries of Queensland, and South and West Australia. Age range of cases was 23-80 years.

The 603 invasive epithelial ovarian cancer cases from the Poland Ovarian Cancer Study (POCS), previously known as JAC, were recruited between 1998 and 2006, from five gynaecological oncology centres from four cities (Szczecin, Opole, Poznan and Rzeszów) in Poland. There was a participation rate of 80% among the ovarian cancer sufferers approached. The controls (593 individuals) of the study comprised of randomly selected healthy women from the general population. There was a 90% participation rate among the controls. The controls were matched to the cases by geographical region of residence and the year of birth.

The BAVARIA study consisted of 234 unaffected controls and 228 women diagnosed with invasive epithelial ovarian cancer. The patients were recruited from May 2002 to August 2008 from hospitals within Erlangen, of Northern Bavaria, Germany. The apparently healthy controls, aged between 24 and 86 years, were randomly selected from the same geographical area as the cases in the same time period.

German Ovarian cancer study (GER) consisted of 416 healthy controls (58% participation rate), and 218 individuals with ovarian cancer. Incident cases of ovarian cancer, diagnosed in individuals aged between 20 and 75 years were

recruited from two study areas in southern Germany. The cases were recruited from 1993 to 1996 through frequent monitoring of hospitals within the study areas. Controls from the general population were matched, 2:1 with the cases, for age and area of residence. The controls were randomly selected from population registries.

Confirmed cases of primary epithelial ovarian cancer from the Hawaii Ovarian Cancer Study (HAWAII) were recruited from residents of Oahu. The 70 affected participants were diagnosed between 1 June 1993 and 30 June 1999 in the major hospitals of Oahu. The 158 controls of the study comprised of unaffected women from the general population of Oahu. Controls were selected from lists of women who had been interviewed by the Health Surveillance Program of the Hawaii Department of Health. Participants of the Health Care Financing Administration of Oahu aged 65 years or older were randomly selected as potential controls. The controls were ethnicity and 5-year age matched with the cases in order to help minimise selection/ascertainment bias. DNA was extracted from peripheral blood leukocytes by SDS/proteinase K treatment and phenol/chloroform extraction. All the participants analysed in the study were Caucasian. There were 70 cases and 158 controls. These samples were only used in the stage 2, validation studies.

The North Carolina Ovarian Cancer Study (NCOCS) samples used comprised of 622 cases and 747 controls, all of whom were Caucasian. Eligible cases were recruited from a 48-county area of North Carolina. Rapid case ascertainment was used to identify potential study participants from the North Carolina Central Cancer Registry. This registry contains information on cancer sufferers from the general population of the state. Patients with primary ovarian cancer aged between 20 and

74 years from the 48 counties within North Carolina fulfilled the study entry criteria. List assisted random dialling was used to identify population-based controls from the same 48-county region as the cases. The controls were also ethnicity and 5-year age matched with the cases. The DNA was extracted using the PureGene DNA isolation protocol.

2.3: Gene and tagging SNP selection of candidate oncogenes

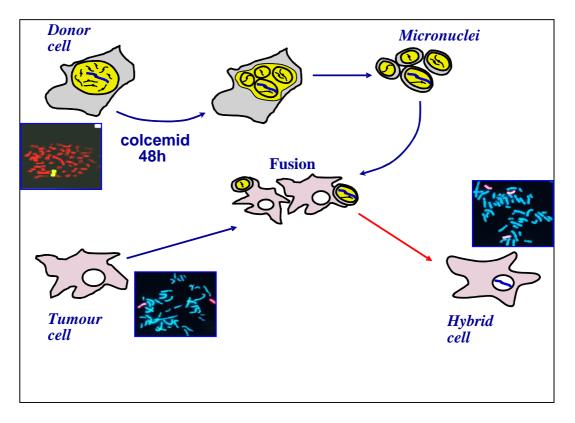
Various oncogenes have been implicated in the development of ovarian cancer; these include AKT2, BCL2, BRAF, CMYC, CTNNB1, ERBB2, KIT, KRAS, MUC1, MUC2 and PIK3CA. SNP genotyping data on the Centre d'Etude du Polymorphisme Humain (CEPH) population for AKT2, BCL2, BRAF, CMYC, CTNNB1, ERBB2, KIT, KRAS, MUC1, MUC2, NMI and PIK3CA were downloaded from The International HapMap Project, Data Release 20/phase II Jan06. NMI is not an oncogene, but was accidentally selected as a result of the information being displayed when CMYC, an alias of MYC, was entered as a search term in HapMap. There was genotyping data available for only two common SNP (minor allele frequency \geq 0.05) for MYC, so this oncogene was excluded from further evaluation. The genotyping data downloaded for these genes was CAU, which is a reference for Caucasians of north European populations. The gene selection process is discussed in chapter 3.

The reference genotyping data from HapMap was used to select a group of SNPs from each gene (with minor allele frequency [MAF] of at least 5%), which could subsequently be tagged. To do this, the genotype information was imported into Haploview version 3.32 (Barrett *et al.* 2005) and Tagger (de Bakker *et al.* 2005).

Haploview is a programme which was designed primarily for haplotype analysis. The programme can be used to perform: linkage disequilibrim (LD) and haplotype block analyses; haplotype population frequency estimation; single SNP and haplotype association tests; and permutation testing for association significance. Tagger contains an algorithm which performs tagging SNP (tSNP) selection. Tagger is able to produce a list of tSNPs by initially selecting a set of SNPs which are to be captured through the tagging approach.

The LD between a pair of SNPs is established so that SNPs which are in strong LD capture each other, and therefore only one tSNP needs to be genotyped. This tagging approach is known as the pair-wise method for SNP selection. It is possible that a SNP is in strong LD with several SNPs. This SNP is selected to be the tSNP and it is said to capture all the SNPs it tags.

Aggressive tagging is another method of tSNP selection. The initial stage of aggressive tagging is the same as that of pair-wise tagging. The additional steps include using multi-marker/SNP tests to try to capture SNPs which could not be tagged by other SNPs with the pair-wise approach. Multi-marker tests are used because in some instances, a combination of markers is in stronger LD with a SNP than another single SNP. The software then "peels back" the tSNP list by replacing some of the tSNPs with multi-marker SNPs. Haploview and Tagger have several options which can be changed by the user, and thus a user is able to select tSNPs based on a criterion.


Haploview and Tagger were used to select tSNPs that capture common genetic variation (minor allele frequency $\geq 5\%$) from the candidate genes, and putative regulatory regions up and down stream of the gene (within 5kb), with a minimum squared correlation of 0.8 ($r^2 \geq 0.8$). $r^2 \geq 0.8$ means that there is at least 80% correlation between the genotype tSNP and the SNPs that it tags. The quality of the HapMap data was also ascertained and only SNPs with sufficiently good quality data were selected for tagging. The selection criteria for good quality data was based on $\geq 80\%$ genotyping data of the CEPH participants for each common polymorphism. The other criteria for SNP selection were for the Hardy-Weinberg equilibrium p-value to be greater than 0.01, the minimum percentage of non-missing genotypes for each SNP (of the HapMap data) to be $\geq 80\%$ and the maximum number of Mendelian inheritance errors in the HapMap CEPH trios to be no greater than 1. The 2-3 multi-marker (aggressive) tagging option of Tagger was used to select tSNPs.

If a selected tSNP failed assay design or genotyping, an alternative tSNP was chosen where possible. The sequences for the SNPs were obtained from the National Center for Biotechnology Information (NCBI) SNP database, dbSNP, (<u>http://www.ncbi.nlm.nih.gov/SNP/</u>) and were used for SNP pooling and primer design.

2.4: Microcell-mediated chromosome transfer of chromosome 18

The microcell-mediated chromosome transfer of chromosome 18 (MMCT-18) *in vitro* and *in vivo* experiments were performed by Dr Dimitra Dafou. Details of the experimental procedure of the MMCT of chromosome 18 can be found in (Dafou *et*

al. 2008). Briefly, donor mouse A9 cells containing normal human chromosome 18 were micronucleated with 48 hours of colcemid. The human chromosome was tagged with selectable fusion gene marker, hygromycin phosphotransferase. Polyethylene glycol was used to fuse the donor cells to the endometrioid TOV21G, and the clear cell TOV112D, ovarian cancer cell lines. This procedure is summarised in Figure 2.1. Microcells containing the human chromosome were selected with hygromycin B. TOV21G and TOV112D hybrid clones were isolated and expanded after 2-3 weeks of culture.

Figure 2.1: Schematic diagram of microcell-mediated chromosome transfer (MMCT)

(printed with permission from Dr Dimitra Dafou). *Hybrid cells contained an extra copy or a fragment of normal human chromosome 18. The clones showed in vivo and in vitro characteristics suggesting their phenotype was reverting back to that of non-neoplastic cells.

The tumourigenicity of the resulting recipient: donor hybrid clones were assessed using *in vitro* and *in vivo* assays. Fluorescence *in situ* hybridisation (FISH) was also used to visualise the incorporated chromosomes in the hybrid clones.

Microsatellite analysis and array comparative genomic hybridisation were used to evaluate the regions of chromosome 18 which were transferred into the hybrid clones. The whole chromosome was transferred into the TOV21G cell line hybrids, however only the chromosomal region 18p11.21 – 18q11.2 was transferred into the TOV112D hybrids. Two hybrid clones from each cell line (18G1 and 18G5 from TOV21G, and clones18D22 and 18D23 from TOV112D) were selected based on their phenotypic characteristics - *in vivo* and *in vitro* tumour suppression.

The Applied Biosystems 32K gene expression array platform (Applied Biosystems) was used to evaluate the global gene expression levels of each parental ovarian cancer cell line and their corresponding "reverted" hybrids in triplicate. The Spotfire DecisionSiteTM software for functional genomics (Spotfire AB, Goteborg, Sweden) and R version 1.9.1. were used to assess the fold change in gene expression between each hybrid and their parental cell line in the 32,878 probes of 29,098 genes. The corresponding P-values for the fold changes in gene expression were evaluated with an analysis of variance (ANOVA) test. The pooled data from both hybrids of each of the cell lines were also analysed using Spotfire DecisionSite^(TM) and R software.

2.5: Gene and tagging SNP selection of "functional" candidate genes

Candidate genes were selected based on significant differential expression between MMCT-18 hybrids and the parental ovarian cancer cell lines. Genes with

concordant and consistent expression fold changes (up or down regulation following the insertion of the normal human chromosome 18), within the two hybrid clones, were selected. Genes with consistent expression changes between the TOV21G and TOV112D were also selected for a master-list. The master-list of the candidate genes selected based on consistent fold changes in expression between parental and the hybrids, and statistically significant P-values for the fold changes, is given in Appendix I. The candidate gene selection process is described in detail in Chapter 3.

2.6: Selection of genes tagging SNPs analysed with admixture

maximum likelihood test

The admixture maximum likelihood (AML) test involved the evaluation of genotyping data of 3 population-based studies (GEOCS [327 cases, 429 controls], MALOVA [446 cases, 1,221 controls] and SEARCH [847 cases, 1,229 controls]). The results of the associations from the genotyping data had previously been reported in (Dicioccio *et al.* 2004; Auranen *et al.* 2005; Song *et al.* 2006a; Song *et al.* 2006b; Gayther *et al.* 2007; Song *et al.* 2007; Ghoussaini *et al.* 2008; Quaye *et al.* 2009). Over the course of the last 6 years, there have been developments in SNP association studies. The rationale and approaches used in SNP selection have also changed. The limited success in finding strongly associated genes with ovarian cancer development has also lead to new approaches being used to identify candidate genes.

Candidate gene selection for ovarian cancer associations studies have predominantly been based on biological pathways that are predicted to be involved in ovarian carcinogenesis. These pathways include DNA double strand break repair, DNA mismatch repair and cell cycle control. Coding SNPs from the DNA double strand repair (*BRCA1*, *NBS1*, *RAD51*, *RAD52*, *XRCC2* and *XRCC3* genes) and cell cycle control (*STK15* gene) pathways were selected in the earliest studies. The alleles of these functional SNPs resulted in different amino acids being produced. These variants were selected because it was biologically plausible that they would be directly involved in altering protein function through the folding and binding of the protein. These changes would be expected to affect ovarian cancer development or susceptibility if there was a significant association.

The LD between SNPs was advantageously used in the tagging SNP approach of candidate genes from the DNA mismatch repair pathway, and all subsequent candidate genes (from cell cycle and oncogene pathways and MMCT-18). The tagging approach enabled the genotyping of smaller numbers of SNPs from genes, which would provide genotyping data for a greater number of SNPs overall. Oncogenes and tumour suppressor genes which were known or predicted to be involved in ovarian cancer development were also selected for associations studies.

Candidate genes were also selected based on differential expression of cancer parental cell lines and their suppressed, non-neoplastic normal chromosome 18 hybrids (from the functional MMCT-18 study). The genes selected from the MMCT-18 study were the only genes chosen based on putative, functionally relevant candidate genes for ovarian cancer aetiology through *in vitro* and *in vivo* assays. Furthermore, candidate SNPs validated by OCAC were selected because they had been found to be significantly associated with ovarian cancer in other populationbased studies (from other members of the Ovarian Cancer Association Consortium [OCAC]) or associated with breast cancer (identified by the Breast Cancer Association Consortium- [BCAC]).

2.7: Laboratory work

The vast majority of the experiments were conducted in the laboratories at University College London. Due to the collaborative nature of the studies, some of the genotyping was also conducted at Strangeways Research Laboratory at the University of Cambridge (GEOCS and SEARCH for all SNPs except MMCT and some oncogenes), University of Southern California (HOPE, DOVE, NCOCS) and Australia (AUS).

The MALOVA samples were normalised to 50ng/ul with distilled water into deepwell plates with the 8-span liquid handling (LiHa) arm of the Tecan Freedom EVO® workstation (Tecan, Reading, UK). LiHa accurately distributes low volumes with the aid of pinch valves. Filter tips were used to minimise contamination. The LiHa and TeMO®, a 96-head multi-channel pipette, were used to dilute some of the 50ng/ul DNA to 2ng/ul. The TeMO was also used to dispense 5ul of the 2ng/ul DNA to 384-well, barcoded PCR plates. Barcoded plates were used for ease of tracking the DNA plates (and sample).

2.8: Whole genome amplification methods

Ninety-five MALOVA control samples and one non-template test control (NTC) were whole genome amplified with GenomePlexTM, GenomiPhiTM, primer extension pre-amplification (PEP) and REPLI-gTM. The starting concentrations of DNA amplified with GenomePlexTM, GenomiPhiTM and REPLI-g was 100ng of DNA.

20ng of DNA was used for PEP amplification. All amplification reactions were performed manually in 96-well PCR plates.

2.8.1: Whole genome amplification with GenomePlex

100ng of 95 MALOVA samples were amplified with the GenomePlex® Whole Genome Amplification (WGA2) kit 2 (Sigma, Poole, Dorset, UK). 2μ L of 50ng/ μ L DNA was diluted with 8μ L distilled water and fragmented at 95°C for 4 minutes. An OmniPlex library mix, containing 2μ L of 1x Library Preparation Buffer and 1μ L of the Library Stabilization Solution were added to each sample. The mixture was subsequently incubated for 2 minutes at 95°C. The mixture was cooled on ice and 1μ L of Library Preparation Enzyme was added. The DNA-library solution was incubated for the following conditions: 16°C for 20 minutes, 24°C for 20 minutes, 37° C for 20 minutes, 75° C for 5 minutes and cooled to 4°C. A mixture containing 7.5μ L of 10x Amplification Master Mix, 47.5μ L of nuclease-free water and 5μ L of WGA DNA polymerase was added to each sample. The mixture was thermocycled for 95°C for 3 mins, 14 cycles (of 94°C for 15 secs and 65°C of 5 mins); and cooled to 4°C.

A working stock of the amplified material at the concentration of $2ng/\mu l$ was stored at 4°C, and the original and $20ng/\mu l$ stock were stored at -20°C.

2.8.2: Whole genome amplification with GenomiPhi

The GenomiPhi DNA amplification kit (GE Healthcare, Bucks, UK) was also used to amplify the 95 MALOVA DNA samples. The DNA (2μ L of $50ng/\mu$ L) was denatured at 95° C for 3 minutes. An amplification mix containing 9μ L of GenomiPhi reaction buffer and 1µL of the GenomiPhi φ 29 enzyme was added to each sample. The DNA-amplification mixture was incubated at 30°C for 16 hours. The reaction was heat inactivated at 65°C for 10 minutes and cooled to 4°C.

2.8.3: Whole genome amplification with PEP

For each primer extension pre-amplification (PEP) reaction, 10ul of 2ng/µL of the 95 MALOVA samples were amplified in 50µL final volume reactions. The 40µL PCR reaction for each sample consisted of 22.75µL water, 5µL of 10x PEP buffer (1.5nM Mg), 2µL of 25nM magnesium, 5µL of 2nM dNTP, 5µL of 2000µM PEP N15-mer (5' NNN NNN NNN NNN 3'), and 0.25µL Qiagen Taq polymerase. The PCR master-mix containing the PCR components were added to the DNA samples, and subsequently thermocycled for the following conditions: activation of the enzyme for 3 minutes at 94°C, 50 cycles of (94°C for 3 mins, 37°C for 2 mins, 37°C to 55°C [RAMP at 10 seconds per °C], 55°C for 4 mins), incubated at 72°C for 5 mins and cooled to 4°C.

2.8.4: Whole genome amplification with REPLI-g

100ng of 95 MALOVA samples were amplified with REPLI-g Midi Kit (Qiagen, West Sussex, UK). 500µL of Solution A was prepared with 40µL 5M potassium hydroxide (KOH) and 10µL of 0.5M ethylenediamine tetra-acetic acid (EDTA) (pH8) which had been diluted in 450µL deionised water. 280µL of denaturing buffer was made up with 35µL Solution A and 245µL nuclease-free water. 560µL of neutralisation buffer was prepared with 56µL Solution B and 504µL nuclease-free water. 0.5μ L of tris-EDTA (TE) was added to 2μ L of $50ng/\mu$ L DNA sample. 3μ L of denaturation buffer was added to the DNA. This denaturing mixture was mixed, spun and incubated at room temperature for 3 minutes. 5μ L of the neutralisation buffer was mixed into the samples to neutralise the denaturing reaction. A 40μ L master-mix, containing 32.4μ L nuclease-free water, 15μ L 4x REPLI-g buffer and 0.6μ L REPLI-g DNA polymerase, was added to each 10μ L denatured and neutralised DNA solution. These solutions were mixed, pulse centrifuged and incubated at 30° C for 16 hours. The amplification reaction was inactivated by incubating the plate at 65° C for 3 minutes. The amplified DNA was cooled to 4° C.

The DNA of an additional 95 samples were amplified with REPLI-g by a colleague, Mr Mark Cox, to further investigate concordance of the amplified DNA.

2.9: DNA quantification with PicoGreen

The whole genome amplified DNA were quantified with Quant-iTTM PicoGreen® dsDNA assay (Molecular Probes, Invitrogen, Paisley, UK). A 200-fold dilution of the concentrated DMSO solution (from the PicoGreen kit) was made with TE in a plastic container in a dark room. Calf thymus DNA (Sigma) was diluted to generate a high-range size standard which would be used to extrapolate the concentration of the sample DNA. 100µL of the calf thymus stock (1µg/mL) was diluted with 900µL of TE, to make a concentration of 100µg/mL. 84µL of TE was added to 16µL of the 100µg/mL DNA to make a concentration of 16µg/mL. A 1:5 dilution of the 16µg/mL DNA was made with 100µL of the 16µg/mL DNA and 400µL of TE (to make a DNA concentration of 3.2µg/mL. Serial dilutions of the DNA were made using 200µL DNA and 200µL TE as indicated below, starting with 3.2µ/mL:

Chapter 2: Materials & methods

Volume of TE (µL)	Volume of calf DNA	Calf DNA concentration		
	(µL)	$(\mu g/mL)$		
0	200	3.2		
200	200	1.6		
200	200	0.8		
200	200	0.4		
200	200	0.2		
200	200	0.1		
200	200	0.05		
200	0	0		

(The 1.6 μ g/mL DNA was made by mixing 200 μ L of the 3.2 μ g/mL DNA with 200 μ L of TE. The 0.8 μ g/mL DNA concentration was made by mixing 200 μ l of the 1.6 μ g/mL DNA with 200 μ l TE. Etcetera...).

50µL of the diluted PicoGreen was added to 50µl of the diluted calf thymus DNA (standard) in triplicate in a black plate. 5ul of each WGA DNA sample was diluted with 45ul TE and 50ul of diluted PicoGreen was added the black plate. The Tecan Genios plate reader was used to measure the DNA concentration and the data was analysed with the Magellan software (Tecan, Dorset, UK).

2.10: Genotyping platforms

The ninety-five MALOVA samples which were whole genome amplified with GenomePlex, GenomiPhi, PEP and REPLI-g, and their corresponding non-amplified genomic DNA were genotyped with TaqMan®, iPLEX®, SNPlex® and TaqMan® OpenArray.

2.10.1: TaqMan® genotyping

For each 5µL TaqMan (Applied Biosystems, Warrington, UK) genotyping reaction, a master-mix containing 2.44µL distilled water, 2.5µl Applied Biosystem's SNP genotyping master-mix, and 0.06µL 80x Custom Assay-by-Design TaqMan probe (Applied Biosystems), was added to 10ng of DNA. TaqMan genotyping reactions for oncogene and MMCT-18 tSNPs were conducted at half volume $(2.5\mu L)$; appropriate adjustments were made to the volumes of reaction components used. Normally a large mastermix was made which contained enough reaction mix for the samples being genotyped. The 5µL or 2.5µL reaction mix was dispensed into the appropriate wells of the dried DNA plates with the liquid handling (LiHa) arm of the Tecan Evo 200 robot. The DNA – master-mix solution was thermocyled for the following conditions: activation at 95°C for 10 mins, annealed/extended for 40 cycles of (95°C for 15 seconds, 60°C for 1 min), and cooled to 4°C. All thermocycling was performed on Auto-Lid Dual 384-well GeneAmp® PCR System 9700 instruments and end reaction products were read on the 7900HT Fast Real-Time PCR System using the Sequence Detection Software. Although the vast majority of Applied Biosystems TaqMan assay clustered well with the annealing temperature at 60°C, some required different temperatures. Therefore, each TaqMan assay was tested (with 95 DNA samples and an NTC) with the annealing temperature at 60°C, before whole population sets were genotyped. An additional 5-10 anneal extend PCR cycles were performed if the clusters were sub-optimal. If this failed, or the assay did not produce distinct clusters for the genotypes, the probe test was repeated with annealing temperature of 54°C.

2.10.2: iPLEX genotyping

The MassARRAY iPLEX SNP multiplex genotyping platform was used to genotype whole genome amplified samples, and genomic GEOCS, MALOVA and SEARCH samples for the oncogene study, and iPLEX Gold was used to genotype MALOVA,

SEARCH and UKOPS for the MMCT-18 study. iPLEX Gold is an upgrade to the iPLEX system. The only real difference between the platforms are the multiplex levels. While up to 29 SNPs can be genotyped with the iPLEX assay in a single reaction, up to 40 SNPs can be assayed with the upgrade. iPLEX Gold has a wider mass range from which alleles/SNPs can be detected. The GEOCS and SEARCH samples were air-dried genomic samples, which had been plated a year prior to the lab work. Wet MALOVA DNA was used in the iPLEX runs. Desalted forward, reverse and extend primers for the iPLEX panels were manufactured by Metabion (Martinsried, Germany). The PCR with the forward and reverse primers were performed at UCL with the Tecan robot, and all post-PCR processing was conducted at Sequenom Europe in Hamburg, Germany, by the author.

A primer mix, comprising of 120µL of 500nM of each of the forward and reverse primers of all the SNPs were combined, resulting in a final concentration of 100nM in each 5µL reaction. A dNTP mix was also prepared with equal amounts (400µL) of 100nM dATP, dCTP, dGTP and dTTP. A PCR cocktail containing the following for each sample: (1.85µL distilled Milli-Q water, 0.625µL of PCR buffer with 10X magnesium chloride [MgCl₂], 0.325µL of 25mM MgCl₂, 0.1µL of 25mM dNTP mix, 1µL of primer mix [500nM of each primer], and 0.1µL of 5U/µL Hotstar Taq® DNA polymerase enzyme), was prepared and added to 10ng of DNA.

In a thermocycler, the reaction mixture was activated at 94°C for 15 mins, cycled 45 times (at 94°C for 20 secs, 56°C for 30 secs, 72°C for 60 secs), and inactivated at 72°C for 60 secs. Unincorporated dNTPs in the PCR amplification mixture were dephosphorylated with a shrimp alkaline phospatase (SAP) cleaning step. This

involved incubating the PCR-amplified mixtures with 2μ L of SAP mix (which comprised of 1.53 μ L distilled Milli-Q water, 0.17 μ L of 10x SAP buffer and 0.3 μ L of 1U/ μ L SAP enzyme for each sample). The incubation steps were 37°C for 20 minutes and 85°C for 5 minutes. The dephosphorylated mixture was then cooled to 4°C. The SAP cleaning was necessary in order to prevent the remaining dNTPs being incorporated in the primer extension reactions, which could subsequently result in contamination peaks being present in the results.

The extend primers were pooled into four groups according to the mass of the extend primers. The signal-to-noise ratios of the extend primers decrease with increasing extend primer mass, therefore these adjustments in extend primer concentrations were required in order to equilibrate the signal-to-noise ratios of the extend primers of different masses. The extend primers were arranged into increasing masses, and the primers were split into 4 groups. Therefore, lower mass primers were grouped with other low mass primers and high mass primers were grouped with other high mass primers. The final concentration of the lowest mass primers was half of those in the highest mass group. Thus an extend primer mix was prepared whereby the final concentrations of the group 1 extend primers (lowest mass) was 0.625µM, group 2 was 0.833µM, group 3 was 1.042µM, and group 4 (highest mass) was 1.25µM.

An iPLEX reaction mix was made up of (for each sample): 0.755μ L distilled water, 0.2 μ L of 10X iPLEX buffer, 0.2 μ L of iPLEX termination mix, 0.804 μ l of the extend primer mix and 0.041 μ L of the iPLEX enzyme. 2 μ L of this cocktail was added to

each sample. The mixture was mixed and covered with adhesive seal. This was subsequently cycled for the following PCR conditions:

HOLD		40 CYCLES	HOLD	HOLD		
HOLD	Hold	5 cy	vcles	HOLD	HOLD	
94°C	94°C	52°C	80°C	72°C	4°C	
30 secs	5 seconds	5 secs	5 secs	3 mins	15 mins	

The iPLEX reaction products were desalted by adding 25µL of water and 6mg of Clean resin (using a dimple plate). A nano-dispenser was used to dispense the iPLEX reaction products onto a 384-element SpectroCHIP bioarray. The SpectroCHIPs were read on Bruker[™] Autoflex, a matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometer.

2.10.3: SNPlex genotyping

SNPlex is a 48-plex SNP genotyping method from Applied Biosystems. The genomic and amplified DNA were genotyped on two separate occasions on the SNPlex platform. The first run was manually performed at UCL by the author and Applied Biosystems' SNPlex technical expert. The SNP pass rates from this run were very poor, therefore the experiments were repeated by another Applied Biosystems' SNPlex technical expert at their laboratory in Warrington, UK. The results of the second run are discussed in this work.

50ng of the genomic MALOVA DNA and 100ng of the corresponding whole genome amplified products were genotyped with the SNPlex platform. To fragment the genomic DNA, 2.5μ L of the 20ng/ μ L stock plate was dispensed into a 384 well

plate and incubated at 95°C for 5 minutes. The samples were dried down after DNA fragmentation. The whole genome amplified products, which did not require fragmentation, were also air-dried. The fluorescent probes and linkers were phosporylated with the following mixture: for each samples, 0.1µL pooled SNPlex ligation probes, 0.05µL of 48-plex SNPlex universal linkers, 0.125µL of nuclease-free water, 0.05µL of 10x SNPlex kinase buffer, 0.025µL of SNPlex kinase, 0.1µL of 5x SNPlex enhancer, and 0.05µL 10x dATP. This mixture, known as the SNPlex Ligation probe pool, was incubated at 37°C for 1 hour. The activated probe pool was diluted 1:1 with 0.1xTE of pH8.

The ligation reaction was performed with the oligonucleotide ligation assay (OLA) and the activated SNPlex ligation probe pool. The OLA was prepare on ice, and consisted, for each sample, of 3.422μ L of nuclease-free water, 0.5μ L of SNPlex ligation buffer, 0.025μ L of SNPlex ligase, 0.053μ L AmpErase® UNG. The 4μ L OLA master-mix and 1μ L of the activated SNPlex ligation probe pool was added to each DNA sample. The DNA plate containing the ligation reaction mixture was covered with an adhesive cover and incubated at 4°C for 10 mins, placed on a thermocycler which was at 90°C. The plate was thermocycled for the following conditions: 3 mins at 90°C; 30 cycles of the 3 step (15 secs at 90°C, 30 secs at 60°C, 30 secs at 51°C with 2% RAMP); incubated for 10 mins at 99°C, and cooled to 4°C.

The ligation product was purified by exonuclease digestion. To do this, a 2x exonuclease master-mix was prepared on ice. For each sample, the master-mix contained 4.2µL nuclease-free water, 0.5µL of 10x SNPlex exonuclease buffer, 0.2µL of SNPlex lambda exonuclease, 0.1µL of SNPlex exonuclease I. 5µL of the

master-mix was added to each sample, the sample plate was covered, vortexed, and pulse spun. The plate was transferred to a thermocycler at 37° C, and incubated at 37° C for 90 mins, 80° C for 10 min and cooled to 4° C. The exonuclease reaction product was diluted with 15μ L nuclease-free water.

The PCR master-mix was prepared with 2.42 μ L of nuclease-free water, 5 μ L of 2x SNPlex amplification master-mix and 0.5 μ L of 20x SNPlex amplification primers. 7.92 μ L of the PCR master-mix was added to each well of a new 384-well plate, and 2.08 μ L of the diluted exonuclease reaction product was also added to the plate. The plate was covered, pulse spun and thermocycled for: 95°C for 10 mins, 30 cycles of 95°C for 15 and 63°C for 1min, and then cooled to 4°C.

A 1:10 dilution of the Wash Buffer was made with deionised water. The wells of the Hybridization Plate were washed three times with 100μ L of diluted Wash Buffer. 17.491 μ L of the SNPlex Hybridisation binding buffer was diluted with 0.009 μ L of the positive hybridisation control. This was subsequently added to the SNPlex hybridisation plate. The PCR products were bound to the hybridisation plate by transferring 1.5 μ L from each well of the diluted PCR product to the Hybridisation Plate and incubating at room temperature on a rotary shaker for 1 hour. In this reaction, the biotinylated amplicons from the PCR products are bound to the streptavidin coat on the hybridisation plate. The plate was centrifugated at 1000RPM for 1min, the supernatant was removed, and the plate was washed three times with 100 μ L of diluted SNPlex Wash buffer. 50 μ L of 0.1N sodium hydroxide (NaOH) was added to each sample in the hybridisation plate, the plate was covered and incubated for 30 mins on a rotary shaker at room temperature.

The hybridisation plate was removed from the rotary shaker, spun at 1000RMP for 1 min, and the supernatant was removed. The hybridisation plate was washed five times with diluted 100µL SNPlex hybridisation wash buffer. An incubation oven was equilibrated to 37°C. A hybridisation master-mix was prepared with 0.05µL of SNPlex ZipChute mix, 11.25µL of SNPlex Denaturant and 13.7µL of SNPlex ZipChute dilution buffer for each sample. 25µL of hybridisation master-mix was added to each sample in the hybridisation plate. The plate was covered and incubated at 37°C on a rotary shaker for 1 hour.

A sample loading mix was prepared, which contained, for each sample, 0.59μ L of SNPlex size standard and 16.91μ L of SNPlex sample loading reagent. The hybridisation plate was briefly spun and the supernatant was removed. The plate was washed four times with 100μ L of diluted hybridisation buffer. The plate was spun upside down at 100RPM for 1 min on a stack of paper towels. 17.5μ L of SNPlex sample loading mix was added to each well of the hybridisation plate. The plate was covered and incubated at 37° C for 30 mins. 7.5μ L of the products in the hybridisation plate was transferred to a new 384-well optical reaction plate. The plate was read on the Applied Biosystem 3730xl DNA Analyzer. The results were analysed with GeneMapper 4.0 software. The manufacturer default settings were used to analyse the data.

2.10.4: OpenArray genotyping

The TaqMan® OpenArray[™] genotyping system is another mid-range genotyping platform from Applied Biosystems. The 32-plex format was used for these

experiments, with which up to 96 samples can be genotyped on a single OpenArray Genotyping plate. However, 16-, 64-, 128-, 192- and 256-plex formats are also available for 144, 48, 24, 16 and 12 samples, respectively. Each OpenArray genotyping plate consists of 48 subarrays and each subarray is comprised of 64 through-holes. The hydrophobic and hydrophilic coatings ensure that the throughholes can retain 33nL reaction volume. The OpenArray genotyping plates were manufactured with the 32 TaqMan SNP assays, with an assay in each through-hole.

2ul of TaqMan® OpenArray[™] Master-Mix was mixed with each well of a 384-well PCR sample plate (1ul of 50ng/µL genomic DNA or 2ul of 50ng/µL of WGA-DNA). The master-mix-DNA solutions were transferred from the sample plate to the OpenArray Genotyping plates. To do this, the sample plate was divided into eight different sections, consisting of 12-well by 4-well areas as shown in Figure 2.2. Plate guides were used to ensure that the appropriate sections of the sample plate were transferred to the OpenArray plate. The plate guide was placed over the sample plate. A tip block was placed over the appropriate section of the plate guide. OpenArray Loader tips were placed into each whole of the tip block. The tip block, with the loader tips inserted, was slid up and down approximately 50 times until the tips were filled to 1mm above the bottom edge of the tip block.

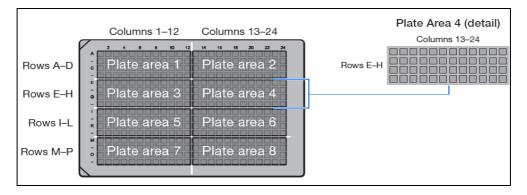


Figure 2.2: Sections of the OpenArray sample plate

Each OpenArray sample plate section contains 48 wells.

The samples in the loader tips were transferred to the OpenArray plate with the auto loader. The loaded OpenArray plate was placed into an OpenArray genotyping case, which was filled with immersion fluid. The genotyping case was sealed with glue on the OpenArray case sealing station. The genotyping case was cleaned and placed in the Bio-Rad thermal cycler for the following conditions:

Step	Temperature and Time
RAMP	0.8°C/ second to 95.5°C
Hold	91.0°C for 10:00 mins
	0.5° C/s RAMP to 51.0° C
	Hold 51.0°C for 23s
	0.8°C/s RAMP to 53.5°C
ANNEALING &	Hold 53.5°C for 30s
EXTENDING:	0.8°C/s RAMP to 54.5°C
50 CYCLES	Hold 54.5°C for 13s
JUCICLES	0.8°C/s to 97.0°C
	Hold 97.0°C to 22s
	0.8°C/s RAMP to 92.0°C
	Hold 92.0°C for 7s
Hold	20°C for 5 mins
Hold	4°C for Forever

s - seconds, mins - minutes

The genotyping case was "imaged" with the OpenArray[™] NT Imager software. The genotypes were manually called after training by Applied Biosystems OpenArray technical expert.

2.11: Sequencing

DNA sequencing of 95 MALOVA cases amplified with REPLI-g was performed with the help of Mark Cox. The samples were sequenced for two regions of *BRCA1*, 316705 (exon 11), and 316700 (exon 13), in order to further investigate discordances between the genomic control DNA and corresponding REPLI-g DNA.

10ng of the amplified DNA was sequenced using the BRCA1 (v1) Variant SeqR kit (Applied Biosystems). 95-well plates were used. For each sample, a reaction mix containing: 5μ L of 2x AmpliTaq Gold® Master mix, 1.6 μ L of 50% UltraPureTM Glycerol, 1.0 μ L (0.6 μ M/ μ L) of Forward VariantSEQr RSA primer, 1.0 μ L (0.6 μ M/ μ L) of Reverse VariantSEQrTM RSA primer, and 1 μ L of distilled water, was prepared. 10 μ l of the reaction mix was added to each sample. The plates were covered, vortexed, pulse centrifuged and thermocycled on AB9700 cyclers. The PCR cycling conditions were: heat activation at 96°C for 5 min, followed by 40 cycles of 94°C for 30 sec, 60°C for 45 sec, and 72°C for 45 sec; final extension of 72°C for 10 min, and cooled to 4°C. The PCR reactions products were cleaned by adding 2 μ L of ExoSAP-IT® (USB Corporation), and incubating at 37°C for 30 min followed by heat inactivation at 80°C for 15 min.

The forward Sequencing Master Mix contains the M13 Forward primer and the reverse contains the M13 Reverse primer. The forward and reverse sequencing reaction mix was then prepared by mixing 4µL of BigDye® Terminator Mix v1.1 with 1µL of 3.2pmol/µL M13 forward or reverse primer, 3µL of deionised water. 8µL of the sequencing mix was added to 2µL of the PCR product. The sequencing

mixture was thermocycled at 96 °C for 1 min, 25 cycles of 96 °C for 10 sec, 50 °C for 5 sec, and 60 °C for 4 min, then cooled to 4 °C. The sequencing reaction was cleaned-up by mixing 2.5µL of 125mM EDTA and 30µL of 100% ethanol with the sequencing products, and incubating at room temperature for 15 min. The DNA plate was subsequently centrifuged at 2500xg for 30 min at 4°C. The supernatant was removed, 30 µL of 70% ethanol was added to each sample, and the plate was centrifuged upside-down at 1650xg for 15 min at 4°C. The supernatant was removed, the plate was left to air dry, and the pellet was re-suspended in 10µL of Hi-Dye Formamide. The sequences were analysed (after performing electrophoresis on the 3730x1 DNA Analyzer with POP-7TM) with SeqScape® v2.5 software (Applied Biosystems).

2.12: Genotyping quality control

All genotyping for the association studies was conducted in 384-well plate format. Each plate contained at least one non-template negative test control (NTC) and twelve duplicate samples, which accounted for 3% of the total proportion of samples. Studies were excluded from analysis if the concordance between the duplicate samples was less than 98%. Genotyping of sample plates were either repeated, where possible, or excluded from analysis if the NTCs failed. For the oncogene and the BCAC, mismatch repair, cell cycle control, DNA repair pathways of the AML method, studies with call rates less than 90% were excluded from analysis. For the MMCT-18 study, and OCAC genotyping SNPs, the OCAC genotyping quality control guidelines were used. These guidelines encompassed the above, with the addition that 384-well DNA sample plates with call rates less than 90% were to be excluded from analysis.

2.13: Statistical methods

All statistical analysis was performed on the STATA version 8.2 statistical package (College Station, TX, www.stata.com).

2.13.1: Genetic Susceptibility

Due to the lack of apparent drive for evolution in humans, it is expected that populations within their respective ethnic groups are in Hardy-Weinberg equilibrium (HWE). Therefore, deviation from HWE was assessed in controls for each study population for each assay using standard χ^2 test. The χ^2 test measures the extent to which observed values differ from the expected proportion of genotypes (Norman and Streiner, 2008). For each population set, χ^2 (1 degree of freedom) was used to assess deviations from genotype frequencies of the control subjects from those expected under Hardy-Weinberg equilibrium (HWE). For the polymorphisms analysed from the oncogene and the BCAC, mismatch repair, cell cycle control, DNA repair pathways, sample sets which were significantly out of HWE (P<0.05), had genotype clustering was evaluated and sample sets with good quality clustering were included in the analysis. For the genotyping data from the MMCT-18 candidate genes, the sample sets were excluded from analysis if they deviated from HWE at P<10⁻⁴.

Logistic regression is a statistical model, which can be used for predicting the probability of the occurrence of an event, taking into account risk factors, for example, the chance of a person having a heart attack is dependent on their age, sex and body mass index. In genetic association studies, logistic regression is used to produce a model to predict the probability that an individual will be affected by ovarian cancer, given their genotype. This is done by using the genotyping results to determine the frequency of each genotype in the cases and the controls and comparing the frequencies to ascertain whether there are significant differences between cases and controls for each genotype.

Associations between invasive epithelial ovarian cancer and each SNP were assessed using two tests; the one-degree of freedom Cochran–Armitage trend test and the general two-degrees of freedom χ^2 test (heterogeneity test). The χ^2 test for trend was stratified by study to account for any differences within the sample sets. Unconditional logistic regression was used to assess the relationship between each tSNP and risk of ovarian cancer for each population set, then the pooled samples (stratified by study) with the primary test of association being a test for trend (Ptrend). The dependent variable (outcome/risk of ovarian cancer), can be estimated with the logistic regression model, which is generally written as:

$$\ln(\text{ODDS}) = \beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 + \dots + \beta_K \chi_K$$

which can be re-written, this study, as:

Ln(risk of being affected) =
$$\beta_{int \, ercept} + \beta_{genotype} + \beta_{sample_se}$$

A "Do-file", which contains a file with a list of commands for STATA to run when requested, was used to analysing groups of SNPs. However, the same results could be obtained by using the following STATA commands:

- xi:logistic status i.set i.SNP
- est sto A
- xi:logistic status i.set if(SNP!=.)
- lrtest A

The above commands are comprised of unconditional logistic regression with terms for disease status (whether case or control) and sample set with and without a term for genotype-study interaction. The likelihood ratio test (lrtest) assesses the fit of the model with genotypes nested within a model without a term for genotypes. The P-value <0.05 suggests that the null hypothesis that there is no association between the genotypes and risk of disease should be rejected.

Homogeneity between the samples sets was also assessed to ensure there were no statistically significant differences in the distribution of genotypes within the different population set. Homogeneity between studies was tested with likelihood ratio tests to compare the logistic regression models with and without a genotype-stratus interaction term. Statistically significant (P<0.05) heterogeneity between sample sets was usually caused by a study with different minor allele frequency for a particular polymorphism. Should this arise, the study would be excluded and the test for homogeneity repeated. If there was still statistically significant heterogeneity between studies, the genotyping data for the polymorphism would be excluded.

Trend tests are used for categorical data analysis. In genetic association studies, affected status is categorical (an individual is a case or a control); the genotypes are also categorical and ordered – for example, if the common allele at a SNP site is denoted as "A" and the rare allele is "a", an individual is either homozygous for the common allele (AA), heterozygous (Aa) or homozygous for the rare allele (aa). The odds ratio (OR) is the ratio of the odds of an event (developing ovarian cancer) occurring in one group (homozygotes of the common allele [y]) compared with to

the odds of the same event occurring in another group (heterozygous [z]). The OR can be calculated with the formula

$$OR = \frac{y/(1-y)}{z/(1-z)}$$

Which can be simplified to:

$$OR = \frac{y(1-z)}{z(1-y)}$$

(Elston et al. 2002).

The ovarian cancer risks associated with being a heterozygote or a rare homozygote were estimated as OR with associated 95% confidence intervals by unconditional logistic regression with the common homozygote as the baseline comparator.

2.13.2:Haplotype definition and analysis

The confidence interval option (Gabriel *et al.* 2002) of the Haploview programme was used, with some minor adjustments to include adjacent SNPs, to define the haplotype blocks of the candidate genes. However, the cumulative frequency of the common haplotypes was maintain at >90%. Only tSNPs successfully genotyped were used to define the haplotype blocks, using the HapMap reference genotyping data. Quality control checks were performed on the haplotype frequencies per study, based on the genotype data.

The TagSNPs programme (Stram *et al.* 2003) was used to model multi-marker haplotypes from aggressive SNP tagging and also haplotypes of each gene when haplotype analysis was performed. TagSNPs implements an expectation-substitution approach to account for the uncertainty caused by the unphased genotype data (Stram *et al.* 2003). The programme outputs estimates of the haplotype dosages for each haplotype for each individual, and logistic regression is performed on the estimates.

The genotyping data for nominally significant tSNPs were modelled with the logadditive, co-dominant, dominant and recessive genetic models and compared with likelihood ratio tests to ascertain the genetic model of best fit. This analysis was only conducted with associations between a SNP and ovarian cancer overall (not with histological subtypes).

The aetiology of ovarian cancer is very heterogeneous, and it has been demonstrated that mutation in particular genes are predominantly found in specific histological subtypes of the disease (Christie and Oehler 2006). Due to this heterogeneity, analysis was also restricted to the major histological subtypes of ovarian cancer (serous, endometrioid, mucinous and clear cell). Univariate unconditional logistic regression was used to test for associations of the germline polymorphisms and haplotypes of the candidate genes. The global effects of haplotypes of each gene or haplotype block were assessed with logistic regression and likelihood ratio tests. Models with and without the multiplicative effects of the haplotypes (minus the most common haplotype) were evaluated.

2.13.3: Admixture maximum likelihood test

The admixture maximum likelihood (AML) test is a method which was created for assessing the overall evidence for an excess of statistically significant associations

between the genetic polymorphisms and risk of diseases (such as breast or ovarian cancer) in case-control studies (Tyrer *et al.* 2006). The AML test was used to this effect with the genotyping data from candidate genes from DNA repair, mismatch repair, cell cycle control, oncogenes associated with ovarian cancer, differentially expressed genes from *in vitro* functional experiments, and candidate SNPs from the OCAC.

The AML method concurrently estimates the proportion of underlying false hypotheses, as well as testing the global null hypothesis of no association between the polymorphisms and risk of disease. The method does this by formulating the alternative hypothesis based on the probability (α) that a given SNP is associated with disease and the estimated effect size of the polymorphism. The calculated χ^2 statistic of a SNP associated with disease is distributed, asymptotically, as a noncentral χ^2 distribution with the usual degrees of freedom and a non-centrality parameter, η .

The non-centrality parameter, which is closely related to the contribution of the SNP to the genetic variance of the trait, is a measure of the size of effect of the polymorphism. The AML method assumes that the non-centrality parameter for all variants is the same, in order to make the model more parsimonious. Thus, the non-centrality parameter will be estimated. However, this is required because power will increase if the non-centrality parameter is the same for associated SNPs, as fewer parameters need to be optimised.

If η is assumed to be the same for each associated SNP, then α and η can be estimated by maximum likelihood, and a test of the null hypothesis, of no association, can then be obtained as a likelihood ratio test. In the instances where some variants were correlated, as many of the polymorphisms are in these studies, the same procedure can generate pseudo-maximum likelihood estimates, as if the germline variants are not correlated. The statistical significance of the AML test can then be determined by simulation testing. One thousand permutations were used to ascertain the significance of the AML test based on the ovarian cancer genotyping data.

The genomic control method for adjusting for cryptic population stratification was used on all polymorphisms analysed. Population stratification refers to the differences with in populations which may lead to false positive associations between genes or polymorphisms and disease risk. The genomic control approach, which is described in Devlin *et al.* (2001), estimates and takes into consideration the "over dispersion" of statistics used to evaluate association when there is population stratification. The genomic control approach involves estimating and taking into account the degree of over-dispersion caused by population stratification, by analysing polymorphisms, including some associated with disease risk, throughout the genome (Devlin *et al.* 2001).

Genotyping data from breast cancer case-control samples from the genome-wide association study (Easton *et al.* 2007; Hunter *et al.* 2007) were used to estimate the degree of over-dispersion of statistics, also known as inflation test statistic (Pharoah *et al.* 2007). The genotyping data consisted of 280 randomly selected, unlinked

polymorphisms from 4,037 breast cases and 4,012 controls. A more conservative inflation statistic (10%), than the one estimated from the genomic controls for the breast cancer study was used to adjust the P-trend for cryptic population stratification.

2.13.4: Survival analysis

There was a variable time between diagnosis and patient recruitment, therefore subjects were only considered to be at risk from the date of recruitment (blood draw). This provides an unbiased estimate of the relative hazard, provided that the proportional hazard assumption is not violated. The assumptions of proportional hazard are that the hazard ratios are constant over time and the hazard ratios are proportional within the different genotype groups across time. The survival period was defined as starting at date of blood draw.

All-cause mortality was the only end-point collected; censoring was at the date a participant was last known to be alive or at 10 years after diagnosis if the participant was still alive. Log-log survival curves were used to check that the assumptions of proportional hazards were met. The primary tests were likelihood ratio test for trend (1 degree of freedom), based on the number of rare alleles carried.

The Cox regression for survival analysis, stratified by study, was used to estimate the hazard ratio (HR) per rare allele carried. The Cox regression for survival analysis (also known as proportional-hazards regression) models the effect of variables (genotypes), over the time an event (death) takes to occur, or within a specified time

period. The model produces estimates of hazard ratios for the explanatory variables (genotypes).

The STATA commands for performing Cox regression survival analyses are as follows:

- stset yearoutcome, failure(outcome) enter(yearenter) exit(time 10)
- xi:stcox SNP i.study

the first command informs STATA of the names of the appropriate variable names which are essential for performing survival analysis (for example information regarding whether an event (death/"failure") has occurred can be found from the "outcome" variable; yearenter=([date of blood draw] – [date of diagnosis])/365.25; yearoutcome = ([date last seen or date of death] – [date of diagnosis])/365.25). Survival over 10 years was investigated. The second command runs the Cox regression test on the selected SNP, stratified by study.

The hazard ratios of all variables were adjusted for prognostic factors; age at diagnosis, tumour stage, tumour grade and histological subtype, where survival modelling showed that the prognostic factor significantly affected chances of survival. The inclusion of these prognostic factors in the survival models is known as multivariate survival analysis. These factors (age at diagnosis, tumour stage, tumour grade and histological subtype) are known to affect patient survival. The adjustments were made in order to observe whether the association remained after adjustments for known prognostic factors.

Univariate Cox regression analysis, stratified by study, was also used when the genotyping data was restricted to the four major histological subtypes of epithelial ovarian cancer (serous, endometrioid, mucinous and clear cell) to determine if the tSNPs were associated with survival in individuals with the particular histology. Clinical factors such as age, tumour stage and grade are known to affect survival. Therefore, they must be adjusted for in order to ascertain whether statistically significant associations were attributable to the SNP, and not to the clinical factors. The effects of clinical factors are discussed in more detail in Chapter 3. The effects of the clinical factors were tested with:

• xi: stcox i.agegroup i.grade i.stage i.set

the dummy variables generated by the command (for statistically associated factors) could be saved by renaming the variable name. For example:

• rename _Istage_2 stage2

Multivariate survival analysis was performed with terms for the statistically associated clinical factors. For example:

• xi:stcox SNP stage2 i.study

As with the susceptibility analysis, the TagSNPs programme was used to estimate haplotype dosages of each individual, for the survival analysis. The haplotype dose was based on the maximum likelihood of haplotypes of the candidates. Cox regression analysis, stratified by study, was also used to assess the effect of each haplotype dose on survival. In the STATA command, the name of the SNP was replaced with the name of the haplotype to assess its affect.

2.13.5: Kaplan-Meier survival estimates

Kaplan-Meier survival estimates are used to plot survival curves in order to illustrate survival over a period of time of the different groups (of genotypes, or clinical factors) being analysed and compared. The graphs can be generated in STATA with the command:

• xi: sts graph, by(var)

(var refers to variable, such as genotype, age at diagnosis, tumour histology, grade or stage).

The Kaplan-Meier survival estimator of the survival function at time t (or the probability of surviving up to time t) is calculated by the following formula:

$$\hat{S}(t) = \prod_{t_i \le t} \frac{n_i - d_i}{n_i}$$

 $\hat{S}(t)$ is the survival function at time t

 n_i corresponds to the number "at risk" just prior to time t_i , and d_i , the number of deaths at time t_i (Hosmer *et al.* 2008).

Chapter 3: Results - The effects of common SNPs and haplotypes variants of oncogenes and functional candidate genes on the risk of ovarian cancer

3.1: Introduction

Hypothesis:

Common germline genetic variants in candidate genes connected with ovarian cancer development can influence the risk of epithelial ovarian cancer.

Aims:

(1) To determine if there is an effect of common variants and haplotypes of candidate oncogenes on the risk of invasive epithelial ovarian cancer.

(2) To determine if there is an effect of common variants and haplotypes of functional candidate genes (associated with neoplastic suppression of ovarian cancer cell lines) on predisposition to ovarian cancer.

(3) To use the admixture maximum likelihood test to assess if a significant number of associations have been found from ovarian cancer association studies.

Objectives:

(1) To use two-tailed unconditional logistic regression analysis to evaluate associations between common variants and haplotypes in 2 sets of candidate genes (oncogenes: *BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA*; and functional candidates:

AIFM2, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) and risk of invasive epithelial ovarian cancer.

(2) To investigate associations between the variant and haplotypes of these genes on the 4 major ovarian cancer histological subtypes: serous, endometrioid, mucinous and clear cell.

(3) To use the admixture maximum likelihood experiment-wise test for association to evaluate the overall evidence of association between 340 common variants (in 74 genes and 10 regions without known genes or open reading frames) and risk of ovarian cancer.

3.2: Investigation of the effect of candidate oncogenes on risk of

ovarian cancer

Oncogenes, such as *MYC*, *KRAS*, *BRAF* and *ERBB2* have been shown to be mutated or amplified in ovarian tumours. However, it is not known whether germline variants of the normal copies of these genes may predict a woman's risk of ovarian cancer. The following describes the selection of candidate oncogenes and the results of the analyses of the common polymorphisms and haplotypes of the genes on ovarian cancer risk.

3.2.1: Candidate oncogene and tSNP selection

The aim of the candidate oncogene selection was to find genes, with implications in ovarian cancer development, which would fit into a single iPLEX SNP multiplex genotyping run, and the minimum numbers of tSNPs remaining for genotyping by the TaqMan platform. The iPLEX genotyping platform can genotype up to 27 variants in a single reaction. Furthermore, the cost of genotyping with the TaqMan platform increased with rising numbers of tSNPs which required genotyping with the platform, therefore, the number of SNPs which could not be genotyped on iPLEX had to be kept to a minimum. It became apparent that although *BCL2* and *KIT* were good candidate oncogenes for the study, too many tSNPs, 86 and 30, respectively, would need to be genotyped in order to genotype enough SNPs to gain genotyping data for the whole genes. Therefore, they were excluded from the selection. There was only 1 tSNP for *MUC1* (and 2 tSNPs for *MYC*), which suggested that the genes were either insufficiently tagged or there was not enough genotyping data available from HapMap for efficient tagging. Therefore, these genes were also excluded. Table 3.1 shows the number of tSNPs for all the candidate genes initially selected for tagging.

Gene	Total SNPs	No. criteria SNPs	No. tSNPs	
AKT2	33	17	4	
BCL2	374	170	86	Excluded
BRAF	158	75	9	
CTNNB1	88	22	11	
ERBB2	16	6	3	
KIT	147	71	30	Excluded
KRAS	59	46	11	
MDM2	50	10	5	
MUC1	3	1	1	Excluded
MUC2	17	14	10	
МҮС	15	2	2	Excluded
NMI*	45	25	6	
<i>РІКЗСА</i>	53	36	11	

Table 3.1: Number of tagging SNPs of candidate oncogenes

Criteria SNPs – Minor allele frequency ≥ 0.05 ; HWE > 0.01; * NMI was erroneously selected from HapMap due to its interaction with *MYC* – its data is presented under *CMYC*, an alias of *MYC*. The mistake was not realised until the samples had been genotyped with iPLEX.

The National Center for Biotechnology Information (NCBI) Single Nucleotide Polymorphism website www.ncbi.nlm.nih.gov/projects/SNP/, also known as dbSNP, was used to find the Fasta sequence of each tSNP of *AKT2*, *MUC2*, *BRAF*, *KRAS*, *NMI*, *PIK3CA*, *MDM2*, *ERBB2* and *CTNNB1*. The iPLEX Assay Design software was used to design panels based on four different combinations of candidate oncogenes (see Table 3.2).

Gene	No. tSNPs in panel	No. tSNPs not in panel	Total
	Pan	el 1	
ERBB2	2	1	3
KRAS	7	4	11
NMI	6	-	6
PIK3CA	11		11
	Pan	el 2	
BRAF	8	2	10
ERBB2	3	-	3
KRAS	7	4	11
NMI	7	2	9
	Pan	el 3	
BRAF	6	3	9
ERBB2	3	0	3
KRAS	8	3	11
NM	5	1	6
PIK3CA	5	6	11
	Pan	el 4	
ERBB2	2	1	3
MDM2	3	2	5
MUC2	7	3	10
KRAS	5	6	11
BRAF	5	5	10

Table 3.2: SNP panels from iPLEX assay design software

Panel – refers to iPLEX panel.

The best iPLEX assay design pool, Panel 3, contained tSNPs of *BRAF*, *NMI*, *ERBB2*, *KRAS* and *PIK3CA*, which were also considered to be good candidates due to their known or predicted involvement in ovarian cancer development. Therefore, Panel 3 was selected for genotyping. The iPLEX assay pool comprised of 27 tSNPs. The best panel (with the most important genes and minimum number of tSNPs which would have to genotyped with TaqMan) was chosen.

3.2.2: Oncogenes - Samples and methods

The stage 1 samples consisted of GEOCS, MALOVA, SEARCH, UKOPS and USC (A) series of population-based studies. Stage 2 samples, comprising of the DOVE, HOPE and USC (B) studies, were used for the validation of significant findings from stage 1. The numbers of samples for each study are listed in Table 3.3.

Study	Controls	Total cases	Histology				
Study	Controls	1 otal cases	Serous	Endometrioid	Mucinous	Clear cell	
GEOCS	429	327	166	47	29	23	
MALOVA	1221	446	275	56	43	33	
SEARCH	855	730	254	130	94	62	
UKOPS	271	116	65	20	10	12	
USC (A)	224	197	115	22	16	8	
Total stage 1	3000	1816	875	275	192	138	
DOVE	716	584	303	86	18	30	
HOPE	636	276	157	39	13	21	
USC (B)	360	237	161	33	19	14	
Total stage 2	1792	1097	621	158	50	65	
Total stages 1 & 2	4713	2913	1496	433	242	203	

Table 3.3: Samples used in oncogene study

All study individuals included in the analysis were non-Hispanic Whites.

In total, 40 tSNPs were selected to tag the common germline variants of the candidate oncogenes (*BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA*). A combination of iPLEX and TaqMan were used to genotype the first stage samples, and only Taqman was used to genotype second stage samples. Whole genome amplified samples were also genotyped on iPLEX – the results for these and problems with the iPLEX platform are discussed in Chapter 5.

3.2.3: Quality control

There were 12 duplicate samples per 384-well plate. Studies with less than 98% concordance between the total number of duplicate samples were excluded from analysis. Sample sets which had a call rate <90% for a SNP were also excluded from analysis. There were no studies which were out of Hardy-Weinberg equilibrium.

Of the 27 tSNPs genotyped on iPLEX, 2 (rs10842513 and rs6944385) failed quality control due to failed assays (failed PCR) and one was monomorphic (rs11047917). The GEOCS study performed extremely poorly on iPLEX, with only 5 tSNPs from the panel achieving call rates greater than 90%. The reason for the poor call rates may have been due to degraded non-amplified DNA, which had been plated and dried a year prior to the experimental work. These samples were used because the iPLEX manufacturers, Sequenom, advised the use of non-amplified DNA for the study, and these were the only remaining non-amplified DNA for GEOCS. Consequently, the iPLEX genotyping results from the GEOCS sample set were excluded from analysis.

TaqMan assays of all polymorphisms not genotyped on iPLEX were manufactured, where possible and GEOCS, UKOPS and USC (A) were genotyped with the TaqMan platform. Of the 40 tSNPs required to be genotyped in order to get full gene coverage, 34 were successfully genotyped with iPLEX and TaqMan. The six remaining tagging variants had either failed assay design, manufacture or probe testing and could not be efficiently genotyped by any other polymorphism.

3.2.4: Associations between candidate genes and ovarian cancer risk

Two-tailed unconditional logistic regression was used to determine the effect of common variants, and haplotypes of the oncogenes on risk of ovarian cancer. A SNP or haplotype is said to be associated with ovarian cancer susceptibility when there is a significant difference in the frequency of genotypes or haplotypes between cases and controls. Two-tailed unconditional logistic regression was used because no assumptions were made about the effect of the tSNP or haplotype prior to analysis – i.e. no assumptions were made about whether a SNP/haplotype would increase or decrease predisposition to ovarian cancer.

Odds ratios are used as a measure of the effect of the variant or haplotype on the risk of disease. An odds ratio <1 corresponds to a reduced risk of disease, and odds ratios >1 - increased risk. The genetics and histological pathology of ovarian cancer suggest different aetiologies for the histological subtypes of the disease. In order to establish the effects of the candidate oncogenes on the risk of serous, endometrioid, mucinous and clear cell subtypes, the logistic regression analysis was restricted to these particular subtypes. The results from these tests are below. The results reported below are of the stage 1, unless otherwise stated. All reported P-values are 2-tailed. The numbers of samples for each genotype group are shown in Appendices II-A and II-B for the oncogene and MMCT-18 candidate genes, respectively, and the genotype and haplotype-specific risks for all oncogenes are shown in Appendices III-A to III-J.

Initially, the associations between the risk of ovarian cancer and the common variants of candidate genes were assessed with all ovarian cancer cases pooled. The statistically significant association from this analysis was validated with addition samples.

There was no evidence of association between risk of ovarian cancer and common variants of *BRAF*, *ERBB2*, *KRAS* and *PIK3CA* when all cases were combined (Table 3.4). The rare allele of a tSNP in *NMI* (rs11683487) showed evidence of association with reduced risk of ovarian cancer (heterozygous odds ratio [OR] with 95% confidence intervals [CI] 0.80 [95% CI 0.69-0.93] homozygous OR 0.87 [0.71-1.02], P = 0.038). The HetOR is the odds ratio for individuals heterozygous for the variant, and HomOR is the odds ratio for individuals homozygous for the rare allele. Both HetOR and HomOR are compared with the homozygotes of the common allele. The association is a result of the rare allele of *NMI* rs11683487 being more frequent in the controls (46.3%) compared to cases (43.9%). There were 1,464 cases and 2,564 controls successfully genotyped for this SNP.

The genetic model of best fit for the *NMI* rs11683487 tSNP was a dominant model (rare allele carriers vs common allele homozygotes) because the odds ratios were similar in the heterozygotes and rare homozygotes. The similarity of the odds ratios of the heterozygotes and rare homozygotes suggested that this was a result of either a single or 2 copies of the rare allele. When the heterozygotes and rare homozygotes were grouped for analysis, the odds ratio for the dominant model was OR=0.81 (0.71- 0.94), P=0.004 for all cases analysed.

Gene	SNP name	Cases	Controls	MAF	HetOR [§]	HomOR [§]	P- Trend
	rs10487888	1680	2694	0.47	1.09 (0.93 - 1.28)	1.02 (0.86 - 1.22)	0.9
	rs1733832	1159	2043	0.06	1.08 (0.86 - 1.36)	3.39 (0.96 - 11.89)	0.2
BRAF	rs1267622	1751	2880	0.24	0.99 (0.87 - 1.12)	0.97 (0.75 - 1.26)	0.79
	rs13241719	1602	2488	0.31	0.98 (0.85 - 1.12)	0.86 (0.69 - 1.08)	0.27
	rs17695623	1744	2901	0.07	0.97 (0.81 - 1.16)	1.14 (0.52 - 2.46)	0.86
Dium	rs17161747	1771	2909	0.5	1.13 (0.93 - 1.38)	1.29 (0.57 - 2.93)	0.18
	rs17623382	1764	2900	0.12	1.01 (0.87 - 1.17)	1.01 (0.61 - 1.66)	0.9
	rs6944385	1758	2893	0.14	1.14 (0.99 - 1.32)	0.99 (0.66 - 1.50)	0.14
	rs1267622, rs6944385; AA	1786	2948	0.76	1.02 (0.79 - 1.33)	1.04 (0.80 - 1.34)	0.77
	rs2952155	1667	2678	0.24	1.01 (0.89 - 1.15)	1.11 (0.84 - 1.47)	0.57
ERBB2	rs2952156	1766	2912	0.29	0.97 (0.86 - 1.10)	1.15 (0.89 - 1.49)	0.74
	rs1801200	1766	2916	0.22	1.04 (0.92 - 1.19)	1.01 (0.77 - 1.31)	0.64
	rs12305513	1788	2934	0.1	0.87 (0.74 - 1.03)	0.71 (0.38 - 1.31)	0.053
	rs12822857	1751	2901	0.47	1.01 (0.88 - 1.17)	0.94 (0.80 - 1.12)	0.53
	rs10842508	1776	2935	0.25	0.97 (0.86 - 1.10)	0.95 (0.73 - 1.22)	0.57
	rs12579073	1765	2900	0.48	0.97 (0.84 - 1.12)	0.92 (0.78 - 1.09)	0.36
	rs10842513	1770	2878	0.09	1.03 (0.87 - 1.21)	0.93 (0.50 - 1.74)	0.86
	rs4623993	1748	2892	0.16	0.96 (0.83 - 1.10)	1.13 (0.77 - 1.67)	0.85
	rs6487464	1763	2895	0.38	1.04 (0.91 - 1.18)	0.99 (0.82 - 1.19)	0.94
	rs10842514	1757	2886	0.44	0.98 (0.86 - 1.13)	1.08 (0.91 - 1.29)	0.42
	rs11047917	1476	2456	0.06	0.92 (0.75 - 1.14)	1.62 (0.57 - 4.57)	0.71
KRAS	rs4623993, rs12579073; TC	1717	2818	0.1	0.96 (0.80 - 1.15)	0.94 (0.56 - 1.57)	0.63
	rs12822857, rs10842508; AC	1730	2857	0.23	0.99 (0.87 - 1.13)	1.04 (0.80 - 1.36)	0.93
	rs12822857, rs10842514; GT	1715	2806	0.4	1.04 (0.91 - 1.20)	1.12 (0.94 - 1.34)	0.23
	rs12822857, rs12579073, rs6487464; GAC	1689	2746	0.39	1.04 (0.89 - 1.21)	1.06 (0.88 - 1.29)	0.51
	rs394884	1708	2852	0.15	1.01 (0.88 - 1.17)	1.40 (0.84 - 2.32)	0.47
	rs11551174	1159	2040	0.06	0.96 (0.76 - 1.23)	1.23 (0.45 - 3.38)	0.92
NMI	rs289831	1665	2718	0.13	1.05 (0.91 - 1.22)	1.08 (0.61 - 1.89)	0.48
11/1/11	rs3771886	1764	2927	0.41	1.03 (0.90 - 1.18)	1.19 (1.00 - 1.42)	0.075
	rs11683487	1464	2564	0.46	0.80 (0.69 - 0.93)	0.87 (0.71 - 1.02)	0.038
	rs2113509	1776	2944	0.13	1.05 (0.91 - 1.21)	1.16 (0.68 - 1.97)	0.42
	rs2865084	1164	2046	0.06	1.14 (0.89 - 1.45)	0.43 (0.37 - 0.50)	0.29
	rs7621329	1749	2818	0.16	0.99 (0.86 - 1.13)	1.23 (0.86 - 1.77)	0.64
	rs1517586	1739	2908	0.1	0.98 (0.83 - 1.15)	0.77 (0.42 - 1.40)	0.54
PIK3CA	rs2699905	1741	2855	0.27	1.01 (0.88 - 1.15)	0.89 (0.71 - 1.11)	0.49
TINJUA	rs7641889	1779	2939	0.07	0.89 (0.74 - 1.07)	1.28 (0.58 - 2.84)	0.38
	rs7651265	1794	2883	0.1	0.89 (0.76 - 1.04)	1.58 (0.89 - 2.80)	0.54
	rs7640662	1765	2916	0.15	1.02 (0.89 - 1.17)	0.85 (0.57 - 1.27)	0.86
	rs2677760	1762	2925	0.49	1.01 (0.87 - 1.16)	1.04 (0.88 - 1.23)	0.67

Table 3.4: Genotype-specific risks of pooled stage 1 oncogene data

MAF – minor allele frequency; Het: heterozygous; Hom – homozygous; OR= odds ratio (with associated 95% confidence intervals in parentheses); § compared with common homozygous; Emboldened tSNP, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Validation of association with NMI rs11683487 association

The association found between the rare allele of *NMI* rs11683487 and a decrease in the risk of invasive epithelial ovarian cancer was further investigated by performing a second stage of genotyping. Three additional populations from the USA (USC B); DOVE and HOPE), which comprised of an extra 1,097 cases and 1,712 controls were used in this second stage. There was no evidence of association between the rare allele of *NMI* rs11683487 and risk of ovarian cancer with the stage 2 samples alone (dominant model: OR= 0.01 [0.85-1.20]; P_{dominant}=0.92). When the data from both stages was subsequently combined and analysed with unconditional logistic regression the association with rs11683487 was weaker, but still statistically significant (OR= 0.89 [0.80– 0.99]; P_{dominant}=0.0317; Table 3.5).

Table 3.5:	The effect of	<i>NMI</i> rs11683487	on the risk of	f ovarian cancer in

Stage	Controla	Cases	Dominant mod	lel
Stage	Stage Controls		OR [§] (95% CI)	P-value
1	2564	1464	0.81 (0.71-0.94)	0.004
2	1712	1097	0.01 (0.85-1.2)	0.92
1 & 2	4276	2561	0.87 (0.8-0.99)	0.0317

Stages 1 & 2 cases

The forest plot in Figure 3.3 shows the effect size and the corresponding confidence intervals of the variant per study and stage(s). Forest plots are plotted on the natural logarithmic scale with the odds ratio represented by the diamond, the corresponding 95% confidence intervals shown as the horizontal lines, and no effect on risk symbolised by a vertical line. Odds ratios left of the vertical line (<1) imply a decrease in odds ratio, therefore protective effect of the rare variant, and those on the

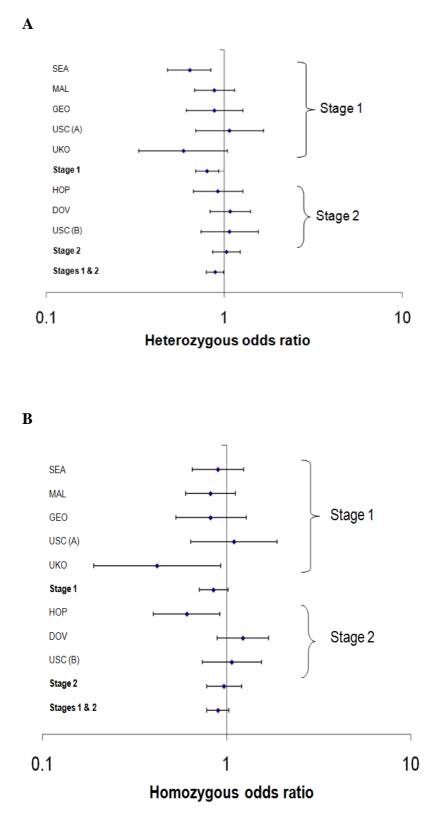
OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

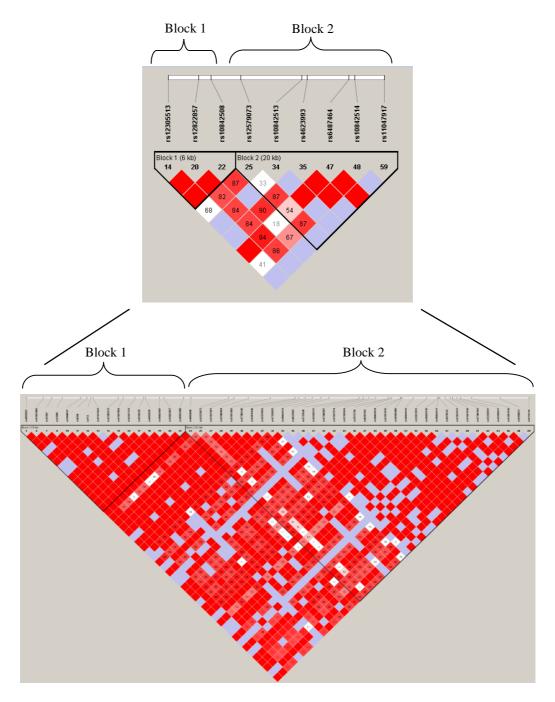
right (>1) – increased risk of disease. Statistically significant associations have confidence intervals not crossing the vertical line.

The *NMI* SNP rs11683487 tags eight other SNPs with $r^2 > 0.8$ (rs3854012, rs3771882, rs4665150, rs1048135, rs11730, rs13004590, rs12987765 and rs17798290). rs11683487 tags rs1048135 with an $r^2=1$ (perfectly correlated). rs1048135 is a non-synonymous coding SNP and the rare (G) allele codes for a leucine instead of serine. The programme PMut (Ferrer-Costa *et al.* 2005), predicted that the rare allele (coding for leucine) had a pathological significance score of 3/10 and was classed as 'damaging' using the SIFT programme (Ng and Henikoff 2001; Ng and Henikoff 2002). The bioinformatics tool, PupaSNP

(http://pupasuite.bioinfo.cipf.es/) (Conde *et al.* 2006; Reumers *et al.* 2007) also suggested that this allele may disrupt the binding of exonic splicing enhancers. In addition, PupaSNP indicated that rs11683487 and rs11730 may have transcription and translation regulatory functions, and that rs11730 may affect exon splicing.

Combinations of SNPs, in a haplotype, have also been suggested ble to affect an individual's disease risk. A haplotype is a combination of alleles at multiple loci on the same chromosome, which are transmitted as a single unit (haplotype block). A haplotype block comprises a region of a chromosome which is unlikely to undergo recombination. Figure 3.2 shows the two haplotype blocks of *KRAS*, which was the only oncogene with more than 1 haplotype block. The variants shown in the figure were those genotyped in this study.




Figure 3.1: Forest plots of tSNP rs11683487 in the NMI gene in ovarian cancer

case-control populations

In the haplotype analysis, the frequencies of the haplotypes in cases and healthy controls are compared to ascertain whether there is statistically significant difference. A common haplotype occurs in a population with a frequency of $\geq 5\%$. In haplotype analysis, these common haplotypes were analysed as an individual entity, and the rare haplotypes were grouped. The overall effect of the gene on disease risk was also assessed in the global analysis.

Haplotype block 1 of *KRAS* comprised of 3 tagging variants, spanning 6 kilobases (kb), and haplotype block 2 consisted of the 6 tSNPs over 20kb. It is important to note that the variants shown in the haplotypes are tagging SNPs, and therefore encompass 50 common SNPs captured with r^2 =0.8 in the *KRAS* gene, (see Figure 3.2).

There were 4 common haplotypes of *KRAS* block 1, and 11 of haplotype block 2 (Figure 3.3). Within each representation of haplotype, the common allele is denoted by "0", and the rare by "1". The most frequent haplotype of *KRAS* block 1, h100, includes the rare allele of rs12305513, and the common alleles of rs12822857 and rs10842508, respectively. The "h" in front of the alleles represents "haplotype", and is used to distinguish between haplotypes and other strings of "0" and "1" which may occur in a document.

Figure 3.2: Haplotype blocks of KRAS SNPs genotyped

(a) Haplotypes blocks based on genotyped *KRAS* tSNPs; (b) the total number of SNPs in the haplotypes (captured by the tSNPs); colour scheme: standard (D'/LOD) – white (D'<1, LOD<2), shades of pink/red (D'<1, LOD≥2), blue (D'=1, LOD<2) and bright red (D'=1, LOD≥2), numbers shown in sqares (LD values) are based on D'.

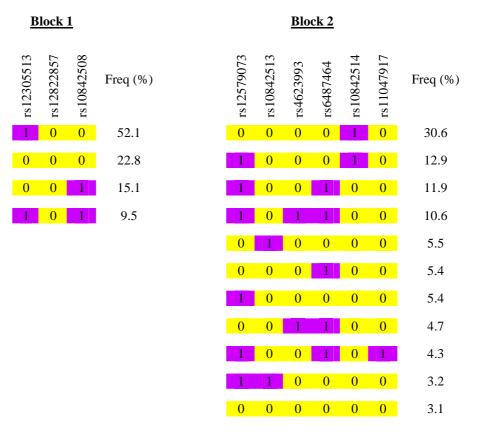


Figure 3.3: Common haplotypes of KRAS

"0" – common allele of SNP; "1" – rare allele.

Associations between haplotypes of the oncogenes and risk of ovarian cancer were also evaluated. There was no evidence of association between risk of ovarian cancer and haplotypes of *KRAS* and *PIK3CA* (Table 3.6).

Statistically significant associations were found between common haplotypes of *BRAF*, *ERBB2* and *NMI* and risk of ovarian cancer at the 5% significance level. The h00001 haplotype of *NMI* correlated with a decreased risk of ovarian cancer (OR=0.91 [0.84-0.99], P=0.0276). Another haplotype of *NMI*, h00010, was also marginally associated with the risk of ovarian cancer (P=0.043; Table 3.6).

Gene	Haplotype	Freq (%) in controls	OR (95% CI)	P-value	Global P- value	
	h10000000	21.5	1.07 (0.97-1.19)	0.182		
BRAF	h10010000	19.4	0.88 (0.76-1.01)	0.07		
	h00000000	17.3	0.90 (0.78-1.04)	0.15		
	h10010010	11.8	0.96 (0.82-1.12)	0.57		
	h00100000	10.3	0.81 (0.68-0.95)	0.012	0.005	
	h00101001	6.8	0.94 (0.78-1.13)	0.49		
	h01100001	6.1	1.15 (0.95-1.39)	0.14		
	h00000100	5.2	1.08 (0.88-1.31)	0.48		
	h000	53.6	0.95 (0.87-1.04)	0.284		
	h110	16.3	1.19 (1.03-1.37)	0.016		
ERBB2	h001	16	1.17 (1.02-1.34)	0.022	0.034	
	h010	6.6	0.99 (0.82-1.20)	0.9		
	h111	6.5	0.84 (0.68-1.05)	0.12		
	h100	52.1	1.02 (0.94-1.11)	0.66		
KRAS	h000	22.8	1.00 (0.9 – 1.11)	0.99	0.16	
haplotype	h001	15.1	1.03 (0.91 – 1.16)	0.67	0.16	
block 1	h101	9.5	0.89 (0.77 – 1.04)	0.15		
	h000010	30.6	1.04 (0.95-1.15)	0.389		
	h100010	12.9	1.00 (0.85-1.17)	0.98		
	h100100	11.9	1.03 (0.88-1.19)	0.75		
	h101100	10.6	0.98 (0.84-1.14)	0.77		
	h010000	5.5	1.01 (0.82-1.25)	0.91		
KRAS haplotype block 2	h000100	5.4	0.92 (0.73-1.18)	0.52	0.56	
DIOCK 2	h100000	5.4	0.81 (0.65-1.01)	0.06		
	h001100	4.7	0.96 (0.74-1.24)	0.74		
	h100101	4.3	0.82 (0.64-1.05)	0.11		
	h110000	3.2	0.94 (0.70-1.27)	0.69		
	h000000	3.1	0.89 (0.64-1.23)	0.48		
	h00001	45.9	0.91 (0.84-0.99)	0.027		
NMI	h00010	33.7	1.11 (1.003-1.22)	0.043	0.26	
11/1/11	h10100	11.8	1.09 (0.95-1.25)	0.22	0.20	
	h01010	5.7	1.05 (0.84-1.3)	0.67		
	h0000001	48.2	1.02 (0.93-1.11)	0.713		
	h00010010	14.8	1.01 (0.89-1.14)	0.91		
	h00000000	10.2	0.94 (0.81-1.09)	0.39		
РІКЗСА	h00110000	9.7	0.98 (0.84-1.14)	0.79	0.69	
	h01001100	6.6	0.94 (0.79-1.12)	0.5		
	h01000100	4	1.02 (0.82-1.28)	0.84		
	h11000000	3.9	1.20 (0.97-1.48)	0.102		

Table 3.6: Haplotype anal	ysis results for BRAF, ERBB2	, KRAS, NMI and PIK3CA
1 1		

OR - odds ratio, CI - confidence interval; SNP order in haplotypes is 5' to 3' of the genes – *BRAF*: rs10487888, rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385; *ERBB2*: rs2952155, rs2952156, rs1801200; *KRAS* (block 1): rs12305513, rs12822857, rs10842508; *KRAS* (block 2): rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917; *NMI*: rs394884, rs11551174, rs289831, rs3771886, rs11683487; *PIK3CA*: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

Although no associations were found between the tSNPs of *BRAF* and *ERBB2*, correlations were found with the combinations of tSNPs from these oncogenes and risk of ovarian cancer. There was an association between the h00100000 haplotype of *BRAF* and a reduced risk of all ovarian cancer cases (OR=0.81 [0.68- 0.95], P=0.012). Statistically significant *ERBB2* haplotype-effects were observed with the risk of ovarian cancer. Both associated haplotypes, h001 and h110, correlated with an increase in ovarian cancer risk when all cases were analysed (OR=1.17[1.02-1.34], P=0.022; and (OR=1.19 [1.03-1.37], P=0.016), respectively. The fact that both h110 and h001 were associated with an increased risk of ovarian cancer could not be explained because there was no common allele which could explain the associations found with h110 and h001; the haplotypes contained opposite alleles at all loci. HapMap genotype data was used to investigation whether these haplotypes shared a common untagged variant, however, this was without success. Globally, haplotypes of *BRAF* and *ERBB2* were associated with ovarian cancer susceptibility (P=0.005; and P=0.034, respectively).

Ovarian cancer is known to be heterogeneous, and the aetiologies of the four major histological subtypes are believed to be through different pathways. It is, therefore, of considerable interest to evaluate the effect of the oncogene variants and haplotypes on the risk of the serous, mucinous, endometrioid and clear cell histological subtypes of ovarian cancer. It is important to treat the results with caution because the numbers of the individual histological subtypes are far less than when all cases are grouped; therefore the power to detect true positive associations is reduced. The power to detect an association with the recessive, dominant and codominant genetic models with 3,000 controls, 875 serous ovarian cancer cases for a

SNP with MAF=0.46 and an effect size of 1.2 at the 5% significance level are 40%, 55% and 92%, respectively. Serous is the most common histological subtype, therefore the power to detect associations for the remaining common subtypes are further reduced. The results will be described on a gene-by-gene basis.

The association between the rare allele of *NMI* rs11683487 and reduced risk of ovarian cancer remained when the analysis was restricted to the serous and mucinous subtypes from the stage 1 data; (HetOR=0.81 [0.67-0.98], HomOR=0.80 [0.63-1.01], P=0.0377; HetOR=0.67 [0.47-0.96], HomOR=0.62 [0.39-0.99], P=0.0269) respectively. However, the associations were not as significant as for all cases - Table 3.7. As with all cases, the associations were not independently validated in with the stage 2 data, however the association with the mucinous subtype remained when the results from stages 1 and 2 were pooled.

The associations observed between the h00001 and h00010 haplotypes of *NMI* and risk of ovarian cancer also remained when the analysis was restricted to the serous subtype (see Table 3.8). The effect size was these associations were marginally stronger; however the significance was reduced, suggesting these are likely to be false positives. None the less, all of the associations found with the *NMI* haplotypes were supported by the single tSNP findings with *NMI* rs11683487, which was in the last position of the haplotype.

Table 3.7: The effect of NMI rs11683487 on the risk of ovarian cancer in Stages 1 &

Stogo	Controls	Cases	Uistology	Dominant model		
Stage	Controls	ontrols Cases Histology		OR [§] (95% CI)	P-value	
		1464	All	0.81 (0.71-0.94)	0.004	
Stage 1	2564	713	Serous	0.8 (0.67-0.95)	0.0112	
		154	Mucinous	0.81 (0.68-0.96)	0.0163	
		1097	All	0.01 (0.85-1.2)	0.92	
Stage 2	1712	711	Serous	1.02 (0.84-1.25)	0.8319	
		50	Mucinous	1.38 (0.73-2.62)	0.314	
		2561	All	0.87 (0.8-0.99)	0.0317	
Stages 1 & 2	4276	1424	Serous	0.89 (0.78-1.02)	0.0824	
		204	Mucinous	0.84 (0.71-0.99)	0.0419	

2 cases

MAF – minor allele frequency; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
		All	0.91 (0.84-0.99)	0.0276	
		Serous	0.89 (0.8-1)	0.048	
h00001	45.9	Endometrioid	1.05 (0.87-1.25)	0.631	
		Mucinous	0.84 (0.68-1.05)	0.128	
		Clear cell	0.96 (0.74-1.23)	0.729	0.26
		All	1.11 (1-1.22)	0.043	0.20
		Serous	1.13 (1.01-1.28)	0.041	
h00010	33.7	Endometrioid	0.9 (0.74-1.1)	0.305	
		Mucinous	1.11 (0.88-1.4)	0.361	
		Clear cell	0.97 (0.74-1.28)	0.832	

Table 3.8: Haplotype analysis results for NMI (P<0.05)

OR - odds ratio, CI - confidence interval; in the haplotypes, †: '0'= common allele and '1'= rare allele; SNP order in haplotypes is 5' to 3' of the gene : rs394884, rs11551174, rs289831, rs3771886, rs11683487.

Associations between KRAS and ovarian cancer susceptibility

When the effects of KRAS common variants and haplotypes on ovarian cancer risk

were assessed, there was evidence suggesting that 3 variants of KRAS were

associated with risk of the mucinous histological subtype of invasive epithelial

ovarian cancer. The frequency of the rare allele of rs10842514 was significantly greater in cases of mucinous subtype compared to healthy controls. The minor allele frequency (MAF) of the rare allele, "T", of the variant in the controls was 0.44, however, 0.54 the cases. The rare allele of rs10842514 was associated with a 2.02-fold increase in the risk of the mucinous subtype (heterozygous odds ratio [OR] with 95% confidence intervals [CI] =1.13 [95% CI 0.78-1.64], homozygous OR=2.02 [1.35-3.01], P-trend = $6x10^{-4}$), see Table 3.9. This tSNP is in intron 2 of *KRAS*, and to date, it does not tag any other SNP within or flanking *KRAS*. The association was not found with other subtypes of ovarian cancer or all subtypes combined, therefore if the association is true positive, it is unique to the mucinous subtype.

An association was also found between the mucinous histological subtype and two other polymorphisms of *KRAS*. Those homozygous for the rare allele of rs12822857 had a reduced risk of mucinous ovarian cancer. The heterozygous genotype of rs6487464 was also associated with a 0.61-fold reduction in the risk of the subtype in individuals heterozygous for the tSNP; see Table 3.9. However, it is still unknown how mutations or variation of *KRAS* may result in the mucinous subtype. The results for all the tSNPs genotyped for *KRAS* can be found in Appendix III-E.

The associations between these variants and risk of mucinous subtype of ovarian cancer are of particular interest because mutations in *KRAS* have previously been reported to be associated with this subtype. Gemignani *et al* found that of 22 mucinous ovarian carcinomas, 50% had mutations in the *KRAS* oncogene, compared with 4 (5%) of 82 non-mucinous tumours (Gemignani *et al*, 2003).

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)*	HomOR (95% CI)*	P-trend
				1751	All	1.01 (0.88-1.17)	0.94 (0.80-1.12)	0.5281
				835	Serous	1.08 (0.90-1.30)	0.97 (0.78-1.20)	0.8167
	rs12822857	0.47	2901	268	Endometrioid	0.99 (0.73-1.33)	1.06 (0.75-1.50)	0.7605
				187	Mucinous	0.74 (0.53-1.04)	0.63 (0.41-0.96)	0.0232
				132	Clear cell	1.14 (0.75-1.74)	1.04 (0.63-1.72)	0.8398
				1763	All	1.04 (0.91-1.18)	0.99 (0.82-1.19)	0.9408
		0.38	2895	836	Serous	1.09 (0.92-1.29)	0.98 (0.77-1.24)	0.8783
KRAS	rs6487464			269	Endometrioid	1.13 (0.86-1.5)	1.15 (0.79-1.67	0.3878
				192	Mucinous	0.61 (0.44-0.85)	0.76 (0.50-1.18)	0.0379
				136	Clear cell	1.02 (0.70-1.48)	0.95 (0.56-1.61)	0.8918
				1757	All	0.98 (0.86-1.13)	1.08 (0.91-1.29)	0.4153
				835	Serous	1.04 (0.87-1.24)	1.09 (0.88-1.36)	0.4379
	rs10842514	0.44	2886	269	Endometrioid	0.85 (0.64-1.13)	0.97 (0.68-1.38)	0.7294
				188	Mucinous	1.13 (0.78-1.64)	2.02 (1.35-3.01)	0.0006
				134	Clear cell	0.95 (0.64-1.40)	0.79 (0.47-1.33)	0.4026

Table 3.9: Genotype-specific risks of KRAS tSNPs (P<0.05)

MAF: minor allele frequency; Cons: controls; Het: heterozygous; Hom: homozygous; OR: odds ratio; CI: confidence interval, * compared with common homozygote. Enboldened OR and P-trend values are statistically significant.

Gene/ block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.04 (0.95-1.15)	0.389
			Serous	1.07 (0.94-1.21)	0.306
	h000010	30.6	Endometrioid	0.99 (0.81-1.21)	0.916
			Mucinous	1.3 (1.03-1.64)	0.025
KRAS homlotumo			Clear cell	0.79 (0.59-1.06)	0.121
haplotype block 2			All	0.89 (0.64-1.23)	0.48
0100112			Serous	1.08 (0.75-1.58)	0.67
	h000000		Endometrioid	0.36 (0.14-0.92)	0.033
			Mucinous	0.3 (0.09-0.99)	0.049
			Clear cell	0.61 (0.21-1.78)	0.365

Table 3.10: Haplotype analysis results for *KRAS* (P<0.05)

OR - odds ratio, CI - confidence interval, In the haplotypes, \dagger : '0' = common allele and '1' = rare allele; SNP order in haplotypes is 5' to 3' of the genes –*KRAS* (block 2): rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917

When the frequencies of the haplotypes of *KRAS* haplotype block 1 and 2 were compared between cases and controls, statistically significant differences were found between 2 haplotypes of *KRAS* block 2 and the risk of the mucinous subtype of ovarian cancer. The h000010 haplotype of *KRAS* block 2 was associated with a 1.3-fold increase in the risk of the mucinous subtype (OR=1.3 (1.03-1.64), P=0.025. Conversely, the h000000 haplotype of the same block was associated with a decreased risk of the subtype, OR=0.3 (0.09-0.99), P=0.049. The associations between h000010 and h000000 and risk of mucinous ovarian cancer are supported by the presence of the common allele of rs6487464 in the fourth position of the haplotype, and the rare allele of rs10842514 in the fifth position. This is because the rare allele of rs6487464 was associated with reduced risk, and the rare allele of rs10842514 with increased risk. However, this haplotype is not the only one with this combination of alleles of rs6487464 and rs10842514. Assuming that the association found between the rare allele of rs10842514 and increased risk of the mucinous subtype is a true positive, it is feasible that the associations between the

h000000 and h000010 haplotypes of *KRAS* block 2 were due, primarily to the alleles of rs10842514.

Analysis of the effect of haplotype on disease risk can sometimes elucidate associations which could not be identified through individual SNP analysis. It is believed that the combinations of alleles, rather than individual variant may affect disease risk. Such an association was found between the h000000 haplotype of *KRAS* and reduced risk of endometrioid ovarian cancer. This association was also found with the mucinous histological subtype. The association between h000000 and risk of the endometrioid subtype was marginally more significant than the mucinous subtype (OR=0.36 [0.14-0.92], P=0.033), with similar odds ratio (Table 3.10 – page 145). See Appendix III-F for the results for all the common and combined rare haplotypes of *KRAS*.

Associations between BRAF and ovarian cancer susceptibility

There was evidence suggesting that three variants of *BRAF* also influenced the risk of mucinous histological subtype of invasive epithelial ovarian cancer. The rare alleles of two of the variants, rs1267622 and rs17695623, were associated with a decreased risk of the subtype (see Table 3.11). The rare allele of *BRAF* rs10487888, conversely, was associated with an increased risk of the subtype; HetOR=1.32 (0.86-2.03), HomOR=1.61 (1.03-2.53), P=0.0357 (Table 3.11). The associations with these variant were also unique to the subtype. The results for all the *BRAF* common variants can be found in Appendix III-A. There were 8 common (haplotype frequency >5% in control samples) *BRAF* haplotypes (see Appendix III-A). Analysis showed that a haplotype with a 6.8% frequency was associated with a reduced risk of mucinous ovarian cancer (OR=0.54 [0.31-0.93], P=0.027). The *BRAF* tSNPs, rs10487888, rs1267622 and rs17695623 are in the first, third and eighth positions, respectively, of the haplotype. rs10487888 tags rs1267622 with r²=0.318, and rs17695623 with r²=0.097; and rs1267622 and rs17695623 tag each other with r²=0.306.

The haplotype showing significant association with mucinous ovarian cancer contained the common allele of rs10487888, and the rare alleles of rs1267622 and rs17695623, both of which were associated with decreased risk (Table 3.11), which may explain the association. The combination of the alleles supported a reduction in risk of the mucinous subtype. However, this combination of alleles of the above variants also occurred in another haplotype of *BRAF* (h01100001), which had an odds ratio of less than 1, but was not significantly associated with risk of mucinous ovarian cancer (OR=0.93 [0.58-1.48], P=0.76); Table 3.12.

There was an association between the h00100000 haplotype of *BRAF* and a reduced risk of all ovarian cancer cases (OR=0.81 [0.68- 0.95], P=0.012). The association with this haplotype, which occurred at a frequency of 10.3% in controls, remained when analysis was restricted to serous only cases – OR=0.8 (0.66-0.98), P=0.028 - Table 3.12. Although there were no other statistically significant associations of this haplotype and the other histological subtypes of ovarian cancer, the odds ratios for endometrioid, mucinous and clear cell histological subtypes were similar to that of serous (Table 3.12).

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1680	All	1.09 (0.93-1.28)	1.02 (0.86-1.22)	0.902
				804	Serous	1.21 (0.99-1.49)	1.09 (0.87-1.37)	0.5747
	rs10487888	0.47	2694	251	Endometriod	0.84 (0.61-1.17)	0.88 (0.61-1.25)	0.5007
				180	Mucinous	1.32 (0.86-2.03)	1.61 (1.03-2.53)	0.0357
				125	Clear cell	1.04 (0.66-1.64)	0.88 (0.52-1.48)	0.5947
				1751	All	0.99 (0.87-1.12)	0.97 (0.75-1.26)	0.7894
				831	Serous	1.04 (0.88-1.22)	0.90 (0.64-1.26)	0.9055
BRAF	rs1267622	0.24	2880	268	Endometriod	0.76 (0.58-1.01)	1.06 (0.63-1.77)	0.2725
				187	Mucinous	0.67 (0.48-0.94)	0.71 (0.35-1.43)	0.0278
				135	Clear cell	1.24 (0.87-1.78)	1.12 (0.53-2.37)	0.3392
				1744	All	0.97 (0.81-1.16)	1.14 (0.52-2.46)	0.8642
				829	Serous	1.04 (0.83-1.31)	1.19 (0.45-3.10)	0.6437
	rs17695623	0.07	2901	264	Endometriod	0.99 (0.68-1.45)	0.63 (0.08-4.85)	0.8421
				186	Mucinous	0.47 (0.26-0.86)	0.79 (0.10-6.08)	0.0191
				135	Clear cell	1.25 (0.78-2.03)	1.37 (0.18-10.56)	0.3393

Table 3.11: Genotype-specific risks of common BRAF tSNPs (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Gene	Haplotype	Freq (%)	Histology	$OR^{\pm} (95\% CI)^{\dagger}$	P-value
			All	0.88 (0.76-1.01)	0.07
			Serous	0.99 (0.86-1.15)	0.921
	h10010000	19.4	Endometrioid	1.04 (0.82-1.31)	0.769
			Mucinous	0.92 (0.69-1.22)	0.547
			Clear cell	0.67 (0.46-0.97)	0.033
			All	0.81 (0.68-0.95)	0.012
			Serous	0.8 (0.66-0.98)	0.028
BRAF	h00100000	10.3	Endometrioid	0.88 (0.64-1.21)	0.439
			Mucinous	0.87 (0.59-1.27)	0.463
			Clear cell	0.86 (0.55-1.34)	0.508
			All	0.94 (0.78-1.13)	0.49
			Serous	1.09 (0.88-1.35)	0.444
	h00101001	6.8	Endometrioid	0.99 (0.69-1.42)	0.947
			Mucinous	0.54 (0.31-0.93)	0.027
			Clear cell	1.36 (0.87-2.11)	0.175

Table 3.12: Haplotype analysis results for BRAF (P<0.05)

OR - odds ratio; CI - confidence interval; in the haplotypes, '0'= common allele and '1'= rare allele; SNP order in haplotypes is 5' to 3' of the genes – BRAF: rs10487888, rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385.

Another haplotype of *BRAF*, h10010000, was associated with a reduced risk of the clear cell subtype – OR=0.67 (0.46-0.97), P=0.033. The combined rare haplotypes of *BRAF* were also associated with a decrease in the risk of serous ovarian cancer (P=0.038; see Table 3.12), however the frequency of the combined rare haplotype was less than 1. Therefore only a small number of samples with the rare haplotypes would have had a reduced risk of the subtype, if the association is a true positive.

Associations between ERBB2 and ovarian cancer susceptibility

Of the 3 common tagging variants of ERRB2 genotyped, there was evidence of association between rs1801200 and risk of the endometrioid subtype of ovarian cancer. The rare allele of *ERBB2* rs1801200 was associated with an increased risk of endometrioid disease (HetOR=1.16 [0.88-1.52], HomOR=1.71 [1.05-2.76],

P=0.0389; Table 3.13). This variant was not statistically associated with all cases or the other subtypes of ovarian cancer. The heterozygous risk for clear cell cases was OR=1.51, and the confidence intervals did not cross 1, (1.05-2.17), however this correlation was not statistically significant, although the P-value was close to significance at the 5% level (P=0.0564). The results of the *ERBB2* variants are in Appendix III-C.

The *ERBB2* rs1801200 polymorphism is a non-synonymous coding SNP. The "A" allele, which is the major form of the SNP, encodes isoleucine, while the "G" allele encodes valine. The polymorphism is conserved in mice and the sequence is also predicted to be an exonic splicing enhancer.

Statistically significant *ERBB2* haplotype-effects were observed with the risk of ovarian cancer – see Appendix III-D for the results of all the *ERBB2* haplotypes. h001 and h110, which were associated with the risk of all subtypes combined were also clear cell and mucinous subtypes, respectively, see Table 3.14.

The *ERBB2* variant which was associated with ovarian cancer risk, rs1801200, was in the last position of the haplotypes. The fact that both h110 and h001 were associated with an increase in risk of ovarian cancer could not be explained by this variant because it would suggest that the 2 different alleles both result in increased risk of disease. The other loci of the haplotype also contained opposite alleles, therefore, there was no common allele which could explain the associations found with h110 and h001.

150

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-Trend
				1766	All	1.04 (0.92-1.19)	1.01 (0.77-1.31)	0.6401
				847	Serous	1.04 (0.88-1.22)	0.86 (0.60-1.23)	0.8257
ERBB2	rs1801200	0.22	2916	263	Endometriod	1.16 (0.88-1.52)	1.71 (1.05-2.76)	0.0389
				188	Mucinous	0.79 (0.57-1.11)	0.82 (0.41-1.66)	0.2007
				134	Clear cell	1.51 (1.05-2.17)	1.30 (0.61-2.76)	0.0564

Table 3.13: Genotype-specific risks of common ERBB2 tSNPs (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Gene	Haplotype	Freq (%)	Histology	$OR^{\pm} (95\% CI)^{\dagger}$	P-value*
			All	1.19 (1.03-1.37)	0.016
			Serous	1 (0.85-1.19)	0.964
	h110	16.3	Endometrioid	1 (0.75-1.34)	0.982
			Mucinous	1.39 (1.02-1.9)	0.036
ERBB2			Clear cell	0.94 (0.63-1.4)	0.752
EKDD2			All	1.17 (1.02-1.34)	0.022
			Serous	1.08 (0.92-1.27)	0.329
	h001	16	Endometrioid	1.25 (0.97-1.62)	0.079
			Mucinous	0.88 (0.63-1.23)	0.466
			Clear cell	1.6 (1.15-2.21)	0.005

Table 3.14: Haplotype analysis results for *ERBB2* (P<0.05)

OR - odds ratio, CI -confidence interval; in the haplotypes: '0' = common allele and '1' = rare allele; SNP order in haplotypes: rs2952155, rs2952156, rs1801200.

Both the size of the effect and the significance between the h001 haplotype of *ERBB2* and increased risk of ovarian cancer became stronger when analysis was restricted to the clear cell subtype only (OR=1.6 [1.15-2.21], P=0.005). The mucinous subtype was associated with the other significant haplotype, h110, OR=1.39 (1.02-1.9), P=0.036 (see Table 3.14).

Associations between PIK3CA and ovarian cancer susceptibility

There was no evidence of association between tSNPs *PIK3CA* and susceptibility to invasive epithelial ovarian cancer when all the cases of stage 1 samples were analysed (see Appendix III-I). However, a statistically significant association was found between the rare allele of rs2865084 and risk of the endometrioid subtype when analysis was restricted to this subtype, - HetOR=1.6 (1.03-2.5), HomOR=0.3 (0.22-0.42), P=0.0344; Table 3.15. Interestingly, for all but the clear cell subtype, there was a suggestion that the heterozygotes for the tSNP had an increased risk of disease, however all rare homozygotes had a reduced risk of the disease (the confidence interval did not cross 1) – Appendix III-I. The odds ratios for all cases and the all individual subtypes did not cross 1, which suggest an association with rare homozygosity of the variant despite P>0.05 for all but the endometrioid samples - see Table 3.15. PIK3CA rs2865084 tags 4 other SNPs. All of these SNPs are intronic, however they are all conserved. rs2865084 is in a transcription factor binding site, upstream of the gene. Analysis of the PIK3CA haplotypes showed that the h11000000 haplotype was associated with a marginally increased risk of the endometrioid subtype (P<0.05, Table 3.16). However, corrections for multiple testing would attenuate the association. The odds ratios for all the PIK3CA haplotypes are shown in Appendix III-J.

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-Trend
				1164	All	1.14 (0.89-1.45)	0.43 (0.37-0.50)	0.294
				525	Serous	1.13 (0.83-1.55)	0.77 (0.63-0.93)	0.428
<i>РІКЗСА</i>	rs2865084	0.06	2046	183	Endometrioid	1.60 (1.03-2.50)	0.30 (0.22-0.42)	0.034
				135	Mucinous	1.32 (0.77-2.25)	0.32 (0.22-0.46)	0.309
				95	Clear cell	0.51 (0.21-1.28)	0.37 (0.24-0.57)	0.147

Table 3.15: Genotype-specific risks of common PIK3CA tSNPs (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Table 3.16: Haplotype analysis results for *PIK3CA* (P<0.05)

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	1.20 (0.97-1.48)	0.102	
	h11000000	3.9	Serous	1.29 (0.99-1.67)	0.055	
<i>РІКЗСА</i>			Endometrioid	1.49 (1-2.22)	0.049	0.69
			Mucinous	1.07 (0.63-1.82)	0.795	
			Clear cell	0.91 (0.47-1.79)	0.793	

OR - odds ratio; CI - confidence interval, Freq=frequency in controls; In the haplotypes, '0'= common allele and '1'= rare allele; SNP order in haplotypes is 5' to 3' of *PIK3CA*: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

3.3: The Effect of tagging SNPs and haplotypes of functional

candidate genes on risk of ovarian cancer

Deletions on chromosomes 4, 5, 6, 13, 14, 15 and 18 have frequently been observed in primary ovarian cancer cell lines with the metaphase comparative genomic hybridisation procedure. There is also strong evidence from *in vitro* assays suggesting that the incorporation of a normal chromosome 18 into 2 ovarian cancer cancer cell lines can lead to the suppression of the neoplastic phenotype (Dafou *et al.* 2009). The micro-cell mediated chromosome transfer of a normal chromosome 18 (MMCT-18) has also been demonstrated to result in the suppression of the tumourigenic phenotype in prostate and pancreatic cancer cell lines (Padalecki *et al.* 2001; Lefter *et al.* 2002; Gagnon *et al.* 2006). These observations suggest that chromosome 18 harbours tumour suppressor genes which may contribute to these suppressions (Lefter *et al.* 2004; Dafou *et al.* 2009).

Although there has been some degree of success in identifying germline polymorphisms associated with ovarian cancer predisposition with the candidate gene approach, almost all associations have been borderline significant with small effect sizes. It is possible that the limited success may be because the candidate gene selection process is usually based on a predicted function or mutations found in tumours rather than on "functional" evidence. The microcell-mediated chromosome transfer (MMCT) technique was used in the hope of identifying putative functionally relevant genes involved in ovarian cancer aetiology.

The MMCT method was used to transfer normal human chromosome 18 (MMCT-18) into ovarian cancer cell lines. *In vitro* and *in vivo* assays were used to ascertain the effect of the transferred chromosome on the neoplastic phenotype of the resultant recipient/donor hybrids. Differences in gene expression were assessed between the parental cancer cell lines, and the neoplastically suppressed hybrid cells, in order to establish if the incorporation of chromosome 18 resulted in a phenotypic change which could be correlated to biological and/or molecular function.

3.3.1: Gene and tSNP selection of functional candidate genes

The global differential gene expression results from the micro-cell mediated chromosome 18 transfer (MMCT-18) were obtained for each cell line containing columns for: gene ID, probe ID, gene name, cytoband, fold change (hybrid/parental), log₂ of the fold change and P-value. Although the gene expression results were not validated with quantitative (Q)-PCR, the experiments were conducted in triplicate and the results corrected for multiple testing. The gene lists contained data on 32,878 probes for 32,000 genes; there was more than 1 probe for some genes due to different transcripts for the genes being available. Genes from all chromosomes were analysed because genes have dynamic interactions with others throughout the whole genome. It is feasible that although a gene on chromosome 18 may not directly affect tumourigenicity, the gene may interact with or regulate other genes which may have an effect on the suppression of tumour growth.

For the selection of candidate genes, the gene list from the parental and hybrid cell lines of TOV112D was combined with the gene list from TOV21G expression data, matching gene and probe IDs. A simple colour scheme was created for fold change for easy visualisation and data sorting. Green corresponded to down-regulation of gene expression in hybrids in comparison with their respective parental cell line, and red for up-regulation of gene expression of hybrids. Probes with missing data for both cell lines were excluded. Genes with inconsistent fold change directions within and between cell lines were also excluded. For probes where there were missing data for 1 of the parental/hybrid cell lines, the data from the other parental/hybrid trio was used. Gene lists were created for genes which were:

- up-regulated in the hybrids of both cell lines (62 genes);
- down-regulated in the hybrids of both cell lines (993 genes);
- up-regulated in TOV21G hybrids (264 genes);
- down-regulated in TOV21G hybrids (1089 genes);
- up-regulated in TOV112D hybrids (72 genes);
- down-regulated in TOV112D hybrids (312 genes);
- up-regulated in TOV21G hybrids chromosome 18 only (31 genes);
- down-regulated in TOV21G hybrids chromosome 18 only (44 genes);
- up-regulated in TOV112D hybrids chromosome 18 only (24 genes);
- down-regulated in TOV112D hybrids chromosome 18 only (53 genes);
- up-regulated in TOV112D hybrids chromosome 18 break-point region (5 genes);
- down-regulated in TOV112D hybrids chromosome 18 break-point region (8 genes).

Figure 3.4 shows a flow chart of the candidate gene selection process.

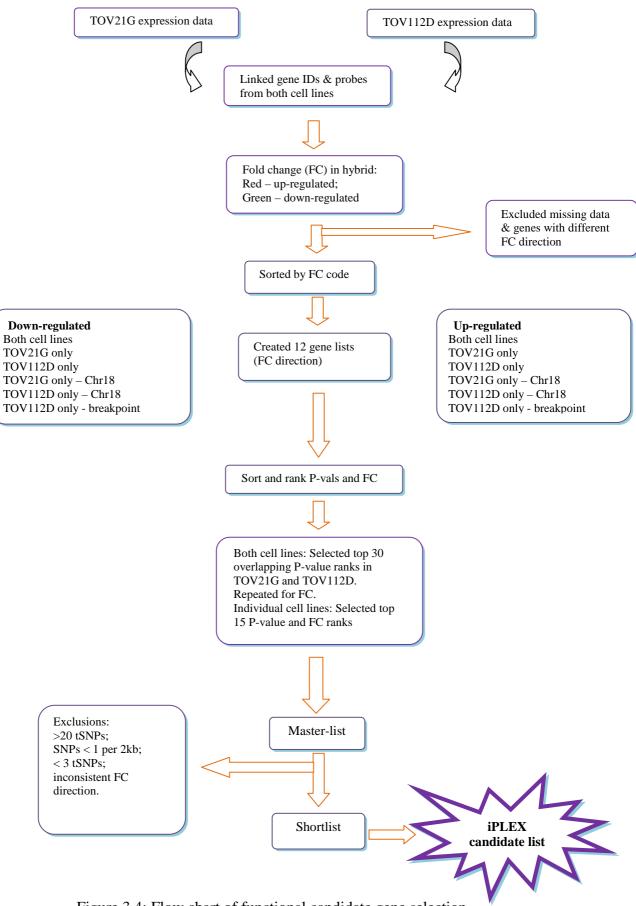


Figure 3.4: Flow chart of functional candidate gene selection

The genes from these lists were ranked by p-values and differential gene expression fold change. From the gene lists with concordant fold change in both cell-lines, the top 30 ranking P-values and fold changes from both cell lines were selected for the master list. From the other gene lists, the top 15 ranking genes according to P-value and fold change were selected for the master list. There were 192 genes in the master list (Appendix I), of which there were some genes that were duplicated from the different lists. The gene size and functions for the genes in the master list were obtained from Entrez Gene (http://www.ncbi.nlm.nih.gov/sites/entrez) and Genecards (http://genecards.org/). The genes were subsequently tagged as described in Chapter 2.

The master list was narrowed down by excluding genes with less than one common variant (MAF \geq 0.05) per 2kb of gene; less than 3 tagging SNPs (tSNPs); greater than 20 tSNPs. Genes were excluded from selection if the function of the gene was unknown. Genes with inconsistent fold change data (i.e. up-regulated in one hybrid, but down-regulated in the other hybrid of the same cell-line) were also discarded. This resulted in the exclusion of 107 genes/probes from the master list. Many genes from those excluded would have been very interesting to study (such as *APOBEC3C*, *TUBA1*, *HIF1A*, *ANXA13*, *DIO2*, *C20orf100*, *LIX1*, *C18orf34*, *GAMP*, *TPM3*, *DNAJB1*, *HEY1*, *SERINC2*, *RARB*, *RCDHB2*, *EPS15L2*, *SLC38A6* and *MAPT*) – see Appendix I for the functions of these genes.

Genes were then selected based on their function and role in ovarian and other malignancies, using literature searches and Oncomine (<u>http://www.oncomine.org/</u>). The hypothesis was that common variants and haplotypes of differentially expressed

candidate genes selected based on *in vitro* and *in vivo* functional evidence may affect a woman's risk of ovarian cancer.

At least 1 candidate gene was selected from each gene list. The genes selected from each list were: one from "down-regulated in TOV112D hybrids" (*RGC32* [FC=3, P=1.79x10⁻⁶]); two from "up-regulated in TOV112D hybrids" (*FILIP1L* [FC=4.9, P=3.44x10⁻⁵], *AXIN2* [FC=5.2, P=0.0027]); one from "down-regulated in the TOV21G hybrids" (*SQSTM1* [FC=109.9, P=1.29x10⁻⁵]); two from "up-regulated in TOV21G hybrids" (*CASP5* [FC=6.9, P=1.7x10⁻³], *STAG3* [FC=8.6, P=6.4x10⁻⁵); two from "down-regulated in both cell lines" (*RUVBL1* [TOV21G: FC=46.7, P=2.22x10⁻⁶; TOV112D: FC=2, P=9.49x10⁻⁶], *SFRS9* [TOV21G: FC=76.9, P=0.0028; TOV112D: FC=4.3, P=0.0019]); three from "up-regulated in both cell-lines" (*AIFM2* [TOV21G: FC=3.4, P=0.0014; TOV112D: FC=1.8, P=0.003], *AKTIP* [TOV21G: FC=5.7, P=0.006; TOV112D: FC=3, P=0.0067], *EIF4B* [TOV21G: FC=8.8, P=0.09; TOV112D: FC=4, P=0.0014]); and one from "chromosome 18, up-regulated in TOV112D" (*RBBP8* [FC=2.9, P=0.023]).

iPLEX Gold Assay Design software was used to create multiplex panels with the tSNPs from these genes. The candidate genes selected for genotyping were based on the multiplex levels within two panels, how many SNPs from each gene were included in the panel; the rankings of the gene within the lists; and the function of the gene. The candidate genes selected from the MMCT gene expression results for iPLEX Gold genotyping were *AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *EIF4B*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1*, *SFRS9*, *SQSTM1* and STAG3 (see Table 3.17).

159

Regulation in hybrids	Gene	Cytoband	Function	Size (bp)	No. SNPs	tSNPs
Down in TOV112D hybrids	RGC32	13q14.11	Cell cycle progression regulation. Induced by p53 in response to DNA damage.	13,323	17	8
	FILIP1L	3q12.1	Down regulated in ovarian cancer.	281,369	135	8
Up in TOV112D hybrids	AXIN2	17q23- q24	Inhibitor of β -catenin in the Wnt signalling pathway. In region of LOH in breast & other cancers.	33,084	14	12
Up in TOV21G	CASP5	11q22.2- q22.3	Regulation of apoptosis.	14,729	17	9
hybrids	STAG3	7q22.1	Component of cohesin complex. Chromosome segregation.	43,764	28	3
Down in TOV21G hybrids	SQSTM1	5q35	May be involved in cell differentiation, apoptosis, immune response and regulation of K(+) channels	17,181	15	10
Down in TOV112D	RUVBL1	3q21	Interacts with MYC. Forms a complex which may be involved in cell growth.	42,857	29	7
& TOV21G hybrids	SFRS9	12q24.31	Plays a role in constitutive splicing and can modulate the selection of alternative splice sites.	8,087	5	3
Unin	AIFM2	10q22.1	TP53-induced apoptosis. Overexpression has been shown to induce apoptosis.	34,711	17	13
Up in TOV112D & TOV21G hybrids	AKTIP	16q12.2	Apoptosis. Protein interacts directly with PKB/Akt and modulates PKB activity by enhancing the phosphorylation of PKB's regulatory sites.	11,978	7	4
	EIF4B	12q13.13	Translation initiation factor.	35,770	40	8
Chr18 up in TOV112D hybrids	RBBP8	18q11.2	RB1 binding protein. Believed to modulate the functions of BRCA1 in transcriptional regulation, DNA repair, and/or cell cycle checkpoint control. Has been proposed that this gene may be a tumour suppressor acting in the same pathway as BRCA1.	93,155	39	4

Table 3.17: Candidate "functional" genes from MMCT-18 study

SNP selection criteria: minor allele frequency ≥ 0.05 , Hardy-Weinberg equilibrium p-value ≥ 0.01 using HapMap Data Release 22.

The sequences of the tagging SNP of the differentially expressed candidate genes were formatted for the iPLEX Gold Assay design software, in differing gene combinations to assess the most efficient multiplexes for panels. The assay panel design chosen contained the most interesting candidate genes in terms of known function (*AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1* and *STAG3*), would result in 10 tSNPs in total being genotyped by TaqMan if all the polymorphisms were successfully genotyped on the iPLEX Gold system. The functions of the candidate genes that were chosen for the association study are summarised in Table 3.17. The panel also contained assays for *BRCA1* (rs799917) and *BRCA2* (rs144848) SNPs, which had been genotyped and sequenced. These variants were used for quality control purposes. The panel selected comprised of a 27-plex and 33-plex.

3.3.2: MMCT-18 samples and methods

Due to the poor performance of the GEOCS samples on the iPLEX platform in the oncogene study, it was excluded from the stage 1 set of samples. More SEARCH and UKOPS samples were available for stage 1 than for the oncogene study. Additional SEARCH cases and UKOPS cases and controls were also available for stage 2 validation. These extra samples came from ongoing participant recruitment and preparation of samples. The sample sets used in this "functional" study are shown in Table 3.18. The histological subtype data for BAVARIA and the new SEARCH and UKOPS cases are currently not available.

Three different populations were used in stage 1 of this study. These populations consisted of: (1) The Danish MALOVA study; (2) The UK SEARCH study; (3) the

UKOPS study from the UK. In total, there were 1,799 invasive epithelial ovarian cancer cases and 3,045 unaffected controls in this series. Stage 2 samples were used to validate findings from stage 1. See Table 3.18 for the numbers of cases and controls genotyped from each population set.

Study	Controls	Total cases	Serous	Endometrioid	Mucinous	Clear cell
MALOVA	1221	446	275	56	43	33
SEARCH	1229	847	328	138	104	83
UKOPS	595	506	246	84	48	49
Total stage 1	3045	1799	849	278	195	165
AUS	1122	768	464	105	27	50
BAV	234	228	Unknown	Unknown	Unknown	Unknown
DOVE	716	584	303	86	18	30
GEOCS	429	327	166	47	29	23
GER	416	218	103	21	21	6
HAWAII	158	70	36	11	2	6
HOPE	603	280	159	40	13	21
JAC	593	603	300	62	49	12
NCOCS	747	622	242	50	33	22
USC	546	391	161	33	19	14
UKO-P2	467	553	Unknown	Unknown	Unknown	Unknown
Total stage 2	6031	4590	1934	455	211	184
Total stages 1 & 2	9076	6389	2783	733	406	349

Table 3.18: Ovarian cancer case-control populations included in functional study

The stage 2 samples comprised of case-control studies from Australia (AUS), Germany (BAVARIA; and GER), Poland (JAC), the United Kingdom (UKO (B) consisting of 368 SEARCH cases; and 185 UKOPS cases and 467 controls), and the United States of America (DOVE; GEOCS; HAWAII; HOPE; NCOCS and USC).

A total of 68 tSNP were identified from the nine candidate genes. Of these, five tSNPs (*AIFM2* rs2271695; *AXIN2* rs2240308 and rs4128941; *RGC32* rs3783197;

and *RUVBL1* rs13091198) failed assay design, manufacture, probe testing or QC. Therefore, the stage 1 samples were successfully genotyped with 63 tSNPs from *AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3* with a combination of iPLEX Gold and Taqman SNP genotyping platforms. Overall 95% of the candidate genes were covered by the tSNPs which were successfully genotyped (288 variants covered by the genotyped tSNPs out of a total 303 variants).

3.3.3: Ovarian cancer risks associated with common genetic variation in functional candidate genes

The genotype distributions for the tagging SNPs of the MMCT-18 candidate genes are tabulated in Appendix II-B. The results of the logistic regression are shown in Appendix IV-A to IV-R.

When the effects of the common variants of the MMCT-18 candidate genes on predisposition of ovarian cancer were assessed, there was no evidence of association with *AIFM2*, *AKTIP*, *FILIP1L*, *RBBP8*, *RGC32* and *STAG3*. A tSNP from *AXIN2*, *CASP5* and *RUVBL1* were associated with risk of ovarian cancer. The rare allele of *AXIN2* rs11079571 was associated with an increase in ovarian cancer risk (HetOR=1.23 [1-1.51], HomOR=1.73 [0.99-3.01], P=0.0383). The rare allele of *CASP5* rs518604 was associated with an increase in ovarian cancer risk; (HetOR=1.39 [1.06-1.81], HomOR=1.44 [1.05-1.97], P=0.0124), Table 3.19. This association remained when analysis was restricted to serous only cases.

Chapter 3: Results - susceptibility

					Serous	I	All subtypes		S	erous subtype	
Gene	tSNP	MAF	Controls	All cases	cases	HetOR	HomOR	P- trend	HetOR	HomOR	P-trend
	rs2394655	0.04	2924	1751	827	1.01 (0.80-1.27)	1.37 (0.42-4.42)	0.7773	1.12 (0.84-1.49)	1.03 (0.21-5.04)	0.4297
	rs7908957	0.13	2873	1719	817	0.92 (0.79-1.07)	1.13 (0.73-1.75)	0.5342	0.91 (0.75-1.11)	0.91 (0.50-1.67)	0.3812
	rs1053495	0.08	2704	1697	790	0.97 (0.81-1.16)	0.72 (0.35-1.51)	0.457	0.96 (0.75-1.21)	0.88 (0.35-2.18)	0.6293
	rs2894111	0.28	2861	1770	835	0.99 (0.87-1.13)	0.93 (0.74-1.16)	0.5545	1.02 (0.87-1.20)	0.86 (0.64-1.17)	0.5896
	rs2394656	0.19	1703	913	506	0.96 (0.80-1.15)	0.85 (0.55-1.34)	0.4114	0.93 (0.75-1.17)	0.85 (0.50-1.47)	0.3965
AIFM2	rs6480440	0.23	1140	422	556	1.01 (0.79-1.29)	0.88 (0.55-1.42)	0.7992	1.07 (0.80-1.43)	0.75 (0.40-1.39)	0.8126
AIFML	rs2280201	0.12	1783	1313	261	1.05 (0.88-1.25)	0.96 (0.53-1.71)	0.59	1.11 (0.88-1.40)	0.97 (0.44-2.12)	0.5089
	rs10999147	0.08	2395	1285	600	1.25 (1.03-1.51)	0.48 (0.16-1.47)	0.2055	1.13 (0.88-1.46)	0.79 (0.23-2.75)	0.6396
	rs3750772	0.05	2944	1743	831	1.02 (0.83-1.24)	2.28 (0.86-6.04)	0.54	1.12 (0.88-1.44)	3.43 (1.23-9.58)	0.1043
	rs4295944	0.41	1784	1335	567	0.98 (0.83-1.15)	1.09 (0.88-1.34)	0.4913	0.95 (0.77-1.18)	1.11 (0.84-1.46)	0.6042
	rs2394644	0.12	1685	1324	561	1.05 (0.88-1.26)	1.03 (0.60-1.79)	0.5245	1.02 (0.80-1.29)	1.11 (0.55-2.25)	0.7103
	rs10999152	0.17	2610	1618	760	1.14 (0.99-1.32)	0.96 (0.68-1.36)	0.2066	1.17 (0.98-1.40)	1.01 (0.65-1.57)	0.2171
	rs9931702	0.44	1722	917	506	0.96 (0.80-1.16)	1.01 (0.80-1.27)	0.9734	1.10 (0.87-1.38)	1.12 (0.85-1.50)	0.4039
AVTID	rs17801966	0.14	1469	828	450	1.06 (0.87-1.31)	0.74 (0.38-1.46)	0.9282	1.14 (0.89-1.46)	0.90 (0.40-2.00)	0.4718
AKTIP	rs7189819	0.32	2923	1745	825	0.93 (0.82-1.06)	0.92 (0.75-1.14)	0.2796	0.99 (0.84-1.17)	1.02 (0.78-1.33)	0.867
	rs3743772	0.06	1093	413	256	0.90 (0.62-1.32)	2.02 (0.32-12.59)	0.6778	1.12 (0.73-1.72)	1.72 (0.17-17.14)	0.6424
AXIN2	rs11868547	0.49	1717	919	509	0.93 (0.76-1.13)	1.02 (0.81-1.29)	0.8178	0.92 (0.72-1.17)	0.99 (0.74-1.31)	0.9949
	rs7591	0.37	2881	1779	838	1.09 (0.96-1.24)	1.05 (0.87-1.27)	0.4234	1.19 (1.01-1.41)	1.11 (0.87-1.41)	0.1463
	rs4074947	0.2	2898	1775	840	1.16 (1.02-1.32)	0.92 (0.67-1.24)	0.2189	1.21 (1.03-1.43)	0.76 (0.50-1.16)	0.323
	rs7210356	0.11	2974	1777	838	1.01 (0.87-1.17)	0.97 (0.56-1.69)	0.8864	1.09 (0.90-1.32)	1.08 (0.54-2.14)	0.3518
	rs11655966	0.26	1779	1301	552	0.92 (0.79-1.07)	1.07 (0.80-1.44)	0.9064	0.99 (0.81-1.22)	1.10 (0.74-1.63)	0.6218
	rs4541111	0.49	1770	1297	554	1.09 (0.91-1.30)	0.97 (0.78-1.19)	0.806	1.10 (0.87-1.40)	1.03 (0.78-1.36)	0.755

Table 3.19: Genotype-specific risks of MMCT-18 candidate genes

164

	rs4791171	0.28	2109	1185	539	1.08 (0.92-1.25)	1.19 (0.92-1.55)	0.1238	1.05 (0.86-1.29)	1.23 (0.88-1.73)	0.2499
	rs11079571	0.15	1206	839	326	1.23 (1.00-1.51)	1.73 (0.99-3.01)	0.0383	1.22 (0.92-1.63)	1.74 (0.84-3.63)	0.1127
	rs3923087	0.21	2910	1780	843	1.05 (0.93-1.20)	1.26 (0.95-1.68)	0.1545	1.05 (0.89-1.24)	1.10 (0.75-1.60)	0.4525
	rs3923086	0.41	2935	1753	833	0.91 (0.80-1.04)	1.07 (0.90-1.27)	0.813	0.84 (0.71-1.00)	1.02 (0.81-1.27)	0.6828
	rs518604	0.44	1195	438	270	1.39 (1.06-1.81)	1.44 (1.05-1.97)	0.0124	1.36 (0.98-1.88)	1.45 (0.99-2.11)	0.0313
	rs523104	0.47	1199	824	320	1.03 (0.83-1.29)	1.07 (0.82-1.39)	0.7689	0.86 (0.65-1.16)	0.80 (0.55-1.15)	0.1294
	rs3181328	0.09	1206	829	319	0.95 (0.73-1.23)	1.16 (0.50-2.72)	0.7779	0.93 (0.65-1.33)	0.68 (0.18-2.64)	0.7345
	rs17446518	0.12	1177	803	311	0.88 (0.69-1.12)	1.28 (0.54-3.02)	0.5052	0.87 (0.63-1.22)	1.01 (0.28-3.69)	0.5292
CASP5	rs9651713	0.11	2898	1730	819	0.99 (0.85-1.15)	1.22 (0.70-2.13)	0.836	0.96 (0.78-1.17)	1.55 (0.81-2.96)	0.8167
	rs3181175	0.18	2379	1282	597	0.96 (0.83-1.12)	1.23 (0.83-1.82)	0.9331	0.93 (0.76-1.13)	1.34 (0.82-2.19)	0.9482
	rs3181174	0.08	2962	1780	840	0.96 (0.80-1.14)	1.21 (0.55-2.65)	0.7967	1.09 (0.88-1.36)	1.12 (0.41-3.09)	0.4061
	rs2282657	0.35	1478	852	462	1.08 (0.90-1.30)	0.89 (0.67-1.20)	0.7645	1.16 (0.92-1.45)	1.11 (0.78-1.56)	0.3615
	rs507879	0.54	2839	1768	835	1.02 (0.87-1.20)	1.00 (0.84-1.19)	0.9144	1.09 (0.89-1.34)	1.00 (0.79-1.26)	0.8497
	rs796977	0.33	1166	437	269	1.07 (0.84-1.35)	1.33 (0.94-1.89)	0.1458	0.98 (0.74-1.31)	1.25 (0.83-1.90)	0.4593
	rs793477	0.13	2646	1653	771	1.02 (0.88-1.18)	0.88 (0.53-1.43)	0.9373	1.11 (0.92-1.35)	1.08 (0.59-1.99)	0.3224
	rs793446	0.4	2947	1773	838	1.05 (0.92-1.20)	1.11 (0.93-1.32)	0.3207	0.95 (0.80-1.13)	1.07 (0.86-1.34)	0.842
<i>FILIP1L</i>	rs3921767	0.07	2859	1773	840	1.00 (0.84-1.20)	0.69 (0.29-1.61)	0.6908	0.90 (0.71-1.15)	0.19 (0.03-1.43)	0.1194
FILIFIL	rs17338680	0.11	2989	1786	574	1.06 (0.91-1.24)	0.77 (0.46-1.28)	0.985	0.88 (0.69-1.14)	0.98 (0.44-2.20)	0.3051
	rs9864437	0.22	2972	1786	843	0.98 (0.86-1.12)	1.18 (0.91-1.53)	0.6077	0.96 (0.81-1.14)	1.47 (1.08-2.01)	0.2249
	rs6788750	0.41	2532	1414	710	0.98 (0.84-1.13)	0.96 (0.79-1.17)	0.7028	1.07 (0.88-1.29)	1.12 (0.88-1.44)	0.3295
	rs12494994	0.17	2347	1273	594	1.14 (0.98-1.33)	0.88 (0.59-1.33)	0.433	0.95 (0.78-1.17)	0.52 (0.27-0.99)	0.097
	rs7239066	0.11	2366	1272	594	0.80 (0.67-0.96)	1.05 (0.57-1.95)	0.0645	0.99 (0.79-1.23)	1.18 (0.55-2.53)	0.7647
RBBP8	rs11082221	0.04	2937	1748	826	1.12 (0.89-1.41)	1.13 (0.31-4.07)	0.2974	1.17 (0.88-1.57)	0.55 (0.07-4.59)	0.3355
<u>Ν</u> <i>ĎĎ</i> Γ0	rs4474794	0.37	2895	1764	829	0.94 (0.82-1.07)	0.88 (0.72-1.06)	0.2066	0.83 (0.70-0.98)	0.80 (0.63-1.03)	0.0323
	rs9304261	0.24	888	346	215	1.07 (0.82-1.40)	0.67 (0.38-1.17)	0.5163	1.08 (0.79-1.49)	0.37 (0.16-0.88)	0.2176
RGC32	rs10467472	0.13	2887	1769	839	0.99 (0.86-1.15)	1.05 (0.68-1.64)	0.9822	0.91 (0.75-1.10)	0.74 (0.39-1.41)	0.2126

Chapter 3: Results - susceptibility

	rs3783194	0.11	2723	1690	788	1.02 (0.88-1.19)	1.03 (0.57-1.89)	0.8873	0.89 (0.72-1.09)	0.70 (0.29-1.69)	0.1363
	rs11618371	0.1	2959	1771	835	1.01 (0.87-1.18)	1.31 (0.74-2.32)	0.5158	1.03 (0.85-1.26)	1.33 (0.66-2.70)	0.4921
	rs9532824	0.08	2892	1782	841	0.96 (0.81-1.15)	0.47 (0.19-1.16)	0.3412	0.94 (0.74-1.18)	0.46 (0.14-1.54)	0.3245
	rs995845	0.26	2365	1274	595	1.01 (0.87-1.16)	1.09 (0.82-1.45)	0.8121	0.89 (0.74-1.09)	1.06 (0.73-1.52)	0.4695
	rs9594551	0.15	2863	1766	833	1.01 (0.88-1.16)	1.10 (0.74-1.65)	0.611	1.09 (0.91-1.29)	0.97 (0.56-1.65)	0.4095
	rs975590	0.24	2940	1749	828	1.02 (0.90-1.16)	0.89 (0.68-1.17)	0.8348	1.03 (0.87-1.21)	0.84 (0.59-1.21)	0.7862
	rs9860614	0.11	2966	1777	839	1.05 (0.90-1.22)	1.44 (0.89-2.31)	0.2094	1.16 (0.96-1.40)	1.03 (0.52-2.02)	0.1425
	rs13063604	0.23	1724	1266	537	1.14 (0.97-1.34)	1.39 (1.02-1.89)	0.0192	1.42 (1.15-1.74)	1.63 (1.10-2.42)	0.0002
RUVBL1	rs3732402	0.38	2382	1280	596	1.20 (1.03-1.40)	1.06 (0.85-1.31)	0.207	1.35 (1.10-1.64)	1.14 (0.86-1.52)	0.0677
KUVDLI	rs7650365	0.49	2672	1645	769	1.08 (0.93-1.26)	0.86 (0.72-1.03)	0.1081	0.97 (0.80-1.17)	0.74 (0.58-0.93)	0.009
	rs4857836	0.27	2993	1787	845	1.05 (0.93-1.19)	0.97 (0.76-1.23)	0.8219	1.11 (0.95-1.31)	1.04 (0.77-1.41)	0.3458
	rs9821568	0.15	2911	1733	820	0.97 (0.84-1.11)	0.93 (0.63-1.37)	0.5613	0.99 (0.82-1.18)	0.57 (0.31-1.06)	0.2966
	rs11762932	0.22	2965	1787	846	1.03 (0.90-1.17)	1.06 (0.80-1.40)	0.6327	1.03 (0.88-1.22)	1.06 (0.74-1.52)	0.6639
STAG3	rs2246713	0.49	1765	1295	549	0.97 (0.81-1.15)	0.96 (0.78-1.19)	0.6593	0.95 (0.75-1.20)	0.87 (0.66-1.16)	0.2436
	rs1637001	0.28	2967	1784	843	0.86 (0.76-0.98)	0.92 (0.73-1.16)	0.0692	0.84 (0.71-0.99)	0.77 (0.56-1.05)	0.0177

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

166

Chapter 3: Results - susceptibility

The confidence intervals of both the heterozygous and homozygous odds ratios of *CASP5* rs518604 crossed 1, however the lower confidence intervals were close to 1 (HetOR=1.36 [0.98-1.88], HomOR=1.45 [0.99-2.11], P=0.0313; Table 3.19). The *AXIN2* rs11079571 and *CASP5* rs518604 were only successfully genotyped for 839 cases and 1,206 controls, and 438 cases and 1,195 controls, respectively with the iPLEX Gold platform. TaqMan assays of the variants failed to produce callable genotype clusters, therefore the associations could not be further investigated with the remaining stage 1 and stage 2 samples. Neither *AXIN2* nor *CASP5* variants were tagged by any other SNP with $r^2 \ge 0.8$, therefore it was not possible to manufacture Taqman assays of SNPs in LD. Due to the relatively small numbers of samples successfully genotyped for these variants and the borderline significance of the P-values, there is a possibility that the associations are chance findings.

The rare allele of *RUVBL1* rs13063604 was also associated with an increased risk of ovarian cancer; HetOR=1.14 (0.97-1.34), and the HomOR=1.39 (1.02-1.89), P=0.0192. This association became stronger when the analysis was restricted to the serous histological subtype (P=0.0002). There was also evidence suggesting that the rare allele of *RUVBL1*, rs7650365, was associated with a decreased risk of the serous subtype (Table 3.20).

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)*	HomOR (95% CI)*	P-trend
				1266	All	1.14 (0.97-1.34)	1.39 (1.02-1.89)	0.0192
				537	Serous	1.42 (1.15-1.74)	1.63 (1.10-2.42)	0.0002
	rs13063604	0.25	1724	207	Endometrioid	0.74 (0.53-1.04)	1.29 (0.73-2.31)	0.3904
				143	Mucinous	0.95 (0.64-1.41)	1.39 (0.69-2.83)	0.5473
	<i>RUVBL1</i> rs7650365 0.46			124	Clear cell	1.22 (0.83-1.80)	1.07 (0.48-2.40)	0.4113
				1645	All	1.08 (0.93-1.26)	0.86 (0.72-1.03)	0.1081
		0.46	2672	769	Serous	0.97 (0.80-1.17)	0.74 (0.58-0.93)	0.009
RUVBL1				256	Endometrioid	1.12 (0.83-1.53)	0.74 (0.50-1.09)	0.1777
				175	Mucinous	1.04 (0.70-1.53)	1.25 (0.81-1.93)	0.371
				155	Clear cell	1.08 (0.73-1.60)	0.93 (0.58-1.48)	0.7821
				1733	All	0.97 (0.84-1.11)	0.93 (0.63-1.37)	0.5613
		0.15	2911	820	Serous	0.99 (0.82-1.18)	0.57 (0.31-1.06)	0.2966
	rs9821568			269	Endometrioid	1.14 (0.86-1.52)	2.09 (1.16-3.78)	0.0286
				186	Mucinous	0.86 (0.60-1.23)	0.62 (0.19-2.00)	0.1981
				161	Clear cell	0.68 (0.45-1.02)	0.85 (0.30-2.38)	0.0967

Table 3.20: Genotype-specific risks of variants of RUVBL1 (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Validation of RUVBL1 results

The two SNPs with the strongest associations with ovarian cancer risk (*RUVBL1* rs13063604 and rs7650365) were genotyped in additional stage 2 samples, which included a total of 2,636 cases and 6,164 controls. Stage 2 comprised of samples from AUS, BAVARIA, DOVE, GEOCS, GER, HAW, HOPE, JAC, NCOCS, UKO-P2 (UKOPS cases and controls, and SEARCH cases) and USC. The associations with risk of the serous subtype were not validated in the stage 2 samples alone (P>0.05; refer to Table 3.21). The association between increased risk of serous ovarian cancer and the rare allele of rs13063604 HetOR=1.13 (1.00-1.27), HomOR= 1.22 (0.9-1.56), P=0.0191 remained statistically significant after combining stages 1 and 2 genotyping data. The rs13063604 variant tags nine other SNPs. Two of these, rs1057220 and rs1057156, are located in the 3' untranslated region (3'UTR), and they are predicted to be exonic splicing enhancers.

The association between the rare allele of rs7650365 and reduced risk of the serous subtype was no longer statistically significant after stages 1 and 2 were combined (HetOR=0.94 [0.86-1.04), HomOR=0.92 [0.82-1.03), P=0.142); Table 3.21.

The rare allele of *RBBP8* rs4474794 was found to be associated with a decrease in risk of serous histological subtype when logistic regression analysis was restricted to the subtype, HetOR=0.83 (0.70-0.98), HomOR=0.80 (0.63-1.03), P=0.0323; Appendix IV-L. The rs4474794 tSNP tags 17 other variants with $r^2 \ge 0.8$. Five of these SNPs are conserved in mice, however, all of the SNPs are intronic, and there are no known functions which could explain the association.

tSNP	Study	Controls	Cases	Histology	HetOR* (95% CI)	HomOR* (95% CI)	P-trend
	Stage 1	1724	1266		1.14 (0.97-1.34)	1.39 (1.02-1.89)	0.019
	Stage 2	2639	1915	All	1.04 (0.92-1.18)	1.09 (0.85-1.41)	0.402
rs13063604 -	Stage 1 & 2	4363	3181		1.08 (0.98-1.19)	1.19 (0.98-1.45)	0.033
1813003004	Stage 1	1724	537		1.42 (1.15-1.74)	1.63 (1.10-2.42)	0.0002
	Stage 2	2639	1218	Serous	1.00 (0.86-1.16)	1.05 (0.77-1.42)	0.83
	Stage 1 & 2	4363	1755		1.13 (1.00-1.27)	1.22 (0.96-1.56)	0.019
	Stage 1	2672	1645		1.08 (0.93-1.26)	0.86 (0.72-1.03)	0.11
	Stage 2	5885	4437	All	0.97 (0.88-1.06)	0.97 (0.87-1.09)	0.624
wc7650365	Stage 1 & 2	8778	6129		1.02 (0.94-1.1)	0.96 (0.87-1.05)	0.404
rs7650365	Stage 1	2672	769		0.97 (0.80-1.17)	0.74 (0.58-0.93)	0.009
	Stage 2	5885	2534	Serous	0.94 (0.84-1.05)	0.99 (0.87-1.13)	0.858
	Stage 1 & 2	8778	3303		0.94 (0.86-1.04)	0.92 (0.82-1.03)	0.142

Table 3.21: Genotype-specific risks of *RUVBL1* rs13063604 and rs7650365 (by genotyping stage)

Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; * compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

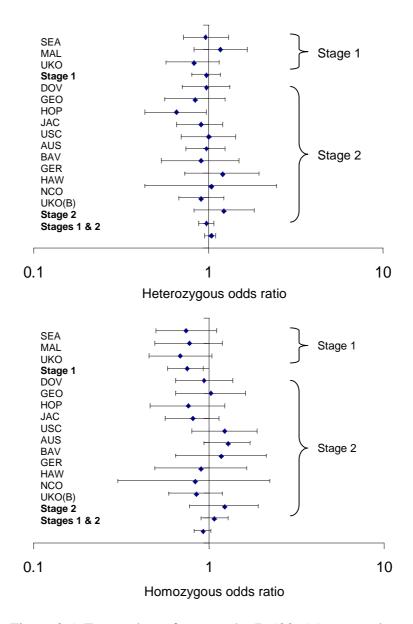


Figure 3.5: Forest plots of RUVBL1 rs7650365 (serous subtype)

The genotype- and haplotype-specific results of *STAG3* are shown in Appendix IV-Q and V-R. The rare allele of rs1637001 was associated with a reduced risk of the serous histological subtype (HetOR=0.84 (0.71-0.99), HomOR=0.77 (0.56-1.05), P=0.0177). The heterozygous odd ratio for rs1637001 for all histological subtypes correlated to a decrease in the risk of ovarian cancer, HetOR=0.86 (0.76-0.98),

HomOR=0.92 (0.73-1.16), P=0.0692. However, the correlation was not statistically significant.

Associations were also found with the haplotypes of *AXIN2*, *CASP5* and *RUVBL1* and ovarian cancer susceptibility – see Table 3.22. The h1111 haplotype of *AXIN2* block 2 was associated with an increased risk of ovarian cancer - OR=1.21 (1.03-1.42), P=0.023. This association was also found when analysis was restricted to the serous subtype (OR=1.19 [1.01-1.39], P=0.037) – Appendix IV-F. The rs11079571 variant, which was associated with disease risk, was in the second position of the haplotypes of this block (*AXIN2* block 2). The association between the rare allele of rs11079571 and increased risk of ovarian cancer was consistent with the correlation of the h1111 haplotype of *AXIN2* block 2 and increased risk of ovarian cancer. No other common haplotypes of *AXIN2* block 2 contained the rare allele of rs11079571 (see Appendix IV-F).

The h000 haplotype of *CASP5* block 1, which contained rs518604 in the first position, was associated with a reduced risk of ovarian cancer, OR=0.72 (0.56-0.94), P=0.015. Conversely, the h100 haplotype of the same block was associated with an increased risk of ovarian cancer of all subtypes, OR=1.13 (1.03-1.24), P=0.012; Table 3.22. The associations were consistent with the effects of the rs518604 alleles. When the global effects of *CASP5* haplotype block 1 on ovarian cancer susceptibility were investigated, a highly significant association was found, P=8.43x10⁻⁶. Although no individual haplotype of *RUVBL1* was found to be associated with the risk of ovarian cancer, *RUVBL1* haplotypes were globally associated with ovarian cancer predisposition, P=0.0016.

Gene/haplotype block	Haplotype	Freq (%)	OR (95% CI)	P-value	Global P- value	
	h0000000	70	1.04 (0.9-1.2)	0.60		
AIFM2 block 1	h0001011	7	1.22 (0.94-1.59)	0.13	0.93	
III WZ DIOCK I	h0001100	4	0.8 (0.54-1.17)	0.24	0170	
	h1111110	4	1 (0.71-1.42)	1.00		
	h00000	36	0.92 (0.83-1.02)	0.12		
AIFM2 block 2	h00001	4	1.06 (0.83-1.35)	0.67	0.80	
AIT MZ DIOCK Z	h00011	7	1.12 (0.92-1.36)	0.25	0.80	
	h00100	39	1.01 (0.91-1.11)	0.86		
AKTIP	h0000	55	1.01 (0.88-1.16)	8-1.16) 0.90		
	h1010	30	1 (0.86-1.16)	1.00	0.37	
	h1100	8	0.97 (0.75-1.25)	0.80		
	h1101	6	1 (0.75-1.33)	1.00		
	h000001	15	0.9 (0.77-1.04)	0.15		
	h010011	6	0.9 (0.72-1.12)	0.36		
AXIN2 block 1	h010111	11	1.05 (0.89-1.23)	0.58		
	h011001	10	1.15 (0.98-1.36)	0.08	0.19	
	h011010	4	0.96 (0.73-1.26)	0.75		
	h011011	6	1.08 (0.87-1.33)	0.49		
	h100000	45	1.03 (0.93-1.13)	0.60		
	h0000	53	0.98 (0.87-1.1)	0.75		
	h0001	15	0.93 (0.79-1.11)	0.43		
AXIN2 block 2	h1001	6	0.98 (0.77-1.26)	0.87	0.085	
	h1011	7	1.06 (0.86-1.3)	0.60		
	h1111	13	1.21 (1.03-1.42)	0.023		
	h001	10	0.9 (0.77-1.06)	0.22		
CASP5 block 1	h010	44	0.99 (0.9-1.09)	0.79	8.4 x10 ⁻⁶	
	h100	43	1.13 (1.03-1.24)	0.012		
	h000000	10	0.87 (0.71-1.07)	0.18		
	h000001	49	1.02 (0.9-1.14)	0.77		
CACD511.1.2	h000010	13	1.1 (0.93-1.3)	0.29	0.25	
CASP5 block 2	h001110	7	0.97 (0.77-1.22)	0.79	0.25	
	h011010	10	1.15 (0.95-1.39)	0.16		
	h100001	5	1.01 (0.82-1.26)	0.90		
	h00000	46	0.95 (0.84-1.08)	0.45		
<i>FILIP1L</i> block	h00110	7	0.94 (0.74-1.2)	0.62		
1	h01000	12	0.97 (0.79-1.19)	0.78	0.59	
-	h10100	23	1.08 (0.93-1.24)	0.31		
	h10101	11	1.11 (0.91-1.35)	0.29		
FILIP1L block	h000	19	0.94 (0.83-1.08)	0.38	0.76	
2	h001	17	1.04 (0.92-1.17)	0.56		
			· · · · /	-		

Table 3.22: MMCT-18 susceptibility - haplotype results (all subtypes)

Gene/haplotype block	Haplotype	Freq (%)	OR (95% CI)	P-value	Global P- value
	h100	23	1.04 (0.93-1.16)	0.53	
RBBP8	h0000	62	1.12 (0.98-1.27)	0.09	
	h0010	02	0.88 (0.71-1.1) 0.		0.64
	h0011	23	0.92 (0.8-1.07)	0.27	0.64
	h1010	7	0.83 (0.64-1.07)	0.15	
RGC32	h0000000	42	0.98 (0.89-1.08)	0.67	
	h0000011	5	0.93 (0.74-1.17)	0.54	
	h0000100	10	1.04 (0.89-1.21)	0.61	
	h0001001	7	0.92 (0.75-1.12)	0.41	0.63
	h0010011	8	1.1 (0.93-1.31)	0.28	
	h0100100	11	1.01 (0.87-1.18)	0.85	
	h1000000	8	1 (0.84-1.2)	0.96	
	h000000	13	0.91 (0.77-1.07)	0.25	
	h000100	48	0.96 (0.86-1.07)	0.49	
RUVBL1	h001011	15	0.98 (0.84-1.15)	0.83	0.0016
	h011010	12	1.15 (0.97-1.36)	0.11	
	h111000	10	1.17 (0.99-1.4)	0.07	
	h000	51	1.06 (0.96-1.16)	0.26	
STAG3	h011	27	0.94 (0.85-1.05)	0.29	0.098
	h110	21	1.03 (0.92-1.16)	0.63	

Freq – frequency; OR – odds ratio; CI – confidence interval; SNP order in haplotypes is 5' to 3' of the genes – *AIFM2* (block 1): rs2394655, rs7908957, rs1053495, rs2894111, rs2394656, rs6480440, rs2280201. *AIFM2* (block 2): rs10999147, rs3750772, rs4295944, rs2394644, rs10999152. *ATKIP*: rs9931702, rs17801966, rs7189819, rs3743772. *AXIN2* (block 1): rs11868547, rs7591, rs4074947, rs7210356, rs11655966, rs4541111. *AXIN2* (block 2): rs4791171, rs11079571, rs3923087, rs3923086. *CASP5* (block 1): rs518604, rs523104, rs3181328. *CASP5* (block 2): rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879. *FILIP1L* (block 1): rs796977, rs793477, rs793446, rs3921767, rs17338680. *FILIP1L* (block 2): rs9864437, rs6788750, rs12494994. *RBBP8*: rs7239066, rs11082221, rs4474794, rs9304261. *RGC32*: rs10467472, rs3783194, rs11618371, rs9532824, rs995845, rs9594551, rs975590. *RUVBL1*: rs9860614, rs13063604, rs3732402, rs7650365, rs4857836, rs9821568. *STAG3*: rs11762932, rs2246713, rs1637001.

Associations between the MMCT-18 candidates and risk of the major

histological subtypes of ovarian cancer

As shown with the candidate oncogenes, statistically significant associations may be

found between candidate genes and the histological subtypes of ovarian cancer,

which may not be detected with the analysis of all samples. However, the results

should be treated with caution as the numbers of samples are further reduced. The

following describes statistically significant associations with tables of the results of all subtypes combined and individually.

Associations between AIFM2 and ovarian cancer susceptibility

A haplotype of *AIFM2* block 2 was associated with the risk of mucinous ovarian cancer (Table 3.23). The h00100 of *AIFM2* block 2 was associated with an increased risk of the subtype, OR=1.26 (1.02-1.55), P=0.034. See Appendix IV-B for the logistic regression results for all the common *AIFM2* haplotypes.

Table 3.23: Haplotype-specific results of AIFM2 (P<0.05)

Haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	1.01 (0.91-1.11)	0.856	
AIFM2			Serous	1.02 (0.91-1.14)	0.702	
haplotype	h00100	39	Endometrioid	0.96 (0.8-1.15)	0.637	0.7949
block 2			Mucinous	1.26 (1.02-1.55)	0.034	
			Clear cell	0.91 (0.72-1.15)	0.437	

SNP order in haplotypes is 5' to 3' of the gene - haplotype block 2: rs10999147, rs3750772, rs4295944, rs2394644, rs10999152.

Association between RGC32 and ovarian cancer susceptibility

The only association between risk of ovarian cancer and *RGC32* was with a common variant with a minor allele frequency of 0.11. The rare allele of rs3783194 was associated with a 1.5-fold increase in the risk of the clear cell histological subtype – HetOR=1.5 (1.04-2.17), HomOR=1.99 (0.59-6.7), P=0.0206; see Table 3.24. Currently, it is not known if this variant tags any other SNPs in the gene or the regulatory regions up- or downstream of the gene. See Appendix IV-M for the results for the other common tSNPs of this gene.

There was also evidence of an association between a haplotype of RGC32, h0100100, and increased risk of clear cell ovarian cancer (OR=1.53 [1.11-2.11], P=0.01), see Table 3.25. This haplotype comprised of the rare allele of RGC32rs3783194, which was associated with an increase risk of clear cell ovarian cancer in the second position, thus lending support to the association with the h0100100 haplotype. No other common haplotype contained the rare allele of rs378319.

Associations between RBBP8 and ovarian cancer susceptibility

In addition to the association between the *RBBP8* rs4474794 variant and a decrease in risk of serous histological subtype, the h0000 haplotype of the gene was associated with a marginal increase in the risk of the subtype – OR=1.13 (1.01-1.27), P=0.032. These haplotype-specific associations were concordant with the tSNP findings. The results for all tSNPs and haplotypes of *RBBP8* are shown in Appendices IV-K and IV-L, respectively.

Associations between AXIN2 and ovarian cancer susceptibility

As well as the association between h1111, of *AXIN2* haplotype block 2 and increased risk of ovarian cancer in general – OR=1.21 (1.03-1.42), P=0.023. This association was also found when analysis was restricted to the serous subtype (OR=1.19 [1.01-1.39], P=0.037) – see Table 3.26. The rs11079571 variant, which was associated with disease risk, was in the second position of the haplotypes of this block (*AXIN2* block 2). The association between the rare allele of rs11079571 and increased risk of ovarian cancer was consistent with the correlation of the h1111 haplotype of *AXIN2* block 2 and increased risk of ovarian cancer. The rare allele of rs11079571 was not present in any other common haplotype (Appendix IV-F).

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)*	HomOR (95% CI)*	P-trend
				1690	All	1.02 (0.88-1.19)	1.03 (0.57-1.89)	0.8873
				788	Serous	0.89 (0.72-1.09)	0.70 (0.29-1.69)	0.1363
RGC32	rs3783194	0.11	2723	264	Endometrioid	1.13 (0.83-1.54)	1.50 (0.51-4.36)	0.4304
				184	Mucinous	1.09 (0.75-1.59)	1.08 (0.25-4.66)	0.7964
				155	Clear cell	1.50 (1.04-2.17)	1.99 (0.59-6.70)	0.0206

Table 3.24: Genotype-specific risks of RGC32 (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	1.01 (0.87-1.18)	0.851	
	<i>RGC32</i> h0100100	10.8	Serous	0.89 (0.74-1.07)	0.212	
RGC32			Endometrioid	1.02 (0.76-1.36)	0.89	0.6294
			Mucinous	1.01 (0.72-1.41)	0.962	
			Clear cell	1.53 (1.11-2.11)	0.01	

Table 3.25: Haplotype-specific results of RGC32 (P<0.05)

SNP order in haplotypes is 5' to 3' of the gene: rs10467472, rs3783194, rs11618371, rs9532824, rs995845, rs9594551, rs975590.

Statistically significant associations were also found with 2 haplotypes of *AXIN2* block 1, which had opposing effects on the risk of the serous histological subtype. The h000001 haplotype was associated with a reduced risk of the disease, OR=0.81 (0.68-0.97), P=0.018, (see Table 3.26). However, the h011001 haplotype of *AXIN2* block 1 was associated with an increased risk of the serous subtype (OR=1.21 [1.01-1.45], P=0.041). The results of the remaining haplotypes are shown in Appendix IV-F.

Associations between FILIP1L and ovarian cancer susceptibility

Although there was no evidence suggesting that a common variant of *FILIP1L* was associated with overall risk of ovarian cancer, statistically significant associations were found when the analysis was restricted to the endometrioid and mucinous histological subtypes. These associations were found with 3 variants of the gene, rs793446, rs17338680 and rs12494994, of which the rare alleles of all the variants were associated with increased risk of the endometrioid histological subtype (see Table 3.27 on page 181). The risks associated with carrying at least 1 of the rare alleles of rs793446, rs17338680 or rs12494994 ranged from 1.36 (for the rs793446 tSNP) to 1.71 (for rs17338680) for the endometrioid histological subtype (Table 3.27). The rs12494994 variant had the strongest association; HetOR=1.48 (1.08-2.04), HomOR=2.16 (1.13-4.12), P=0.0024. The heterozygous genotype of rs12494994 was also correlated with a 1.57-fold increase in the risk of the mucinous histological subtype, however, the connection was not statistically significant (P=0.2574). See Appendix IV-I for the genotype-specific results for all *FILIP1L* variants.

178

Gene/haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	0.9 (0.77-1.04)	0.148	
			Serous	0.81 (0.68-0.97)	0.018	
	h000001	14.6	Endometrioid	0.95 (0.73-1.24)	0.7	
			Mucinous	1.08 (0.8-1.46)	0.632	
AXIN2 haplotype			Clear cell	0.97 (0.7-1.36)	0.868	0.105
block 1			All	1.15 (0.98-1.36)	0.082	0.185
	h011001	10.4	Serous	1.21 (1.01-1.45)	0.041	
			Endometrioid	1.16 (0.87-1.54)	0.312	
			Mucinous	1.22 (0.87-1.7)	0.246	
			Clear cell	0.86 (0.57-1.29)	0.458	
			All	1.21 (1.03-1.42)	0.023	
			Serous	1.19 (1.01-1.39)	0.037	
AXIN2 haplotype block	h1111	12.8	Endometrioid	1.08 (0.83-1.4)	0.572	0.0847
			Mucinous	1.13 (0.83-1.53)	0.434	
			Clear cell	0.96 (0.68-1.36)	0.838	

Table 3.26: Haplotype-specific risks of common AXIN2 (P<0.05)

SNP order in haplotypes is 5' to 3' of the genes –*AXIN2* haplotype block 1: rs11868547, rs7591, rs4074947, rs7210356, rs11655966, rs4541111. *AXIN2* haplotype block 2: rs4791171, rs11079571, rs3923087, rs3923086.

The correlation between rs793446 and rs17338680 (which are both in intron 4 of the gene) is $r^2=0.173$; rs793446 and rs12494994 is $r^2=0.407$; and rs17338680 and rs12494994 (intron 1) is $r^2=0.404$. The rs793446 variant tags 28 other SNPs with $r2 \square 0.8$; rs17338680 tags 6 other SNPs and rs12494994 tags 11 other variants with $r2 \square 0.8$. All of these SNPs are in the introns of the gene, and approximately 70% of them are conserved in mice.

Associations were also found between risk of endometrioid ovarian cancer and haplotypes of *FILIP1L*, see Table 3.28 for the significant associations, and Appendix IV-J for all results. *FILIP1L* comprises 2 haplotype blocks. The h10101 haplotype of haplotype block 1 had the strongest association with disease risk, with a 1.56-fold increase in odds; OR=1.56 (1.22-2.01), $P=5.01\times10^{-4}$. The haplotype, which had a frequency of 10.7%, contained the rare alleles of rs793446 and rs17338680 in the third and last positions of the haplotype, respectively. The rare alleles of the variants were associated with an increased risk of endometrioid ovarian cancer, thus, the haplotype result was supported by the individual common tSNP findings.

There was also evidence suggesting a statistically significant association between a variant of *FILIP1L* haplotype block 2 and risk of the endometrioid subtype. The h001 haplotype was associated with an increased risk of the subtype; OR=1.37 (1.1-1.69), P=0.004 (see Table 3.28). This association was also supported by the individual SNP results - the rare allele of rs12494994, which was correlated to increased risk of the endometrioid histological subtype which was in the last position of the haplotype.

180

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1773	All	1.05 (0.92-1.20)	1.11 (0.93-1.32)	0.3207
				838	Serous	0.95 (0.80-1.13)	1.07 (0.86-1.34)	0.842
	rs793446	0.41	2947	274	Endometrioid	1.36 (1.02-1.81)	1.52 (1.05-2.20)	0.0262
				194	Mucinous	1.14 (0.82-1.58)	0.93 (0.58-1.48)	0.8885
				164	Clear cell	1.05 (0.74-1.50)	1.11 (0.69-1.77)	0.6725
	rs17338680	0.11		1786	All	1.06 (0.91-1.24)	0.77 (0.46-1.28)	0.985
			2989	574	Serous	0.88 (0.69-1.14)	0.98 (0.44-2.20)	0.3051
FILIP1L				221	Endometrioid	1.71 (1.24-2.36)	0.79 (0.19-3.39)	0.0073
				196	Mucinous	1.23 (0.86-1.76)	0.35 (0.05-2.58)	0.7109
				133	Clear cell	1.04 (0.67-1.63)	1.12 (0.26-4.81)	0.8406
				1273	All	1.14 (0.98-1.33)	0.88 (0.59-1.33)	0.433
				594	Serous	0.95 (0.78-1.17)	0.52 (0.27-0.99)	0.097
	rs12494994	0.18	2347	193	Endometrioid	1.48 (1.08-2.04)	2.16 (1.13-4.12)	0.0024
				145	Mucinous	1.57 (1.10-2.25)	0.25 (0.03-1.83)	0.2574
				113	Clear cell	1.20 (0.79-1.82)	1.69 (0.71-4.03)	0.1986

Table 3.27: Genotype-specific risks of common FILIP1L variants (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Chapter 3: Results - susceptibility

Gene/hap block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value	
			All	1.11 (0.91-1.35)	0.29		
FILIP1L			Serous	0.94 (0.78-1.13)	0.514		
haplotype	h10101	10.7	Endometrioid	1.56 (1.22-2.01)	5.01x10 ⁻⁴	0.5938	
block 1			Mucinous	1.09 (0.78-1.51)	0.617		
			Clear cell	1.25 (0.89-1.75)	0.204		
			All	1.04 (0.92-1.17)	0.562		
FILIP1L			Serous	0.88 (0.76-1.02)	0.092		
haplotype block 2	h001	17.1	Endometrioid	1.37 (1.1-1.69)	0.004	0.7565	
			Mucinous	1.03 (0.79-1.36)	0.815		
			Clear cell	1.17 (0.88-1.56)	0.269		

Table 3.28: Haplotype-specific risks of *FILIP1L* (P<0.05)

SNP order in haplotypes is 5' to 3' of the gene *–FILIP1L* (block 1): rs796977, rs793477, rs793446, rs3921767, rs17338680. *FILIP1L* (block 2): rs9864437, rs6788750, rs12494994.

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	1.06 (0.96-1.16)	0.257	
			Serous	1.12 (1.01-1.25)	0.039	
	h000	50.7	Endometrioid	1.06 (0.89-1.27)	0.523	
			Mucinous	0.97 (0.79-1.2)	0.805	
STAG3			Clear cell	1 (0.8-1.25)	0.996	0.0979
STAGS		26.8	All	0.94 (0.85-1.05)	0.29	0.0979
			Serous	0.88 (0.78-1)	0.046	
	h011		Endometrioid	0.89 (0.73-1.09)	0.251	
			Mucinous	1.22 (0.97-1.53)	0.084	
			Clear cell	0.89 (0.69-1.16)	0.401	

Table 3.29: Haplotype-specific risks of STAG3 (P<0.05)

Freq – frequency; OR – odds ratio; CI – confidence interval; SNP order in haplotypes is 5' to 3' of the gene: rs11762932, rs2246713, rs1637001.

The *STAG3* rs1637001 variant was in the last position of a haplotype block comprising the 3 tSNPs genotyped. Associations were found between the serous histological subtype and two haplotypes of *STAG3*, Table 3.29. The h000 haplotype was associated with a marginal, 1.12-fold, increase in the risk of serous ovarian cancer (OR=1.12 [1.01-1.25], P=0.039). Conversely, the h011 haplotype was associated with a reduced risk of the serous subtype (0.88 [0.78-1], P=0.046). This association was also supported by the association between the rare allele of rs1637001 tSNP (in the last position of the haplotype) and the decrease in risk of serous ovarian cancer. The rs1637001 polymorphism tags 17 other variants with $r^2 \ge 0.8$. Three of these SNPs, rs1623264, rs1727134 and rs1727128, are located in transcription factor binding sites. Several of the other polymorphisms may be involved in splicing.

Associations between AKTIP and ovarian cancer susceptibility

There was evidence of an association between the AKTIP gene and ovarian cancer susceptibility. The rare allele of rs718919 was associated with risk of the mucinous and clear cell histological subtypes. The associated risks were: HetOR=0.87 (0.64-1.19), HomOR=0.42 (0.21-0.84), P=0.0247 for the mucinous subtype; and HetOR=0.62 (0.44-0.87), HomOR=0.78 (0.45-1.35), P=0.0412 for the clear cell (Table 3.30). See Appendix IV-C for the genotype-specific susceptibility results of all the common variants of AKTIP. A haplotype of AKTIP, h1010, was also associated with a 0.73- and 0.77-fold decrease in the risk of both the mucinous and the clear cell subtypes, respectively (see Table 3.31). rs718919, the rare allele of which was associated with a reduced risk of mucinous and clear cell subtypes, was in the third position of the haplotype. These associations were concordant with each other. An additional association was found with the h1101 haplotype of AKTIP and the serous subtype. The h1101 haplotype was associated with increased risk of the serous subtype (OR=1.29 [1.01-1.66], P=0.044). Although the correlations were not statistically significant, with the exception of the mucinous subtype, the odds ratios for all cases of ovarian cancer, the endometrioid and clear cell subtypes were greater than 1 (see Table 3.31).

Chapter 3: Results - susceptibility

Gene	tSNP	MAF	Controls	Cases	Histology	HetOR (95% CI)*	HomOR (95% CI)*	P-trend
				1745	All	0.93 (0.82-1.06)	0.92 (0.75-1.14)	0.2796
				825	Serous	0.99 (0.84-1.17)	1.02 (0.78-1.33)	0.867
AKTIP	P rs7189819 0.3	0.3	2923	271	Endometrioid	0.95 (0.73-1.24)	1.06 (0.69-1.61)	0.9177
				186	Mucinous	0.87 (0.64-1.19)	0.42 (0.21-0.84)	0.0247
				163	Clear cell	0.62 (0.44-0.87)	0.78 (0.45-1.35)	0.0412

Table 3.30: Genotype-specific risks of an *AKTIP* tSNP (P<0.05)

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	Global P-value
			All	1 (0.86-1.16)	0.996	
	h1010		Serous	0.99 (0.88-1.11)	0.858	
		30.4	Endometrioid	0.97 (0.8-1.18)	0.766	
			Mucinous	0.73 (0.58-0.94)	0.013	
			Clear cell	0.77 (0.59-1)	0.047	0 2702
AKTIP			All	1 (0.75-1.33)	0.999	0.3703
			Serous	1.29 (1.01-1.66)	0.044	
	h1101	5.7	Endometrioid	1.02 (0.65-1.59)	0.927	
			Mucinous	0.94 (0.54-1.65)	0.835	
			Clear cell	1.37 (0.82-2.3)	0.227	

Table 3.31: Haplotype-specific risks for AKTIP (P<0.05)

SNP order in haplotypes is 5' to 3' of the genes *–ATKIP*: rs9931702, rs17801966, rs7189819, rs3743772.

3.4: Admixture Maximum Likelihood test results

A large number of statistical tests are involved in the analysis of genetic association studies, however multiple testing corrections such as the Bonferoni correction are too stringent and do not take into account the correlation between SNPs. It has been suggested that the adjustment for "experiment-wise" type I error is more appropriate method for testing the global null hypothesis of no association within an experiment. These methods evaluate whether a greater than expected proportion of statistically significant associations are detect within an experiment. The admixture maximum likelihood (AML) test is a reportedly robust method for testing the global null hypothesis. The AML test simultaneously estimates the proportion of associated SNPs and their effect size. The AML test was used to evaluate the SNP genotyping data from 12 previous ovarian cancer case-control association studies for global evidence of associations between 340 SNPs from 84 genes and 10 chromosomal regions and the risk of the disease. The test was used to establish whether there was a statistically significant difference in the proportion of associations found from genetic susceptibility association studies of ovarian cancer and that which would have been found by chance.

3.4.1: Samples and methods

Genotyping data of 340 SNPs from three population-based case-control study series were analysed with the admixture maximum likelihood test. The studies comprised of up to 1,491 invasive epithelial ovarian cancer cases and 3,145 healthy controls from the GEOCS, MALOVA and SEARCH sample sets. The vast majority (>250) of the SNPs were tagging SNPs identified from 84 candidate genes from pathways, such as the cell cycle control, mismatch repair, DNA repair, oncogene and

differentially expressed genes with described functions from functional studies (microcell-mediated chromosome 18 transfer [MMCT-18) group), which have been implicated with ovarian cancer development.

Candidate SNPs from 10 different regions on chromosomes 2, 3, 5, 8, 11, 12 and 17 were also analysed. These variants had originally been selected for validation from the Ovarian Cancer Association Consortium (OCAC), Breast Cancer Association Consortium (BCAC) or the breast cancer genome-wide association study due to associations with breast or ovarian cancer. Associations between individual SNPs and ovarian cancer risk with unconditional logistic regression, and the heterogeneity and trend test. The admixture maximum likelihood test was used on groups of SNPs to determine whether the proportion of associations found were greater than that which would be expected.

All variants analysed were allocated into a group based on known or putative function, or the research consortia from which the candidate SNP had come. There were a total of 7 groups – BCAC (16 SNPs), cell cycle control (101 tSNPs), DNA repair (28 SNPs), mismatch repair (43 tSNPs), MMCT (consisting of differentially expressed genes from functional tumour suppression experiments- 63 tSNPs), OCAC (55 SNPs) and ovarian cancer oncogenes (34 tSNPs). The genotype distribution for all SNPs analysed are shown in Appendix II-B.

3.4.2: Logistic regression results (unadjusted)

When the trend model was used to test for association, 22 (6.5%) of the 340 SNPs were significantly associated with ovarian cancer risk at the 5% level, and 5 SNPs

(1.5%) were significant at the 1% level. Of the 5 most significant SNPs with the trend model, two variants were from the BCAC group (rs2107425 on chromosome 11p15.5 and rs3817198 of *LSP1*), another two were from the cell cycle group (*CDKN1B* rs2066827 and CDK6 rs8) one SNP was from the OCAC group (*ESR1* rs9322336).

Adjustments for population stratification by genomic control were made in order to ensure that the associations found were due to the variants analysed, rather than underlying structure of the population. Logistic regression analyses were also stratified by sample sets to account for population stratification. Following adjustments of genomic controls for population stratification, 18 (5.3%) of the 340 variants were now statistically significant at the 5% level. This was a reduction of 4 SNPs compared to the unadjusted findings. The same number of SNPs (5 [1.5%]) were significant at the 1% level, after adjustments for population stratification (Table 3.32).

After analysis with the heterogeneity test, 17 (5%) of the SNPs were significant at the 5% level, 6 SNPs (1.8%) were significant at the 1% level, and one at the 0.001% significance level. After adjusting for population stratification, 15 of the 17 SNPs significantly associated with ovarian cancer risk at the 5% level, remained significant. One of the 6 SNPs, significant at the 1% level with the heterogeneity test, was no longer significant, thus 5 (1.5%) SNPs remained significant at the 1% level. The only SNP, which reached 0.001% level of significance, remained at the same level after adjustments for population stratification.

Both the heterogeneity and trend tests detected associations between the same 9 SNPs and risk of epithelial ovarian cancer. Although there was a slight attenuation in the P-values after adjustments for population stratification, the significant associations remained. The unadjusted and adjusted trend test results for each SNP are shown in Appendix VI. The results of the trend test are illustrated in Figure 3.6 as a quantile-quantile (Q-Q) plot. Q-Q plots are probability plots used for comparing 2 probability distributions. In order for the probability distributions to be compared, the quantiles of the distributions are plotted against each other.

The Q-Q plot in Figure 3.6 shows the ordered observed trend test statistics plotted against the expected trend χ^2 results given the rank. The line of equivalence is the straight line through the plot. This line is used as a reference for no difference between the observed and expected χ^2 values, given the rank. Deviation from the line of equivalence suggests differences between the observed and expected χ^2 values. In Figure 3.6, the plots of both the unadjusted and adjusted trend test results suggested that a greater proportion of associations were found than expected. In the Q-Q plot shown in Figure 3.6, the plot followed the line of equivalence for the first 240 SNPs, and then started to deviate. This indicates that a modest number of SNPs were associated with ovarian cancer risk.

Chapter 3: Results - susceptibility

Group	Gene location	SNP	MAF	Controls	Cases	HetOR [‡] (95% CI)	HomOR [‡] (95% CI)	Unadjust <i>P</i> -het*	Adjust. P- het [§]	Unadjusted <i>P</i> -trend	Adjusted <i>P</i> -trend [§]
BCAC	11p15.5	rs2107425	0.32	1460	2463	0.71 (0.62-0.82)	0.88 (0.70-1.10)	1.28x10 ⁻⁵	2.17x10 ⁻⁵	0.0012	0.0019
OCAC	ESR1	rs9322336	0.23	1453	2464	0.81 (0.70-0.93)	0.73 (0.52-1.02)	0.005	0.006	0.0013	0.0021
BCAC	LSP1	rs3817198	0.3	1457	2435	1.16 (1.01-1.34)	1.40 (1.11-1.75)	0.006	0.009	0.0016	0.0026
Cell cycle	CDKN1B	rs2066827	0.26	1481	2484	0.88 (0.77-1.01)	0.68 (0.51-0.90)	0.011	0.019	0.0035	0.0053
Cell cycle	CDK6	rs8	0.21	1473	2481	1.17 (1.02-1.35)	1.44 (1.04-1.99)	0.015	0.013	0.0039	0.0059
Mismatch	PMS2	rs7797466	0.18	1305	1968	1.18 (1.01-1.38)	1.38 (0.96-2.00)	0.039	0.044	0.0108	0.0142
Cell cycle	CCND1	rs603965	0.44	1476	2464	1.06 (0.91-1.23)	1.28 (1.06-1.55)	0.027	0.032	0.013	0.0178
MMCT-18	RUVBL1	rs13063604	0.22	564	785	1.23 (0.98-1.56)	1.54 (1.00-2.39)	0.0556	0.058	0.016	0.0181
OCAC	PGR	rs1042838	0.14	1424	2408	1.25 (1.07-1.46)	1.09 (0.73-1.64)	0.019	0.023	0.0161	0.0215
Cell cycle	CCND1	rs7178	0.07	1480	2491	1.24 (1.04-1.49)	1.24 (0.50-3.04)	0.063	0.072	0.021	0.0278
OCAC	IL18	rs1834481	0.25	1449	2435	0.89 (0.77-1.02)	0.77 (0.59-1.01)	0.074	0.083	0.0227	0.0295
Cell cycle	CCND1	rs602652	0.46	1468	2493	1.13 (0.97-1.32)	1.24 (1.03-1.49)	0.074	0.084	0.0235	0.0307
OCAC	IGF2	rs4320932	0.2	1473	2402	0.84 (0.73-0.97)	0.86 (0.60-1.22)	0.0529	0.061	0.0243	0.0314
MMCT-18	CASP5	rs518604	0.44	1041	2029	1.11 (0.93-1.33)	1.27 (1.02-1.58)	0.0987	0.072	0.032	0.0387
Cell cycle	CCND1	rs3212879	0.49	1472	2491	0.85 (0.73-0.99)	0.82 (0.68-0.99)	0.063	0.108	0.0321	0.0409
DNA	XRCC2	rs3218536	0.08	1337	1787	0.88 (0.72-1.08)	0.23 (0.07-0.79)	0.014	0.017	0.0364	0.0439
Cell cycle	CCND1	rs3212891	0.46	1475	2476	0.86 (0.74-1.00)	0.83 (0.69-1.00)	0.082	0.092	0.0376	0.0472
Mismatch	PMS1	rs256563	0.12	1456	2446	2.50 (0.99-6.33)	2.15 (0.84-5.48)	0.0435	0.134	0.04	0.05
BCAC	8q24.21	rs10808556	0.4	1462	2453	1.15 (0.99-1.33)	1.20 (0.99-1.46)	0.1071	0.119	0.0446	0.0552
Cell cycle	CDKN2A	rs3731257	0.26	1480	2476	0.89 (0.78-1.03)	0.80 (0.60-1.07)	0.1345	0.148	0.0451	0.056
Cell cycle	CCNE1	rs3218036	0.31	1476	2481	1.07 (0.93-1.23)	1.27 (1.01-1.59)	0.1126	0.125	0.0458	0.0567
OCAC	IGF2	rs1003483	0.49	1459	2407	1.20 (1.02-1.40)	1.20 (1.00-1.44)	0.0611	0.07	0.0473	0.0581

Table 3.32: AML - SNPs with significant associations (trend test for association)

[‡] compared with common homozygous; HetOR – heterozygous odds ratio, HomOR – homozygous odds ratio; CI – confidence interval; *P-heterogeneity; [§] Adjusted for population stratification.

Chapter 3: Results - susceptibility

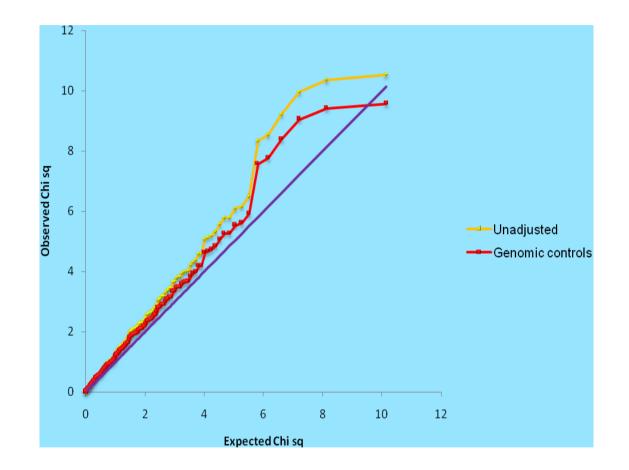


Figure 3.6: Quantile-quantile plot of the univariate trend test results

3.4.3: AML results (adjusted for population stratification)

The genomic control method for adjusting for cryptic population stratification was used on the variants analysed. Genotyping data from breast cancer case-control samples from the genome-wide association study (Easton *et al.* 2007; Hunter *et al.* 2007) were used to estimate the degree of over-dispersion of statistics, also known as inflation test statistic (Pharoah *et al.* 2007). The results from the breast cancer were used to estimate the level of stratification within Caucasian populations. A more conservative inflation statistic of 10%, was used to adjust the P-trend for cryptic population stratification.

Eight of the 22 SNPs that were statistically significant at the 5% level with the trend test belonged to the mitotic cell cycle control pathway group (Table 3.32). This group consisted of 101 SNPs from 15 genes, which have been demonstrated to be involved in the regulation of progression through the cell cycle. The most significant tSNP in the cell cycle group was rs2066827 in the cyclin-dependent kinase inhibitor 1B (*CDKN1B*) gene. The rare allele of this SNP was associated with a decrease in the risk of ovarian cancer (HetOR=0.88 [0.77-1.01], HomOR=0.68 (0.51-0.9), adjusted (for population stratification) P-het=0.019, adjusted P-trend=0.0059. The rs2066827 variant (the fourth most significant SNP with the trend model) is a missense SNP located in exon 1 of *CDKN1B*. The common allele encodes a valine amino acid, and the rare allele, which has a frequency of 26%, glycine.

Five variants from the 55 SNPs in the OCAC group were significant at the 5% level after adjustments for population stratification. The most significant SNP from the

OCAC group, rs9322336, was from the oestrogen receptor gene (*ESR1*). This variant was the second most significant of the SNPs analysed with the trend test, and the third most significant with the heterogeneity test. The rare allele of this variant was also associated with a reduced risk of ovarian cancer – HetOR= 0.81 (0.70-0.93), HomOR=0.73 (0.52-1.02), adjusted P-trend=0.0021.

Three of the most significant SNPs were from the BCAC group, which comprised the 16 variants which were identified from genome wide association studies to be strongly associated with breast cancer risk. One of these variants, rs2107425, was associated with a decrease in risk of ovarian cancer (hetOR=0.71 [0.62-0.82], HomOR=0.88 [0.70-1.10], adjusted P-trend=0.0019). rs2107425 is located on chromosome 11p15.5 in a region with no known genes or open reading frame. This variant had the strongest association with ovarian cancer risk, with both the trend and heterogeneity models – and the p-value for the heterogeneity test reached a level of significance deemed to provide definitive evidence of association ($P<1x10^{-4}$) in case-control association studies, however, not enough for genome-wide significance ($P<1x10^{-7}$).

Two variants from the functional candidate genes (of 63 SNPs) and the DNA mismatch repair pathway (of 43) groups were also statistically significant. The most significant SNP from the functional candidate group was the intronic rs13063604 in the *RUVBL1* gene on chromosome 3. *RUVBL1* rs13063604 was associated in an increased risk of ovarian cancer with the trend model (HetOR=1.23 (0.98-1.56), HomOR=1.54 (1.00-2.39), adjusted P-het=0.058, P-trend=0.0181. Incidentally an association was also found with this SNP with 1,755 serous histological subtype

cases and 4,363 controls from 7 different population based case-control series including SEARCH (DOVE, GEOCS, HOPE, JAC, UKOPS and USC). A single variant from *XRCC2* gene of the DNA double strand break repair pathway group (28 SNPs), rs3218536, was also among the significant associations with the trend test, with a correlation with a reduction in ovarian cancer risk (HetOR=0.88 [0.72-1.08], HomOR=0.23 [0.07-0.79], adjusted P-het=0.017, adjusted P-trend=0.0439.

Of the 15 associations identified with the heterogeneity test at the 5% significance level after adjustments for population stratification, 2 variants were from the BCAC group, 7 were from the cell cycle control pathway, one from the DNA repair pathway, two from the mismatch repair pathway, two from the MMCT-18 functional group, two from the OCAC and one from the oncogene pathway (of 34 tSNPs). Seven of the associations found with the heterogeneity test were not identified with the trend test.

The AML method was used to test for association of the SNPs according to functional group, biological pathway or genotyping group. There was evidence suggesting that the breast cancer associated group of SNPs, identified by genome wide association studies, was significantly associated with ovarian cancer risk (P-trend = 0.0028; adjusted P-trend = 0.0059). The statistically significant findings suggest that there were a greater number of variants observed to be associated with ovarian cancer risk, than that would have been expected by chance.

Pathway / Group	Genes/ regions [‡]	No. SNPs	LR P-trend of most significant SNP*	AML P- het*	AML P- trend*	Reference with original single SNP analysis using logistic regression
BCAC^\dagger	5 (5 [§])	16	0.0012	0.0003	0.0028	(Song <i>et al.</i> 2009a)
$OCAC^{\dagger}$	36 (6 [§])	55	0.0014	0.863	0.806	(Palmieri <i>et al.</i> 2008; Pearce <i>et al.</i> 2008; Ramus <i>et al.</i> 2008b)
MMCT-18	9	63	0.016	0.609	0.468	(Notaridou et al. 2010)
Cell cycle control	15	101	0.0035	0.274	0.225	(Dicioccio <i>et al.</i> 2004; Song <i>et al.</i> 2006b; Gayther <i>et al.</i> 2007)
Mismatch repair	7	43	0.0106	0.706	0.702	(Song <i>et al.</i> 2006a)
DNA repair	7	28	0.0374	0.366	0.444	(Auranen <i>et al.</i> 2005; Song <i>et al.</i> 2007)
Ovarian Cancer Oncogenes	5	34	0.0671	0.524	0.528	(Quaye et al. 2009)
Total	84 (10)	340		0.051	0.068	

Table 3.33: AML experiment-wise test results for genotyping groups

*Based on GEOCS, MALOVA and SEARCH genotypes; [‡] SNPs in regions with no known genes or open reading frames are in parenthesis;[†] candidate genes identified from the Breast Cancer Association Consortium (BCAC) and Ovarian Cancer Association Consortium (OCAC); [§] different SNPs from 8q24.21 were genotyped in both BCAC and OCAC sets; LR – logistic regression; AML – admixture maximum likelihood; het – heterogeneity.

There was no evidence that there were a significant proportion of variants from the remaining groups (cell cycle control, DNA repair, mismatch repair, MMCT-18, OCAC and ovarian cancer oncogenes) associated with ovarian cancer risk than that which would have been expected by chance. When the genotyping data from all groups were combined and analysed, the AML experiment-wise test for association was not significant for either the heterogeneity test (P=0.051) or the trend test (P=0.068). This suggests that there is a trend towards a proportion of the SNPs evaluated being associated with disease, however this is not statistically significant, and the effect sizes were too small to detect for individual SNPs. Table 3.33 shows the results of the AML experiment-wise tests summarised for the complete set of

SNPs categorised according to functional group, biological pathway or genotyping group.

<u>3.5: Summary</u>

The effects of 34 tSNPs of *BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA* on susceptibility of ovarian cancer were evaluated with 1,816 invasive epithelial ovarian cancer cases and 3,000 unaffected controls. There was evidence of association between risk of ovarian cancer and all the candidate genes. Three tSNPs of both *BRAF* and *KRAS* were associated with the risk of the mucinous histological subtype. The associations between the mucinous subtype and *BRAF* and *KRAS* also extended to haplotypes of these oncogenes. These findings are of particular interest because *KRAS* and, to a lesser extent, *BRAF* mutations are predominantly found in mucinous ovarian tumours, and these mutations are early events in the development of the disease. Moremover, a haplotype of *BRAF*, h00100000, was associated with a decrease in the risk all subtypes of ovarian cancer. This association remained when the analysis was restricted to the serous subtype.

Common polymorphic variants of *ERBB2* (non-synonymous coding SNP, rs1801200) and *PIK3CA* (rs2865084) were marginally associated with risk of the endometrioid subtype. There was also evidence suggesting that two haplotypes of *ERBB2*, h110 and h001, which had opposite alleles at every position, were associated with increased risk of ovarian cancer (all subtypes). These associations may be caused by an unknown polymorphism which tags both haplotypes.

Furthermore, the haplotypes of *BRAF* and *ERBB2* were globally associated with ovarian cancer susceptibility, (P=0.005 and P=0.034, respectively).

A statistically significant association was found between the rs11683487 variant of *NMI* and ovarian cancer. This SNP was associated with serous and endometrioid subtypes when the analysis was restricted to the histological subtypes. The finding was not replicated with additional 1,097 cases and 1,712 controls in stage 2. However, when the genotyping data from both stages of the study were combined, the association with all histological subtypes, and the mucinous subtype remained. Two haplotypes of *NMI* were also associated with all subtypes combined. There results were also found when analysis was restricted to the serous subtype.

The effects of 63 tSNPs and haplotypes of candidate genes (from differentially expressed genes with described function from *in vitro* neoplastic suppression studies) on the risk of ovarian cancer were analysed with 1,799 ovarian cancer cases and 3,045 controls. There was evidence of association between ovarian cancer susceptibility and all of the differentially expressed genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*). A common variant of *AXIN2* (11079571), *CASP5* (rs518604) and *RUVBL1* (rs13063604) were associated with the risk of ovarian cancer when it is considered as a single disease. The TaqMan probes for the *CASP5* and *AXIN2* SNPs failed probe testing, therefore they could not be validated with additional samples.

The association between the rare allele of *CASP5* rs518604 and increased risk of ovarian cancer remained when analysis was restricted to the serous subtype. The

CASP5 block 1 haplotypes, h100 and h000, were also associated with the risk of ovarian cancer (P=0.012 and P=0.015, respectively). h100 and h010 of *CASP5* haplotype block 1 were also associated with the risk of the serous subtype. The haplotypes of *CASP5* block 1 were globally, strongly, associated with the risk of ovarian cancer (P= 8.43×10^{-6}).

RUVBL1 rs13063604 was not independently validated with the stage 2 samples (4,590 cases and 6,031 controls) alone, however, the association remained statistically significant when the genotyping data from stages 1 and 2 were combined (P=0.033). rs13063604 and another tSNP of *RUVBL1*, rs7650365, were associated with risk of the serous subtype with stage 1 samples, P=0.002 and P=0.009, respectively. Neither of these associations were independently validated with stage 2 samples and only the association between the rare allele of rs13063604 and increased risk of the serous subtype remained when the data from the 2 genotyping stages were combined (HetOR=1.13 [1-1.27], HomOR=1.22 [0.96-1.56], P=0.019). Two haplotypes of *RUVBL1* were also associated with the risk of the serous subtype, and globally, the haplotypes of *RUVBL1* were associated with ovarian cancer susceptibility (P=0.0016).

Associations were also found between the risk of the serous histological subtype of ovarian cancer and common a variant of *RBBP8* and *STAG3*, and haplotypes of *AKTIP*, *AXIN2*, as well as *RBBP8* and *STAG3*. Interestingly, associations were found between three tSNPs and two haplotypes of *FILIP1L* and the risk of endometrioid ovarian cancer. The tSNPs and the SNPs they tag were intronic, and some were conserved in mice. A common tagging variant of *AKTIP* was associated

with risk of mucinous and clear cell histological subtypes. There was also evidence of association between a haplotype of *AKTIP* and risk of serous ovarian cancer. Another haplotype of *AKTIP* was associated with reduced susceptibility to mucinous and clear cell disease.

Although many of the associations appear to be of great interest, it is important to take into consideration that the results are based on relatively small samples, particulary when the analyses were restricted to the histological subtypes. Many statistical tests were performed in the analyses, however, there was no correction for multiple testing, which may render many, if not, all associations statistically significant. Nonetheless, the tagging approach of genetic associations attempts to identify markers, rather than the causal genetic locus.

The admixture test (AML) was used to establish whether there was a statistically significant difference in the proportion of associations found from genetic susceptibility association studies of ovarian cancer and that which would have been found by chance. A modest number of SNPs were associated with predisposition of ovarian cancer. When the AML method was used to evaluate SNPs which were grouped according to their proposed function, biological pathway or validation study, only the BCAC group was statistically significant for an excess of positive associations. The SNPs within this group were those which were highly associated with risk of breast cancer. Three (19%) out of 16 tSNPs in the BCAC group were significantly associated with risk of ovarian cancer. The experiment-wise test of the 340 SNPs analysed was not significant (P=0.068).

Chapter 4: Results - Common germline variants in candidate ovarian cancer genes and survival of patients with invasive epithelial ovarian cancer

4.1: Introduction

Hypothesis:

Common germline genetic variants in candidate genes associated with ovarian cancer development can influence the clinical outcome (survival) of patients diagnosed with invasive epithelial ovarian cancer.

Aims:

(1) To evaluate the effect of tSNPs and haplotypes from candidate oncogenes on allcause mortality of ovarian cancer patients.

(2) To investigate the effect of tSNPs and haplotypes in a series of "functional" candidates identified from *in vitro* studies on all-cause survival of ovarian cancer patients.

Objectives

(1) To assess the effects of common germline genetic variants and haplotypes of candidate oncogenes and functional genes on clinical outcome of ovarian cancer patients using univariate Cox regression survival analysis.

(2) To evaluate the effects of the common germline variants and haplotypes in candidate genes on overall survival after restricting the analysis to the major histological subtypes of ovarian cancer (serous, endometrioid, mucinous and clear cell).

(3) To examine the effects of other prognostic factors such as age at diagnosis, tumour histological subtype, grade and stage on clinical outcome.

(4) To investigate the effects of the common genetic variants and haplotypes of candidate genes, after adjustments for confounding prognostic factors, on clinical outcome (using multivariate Cox regression survival analysis).

The effects of overall survival for tSNPs and haplotypes of candidate oncogenes and a series of functional candidate genes identified from in vitro modelling studies in patients with ovarian cancer over a 10 year period were investigated. The oncogenes (*BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA*) and functional candidates (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) were selected because of their putative role in ovarian cancer development.

Cox regression survival analysis was used to establish the effects of the genetic variants and haplotypes on all-cause mortality in ovarian cancer patients. Cox regression survival analysis was also used to evaluate the effects of clinical, prognostic factors on patient survival in order to make appropriate adjustments for these potentially confounding factors. Clinical factors which were found to be significantly associated with all cause mortality were adjusted for all common variants and haplotypes, in order to determine if true associations with the genetic

factors existed. Survival analysis was performed on a total of 2,021 invasive epithelial ovarian cancer cases.

4.2: Survival analyses of variants and haplotypes of candidate

oncogenes

Thirty-four tSNPs identified in the candidate oncogenes (*BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA*) were genotyped in a total of 1,572 invasive epithelial ovarian cancer cases from 4 population-based series: GEOCS (327 cases), MALOVA (445 cases), SEARCH (708 cases) and UKOPS (92 cases). Together, these cohorts included a total of 662 deaths in 6,467 person-years at risk. The time at risk was calculated by the summation of the time (years) from entry into the study until an individual died or was censored from the study. The effects of the tSNPs on all-cause mortality were investigated using Cox regression survival analysis. All reported values are based on likelihood ratio test for trend (1 degree of freedom).

4.2.1:Univariate survival analysis results of BRAF

There was evidence of a statistically significant association between a common genetic variant of *BRAF*, rs6944385, and all-cause mortality of ovarian cancer patients, with the univariate survival model. The univariate survival model contained terms for the common variant, stratified by population set because there were significant differences in the survival of patients in the different data sets. The rare allele of rs6944385 was associated with poor survival (per-rare allele hazard ratio (HR) =1.19 (95% confidence interval 1.03-1.38, P=0.021). The rare allele of the tSNP resulted in a 1.19-fold increase in mortality, compared with the common

allele. This suggested that the addition of a rare allele increases the hazard ratio by 1.19. Thus for the additive model, heterozygotes have an increased hazard of 1.19, and rare homozygotes have a 2.38-fold increase in hazard, compared with common homozygotes. The hazard ratio measures the effect of the explanatory factor (allele) on the risk (hazard) of death.

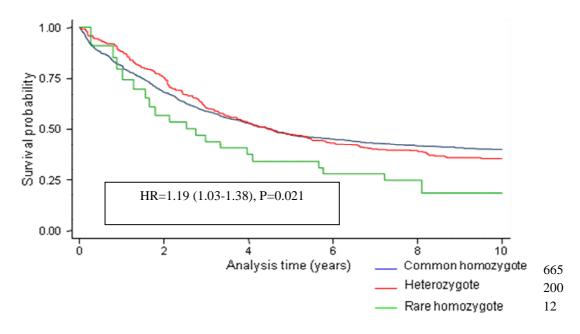


Figure 4.1: Kaplan-Meier survival estimates of BRAF rs6944385 (all cases)

Numbers following the keys are individuals still at risk after 10 years.

Figure 4.1 shows the plot of the Kaplan-Meier survival estimates of the different genotypes of *BRAF* rs6944385 over a 10-year period. Kaplan-Meier survival estimates were used to illustrate the survival function of ovarian cancer patients grouped according to their genotype for a particular tSNP. The survivor curves are step functions that decrease (step-down) at the time points when patients die (Everitt and Palmer 2005). The figure clearly shows a worse survival associated with rare

homozygotes of rs6944385 compared with common homozygotes and heterozygotes. Half of the patients homozygous for the rare allele of rs6944385 survived for 2.5 years after diagnosis, which was approximately 1.5 years less than the survival of the common homozygotes and heterozygotes.

The association observed with the *BRAF* rs6944385 variant and survival of all histological subtypes combined was more significant, with increased hazard when analysis was restricted to the clear cell histological subtype. The rare variant of rs6944385 was associated with a 2.2-fold increase in mortality compared with the common allele, HR=2.22 (1.18-4.17), P=0.014, see Table 4.1.

Table 4.1: Univariate Cox regression results of *BRAF* rs6944385, by histology

Gene tSNP		МАБ		Casas	Univariate		
Gene	tSINF	MAF	Histology	Cases	HR (95% CI)	P-value	
			All	1758	1.19 (1.03-1.38)	0.021	
		0.14	Serous	840	0.97 (0.79-1.2)	0.804	
BRAF	rs6944385		Endometrioid	268	1.31 (0.84-2.07)	0.235	
			Mucinous	187	0.83 (0.4-1.73)	0.614	
			Clear cell	124	2.22 (1.18-4.17)	0.014	

HR - Hazard ratio; CI - confidence interval; MAF- minor allele frequency; Emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Although associations may not be found with individual tSNPs, different combinations of SNPs forming haplotypes may affect survival from ovarian cancer. When the effects of the *BRAF* haplotypes on survival from ovarian cancer were evaluated, none of the common haplotypes of *BRAF* were statistically associated with survival from ovarian cancer. However, the 95% confidence intervals of all histological subtypes of the h01100001 haplotype did not cross 1, HR=1.21 (1-1.46), P=0.055. This suggests that the haplotype may be marginally correlated with increased mortality of ovarian cancer.

4.2.2: Univariate survival analysis results of KRAS

When Cox regression survival analysis was used to assess the effect of *KRAS* variants on the survival from ovarian cancer, a statistically significant association was found between a common tSNP, rs10842513, and all-cause mortality of serous histological subtype cases. The rare allele of rs10842513 was associated with poor survival (HR=1.38 (1.09-1.75), P=0.008), see Table 4.2. Although, this variant was not statistically associated with increased mortality of patients with clear cell ovarian cancer, the 95% confidence interval did not cross 1, which suggests a marginal correlation (Table 4.2).

Como	tSNP	MAF	Histology	Casas	Univariat	e
Gene	ISNP	MAF	Histology	Cases	HR (95% CI)	P-value
			All	1770	1.18 (0.98-1.42)	0.08
			Serous	846	1.38 (1.09-1.75)	0.008
	rs10842513	0.09	Endometrioid	271	1.19 (0.67-2.1)	0.552
			Mucinous	187	0.7 (0.29-1.69)	0.432
KRAS			Clear cell	132	2.02 (1-4.1)	0.052
клаз			All	1748	0.93 (0.8-1.09)	0.378
		0.16	Serous	834	0.89 (0.73-1.08)	0.236
	rs4623993		Endometrioid	242	0.83 (0.51-1.36)	0.463
			Mucinous	187	1.79 (1.02-3.15)	0.044
			Clear cell	136	0.93 (0.46-1.89)	0.835

Table 4.2: Univariate Cox regression results of common tSNPs of KRAS (P<0.05)

HR - Hazard ratio; CI - confidence interval; MAF- minor allele frequency; Emboldened histologies are statistically associated with survival; emboldened HR are statistically significant or the CI does not cross 1.

Another variant of *KRAS*, rs4623993, was associated with survival of mucinous cases. The rare allele of *KRAS* rs4623993 was associated with poor survival of

individuals with mucinous ovarian cancer, HR=1.79 (1.02-3.15), P=0.044 (see Table 4.2).

The effect of both rs10842513 and rs4623993 on the mucinous subtype, although not statistically significant for the previous tSNP, was the opposite of the other histological subtypes (see Table 4.2). This difference in the ratios was also found with another tSNP of *KRAS*, rs4623993, which was significantly associated with the increased risk of the mucinous subtype. These marked differences between mucinous disease and the other subtypes may be a result of putative involvement of the *KRAS* gene in the development of mucinous ovarian cancer.

Como	How lot run o [†]	$\mathbf{E}_{\mathbf{m}} \in (0/1)$		Univariate	
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value
			All	1.27 (0.99-1.62)	0.056
			Serous	1.69 (1.21-2.36)	0.002
	h010000	5.9	Endometrioid	1.21 (0.59-2.48)	0.599
			Mucinous	0.66 (0.17-2.55)	0.55
			Clear cell	2.81 (0.95-8.33)	0.062
			All	1.02 (0.79-1.31)	0.902
KRAS	h001100		Serous	0.87 (0.62-1.21)	0.411
haplotype		3.7	Endometrioid	0.99 (0.44-2.18)	0.971
block 2			Mucinous	3.24 (1.55-6.74)	0.002
			Clear cell	2.42 (0.6-9.66)	0.212
			All	1.26 (0.87-1.82)	0.219
			Serous	0.96 (0.61-1.53)	0.872
	h000000	2.6	Endometrioid	2.47 (0.84-7.23)	0.099
			Mucinous	6.59 (1.37-31.62)	0.018
			Clear cell	1.53 (0.32-7.36)	0.593

Table 4.3: Univariate Cox regression results of KRAS haplotypes (P<0.05)

†: '0'= common allele and '1'= rare allele; HR - Hazard ratio; CI - confidence interval; Emboldened HR are statistically significant or the CI does not cross 1; Emboldened haplotypes are statistically significant; SNP order in haplotypes (5' to 3' of the genes) –*KRAS* - block 2: rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.

Statistically significant associations were found between 3 haplotypes of *KRAS* block 2 and survival of patients with serous and mucinous histological subtypes of ovarian cancers. The h010000 haplotype, which has a frequency of 5.9%, was associated with poor survival of serous cases (HR=1.69 [1.21-2.36], P=0.002), see Table 4.3. This association was supported by the tSNP results – the rare allele of *KRAS* rs10842513, which was associated with poor survival of patients with serous ovarian cancer, was in the second position of the *KRAS* haplotype block 2.

The other 2 haplotypes of *KRAS* block 2, h001100 and h000000, were also associated with poor survival, however, of the mucinous histological subtype in these instances, (see Table 4.3). These associations were concordant with the univariate analysis results of *KRAS* rs4623993 (third position of the *KRAS* haplotype block 2), which was associated with survival from mucinous disease.

4.2.3: Univariate survival analysis results of PIK3CA

An association was found between a tSNP and haplotype of *PIK3CA* when the effects of the gene on survival were evaluated. The rare allele of *PIK3CA* rs7651265 was associated with poor survival of clear cell ovarian cancer cases – HR=2.25 (1.06-4.79), P=0.035, see Table 4.4. The h11000000 haplotype of *PIK3CA* was also associated with poor survival from the endometrioid subtype, HR=2.19 (1.1-4.37), P=0.026 (Table 4.5).

Como	Gene tSNP			Casas	Univariate		
Gene	lanr	MAF	Histology	Cases	HR (95% CI)	P-value	
		All	1794	1.07 (0.9-1.26)	0.449		
		0.1	Serous	828	1.05 (0.85-1.29)	0.678	
<i>РІКЗСА</i>	rs7651265		Endometrioid	267	0.97 (0.56-1.67)	0.913	
			Mucinous	189	1.66 (0.79-3.46)	0.179	
			Clear cell	135	2.25 (1.06-4.79)	0.035	

Table 4.4: Univariate Cox regression results of *PIK3CA* rs7651265 (by histology)

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; Emboldened histologies are statistically associated with survival; emboldened HR are statistically significant.

Table 4.5: Univariate	Cox regression results of	a PIK3CA haplotype (y histology)

Gene	Haplotype†	Freq (%)	Histology	Univariate		
			Histology	HR (95% CI)	P-value	
PIK3CA	h11000000	4.9	All	1.1 (0.86-1.42)	0.444	
			Serous	1.06 (0.78-1.45)	0.701	
			Endometrioid	2.19 (1.1-4.37)	0.026	
			Mucinous	0.76 (0.24-2.46)	0.651	
			Clear cell	0.38 (0.04-3.48)	0.394	

†: '0'= common allele and '1'= rare allele; HR - Hazard ratio; CI - confidence interval; Emboldened HR are statistically significant or the CI does not cross 1; Emboldened histologies are statistically significant; SNP order in haplotypes is 5' to 3' of *PIK3CA*: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

4.2.3: The influence of clinical prognostic factors on survival

Clinical factors such as age at diagnosis, tumour histological subtype, grade and stage are known to influence survival from ovarian cancer. Therefore, these factors are used clinically to predict a patient's chances of survival. It is possible that these prognostic factors confound the results from the univariate analyses, either by masking statistically significant associations, or creating false positive associations. Cox regression survival analysis was used to ascertain the effects of the prognostic factors on the samples within the dataset. As expected, statistically significant associations were found between survival from ovarian cancer and all the prognostic factors (age at diagnosis, tumour histological subtype, grade and stage). Cox regression survival modelling showed that survival from ovarian cancer decreased with increasing age; those between aged between 50 and 59 years had a 1.67 fold increase in all-cause mortality (HR=1.67 (1.01-2.77), P=0.047 compared with those aged less than 40 years. Individuals in the greater than 60 years age group had the worse survival, compared with the under 40 year olds (see Table 4.6). Figure 4.2 shows the Kaplan-Meier survival curves for the prognostic factors. Individuals with mucinous, endometrioid or clear cell histological subtypes of invasive epithelial ovarian cancer survived for longer than those with the serous subtype (see Table 4.6).

Tumour grades 2 (moderately differentiated tumour) and 3 (poorly differentiated, more malignant tumour) were also significantly associated with poor survival (HR=1.47 (1.11-1.96), P=0.008; HR=1.6 (1.21-2.11), P=0.001, respectively). Advanced stage tumours, which comprised of tumours that have spread to lymph nodes or metastasised to distant locations, had the strongest effect on survival from ovarian cancer (HR=4.08 (3.15-5.29), P=1.57x10⁻²⁶) when compared with localised, early stage tumours. The Cox regression survival analysis results for the clinical factors are summarised in Table 4.6.

The samples analysed included both incident cases (patients recruited into their respective studies before diagnosis of the ovarian cancer) and prevalent cases

(sufferers recruited after diagnosis of disease). There was potential survival bias between incident and prevalent cases because prevalent cases are likely to have received treatment before recruitment into the studies, and individuals with poor chances of survival would have died before recruitment. It was thus expected that incident cases would have poor survival compared with prevalent cases. Although the Kaplan-Meier curves showed that incident cases had a slightly higher mortality rate compared with prevalent cases, the difference in mortality was not statistically significant (HR=1.04 [0.66-1.63], P=0.871).

Prognostic factor	No. cases	HR (95% CI) P-value		5-year survival rate	10-year survival rate	
		Histological s	ubtype			
Serous	735 (47%)	1		40%	30%	
Endometrioid	249 (16%)	0.4 (0.3-0.52)	2.56x10 ⁻¹¹	70%	65%	
Mucinous	170 (11%)	0.4 (0.29-0.56)	9.29x10 ⁻⁸	60%	63%	
Clear cell	126 (6%)	0.4 (0.28-0.59)	1.75x10 ⁻⁶	65%	60%	
		Age at diagnos	is (years)			
< 40	100 (6%)	1		75%	63%	
40-49	306 (19%)	1.49 (0.88-2.52)	1.49 (0.88-2.52) 0.137		48%	
50-59	586 (37%)	1.67 (1.01-2.77) 0.047		50%	43%	
≥60	580 (37%)	2.26 (1.37-3.73) 0.002		38%	30%	
	·	Tumour gr	ade*			
1	260 (17%)	1	1		60%	
2	398 (25%)	1.47 (1.11-1.96)	0.008	52%	40%	
3	540 (34%)	1.6 (1.21-2.11)	1.6 (1.21-2.11) 0.001		30%	
		Tumour s	tage		·	
Localised	531 (34%)	1		80%	68%	
Advanced [§]	736 (47%)	4.08 (3.15-5.29) 1.57x10 ⁻²⁶		28%	18%	

Table 4.6: Results of univariate Cox regression survival analysis of clinical prognostic factors (oncogene dataset)

N=1,572; HR – hazard ratio; CI – confidence interval; * Tumour grades (1= well differentiated – low grade; 2= moderately differentiated; 3= poorly differentiated (high grade). § spread to regional lymph nodes or distant metastases; emboldened prognostic factors are significantly associated with survival from ovarian cancer.

Chapter 4: Results - survival

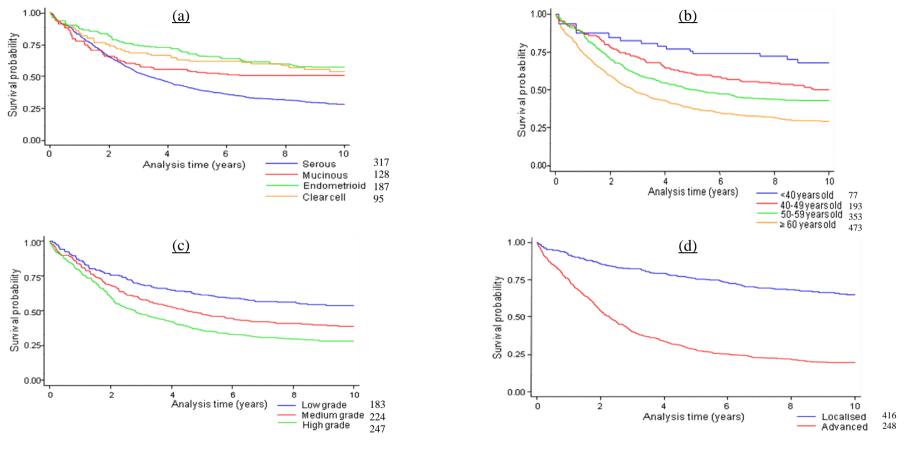


Figure 4.2: Kaplan-Meier survival curves

by (a) histological subtype; (b) age-group at diagnosis; (c) tumour grade; (d) tumour stage; numbers following the keys are individuals still at risk after 10 years.

4.2.4: Multivariate survival analysis results of oncogene variants

The results of all variants were adjusted for the prognostic factors which were significantly associated with survival from ovarian cancer (age at diagnosis ≥ 50 years; mucinous, endometrioid and clear cell histological subtypes; tumour grades 2 and 3; and advanced stage disease). The statistical modelling of the survival data, with adjustments for confounding (clinical prognostic) factors is known as multivariate analysis. The results of the univariate and multivariate survival analysis for the common tagging polymorphisms and haplotypes of the candidate oncogenes are tabulated in Appendices VII-A to VII-J.

There was no evidence of association between the common genetic variants or haplotype of *ERBB2* or *NMI*. The univariate and multivariate Cox regression analysis results for *ERBB2* and *NMI* are shown in Appendices VII-C to VII-D, and VII-G to VII-H, respectively. The associations found in the univariate survival analysis of the *PIK3CA* variants or haplotypes were no longer statistically significant after adjustments for prognostic factors. The survival results of the tSNPs and haplotypes can be found in Appendix VII-I and VII-J, respectively.

4.2.5: Multivariate survival analysis results of BRAF oncogene

When multivariate Cox regression survival analysis was used to assess the effects of the common variants of candidate oncogenes on survival from epithelial ovarian cancer, the association between the rare allele of *BRAF* rs6944385 and all-cause survival of all subtypes combined became stronger – adjusted (for prognostic factors) per-rare allele HR=1.25 (1.05-1.5), P=0.013. However, the association of

the variant with the clear cell histological subtype was no longer significant (see Table 4.7). The univariate and multivariate Cox regression survival results for all the common variants and haplotypes of the *BRAF* oncogene are shown in Appendix VII-A and VII-B, respectively.

Additional associations, which were not identified with the univariate analyses, were found between all-cause survival and variants of *BRAF*. The rare allele of *BRAF* rs1267622 was associated with poor survival of ovarian cancer patients (adjusted HR=1.19 (1.03-1.38), P=0.02). The rare allele of *BRAF* rs13241719 and the AA haplotype of rs1267622:rs6944385 were associated with better survival of all histological subtypes combined in the multivariate analyses (adjusted HR=0.79 (0.67-0.93), P=0.004; and adjusted HR=0.84 (0.72-0.97), P=0.018, respectively). The rs13241719 variant was also associated with the serous histological subtype when the analysis was restricted to the individual subtypes (see Table 4.7).

The *BRAF* variants rs1267622, rs13241719 and rs6944385 are correlated. The r^2 between *BRAF* rs1267622 and rs13241719 is 0.116; rs1267622 and rs6944385 - r^2 =0.339; and rs13241719 and rs6944385 - r^2 =0.039. A likelihood ratio test was performed with and without terms for the three *BRAF* variants, adjusted for the prognostic factors. This test was used to evaluate whether a model with all three variants was statistically significant, compared with a model without the variants.

Chapter 4: Results - survival

Gene	tSNP	MAF	Histology	Cases	Univariate*		Multivariate* [§]		Diff HR
Gene	ISINP				HR (95% CI)	P-value	HR (95% CI)	P-value	(%) [‡]
		0.23	All	1751	1.12 (0.99-1.27)	0.077	1.19 (1.03-1.38)	0.02	6
			Serous	831	1.03 (0.87-1.22)	0.727	1.2 (1-1.4)	0.134	17
	rs1267622		Endometrioid	268	1.07 (0.72-1.59)	0.733	1.1 (0.71-1.71)	0.655	3
			Mucinous	187	1.08 (0.64-1.82)	0.764	0.89 (0.54-1.49)	0.663	18
			Clear cell	123	1.27 (0.7-2.3)	0.429	1 (0.51-1.98)	0.997	21
			All	1602	0.97 (0.85-1.1)	0.606	0.79 (0.67-0.93)	0.004	19
		0.31	Serous	733	0.94 (0.79-1.12)	0.507	0.8 (0.6-0.9)	0.006	15
	rs13241719		Endometrioid	246	0.77 (0.49-1.21)	0.258	0.79 (0.48-1.29)	0.339	3
			Mucinous	176	0.99 (0.58-1.69)	0.98	1.05 (0.63-1.74)	0.852	6
DDAE			Clear cell	135	1.12 (0.59-2.15)	0.723	1.4 (0.64-3.06)	0.404	25
BRAF		0.14	All	1758	1.19 (1.03-1.38)	0.021	1.25 (1.05-1.5)	0.013	5
	rs6944385		Serous	840	0.97 (0.79-1.2)	0.804	1.1 (0.9-1.3)	0.516	13
			Endometrioid	268	1.31 (0.84-2.07)	0.235	1.43 (0.87-2.35)	0.156	9
			Mucinous	187	0.83 (0.4-1.73)	0.614	0.76 (0.36-1.62)	0.477	8
			Clear cell	124	2.22 (1.18-4.17)	0.014	1.93 (0.95-3.92)	0.07	13
		57622, 14385; ΑΑ 76 [†]	All	1786	0.89 (0.79-1.01)	0.076	0.84 (0.72-0.97)	0.018	6
	10(7(0)		Serous	724	0.97 (0.82-1.14)	0.708	0.9 (0.7-1)	0.115	7
	rs1267622,		Endometrioid	246	0.9 (0.61-1.34)	0.611	0.87 (0.57-1.34)	0.532	3
	IS0944385; AA		Mucinous	169	0.94 (0.56-1.58)	0.82	1.18 (0.7-1.98)	0.528	26
			Clear cell	126	0.79 (0.44-1.43)	0.434	1 (0.51-1.98)	0.999	27

Table 4.7: Univariate and multivariate Cox regression results of BRAF tSNPs, by histology

* stratified by study; HR - Hazard ratio; CI - confidence interval; MAF- minor allele frequency; † Haplotype frequency; § adjusted for prognostic factors (histology [where appropriate], age, stage and grade); ‡: difference in HR after multivariate analysis – values ≥ 10 : prognostic factors were confounding. Emboldened tSNP names are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.

Chapter 4: Results - survival

Como	Hanlatura	Freq (%)	Histology	Univariate		Multivariate [§]		Diff HR
Gene	Haplotype			HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
BRAF		18.8	All	0.95 (0.81-1.1)	0.493	0.8 (0.66-0.95)	0.014	16
			Serous	0.95 (0.79-1.16)	0.633	1.1 (0.9-1.4)	0.415	16
	h10010000		Endometrioid	0.88 (0.54-1.42)	0.591	0.88 (0.53-1.48)	0.629	0
			Mucinous	0.63 (0.31-1.28)	0.204	0.62 (0.32-1.23)	0.173	2
			Clear cell	1.38 (0.61-3.08)	0.438	2.38 (0.92-6.15)	0.074	72
		12.2	All	1.1 (0.94-1.3)	0.238	1 (0.83-1.21)	0.96	9
			Serous	1.12 (0.91-1.37)	0.296	0.8 (0.6-1)	0.037	29
	h10010010		Endometrioid	0.74 (0.36-1.5)	0.401	0.74 (0.36-1.54)	0.425	0
			Mucinous	1.5 (0.81-2.8)	0.199	1.91 (0.96-3.78)	0.065	27
			Clear cell	0.79 (0.35-1.75)	0.557	0.62 (0.23-1.7)	0.351	22
		7.1	All	1.21 (1-1.46)	0.055	1.43 (1.14-1.8)	0.002	18
			Serous	1.1 (0.85-1.42)	0.483	0.9 (0.7-1.3)	0.636	18
	h01100001		Endometrioid	1.3 (0.71-2.4)	0.393	2.04 (1.05-3.99)	0.036	57
			Mucinous	0.81 (0.33-1.99)	0.652	0.9 (0.38-2.1)	0.804	11
			Clear cell	1.86 (0.84-4.13)	0.127	1.92 (0.74-4.96)	0.179	3

Table 4.8: Univariate and multivariate Cox regression results of BRAF haplotypes (P<0.05)

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; HR: Hazard ratio; CI: confidence interval; Emboldened HR are statistically significant or the CI does not cross 1; Emboldened haplotypes are statistically significant after adjustments for clinical factors; SNP order in haplotypes is 5' to 3' of the genes – *BRAF*: rs10487888, rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385;

The likelihood ratio test including all three tSNPs, adjusted for prognostic factors, was statistically significant (P=0.0147), however, when forward stepwise regression procedure was used, only rs13241719 was retained in the final model (P=0.009). The forward stepwise regression procedure involved the modelling of the variants (rs1267622, rs13241719 and rs6944385), one-by-one, and retaining the tSNP which was statistically significant (rs13241719 in this instance). The prognostic factors were included in the model because the association between rs1267622 and rs13241719 were found with the multivariate survival analysis.

BRAF rs1267622 tags rs4726020 with $r^2 = 1$. According to Pupasuite, both SNPs are intronic and the dbSNP database showed rs1267622 is in intron 3 of the oncogene, and rs4726020 is in intron 1. rs13241719 (intron 2) is not known to tag any other SNP within *BRAF*. rs6944385 (intron 1) tags rs9648716 (intron 1) with $r^2=1$. None of these SNPs are predicted to have functions that could explain their association with survival from ovarian cancer.

The correlation between the h01100001 haplotype of *BRAF* and all-cause mortality of the combined subtypes of ovarian cancer cases became statistically significant after adjustments for the prognostic factors, adjusted HR=1.43 (1.14-1.8), P=0.002, (see Table 4.8). This haplotype was also associated with poor survival, when analysis was restricted to the endometrioid histological subtype. The haplotype was associated with a 2.04-fold increase in hazard of the endometrioid subtype – Table 4.8. These results were confounded by the clinical prognostic factors, by at least 18%.

Figure 4.3: tSNPs in BRAF haplotype block

Two other, previously undetected, associations were found between haplotypes of *BRAF* and survival from ovarian cancer after adjustments for prognostic factors. The h10010000 haplotype was associated with improved survival of all histological subtypes (adjusted HR=0.8 [0.66-0.95], P=0.014; Table 4.8). There was also evidence suggesting that this haplotype was associated with improved survival of serous cases, when the Cox regression survival analysis was restricted to the histological subtype – Table 4.8. This association was supported by the multivariate result of *BRAF* rs13241719, which was in the fourth position of the haplotype (Figure 4.3).

Colour scheme: standard (D'/LOD) – white (D'<1, LOD<2), shades of pink/red (D'<1, LOD \geq 2), blue (D'=1, LOD<2) and bright red (D'=1, LOD \geq 2), numbers shown in squares (LD values) are based on D'.

4.2.6: Multivariate survival analysis results of KRAS oncogene

An association was found between the rs10842513 variant of *KRAS* and poor survival of ovarian cancer, after adjustments for the clinical prognostic factors (Table 4.9). A statistically significant association was also found with this variant and the serous histological subtype in the univariate analysis (see Table 4.9). Although the association with the serous subtype was no longer statistically significant, the 95% confidence interval did not cross 1.

The difference between the hazard ratios of the univariate and multivariate analyses of the serous subtype for the rs10842513 variant were not significant (<10%), therefore the hazard ratio was not confounded by the prognostic factors. The rs10842513 SNP, which is located in intron 2 of *KRAS*, is not known to tag another SNP within the oncogene. Although the SNP is currently not predicted to have a "function", it is conserved in mice.

The h001100 haplotype of *KRAS* block 2 remained significantly associated with reduced survival of sufferers with the mucinous subtype (adjusted HR=2.74 [1.27-5.9], P=0.01). The h100010 haplotype of block 2 was also associated with poor survival of mucinous disease – see Table 4.10. This association was found after adjustments for the prognostic factors had been made.

Gene	tSNP	MAF	AF Histology	Cases	Univariat	e	Multivariat	e [§]	Diff HR
Gene	tSNP			Cases	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1770	1.18 (0.98-1.42)	0.08	1.25 (1.01-1.55)	0.039	6
			Serous	846	1.38 (1.09-1.75)	0.008	1.3 (1-1.6)	0.091	6
KRAS	rs10842513	0.09	Endometrioid	271	1.19 (0.67-2.1)	0.552	1.47 (0.79-2.74)	0.227	24
			Mucinous	187	0.7 (0.29-1.69)	0.432	0.74 (0.29-1.87)	0.521	6
			Clear cell	132	2.02 (1-4.1)	0.052	1.71 (0.81-3.58)	0.156	15

Table 4.9: Univariate and multivariate survival results of KRAS rs10842513

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); emboldened HR are statistically significant or the CI does not cross 1.

Table 4.10: Univariate and multivariate survival results of *KRAS* haplotype block 2 (P<0.05)

Gene	Hanlatuna [†]	Freq	Histology	Univariate		Multivariate [§]	2	Diff HR
Gene	Haplotype [†]	(%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.96 (0.83-1.12)	0.625	0.95 (0.81-1.12)	0.556	1
	h100010	10.7	Serous	0.9 (0.74-1.08)	0.255	0.9 (0.6-1.3)	0.479	0
			Endometrioid	0.86 (0.51-1.45)	0.571	0.82 (0.47-1.43)	0.481	5
			Mucinous	1.32 (0.79-2.22)	0.288	1.79 (1.03-3.13)	0.04	36
KRAS			Clear cell	0.95 (0.47-1.91)	0.881	0.87 (0.39-1.93)	0.723	8
haplotype block 2			All	1.02 (0.79-1.31)	0.902	1.05 (0.79-1.41)	0.722	3
block 2			Serous	0.87 (0.62-1.21)	0.411	1.1 (0.8-1.5)	0.631	26
	h001100	3.7	Endometrioid	0.99 (0.44-2.18)	0.971	1.21 (0.52-2.82)	0.652	22
			Mucinous	3.24 (1.55-6.74)	0.002	2.74 (1.27-5.9)	0.01	15
			Clear cell	2.42 (0.6-9.66)	0.212	3.42 (0.65-18)	0.146	41

†: '0' = common allele and '1' = rare allele; §: adjusted for clinical factors; HR: Hazard ratio; CI: confidence interval; Emboldened HR are statistically significant or the CI does not cross 1; SNP order in haplotypes is 5' to 3' of the genes –*KRAS* haplotype block 2: rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.

4.3: Survival analyses of variants and haplotypes of functional

<u>candidates</u>

Sixty-three tSNPs from nine differentially expressed genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) selected from the microcell-mediated transfer of chromosome 18 (MMCT-18) into two ovarian cancer cell-lines were genotyped with the MALOVA (446 cases), SEARCH (847 cases) and UKOPS (401 cases) population-based sample sets. There were 617 deaths in 5,885 person-years at risk. Cox regression survival analysis was used to ascertain the effect of the tSNPs and haplotypes of the functional candidates on the survival of ovarian cancer patients.

4.3.1: Association between clinical prognostic factors and survival for *"functional"* candidate genes

The results from the survival analysis of tSNPs and haplotypes of candidate oncogenes demonstrated that the adjustment for clinical prognostic factors was critical in determining associations which were not confounded by prognostic factors. Therefore, Cox regression survival analysis was used to assess the effects of the prognostic factors (age at diagnosis, tumour histological subtype, grade and stage) on survival from ovarian cancer of individuals from the MALOVA, SEARCH and UKOPS population-based studies used in this analysis. The results of the effect of the prognostic factors on survival from ovarian cancer are summarised in Table 4.11.

Prognostic factor	No. cases (%)	HR (95% CI)	P-value				
	Histologica	subtype					
Serous	796 (47%)	Referen	ice				
Mucinous	185 (11%)	1.15 (0.78-1.69)	0.49				
Endometrioid	262 (16%)	0.79 (0.57-1.09)	0.148				
Clear cell	153 (9%)	0.75 (0.44-1.26)	0.278				
	Age at diagno	osis (years)					
< 40 72 (4%) Reference							
40-49	270 (16%)	1.41 (0.66-3)	0.37				
50-59	636 (38%)	1.79 (0.87-3.68)	0.115				
≥ 60	716 (42%)	2.44 (1.19-4.97)	0.014				
	Tumour :	grade*					
1	250 (15%)	Referen	ice				
2	400 (24%)	1.36 (1.01-1.82)	0.041				
3	518 (31%)	1.38 (1.04-1.85)	0.028				
	Tumour	stage [§]					
Localised	492 (29%)	Referen	ice				
Advanced [§]	744 (44%)	3.99 (3.01-5.02)	4.04x10 ⁻²²				

(MMCT-18 dataset)

N=1,694; * 1= well differentiated – low grade, 2= moderately differentiated - medium grade, 3= poorly differentiated (high grade); § spread to regional lymph nodes or distant metastases; emboldened prognostic factors are significantly associated with survival from ovarian cancer.

Contrary to the findings with the samples analysed in the oncogene study, there were no statistically significant associations between survival from ovarian cancer and tumour histological subtypes (P>0.05). This may have been as a result of the absence of the GEOCS and additional samples in the SEARCH and UKOPS sample populations. Individuals in the > 60 years old age group had a significantly increased mortality rate compared with those in the <40 years age group (HR=2.44 [1.19-4.97], P=0.014). There were statistically significant differences in the mortality of individuals with low grade tumours and those with intermediate and high grade tumours (HR=1.36 [1.01-1.82], P=0.041; HR=1.38 [1.04-1.85], P=0.028, respectively). In concordance with the samples in the oncogene study, advanced stage disease had the biggest effect on survival from ovarian cancer, with an approximately 4-fold increase in mortality compared with localised, early stage disease (HR=3.99 (3.01-5.02), P= 4.04×10^{-22}).

4.3.2: Effect of "functional" candidate ovarian cancer genes on survival of ovarian cancer patients

Univariate and multivariate Cox regression survival analysis results for all common variants and haplotypes of this series of functional candidate genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) are tabulated in Appendix VIII-A to VIII-R.

There was no evidence of association between survival from ovarian cancer and the common tSNPs or haplotypes of *AKTIP*, *AXIN2* or *STAG3*. However, associations were found between survival from clear cell, and endometrioid ovarian cancers and the combined rare haplotypes of *AKTIP* and *STAG3*, respectively (Appendix VIII-D, and VIII-R, respectively).

Multivariate survival analysis results of AIFM2

After adjustments for the prognostic factors, two variants of *AIFM2* were significantly associated with survival from histological subtypes of invasive epithelial ovarian cancer. The rare allele of *AIFM2* rs2394655 was associated with increased mortality of patients with the mucinous subtype (adjusted per-rare allele HR=3.05 [1.03-8.98], P=0.043). This association was also found with the univariate survival analysis (see Table 4.12). The rare allele of *AIFM2* rs2280201 was associated with poor survival of the endometrioid subtype, adjusted HR=2.03 (1.13-3.65), P=0.018.

Associations were also found between haplotypes of *AIFM2* and survival of ovarian cancer cases. The associations were found with both haplotype block of *AIFM2*. The h0001011 haplotype of *AIFM2* block 1 was associated with increased mortality of endometrioid patients after adjustments for prognostic factors (adjusted HR=2.76 [1.36-5.59], P=0.005). The variant of *AIFM2*, rs2280201, was in the last position of haplotype block 1. The rare allele of this variant was associated with poor survival of endometrioid cases, and thus supports the findings of the haplotype analysis. The h01011 haplotype of *AIFM2* block 2 was also associated with poor survival of endometrioid cases, adjusted HR=5.31 (2.04-13.8), P=0.001, see Table 4.13.

There was evidence suggesting that the h1111110 haplotype of *AIFM2* block 1 was associated with increased mortality of mucinous patients (adjusted HR=3.02 (1.02-8.91), P=0.045; Table 4.13). This association was supported by the single variant results. The rare allele of rs2394655, which was associated with poor survival, was the first position of the haplotype. The rs2394655 variant is not known to tag another SNP. The variant, which is conserved in mice, is located in the 3' untranslated region of the gene, and it is predicted to be an exonic splicing enhancer.

Furthermore, the h00001 haplotype of *AIFM2* block 2 was associated with poor survival of those with clear cell disease, adjusted HR=2.29 (1.23-4.28), P=0.009; see Table 4.13.

Gene	tSNP	MAF	Histology	Casas	Univariate)	Multivariat	e [§]	Diff HR
Gene	ISINF	MAF	Histology	Cases	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1751	1.04 (0.78-1.39)	0.788	1 (0.72-1.4)	0.986	4
			Serous	827	0.97 (0.68-1.39)	0.878	0.91 (0.61-1.36)	0.652	6
	rs2394655	0.04	Endometrioid	269	0.22 (0.03-1.56)	0.129	0.32 (0.04-2.35)	0.262	45
			Mucinous	189	4.88 (1.96-12.15)	0.001	3.05 (1.03-8.98)	0.043	38
AIFM2			Clear cell	150	1.08 (0.55-2.11)	0.824	1.27 (0.6-2.73)	0.532	18
AIFMIZ			All	1313	0.93 (0.77-1.11)	0.392	0.95 (0.77-1.17)	0.617	2
			Serous	556	0.81 (0.63-1.03)	0.08	0.87 (0.66-1.13)	0.296	7
	rs2280201	0.12	Endometrioid	216	1.44 (0.84-2.45)	0.182	2.03 (1.13-3.65)	0.018	41
			Mucinous	146	0.93 (0.49-1.78)	0.833	2.02 (0.96-4.24)	0.065	117
			Clear cell	150	1.01 (0.71-1.45)	0.94	0.86 (0.56-1.33)	0.496	15

Table 4.12: Univariate and multivariate survival results of AIFM2 tSNPs (P<0.05)

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.

Como	How lot res of	$\mathbf{E}_{\mathbf{r}} = \mathbf{e}_{\mathbf{r}} \left(0 \right)$	III at a la an	Univariate	e	Multivariate	§	Diff HR																		
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)																		
			All	0.90 (0.71-1.13)	0.348	1 (0.77-1.3)	0.98	11																		
			Serous	0.80 (0.60-1.08)	0.149	0.86 (0.62-1.19)	0.352	7																		
	h0001011	7	Endometrioid	1.51 (0.81-2.8)	0.191	2.76 (1.36-5.59)	0.005	83																		
			Mucinous	0.88 (0.37-2.12)	0.776	1.98 (0.69-5.7)	0.204	125																		
AIFM2			Clear cell	0.87 (0.52-1.47)	0.602	0.86 (0.48-1.56)	0.626	1																		
haplotype block 1			All	1.02 (0.76-1.38)	0.879	0.99 (0.7-1.41)	0.957	3																		
bioek i			Serous	0.91 (0.62-1.32)	0.612	0.82 (0.53-1.27)	0.379	10																		
	h1111110	4	Endometrioid	0.34 (0.07-1.71)	0.191	0.5 (0.1-2.58)	0.408	47																		
			Mucinous	4.87 (1.95-12.17)	0.001	3.02 (1.02-8.91)	0.045	38																		
			Clear cell	1.15 (0.58-2.27)	0.69	1.57 (0.71-3.48)	0.27	37																		
			All	1.07 (0.79-1.45)	0.651	1.21 (0.86-1.71)	0.279	13																		
																						Serous	1.18 (0.79-1.75)	0.414	1.37 (0.89-2.11)	0.155
	h00001	4	Endometrioid	0.27 (0.05-1.34)	0.11	0.33 (0.07-1.51)	0.153	22																		
									Mucinous	0.47 (0.11-1.97)	0.304	1.31 (0.29-5.91)	0.725	179												
AIFM2			Clear cell	1.77 (1-3.12)	0.05	2.29 (1.23-4.28)	0.009	29																		
haplotype block 2			All	0.93 (0.64-1.35)	0.702	1.16 (0.77-1.74)	0.476	25																		
bioth 2			Serous	0.73 (0.45-1.17)	0.188	1.04 (0.63-1.73)	0.879	42																		
	h01011	2	Endometrioid	2.74 (1.07-7.04)	0.036	5.31 (2.04-13.8)	0.001	94																		
			Mucinous	-	-	-	-	-																		
			Clear cell	1 (0.43-2.36)	0.992	0.62 (0.22-1.73)	0.36	38																		

Table 4.13: Effects of AIFM2 haplotypes on survival from ovarian cancer (P<0.05)

 \dagger : '0' = common allele and '1' = rare allele; \$: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', haplotype block 1: rs2394655, rs7908957, rs1053495, rs2894111, rs2394656, rs6480440, rs2280201; haplotype block 2: rs10999147, rs3750772, rs4295944, rs2394644, rs10999152.

Multivariate survival analysis results of CASP5

An association between the rare allele of *CASP5* rs2282657 and reduced mortality of clear cell patients became stronger after adjustments in the multivariate analysis, adjusted HR=0.68 (0.48-0.96), P=0.029, see Table 4.14. The *CASP5* rs2282657 variant, an intronic SNP, tags 2 other intronic SNPs, all of which are conserved in mice.

The h000011 haplotype of *CASP5* block 2 remained associated with reduced mortality of clear cell patients after adjustments for prognostic factors, adjusted HR=0.57 (0.34-0.97), P=0.037; see Table 4.15. This association is concordant with the presence of the rare allele of *CASP5* rs2282657, in the fifth position of the haplotype block, which was associated with improved survival of clear cell cases.

The combined rare haplotypes of *CASP5* block 1 were also associated with poor survival of all histological subtypes ($P=8.85 \times 10^{-5}$), and the serous and clear cell subtypes when the multivariate analysis was restricted to the subtypes (see Appendix VIII-H). Despite the strength of the association with all histological subtypes, the combined rare haplotypes have a frequency of 4%, and it is not possible to definitively ascertain the haplotype responsible for the association. However, if the causative haplotype was found, only a very small number of cases are likely to carry the haplotype.

Cono	Gene tSNP	MAF	AF Histology	Cases	Univariat	Multivariat	Diff HR (%)		
Gene	13111	WIAI	mstology	Cases	HR (95% CI)	P-value	HR (95% CI)	P-value	Dill IIK (70)
			All	852	0.94 (0.83-1.06)	0.329	0.94 (0.81-1.09)	0.442	0
			Serous	462	1.10 (0.95-1.28)	0.216	1.12 (0.93-1.34)	0.247	2
CASP5	rs2282657	0.35	Endometrioid	128	0.82 (0.55-1.22)	0.327	0.78 (0.5-1.2)	0.254	5
			Mucinous	80	0.75 (0.47-1.19)	0.224	0.92 (0.57-1.48)	0.735	23
			Clear cell	73	0.76 (0.57-1)	0.049	0.68 (0.48-0.96)	0.029	11

Table 4.14: Effect of CASP5 rs2282657 on survival from ovarian cancer

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Haplotype	Hanlatuna [†]	$\mathbf{E}_{\mathbf{n}} = \mathbf{r} \left(0 \right)$	Histology	Univariate		Multivariat	e [§]	Diff HR
block	Haplotype [†]	Freq (%)		HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.02 (0.87-1.20)	0.821	1.01 (0.83-1.23)	0.916	1
CASP5			Serous	1.11 (0.91-1.35)	0.298	1.08 (0.86-1.36)	0.493	3
(haplotype	h000011	13	Endometrioid	1.05 (0.63-1.77)	0.847	1.17 (0.66-2.07)	0.583	11
block 2)			Mucinous	1.69 (0.92-3.1)	0.089	1.64 (0.85-3.15)	0.139	3
			Clear cell	0.62 (0.4-0.97)	0.034	0.57 (0.34-0.97)	0.037	8

Table 4.15: Univaraite and multivariate survival results of CASP5 haplotype (P<0.05)

Freq – frequency; HR – hazard ratio; CI – confidence interval; †: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *CASP5* haplotype block 2: rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879.

Multivariate survival analysis results of RGC32

There was also evidence of an association between poor survival from the serous histological subtype and the rare allele of *RGC32* rs3783194 (adjusted HR=1.44 (1.12-1.86), P=0.005); Table 4.16. This SNP is located in intron 2 of the gene, and to date, it is not known if it tags another variant. The rare allele of another genetic variant of *RGC32*, rs995845, was also associated with poor survival of endometrioid patients after using the multivariate Cox regression survival analysis (adjusted HR=1.8 (1.03-3.14), P=0.039); see Appendix VIII-M.

Despite the associations found between the common genetic variants of *RGC32* and survival from ovarian cancer, no statistically significant associations were found between common haplotypes of the gene, and survival from the disease. The results of the haplotype-specific effects are given in Appendix VIII-N.

Multivariate survival analysis results of FILIP1L

When multivariate Cox regression survival analysis was used to determine the effects of common tSNPs from *FILIP1L* on survival of ovarian cancer patients, statistically significant associations were found with two variants. The rare allele of *FILIP1L* rs3921767 was associated with poor survival of ovarian cancer patients regardless of the histology of the tumour, adjusted (for prognostic factors) per-rare allele HR=1.39 (1.07-1.81), P=0.014 - Table 4.17.

Gene	tSNP	MAF	Histology	Casas	Univariat	e	Multivaria	te [§]	Diff HR
Gene	15111	MAF	Histology	Cases	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1690	0.95 (0.79-1.14)	0.567	1.11 (0.9-1.36)	0.342	17
			Serous	788	1.11 (0.88-1.41)	0.359	1.44 (1.12-1.86)	0.005	30
	rs3783194	0.11	Endometrioid	264	1.09 (0.65-1.84)	0.742	1.12 (0.61-2.05)	0.713	3
			Mucinous	184	0.63 (0.29-1.35)	0.232	0.64 (0.24-1.73)	0.38	2
DCC22			Clear cell	155	0.81 (0.55-1.19)	0.282	0.76 (0.5-1.16)	0.202	6
RGC32			All	1274	0.96 (0.85-1.08)	0.488	1.13 (0.93-1.38)	0.218	18
			Serous	595	1.03 (0.88-1.21)	0.682	1.25 (0.97-1.61)	0.082	21
	rs995845	0.2	Endometrioid	193	1.55 (0.93-2.6)	0.093	1.8 (1.03-3.14)	0.039	16
			Mucinous	146	1.09 (0.58-2.03)	0.797	0.75 (0.36-1.54)	0.43	31
			Clear cell	112	0.94 (0.66-1.34)	0.716	1.04 (0.69-1.56)	0.851	11

Table 4.16: Univariate and multivariate survival results of RGC32 tSNPs (P<0.05)

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.

Conversely, the rare allele of *FILIP1L* rs9864437 was associated with better survival of mucinous cases alone (adjusted HR=0.46 (0.23-0.91), P=0.027), see Table 4.17. An additional association was found between the rare allele of another tSNP of *FILIP1L*, rs793446, and reduced mortality of mucinous cases, adjusted HR=0.57 (0.33-0.99), P=0.046. See Appendix VIII-I and VIII-J for the univariate and multivariate Cox regression analysis results for all common variants and haplotypes, respectively, of *FILIP1L*.

Analysis of the effects of the haplotypes of *FILIP1L* on survival from ovarian cancer also showed statistically significant associations. A total of 4 haplotypes of *FILIP1L* were associated with survival from ovarian cancer, 2 from haplotype block 1, and the other 2 from block 2. The h00110 haplotype of *FILIP1L* block 1 was associated with reduced mortality, of all histological subtypes, after adjustments for prognostic factors, adjusted HR=1.36 (1.04-1.77), P=0.024 (Table 4.18). The association with h00110 haplotype of *FILIP1L* block 1 was supported by the effect of the rare allele of the rs3921767 variant, which was in the fourth position of the haplotype.

The remaining 3 *FILIP1L* haplotypes were all associated with survival of patients with the mucinous subtype. One of these haplotypes was from block 1 of the gene, and the other 2 were from haplotype block 2. The h10100 haplotype of *FILIP1L* block 1, which had a frequency of 21%, was associated with reduced mortality (adjusted HR=0.44 (0.21-0.9), P=0.024) – see Table 4.18 for the Cox regression survival analysis results for the combined and individual subtypes for this haplotype. This association was also in concordance with the single variant results. The rare

allele of rs793446, which was correlated with reduced mortality, was in the third position of *FILIP1L* haplotype block 1.

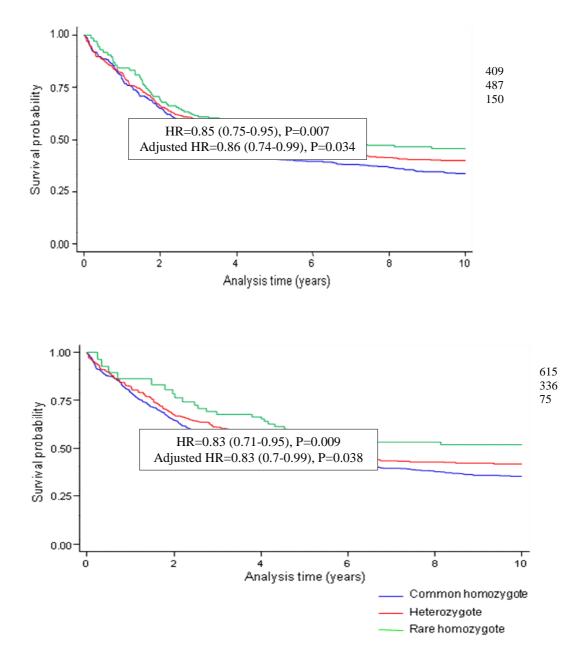
As shown in Table 4.18, the 2 haplotypes of *FILIP1L* block 2, h000 and h100, had opposing effects on survival from the mucinous subtype. The h000 haplotype was associated with poor survival of mucinous cases (adjusted HR=1.96 [1.15-3.33], P=0.013). Conversely, h100 of the same haplotype block was associated with reduced mortality (adjusted HR=0.46 [0.23-0.91], P=0.026). These associations were also supported by the single variant results (*FILIP1L* rs9864437 was in the first position of the block 2 haplotypes).

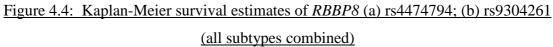
Multivariate survival analysis results of RBBP8

There was evidence suggesting that the rare alleles of two tSNPs of *RBBP8*, rs4474794 and rs9304261, were associated with better survival of ovarian cancer (adjusted HR=0.86 (0.74-0.99), P=0.034; adjusted HR=0.83 (0.7-0.99), P=0.038), respectively - Table 4.19. The Kaplan-Meier survival curves for these two variants are shown in Figure 4.4.

The association between the *RBBP8* tSNPs and survival from ovarian cancer was also identified in the univariate analysis. *RBBP8* rs4474794 and rs9304261 are correlated with r^2 =0.56. *RBBP8* rs4474794 was retained in the final model after the forward stepwise regression (P=0.035). An interaction between rs4474794 and rs9304261 was statistically significant (adjusted HR=0.95 (0.9-0.99), P=0.036), and the likelihood ratio test of this interaction was also significant (P=0.031).

Como	ACNID	МАБ	No oo soo	Histology	Univariat	e	Multivaria	te [§]	Diff HR					
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)					
			1773	All	0.96 (0.85-1.07)	0.461	1.04 (0.9-1.19)	0.628	8					
			838	Serous	1.02 (0.88-1.18)	0.816	1.08 (0.91-1.28)	0.399	6					
	rs793446	0.41	274	Endometrioid	1.08 (0.74-1.59)	0.69	1.15 (0.77-1.71)	0.501	6					
			194	Mucinous	0.65 (0.41-1.03)	0.065	0.57 (0.33-0.99)	0.046	12					
			164	Clear cell	0.97 (0.76-1.25)	0.83	0.99 (0.74-1.32)	0.932	2					
			1773	All	1.03 (0.83-1.29)	0.786	1.39 (1.07-1.81)	0.014	35					
			840	Serous	0.98 (0.71-1.34)	0.895	1.28 (0.89-1.84)	0.186	31					
FILIP1L	rs3921767	0.07	276	Endometrioid	0.99 (0.5-1.93)	0.967	1.23 (0.59-2.57)	0.576	24					
						ļ	ļ	191	Mucinous	1.03 (0.45-2.34)	0.949	1.09 (0.44-2.73)	0.849	6
			166	Clear cell	1.29 (0.88-1.89)	0.196	1.59 (0.99-2.58)	0.057	23					
			1786	All	0.96 (0.84-1.09)	0.515	0.93 (0.8-1.09)	0.366	3					
			843	Serous	1.03 (0.88-1.20)	0.708	1 (0.84-1.2)	0.964	3					
	rs9864437	0.22	278	Endometrioid	1.07 (0.69-1.68)	0.752	0.97 (0.6-1.57)	0.892	9					
			195	Mucinous	0.45 (0.25-0.82)	0.009	0.46 (0.23-0.91)	0.027	2					
			165	Clear cell	0.89 (0.66-1.2)	0.455	0.87 (0.63-1.2)	0.396	2					


Table 4.17: Univariate and multivariate survival results of FILIP1L tSNPs (P<0.05)


HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.

Como	Hanlatan a [†]	$\mathbf{E}_{\mathbf{r}} \in \mathcal{C}(0/1)$	II at all a ser	Univariate	e	Multivariate	ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.96 (0.84-1.09)	0.52	0.94 (0.8-1.1)	0.424	2
			Serous	1.03 (0.89-1.21)	0.667	0.94 (0.67-1.31)	0.697	9
	h10100	21	Endometrioid	1.12 (0.71-1.78)	0.618	1 (0.61-1.63)	0.998	11
			Mucinous	0.42 (0.22-0.78)	0.006	0.44 (0.21-0.9)	0.024	5
FILIP1L (homlotyme			Clear cell	0.88 (0.65-1.19)	0.419	0.88 (0.64-1.22)	0.447	0
(haplotype block 1)			All	1.02 (0.81-1.27)	0.871	1.36 (1.04-1.77)	0.024	33
010011 1)			Serous	0.95 (0.69-1.30)	0.742	1.22 (0.85-1.76)	0.283	28
	h00110	7	Endometrioid	1 (0.5-2)	0.996	1.22 (0.58-2.55)	0.604	22
			Mucinous	1.01 (0.44-2.31)	0.977	1.08 (0.43-2.69)	0.877	7
			Clear cell	1.29 (0.88-1.89)	0.197	1.61 (0.99-2.6)	0.053	25
			All	0.96 (0.84-1.09)	0.506	0.94 (0.8-1.09)	0.42	2
			Serous	1.03 (0.89-1.21)	0.668	0.92 (0.77-1.1)	0.371	11
	h100	22	Endometrioid	1.08 (0.69-1.69)	0.727	0.97 (0.6-1.57)	0.902	10
			Mucinous	0.45 (0.25-0.82)	0.009	0.46 (0.23-0.91)	0.026	2
FILIP1L			Clear cell	0.88 (0.65-1.18)	0.385	0.87 (0.63-1.21)	0.407	1
(haplotype block 2)			All	1.10 (0.94-1.28)	0.223	1.11 (0.92-1.33)	0.292	1
0100K 2)			Serous	1.07 (0.87-1.31)	0.506	0.64 (0.26-1.55)	0.321	40
	h000	19	Endometrioid	0.87 (0.53-1.44)	0.594	0.98 (0.59-1.64)	0.946	13
			Mucinous	1.72 (1.09-2.72)	0.019	1.96 (1.15-3.33)	0.013	14
			Clear cell	1.13 (0.82-1.58)	0.456	1.09 (0.74-1.6)	0.664	4

Table 4.18: Univariate and multivariate survival results of *FILIP1L* haplotype block 2 (P<0.05)

 \dagger : '0' = common allele and '1' = rare allele; \$: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *FILIP1L* -block 1: rs796977, rs793477, rs793446, rs3921767, rs17338680. *FILIP1L* - block 2: rs9864437, rs6788750, rs12494994.

Numbers following the keys are individuals still at risk after 10 years.

Gene	tSNP	MAF	Histology	Cases	Univariate	2	Multivariat	e [§]	Diff HR
Gene	tom	MAF	mstology	Cases	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1764	0.85 (0.75-0.95)	0.007	0.86 (0.74-0.99)	0.034	1
			Serous	829	0.88 (0.75-1.02)	0.098	0.85 (0.71-1.01)	0.065	3
	rs4474794	0.36	Endometrioid	271	0.8 (0.53-1.19)	0.265	0.86 (0.56-1.31)	0.479	7
			Mucinous	193	0.67 (0.42-1.05)	0.079	0.83 (0.51-1.36)	0.465	24
RBBP8			Clear cell	165	0.91 (0.71-1.18)	0.484	0.98 (0.73-1.32)	0.899	8
KDDPO			All	346	0.83 (0.71-0.95)	0.009	0.83 (0.7-0.99)	0.038	0
			Serous	215	0.87 (0.72-1.05)	0.143	0.82 (0.66-1.02)	0.073	6
r	rs9304261	0.22	Endometrioid	44	0.87 (0.56-1.35)	0.536	0.99 (0.62-1.6)	0.982	14
			Mucinous	33	0.61 (0.35-1.05)	0.074	0.81 (0.44-1.49)	0.497	33
			Clear cell	21	0.84 (0.62-1.13)	0.242	0.86 (0.61-1.22)	0.401	2

Table 4.19 Univariate and multivariate survival results of RBBP8 tSNPs (P<0.05)

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; § adjusted for prognostic factors (histology, age, stage and grade, where appropriate); Emboldened histological subtypes - variants are statistically associated with survival after adjustments; emboldened HR are statistically significant or the CI does not cross 1.

C	TT l - 4 t	Freq (%)	Histology	Univariate		Multivariate [§]		Diff HR
Gene	Haplotype [†]			HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
		62	All	1.16 (1.03-1.31)	0.015	1.17 (1.01-1.34)	0.032	1
			Serous	1.12 (0.97-1.30)	0.134	0.02 (0-27735)	0.589	98
	h0000		Endometrioid	1.26 (0.85-1.86)	0.257	1.15 (0.76-1.75)	0.511	9
			Mucinous	1.57 (1-2.47)	0.05	1.22 (0.75-2)	0.422	22
			Clear cell	1.06 (0.83-1.35)	0.659	1 (0.75-1.32)	0.98	6
		23	All	0.81 (0.71-0.94)	0.005	0.82 (0.69-0.98)	0.029	1
RBBP8			Serous	0.84 (0.70-1.02)	0.079	0.99 (0.53-1.85)	0.976	18
	h0011		Endometrioid	0.83 (0.53-1.3)	0.422	0.94 (0.58-1.52)	0.789	13
			Mucinous	0.64 (0.37-1.08)	0.096	0.86 (0.48-1.53)	0.614	34
			Clear cell	0.85 (0.64-1.13)	0.261	0.87 (0.63-1.22)	0.429	2
		3	All	0.60 (0.39-0.93)	0.022	0.75 (0.45-1.25)	0.275	25
	h0010		Serous	0.75 (0.41-1.36)	0.347	1.2 (1.01-1.42)	0.041	60
			Endometrioid	0.35 (0.08-1.56)	0.169	0.54 (0.12-2.46)	0.429	54
			Mucinous	0.56 (0.13-2.31)	0.419	1.03 (0.15-7.23)	0.976	84
			Clear cell	0.7 (0.31-1.58)	0.388	0.78 (0.28-2.18)	0.637	11

Table 4.20: Univariate and multivariate survival results of *RBBP8* haplotypes (P<0.05)

†: '0'= common allele and '1'= rare allele; Freq – frequency; HR – hazard ratio; CI – confidence interval; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *RBBP8*: rs7239066, rs11082221, rs4474794, rs9304261.

As shown in Table 4.19, the univariate Cox regression survival analysis also detected the associations between survival and the tSNPs of *RBBP8* (rs4474794 and rs9304261). As well as being associated with better survival from ovarian cancer overall, the rare allele of rs4474794 was also significantly associated with a decreased risk of serous ovarian cancer. The rs4474794 variant and the 17 SNPs it tags were intronic, with no predicted functions.

Two haplotypes of *RBBP8*, h0000 and h0011, had opposing effects on survival of the patients. The h0000 haplotype was associated with poor survival (adjusted HR=1.17 (1.01-1.34), P=0.032). However, the h0011 haplotype of *RBBP8* was associated with improved survival from the disease, adjusted HR=0.82 (0.69-0.98), P=0.029. These associations were also identified with the univariate analyses, and were supported by the tSNP results (see Table 4.20). The variants of *RBBP8*, rs4474794 and rs9304261, which were shown to affect survival from ovarian cancer, were in the third and fourth positions, respectively, of the haplotypes.

The association between the h0000 haplotype of *RBBP8* and poor survival of all ovarian cancer patients was also found when multivariate analysis was restricted to serous only samples (adjusted for prognostic factors HR=1.2 (1.01-1.42), P=0.041). Although, the association between reduced mortality and the h0011 haplotype of *RBBP8* was attenuated after restriction to the serous subtype, the confidence interval did not cross 1 (adjusted HR=0.81 (0.65-1), P=0.054); Table 4.20.

236

Table 4.21: Cox regresssion results of <i>RUVBL1</i> rs485/836									
Gene tSNP	tSNP	MAF	Histology	Cases	Univariate		Multivariate [§]		Diff HR
		Instorogy	Cuses	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)	
			All	1787	0.98 (0.86-1.12)	0.758	0.81 (0.67-0.98)	0.03	17
			Serous	845	1.01 (0.86-1.19)	0.879	0.75 (0.59-0.95)	0.018	26
<i>RUVBL1</i> rs	rs4857836	0.2	Endometrioid	278	1.12 (0.67-1.88)	0.66	0.92 (0.52-1.61)	0.762	18
			Mucinous	195	0.8 (0.42-1.55)	0.513	0.9 (0.42-1.95)	0.797	13
			Clear cell	165	0.97 (0.68-1.38)	0.863	0.84 (0.55-1.28)	0.406	13

Table 4.21: Cox regresssion results of RUVBL1 rs4857836

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

However, rs9304261, which is downstream of the gene, is currently known to tag 14 SNPs with $r^2>0.8$, half of these are conserved in mice. One of these SNPs, rs930910, is upstream of the gene in a transcription factor binding site. Another of the tagged SNPs, rs1902921, has a predicted triplex-forming sequence.

4.3.3: Multivariate survival analysis results of RUVBL1

When multivariate Cox regression survival analysis was used to determine the effects of common tSNPs and haplotypes from the *RUVBL1* gene, statistically significant associations were found between survival and a tSNP and 2 haplotypes and survival from ovarian cancer. The rare allele of *RUVBL1* rs4857836 was associated with reduced mortality of all cases, adjusted HR=0.81 (0.67-0.98), P=0.03. The size of the effect of the variant and the significance increased when the analysis was restricted to the serous only histological cases (see Table 4.21). The rs4857836 variant was not significantly associated with survival from the other major histological subtypes of ovarian cancer when the analysis was restricted (to the serous and all subtypes). However, similarly to the serous and all subtypes, the hazard ratios for the individual subtypes (endometrioid, mucinous and clear cell) were less than 1 (see Table 4.21).

4.4: Summary

Cox regression survival analysis of a model with terms for all of the prognostic factors showed that although all of the factors significantly affected survival from ovarian cancer, there were of varying effect sizes. Advanced tumour stage had the strongest effect on survival, with a four times increased hazard ratio compared with localised early stage disease. Multivariate survival analysis with terms for prognostic factors suggested that the results of univariate analyses (with genotypes as the only explanatory variable) may have been masked by the unaccounted clinical factors. When multivariate Cox regression survival analysis was used to evaluate the affect of tSNPs and haplotypes of candidate oncogenes on the survival of 1,572 invasive epithelial ovarian cancer cases, associations were found between BRAF and KRAS and clinical outcome of invasive epithelial ovarian cancer patients. Three common tagging variants of BRAF (rs1267622, rs13241719 and rs6944385), and the AA haplotype of rs1267622 and rs6944385 influenced survival of all cases. When the analysis was restricted to the histological subtypes, an association was found between the survival of serous cases and the rs13241719 polymorphism. Associations were also found between haplotypes of BRAF (h10010000 and h01100001) and survival of all cases. The h01100001 haplotype was also associated with poor survival of endometrioid patients. Furthermore, an additional haplotype of *BRAF*, h10010010, was associated with improved survival of serous cases. The rare allele of KRAS rs10842513 and two haplotypes of the oncogene were associated with poor survival of all ovarian cancer cases.

Multivariate Cox regression survival analysis was also used to evaluate the affects of candidate genes selected from *in vitro* tumour suppression studies on the clinical outcome of ~1,700 ovarian cancer patients. Associations were identified between a polymorphism (rs2280201) and 2 haplotypes (h0001011 of haplotype block 1 and h01011 of haplotype block 2) of *AIFM2* and survival of endometrioid cases, P=0.018, P=0.005 and P=0.001, respectively. This gene was also associated with the

239

survival of those with mucinous and clear cell ovarian cancer. Moreover, the rare allele of a variant, and haplotypes of *CASP5* were associated with increased survival of patients of clear cell ovarian cancer.

FILIP1L, *RUVBL1* and *RBBP8* influenced the clinical of individuals with epithelial ovarian cancer. A common variant and haplotype of *FILIP1L* were associated with the survival of all cases of ovarian cancer combined. Two tSNPs and haplotypes of *FILIP1L* were associated with the survival of mucinous as well. The rare allele of *RUVBL1* rs4857836 was associated with longer survival of all hstological subtypes of the disease. This association became stronger when the analysis was restricted to the serous subtype. The rare alleles of *RBBP8* rs4474794 and rs9304261 were marginally associated with improved survival of all subtypes (P=0.034 and P=0.038, respectively). Two haplotypes of *RBBP8* were also associated with the clinical outcome of all cases. Furthermore, another hapltoyep of *RBBP8* was associated with poor survival of patients with the serous subtype.

Chapter 5: Results Evaluating whole genome amplification methods and SNP multiplex genotyping platforms

5.1: Introduction

<u>Aims:</u>

(1) To evaluate the ease of use and quality of whole genome amplification methods.

(2) To evaluate the performance of non-amplified and whole amplified DNA on multiplex SNP genotyping platforms.

Objectives:

(1) To assess the call rates and concordance of non-amplified, genomic DNA and whole genome amplified DNA.

(2) To evaluate the performance of multiplex SNP genotyping platforms with genomic and whole genome amplified DNA.

(3) To examine the SNP pass rates, call rates and concordance between genomic and amplified DNA.

5.2: Whole genome amplification

Whole genome amplification methods are used to increase the amount of DNA available for research, and some types of diagnoses (ie preimplantation diagnostics). A whole genome amplification method which produces good quality amplified DNA, that generates good call rates and consistent, accurate genotypes could be used instead of the limited, non-amplified genomic DNA. In order to evaluate the magnitude of DNA amplification, quality of genotype calls, and concordance between genotypes of the whole genome amplified samples and non-amplified genomic samples, 95 samples were amplified with GenomePlexTM, GenomiPhi, PEP and RepliGTM. PEP is a random 15-mer method of PCR-based DNA amplification. This method and GenomePlex uses the Taq polymerase enzyme for extension. GenomiPhi uses the Phi29 (Φ 29) DNA polymerase, and REPLI-g uses a modified Φ 29 enzyme. GenomePlex is a PCR-based method, which generates a library from the template DNA and subsequently amplifies the library. PEP amplification has been used to amplify GEOCS and SEARCH study samples for several years and all Taqman assays with samples from those two studies were performed with PEPamplified samples. Although 100ng of starting DNA was used for GenomePlex, GenomiPhi and RepliG amplification, 20ng, the recommended amount, was used for PEP. The focus of the research was primarily on the GenomePlex, GenomiPhi and RepliGTM methods.

5.2.1: Comparison of the ease of use of whole genome amplification methods

In terms of ease of the amplification procedure, GenomiPhi was the simplest. The protocol involved adding the amplification mix and enzyme to the DNA and two incubation steps. The PEP protocol was also very easy to perform, with only a PCR reaction following the addition of the reaction mixture to the template DNA. The GenomePlex method was the most time consuming of the four amplification methods during the preparation steps (Table 5.1). There were three separate stages involving addition of reagents followed by incubation steps. This contrasted with only 1 stage each for GenomiPhi, PEP and REPLI-g. PEP was the only protocol without a separate denaturing DNA step. Overall, GenomePlex required the least

242

amount of time to perform the whole procedure. There was an insufficient amount of the Library preparation enzyme in the GenomePlex amplification kit, therefore five samples could not be successfully amplified with the method. In total 90 samples were amplified with the GenomePlex method. It is possible that some of the enzyme may have evaporated during the pipetting into the sample mixture, because a master-mix was not made with the enzyme and only 1µl was to be aliquotted into the samples.

	GenomePlex	GenomiPhi	PEP	REPLI-g
Pattern	Thermal	Isothermal	Thermal	Isothermal
Ease of performance	Least easy	Easiest	Moderate	Moderate
Time required	6 hours	17 hours	13 hours	17 hours
Template DNA concentration used	100ng	100ng	100ng	100ng
Amplified DNA yield	9µg	15µg	1.6µg	189µg
Fold increase	90	150	80	1894

Table 5.1: Comparison of whole genome amplification methods

The REPLI-g-amplified samples were the most difficult to pipette after amplification, before the DNA of each sample was quantified. This was because some samples were very viscous. As a consequence, a 1 in 10 dilution was needed prior to DNA quantification.

5.2.2: Quantities of whole genome amplified products

PICO-green was used to evaluate the amount of DNA produced by each whole genome amplification method. As shown in Table 5.2, the REPLI-g method produced the greatest increase in amplified DNA, with an average yield of approximately 190µg. This approximated to 1890-fold increase overall, in the quantity of DNA with this method. However, there was also a very large range in the quantities of DNA produced, from 53µg to 579µg total yield with a standard deviation of 110. The standard deviations for the total yield for the other methods were less than 4. The fold increases in DNA quantities after GenomePlex and PEP amplification were relatively similar (90 and 80, respectively). The average total yield produced for GenomiPhi-amplified samples was 15µg, which was a 150-fold increase in the amount of DNA.

	GenomePlex	GenomiPhi	PEP	REPLI-g
Template DNA concentration used	100ng	100ng	20ng	100ng
Amplified DNA yield	9µg	15µg	1.6µg	189µg
Fold increase	90	150	80	1894
Standard deviation	2.2	3.5	1.9	109.7

Table 5.2: Average fold increase in DNA quantities after WGA

The yields of GenomiPhi and REPLI-g exceeded that which was expected for the method. This may have been due to the increased amount of input template DNA than suggested by the protocol (10ng). 100ng of template DNA was used in order to reduce the likelihood of allele dropout. Approximately double the expected amount of amplified DNA was generated by the GenomiPhi method, and more than 4 times by REPLI-g.

5.3: Comparison of SNP multiplex genotyping platforms

There were advantages and disadvantages for the procedures of all of the SNP multiplex genotyping platforms tested (iPLEX, OpenArray and SNPlex). This makes it difficult to say which platform was easiest to use. One of the biggest

advantages that OpenArray had over SNPlex and iPLEX was that any combination of SNPs could be included in a panel. The panels of SNPs for each iPLEX and SNPlex reaction needed to the designed to ensure reactions could not occur between the reaction products and the allele/SNP masses, so that they could be differentiated from each other. The ease of use of the SNP multiplexing platforms are summarised in Table 5.3.

5.3.1:OpenArray

Overall, the OpenArray platform was the most straight-forward to use after the transfer of the samples on to the TaqMan OpenArray plates. However, the transfer of the samples onto the plate was labour intensive and could not be automated with robotics. This process, thus had an increased chance of operator error. Before the transfer of the samples, each 384-well sample plate was divided into eight sections, as illustrated in Figure 2.2, and only one section, comprised of 48 samples, could be transferred at any one time. Two different plate guides, (one for plate areas 1, 3, 6 and 8, and the other for plate areas 2, 4, 5 and 7) were needed for transferring the samples from the sample plate on to the TaqMan OpenArray plate. Furthermore, only 96 samples could fit onto an OpenArray plate, therefore, five plates were required for genotyping the GenomePlex, GenomiPhi, PEP and REPLI-g products, and the corresponding genomic DNA.

There is no easy way of tracking the sample plates or sections after the samples have been transferred onto the OpenArray plates – the manual suggested writing the barcodes on the plates before transferring the samples. This created another area where operator error could occur. The serial number of the OpenArray plate also had to be manually entered into the software before performing the imaging run. Again, there was potential for operator error when entering the OpenArray plate serial number.

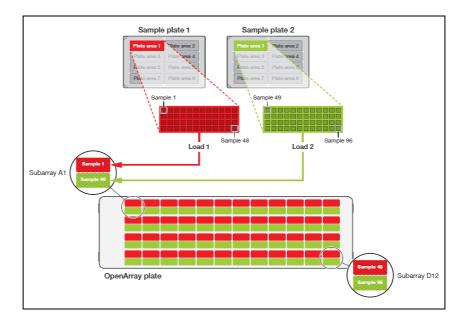
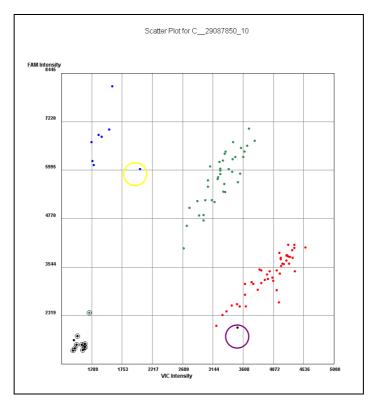


Figure 5.1: The transfer of sections of sample plates to an OpenArray plate

Each OpenArray sample plate section contains 48 wells, and each OpenArray plate can hold 96 samples when the 32-plex option is used. Normally the 4 sections of a sample plate are transferred to an OpenArray plate.


The OpenArray SNP Genotyping analysis software was reasonably easy to use. Sample well positions were included in the sample information files which were needed for the plate "set-up" files prior to imaging. However, the OpenArray SNP Genotyping Analysis software neither displayed, nor outputted the well positions of samples, which made it difficult to ascertain areas of the sample plates which failed genotyping.

	iPLEX	OpenArray	SNPlex	
Company	Sequenom	Applied Biosystems	Applied Biosystems	
Multiplex level tested	27	32	48	
Panel design	SNPs must work in panel	Any SNP combination	SNPs must work in panel	
DNA required (ng)	10	125	50-100	
DNA per SNP (ng)	0.34	3.91	1.04-2.08	
Total no. samples/plate	384	96	384	
Type of procedure	Extensive post-PCR processing	Extensive sample preparation	Extensive post-PCR processing	
SNP/allele detection	MALDI-TOF	Fluorescence	Mass and fluorescence	
Experiment time	2 days	2 days	3 days	
Ease of procedure	Easiest	Least easy	Moderately easy	
Ease of analysis	Easiest	Moderately easy	Least easy	
SNP pass rate (gDNA)*	24 (100%) [§]	32 (100%)	29 (60%)	

Table 5.3: Ease of use of SNP multiplex genotyping platforms

* Overall rate for non-amplified genomic DNA only. [§] Three SNPs with insufficient extend primers failed.

Applied Biosystems recommended manually calling the genotypes on OpenArray. The advantage of using the OpenArray genotyping software was that it allowed the importing and analysis of multiple OpenArray plates in the same "genotyping project". This compensated for having to manually call the genotypes, and also allowed the analysis of multiple plates, provided there was minimal plate-to-plate variation in genotyping quality. The OCAC quality control guidelines required that at least 95 ovarian cancer samples were placed on each 384-well plate in order to eliminate any possible case/control genotyping bias. However, the sample information file, and the fact that only 96 samples could be genotyped on a 32-plex format, which would make it impossible to conform to the guidelines for genotyping studies. Adjustments to incorporate the OCAC guidelines would involve reorganisation of all sample plates layouts and the corresponding templates used for quality control purposes.

Figure 5.2: OpenArray cluster (auto-call)

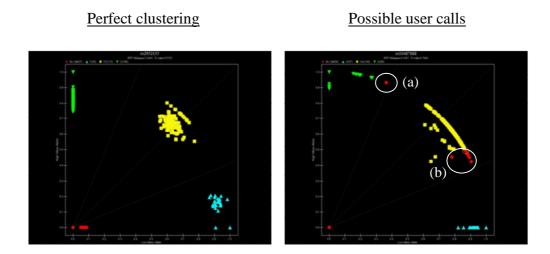
Dots: Blue – homozygotes for FAM allele; green – heterozygotes; red – homozygotes for VIC allele; black – undetermined genotype; purple circle – sample could not be given a user call without another VIC homozygote becoming "uncalled", however a user call (to undetermined) could be made for the genotype circled in yellow.

Despite the manual calling, there was a considerable amount of automation in the calling when "cluster centre" and exclusion bars were used. There were instances when some samples could not be called with the cluster centre and exclusion bars, without a logical reason (as demonstrated in Figure 5.2). The "Draw" function of the OpenArray genotyping analysis software was supposedly available for modifying the genotype cluster shapes. However, the genotype calling from the Draw function could not be exported, which rendered the function useless.

5.3.2: SNPlex

The SNPlex genotyping platform was a fairly standard procedure. Although the procedure was carried out manually, the vast majority of the steps could be

automated with liquid handling robotics. However, there was a risk of contamination, and/or operator error with the extensive post-PCR process.


Manual calls could not be made per se, with the GeneMapper software. The clustering parameters could be modified in order to make the callings more, or less stringent. The quality of the experiments could be evaluated by checking the allelic ladders, and the software had an internal quality control that failed assays with call rates less than 80%, therefore it was not possible to find the exact call rates, or genotypes of poor performing assays.

5.3.2:iPLEX

The iPLEX genotyping platform was the preferred SNP multiplex genotyping platform. The platform performed the least level of multiplexing level compared with SNPlex and OpenArray, however all steps of the protocol were highly automatable, and relatively simple to perform. One of the few problems with the iPLEX procedure was the use of a dimple plate for transferring Clean Resin into the diluted extend products. There was a chance that less than 6mg of Clean resin was dispensed into each well of the dimple plate, as the method used is not particularly accurate. There was also a risk that the sample and dimple plates did not completely align when the resin was transferred to the sample plate, so small amounts of resin may not have entered the wells of the sample plate.

The iPLEX genotype analysis software, TyperAnalyzer, was very user-friendly and relatively easy to use. It was possible to find an approximate call rate for each SNP prior to data output, and colour coding of the "traffic light" plot indicates the overall

performance of each sample. Although auto-calling function of the software was fairly accurate, user (manual) calls could also be made. The software gave a "Status" for each genotype, either "conservative", "moderate", "aggressive", "low probability", "bad spectrum", "user" or "No-alleles". User-calls could be made for clear and distinct genotype clusters, like that shown in Figure 5.3.

Green triangle – homozygotes of high mass allele; yellow squares – heterozygote; blue triangle – homozygote of low mass allele; red dots – uncalled genotypes; (a) auto-call did not call the sample because the spectra was noisy, however, it was clear that the genotype was homozygous for the high mass allele; (b) samples were not auto-called because the allele peak heights were not equal, but the peaks were high enough to call them heterozygous.

The spectrum of each reaction could be viewed to determine the reason behind the auto-caller not calling some samples, and whether the genotype could be manually called. Examples of spectra of genotypes giving conservative, aggressive and user calls statuses are shown in Figure 5.4. Genotypes with conservative or moderate call status were considered accurate, and those with bad spectra or no-alleles were considered as failed assays. However the software automatically assigned genotypes for those conservatively, moderately or aggressively called.

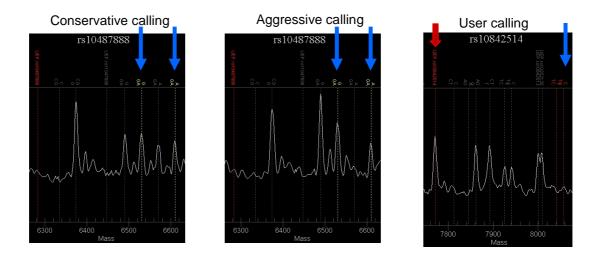


Figure 5.4: Examples of iPLEX genotype call statuses

Blue arrow – allele peaks; red arrow – unextended primer peak (UEP); the allele peak of the user calling cluster was not auto-call because it was low and the UEP was very high – suggesting a high proportion of the extend primers had not been incorporated in the reaction.

iPLEX was the only multiplexing platform on which some non-template negative test controls (NTCs) failed. Failed NTCs were found in four assays with the genomic DNA and GenomePlex, PEP and REPLI-g. Most of the failed NTCs were with rs11551174, which had a high call rate, and all the NTCs were homozygous for the G allele. The failed NTCs may have been caused by dimer pairs forming in the iPLEX reaction, which were the same mass as the GG genotype of rs11551174. Failed NTCs appears to be an artefact of the platform, and are not necessarily an indication of DNA contamination, due to concordant duplicates. However failed NTCs are a still a major concern.

5.4: Concordance of WGA products with genomic DNA on Taqman

The WGA-amplified DNA and their corresponding genomic DNA were genotyped with four TaqMan assays in order to compare the clustering, call rates and concordance. The average call rate for the genomic DNA was 97%. Samples amplified with PEP had the highest call rates, averaging 100% for the 4 TaqMan SNPs genotyped. GenomePlex also had excellent call rates, which averaged 98%. The call rates of GenomiPhi were not as good as GenomePlex, but they were all greater than 90% (averaging 93%). Although REPLI-g amplification produced the greatest yield of amplified DNA, it had the poorest call rate on the Taqman genotyping platform.

The highest call rate for the REPLI-g-amplified DNA genotyped on TaqMan was 87%, and the average call rate for the assays combined was 82%, which is below the level accepted by the Ovarian Cancer Association Consortium (OCAC). Refer to Appendix IX-A for the individual call rates and concordance of the WGA samples compared with non-amplified genomic DNA genotyped on the TaqMan platform. REPLI-g amplified DNA also produced the worst clusters, as shown in Figure 5.5, which explains the poor call rates.

No discordances were found between the genotypes of genomic DNA and GenomePlex, GenomiPhi and PEP-amplified DNA on TaqMan. It should be taken into consideration that only a small number of assays were tested. However, the SNPs genotyped on TaqMan had high minor allele frequencies (MAFs). A total of four discordances between the genotype of genomic DNA samples and their corresponding REPLI-g-amplified DNA were found on TaqMan (for rs602652, rs3217869 and rs10487888). However, the concordance levels were >98% for two of the polymorphisms, therefore the genotyping results for these (rs602652 and rs3217869) were acceptable under quality control (QC). The genomic DNA was

252

homozygous for the rare allele of rs602652; however, the corresponding REPLI-g amplified DNA was homozygous for the common allele of the SNP. This discordance, is known as a "miscall" and cannot be explained by unequal amplification of the alleles.

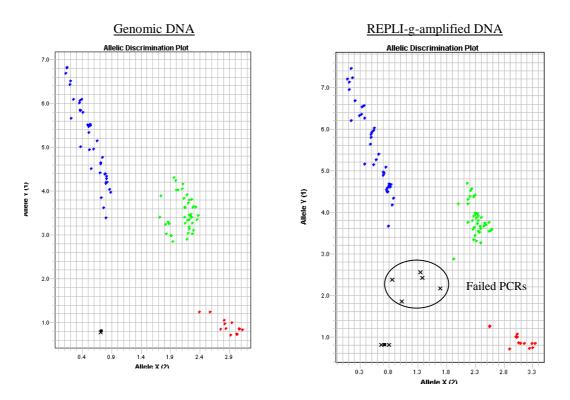


Figure 5.5: Clustering of genomic and corresponding REPLI-g-amplified samples with rs602652

Miscall discordances consist of the genotype of the genomic DNA being homozygous for an allele of a SNP, and the corresponding WGA DNA being homozygous for the other allele, or heterozygous for the same SNP as demonstrated in Figure 5.6. The other type of discordance is known as "allele-drop", which involves the loss of an allele in the WGA DNA (when the genomic DNA is

Clusters: blue – common homozygous; green – heterozygous; red – rare homozygous; black x – failed reactions; black square – non-template control.

heterozygous), suggesting unequal amplification of an allele at a heterozygous locus (see Figure 5.6). This type of discordance was found with rs10487888.

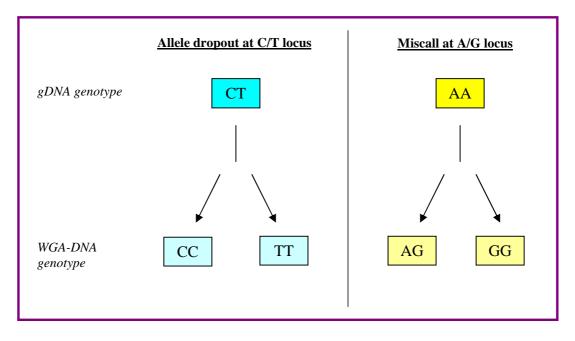


Figure 5.6: Types of discordances

The clustering of REPLI-g amplified DNA suggested that there was unequal amplification of the alleles. Ninety-five other samples were amplified with REPLI-g, and sequenced in order to investigate unequal amplification of the alleles further. *BRCA1* sequencing data was already available for the matching genomic DNA of these samples. Therefore, the sequences of the genomic and REPLI-g amplified DNAs for *BRCA1* regions 316705 in exon 11, and 316700 in exon 13 of the Variant SeqR kit, which contained SNPs rs16941 and rs1060915, respectively.

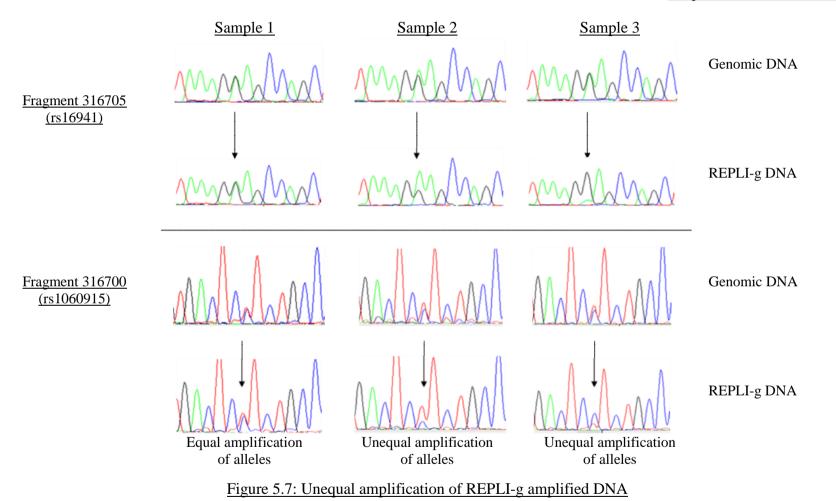


Figure 5.7 shows electropherograms of gDNA and corresponding sequences for REPLI-g amplified DNA with equal and unequal amplification of alleles. The green, blue, black and red peaks of the electropherograms correspond to bases A, C, G and T, respectively. Overlapping peaks are heterozygous genotypes. The SNPs are in LD ($r^2=1$) and have a minor allele frequency of 0.35. There was 97% concordance between the genotypes of genomic and REPLI-g DNA for the SNPs. There were 44 heterozygous individuals for these SNPs and 3 of them (6.8%) showed unequal amplification of the linked alleles of the polymorphisms.

5.5: The performance of genomic and amplified DNA on SNP multiplex genotyping platforms

The next aim of the study was to investigate the performance of the whole genome amplified products on SNP multiplex genotyping platforms. In order to execute this aim, the WGA DNA and their matching genomic DNA were genotyped on iPLEX, SNPlex and OpenArray. The resultant call rates and concordances were evaluated. Assays which failed were excluded from all, but the SNP pass rate calculation.

5.5.1:Call rates

The 95 non-amplified genomic DNA samples and their corresponding GenomePlex, GenomiPhi, PEP and REPLI-g-amplified DNA were genotyped on the iPLEX genotyping platform with a 27-plex panel. The performances of the genomic and WGA DNA on the platform were assessed by calculating the SNP pass rate (the number of SNPs from the panel which produced callable genotype clusters), and the per SNP assay call rates (the number of samples successfully assigned a genotype). From the 27-plex panel, three assays (rs6944385, rs10842514 and rs10252135) with insufficient amounts of extend primers, consistently failed for all the WGA products and the genomic DNA. The auto-calls from the iPLEX TyperAnalyzer software were evaluated. The call rates per assay/SNP are shown in Appendix IX-B. Refer to Table 5.4 for the summary of the call rates from iPLEX genotyping.

Overall, the GenomePlex, GenomiPhi and RepliG genotypes had call rates >95% for more assays (23 tSNPs each) than the genomic DNA (17 tSNPs). PEP-amplified DNA had the poorest call rates with only 10 assays with call rates greater than 90% and an average of call rate of 89%, see Table 5.4. The average call rates for the genomic and GenomePlex, GenomiPhi and RepliG-amplified samples were >95%.

Call rate (%)	Genomic	GenomePlex [§]	GenomiPhi	PEP	REPLI-g
<80	1	0	0	9	0
80-89	1	1	1	5	1
90-94	5	0	0	2	0
≥95	17	23	23	8	23
Mean	97%	99%	99%	81%*	99%

Table 5.4: iPLEX call rates by DNA amplification method

The 3 assays which failed for all amplification methods and gDNA were not included in the analysis;. § n=90, there were 95 samples for all other methods.

5.5.2:Concordance rates from iPLEX genotyping

The fidelity of the amplification methods were assessed with the iPLEX platform by

comparing the genotypes of genomic DNA with the matching WGA DNA.

GenomiPhi results had the lowest level of discordance. There were only 2

discordances in the 1,872 genotypes called in both the GenomiPhi-amplified DNA

and their corresponding genomic DNA. This averaged to a concordance rate of

99.9%. The greatest level of discordance was found between PEP-amplified DNA and their corresponding genomic DNA (1.62%).

	GenomePlex	GenomiPhi	PEP	REPLI-g
Total genotypes	1872	1998	1423	1972
Total discordant	5	2	23	20
No. discord SNPs	4	2	7	13
Discordance (%)	0.3	0.1	1.6	1

Table 5.5: Overall discordance per WGA method on iPLEX platform

As shown in Table 5.5, when the overall discordance per WGA method is considered, none of the methods resulted in discordance greater than or equal to 2%. Therefore all the WGA methods would have passed the OCAC quality control criteria for the concordance between duplicates.

When the discordances per assay were considered, only the genotypes of GenomiPhi DNA were acceptable in terms of discordance rates (<2%) for the 24 SNPs. The discordance rates of the SNPs genotyped on iPLEX are shown in Appendix IX-C. Of the 19 SNPs successfully genotyped with PEP-amplified DNA, 4 assays were discordant for > 2% of the samples. The highest discordance rate was 19% for rs3771886 for the PEP DNA, however the call rate was very poor (32%). The second highest level of discordance (13%) for the PEP samples was for the for the rs10487888 SNP, which had a call rate of 85% (see Appendix IX-C). Discordances were not restricted to SNPs with poor call rates, refer to Appendices IX-B and IX-C. The call rates of the genomic and PEP DNAs for rs1801200 was 98%, however, 2% of the genotypes were discordant. Furthermore, 8 of the 13 SNPs with discordances were REPLI-g DNA with call rates >95%. The greatest number of SNPs with discordances was found with the REPLI-g-amplified DNA (13 out of 22 SNPs [~60%]). Of these, 7 SNPs were discordant for \geq 2% of genotypes (see Appendix IX-C). Moreover, only one assay (rs17623382) had a call rate <90% (REPLI-g vs genomic DNA). Discordances were found between genomic DNA GenomePlex for four of the SNPs. However, only one (rs11551174) was discordant for >2% of the genotypes (see Appendix IX-C). Of the 4 assays genotyped with GenomePlex-amplified DNA, there was one, with call rate >90%, with >2% discordance. GenomiPhi-amplified DNA were the only one which did not have discordances >2% for any of the assays; see Appendix IX-C.

All of the discordances found with GenomePlex DNA were allele dropouts except one of the rs11551174 discordances, where the genomic DNA was homozygous for the "G" allele and the amplified sample was heterozygous for the SNP. The PEP DNA failed for this assay. The other WGA DNA genotypes (GenomiPhi and REPLI-g) were also heterozygous for the SNP, which suggests that the genomic DNA was incorrect. The genomic DNA was discordant for all WGA DNA for another SNP, rs17623382, which also indicates that the genomic DNA was incorrect. When the genotypes of these two SNPs for the particular sample are excluded, there are no longer discordances with GenomiPhi DNA on the iPLEX platform. The vast majority of the discordances with PEP and REPLI-g DNA were allele dropouts, suggesting unequal amplification of the alleles (refer to Table5.6).

259

SNP	Genor	nePlex	Geno	miPhi	P	EP	RE	PLI-g
SNP	Dropout	Miscall	Dropout	Miscall	Dropout	Miscall	Dropout	Miscall
rs10487888	0	0	0	0	9	2	1	1
rs11047917	0	0	0	0	1	0	2	0
rs11551174	1	1*	0	1*	0	0	1	1*
rs12305513	0	0	0	0	1	0	1	0
rs12822857	0	0	0	0	Fai	iled	1	0
rs17623382	1*	0	1*	0	Fai	iled	1*	1
rs1801200	1	0	0	0	0	2	1	0
rs2161841	0	0	0	0	1	0	0	0
rs2699905	1	0	0	0	1	0	1	1
rs2952155	0	0	0	0	0	0	1	0
rs3771882	0	0	0	0	0	0	1	0
rs3771886	0	0	0	0	6	0	1	0
rs3854012	0	0	0	0	0	0	1	0
rs4623993	0	0	0	0	0	0	1	0
Total	4 (3)	1 (0)	1 (0)	1 (0)	19	4	14 (13)	4 (3)

Table 5.6: Types of discordances found with iPLEX (by WGA method)

Dropout – Genotype of genomic DNA is heterozygous. Miscall – genotype of genomic DNA is homozygote for an allele. * Genomic DNA appeared to be incorrect; Total discordance in parenthesis are the totals when the incorrect genomic results are excluded.

5.5.3: Assays with discordances in more than one amplification method

At least one DNA sample amplified with GenomePlex and REPLI-g was also discordant for the assays with discordances in the GenomiPhi-amplified DNA. There was also at least one discordant REPLI-g-amplified DNA sample with each assay that had a discordant genotype for the GenomePlex-amplified DNA.

The discordances found with GenomePLEX-amplified samples on the iPLEX genotyping platform occurred in different samples – each sample was only discordant for 1 SNP. rs11551174 was the only SNP with discordance in more than 1 sample. No sample was discordant in more than 1 WGA method. However, three and four samples amplified with PEP and REPLI-g, respectively, were discordant for 2 or more assays. This suggests that there may have been either a problem with the amplification of these samples with the WGA method, or with the genotyping of the individual samples.

5.5.4: The performance of gDNA and WGA-DNA on SNPlex

The automatically assigned genotypes of the genomic and WGA-DNA from the SNPlex platform were analysed with the GeneMapper software. No assays were successfully genotyped with the PEP-amplified DNA on the platform. However, it is worth noting that the GeneMapper software automatically fails samples which fail for >80 of the SNPs, and also if the per assay call rate is below 80%. Therefore, it was not possible to find the exact call rates of the assays which failed the internal quality control criteria. The REPLI-g DNA had the highest SNP pass rate (73%) and aside from PEP DNA samples, GenomiPhi had the lowest SNP pass rate; see Table 5.7. Twenty-nine SNPs were successfully genotyped with genomic DNA, and there

was an average genotype call rate of 97% for these SNPs. In comparison, the GenomiPhi DNA, which performed badly on SNPlex, had the lowest average call rate of 85%. The SNP pass and call rates are summarised in Table 5.7; the individual SNP call rates for the genomic and WGA DNA from the SNPlex genotyping are tabulated in Appendix IX-D.

All but 1 of the SNPs which passed the GeneMapper internal QC had SNP genotype call rates >95% for the genomic DNA. GenomePlex was the only amplification method with SNPs with call rates >95 on SNPlex. However, this comprised only 2 out of the 13 SNPs which passed genotyping on SNPlex (see Table 5.7).

	Genomic	Genomeplex	GenomiPhi	PEP	REPLI-g						
SNP pass rates											
DNA conc (ng/iL) 50 100 100 100 100											
No. SNPs passed	29	13	9	0	35						
% SNPs passed	60.4	27.1	18.8	0.0	72.9						
No. of calls	2647	1147	722	0	3010						
		Call rates	*								
<80%	19	39	35	48	13						
80-89%	0	0	9	0	3						
90-94%	1	11	0	0	32						
>95%	28	2	0	0	0						
Mean	97%	94%	85%	Fail	91%						

Table 5.7: SNPlex assay pass rates (by WGA method)

gDNA – genomic DNA; conc – concentration; the call rates for all assays genotyped with PEP amplified DNA were less than 80%; * based on SNPs with >80% call rate (pass).

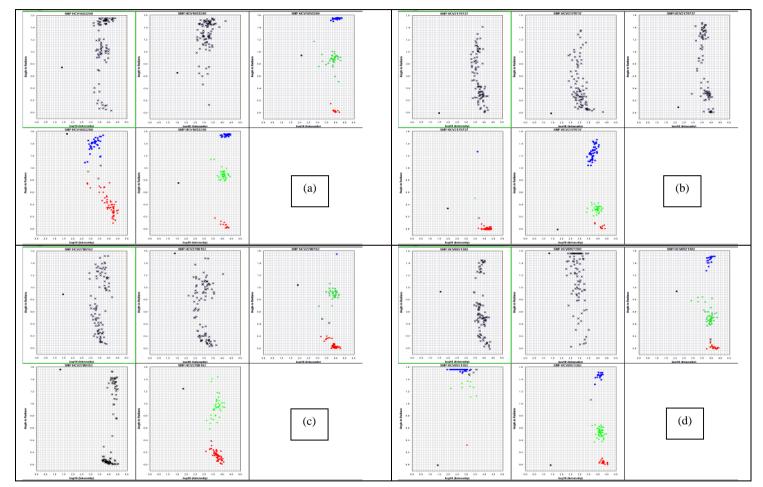
5.5.5:Concordance between gDNA and WGA-DNA on SNPlex

When the concordance between genomic DNA and the WGA-DNA genotyped on

SNPlex was evaluated, there was evidence of discordances between the genomic

DNA and the corresponding amplified DNA for all the WGA methods. Overall,

DNA amplified with GenomePlex appeared to have the greatest proportion of discordant genotypes, when the autocall genotypes from the SNPlex platform were analysed. There were 217 discordance samples from those with genotypes for both genomic DNA and the amplified DNA out of 699 genotypes. This accounted for 31% of the genotypes. This contrasted sharply with the discordances found with the GenomiPhi and REPLI-g-amplified DNA 0.7% and 3.6%, respectively.


Upon inspection of the genotype clusters of the assays for the genomic DNA and WGA-DNA, it became apparent that some assays which were deemed as good quality, were indeed failed assays. rs751340, rs2286216, rs927221 and rs1713423 failed to produce callable clusters for GenomePlex-amplified DNA. The clusters of rs751340, rs2286216 and rs1713423 for all the samples are shown in Figure 5.8. However, the GeneMapper software assigned genotypes to the samples, resulting in approximately a third of GenomePlex-amplified DNA samples (61%) being discordant for these variants alone (see Appendix IX-E). Figure 5.8 shows some of these clusters with poor quality and miscalled clustering.

When the failed assays were excluded, the overall concordance rates were 98%, 99% and 96% for GenomePlex, GenomiPhi and REPLI-g, respectively. See Appendix IX-E for the discordance rates for each SNP. Of the assays which passed for both gDNA and WGA-DNA, >98% concordance was observed for 2 assays out of 8 genotyped in both genomic and GenomePlex, 8 of 9 assays with GenomiPhi, and 3 of the 25 assays with REPLI-g-amplified DNA (see Appendix IX-E).

All five discordances of the GenomiPhi amplified DNA were allele dropouts (heterozygous for genomic DNA, homozygous for the WGA-DNA). Of the 7 discordances found between the GenomePlex-amplified DNA and genomic DNA, only 2 were allele dropouts (see Appendix IX-E), and the 4 of the remaining discordances were miscalls of the same SNP (rs1419755). Refer to Appendix IX-F for the types of discordances for the successfully genotyped SNPs. Only 25 (33%) of the REPLI-g discordances were allele dropouts (see Appendix IX-F), the remaining discordances were miscalls. However, some of these may be attributable to inadequate genotype calling of the GeneMapper software.

A sample amplified with GenomePlex was discordant for 2 assays on the SNPlex platform. Although, there were 76 discordances with REPLI-g DNA on SNPlex, these occurred with 10 samples. The discordances did not correlate with amplification yield. Of the 10 REPLI-g-amplified samples with discordances, only 2 samples were discordance for a single assay. The other 8 REPLI-g-amplified samples were discordant for at least 3 assays each. Thus, these 8 samples were discordant in 74 instances. There were 4 instances when the same discordances were found with GenomiPhi and REPLI-g DNA and on each occasion, the discordance was an allele dropout. There is a possibility that the same alleles were preferentially amplified with both GenomiPhi and REPLI-g methods at the 4 loci, however, due to the poor quality genotypes from the SNPlex platform, it is more likely that either the genomic or WGA genotypes were incorrect.

264

Chapter 5: WGA & SNP multiplexing

Figure 5.8: Discrepant auto-calling of SNPlex platform (a-d) Clusters top left to right: GenomiPhi, PEP, and REPLI-g; bottom L to R: GenomePlex and genomic DNA. (a) rs751340 (b) rs2286216 (c) rs1861606 (d) rs1713423 Clusters: blue – homozygous for allele 1; green – heterozygous; red – homozygous for allele 2; black square – non-template test control; black "x" – failed genotyping.

5.5.6: The performance of gDNA and WGA-DNA on OpenArray

The samples amplified with GenomePlex, GenomiPhi, PEP and REPLI-g, and their corresponding genomic DNA were genotyped with a 32-assay panel on the Open array multiplex genotyping platform. The samples were initially prepared manually. The genotyping was performed with Applied Biosystems' staff. The technical representative for the platform recommended manually calling the genotypes on the TaqMan OpenArray[™] SNP Genotyping Analysis Software.

As on SNPlex, the PEP-amplified DNA failed to produce callable clusters on the OpenArray platform. Refer to Appendix IX-G for the call rates for each assay for the genomic, and GenomePlex, GenomiPhi and REPLI-g. There were callable clusters for all the assays with the genomic DNA, however, 10, 4 and 3 SNPs failed for GenomePlex, GenomiPhi and REPLI-g amplified DNA, respectively. As shown in Table 5.8, all but one of the SNPs had call rates >90% for the genomic DNA, with an average call rate of 97%. However, none of the SNPs genotyped with amplified DNA resulted in average call rates >90% (see Table 5.8).

Call rate (%)	Genomic	GenomePlex	GenomiPhi	REPLI-g
<80	0	10	5	10
80-89	1	14	13	22
90-94	2	7	14	0
≥ 95	29	1	0	0
Average	97%	88%	89%	82%

Table 5.8: OpenArray call rates*

N=93 *based on manually called SNPs)

When the overall concordance rates between genomic DNA, and their corresponding whole genome amplified DNA were assessed, again, samples amplified with REPLI-

Chapter 5: WGA & SNP multiplexing

g had the lowest concordance (92.7%). The overall concordance for GenomePlex and GenomiPhi was 97.1% for 1,693 and 2,270 genotypes, respectively. Therefore, none of the overall concordance rates for the amplification methods met the OCAC criteria of \geq 98%; (see Appendix IX-H for the discordance rate for each assay).

Only 5 SNPs out of the 21 successfully genotyped OpenArray SNPs had concordance rates >98 for the GeomePlex amplified DNA. Again, DNA amplified with GenomiPhi were concordance for >98% of genotypes, for the highest proportion of SNPs (12/29 variants). As with iPLEX and SNPlex, REPLI-g amplified DNA resulted in the highest proportion of SNPs with discordance rates >2%. Of the 29 polymorphisms successfully genotyped with REPLI-g DNA, only 2 assays had acceptable concordance rates (see Appendix IX-H).

As observed with iPLEX and SNPlex, there were both allele dropouts and miscall discordances between the genomic DNA and the matching amplified DNA on the OpenArray platform; refer to Appendix IX-I for the number of each type of discordance per SNP. However, for all of the WGA methods, the majority of discordances were miscalls, which suggests there was a serious problem with using DNA amplified with PEP, GenomePlex, GenomiPhi or REPLI-g WGA on this platform. The total numbers of allele dropouts and miscalls for the WGA products which were successfully genotyped on OpenArray are shown below:

Genon	GenomePlex		miPhi	REPLI-g		
Dropout	Miscall	Dropout Miscall		Dropout	Miscall	
12	38	15	51	72	85	

There were several occasions (18) when the genomic DNA was homozygous for an allele, and the corresponding genotypes of the WGA DNA samples heterozygous for

all WGA methods. This occurred with 15 different assays, and 9 different samples, and suggests that some, if not all, of the genomic genotypes may be incorrect.

5.5.7: Reproducibility of the OpenArray genotyping data

Twelve duplicates of the WGA DNA and their corresponding genomic DNA were genotyped on OpenArray and compared with each other in order to ascertain reproducibility of genotyping data from the OpenArray platform. No discordances were found between the GenomePlex-amplified duplicates; but this method had the lowest SNP pass rate (59%). The concordance rates between the duplicates (by WGA method) are tabulated in Appendix IX-J. When all genotypes were considered, acceptable levels of discordance (<2%) were found with the genomic, GenomePlex and GenomiPhi DNA; see Table 5.9.

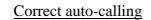
	Genomic	GenomePlex	GenomiPhi	REPLI-g
No. SNPs	29	19	27	26
No. genotypes	316	206	299	253
Average call rate	90.8%	90.4%	95.8%	81.1%
Discordance	5 (1.6%)	0 (0%)	2 (0.7%)	20 (7.9%)

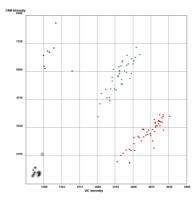
Table 5.9: Reproducibility of genotypes from OpenArray platform

The discordances in the duplicated genomic DNA were with 5 different SNPs. Due to the small numbers of duplicates assessed, each discordant pair will reduce the concordance rate by at least 8%. Again, REPLI-g had the greatest amount of discordances with 20 discordances out of 253 genotypes (8%, see Table 5.9). These REPLI-g discordances occurred in 14 SNPs, therefore the duplicates were concordant for only 12 SNPs.

5.5.8: Comparison of rs10487888 genotypes from iPLEX and OpenArray

One of the assays genotyped on OpenArray, rs10487888, was also genotyped with iPLEX Gold with genomic DNA. Comparisons of the genotyping results of the gDNA and WGA samples were made.


There was 100% concordance between genomic DNA genotyped on iPLEX Gold and GenomePlex and GenomiPhi DNA genotyped on OpenArray. However, 2 discordances were found between the genomic DNA which was genotyped on both platforms and 4 with REPLI-g (Table 5.10). All but 1 of the discordances found were allele dropouts in the OpenArray genotypes.


Table 5.10: Comparison of iPLEX Gold with OpenArray genotypes for rs10487888

	Genomic	GenomePlex	GenomiPhi	REPLI-g
No. samples called	89	83	90	89
Call rate	95.7%	90.2%	97.8%	96.7%
No. discordant	2	0	0	4
Concordance	97.8%	100	100	95.5%

Applied Biosystems recommended manually calling the genotypes, however this is time consuming, particularly as the number of SNPs and samples increases. Although auto-calling is able to correctly assign genotypes, based on clustering in some instances, there were also gross miscallings in others (see Figure 5.9).

Of the auto-called genomic DNA assays, 10 (31%) of the SNPs with callable clusters were incorrectly called. Two assays with poor clustering were auto-called when they should not have been. The systematic miscalling also occurred with WGA samples.

Incorrect auto-calling (below)

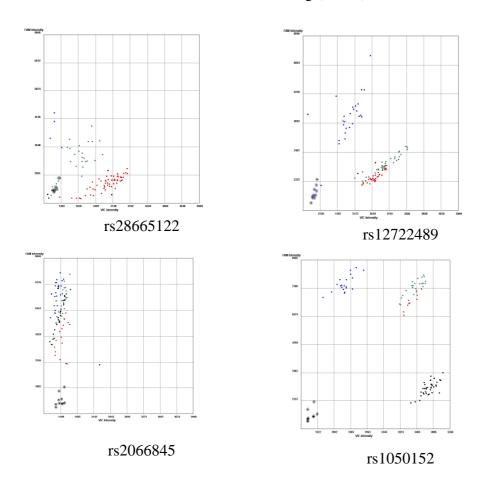


Figure 5.9: Examples of auto-calling with OpenArray Genotype Analysis software

Dots: Red – homozygous for VIC allele; green – heterozygous; blue – homozygous for FAM allele; black – uncalled; black dot with circle – non-template test control.

A meeting was conducted with Applied Biosytems staff to discuss the results from the OpenArray platform. During the meeting it became apparent that, as with the test runs on SNPlex, the OpenArray platform was still in its developmental stages. Although the company claims to have genotyped a great number of SNPs (>100) on the platform, only 20 samples were used in each experiment. The use of such small numbers of samples makes it difficult to gauge the quality of clusters, and also to assess reproducibility. Applied Biosystems suggested genotyping some of the SNPs with the same genomic samples on the TaqMan platform.

During the meeting it also became clear that the technical staff did not have faith in the SNPlex platform. The poor performance of the samples on the SNPlex and OpenArray platforms with SNPs which had been validated and optimised by Applied Biosystems, and the lack of explanation for the inadequate auto-calling, as well as low genotyping pass rates, makes OpenArray (and SNPlex) unsuitable for highthroughput genotyping with the research samples used.

5.6: Direct comparison of the multiplexing methods

As shown in Table 5.11, iPLEX genotypes produced the best average call rates and the fewest discordances of the SNP multiplex genotyping platforms. Aside from the genotypes from iPLEX, the REPLI-g amplified DNA always produced the most discordances, possibly due to over-amplification of the DNA, see Table 5.12. The OpenArray genotyping system was the worst performing platform in terms of genotyping call rate and discordances. On OpenArray, only GenomePlex DNA had an average call rate >90. None of the WGA methods had average concordances >98%. Moreover, most of the miscall discordances were identified on OpenArray, and SNPlex platforms (see Table 5.12). When the criteria of 90% call rate and <2% discordance are taken into consideration, only 1 SNP, each for the GenomePlexamplified DNA would fulfil both call rate and discordance on the SNPlex and OpenArray platforms, despite the relatively high numbers of SNPs genotyped (see Table 5.13). However, the criteria were fulfilled for 20 and 21 SNPs for GenomePlex and GenomiPhi-amplified DNA, respectively.

	gDNA (n=95)	GenomePlex (n=90)		GenomiPhi (n=95)		PEP (n=95)		REPLI-g (n=95)	
	Call rate	Call rate	Dis	Call rate	Dis	Call rate	Dis	Call rate	Dis
Taqman (n=5)	97	97	0	94	0	97	0	82	1
iPLEX (n=22)	97	99	0	99	0	81	2	99	1
SNPlex (n=29)	96	94	2	84	1	Fail	Fail	90	4
Open Array (n=32)	95	91	3	87	3	Fail	Fail	80	7

Table 5.11: Average call rate and discordances for each method

Dis – discordance; call rates and discordances (%); Bold pass call \leq 90% and discordance \geq 2%.

Table 5.12: Types of discordances identified with each WGA method and plat	form
--	------

		GenomePlex (n=90)		GenomiPhi (n=95)		PEP (n=95)		REPLI-g (n=95)	
	No. SNPs passed	Drop out	Miss- call	Drop out	Miss- call	Drop out	Miss- call	Drop out	Miss- call
TaqMan	5	0	0	0	0	0	0	1	3
iPLEX	24	4	1	1	1	19	4	14	4
SNPlex	29	2	5	5	0	Fail	Fail	25	51
Open Array	32	12	38	15	51	Fail	Fail	72	85

Number of assays passed for genomic DNA samples

	gDNA (n=95)*	GenomePlex (n=90)	GenomiPhi (n=95)	PEP (n=95)	REPLI-g (n=95)
Taqman (n=5)	5	5	5	5	0
iplex (n=22)	21	20	21	9	14
SNPlex (n=29)	29	1	0	Fail	0
Open Array (n=32)	22	1	0	Fail	0

Table 5.13: Number of SNPs with call rates \geq 90% and discordances <2% for each method

* call rates only

5.7: Genotyping on iPLEX gold system

The iPLEX Gold platform, which is an upgraded version of iPLEX, is highly automated and accurately advertises high through-put genotyping. The only major difference between iPLEX and iPLEX Gold is the number of SNPs which can be genotyped in a single reaction, up to 29 and up to 40, respectively. This upgrade was achieved by increasing the mass range in which alleles/SNPs can be detected by the mass spectrometer. The work flow is the same as that of iPLEX - straightforward and simple to follow.

The automated genotype calling of iPLEX and iPLEX Gold was correct for the majority of genotypes, however an error was found with SNP rs3783197 (see Figure 5.10). The TyperAnalyzer software had obviously called the genotypes based on the peaks of the mass spectra, however, the plot clearly shows that there is an increase in the high mass molecules, resulting in a shift of the blue cluster (common homozygous). A similar shift was observed for rs6788750, however the shift was not as pronounced as it was for rs3783197.

Chapter 5: WGA & SNP multiplexing

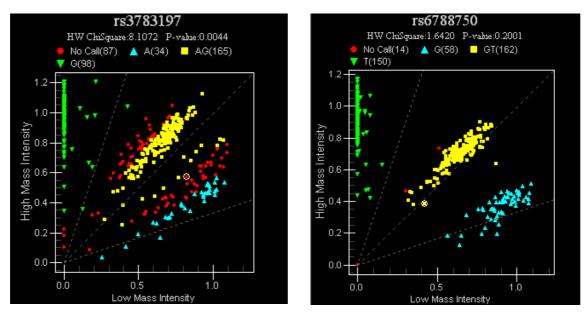


Figure 5.10: Shift in clusters on iPLEX clusters

The concordance between genomic and WGA amplified DNA on the iPLEX platform, was overall, acceptable for all WGA methods. Comparison of genotypes of the 95 samples from iPLEX and TaqMan were also concordant for rs17623382 and rs3771886. Acceptable concordance and call rates were found for MALOVA and SEARCH DNA with the iPLEX method with the variants from the candidate oncogenes.

However, there were instances where the NTCs failed QC. These genotypes may have been caused by primer dimers in the reactions, or as a result of poor desalting during the cleaning step. This is of great concern because it suggests that a genotype could be attained for a low concentration DNA sample, which would, otherwise, have failed. There was no correlation between failed NTCs and the assigned genotypes. The failed NTCs occurred with some, not all SNPs, which suggests the locus of the SNP may also affect whether an NTC fails. There were also instances on both iPLEX and iPLEX Gold, when common SNPs, with minor allele frequencies >0.05, appeared to be monomorphic. On iPLEX Gold, the rs2271695, which has a MAF=5.8% in Caucasian population, only had one cluster. The rs17695623 polymorphism, MAF=0.125, also appeared to be monomorphic, according to the platform. A TaqMan assay of this SNP produced 3 clusters. A possible explanation for this may be that there was insufficient differences between the masses of the extend primers for the alleles of the polymorphism. Poor de-salting may also explain the lack of mass separation.

Despite the common SNPs, which are classed as monomorphic on the iPLEX platform, and the failed NTCs, acceptable call rates and concordances were found with the vast majority of SNPs. The quality of the genotyping with iPLEX Gold was not as good as iPLEX. The intensity of the allele peaks were not as high as those from the iPLEX reactions, and there were worrying levels of discordances and poor call rates were found with tSNPs from the MMCT-18 candidate genes with iPLEX Gold. However, these may have been due to a sub-optimal run.

In spite of acceptable call rates, discordance rates greater than 2% were observed between duplicate genomic DNA samples on the iPLEX Gold platform for two tSNPs, rs523104 and rs7650365. TaqMan assays of these SNPs were manufactured, and used to genotype MALOVA, SERACH and UKOPS population series. When the genotypes from iPLEX Gold and TaqMan were compared, discordance rates of 6.1% (241/3,924 calls) for rs523104, and 5.8% (256/4,417 calls) for rs7650365 were found. The genotypes from TaqMan were reproducible, however, do to high costs, the iPLEX experiments could not be repeated. It is likely that the high proportion of "aggressive calling" caused by poor cluster quality may have been responsible for some of the discordances identified with the iPLEX Gold genotypes for the two SNPs.

Genotyping data for some of the SNPs genotyped on iPLEX Gold was also available from the Illumina Infinium 610K array. The Infinium 610K array platform was used to genotype the SNPs analysed for the ovarian cancer genome-wide association studies (Song *et al.* 2009a) Comparisons were made between genotyping from iPLEX Gold, TaqMan and Infinium SNPs for the MMCT-18 candidate SNPs, where possible.

Genotype data was available for rs523104 and rs7650365 was available from the Infinium platform, as well iPLEX Gold and TaqMan. The genotypes were compared. Of the samples genotyped on all three platforms, the discordance rates are summarised below:

Comparison	Discordances		
Comparison	rs523104	rs7650365	
Infinium vs iPLEX Gold	58/1092 (5.3%)	88/1231 (7.1%)	
Infinium vs TaqMan	24/1275 (1.9%)	15/1262 (1.9%)	
iPLEX Gold vs TaqMan	64/1063 (6%)	75/1169 (6%)	

There were discordances between the genotypes from iPLEX, Infinium and TaqMan. However, the lowest discordance rates were between genotypes from Infinium and TaqMan for both rs523104 and rs7650365. Despite these discordances between Infinium and TaqMan, the rates were just under 2% for both SNPs. Although the call rate for UKOPS samples with rs7650365 on iPLEX Gold was 94%, and there were no discordances between the 47 successfully genotyped pairs of duplicate genomic DNA, discordance rates of >2% were found when the genotypes of Infinium and iPLEX Gold, and Infinium and Taqman were compared, see Table 5.15.

The distributions of the genotypes are shown in Table 5.14 and Table 5.15, for rs523104 and rs7650365, respectively. The discordances of rs523104 are predominantly in UKOPS samples, and rs7650365 in SEARCH samples. Interestingly, 22 (55%) of the discordances between genotypes from iPLEX Gold and Infinium were common homozygotes according to the Infinium genotypes of SEARCH samples, and heterozygous by iPLEX Gold. A similar distribution was found between the rs523104 genotypes by iPLEX Gold and TaqMan, with 59% of the discordances being heterozygous for the later platform and common homozygous for the Taqman platform; Table 5.14.

Disproportional distributions of the discordances were also found between genotypes of rs7650365 from different genotyping platforms. 97% of the discordances consisted of rare homozygotes from iPLEX and heterozygotes from the Infinium or Taqman platforms.

Additional discordances were found when data from iPLEX Gold and Infinium, for other variants were compared. The discordances ranged from 0 to 2.4%, when SEARCH and UKOPS genotypes were combined, see Table 5.16. Appendix IX-K shows the discordance rates for SEARCH and UKOPS, separately for the SNPs listed in Table 5.16. It can be seen in Appendix IX-K that most of the discordances were with UKOPS DNA samples. Furthermore, discordances (3% of 1334 genotypes) were also found between TaqMan and Infinium genotypes for rs2894111.

Table 5.14: Distribution of discordances of rs523104 (Infinium vs iPLEX Gold vs

<u>Taqman)</u>

С	all	SEARCH	UKOPS
Infinium	iPLEX	No. Discord (%)*	No. Discord (%)*
<u>GG</u>	CG	22 (55%)	11 (27.5%)
GG	CC	1 (2.5%)	2 (5%)
CG	GG	1 (2.5%)	8 (20%)
<u>CG</u>	<u>CC</u>	15 (37.5%)	10 (25%)
CC	GG	0 (0%)	2 (5%)
CC	CG	1 (2.5%)	7 (17.5%)
Τα	otal	40/638 (6.3%)	40/454 (8.8%)
Infinium	TaqMan		
GG	CG	1 (16.7%)	4 (22.2%)
GG	CC	0 (0%)	3 (16.7%)
CG	GG	1 (16.7%)	3 (16.7%)
CG	CC	3 (50%)	4 (22.2%)
CC	GG	0 (0%)	3 (16.7%)
CC	CG	1 (16.7%)	1 (5.6%)
To	otal	6/813 (0.74%)	18/462 (3.9%)
iPLEX	TaqMan		
GG	CG	1 (2.9%)	5 (16.7%)
GG	CC	0 (0%)	1 (3.3%)
CG	GG	20 (58.8%)	7 (23.3%)
CG	CC	0 (0%)	9 (30%)
CC	GG	1 (2.9%)	1 (3.3%)
СС	CG	12 (35.3%)	7 (23.3%)
To	otal	34/620 (5.5%)	30/443 (9.3%)

Discord: * % of discordances; iPLEX- iPLEX Gold

С	all	SEARCH	UKOPS
Infinium	iPLEX	No. Discord (%)*	No. Discord (%)*
AA	AG	2 (2.8%)	2 (11.8%)
AA	GG	0 (0%)	3 (17.7%)
AG	<u>AA</u>	0 (0%)	6 (35.3%)
AG	GG	69 (97.2%)	3 (22.2%)
GG	AA	0 (0%)	2 (17.7%)
GG	AG	0 (0%)	1 (5.9%)
То	otal	71/765 (9.23%)	17/466 (3.6%)
Infinium	TaqMan		
AA	AG	1 (33.3%)	1 (8.3%)
AA	GG	0 (0%)	3 (25%)
AG	AA	1 (33.3%)	4 (33.3%)
AG	GG	1 (33.3%)	1 (8.3%)
GG	AA	0 (0%)	2 (16.7%)
GG	AG	0 (0%)	1 (8.3%)
Total		3/810 (0.37%)	12/452 (2.7%)
iPLEX	TaqMan		
AA	AG	0 (0%)	2 (33.3%)
AA	GG	0 (0%)	0 (0%)
AG	AA	2 (2.9%)	2 (33.3%)
AG	GG	0 (0%)	0 (0%)
GG	AA	0 (0%)	0 (0%)
GG	AG	67 (97.1%)	2 (33.3%)
	otal	69/742 (9.3%)	6/427 (1.4%)

Table 5.15: Distribution of discordances of rs7650365 (Infinium vs iPLEX C	Gold vs
T	

Discord: *% of discordances; iPLEX- iPLEX Gold

The quality of the iPLEX Gold genotyping was investigated further by comparing the genomic DNA genotypes of *BRCA1* rs799917 from sequencing of 467 samples and the corresponding iPLEX Gold results. Of the 442 samples successfully genotyped with sequencing and iPLEX Gold, there were 3 discordances (0.68%). The fact that some NTCs were automatically assigned genotypes with high confidence on the iPLEX and iPLEX gold platforms was of particular concern because samples which may have otherwise failed genotyping may appear to have been successfully genotyped. The randomness of the genotypes of the failed NTCs also suggests that these artefacts of the platform may be locus or mass dependent.

SNP	Total no. of genotypes	No. of discordances	Discordance %
rs6788750	962	19	2.0
rs7650365	1263	16	1.3
rs2280201	1292	7	0.5
rs2394644	1302	8	0.6
rs3181175	834	4	0.5
rs3783194	1321	10	0.8
rs3923086	1291	23	1.8
rs793477	1285	21	1.6
rs12494994	829	1	0.1
rs9860614	1321	15	1.1
rs10999147	1322	6	0.5
rs3181328	1284	8	0.6
rs2282657	1321	15	1.1
rs7189819	1286	31	2.4
rs4541111	1274	20	1.6
rs4791171	828	1	0.1

Table 5.16: Discordances between iPLEX Gold and Infinium

A possible explanation of the discordances with the iPLEX Gold genotyping platform could be due to inadequate desalting of the extend products (single base extension products). No two alleles for an iPLEX assay are within 15Daltons (Da) of each other. The inadequate desalting of samples can cause the formation of sodium and potassium adducts, which are 22Da and 38Da, respectively. The presence of adducts in the nano-dispensed single extension products may make accurate heterozygote allele discrimination, particularly for A/C (24Da) and C/G (40Da) SNPs, difficult. Adducts usually have smaller peak areas than allele peaks. However, it is likely that some of the peaks of the adducts were assigned genotypes because of low peaks of the sample genotypes. Evaluation of the SEARCH genotyping plates showed that desalting of the single base extensions were suboptimal.

The comparison of TaqMan vs iPLEX Gold vs Infinium genotyping platforms showed that there may be discordances in genotypes from different genotyping platforms of the same samples and assays. These discordances were sometimes observed even when the genotyping data passed quality control criteria. This worrying issue should be taken into consideration when different genotyping platforms are used for a study. The OCAC minimise the problem by ensuring that the same CEPH samples are genotyped for the same SNP(s) at all the genotyping centres and the genotype results are compared with each other and the results from HapMap.

5.8: Summary

Ninety-five DNA samples were amplified with GenomePlex, GenomiPhi, PEP and REPLI-g. The resulting amplified products were genotyped on TaqMan, and SNP multiplex genotyping platforms (iPLEX, OpenArray and SNPlex). The DNA amplification procedures were simple for all of the methods. Of the WGA methods, REPLI-g produced the greatest amount of amplified DNA. The iPLEX was the most automatable and straight-forward SNP multiplex genotyping platform, compared with OpenArray and SNPlex. The iPLEX platform also produced the most concordant results when comparisons were made between the genotypes of the amplified DNA and their corresponding genomic DNA. Although there was ~1,800 fold increase of the amount of DNA with the REPLI-g method, the products also resulted in the highest rates of discordances on iPLEX, SNPlex and OpenArray multiplex SNP genotyping platforms, as well as on TaqMan. It is possible that unequal and over- amplification of the DNA was responsible for some, if not all of these discordances. Despite excellent genotype call rates and concordance on TaqMan, PEP-amplified DNA performed badly on all of the multiplex genotyping platforms tested. GenomePlex and GenomiPhi –amplified DNA gave the best results, in terms of SNP pass rates, genotype call rates and concordance with non-amplified DNA. Disproportionate amounts of miscall discordances were found with OpenArray and SNPlex platforms. These discordances cannot be explained by unequal amplification of the DNA alone, and they suggest problems with the multiplexing platforms. GenomePlex and GenomiPhi genotyped on iPLEX was the best combination of WGA method and SNP multiplex platform identified with the evaluations.

Chapter 6: Discussion and conclusions

Although ovarian cancer is relatively rare, globally, it is the seventh most common cause of cancer death amongst women, with ~125,000 deaths a year worldwide. This is because the disease is usually diagnosed in the advanced stages, when the chances of survival are drastically reduced. Despite the poor survival rate, the aetiology of ovarian cancer is still poorly understood and the known genetic causes are responsible for approximately 10% of all cases. Several moderate predisposition genes, and multiple low risk (low penetrance) genes may account for some of the remaining cases which are not explained by the known susceptibility genes. The work presented in this thesis aimed to investigate this hypothesis.

This thesis reports the results from investigations of candidate genes which may affect ovarian cancer susceptibility with a case-control association study design; and the influence of these candidate genes on survival of ovarian cancer patients with multivariate Cox regression survival analysis. The performance of possible solutions to the issues of limited amounts of DNA from study participants and the increasing numbers of SNPs genotyped for association studies, respectively, were also investigated.

<u>The effect of oncogene common germline SNP variants and haplotypes on</u> <u>ovarian cancer susceptibility</u>

The activation of proto-oncogenes through somatic mutation is a common feature of cancer. These mutations may result in un-regulated proliferation of cells, leading to 283

a neoplastic phenotype (Rhim 1988; Croce 2008). The activation of different oncogenes have been demonstrated to cause the development of different types of cancer. For example, mutations in the *MYC* gene are linked to the development of chondrosarcoma and osteosarcoma (Castresana *et al.* 1992; Ladanyi *et al.* 1993).

Oncogenes, such as *BRAF*, *ERBB2*, *KRAS* and *PIK3CA*, among others are crucial in the development of malignancies, and have been shown to be mutated in ovarian cancer (Shayesteh *et al.* 1999; Hellstrom *et al.* 2001; Gemignani *et al.* 2003; Sieben *et al.* 2004).

The alteration of the oncogenes in ovarian cancer leads to the question of whether germline common polymorphisms or combinations of alleles (haplotypes) of these oncogenes may predispose some women to developing ovarian cancer and/or affect a sufferer's chances of survival. In order to attempt to answer this question, thirty-four tagging SNPs (tSNPs) from *BRAF*, *ERBB2*, *KRAS*, *NMI* and *PIK3CA* were genotyped in five different population-based case-control series. Logistic regression was used to evaluate associations between the tSNPs and haplotypes of the candidate oncogenes and the risk of developing ovarian cancer, or survival from the disease.

When all cases were combined, and ovarian cancer was treated as a single disease, there was evidence of association between a tSNP of *NMI*, rs11683487, and risk of ovarian cancer. The rare allele of the polymorphism, which has a minor allele frequency (MAF) of 0.46, was associated with a reduced risk of the disease. Even though the association between *NMI* rs11683487 and risk of ovarian cancer was not validated with an additional 1,097 cases and 1,712 unaffected controls, the

284

association was marginally significant when the data from stages 1 and 2 of genotyping were combined to increase the statistical power of the study (P-_{dominant}=0.0419). The association remained when analysis was restricted to the serous and mucinous histological subtypes of ovarian cancer. The rs11683487 variant tags 8 other SNPs with $r^2 \ge 0.8$. One of these, rs1048135, is a non-synonymous coding SNP. The rare, G, allele of rs1048135 codes for a leucine instead of serine. The PMut (http://mmb2.pcb.ub.es:8080/PMut/) (Ferrer-Costa et al. 2005) and SIFT (http://sift.jcvi.org/) (Ng and Henikoff 2001) programmes classified the rare variant of this SNP as having "pathological significance", and "damaging", respectively. Another bioinformatics programme, PupaSuite (http://pupasuite.bioinfo.cipf.es/) (Conde et al. 2006; Reumers et al. 2008), also suggested that the rare allele of rs1048135 may disrupt the binding of exonic splicing enhancers. This disruption may result in alternative splicing of the gene. PupaSuite also predicted that the rs11683487 variant and another of the tagged polymorphisms, rs11730, may influence the regulation of transcription and translation, and that rs11730 may affect exon splicing.

The *NMI* gene, which was erroneously chosen as a candidate due to its interaction with *MYC*, may be important in ovarian cancer development. *NMI* interacts with the *NMYC*, *MYC*, *MAX* and *FOS* oncogenes and has been shown to form a complex with *MYC* and *BRCA1* (Li, H. *et al.* 2002). This complex has been demonstrated to inhibit the MYC-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer (Li, H. *et al.* 2002). The formation of this NMI-MYC-BRCA1 complex suggests that *NMI* may be involved in breast and ovarian cancers.

285

Ovarian cancer is a very heterogeneous disease and it has been suggested that the different histological subtypes are in fact different diseases of the ovary and should be treated as such. There is evidence in support of this suggestion: certain genetic alterations are found predominantly in particular histological subtypes of ovarian cancer (Christie and Oehler 2006). Of note is the high proportion of *KRAS* mutations in mucinous ovarian tumours (Cuatrecasas *et al.* 1997; Gemignani *et al.* 2003). There is also a correlation between germline mutations of *BRCA1* and *BRCA2* with the susceptibility of the serous histology of ovarian cancer (Lakhani *et al.* 2004).

The numbers of ovarian cancer cases of the 4 major histological subtypes, particularly that of endometrioid, mucinous and clear cell subtypes were small and there was insufficient statistical power to accurately detect associations. However, due to the compelling evidence for the heterogeneity of ovarian cancer, and the associations of some genes with specific histological subtypes, it was worth evaluating the effect of the candidate oncogenes on the risk of the 4 major histological subtypes of ovarian cancer. The identification of potential associations could be validated by consortia, such as the Ovarian Cancer Association Consortium (OCAC).

Although there was no evidence of association between the polymorphisms of *BRAF* and predisposition to ovarian cancer when all cases were considered, statistically significant associations were detected when the analysis was restricted to the mucinous histological subtype. Three tSNPs of *BRAF* (rs10487888, rs1267622 and

rs1769623) were associated with susceptibility of the mucinous subtype (P-trend < 0.05). These tSNPs were intronic polymorphisms, which tagged other intronic variants. To date, these associated SNPs and the SNPs they tag are not known (or predicted) to be functional. When PupaSuite PupaSNP

(http://pupasuite.bioinfo.cipf.es/) was used to evaluate the predicted functions of these SNPs, the sequences of a *BRAF* variant, rs9640168, which correlated with rs10487888 (r^2 =0.934), suggested that it was located in putative triplex forming sequences. Triple helices are long sequences containing only purines or only pyrimidines in a given strand that have the potential to form additional hydrogen bonds with functional groups of the major groove of a DNA double helix, resulting in a triple helical structure. Triple helices may cause replication blocking, subsequently leading to DNA recombination and mutation (Guntaka *et al.* 2003; Patel *et al.* 2004). Many of the other polymorphisms are conserved in mice.

There was evidence of an association between a haplotype, h10010000, of *BRAF* and reduced risk of clear cell ovarian cancer. Furthermore *BRAF* haplotypes were globally associated with predisposition to ovarian cancer (P=0.005).

Associations were also identified between *KRAS* and predisposition to the mucinous histological subtype of ovarian cancer. rs6487464 and rs10842514 of *KRAS* were associated with susceptibility of the mucinous subtype (P-trend < 0.05). Although the associations were found with a limited number of samples, they are of particular interest because *KRAS* mutations are found in 34% of mucinous ovarian adenomas and carcinomas (COSMIC, http://www.sanger.ac.uk/genetics/CGP/cosmic/), and the mutations have been shown to be early events in ovarian cancer development.

Haplotypes (h000010 and h00000) *KRAS* block 2 were associated with susceptibility of mucinous ovarian cancer. These haplotypes comprised of the SNPs which were associated with risk.

BRAF and KRAS are components of the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway transmits signals for processes such as cell proliferation and cell survival from the cytoplasm to the nucleus (Hingorani *et al.* 2003). The pathway is activated by growth stimulating signals (Pohl *et al.* 2005), and mutations in *BRAF* or *KRAS* lead to the continuous activation of the MAPK. The activation of the MAPK pathway activates downstream cellular targets, including both cellular and nuclear proteins (Pohl *et al.* 2005). It has been demonstrated that the inhibition of the mitogen/extracellular signal-reguated kinase (MEK) pathway, a downstream effector of the MAPK pathway in cell lines with *BRAF* or *KRAS* mutations, results in the suppression of cell growth and promotion of apoptosis (Hingorani *et al.* 2003). It is conceivable then, that a functional germline variant in either of these genes could influence a multitude of downstream targets that may affect the biological and clinical characteristics of ovarian cancers.

The rare allele of a variant of *ERBB2*, rs1801200, with MAF=0.22, was associated with increased risk of endometrioid ovarian cancer. Another group has published an association between the rare allele of rs1801200 and an increased risk of endometrioid ovarian cancer (Pinto *et al.* 2005). This independent validation of the result found with this work is of great importance and it would be of interest to establish if the amalgamation of the data would increase the statistical significance of the association. This polymorphism, also known as I655V, is a non-synonymous

coding, and the rare allele, "G", codes for valine, instead of isoleucine. The amino acid change was predicted to be tolerated with a score of 0.75 by SIFT (http://sift.jcvi.org/www/SIFT_seq_submit2.html). rs1801200 is also conserved in mice and is predicted to enhance exonic splicing. The coding variant is located in the region of the gene which is involved in the dimerisation and activation of the ERBB2 receptor. Fleishman's group demonstrated that the rare allele of the variant destabilises the active dimmer formation (Fleishman *et al.* 2002). The rs1801200 polymorphism has also been associated with the risk of breast cancer (Montgomery *et al.* 2005; Rutter *et al.* 2003). However other studies have not been able to replicate this result (Benusiglio *et al.* 2005).

Two haplotypes of *ERBB2*, h110 and h001, were associated with increased risk of ovarian cancer. The fact that the haplotypes contain the opposite allele at each SNP loci is surprising. There was nothing from HapMap genotyping data to suggest that these putative susceptibility haplotypes shared an untagged common variant, however, it is feasible that an unknown or rare polymorphism tags both haplotypes. There was evidence suggesting that the global test of haplotype effect was also significant for the *ERBB2* gene (P-global=0.034).

ERBB2 is involved in cell proliferation and cell differentiation (Wu, Y. *et al.* 2004), and is over-expressed in approximately 40% of ovarian tumours (Hogdall *et al.* 2003). This suggests that the over-expression of *ERBB2* leads to tumour growth advantage (Hellstrom *et al.* 2001). Although the association identified with the risk of ovarian cancer and this gene was marginal, and corrections for multiple testing would render the association insignificant, it is likely that the amplification of the

gene is more important in predicting disease risk, rather than a SNP, which would not indicate the amplification of the gene. Although no statistically significant associations were found between *ERBB2* and survival from ovarian cancer with this project, over-expression of the oncogene has been correlated with poor survival of MALOVA samples in another study (Hogdall *et al.* 2003). An association has also been previously published between the rare allele of the polymorphism which was associated with increased risk of endometrioid ovarian cancer, rs1801200, and poor survival of cases (Pinto *et al.* 2005). However, this association was not replicated with this study.

A borderline association was also found between the rare allele of *PIK3CA* rs2865084 and decreased risk of endometrioid ovarian cancer. This SNP is upstream of the gene, and is predicted to generate a new transcription factor binding site. A new transcription binding site has the potential of affecting the transcription of the gene.

<u>The effect of "functional" common germline SNP variants and haplotypes on</u> <u>ovarian cancer susceptibility</u>

Although there has been some success in the identification of ovarian cancer predisposition variants through the candidate pathway/candidate gene approach, it is clear that other ways of identifying genes which affect ovarian cancer susceptibility and survival are needed. To this effect, a functional approach (micro-cell mediated chromosome transfer) was used to identify differentially expressed genes, which may be involved in the development of ovarian neoplasm, from an *in vitro* model of ovarian cancer suppression. Nine candidate genes with described functions were

selected from differential expression data of the parental ovarian cancer cell lines and their corresponding hybrid clones (which had incorporated normal human chromosome 18). The associations between 63 tSNPs from nine candidate differentially expressed "functional" genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) and susceptibility of invasive epithelial ovarian cancer were evaluated.

An association was found between the rare allele of a variant of *CASP5*, rs518604, and predisposition to ovarian cancer. This association became stronger when the analysis was restricted to the serous histological subtype. However, the results could not be validated with additional samples because TaqMan assays for this SNP and those it tags, could not be successfully manufactured. Associations were also found between the risk of ovarian cancer and haplotypes of *CASP5*. The associations with the *CASP5* haplotypes were supported by the individual SNP finding. The global test for association of haplotype effect on ovarian cancer predisposition was highly significant for *CASP5* (8.43x10⁻⁶). This was the only association studies ($P<10^{-5}$) (Thomas *et al.* 2005). The involvement of CASP5 in apoptosis and inflammation makes it a plausible ovarian cancer susceptibility gene, despite the small numbers of samples analysed.

The rare allele of *RUVBL1* rs13063604 tSNP correlated with an increased risk of all histological subtypes of ovarian cancer. This association became stronger when analysis was restricted to the serous subtype (P=0.002). The rare allele of another *RUVBL1* SNP, rs7650365, had the opposite effect on serous ovarian cancer

(P=0.009). Up to additional 2,636 cases and 6,164 controls were genotyped with assays of rs13063604 and rs7650365, for a second genotyping stage of the study, to ascertain if the significant finding was reproducible. The associations were not validated with the stage 2 samples alone, however when the data from the two stages were combined, the association between rs13063604 and ovarian cancer remained. This polymorphism tags 9 other variants with $r^2 \ge 0.8$. Two of them, rs1057220 and rs1057156, which are tagged with $r^2=1$, are located in the 3' untranslated region of the gene and they are predicted to be exonic splicing enhancers. Globally, *RUVBL1* haplotypes also had a significant effect on the risk of ovarian cancer (P=0.0016).

RUVBL1 (also known as *pontin*), was down-regulated in the reverted hybrids of both cancer cell lines, and thus up-regulated in the parental neoplastic ovarian cancer cell lines. Although, to date, there are few publications reporting the over-expression of *RUVBL1* in malignancies, data from the Oncomine database (http://www.oncomine.org) shows over-expression of the gene in breast, colon, bladder, liver and other malignancies (Dehan *et al.* 2007; Lauscher *et al.* 2007; Rousseau *et al.* 2007; Huber *et al.* 2008; Haurie *et al.* 2009). If the associations from this research are true, then they could be attributed to its interactions with other genes which are implicated in cancer. *RUVBL1* interacts with the transcriptional activation domain of MYC and also β -catenin (Bauer *et al.* 1998; Wood *et al.* 2000). *RUVBL1* is necessary for Tip60 activity, which is involved in DNA damage repair (Jha *et al.* 2008). Venteicher and colleagues demonstrated that *RUVBL1* interacts with the human telomerase reverse transcriptase (hTERT) and is involved in the assembly and function of the telomerase complex; and the abrogation of *RUVBL1* expression has been shown to induce premature senescence (Venteicher *et al.* 2008).

Furthermore, *RUVBL1* is a component of the NuA4 histone acetyltransferase complex, which may activate the transcription of cell growth, DNA repair and apoptosis genes (Jha *et al.* 2008).

The rare alleles of three *FILIP1L* polymorphisms, rs793446, rs17338680 and rs12494994, were associated with increased risk of the endometrioid histological subtype. However, no functions were identified for these SNPs or those they tag, other than the conservation of many of the SNP sequences in mice.

FILIPL1, which is located on chromosome 3q12.1, was up-regulated in the hybrids of TOV112D, and thus down-regulated in the malignant parental cell line. The FILIP1L gene has also been reported to be down-regulated in ovarian cancer by another group (Mok et al. 1994), which support the results from the gene expression data of the MMCT-18 TOV112D hybrid clones. The FILIP1L gene is also conserved in yeast, and although little is known about the gene, it has been shown to be implicated in a variety of cellular functions (Hwang and Murray 1997). It has been shown that although FILIP1L was present in normal ovarian surface epithelial cells, it was predominantly absent from the cell lines tested (Mok et al. 1994). The gene is part of a subunit, Doc1p/Apc10, which is involved in substrate recognition by anaphase-promoting co-activator complexes (Passmore et al. 2003). Tandle's group showed that *FILIP1L* may be involved in mediating some of the effects of the pro-inflammatory cytokine endothelial monocyte activating polypeptide-II (Tandle et al. 2005). There is also evidence suggesting that the FILIP1L protein is downregulated in human prostate cancer cell lines and it may be involved in the regulation of senescence (Schwarze et al. 2002).

In 2009, the results from the ovarian cancer genome wide association study (GWAS) were published by the Ovarian Cancer Association Consortium. Virtually all of the UKOPS and SEARCH cases used in these projects were also analysed in the GWAS, along the cases from 5 other UK-based ovarian cancer studies, totalling 1,890 cases and 2,353 controls. 14 tSNPs genotyped in the oncogene study were also analysed in the GWAS, however, none of them were associated with ovarian cancer risk at the genome-wide significance level ($P \le 5 \times 10^{-8}$).

Despite the lack of association of the candidate oncogenes at the genome-wide significance level, some similarities were identified between the results of the GWAS and candidate gene studies. Of these, *NMI* rs11683487, which was nominally associated with ovarian cancer risk, had relatively similar odds ratio and P-values in the 2 approaches (candidate gene result: HetOR = 0.80 (0.69-0.93)HomOR= 0.87 (0.71-1.02), P= 0.0379; GWAS per rare allele: OR=0.86, P=0.027). However, this is indicative of no association for this variant when both experiments are taken into consideration.

From the MMCT-18 study, no similarities were identified between the results of the nominally significant associations from this project and those from the first stage GWAS data when all histological subtypes were analysed. However, when the analysis was restricted to the serous histological subtype, similarities were found with *CASP5* rs518604 (candidate gene result: HetOR= 1.36 (0.98-1.88), HomOR= 1.45 (0.99-2.11), P=0.0313; GWAS per rare allele: OR=1.12, P=0.047) and rs523104 (candidate gene result: HetOR= 0.86 (0.65-1.16), HomOR= 0.80 (0.55-

1.15), P= 0.1294; GWAS per rare allele OR=1.12, P=0.044), and *FILIP1L* rs12494994 (candidate gene result: HetOR= 0.95 (0.78-1.17, HomOR = 0.52 (0.27-0.99), P=0.097; GWAS per rare allele OR=0.84, P=0.02). *CASP5* rs518604 is currently being investigated further with additional samples. Although *FILIP1L* rs12494994 was not associated with the serous ovarian cancer susceptibility in the candidate gene approach, the homozygous odds ratio did not cross 1. Incidentally, the rare allele of *FILIP1L* rs12494994 was associated with an increased risk of the endometrioid histological subtype (P=0.0024) with the candidate gene data.

The ovarian cancer GWAS was a 3-staged experimental design which further investigated the most statistically significant associations from the previous stage, using samples from the UK, Australia, USA, Denmark, Poland, Germany and Canada. It is likely that the discrepancies in the associations identified with the candidate gene approach and GWAS could be due to the samples used; SEARCH and UKOPS are the only studies common to both approaches. Although none of the SNPs analysed in this project reached genome-wide significance, only a limited number of the SNPs evaluated with the candidate gene approach were also analysed with the GWAS. However, the results from both the candidate gene and GWAS suggest that there is strong no evidence for association between the tSNPs analysed in this project and the risk of ovarian cancer. The 12 strongest associations from the GWAS, with $P < 10^{-8}$, were all located on chromosome 9p22.2 (Song *et al.* 2009). Eight of these SNPs were in BCN2, a DNA-binding zinc finger protein, and the remaining SNPs were within 45kb upstream of the gene. BCN2 would not have been an obvious candidate for an ovarian cancer association study because there is very little evidence to suggest its involvement in the development of the disease.

However, this finding strongly suggests that the germline common variants of genes which have been demonstrated to be important in the initiation and development of cancer may not be useful in predicting an individual's disease risk.

rs3814113, the strongest associated SNP from the ovarian cancer GWAS, was 44kb from *BCN2*, the nearest gene, with per rare allele OR of 0.79 (0.75-0.84), $P=2.47 \times 10^{-17}$. The identification of strongly associated SNPs in so-called genedeserts have also been observed in the GWAS for other diseases, which suggests genes already implicated in the development of disease may not necessarily be the best predictors of disease risk. However, it is possible that rare SNPs and/or copy number variants may also be associated with disease risk. Ovarian cancer is a complex heterogeneous disease which arises through various genetic and genetic factors. Therefore interactions between genes and the environment should, ultimately, be considered when evaluating a woman's risk of the disease.

Global evaluation of associations with admixture maximum likelihood method

Numerous statistically significant associations have been identified between candidate genes and ovarian cancer risk and survival over the past decade; however, it is not known if an excess of significant associations were identified compared to the proportion which would be expected by chance (Goodman *et al.* 2001; Song *et al.* 2006; Gayther *et al.* 2007; Harley *et al.* 2008; Kelemen *et al.* 2008; Ramus *et al.* 2008). The admixture maximum likelihood (AML) approach was used to evaluate the overall evidence of excess of positive associations with SNP genotyping data for 340 SNPs in 94 candidate genes or chromosomal regions. The polymorphisms were

genotyped in approximately 1,500 cases and 3,100 unaffected controls from three population-based ovarian cancer case-control series.

Twenty-two out of the 340 SNPs analysed with the AML test were significantly associated (P-trend<0.05) with ovarian cancer risk. This number was reduced to 18 polymorphisms when the results were adjusted for population stratification. The 3 most significant SNPs had adjusted (for population stratification) P-values <0.003. These SNPs were rs2107425 (adjusted P=0.0019) from chromosome 11p15.5, rs9322336 (adjusted P=0.0021) from the oestrogen receptor (*ESR1*) gene and rs3817198 (adjusted P=0.0026) from the lymphocyte-specific protein 1 (*LSP1*) gene.

The most strongly associated SNP was from the BCAC group of SNPs which is located on chromosome 11p15.5, in a region which does not contain genes or open reading frames. The 11p15.5 region, despite the lack of genes, loss of heterogeneity of this locus has been observed, and it is said to contain tumour suppressive properties malignancies and is associates with breast, lung, bladder and stomach cancers (Viel *et al.* 1992; Gudmundsson *et al.* 1995; Shaw and Knowles 1995; Baffa *et al.* 1996; Bepler *et al.* 1998; Karnik *et al.* 1998; Xu *et al.* 2001). rs2107425 was chosen as a candidate SNP due to its strong association with breast cancer susceptibility. This association was identified from the breast cancer genome-wide association study (Easton *et al.* 2007). This SNP tags another, rs2251375, with $r^2=1$, which is located in a region that is conserved in mice. *ESR1* rs9322336, which is in the second intron of the gene, is not known to tag any other common SNP. The *ESR1* gene encodes a ligand activated transcription factor, which is able to bind hormones and DNA. The gene is associated with ovarian and breast cancers (Imura *et al.* 2006; Dunning *et al.* 2009). The third most significant SNP from the analysis, rs3817198 of the *LSP1* gene, was also identified from the breast cancer association genome-wide association study and chosen because of its strong association with the risk of breast cancer (Easton *et al.* 2007).

It is likely that the associations would no longer be statistically significant after adjustments for multiple corrections. It may be more appropriate to assess the experiment-wise significance of either subsets of polymorphisms investigated, or the totality of all SNPs analysed. The AML test was used to this effect on subsets of SNPs based on their function, or their genotyping group.

There was no evidence for an overall association between common genetic variation in the 94 candidate genes or regions and risk of ovarian cancer, when the genotyping data was analysed with AML, P-trend=0.068. There was evidence of a statistically significant association between tSNPs identified from the breast cancer genomewide association study and evidence of an excess of positive associations over the proportion expected by chance from this group of 16 common variants (P=0.0028).

Although the AML did not identify an excess of statistically significant associations, the associations found should not be disregarded. The associations are very modest, and should be treated with caution, however, there is evidence that the SNPs (or the chromosomal regions in which they are located) are associated with the risk of other cancers.

<u>Effects of germline variants and haplotypes of candidate oncogenes on survival</u> of ovarian cancer cases

Comparisons between the univariate and multivariate results of all the tSNPs and haplotypes demonstrated the importance of performing the multivariate analysis with adjustments for prognostic factors such as age at diagnosis, tumour histology, grade and stage for all genetic variants being investigated. Prognostic factors that had a statistically significant affect on survival can mask the influences of the SNPs, which can result in types I and II statistical errors. This was demonstrated with the tSNP of *RUVBL1*, rs4857836. The rare allele of the common variant was not significantly associated with survival with the univariate Cox regression analysis (per-rare allele hazard ratio [HR]=0.98 [0.86-1.12], P=0.758), however there was evidence of association between the rare allele of rs4857836 and better survival after adjustments for the prognostic factors (adjusted HR=0.8 [0.67-0.98], P=0.003). Conversely, the opposite was also observed, where the results of the univariate analysis was significant (*KRAS* haplotype block 2 h010000, HR=1.69 (1.21-2.36), P=0.002); but the association was no longer significant after adjustments for prognostic factors (adjusted HR=0.9 (0.6-1.13), P=0.523). There were 17% and 47% differences between the hazard ratios of the univariate and multivariate analysis results for rs4857836 and haplotype h010000, respectively, which is substantial.

These findings suggest, although associations may be identified with the univatiate Cox regression analysis, correction for prognostic factors is required for all the variants analysed in order to ascertain more accurate associations between the genetic variants and survival from the disease. Numerous publications, including work from this thesis, have reported survival analysis results in ovarian and other

malignancies with adjustments for prognostic factors of only the variants found to be associated with survival from the univariate analysis (Mann *et al.* 2008; Quaye *et al.* 2008; Koessler *et al.* 2009; Quaye *et al.* 2009; Udler *et al.* 2009). However, it is likely that some associations were overlooked by not conducting multivariate Cox regression survival analysis of all the polymorphisms analysed.

The multivariate survival analysis of the oncogene variants showed that associations between *BRAF* polymorphisms and ovarian cancer were not restricted to predisposition to ovarian cancer. Correlations were also found between haplotypes and tSNPs of *BRAF* and all-cause survival of patients with ovarian cancer. Contrary to the susceptibility results, the associations were observed when all ovarian cancer cases were combined. Although the rare allele of *BRAF* rs1267622, was associated with a reduced risk of mucinous subtype, it was also associated with poor survival of all ovarian cancer cases combined. These associations suggest that although the common variant may influence the risk of only the mucinous subtype, the tSNP may also be useful for predicting the survival of ovarian cancer patients, regardless of the ovarian tumour histological subtype. There was also evidence of an association between *BRAF* h10010000 and better survival of all cases combined (P=0.014). This haplotype was also associated with a reduction in the rest risk of clear cell ovarian cancer.

Although no statistically significant associations were found between *ERBB2* and survival from ovarian cancer with this project, over-expression of the oncogene has been correlated with poor survival of MALOVA samples in another study (Hogdall *et al.* 2003). An association has also been previously published between the rare

allele of the polymorphism which was associated with increased risk of endometrioid ovarian cancer, rs1801200, and poor survival of cases (Pinto *et al.* 2005). However, this association was not replicated in this study. Subtle differences in the genetics or lifestyle of the Portuguese population used in the Pinto study and the research presented in this thesis may explain the lack of validation of Pinto's group's study. Alternatively, the result from the Pinto paper may have been a false positive; there were a total of 129 ovarian cancer patients included in the Pinto study in comparison with 1,766 cases genotyped for rs1801200 in this study.

Effects of germline variants and haplotypes of "functional" candidates on survival of ovarian cancer cases

When the effects of the MMCT-18 common genetic variants on survival of ovarian cancer patients were evaluated, associations were identified with various candidate genes which correlated with suppression of the tumourigenic phenotype. Of note, the rare alleles of two tSNPs of *RBBP8*, rs4474794 and rs9304261, were associated with better survival of all ovarian cancer patients after adjustments for prognostic factors. Incidentally, the rare allele of rs4474794 was also associated with reduced risk of serous ovarian cancer. Haplotypes of *RBBP8* were also associated with the risk of ovarian cancer.

The *RBBP8* protein, which is also known as CtBP-interacting protein (CtIP), has been shown to interact with the retinoblastoma protein and the BRCA protein Cterminal region domains of the *BRCA1* gene and a variety of other proteins which are involved in the regulation of the cell cycle and transcription (Fusco *et al.* 1998; Meloni *et al.* 1999; Li, S. *et al.* 2000; Zheng *et al.* 2000). Chen *et al* have suggested that a complex containing *RBBP8*, *BRCA1* and *MRN* is cell-cycle dependent and is involved in the activation of homologous recombination double strand DNA repair in the S and G₂ phases of the cell cycle (Sartori *et al.* 2007; Chen *et al.* 2008). There is also evidence suggesting that the *RBBP8* protein is resistant to DNA double strand break-inducing agents (Sartori *et al.* 2007). Furthermore, the expression of *RBBP8* has been shown to be elevated in the majority of oestrogen receptor alpha (ER) positive breast cancer cell lines. However, this gene was down-regulated in the TOV112D cell line. Nonetheless, the over-expression of the gene is associated with patient response to neoadjuvant endocrine therapy (Wu, M. *et al.* 2007). Moreover, it was been demonstrated that tamoxifen resistance in breast cancer cells is conferred through the silencing of the *RBBP8* gene (Wu, M. *et al.* 2007).

rs793446 and two other polymorphisms (rs3921767 and rs9864437) of *FILIP1L* were also associated with ovarian cancer survival. However, the rs793446 and rs9864437 were associated with survival from mucinous ovarian cancer. There was no striking functional evidence to explain the observed associations between ovarian cancer susceptibility and survival. However the fact that many of the sequences of the tagged SNPs were conserved in mice suggests that the region containing the gene may be functionally important. Furthermore, it has been demonstrated that when the FILIP1L protein is over-expressed in endothelial cells, there is an increase in apoptosis and inhibition of cell proliferation and migration (Au *et al.* 2002; Passmore *et al.* 2003).

Another polymorphism of *RUVBL1*, rs4857836, which tags 2 other SNPs (rs4857837 and rs7641133), was associated with survival from ovarian cancer;

adjusted (for prognostic factors) HR=0.81 (0.67-0.98), P=0.03. This association became stronger when the analysis was restricted to the serous subtype, adjusted HR= 0.75 (0.59-0.95), P=0.018.

There was a 5-fold and 7-fold increase in the expression of *FILIP1L*, and *RBBP8*, respectively, in TOV112D⁺¹⁸ hybrid cell lines, compared to parental cancer cell lines. This suggested that the genes behave like tumour suppressor genes. There was an average 25-fold decrease in the expression of *RUVBL1* in both TOV21G⁺¹⁸ and TOV112D⁺¹⁸ hybrid cell lines compared with parental cancer cell lines, suggesting the gene behaves like an oncogene. Although the gene expression changes for *FILIP1L*, *RBBP8* and *RUVBL1* are likely to be attributed, either directly or indirectly, to the transfer of chromosome 18 into the hybrid cell lines, *RBBP8* was the only one located on the transferred chromosome. Fluorescence *in situ* hybridization analysis showed that *RBBP8* was on the 10Mb fragment of human chromosome 18 that was transferred into the TOV112D cells, rather than the whole chromosome. The gene expression compared to the other genes in the transferred region (Quaye *et al.* 2009).

The rare allele of another variant of *CASP5*, rs2282657, was associated with better survival of clear cell ovarian cancer patients. The sequence of the SNP indicates that it is located within a splice site of the gene. *CASP5* was up-regulated in the hybrid clones showing suppressed (reverted) neoplastic phenotype, therefore, it was down-regulated in the parental ovarian cancer cell line (TOV21G). CASP5 is involved in apoptosis and inflammation signaling (Eckhart *et al.* 2006), the protein is a

component of the NALP1 inflammasome, and it is involved in the maturation and secretion of interleukin-1 β following simulation by lipopolysaccharide, when it is part of this complex (Martinon *et al.* 2002). The expression of CASP5 is also regulated by interferon- γ (Lin *et al.* 2000). Mutations in this gene have been observed in leukaemia, lymphoma and colon cancer (Takeuchi *et al.* 2003). *CASP5* is also of interest because it forms a complex with *MYC* and *MAX* oncogenes and has been demonstrated to cleave MAX, which is important for cell growth, differentiation and apoptosis (Krippner-Heidenreich *et al.* 2001). *CASP5* also appears to be a target gene in the microsatellite mutator pathway for cancer (Offman *et al.* 2005).

Whole genome DNA amplification and multiplex SNP genotyping platforms

The final topic of this thesis was whole genome amplification and SNP multiplex genotyping platforms. The concentration of DNA available for research from each patient is limited. The relative rarity and devastating effects of ovarian cancer makes it difficult to recruit ovarian cancer patients for studies. Whole genome amplification (WGA) is a method through which DNA concentrations can be increased. The use of WGA amplified DNA has the potential of increasing the numbers of samples available for research because more DNA from cumulatively increasing numbers of study participants would substantially increase the statistical power of genetic association studies.

The number of common genetic polymorphisms within the human genome and the numbers of these SNPs from candidate genes, which need to be evaluated, make the single SNP reactions labourious and unappealing. This is especially so because of the availability of SNP multiplex genotyping platforms. Four WGA methods, GenomePlex, GenomiPhi, PEP and REPLI-g were used to amplify 95 samples; and the performance of the WGA products and their performance was evaluated with three SNP multiplex genotyping platforms, iPLEX, SNPlex and OpenArray.

REPLI-g generated the greatest amount of amplified material and PEP, the lowest fold increase in amplified DNA. PEP-amplified DNA performed poorly on all of the SNP multiplex genotyping platforms evaluated. REPLI-g DNA were the only products with average call rates <90% on TaqMan genotyping platform. The call rates for the genomic DNA were generally higher than those of the amplified DNA.

Of the SNP multiplex genotyping platforms tested, iPLEX generated the best quality genotyping results. However, there are issues with failed non-template negative test controls, which seems to be an artefact of the platform. This could result in a sample with low concentration apparently yielding an incorrect genotype. A small proportion of common SNPs genotyped on iPLEX appear to be monomorphic despite MAF>0.05. The reason behind this is still unclear. It is possible that contaminating salt adducts prevent the discrimination of genotypes of the SNP.

Discordances were found between genomic DNA and matching amplified products from all of the WGA methods. However, fewer discordances were identified with the GenomePlex and GenomiPhi amplified DNA. GenomePlex and GenomiPhi appeared to provide the best balance between quantity of amplified DNA and performance on SNP multiplexing platforms.

Other studies have reported similar findings of lower call rates of amplified DNA and discordances between WGA DNA and genomic DNA (Tranah *et al.* 2003; Bergen *et al.* 2005; Berthier-Schaad *et al.* 2007; Moore *et al.* 2007; Cunningham *et al.* 2008; Xing *et al.* 2008).

Although discordances between genotypes of the amplified DNA and non-amplified genomic DNA were observed with every WGA method on all of the SNP multiplex genotyping platforms, the vast majority were found with REPLI-g-amplified DNA. When PEP-amplified DNA is not considered, genotypes of the WGA DNA from the iPLEX platform were the most concordant with those of the corresponding non-amplified genomic DNA. None of the amplification products had an average discordance rates $\geq 2\%$ on the iPLEX platform, however the average discordance rates ranged from 1% (for GenomiPhi-DNA on SNPlex) to 7% (REPLI-g on OpenArray) for the other 2 multiplex platforms investigated. These results, like many reported in the literature, are misleading because they are not indicative of the discordances for each polymorphism genotyped. Cunningham's group reported a $\geq 99\%$ average concordance rate between WGA and their corresponding genomic DNA when they were genotyped on the Illumina GoldenGate BeadArray platform, however, only 1 (0.9%) of the 116 pairs of WGA and genomic DNA was concordant for all the 1,536 SNPs successfully genotyped (Cunningham *et al.* 2008).

Although the majority of discordances, both allele dropout and miscall were found between REPLI-g amplified DNA and genomic DNA, other researchers have not found this. Xing *et al.* report "excellent" (overall 98.7%) concordance between genomic and matching REPLI-g DNA based on genotyping data from the

Affymetrix 250K array platform, however, the genotypes are of 4 individuals, which is too small a number to accurately ascertain the performance of WGA DNA (Xing *et al.* 2008). Another study reported 100% concordance between genomic DNA and the corresponding DNA amplified with DOP-PCR, ligation-mediated PCR and a strand displacement amplification method, for the 10 SNPs genotyped, however, again, only 4 samples were analysed (Lee *et al.* 2008).

Talseth-Palmer *et al.* have demonstrated gains and losses of GenomePlex and GenomiPhi amplified DNA with array comparative genomic hybridisation, compared with genomic DNA. They also report that the discordances appear to be random and are not reproducible (Talseth-Palmer *et al.* 2008). The results from the OpenArray platform, which was the only genotyping platform where the reproducibility of the genotyping was assessed, also suggested that there is a lack reproducibility of the genotyping results in both genomic and amplified DNA on the platform.

Limitations

The studies within this project had differing statistical powers to detect associations. Where all ovarian cancer cases were analysed, there was 97% power at the 5% significance level to detect a co-dominant allele with a minor allele frequency of 0.3 that confers an odds ratio of 1.2, and 96% power to detect a dominant allele with a minor allele frequency of 0.1 that confers an odds ratio of 1.3. However, statistical power depends on the sample size, the minor allele frequency, the risks conferred, and the genetic model. Therefore, the statistical power to detect associations when

analysis was restricted to the histological subtypes of ovarian cancer was greatly reduced.

It is possible that some associations were missed because some tSNPs from the candidate genes could not genotyped such as *BRAF* (1 tSNP not genotyped), *KRAS* (2 tSNPs), *PIK3CA* (3 tSNPs), *AIFM2* (1tSNP), *AXIN2* (2 tSNPs), *RGC32* (1 tSNP) and *RUVBL1* (1 tSNP).

The findings reported should be treated with caution because they could be chance findings. The results have not been adjusted for multiple testing, which may diminish the vast majority of the associations found. Unfortunately, associations between germline genetic variants and other clinical features of disease, such as disease recurrence, and response and resistance of chemotherapy could not be assessed in this project. This is because the data for the collections are epidemiological, rather than clinical. Therefore there is no access to the clinical information, other than the ones mentioned.

Genomic controls from a breast cancer study were used to estimate the inflation of the test statistic used to adjust for cryptic population stratification. It is possible that the stratification observed in the breast cancer study was not a true reflection of that from the samples analysed with the admixture maximum likelihood test. Although, a very conservative inflation test of 10% was used to adjust the results, it is nonetheless, possible that the value is an over-estimation, or under-estimation for the ovarian cancer studies. The test statistics from the ovarian cancer GWAS showed that there were marginal increases in the estimated inflation factor (λ_{1000} =1.026) with the stage 1 samples which were exclusively Caucasian Britons and λ_{1000} =1.005 with the European, Australian and North American non-Hispanic Caucasians (Song *et al.* 2009b). Therefore the 1.1 inflation factor used to adjust for cryptic population stratifications in this thesis was likely to be a gross over-estimation.

It is also believed that the use of prevalent samples in the survival analysis may be a weakness of the study. However, Cox regression survival analysis of the follow-up data showed that, although the prevalent samples appeared to have better survival than incident cases, the difference was not statistically significant (P>0.05). Left truncation of the data was also used in the analysis, which controlled for any bias of the hazard ratio estimates which may have arisen. Although, as a result of smaller events (deaths) occurring with prevalent samples, the exclusion of prevalent samples would reduce the overall sample size and number of events. Therefore the inclusion of prevalent samples may also be considered as a form of adjustment, as they may generate more conservative associations. Azzato *et al.* (2009) have also reported that they did not find significant bias in the hazard ratios of incident and prevalent cases of breast cancer when survival analysis, with left truncation, was conducted on data on clinical stage, histopathological grade and oestrogen receptor.

The analysis of data based on all-cause mortality, rather than mortality from ovarian cancer is another limitation of this study. It is likely that some of the affect participants die or will die from causes other than ovarian cancer. However, this issue it not of great importance as the vast majority of the cases, will sadly die from

ovarian cancer. The small number of patients who die from other causes should be too small to greatly affect the results.

The numbers of histological subtypes of epithelial ovarian cancer, which include serous, endometrioid, mucinous and clear cell, are limited, as was the power to detect association with a reasonable degree of confidence. However, the results from the susceptibility and survival analyses re-affirms the heterogeneity of ovarian cancer aetiology. The results were in concordance with mutational analyses, which have found that mutations of some genes are restricted to particular histological subtypes of ovarian cancer. This is particularly true when the susceptibility and survival results for candidate genes such as *BRAF*, *KRAS* and *FILIP1L* are considered. These results need to be validated with additional samples.

The results from these studies provide proof of principle for the theory that SNPs may influence predisposition and the survival outcome of ovarian cancer. Ultimately highly significant SNPs with strong effects may be used clinically to predict a woman's risk of ovarian cancer, or survival from the disease. However, the vast majority of associations identified by these studies have been limited to marginal significance, which are considerably less than the P-value suggested for candidate gene association studies ($P=10^{-4}$).

The additional limitations of this study and others of ovarian cancer susceptibility are the fact that the sizes of the effects have generally been <2, which suggest that the findings from these studies are unlikely to be translated and implemented to the clinical setting. None-the-less, the genes which have been selected for the

association studies have been plausible candidates and the results have enriched ovarian cancer genetic research.

Moreover, although SNP genotyping data from the HapMap Project is invaluable to SNP and haplotype association studies, the research is ongoing and is not immune from error. HapMap data from Release 20 for the BRAF oncogene suggested that one of the tSNPs genotyped, rs1267622, tagged rs7384384 with r2=1. However, recent data releases from HapMap no longer include rs7384384, and dbSNP gives the error message:

"This snp_id was merged into rs4726020

refSNP cluster id(rs): rs7384384 is an invalid snp_id value.

Note that rs# is not contiguous due to user withdraws and merging of clusters."

This message suggests that both rs numbers were assigned to the same SNP. The policy in these instances is to keep the lower rs number and "retire" the higher number. There have also been a few occasions when HapMap has announced errors with its data. For example:

"2008-02-21: Incorrect position for merged SNPs in rel #23

The position of ~24,500 SNPs was inadvertently entered incorrectly in HapMap release #23 bulk files (genotypes and frequencies). A complete list of affected SNPs can be found <u>here</u>. Errors are being corrected and new genotypes and frequency files will be made available shortly under HapMap release #23a."

"2007-12-12: Assembly errors in rel#22 phased files

Files with errors have been removed from <u>public view</u> and will be replaced with correct files. Nonetheless, the files continue to be under scrutiny. An official announcement will be made when these files are officially approved for general use."

These announcements highlight the importance of regularly visiting the HapMap website for such updates, and also conducting validation studies in order to confirm the associations identified.

A new release of HapMap SNP genotying data, Release 21, became available after the completion of the genotyping of the samples with the oncogene probes. The oncogenes selected for the study were re-tagged with the more up-to-date data to establish the efficiency of the tagging based on the tSNPs successfully genotyped. As shown in Appendix Y, although there was data available for more SNPs ("All SNPs" in the appendix table) for all of the genes, with the exception of *ERBB2* (which had a tagging efficiency reduced, from 100% to 80% with the new data) the tagging efficiency of the tSNP from the other genes remained unchanged. Moreover, the overall tagging efficiency of all the genes combined stayed at 94%.

<u>Future work</u>

The advent of genome-wide association studies has led to the usefulness of the candidate gene approach of genetic association studies being questioned. This is likely to be due to the limited success of the approach. These questions are of particular importance since some of the most significant associations found from the breast and ovarian cancer genome-wide association studies were located at regions

without genes or open reading frames. To date, the only possible explanation for the associations may be that of long-range regulation. Fine-mapping is a technique in which the SNPs tagged by the significant tSNP and other neighbouring SNPs are genotyped in order to elucidate the individual SNP responsible for the association. It is expected that the P-value and effect (odds ratio) would be greatest at the "causal" polymorphism. Similar results can also be obtained through sequencing the region(s) significantly associated with ovarian cancer susceptibility or survival.

It is feasible that the fine-mapping technique could be used to find "causal" SNPs from the positive associations found from these and other studies. However, all the results need to be corrected for multiple testing and validated before such a step is taken. The validation of some of the findings could increase the power to detect associations. It would be of great interest to run the AML method on all genotyping data, restricted by histological subtype, to evaluate the overall evidence of positive associations over the proportion expected by chance.

There were insufficient numbers of samples for investigating gene-gene or geneenvironment interactions. However, it would be of great interest to conduct these analyses as the SNPs are unlikely to cause ovarian cancer without interacting with other factors. Therefore these tests should be considered in the future. Stronger, more significant associations may be found if the analyses of these interactions were performed.

Conclusions

In conclusion, 34 tSNPs of four oncogenes (*BRAF*, *ERBB2*, *KRAS* and *PIK3CA*) and a putative oncogene (*NMI*), and 63 tSNPS from 9 differentially expressed genes (*AIFM2*, *AKTIP*, *AXIN2*, *CASP5*, *FILIP1L*, *RBBP8*, *RGC32*, *RUVBL1* and *STAG3*) from *in vitro* neoplastic suppression experiments were genotyped in invasive ovarian cancer case-control series. Associations were identified between polymorphisms and haplotypes of *NMI*, *CASP5*, and *RUVBL1* and disease risk when ovarian cancer is considered as a single disease. Additional associations were found with many of the other genes when analysis was restricted to the histological subtypes of ovarian cancer. Of note, associations were found between mucinous ovarian cancer susceptibility and survival and haplotypes and variants of *BRAF* and *KRAS*; and risk of endometrioid disease and variants of *FILIP1L*.

Associations were also identified between *RBBP8*, *RUVBL1* and *FILIP1L* and clinical outcome of ovarian cancer patients. Additional associations were found when the survival analyses were restricted to the major histological subtypes of ovarian cancer. Although the results should be treated with caution, they should be further investigated. The identification of strongly associated polymorphisms candidate genes could used for targeted screening of individuals at high risk of ovarian cancer, the prediction of response to therapy or prognosis, and/or more effective treatment.

The genotyping of GenomePlex and GenomiPhi amplified DNA on the iPLEX system was the best combination of WGA method and SNP multiplex genotyping

platform. However, these results should be confirmed with replication of the investigations.

References

- Abubaker, J., Z. Jehan, P. Bavi, M. Sultana, S. Al-Harbi, M. Ibrahim, A. Al-Nuaim, M. Ahmed, T. Amin, M. Al-Fehaily, O. Al-Sanea, F. Al-Dayel, S. Uddin and K. S. Al-Kuraya (2007). "Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population." *J Clin Endocrinol Metab*.
- Agorastos, T., S. Masouridou, A. F. Lambropoulos, S. Chrisafi, D. Miliaras, K. Pantazis, T. C. Constantinides, A. Kotsis and I. Bontis (2004). "P53 codon 72 polymorphism and correlation with ovarian and endometrial cancer in Greek women." *Eur J Cancer Prev* 13(4): 277-280.
- Aktas, D., I. Guney, M. Alikasifoglu, K. Yuce, E. Tuncbilek and A. Ayhan (2002). "CYP1A1 gene polymorphism and risk of epithelial ovarian neoplasm." *Gynecol Oncol* 86(2): 124-128.
- Au, S. W., X. Leng, J. W. Harper and D. Barford (2002). "Implications for the ubiquitination reaction of the anaphase-promoting complex from the crystal structure of the Doc1/Apc10 subunit." *J Mol Biol* **316**(4): 955-968.
- Auranen, A., A. B. Spurdle, X. Chen, J. Lipscombe, D. M. Purdie, J. L. Hopper, A. Green, C. S. Healey, K. Redman, A. M. Dunning, P. D. Pharoah, D. F. Easton, B. A. Ponder, G. Chenevix-Trench and K. L. Novik (2003). "BRCA2 Arg372Hispolymorphism and epithelial ovarian cancer risk." *Int J Cancer* 103(3): 427-430.
- Baffa, R., M. Negrini, B. Mandes, M. Rugge, G. N. Ranzani, S. Hirohashi and C. M. Croce (1996). "Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach." *Cancer Res* 56(2): 268-272.
- Bauer, A., O. Huber and R. Kemler (1998). "Pontin52, an interaction partner of betacatenin, binds to the TATA box binding protein." *Proc Natl Acad Sci U S A* 95(25): 14787-14792.
- Benusiglio, P. R., F. Lesueur, C. Luccarini, D. M. Conroy, M. Shah, D. F. Easton, N. E. Day, A. M. Dunning, P. D. Pharoah and B. A. Ponder (2005). "Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study." *Breast Cancer Res* 7(2): R204-209.
- Bepler, G., K. M. Fong, B. E. Johnson, K. C. O'Briant, L. A. Daly, P. V. Zimmerman, M. A. Garcia-Blanco and B. Peterson (1998). "Association of chromosome 11 locus D11S12 with histology, stage, and metastases in lung cancer." *Cancer Detect Prev* 22(1): 14-19.
- Berchuck, A., J. M. Schildkraut, R. M. Wenham, B. Calingaert, S. Ali, A. Henriott, S. Halabi, G. C. Rodriguez, D. Gertig, D. M. Purdie, L. Kelemen, A. B. Spurdle, J. Marks and G. Chenevix-Trench (2004). "Progesterone receptor promoter +331A polymorphism is associated with a reduced risk of

endometrioid and clear cell ovarian cancers." *Cancer Epidemiol Biomarkers Prev* **13**(12): 2141-2147.

- Bergen, A. W., Y. Qi, K. A. Haque, R. A. Welch and S. J. Chanock (2005). "Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance." *BMC Biotechnol* 5: 24.
- Berthier-Schaad, Y., W. H. Kao, J. Coresh, L. Zhang, R. G. Ingersoll, R. Stephens and M. W. Smith (2007). "Reliability of high-throughput genotyping of whole genome amplified DNA in SNP genotyping studies." *Electrophoresis* 28(16): 2812-2817.
- Boon, T. (1993). "Teaching the immune system to fight cancer." *Sci Am* **268**(3): 82-89.
- Cantley, L. C. (2002). "The phosphoinositide 3-kinase pathway." *Science* **296**(5573): 1655-1657.
- Castresana, J. S., C. Barrios, L. Gomez and A. Kreicbergs (1992). "Amplification of the c-myc proto-oncogene in human chondrosarcoma." *Diagn Mol Pathol* **1**(4): 235-238.
- Chen, L., C. J. Nievera, A. Y. Lee and X. Wu (2008). "Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair." *J Biol Chem* **283**(12): 7713-7720.
- Christie, M. and M. K. Oehler (2006). "Molecular pathology of epithelial ovarian cancer." *J Br Menopause Soc* **12**(2): 57-63.
- Conde, L., J. M. Vaquerizas, H. Dopazo, L. Arbiza, J. Reumers, F. Rousseau, J. Schymkowitz and J. Dopazo (2006). "PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes." *Nucleic Acids Res* 34(Web Server issue): W621-625.
- Cramer, D. W., R. F. Liberman, L. Titus-Ernstoff, W. R. Welch, E. R. Greenberg, J. A. Baron and B. L. Harlow (1999). "Genital talc exposure and risk of ovarian cancer." *Int J Cancer* 81(3): 351-356.
- Croce, C. M. (2008). "Oncogenes and cancer." N Engl J Med 358(5): 502-511.
- Cuatrecasas, M., A. Villanueva, X. Matias-Guiu and J. Prat (1997). "K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases." *Cancer* **79**(8): 1581-1586.
- Cuatrecasas, M., N. Erill, E. Musulen, I. Costa, X. Matias-Guiu and J. Prat (1998). "K-ras mutations in nonmucinous ovarian epithelial tumors: a molecular analysis and clinicopathologic study of 144 patients." *Cancer* 82(6): 1088-1095.
- Cunningham, J. M., T. A. Sellers, J. M. Schildkraut, Z. S. Fredericksen, R. A. Vierkant, L. E. Kelemen, M. Gadre, C. M. Phelan, Y. Huang, J. G. Meyer, V. S. Pankratz and E. L. Goode (2008). "Performance of amplified DNA in an Illumina GoldenGate BeadArray assay." *Cancer Epidemiol Biomarkers Prev* 17(7): 1781-1789.

- Cupples, L. A., H. T. Arruda, E. J. Benjamin, R. B. D'Agostino, Sr., S. Demissie, A. L. DeStefano, J. Dupuis, K. M. Falls, C. S. Fox, D. J. Gottlieb, D. R. Govindaraju, C. Y. Guo, N. L. Heard-Costa, S. J. Hwang, S. Kathiresan, D. P. Kiel, J. M. Laramie, M. G. Larson, D. Levy, C. Y. Liu, K. L. Lunetta, M. D. Mailman, A. K. Manning, J. B. Meigs, J. M. Murabito, C. Newton-Cheh, G. T. O'Connor, C. J. O'Donnell, M. Pandey, S. Seshadri, R. S. Vasan, Z. Y. Wang, J. B. Wilk, P. A. Wolf, Q. Yang and L. D. Atwood (2007). "The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports." *BMC Med Genet* 8 Suppl 1: S1.
- De Roock, W., H. Piessevaux, J. De Schutter, M. Janssens, G. De Hertogh, N. Personeni, B. Biesmans, J. L. Van Laethem, M. Peeters, Y. Humblet, E. Van Cutsem and S. Tejpar (2007). "KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab." Ann Oncol.
- Dehan, E., A. Ben-Dor, W. Liao, D. Lipson, H. Frimer, S. Rienstein, D. Simansky, M. Krupsky, P. Yaron, E. Friedman, G. Rechavi, M. Perlman, A. Aviram-Goldring, S. Izraeli, M. Bittner, Z. Yakhini and N. Kaminski (2007).
 "Chromosomal aberrations and gene expression profiles in non-small cell lung cancer." *Lung Cancer* 56(2): 175-184.
- Devlin, B., K. Roeder and S. A. Bacanu (2001). "Unbiased methods for populationbased association studies." *Genet Epidemiol* **21**(4): 273-284.
- Dunning, A. M., C. S. Healey, C. Baynes, A. T. Maia, S. Scollen, A. Vega, R. Rodriguez, N. L. Barbosa-Morais, B. A. Ponder, Y. L. Low, S. Bingham, C. A. Haiman, L. Le Marchand, A. Broeks, M. K. Schmidt, J. Hopper, M. Southey, M. W. Beckmann, P. A. Fasching, J. Peto, N. Johnson, S. E. Bojesen, B. Nordestgaard, R. L. Milne, J. Benitez, U. Hamann, Y. Ko, R. K. Schmutzler, B. Burwinkel, P. Schurmann, T. Dork, T. Heikkinen, H. Nevanlinna, A. Lindblom, S. Margolin, A. Mannermaa, V. M. Kosma, X. Chen, A. Spurdle, J. Change-Claude, D. Flesch-Janys, F. J. Couch, J. E. Olson, G. Severi, L. Baglietto, A. L. Borresen-Dale, V. Kristensen, D. J. Hunter, S. E. Hankinson, P. Devilee, M. Vreeswijk, J. Lissowska, L. Brinton, J. Liu, P. Hall, D. Kang, K. Y. Yoo, C. Y. Shen, J. C. Yu, H. Anton-Culver, A. Ziogoas, A. Sigurdson, J. Struewing, D. F. Easton, M. Garcia-Closas, M. K. Humphreys, J. Morrison, P. D. Pharoah, K. A. Pooley and G. Chenevix-Trench (2009). "Association of ESR1 gene tagging SNPs with breast cancer risk." *Hum Mol Genet* 18(6): 1131-1139.
- Easton, D. F., K. A. Pooley, A. M. Dunning, P. D. Pharoah, D. Thompson, D. G.
 Ballinger, J. P. Struewing, J. Morrison, H. Field, R. Luben, N. Wareham, S.
 Ahmed, C. S. Healey, R. Bowman, K. B. Meyer, C. A. Haiman, L. K.
 Kolonel, B. E. Henderson, L. Le Marchand, P. Brennan, S. Sangrajrang, V.
 Gaborieau, F. Odefrey, C. Y. Shen, P. E. Wu, H. C. Wang, D. Eccles, D. G.
 Evans, J. Peto, O. Fletcher, N. Johnson, S. Seal, M. R. Stratton, N. Rahman,
 G. Chenevix-Trench, S. E. Bojesen, B. G. Nordestgaard, C. K. Axelsson, M.
 Garcia-Closas, L. Brinton, S. Chanock, J. Lissowska, B. Peplonska, H.
 Nevanlinna, R. Fagerholm, H. Eerola, D. Kang, K. Y. Yoo, D. Y. Noh, S. H.

Ahn, D. J. Hunter, S. E. Hankinson, D. G. Cox, P. Hall, S. Wedren, J. Liu, Y. L. Low, N. Bogdanova, P. Schurmann, T. Dork, R. A. Tollenaar, C. E. Jacobi, P. Devilee, J. G. Klijn, A. J. Sigurdson, M. M. Doody, B. H. Alexander, J. Zhang, A. Cox, I. W. Brock, G. MacPherson, M. W. Reed, F. J. Couch, E. L. Goode, J. E. Olson, H. Meijers-Heijboer, A. van den Ouweland, A. Uitterlinden, F. Rivadeneira, R. L. Milne, G. Ribas, A. Gonzalez-Neira, J. Benitez, J. L. Hopper, M. McCredie, M. Southey, G. G. Giles, C. Schroen, C. Justenhoven, H. Brauch, U. Hamann, Y. D. Ko, A. B. Spurdle, J. Beesley, X. Chen, A. Mannermaa, V. M. Kosma, V. Kataja, J. Hartikainen, N. E. Day, D. R. Cox and B. A. Ponder (2007). "Genome-wide association study identifies novel breast cancer susceptibility loci." *Nature* 447(7148): 1087-1093.

- Eckhart, L., C. Kittel, S. Gawlas, F. Gruber, M. Mildner, B. Jilma and E. Tschachler (2006). "Identification of a novel exon encoding the amino-terminus of the predominant caspase-5 variants." *Biochem Biophys Res Commun* 348(2): 682-688.
- Everitt, B. and C. R. Palmer *The encyclopaedic companion to medical statistics*, London : Hodder Arnold ; 2005.
- Fathalla, M. F. (1971). "Incessant ovulation--a factor in ovarian neoplasia?" *Lancet* **2**(7716): 163.
- Ferrer-Costa, C., J. L. Gelpi, L. Zamakola, I. Parraga, X. de la Cruz and M. Orozco (2005). "PMUT: a web-based tool for the annotation of pathological mutations on proteins." *Bioinformatics* 21(14): 3176-3178.
- Fleishman, S. J., J. Schlessinger and N. Ben-Tal (2002). "A putative molecularactivation switch in the transmembrane domain of erbB2." *Proc Natl Acad Sci U S A* 99(25): 15937-15940.
- Folsom, A. R., J. P. Anderson and J. A. Ross (2004). "Estrogen replacement therapy and ovarian cancer." *Epidemiology* **15**(1): 100-104.
- Forbes, S., J. Clements, E. Dawson, S. Bamford, T. Webb, A. Dogan, A. Flanagan, J. Teague, R. Wooster, P. A. Futreal and M. R. Stratton (2006). "Cosmic 2005." Br J Cancer 94(2): 318-322.
- French, J. E., G. D. Lacks, C. Trempus, J. K. Dunnick, J. Foley, J. Mahler, R. R. Tice and R. W. Tennant (2001). "Loss of heterozygosity frequency at the Trp53 locus in p53-deficient (+/-) mouse tumors is carcinogen-and tissuedependent." *Carcinogenesis* 22(1): 99-106.
- Fritz, P., C. M. Cabrera, J. Dippon, A. Gerteis, W. Simon, W. E. Aulitzky and H. van der Kuip (2005). "c-erbB2 and topoisomerase IIalpha protein expression independently predict poor survival in primary human breast cancer: a retrospective study." *Breast Cancer Res* 7(3): R374-384.
- Fruman, D. A., R. E. Meyers and L. C. Cantley (1998). "Phosphoinositide kinases." *Annu Rev Biochem* 67: 481-507.

- Fusco, C., A. Reymond and A. S. Zervos (1998). "Molecular cloning and characterization of a novel retinoblastoma-binding protein." *Genomics* 51(3): 351-358.
- Gayther, S. A., H. Song, S. J. Ramus, S. K. Kjaer, A. S. Whittemore, L. Quaye, J. Tyrer, D. Shadforth, E. Hogdall, C. Hogdall, J. Blaeker, R. DiCioccio, V. McGuire, P. M. Webb, J. Beesley, A. C. Green, D. C. Whiteman, M. T. Goodman, G. Lurie, M. E. Carney, F. Modugno, R. B. Ness, R. P. Edwards, K. B. Moysich, E. L. Goode, F. J. Couch, J. M. Cunningham, T. A. Sellers, A. H. Wu, M. C. Pike, E. S. Iversen, J. R. Marks, M. Garcia-Closas, L. Brinton, J. Lissowska, B. Peplonska, D. F. Easton, I. Jacobs, B. A. Ponder, J. Schildkraut, C. L. Pearce, G. Chenevix-Trench, A. Berchuck and P. D. Pharoah (2007). "Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer." *Cancer Res* 67(7): 3027-3035.
- Gayther, S. A., P. Russell, P. Harrington, A. C. Antoniou, D. F. Easton and B. A. Ponder (1999). "The contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer: no evidence for other ovarian cancer-susceptibility genes." *Am J Hum Genet* 65(4): 1021-1029.
- Gemignani, M. L., A. C. Schlaerth, F. Bogomolniy, R. R. Barakat, O. Lin, R. Soslow, E. Venkatraman and J. Boyd (2003). "Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma." *Gynecol Oncol* 90(2): 378-381.
- Gertig, D. M., D. J. Hunter, D. W. Cramer, G. A. Colditz, F. E. Speizer, W. C. Willett and S. E. Hankinson (2000). "Prospective study of talc use and ovarian cancer." *J Natl Cancer Inst* 92(3): 249-252.
- Goodman, M. T., K. McDuffie, L. N. Kolonel, K. Terada, T. A. Donlon, L. R. Wilkens, C. Guo and L. Le Marchand (2001). "Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism." *Cancer Epidemiol Biomarkers Prev* 10(3): 209-216.
- Gross, A. J. and P. H. Berg (1995). "A meta-analytical approach examining the potential relationship between talc exposure and ovarian cancer." *J Expo Anal Environ Epidemiol* **5**(2): 181-195.
- Gudmundsson, J., R. B. Barkardottir, G. Eiriksdottir, T. Baldursson, A. Arason, V. Egilsson and S. Ingvarsson (1995). "Loss of heterozygosity at chromosome 11 in breast cancer: association of prognostic factors with genetic alterations." *Br J Cancer* **72**(3): 696-701.
- Guntaka, R. V., B. R. Varma and K. T. Weber (2003). "Triplex-forming oligonucleotides as modulators of gene expression." *Int J Biochem Cell Biol* 35(1): 22-31.
- Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." *Cell* **100**(1): 57-70.
- Harley, I., B. Rosen, H. A. Risch, K. Siminovitch, M. E. Beiner, J. McLaughlin, P. Sun and S. A. Narod (2008). "Ovarian cancer risk is associated with a

common variant in the promoter sequence of the mismatch repair gene MLH1." *Gynecol Oncol* **109**(3): 384-387.

- Haurie, V., L. Menard, A. Nicou, C. Touriol, P. Metzler, J. Fernandez, D. Taras, P. Lestienne, C. Balabaud, P. Bioulac-Sage, H. Prats, J. Zucman-Rossi and J. Rosenbaum (2009). "Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism." *Hepatology* **50**(6): 1871-1883.
- Hellstrom, I., G. Goodman, J. Pullman, Y. Yang and K. E. Hellstrom (2001).
 "Overexpression of HER-2 in ovarian carcinomas." *Cancer Res* 61(6): 2420-2423.
- Hingorani, S. R., M. A. Jacobetz, G. P. Robertson, M. Herlyn and D. A. Tuveson (2003). "Suppression of BRAF(V599E) in human melanoma abrogates transformation." *Cancer Res* **63**(17): 5198-5202.
- Ho, E. S., C. R. Lai, Y. T. Hsieh, J. T. Chen, A. J. Lin, M. H. Hung and F. S. Liu (2001). "p53 mutation is infrequent in clear cell carcinoma of the ovary." *Gynecol Oncol* 80(2): 189-193.
- Hogdall, E. V., L. Christensen, S. K. Kjaer, J. Blaakaer, J. E. Bock, E. Glud, B. Norgaard-Pedersen and C. K. Hogdall (2003). "Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study." *Cancer* 98(1): 66-73.
- Hogdall, E. V., C. K. Hogdall, J. Blaakaer, L. Christensen, J. E. Bock, J. Vuust, E. Glud and S. K. Kjaer (2003). "K-ras alterations in Danish ovarian tumour patients. From the Danish "Malova" Ovarian Cancer study." *Gynecol Oncol* 89(1): 31-36.
- Huber, O., L. Menard, V. Haurie, A. Nicou, D. Taras and J. Rosenbaum (2008). "Pontin and reptin, two related ATPases with multiple roles in cancer." *Cancer Res* **68**(17): 6873-6876.
- Hulla, J. E., J. E. French and J. K. Dunnick (2001). "Chromosome 11 allelotypes reflect a mechanism of chemical carcinogenesis in heterozygous p53deficient mice." *Carcinogenesis* 22(1): 89-98.
- Huncharek, M., J. F. Geschwind and B. Kupelnick (2003). "Perineal application of cosmetic talc and risk of invasive epithelial ovarian cancer: a meta-analysis of 11,933 subjects from sixteen observational studies." *Anticancer Res* 23(2C): 1955-1960.
- Hwang, L. H. and A. W. Murray (1997). "A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis." *Mol Biol Cell* 8(10): 1877-1887.
- Imura, M., S. Yamashita, L. Y. Cai, J. Furuta, M. Wakabayashi, T. Yasugi and T. Ushijima (2006). "Methylation and expression analysis of 15 genes and three normally-methylated genes in 13 Ovarian cancer cell lines." *Cancer Lett* 241(2): 213-220.

- Jasmine, F., H. Ahsan, I. L. Andrulis, E. M. John, J. Chang-Claude and M. G. Kibriya (2008). "Whole-genome amplification enables accurate genotyping for microarray-based high-density single nucleotide polymorphism array." *Cancer Epidemiol Biomarkers Prev* 17(12): 3499-3508.
- Jha, S., E. Shibata and A. Dutta (2008). "Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage." *Mol Cell Biol* 28(8): 2690-2700.
- Kaklamani, V. G., N. Hou, Y. Bian, J. Reich, K. Offit, L. S. Michel, W. S. Rubinstein, A. Rademaker and B. Pasche (2003). "TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies." *J Clin Oncol* 21(17): 3236-3243.
- Karnik, P., M. Paris, B. R. Williams, G. Casey, J. Crowe and P. Chen (1998). "Two distinct tumor suppressor loci within chromosome 11p15 implicated in breast cancer progression and metastasis." *Hum Mol Genet* 7(5): 895-903.
- Kato, S., S. Iida, T. Higuchi, T. Ishikawa, Y. Takagi, M. Yasuno, M. Enomoto, H. Uetake and K. Sugihara (2007). "PIK3CA mutation is predictive of poor survival in patients with colorectal cancer." *Int J Cancer* **121**(8): 1771-1778.
- Kelemen, L. E., T. A. Sellers, J. M. Schildkraut, J. M. Cunningham, R. A. Vierkant, V. S. Pankratz, Z. S. Fredericksen, M. K. Gadre, D. N. Rider, M. Liebow and E. L. Goode (2008). "Genetic variation in the one-carbon transfer pathway and ovarian cancer risk." *Cancer Res* 68(7): 2498-2506.
- Kim, Y. T., T. Y. Kim, D. S. Lee, S. J. Park, J. Y. Park, S. J. Seo, H. S. Choi, H. J. Kang, S. Hahn, C. H. Kang, S. W. Sung and J. H. Kim (2008). "Molecular changes of epidermal growth factor receptor (EGFR) and KRAS and their impact on the clinical outcomes in surgically resected adenocarcinoma of the lung." *Lung Cancer* 59(1): 111-118.
- Koessler, T., E. M. Azzato, B. Perkins, R. J. Macinnis, D. Greenberg, D. F. Easton and P. D. Pharoah (2009). "Common germline variation in mismatch repair genes and survival after a diagnosis of colorectal cancer." *Int J Cancer* 124(8): 1887-1891.
- Krippner-Heidenreich, A., R. V. Talanian, R. Sekul, R. Kraft, H. Thole, H. Ottleben and B. Luscher (2001). "Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1." *Biochem J* 358(Pt 3): 705-715.
- Lacey, J. V., Jr., P. J. Mink, J. H. Lubin, M. E. Sherman, R. Troisi, P. Hartge, A. Schatzkin and C. Schairer (2002). "Menopausal hormone replacement therapy and risk of ovarian cancer." *Jama* 288(3): 334-341.
- Ladanyi, M., C. K. Park, R. Lewis, S. C. Jhanwar, J. H. Healey and A. G. Huvos (1993). "Sporadic amplification of the MYC gene in human osteosarcomas." *Diagn Mol Pathol* 2(3): 163-167.

- Lakhani, S. R., S. Manek, F. Penault-Llorca, A. Flanagan, L. Arnout, S. Merrett, L. McGuffog, D. Steele, P. Devilee, J. G. Klijn, H. Meijers-Heijboer, P. Radice, S. Pilotti, H. Nevanlinna, R. Butzow, H. Sobol, J. Jacquemier, D. S. Lyonet, S. L. Neuhausen, B. Weber, T. Wagner, R. Winqvist, Y. J. Bignon, F. Monti, F. Schmitt, G. Lenoir, S. Seitz, U. Hamman, P. Pharoah, G. Lane, B. Ponder, D. T. Bishop and D. F. Easton (2004). "Pathology of ovarian cancers in BRCA1 and BRCA2 carriers." *Clin Cancer Res* 10(7): 2473-2481.
- Laplace-Marieze, V., N. Presneau, V. Sylvain, F. Kwiatkowski, A. Lortholary, A. Hardouin and Y. J. Bignon (1999). "Systematic sequencing of the BRCA-1 coding region for germ-line mutation detection in 70 French high-risk families." *Int J Oncol* 14(5): 971-977.
- Lauscher, J. C., C. Loddenkemper, L. Kosel, J. Grone, H. J. Buhr and O. Huber (2007). "Increased pontin expression in human colorectal cancer tissue." *Hum Pathol* 38(7): 978-985.
- Lee, Y. S., C. N. Tsai, C. L. Tsai, S. D. Chang, D. W. Hsueh, C. T. Liu, C. C. Ma, S. H. Lin, T. H. Wang and H. S. Wang (2008). "Comparison of whole genome amplification methods for further quantitative analysis with microarray-based comparative genomic hybridization." *Taiwan J Obstet Gynecol* 47(1): 32-41.
- Li, H., T. H. Lee and H. Avraham (2002). "A novel tricomplex of BRCA1, Nmi, and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer." *J Biol Chem* **277**(23): 20965-20973.
- Li, S., N. S. Ting, L. Zheng, P. L. Chen, Y. Ziv, Y. Shiloh, E. Y. Lee and W. H. Lee (2000). "Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response." *Nature* 406(6792): 210-215.
- Lichtenstein, P., N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo,
 E. Pukkala, A. Skytthe and K. Hemminki (2000). "Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland." N Engl J Med 343(2): 78-85.
- Lievre, A., J. B. Bachet, D. Le Corre, V. Boige, B. Landi, J. F. Emile, J. F. Cote, G. Tomasic, C. Penna, M. Ducreux, P. Rougier, F. Penault-Llorca and P. Laurent-Puig (2006). "KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer." *Cancer Res* 66(8): 3992-3995.
- Lin, X. Y., M. S. Choi and A. G. Porter (2000). "Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-gamma." *J Biol Chem* 275(51): 39920-39926.
- Mann, A., E. Hogdall, S. J. Ramus, R. A. DiCioccio, C. Hogdall, L. Quaye, V. McGuire, A. S. Whittemore, M. Shah, D. Greenberg, D. F. Easton, B. A. Ponder, S. K. Kjaer, S. A. Gayther, D. J. Thompson, P. D. Pharoah and H. Song (2008). "Mismatch repair gene polymorphisms and survival in invasive ovarian cancer patients." *Eur J Cancer* 44(15): 2259-2265.

- Marsh, S. (2005). "Thymidylate synthase pharmacogenetics." *Invest New Drugs* **23**(6): 533-537.
- Martinon, F., K. Burns and J. Tschopp (2002). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta." *Mol Cell* **10**(2): 417-426.
- Meloni, A. R., E. J. Smith and J. R. Nevins (1999). "A mechanism for Rb/p130mediated transcription repression involving recruitment of the CtBP corepressor." *Proc Natl Acad Sci U S A* 96(17): 9574-9579.
- Miki, Y., J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L. M. Bennett, W. Ding and et al. (1994). "A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1." *Science* 266(5182): 66-71.
- Mills, P. K., D. G. Riordan, R. D. Cress and H. A. Young (2004). "Perineal talc exposure and epithelial ovarian cancer risk in the Central Valley of California." *Int J Cancer* 112(3): 458-464.
- Mok, S. C., K. K. Wong, R. K. Chan, C. C. Lau, S. W. Tsao, R. C. Knapp and R. S. Berkowitz (1994). "Molecular cloning of differentially expressed genes in human epithelial ovarian cancer." *Gynecol Oncol* 52(2): 247-252.
- Montgomery, K. G., D. M. Gertig, S. W. Baxter, R. L. Milne, G. S. Dite, M. R. McCredie, G. G. Giles, M. C. Southey, J. L. Hopper and I. G. Campbell (2003). "The HER2 I655V polymorphism and risk of breast cancer in women < age 40 years." *Cancer Epidemiol Biomarkers Prev* 12(10): 1109-1111.
- Moore, L. E., A. W. Bergen, K. A. Haque, Y. Qi, P. Castle, S. J. Chanock, K. Egan, P. Newcomb, L. Titus-Ernstoff, J. Alguacil, N. Rothman and M. Garcia-Closas (2007). "Whole genome amplification of buccal cytobrush DNA collected for molecular epidemiology studies." *Biomarkers* 12(3): 303-312.
- Muller, C. I., C. W. Miller, W. K. Hofmann, M. E. Gross, C. S. Walsh, N. Kawamata, Q. T. Luong and H. P. Koeffler (2007). "Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene." *Leuk Res* 31(1): 27-32.
- Ng, P. C. and S. Henikoff (2001). "Predicting deleterious amino acid substitutions." *Genome Res* **11**(5): 863-874.
- Offman, J., K. Gascoigne, F. Bristow, P. Macpherson, M. Bignami, I. Casorelli, G. Leone, L. Pagano, S. Sica, O. Halil, D. Cummins, N. R. Banner and P. Karran (2005). "Repeated sequences in CASPASE-5 and FANCD2 but not NF1 are targets for mutation in microsatellite-unstable acute leukemia/myelodysplastic syndrome." *Mol Cancer Res* 3(5): 251-260.
- Pan, X., A. E. Urban, D. Palejev, V. Schulz, F. Grubert, Y. Hu, M. Snyder and S. M. Weissman (2008). "A procedure for highly specific, sensitive, and unbiased whole-genome amplification." *Proc Natl Acad Sci U S A* **105**(40): 15499-15504.

- Passmore, L. A., E. A. McCormack, S. W. Au, A. Paul, K. R. Willison, J. W. Harper and D. Barford (2003). "Doc1 mediates the activity of the anaphasepromoting complex by contributing to substrate recognition." *EMBO J* 22(4): 786-796.
- Patel, H. P., L. Lu, R. T. Blaszak and J. J. Bissler (2004). "PKD1 intron 21: triplex DNA formation and effect on replication." *Nucleic Acids Res* 32(4): 1460-1468.
- Pharoah, P. D., D. F. Easton, D. L. Stockton, S. Gayther and B. A. Ponder (1999). "Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group." *Cancer Res* 59(4): 868-871.
- Pinard, R., A. de Winter, G. J. Sarkis, M. B. Gerstein, K. R. Tartaro, R. N. Plant, M. Egholm, J. M. Rothberg and J. H. Leamon (2006). "Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing." *BMC Genomics* 7: 216.
- Pinto, D., D. Pereira, C. Portela, J. L. da Silva, C. Lopes and R. Medeiros (2005).
 "The influence of HER2 genotypes as molecular markers in ovarian cancer outcome." *Biochem Biophys Res Commun* 335(4): 1173-1178.
- Pohl, G., C. L. Ho, R. J. Kurman, R. Bristow, T. L. Wang and M. Shih Ie (2005). "Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations." *Cancer Res* 65(5): 1994-2000.
- Quaye, L., D. Dafou, S. J. Ramus, H. Song, A. Gentry-Maharaj, M. Notaridou, E. Hogdall, S. K. Kjaer, L. Christensen, C. Hogdall, D. F. Easton, I. Jacobs, U. Menon, P. D. Pharoah and S. A. Gayther (2009). "Functional complementation studies identify candidate genes and common genetic variants associated with ovarian cancer survival." *Hum Mol Genet* 18(10): 1869-1878.
- Quaye, L., S. A. Gayther, S. J. Ramus, R. A. Di Cioccio, V. McGuire, E. Hogdall, C. Hogdall, J. Blaakr, D. F. Easton, B. A. Ponder, I. Jacobs, S. K. Kjaer, A. S. Whittemore, C. L. Pearce, P. D. Pharoah and H. Song (2008). "The effects of common genetic variants in oncogenes on ovarian cancer survival." *Clin Cancer Res* 14(18): 5833-5839.
- Ramus, S. J., A. Fishman, P. D. Pharoah, S. Yarkoni, M. Altaras and B. A. Ponder (2001). "Ovarian cancer survival in Ashkenazi Jewish patients with BRCA1 and BRCA2 mutations." *Eur J Surg Oncol* 27(3): 278-281.
- Ramus, S. J., R. A. Vierkant, S. E. Johnatty, M. C. Pike, D. J. Van Den Berg, A. H.
 Wu, C. L. Pearce, U. Menon, A. Gentry-Maharaj, S. A. Gayther, R. A.
 Dicioccio, V. McGuire, A. S. Whittemore, H. Song, D. F. Easton, P. D.
 Pharoah, M. Garcia-Closas, S. Chanock, J. Lissowska, L. Brinton, K. L.
 Terry, D. W. Cramer, S. S. Tworoger, S. E. Hankinson, A. Berchuck, P. G.
 Moorman, J. M. Schildkraut, J. M. Cunningham, M. Liebow, S. K. Kjaer, E.
 Hogdall, C. Hogdall, J. Blaakaer, R. B. Ness, K. B. Moysich, R. P. Edwards,

M. E. Carney, G. Lurie, M. T. Goodman, S. Wang-Gohrke, S. Kropp, J. Chang-Claude, P. M. Webb, X. Chen, J. Beesley, G. Chenevix-Trench and E. L. Goode (2008). "Consortium analysis of 7 candidate SNPs for ovarian cancer." *Int J Cancer* **123**(2): 380-388.

- Reumers, J., L. Conde, I. Medina, S. Maurer-Stroh, J. Van Durme, J. Dopazo, F. Rousseau and J. Schymkowitz (2008). "Joint annotation of coding and noncoding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases." *Nucleic Acids Res* 36(Database issue): D825-829.
- Rhim, J. S. (1988). "Viruses, oncogenes, and cancer." *Cancer Detect Prev* **11**(3-6): 139-149.
- Rodriguez, C., A. V. Patel, E. E. Calle, E. J. Jacob and M. J. Thun (2001). "Estrogen replacement therapy and ovarian cancer mortality in a large prospective study of US women." *Jama* 285(11): 1460-1465.
- Rousseau, B., L. Menard, V. Haurie, D. Taras, J. F. Blanc, F. Moreau-Gaudry, P. Metzler, M. Hugues, S. Boyault, S. Lemiere, X. Canron, P. Costet, M. Cole, C. Balabaud, P. Bioulac-Sage, J. Zucman-Rossi and J. Rosenbaum (2007).
 "Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma." *Hepatology* 46(4): 1108-1118.
- Roymans, D. and H. Slegers (2001). "Phosphatidylinositol 3-kinases in tumor progression." *Eur J Biochem* 268(3): 487-498.
- Rubin, S. C., I. Benjamin, K. Behbakht, H. Takahashi, M. A. Morgan, V. A. LiVolsi,
 A. Berchuck, M. G. Muto, J. E. Garber, B. L. Weber, H. T. Lynch and J.
 Boyd (1996). "Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1." *N Engl J Med* 335(19): 1413-1416.
- Rutter, J. L., N. Chatterjee, S. Wacholder and J. Struewing (2003). "The HER2 I655V polymorphism and breast cancer risk in Ashkenazim." *Epidemiology* **14**(6): 694-700.
- Samowitz, W. S., C. Sweeney, J. Herrick, H. Albertsen, T. R. Levin, M. A. Murtaugh, R. K. Wolff and M. L. Slattery (2005). "Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers." *Cancer Res* 65(14): 6063-6069.
- Samuels, Y. and K. Ericson (2006). "Oncogenic PI3K and its role in cancer." *Curr Opin Oncol* **18**(1): 77-82.
- Sankaranarayanan, R. and J. Ferlay (2006). "Worldwide burden of gynaecological cancer: the size of the problem." *Best Pract Res Clin Obstet Gynaecol* **20**(2): 207-225.
- Sartori, A. A., C. Lukas, J. Coates, M. Mistrik, S. Fu, J. Bartek, R. Baer, J. Lukas and S. P. Jackson (2007). "Human CtIP promotes DNA end resection." *Nature* 450(7169): 509-514.
- Schwarze, S. R., S. E. DePrimo, L. M. Grabert, V. X. Fu, J. D. Brooks and D. F. Jarrard (2002). "Novel pathways associated with bypassing cellular

senescence in human prostate epithelial cells." *J Biol Chem* **277**(17): 14877-14883.

- Shaw, M. E. and M. A. Knowles (1995). "Deletion mapping of chromosome 11 in carcinoma of the bladder." *Genes Chromosomes Cancer* **13**(1): 1-8.
- Shayesteh, L., Y. Lu, W. L. Kuo, R. Baldocchi, T. Godfrey, C. Collins, D. Pinkel, B. Powell, G. B. Mills and J. W. Gray (1999). "PIK3CA is implicated as an oncogene in ovarian cancer." *Nat Genet* 21(1): 99-102.
- Sieben, N. L., P. Macropoulos, G. M. Roemen, S. M. Kolkman-Uljee, G. Jan Fleuren, R. Houmadi, T. Diss, B. Warren, M. Al Adnani, A. P. De Goeij, T. Krausz and A. M. Flanagan (2004). "In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours." *J Pathol* 202(3): 336-340.
- Simes, R. J. (1986). "An improved Bonferroni procedure for multiple tests of significance." *Biometrika* **73**: 751–754.
- Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T. J. Hudson, A. Montpetit, A. V. Pshezhetsky, M. Prentki, B. I. Posner, D. J. Balding, D. Meyre, C. Polychronakos and P. Froguel (2007). "A genome-wide association study identifies novel risk loci for type 2 diabetes." *Nature* 445(7130): 881-885.
- Song, H., S. J. Ramus, S. Kruger Kjaer, R. A. Dicioccio, G. Chenevix-Trench, C. L. Pearce, E. Hogdall, A. S. Whittemore, V. McGuire, C. Hogdall, J. Blaakaer, A. H. Wu, D. J. Van Den Berg, D. O. Stram, U. Menon, A. Gentry-Maharaj, I. J. Jacobs, P. M. Webb, J. Beesley, X. Chen, M. A. Rossing, J. A. Doherty, J. Chang-Claude, S. Wang-Gohrke, M. T. Goodman, G. Lurie, P. J. Thompson, M. E. Carney, R. B. Ness, K. Moysich, E. L. Goode, R. A. Vierkant, J. M. Cunningham, S. Anderson, J. M. Schildkraut, A. Berchuck, E. S. Iversen, P. G. Moorman, M. Garcia-Closas, S. Chanock, J. Lissowska, L. Brinton, H. Anton-Culver, A. Ziogas, W. R. Brewster, B. A. Ponder, D. F. Easton, S. A. Gayther and P. D. Pharoah (2009a). "Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study." *Hum Mol Genet*.
- Song, H., S. J. Ramus, D. Shadforth, L. Quaye, S. K. Kjaer, R. A. Dicioccio, A. M. Dunning, E. Hogdall, C. Hogdall, A. S. Whittemore, V. McGuire, F. Lesueur, D. F. Easton, I. J. Jacobs, B. A. Ponder, S. A. Gayther and P. D. Pharoah (2006). "Common variants in RB1 gene and risk of invasive ovarian cancer." *Cancer Res* 66(20): 10220-10226.
- Song, H., S. J. Ramus, J. Tyrer, K. L. Bolton, A. Gentry-Maharaj, E. Wozniak, H. Anton-Culver, J. Chang-Claude, D. W. Cramer, R. DiCioccio, T. Dork, E. L. Goode, M. T. Goodman, J. M. Schildkraut, T. Sellers, L. Baglietto, M. W. Beckmann, J. Beesley, J. Blaakaer, M. E. Carney, S. Chanock, Z. Chen, J. M. Cunningham, E. Dicks, J. A. Doherty, M. Durst, A. B. Ekici, D. Fenstermacher, B. L. Fridley, G. Giles, M. E. Gore, I. De Vivo, P. Hillemanns, C. Hogdall, E. Hogdall, E. S. Iversen, I. J. Jacobs, A. Jakubowska, D. Li, J. Lissowska, J. Lubinski, G. Lurie, V. McGuire, J.

McLaughlin, K. Medrek, P. G. Moorman, K. Moysich, S. Narod, C. Phelan, C. Pye, H. Risch, I. B. Runnebaum, G. Severi, M. Southey, D. O. Stram, F. C. Thiel, K. L. Terry, Y. Y. Tsai, S. S. Tworoger, D. J. Van Den Berg, R. A. Vierkant, S. Wang-Gohrke, P. M. Webb, L. R. Wilkens, A. H. Wu, H. Yang, W. Brewster, A. Ziogas, R. Houlston, I. Tomlinson, A. S. Whittemore, M. A. Rossing, B. A. Ponder, C. L. Pearce, R. B. Ness, U. Menon, S. K. Kjaer, J. Gronwald, M. Garcia-Closas, P. A. Fasching, D. F. Easton, G. Chenevix-Trench, A. Berchuck, P. D. Pharoah and S. A. Gayther (2009b). "A genomewide association study identifies a new ovarian cancer susceptibility locus on 9p22.2." *Nat Genet* **41**(9): 996-1000.

- Sorensen, K. M., C. Jespersgaard, J. Vuust, D. Hougaard, B. Norgaard-Pedersen and P. S. Andersen (2007). "Whole genome amplification on DNA from filter paper blood spot samples: an evaluation of selected systems." *Genet Test* 11(1): 65-71.
- Stratton, J. F., P. Pharoah, S. K. Smith, D. Easton and B. A. Ponder (1998). "A systematic review and meta-analysis of family history and risk of ovarian cancer." *Br J Obstet Gynaecol* **105**(5): 493-499.
- Takeuchi, S., N. Takeuchi, A. C. Fermin, H. Taguchi and H. P. Koeffler (2003).
 "Frameshift mutations in caspase-5 and other target genes in leukemia and lymphoma cell lines having microsatellite instability." *Leuk Res* 27(4): 359-361.
- Talseth-Palmer, B. A., N. A. Bowden, A. Hill, C. Meldrum and R. J. Scott (2008)."Whole genome amplification and its impact on CGH array profiles." *BMC Res Notes* 1: 56.
- Tan, D. S., C. Rothermundt, K. Thomas, E. Bancroft, R. Eeles, S. Shanley, A. Ardern-Jones, A. Norman, S. B. Kaye and M. E. Gore (2008). ""BRCAness" Syndrome in Ovarian Cancer: A Case-Control Study Describing the Clinical Features and Outcome of Patients With Epithelial Ovarian Cancer Associated With BRCA1 and BRCA2 Mutations." J Clin Oncol.
- Tandle, A. T., C. Mazzanti, H. R. Alexander, D. D. Roberts and S. K. Libutti (2005). "Endothelial monocyte activating polypeptide-II induced gene expression changes in endothelial cells." *Cytokine* **30**(6): 347-358.
- Thomas, D. C., R. W. Haile and D. Duggan (2005). "Recent developments in genomewide association scans: a workshop summary and review." *Am J Hum Genet* **77**(3): 337-345.
- Thomas, G., K. B. Jacobs, M. Yeager, P. Kraft, S. Wacholder, N. Orr, K. Yu, N. Chatterjee, R. Welch, A. Hutchinson, A. Crenshaw, G. Cancel-Tassin, B. J. Staats, Z. Wang, J. Gonzalez-Bosquet, J. Fang, X. Deng, S. I. Berndt, E. E. Calle, H. S. Feigelson, M. J. Thun, C. Rodriguez, D. Albanes, J. Virtamo, S. Weinstein, F. R. Schumacher, E. Giovannucci, W. C. Willett, O. Cussenot, A. Valeri, G. L. Andriole, E. D. Crawford, M. Tucker, D. S. Gerhard, J. F. Fraumeni, Jr., R. Hoover, R. B. Hayes, D. J. Hunter and S. J. Chanock

(2008). "Multiple loci identified in a genome-wide association study of prostate cancer." *Nat Genet* **40**(3): 310-315.

- Tranah, G. J., P. J. Lescault, D. J. Hunter and I. De Vivo (2003). "Multiple displacement amplification prior to single nucleotide polymorphism genotyping in epidemiologic studies." *Biotechnol Lett* 25(13): 1031-1036.
- Udler, M. S., E. M. Azzato, C. S. Healey, S. Ahmed, K. A. Pooley, D. Greenberg, M. Shah, A. E. Teschendorff, C. Caldas, A. M. Dunning, E. A. Ostrander, N. E. Caporaso, D. Easton and P. D. Pharoah (2009). "Common germline polymorphisms in COMT, CYP19A1, ESR1, PGR, SULT1E1 and STS and survival after a diagnosis of breast cancer." *Int J Cancer* 125(11): 2687-2696.
- Venteicher, A. S., Z. Meng, P. J. Mason, T. D. Veenstra and S. E. Artandi (2008).
 "Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly." *Cell* 132(6): 945-957.
- Viel, A., F. Giannini, L. Tumiotto, F. Sopracordevole, M. C. Visentin and M. Boiocchi (1992). "Chromosomal localisation of two putative 11p oncosuppressor genes involved in human ovarian tumours." *Br J Cancer* 66(6): 1030-1036.
- Villafranca, E., Y. Okruzhnov, M. A. Dominguez, J. Garcia-Foncillas, I. Azinovic, E. Martinez, J. J. Illarramendi, F. Arias, R. Martinez Monge, E. Salgado, S. Angeletti and A. Brugarolas (2001). "Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer." *J Clin Oncol* 19(6): 1779-1786.
- Volinia, S., I. Hiles, E. Ormondroyd, D. Nizetic, R. Antonacci, M. Rocchi and M. D. Waterfield (1994). "Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene." *Genomics* 24(3): 472-477.
- Weiss, N. S., T. Homonchuk and J. L. Young, Jr. (1977). "Incidence of the histologic types of ovarian cancer: the U.S. Third National Cancer Survey, 1969-1971." *Gynecol Oncol* 5(2): 161-167.
- Wenham, R. M., B. Calingaert, S. Ali, K. McClean, R. Whitaker, R. Bentley, J. M. Lancaster, J. Schildkraut, J. Marks and A. Berchuck (2003). "Matrix metalloproteinase-1 gene promoter polymorphism and risk of ovarian cancer." *J Soc Gynecol Investig* **10**(6): 381-387.
- Whittemore, A. S., R. R. Balise, P. D. Pharoah, R. A. Dicioccio, I. Oakley-Girvan, S. J. Ramus, M. Daly, M. B. Usinowicz, K. Garlinghouse-Jones, B. A. Ponder, S. Buys, R. Senie, I. Andrulis, E. John, J. L. Hopper and M. S. Piver (2004). "Oral contraceptive use and ovarian cancer risk among carriers of BRCA1 or BRCA2 mutations." *Br J Cancer* **91**(11): 1911-1915.

- Woenckhaus, J., K. Steger, K. Sturm, K. Munstedt, F. E. Franke and I. Fenic (2007). "Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer." *Virchows Arch* **450**(4): 387-395.
- Wood, M. A., S. B. McMahon and M. D. Cole (2000). "An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc." *Mol Cell* 5(2): 321-330.
- Wu, M., D. R. Soler, M. C. Abba, M. I. Nunez, R. Baer, C. Hatzis, A. Llombart-Cussac, A. Llombart-Bosch and C. M. Aldaz (2007). "CtIP silencing as a novel mechanism of tamoxifen resistance in breast cancer." *Mol Cancer Res* 5(12): 1285-1295.
- Wu, Y., R. A. Soslow, D. S. Marshall, M. Leitao and B. Chen (2004). "Her-2/neu expression and amplification in early stage ovarian surface epithelial neoplasms." *Gynecol Oncol* 95(3): 570-575.
- Xing, J., W. S. Watkins, Y. Zhang, D. J. Witherspoon and L. B. Jorde (2008). "High fidelity of whole-genome amplified DNA on high-density single nucleotide polymorphism arrays." *Genomics* 92(6): 452-456.
- Xu, X. L., L. C. Wu, F. Du, A. Davis, M. Peyton, Y. Tomizawa, A. Maitra, G. Tomlinson, A. F. Gazdar, B. E. Weissman, A. M. Bowcock, R. Baer and J. D. Minna (2001). "Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers." *Cancer Res* 61(21): 7943-7949.
- Yeager, M., N. Orr, R. B. Hayes, K. B. Jacobs, P. Kraft, S. Wacholder, M. J. Minichiello, P. Fearnhead, K. Yu, N. Chatterjee, Z. Wang, R. Welch, B. J. Staats, E. E. Calle, H. S. Feigelson, M. J. Thun, C. Rodriguez, D. Albanes, J. Virtamo, S. Weinstein, F. R. Schumacher, E. Giovannucci, W. C. Willett, G. Cancel-Tassin, O. Cussenot, A. Valeri, G. L. Andriole, E. P. Gelmann, M. Tucker, D. S. Gerhard, J. F. Fraumeni, Jr., R. Hoover, D. J. Hunter, S. J. Chanock and G. Thomas (2007). "Genome-wide association study of prostate cancer identifies a second risk locus at 8q24." *Nat Genet* 39(5): 645-649.
- Zanke, B. W., C. M. Greenwood, J. Rangrej, R. Kustra, A. Tenesa, S. M. Farrington, J. Prendergast, S. Olschwang, T. Chiang, E. Crowdy, V. Ferretti, P. Laflamme, S. Sundararajan, S. Roumy, J. F. Olivier, F. Robidoux, R. Sladek, A. Montpetit, P. Campbell, S. Bezieau, A. M. O'Shea, G. Zogopoulos, M. Cotterchio, P. Newcomb, J. McLaughlin, B. Younghusband, R. Green, J. Green, M. E. Porteous, H. Campbell, H. Blanche, M. Sahbatou, E. Tubacher, C. Bonaiti-Pellie, B. Buecher, E. Riboli, S. Kury, S. J. Chanock, J. Potter, G. Thomas, S. Gallinger, T. J. Hudson and M. G. Dunlop (2007). "Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24." *Nat Genet* 39(8): 989-994.
- Zheng, L., S. Li, T. G. Boyer and W. H. Lee (2000). "Lessons learned from BRCA1 and BRCA2." *Oncogene* **19**(53): 6159-6175.

Appendices

Appendix I: MMCT-18 master-list

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrids TOV112D	C20orf100	20q13.12		1		4	153,449	167	60	TOX high mobility group box family member 2. Granulosa cell HMG box protein. Putative transcriptional activator involved in the hypothalamo-pituitary-gonadal system.
Down in hybrids TOV112D	FAM19A5	22q13.32		2		8	269,793	216	83	Family with sequence similarity 19 (chemokine (C-C motif)-like), member A5. Unknown function.
Down in hybrids TOV112D	PDGFRL	8p22-p21.3		3		91	65,917	124	56	Platelet-derived growth factor receptor-like. Mutations in gene, or deletion of a chromosomal segment containing this gene, are associated with sporadic hepatocellular carcinomas, colorectal cancers, and non-small cell lung cancers. May function as tumour suppressor.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrids TOV112D	DIO2	14q24.2- q24.3		4		1	14,656	13	5	Deiodinase, iodothyronine, type II.
Down in hybrids TOV112D	RGC32	13q14.11		5		80	13,323	17	8	Believed to regulate cell cycle progression. Induced by p53 in response to DNA damage, or by sublytic levels of complement system proteins that result in activation of the cell cycle.
Down in hybrids TOV112D	APCDD1	18p11.22		6		14	34,154	42	13	Adenomatosis polyposis coli down- regulated 1. May play a role in colorectal tumorigenesis. May be a developmental target gene of the Wnt/β-catenin pathway
Down in hybrids TOV112D	SLITRK6	13q31.1		7		55	6,561	5	4	SLIT and NTRK-like family, member 6. SLITRKs are expressed predominantly in neural tissues and have neurite-modulating activity.
Down in hybrids TOV112D	TCBA1	6q21		8		19	1,021,734	1093	279	Na+/K+ transporting ATPase interacting 2. T-cell lymphoma breakpoint associated target 1.
Down in hybrids TOV112D	CXXC4	4q22-q24		9		11	26,485	5	3	CXXC finger 4. May be in the Wnt receptor signalling pathway.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrids TOV112D	CLEC11A	19q13.3		10		13	2,376	None		Unknown function.
Down in hybrids TOV112D	MME	3q25.1-q25.2		15		9	104,033	83	35	Membrane metallo-endopeptidase. Gene encodes a common acute lymphocytic leukemia antigen that is an important cell surface marker in the diagnosis of human acute lymphocytic leukemia (ALL). This protein is present on leukemic cells of pre-B phenotype, which represent 85% of cases of ALL. Also found on variety of normal tissues.
Down in hybrids TOV112D	EN1	2q13-q21		17		2	5,993	1	1	Engrailed homeobox 1. Homeobox- containing genes are believed to be involved in controlling development. The human engrailed homologs 1 and 2 encode homeodomain- containing proteins and have been implicated in the control of pattern formation during development of the central nervous system.
Down in hybrids TOV112D	C21orf94	21q21.3		19		7	9,572	14	9	Uncharacterized protein
Down in hybrids TOV112D	ARMCX2	Xq21.33- q22.2		22		5	4,609	2	2	Armadillo repeat containing, X- linked 2. Arm protein lost in epithelial cancers. Gene encodes a

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										member of the ALEX family of proteins and may play a role in tumour suppression. The encoded protein contains a potential N- terminal transmembrane domain and a single Armadillo (arm) repeat. Other proteins containing the arm repeat are involved in development, maintenance of tissue integrity, and tumorigenesis.
Down in hybrids TOV112D	CRABP1	15q24		28		3	7,878	2	2	Cellular retinoic acid binding protein 1. Cellular retinoic acid-binding protein is assumed to play an important role in retinoic acid- mediated differentiation and proliferation processes.
Down in hybrids TOV112D	MAB21L1	13q13		38		6	2,511	1	1	Mab-21-like 1 (C. elegans). This gene is similar to the MAB-21 cell fate-determining gene found in C. elegans. May be involved in eye and cerebellum development, and it has been proposed that expansion of a trinucleotide repeat region in the 5' UTR may play a role in a variety of psychiatric disorders.
Down in hybrids TOV112D	CSN3	4q21.1		46		10	8,838	20	7	Casein kappa.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrids TOV112D	ANKFN1	17q23.2		1		7	329,171	261	51	Ankyrin-repeat and fibronectin type III domain containing 1. Unknown function.
Up in hybrids TOV112D	CDH12	5p14-p13		2		13	1,102,756	792	133	Cadherin 12. Gene encodes an integral membrane protein that mediates calcium-dependent cell-cell adhesion.
Up in hybrids TOV112D	CXCL14	5q31		3		10	8,594	11	6	Chemokine (C-X-C motif) ligand 14.
Up in hybrids TOV112D	LIX1	5q15		4		2	51,002	36	7	Lix1 homolog (mouse). Limb expression 1. Unknown function
Up in hybrids TOV112D	C18orf34	18q12.1		5		5				Hypothetical protein
Up in hybrids TOV112D	PRAC	17q21		6		6	801	1	1	This gene is reported to be specifically expressed in prostate, rectum and distal colon. Sequence analysis suggests that it may play a regulatory role in the nucleus.
Up in hybrids TOV112D	FILIP1L (DOC1)	3q12.1		7		9	281,369	135	8	Filament A interacting protein 1- like. GPBP-interacting protein 90; down-regulated in ovarian cancer 1.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrids TOV112D	GNAT3	7q21.11		8		18	53,255	Not in hapmap		Guanine nucleotide binding protein, alpha transducing 3.
Up in hybrids TOV112D	OLFM3	1p22		9		16	194,456	250	69	Olfactomedin 3. Expressed in brain and retina; may be a candidate gene for disorders involving the anterior segment of the eye and the retina.
Up in hybrids TOV112D	TAIP-2	2q24.3		10		29	211,055	86	21	Family with sequence similarity 130, member A2. TGF beta induced apotosis protein.
Up in hybrids TOV112D	NELL2	12q13.11- q13.12		13		4	368,073	319	49	NEL-like 2 (chicken). Neural epidermal growth factor-like 2. Gene encodes a cytoplasmic protein that contains epidermal growth factor (EGF) -like repeats. The encoded heterotrimeric protein may be involved in cell growth regulation and differentiation.
Up in hybrids TOV112D	AXIN2	17q23-q24		19		8	33,084	14	12	Axin 2 (conductin, axil). Inhibitor β- catenin in the Wnt signalling pathway. In region of frequent loss of heterozygosity in breast cancer, neuroblastoma, and other tumors. Mutations in this gene have been associated with colorectal cancer with defective mismatch repair.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrids TOV112D	PSMAL	11q14.3		22		1	66,834	17	4	Growth-inhibiting protein 26.
Up in hybrids TOV112D	STMN2	8q21.13		24		3	54,996	86	24	Stathmin-like 2. May play a role in neuronal differentiation, and in modulating membrane interaction with the cytoskeleton during neurite outgrowth
Up in hybrid TOV21G	Clorf116	1q32.1	1		28		14,226	5	5	Specifically androgen-regulated protein. Unknown function
Up in hybrid TOV21G	C11orf17	11p15.3	2		120		8,925	10	4	Breast cancer associated gene 3; koyt binding protein 1; koyt binding protein 2; koyt binding protein 3; protein kinase A-interacting protein 1.
Up in hybrid TOV21G	STAG3	7q22.1	3		31		43,764	28	3	Stromal antigen 3. Encoded protein is a component of the cohesion complex during chromosome segregation.
Up in hybrid TOV21G	RLN1	9p24.1	4		50		4,904	8	3	Relaxin 1. Unknown function.
Up in hybrid TOV21G	VTCNI	1p13.1	5		35		67,347	54	22	V-set domain containing T cell activation inhibitor 1. Expressed on the surface of antigen-presenting cells and interact with ligands on T lymphocytes.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrid TOV21G	CASP5	11q22.2- q22.3	6		40		14,729	17	9	Caspase 5. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Overexpression of the active form of this enzyme induces apoptosis in fibroblasts. Max, a central component of the Myc/Max/Mad transcription regulation network important for cell growth, differentiation, and apoptosis, is cleaved by this protein. Target gene in the microsatellite mutator pathway for cancer.
Up in hybrid TOV21G	STK17A	7p12-p14	7		103		42,996	34	11	Gene encodes an autophosphorylated nuclear protein which acts as a positive regulator of apoptosis.
Up in hybrid TOV21G	CXorfb	Xq28	8		86		68,729	87	35	Hypothetical protein. Putative DNA binding protein, expressed in skeletal muscle, brain, heart. May be involved in gonadal function.
Up in hybrid TOV21G	F2	11p11-q12	9		12		20,300	13	4	Coagulation factor II (thrombin). Involved in first step of the coagulation cascade which ultimately results in the stemming of blood loss. Also plays a role in maintaining vascular integrity during development and postnatal life.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrid TOV21G	C10orf33	10q24.2	10		61		31,619	88	9	Oxidoreductase activity.
Up in hybrid TOV21G	ANXA13	8q24.13	16		5		56,613	98	40	Annexin A13. May play a role in the regulation of cellular growth and in signal transduction pathways.
Up in hybrid TOV21G	FLJ20701	2q36.3	25		2		247,291	339	85	Phosphotyrosine interaction domain containing 1. Increases proliferation of preadipocytes.
Up in hybrid TOV21G	SLC17A2	6p21.3	28		8		17,857	24	7	Solute carrier family 17 (sodium phosphate), member 2. May be involved in actively transporting phosphate into cells.
Up in hybrid TOV21G	MPL	1p34	31		9		16,660	3	1	Myeloproliferative leukemia virus oncogene. Encodes a transmembrane domain. Important in megakaryocyte and platelet formation.
Up in hybrid TOV21G	WDR78	1p31.2	51		7		112,002	77	23	Unknown function
Up in hybrid TOV21G	PRDM14	8p21-p12	65		6		19,542	16	14	PRDM14 mRNA is overexpressed in about 2/3 of breast cancers; moreover, immunohistochemical analysis showed that expression of PRDM14 protein is also up- regulated. Regulation of transcription.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrid TOV21G	PNOC	8p21	70		10		26,219	49	12	Prepronociceptin. Protein in part of the neuropeptide signalling pathway. May be involved in neuronal differentiation and development.
Up in hybrid TOV21G	LOC400942	2p25.1	84		3			Not in Hapmap		Hypothetical protein. Unknown function.
Up in hybrid TOV21G	C14orf110	14q32.33	114		4		4,163	Not in Hapmap		Hypothetical protein. Unknown function.
Up in hybrid TOV21G	LOC283677	15q24.1	120		1		116,832	32	9	Hypothetical protein. Unknown function.
Down in hybrid TOV21G	HIF1A	14q21-q24	1		12		52,737	16	6	Hypoxia-inducible factor 1. Transcription factor.
Down in hybrid TOV21G	IPO7	11p15.4	2		330		60,871	20	6	Importin 7. RAN binding protein 7. The importin- α/β complex and the GTPase Ran mediate nuclear import of proteins.
Down in hybrid TOV21G	KIAA0895	7p14.1	3		48		65,863			Hypothetical protein. Unknown function.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrid TOV21G	HPS6	10q24.32	4		183		2,648	2	2	Hermansky-Pudlak syndrome 6. This intronless gene encodes a protein that may play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes.
Down in hybrid TOV21G	FBXW5	9q34.3	5		28		4,286	1	1	F-box and WD repeat domain containing 5. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex, which function in phosphorylation- dependent ubiquitination.
Down in hybrid TOV21G	APOBEC3C	22q13.1- q13.2	6		3		18,110	6	3	Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C. May be RNA editing enzymes and have roles in growth or cell cycle control.
Down in hybrid TOV21G	BCAR1	16q22-q23	7		64		22,575	17	7	Breast cancer anti-estrogen resistance 1. Docking protein which plays a central coordinating role for signalling related to cell adhesion. Implicated in induction of cell migration. Overexpression confers antiestrogen resistance on breast cancer cells.
Down in hybrid TOV21G	CTPS2	Xp22	8		182		124,937	31	10	Cytidine 5'-triphosphate synthetase 2. Cancer cells that exhibit increased cell proliferation also exhibit an increased activity of this encoded

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										protein.
Down in hybrid TOV21G	LOC130951	2p13.1	9		286					Hypothetical protein. Unknown function
Down in hybrid TOV21G	NMT1	17q21.31	10		34		47,704	41	10	N-myristoyltransferase 1. Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins
Down in hybrid TOV21G	DDIT4	10pter-q26.12	13		10		2,120	1	1	DNA-damage-inducible transcript 4.
Down in hybrid TOV21G	SQSTM1	5q35	44		9		17,181	15	10	Sequestosome 1. Paget disease of bone 3. May be involved in cell differentiation, apoptosis, immune response and regulation of K(+) channels.
Down in hybrid TOV21G	PDZK11P1	1p33	77		6		7,455	1	1	PDZK1 interacting protein 1. Epithelial protein up-regulated in carcinoma.
Down in hybrid TOV21G	TUBA1	2q35	106		1		4,205	4	1	Encodes an α-tubulin, a major component of microtubules. Microtubules of the eukaryotic cytoskeleton perform essential and diverse functions. Highly conserved.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrid TOV21G	IL6	7p21	151		8		6,113	10	4	Interleukin 6. Involved in the regulation of immune response.
Down in hybrid TOV21G	NNMT	11q23.1	236		7		54,685	13	7	Nicotinamide N-methyltransferase. Protein is involved in the metabolism of drugs and xenobiotic compounds by the liver.
Down in hybrid TOV21G	CXCL1	4q21	261		4		14,276	1	1	Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha). Oncogene involved in regulation of cell trafficking of leukocytes. Also play fundamental roles in the development, homeostasis, and function of the immune system, and have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis.
Down in hybrid TOV21G	<i>PPP1CA</i>	11q13	332		5		3,750	1	1	Protein phosphatase 1, catalytic subunit, alpha isoform. Encoded protein is one of the three catalytic subunits of protein phosphatase 1 (PP1). PP1 is a serine/threonine specific protein phosphatase known to be involved in the regulation of a variety of cellular processes, such as cell division, glycogen metabolism, muscle contractility, protein

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										synthesis, and HIV-1 viral transcription.
Down in hybrid TOV21G	SPP1	4q21-q25	456		2		7,766	10	4	Secreted phosphoprotein 1. May be involved in cell-matrix interaction. Sequence suggests that the protein acts as a cytokine involved in enhancing production of interferon- γ and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity.
Up in hybrids both lines	RARB	3p24	11	22	25	2	423,531	245	102	Retinoic acid receptor-β. This receptor controls cell function by directly regulating gene expression.
Up in hybrids both lines	PRO1843	12q13.13	42	9	9	3	35,770	40	8	Eukaryotic translation initiation factor 4B. Required for the binding of mRNA to ribosomes.
Up in hybrids both lines	HEY1	8q21	15	16	16	4	3,760	2	2	Hairy/enhancer-of-split related with YRPW motif 1. Transcriptional repressors. Implicated in Notch signaling pathway; and nervous system development.
Up in hybrids both lines	AKTIP (FTS)	16q12.2	18	14	15	6	11,978	7	4	AKT interacting protein. Fused toes homolog. Regulates apoptosis. This protein interacts directly with serine/threonine kinase protein kinase B (PKB)/Akt and modulates

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										PKB activity by enhancing the phosphorylation of PKB's regulatory sites.
Up in hybrids both lines	IGHM	14q32.33	43	46	28	7	4,285	Not in hapmap		Immunoglobulin heavy constant mu. Protein has transmembrane receptor activity, which is implicated in activation of MAPK activity.
Up in hybrids both lines	NMB	15q22-qter	44	24	11	8	3,442	7	4	neuromedin B. Stimulates smooth muscle contraction in a manner similar to that of bombesin. hormone activity. signal transduction. neuropeptide signaling pathway. cell-cell signalling.
Up in hybrids both lines	MRPL46	15q24-q25	12	23	44	9	7,910	1	1	Encoded a subunit of mammalian mitochondrial ribosomal proteins, which help in protein synthesis within the mitochondrion.
Up in hybrids both lines	SERINC2	1p35.1	19	27	22	10	25,113	8	3	Serine incorporator 2. Positive regulation of transferase activity.
Up in hybrids both lines	PCDHB2	5q31	2	29	19	12	2,745	1	1	Protocadherin β 2. Specific functions are unknown but they most likely play a critical role in the establishment and function of specific cell-cell neural connections.
Up in hybrids both lines	KRT8L2	3q25.33	39	15	4	13	1,688	Not on hapmap		keratin 8 pseudogene 12. Unknown function.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Up in hybrids both lines	SP110	2q37.1	8	20	33	14	51,036	87	29	SP110 nuclear body protein. The protein can function as an activator of gene transcription and may serve as a nuclear hormone receptor coactivator. May also be involved in ribosome biogenesis and induction of myeloid cell differentiation.
Up in hybrids both lines	EPS15L2	7p12.3	16	25	18	15	2,046	Not on hapmap		Epidermal growth factor receptor pathway substrate 15-like 2. Pseudo gene. Unknown function.
Up in hybrids both lines	EPHX2	8p21-p12	7	35	24	16	53,860	50	11	Epoxide hydrolase 2, cytoplasmic. Plays role in xenobiotic metabolism by degrading potentially toxic epoxides.
Up in hybrids both lines	LOC92689	4p14	40	21	29	18	77,923	100	24	Family with sequence similarity 114, member A1. Nervous system over- expressed protein. May play a role in neuronal cell development (By similarity). Hypothetical protein.
Up in hybrids both lines	SRGAP1	12q14.2	25	58	14	19	299,033	170	60	SLIT-ROBO Rho GTPase activating protein 1. Together with CDC42 seems to be involved in the pathway mediating the repulsive signalling of Robo and Slit proteins in neuronal migration.
Up in hybrids both lines	FLJ10826	16q12.2	28	1	57	20	27,588			2-oxoglutarate and iron-dependent oxygenase domain containing 1. Hypothetical protein. Unknown

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										function.
Up in hybrids both lines	SLC38A6	14q23.1	1	18	20	21	102,550	22	5	Solute carrier family 38, member 6.
Up in hybrids both lines	AIFM2 (AMID)	10q22.1	10	11	27	23	34,711	17	13	Apoptosis-inducing factor, mitochondrion-associated, 2. Induction of apoptosis. Induced by tumour suppressor protein p53 in colon cancer cells. Down-regulated in a wide range of human tumours.
Up in hybrids both lines	PLXNA1	3q21.3	38	51	2	24	48,730	16	9	Plexin A1. Plays a role in axon guidance, invasive growth and cell migration.
Up in hybrids both lines	LHX6	9q33.2	35	52	3	26	26,221	21	12	LIM homeobox 6. The encoded protein may function as a transcriptional regulator and may be involved in the control of differentiation and development of neural and lymphoid cells.
Up in hybrids both lines	IL4	5q31.1	26	47	8	28	8,995	15	3	Interleukin 4. Regulation of B cell proliferation.
Up in hybrids both lines	MAPT	17q21.1	3	13	17	30	133,923	188	27	Microtubule-associated protein tau. Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										of neuronal polarity.
Up in hybrids both lines	C20orf6	20p12.1	30	12	39	34	70,563	70	14	ESF1, nucleolar pre-rRNA processing protein, homolog (S. cerevisiae). May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). Transcription. regulation of transcription, DNA- dependent.
Up in hybrids both lines	FLJ22662	12p13.1	6	2	30	35	64,196	41	13	Hypothetical protein. Unknown function.
Up in hybrids both lines	TMEM45A	3q12.2	27	19	10	51	84,822	77	14	Transmembrane protein 45A. Unknown function
Down in hybrids both cell lines	TPM3	1q21.2	19	87	7	9	35,776	11	6	Tropomyosin 3. Gene encodes a member of the tropomyosin family of actin-binding proteins involved in the contractile system of striated and smooth muscles and the cytoskeleton of non-muscle cells.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrids both cell lines	SFRS9	12q24.31	91	68	8	11	8,087	5	3	Splicing factor, arginine/serine-rich 9. Plays a role in constitutive splicing and can modulate the selection of alternative splice sites.
Down in hybrids both cell lines	RUVBL1	3q21	8	7	10	67	42,857	29	7	Interacts with MYC. Forms a complex which may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair.
Down in hybrids both cell lines	GAMT	19p13.3	15	124	14	5	4,464	0	0	Guanidinoacetate N- methyltransferase. Converts guanidoacetate to creatine. Important in creatine biosynthetic process.
Down in hybrids both cell lines	DNAJB1	19p13.2	7	71	18	29	3,619	6	4	DnaJ (Hsp40) homolog, subfamily B, member 1. Interacts with HSP70 and can stimulate its ATPase activity.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Down in hybrids both cell lines	SIP1	14q13	26	9	26	75	22,689	10	4	Survival of motor neuron protein interacting protein 1. The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre- mRNA splicing in the nucleus.
Down in hybrids both cell lines	DKFZP686A10121	7q21.13	20	26	59	79	44,329	70	10	GTP-binding protein 10 (putative). Hypothetical protein. Unknown function.
Down in hybrids both cell lines	BTG3	21q21.1- q21.2	21	23	104	64	19,294	5	3	BTG family, member 3. Regulation of progression through mitotic cell cycle. Putatively involved in neurogenesis in the central nervous system.
Down in hybrids both cell lines	CTSL	9q21-q22	16	18	105	66	5,874	3	2	Cathepsin L1. Encoded protein plays a major role in intracellular protein catabolism.
CHR18 TOV21G down in hybrids	ZNF532	18q21.32	1		21		123,648	73	28	Zinc finger protein 532. Nucleic acid binding activity. Transcription activity.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G down in hybrids	ACAA2	18q21.1	2		3		30,376	26	8	Acetyl-Coenzyme A acyltransferase 2. Catalyses the last step of the mitochondrial fatty acid beta- oxidation spiral.
CHR18 TOV21G down in hybrids	RALBP1	18p11.3	3		6		63,106	47	15	RalA binding protein 1. Can catalyse transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon. Serves as a scaffold protein that brings together proteins forming an endocytotic complex during interphase and also with CDC2 to switch off endocytosis.
CHR18 TOV21G down in hybrids	RAB31	18p11.3	4		15		154,284	174	85	RAB31, member RAS oncogene family. Predominantly expressed in melanocytes. Signal transduction. Small GTPase mediated signal transduction.
CHR18 TOV21G down in hybrids	C18orf55	18q22.3	5		8		10,445	14	3	TIM21-like protein, mitochondrial precursor. May participate in the translocation of transit peptide- containing proteins across the mitochondrial inner membrane (By similarity). Hypothetical protein.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G down in hybrids	KNTC2	18p11.32	6		9		45,055	63	11	NDC80 homolog, kinetochore complex component (S. cerevisiae). Mitotic sister chromatid segregation. Spindle organization and biogenesis. Vesicle-mediated transport. Phosphoinositide-mediated signalling.
CHR18 TOV21G down in hybrids	CCDC5	18q21.1	7		27		24,002	12	6	Coiled-coil domain containing 5 (spindle associated). Regulator of spindle function and integrity during the metaphase-anaphase transition.
CHR18 TOV21G down in hybrids	LAMAI	18p11.31	8		10		175,929	246	104	Laminin, α 1. Mediates the attachment, migration and organization of cells into tissues during embryonic development.
CHR18 TOV21G down in hybrids	ATP5A1	18q12-q21	9		1		20,090	15	4	ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle. This gene encodes a subunit of mitochondrial ATP synthase. Involved in ATP biosynthetic process.
CHR18 TOV21G down in hybrids	DYM	18q12-q21.1	10		7		416,908	237	47	Dymeclin. Protein is involved in normal skeletal development and brain function.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G down in hybrids	ENOSF1	18p11.32	11		25		38,729	68	16	Enolase superfamily member 1. catalytic activity. transferase activity.
CHR18 TOV21G down in hybrids	PQLC1	18q23	12		22		49,131	22	9	PQ loop repeat containing 1. Unknown function.
CHR18 TOV21G down in hybrids	LPIN2	18p11.31	13		14		94,954	81	21	Lipin 2. Unknown function.
CHR18 TOV21G down in hybrids	SMAD4	18q21.1	14		32		54,803	20	3	SMAD family member 4. Common mediator of signal transduction by TGF-beta (transforming growth factor) superfamily; May act as a tumor suppressor. Negative regulation of cell proliferation.
CHR18 TOV21G down in hybrids	DSG2	18q12.1	15		12		48,686	51	9	Desmoglein 2. Component of intercellular desmosome junctions. Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion.
CHR18 TOV21G down in hybrids	MRLC2	18p11.31	16		2		16,160	12	3	Myosin regulatory light chain MRLC2. Plays an important role in regulation of both smooth muscle and non-muscle cell contractile activity.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G down in hybrids	RPL17	18q21	19		13		4,053	5	4	Ribosomal protein L17. This gene encodes a ribosomal protein that is a component of the 60S subunit. Amino acid translation.
CHR18 TOV21G down in hybrids	NDUFV2	18p11.31- p11.2	21		4		31,632	22	7	NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa. NADH dehydrogenase (ubiquinone) activity.
CHR18 TOV21G down in hybrids	C18orf10	18q12.2	26		11		33,125	28	8	Hypothetical protein. Unknown function
CHR18 TOV21G down in hybrids	RPL17	18q21	27		5					Same as above
CHR18 TOV21G up in hybrids	SDCCAG33	18q22.3	1		19		79,171	79	30	Tee-shirt zinc finger homeobox 1. May be involved in transcriptional regulation of developmental processes.
CHR18 TOV21G up in hybrids	C18orf22	18q23	2		17		12,035	12	5	rRNA processing. Hypothetical protein. Unknown function.
CHR18 TOV21G up in hybrids	TCF4	18q21.1	3		1		408,217	183	62	Transcription factor-4 (immunoglobulin transcription factor-2). Transcription factor that

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										binds to the immunoglobulin enchancer Mu-E5/KE5-motif.
CHR18 TOV21G up in hybrids	KIAA1632	18q12.3	4		6		119,732	87	14	Hypothetical protein. Unknown function
CHR18 TOV21G up in hybrids	KIAA1012	18q12.1	5		21		113,167	66	11	May play a role in vesicular transport from endoplasmic reticulum to Golgi.
CHR18 TOV21G up in hybrids	MYO5B	18q21	6		7		372,284	519	108	Motor activity. Actin, calmodulin and nucleotide binding protein.
CHR18 TOV21G up in hybrids	EMILIN2	18p11.3	7		5		67,063	57	39	Elastin microfibril interfacer 2. May be responsible for anchoring smooth muscle cells to elastic fibres, formation of elastic fibres and vessel assembly regulation.
CHR18 TOV21G up in hybrids	RALBP1	18p11.3	8		9					Same as above
CHR18 TOV21G up in hybrids	CYB5	18q23	9		24		38,695	52	9	Cytochrome b5 type A (microsomal). A membrane bound hemoprotein which functions as an electron carrier
CHR18 TOV21G up in hybrids	RALBP1	18p11.3	10		22					Same as above

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G up in hybrids	ZNF396	18q12	11		16		10,641	13	4	Zinc finger protein 396. Isoforms 1 and 2 act as DNA-dependent transcriptional repressors.
CHR18 TOV21G up in hybrids	C18orf12	18q21.1	12		10		Unknown	Not on hapmap		Hypothetical protein. Unknown function.
CHR18 TOV21G up in hybrids	BCL2	18q21.33 18q 21.3	13		12		196,783	189	66	B-cell CLL/lymphoma 2. Regulation of progression through cell cycle and apoptosis.
CHR18 TOV21G up in hybrids	ONECUT2	18q21.1- q21.2	14		3		55,613	67	13	One cut homeobox 2. Transcriptional activator of target genes, which include genes involved in melanocyte and hepatocyte differentiation.
CHR18 TOV21G up in hybrids	EPB41L3	18p11.32	15		2		238,253	115	32	Erythrocyte membrane protein band 4.1-like 3. Differentially expressed in adenocarcinoma of the lung. Critical growth regulator in the pathogenesis of meningiomas.
CHR18 TOV21G up in hybrids	NAPG	18p11.22	16		11		24,342	26	3	N-ethylmaleimide-sensitive factor attachment protein γ . Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus.
CHR18 TOV21G up in hybrids	TWSG1	18p11.3	18		15		67,568	46	12	Twisted gastrulation homolog 1. May be involved in dorsoventral axis formation.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 TOV21G up in hybrids	LIPG	18q21.1	19		4		30,852	17	8	Lipase, endothelial. The protein encoded by this gene has substantial phospholipase activity and may be involved in lipoprotein metabolism and vascular biology.
CHR18 TOV21G up in hybrids	SLC14A2	18q12.1- q21.1	21		8		68,307	88	29	Solute carrier family 14 (urea transporter), member 2. Mediates urea transport in kidney.
CHR18 TOV21G up in hybrids	FBXO15	18q22.3	22		13		74,345	81	9	F-box protein 15. Involved in the ubiquitin cycle.
CHR18 TOV21G up in hybrids	FAM59A	18q12.1	23		14		202,985	165	34	Family with sequence similarity 59, member A. Unknown function.
CHR18 Up in hybrids TOV112D	C18orf34	18q12.1		1		2	503,097	334	34	Hypothetical protein. DNA unwinding during replication (by similarity. DNA topological change
CHR18 Up in hybrids TOV112D	SLC39A6	18q12.2		2		7	20,007	29	7	Solute carrier family 39 (zinc transporter), member 6. Zinc ion transporter.
CHR18 Up in hybrids TOV112D	NOL4	18q12		3		5	372,458	210	66	Nucleolar protein 4. Transition metal ion binding activity.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Up in hybrids TOV112D	KNTC2	18p11.32		4		4				Same as above
CHR18 Up in hybrids TOV112D	IMPACT	18q11.2- q12.1		5		18	26,811	29	8	Impact homolog (mouse). Involved in ubiquitin cycle and protein modification process.
CHR18 Up in hybrids TOV112D	CCDC5	18q21.1		6		16				Same as above
CHR18 Up in hybrids TOV112D	C18orf51	18q22.3		7		1	22,217	35	14	Hypothetical protein. Unknown function
CHR18 Up in hybrids TOV112D	LOC390773/RPL17	18q21		8		22				Same as above
CHR18 Up in hybrids TOV112D	KIAA0863	18q23		9		17	31,318	34	6	ADNP homeobox 2. May be involved in transcriptional regulation.
CHR18 Up in hybrids TOV112D	NDUFV2	18p11.31- p11.2		10		8				Same as above
CHR18 Up in hybrids TOV112D	PTPN2	18p11.3- p11.2		11		14	98,855	48	13	Protein tyrosine phosphatase, non- receptor type 2. The protein encoded is member of the protein

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
										tyrosine phosphatase (PTP) family. PTPs are known to regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Retinoblastoma binding protein 8.
CHR18 Up in hybrids TOV112D	RBBP8	18q11.2		12		3	93,155	39	4	The protein a ubiquitously expressed nuclear protein. Found among several proteins that bind directly to retinoblastoma protein, which regulates cell proliferation. This protein complexes with transcriptional co-repressor CTBP. It is also associated with BRCA1 and is thought to modulate the functions of BRCA1 in transcriptional regulation, DNA repair, and/or cell cycle checkpoint control. It is suggested that this gene may itself be a tumour suppressor acting in the same pathway as BRCA1.
CHR18 Up in hybrids TOV112D	RAB31	18p11.3		13		10				Same as above
CHR18 Up in hybrids TOV112D	RPL17	18q21		14		6				Same as above

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Up in hybrids TOV112D	C18orf49	18q21.33		15		13	unknown	Not in hapmap		Hypothetical protein. Unknown function.
CHR18 Up in hybrids TOV112D	MIB1	18q11.2		17		15	129,369	31	10	Mindbomb homolog 1. Regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors.
CHR18 Up in hybrids TOV112D	MRLC2	18p11.31		20		9				Same as above
CHR18 Up in hybrids TOV112D	OSBPL1A	18q11.1		21		12	235,782	158	69	Oxysterol binding protein-like 1A. This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors.
CHR18 Up in hybrids TOV112D	DYM	18q12-q21.1		23		11				Same as above
CHR18 Down in hybrids TOV112D	CDH2	18q11.2		1		1	226,257	303	59	Cadherin 2, type 1, N-cadherin (neuronal). Encoded protein is a calcium dependent cell-cell adhesion glycoprotein. The protein functions during gastrulation and is required for establishment of left-right asymmetry. May be involved in neuronal recognition mechanism.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Down in hybrids TOV112D	COLEC12	18pter-p11.3		5		2	181,334	288	127	Protein is a scavenger receptor, a cell surface glycoprotein that can bind to carbohydrate antigens on microorganisms facilitating their recognition and removal. May also participate in removing oxidatively damaged or apoptotic cells. phosphate transport.
CHR18 Down in hybrids TOV112D	APCDD1	18p11.22		3		3	34,070	55	16	Adenomatosis polyposis coli down- regulated 1. May play a role in colorectal tumorigenesis. May be a developmental target gene of the Wnt/β-catenin pathway
CHR18 Down in hybrids TOV112D	FAM38B	18p11.22		4		4	26,965	39	13	Family with sequence similarity 38, member B. Unknown function
CHR18 Down in hybrids TOV112D	EPB41L3	18p11.32		11		5				Same as above
CHR18 Down in hybrids TOV112D	LOC284214	18p11.31		19		6	unknown	Not in hapmap		Hypothetical protein. Unknown function

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Down in hybrids TOV112D	FHOD3	18q12		27		7	482,317	527	141	Formin homology 2 domain containing 3. Involved in actin cytoskeleton organization and biogenesis.
CHR18 Down in hybrids TOV112D	KATNAL2	18q21.1		14		8	100,877	51	14	Katanin p60 subunit A-like 2. ATP binding activity.
CHR18 Down in hybrids TOV112D	EPB41L3	18p11.32		20		9				Same as above
CHR18 Down in hybrids TOV112D	ZNF532	18q21.32		40		10				Same as above
CHR18 Down in hybrids TOV112D	PMAIP1	18q21.32		16		11	4,301	3	3	Phorbol-12-myristate-13-acetate- induced protein 1. Adult T cell leukemia-derived PMA-responsive.
CHR18 Down in hybrids TOV112D	P15RS	18q12.2		24		12	77,729	41	10	Cyclin-dependent kinase 2B- inhibitor-related protein. May act as a negative regulator of cyclin D1 (CCND1) and cyclin E (CCNE1) in the cell cycle. Up-regulated in cells overexpressing CDKN2B.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Down in hybrids TOV112D	SMCHD1	18p11.32		15		13	148,281	Not on Hapmap		Structural maintenance of chromosomes flexible hinge domain containing 1.
CHR18 Down in hybrids TOV112D	C18orf17	18q11.2		33		14	140,255	38	20	Hypothetical protein. Unknown function
CHR18 Down in hybrids TOV112D	NEDD4L	18q21		2		15	353,592	446	116	Neural precursor cell expressed, developmentally down-regulated 4- like. Unknown function
CHR18 Down in hybrids TOV112D	DSC3	18q12.1		13		19	51,659	84	27	Desmocollin 3. The protein encoded by this gene is a calcium-dependent glycoprotein. Found primarily in epithelial cells, they are required for cell adhesion and desmosome formation.
CHR18 Down in hybrids TOV112D	PHLPP	18q21.33		7		23	264,933	146	46	PH domain and leucine rich repeat protein phosphatise. Protein regulates the balance between cell survival and apoptosis. May act as a negative regulator of K-Ras signalling in the membrane rafts.

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
CHR18 Down in hybrids TOV112D	TGIF	18p11.3		8		24	46,338	37	19	TGFB-induced factor homeobox 1. The protein is an active transcriptional co-repressor of SMAD2 and may participate in the transmission of nuclear signals during development and in the adult. Negative regulation of transcription from RNA polymerase II promoter.
CHR18 Down in hybrids TOV112D	YES1	18p11.31- p11.21		10		27	90,740	52	17	V-yes-1 Yamaguchi sarcoma viral oncogene homolog 1. This gene is the cellular homolog of the Yamaguchi sarcoma virus oncogene. The encoded protein has tyrosine kinase activity and belongs to the src family of proteins.
CHR18 Down in hybrids TOV112D	YES1	18p11.31- p11.21		6		33				Same as above
CHR18 Down in hybrids TOV112D	LOC441805	18p11.32		9		40				Gene record has been discontinued.
CHR18 Down in hybrids TOV112D	PTPN2	18p11.3- p11.2		12		51				Same as above

List	Gene	Cytoband	21G pval hybrid rank	112D pval hybrid rank	21G FC* hybrid rank	112D FC* hybrid rank	Gene Size (bp)	No. Criteria SNPs [§]	No. tSNPs	Function
Breakpoint region TOV112D	OSBPL1A	18q11.1		21		12				Same as above
Breakpoint region TOV112D	RBBP8	18q11.2		12		3	93,154	40	4	Same as above
Breakpoint region TOV112D	SNRPD1	18q11.2		16		20	18,108	5	1	Small nuclear ribonucleoprotein D1 polypeptide 16kDa. Sm-D autoantigen. Protein may act as a charged protein scaffold to promote SNRNP assembly or strengthen SNRNP-SNRNP interactions with RNA.
Breakpoint region TOV112D	MIB1	18q11.2		17		15	129,369	31	10	Same as above.
Breakpoint region TOV112D	ZNF521	18q11.2		19		19	290,226	220	65	Zinc finger protein 521. Transcription factor involved in regulation of transcription.
Breakpoint region TOV112D	IMPACT	18q11.2- q12.1		5		18	26,810	29	8	Highly conserved. Unknown function

* FC - expression fold change between hybrids and parental; § Criteria SNPs - minor allele frequency ≥ 0.05 ; Hardy-Weinberg ≥ 0.01 Ranks of differential gene expression of hybrid clones over parental expression: 21G – TOV21G, 112D – TOV112D, pval – P-value,

Gene	tSNP	Study		Number	of cases			Number o	of controls	
Gene	ISINF	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		GEOCS	88	157	72	317	98	205	114	417
BRAF	rs10487888	MALOVA	92	219	132	443	274	582	352	1208
DKAF	1810487888	SEARCH	124	372	221	717	173	419	262	854
		USC	57	86	50	193	67	90	58	215
	rs1733832	MALOVA	377	58	3	438	1047	150	3	1200
BRAF	181/33832	SEARCH	629	78	4	711	754	88	1	843
		GEOCS	174	111	26	311	250	141	21	412
		MALOVA	268	151	17	436	681	427	75	1183
BRAF	rs1267622	SEARCH	416	258	34	708	497	312	43	852
		UKOPS	54	35	8	97	129	82	13	224
		USC	106	64	18	188	117	69	23	209
		GEOCS	166	124	26	316	202	178	39	419
		MALOVA	126	120	28	274	370	322	73	765
BRAF	rs13241719	SEARCH	316	333	63	712	374	370	108	852
		UKOPS	54	31	15	100	112	101	25	238
		USC	106	68	16	190	118	80	16	214
		GEOCS	282	30	3	315	364	42	2	408
		MALOVA	367	53	1	421	1024	165	5	1194
BRAF	rs17695623	SEARCH	598	99	3	700	713	105	7	825
		UKOPS	86	17	0	103	216	36	0	252
		USC	176	15	4	195	191	30	1	222
BRAF	rs17161747	GEOCS	282	34	4	320	373	41	5	419

Appendix II-A: Genotype distributions of tagging SNPs in BRAF, ERBB2, KRAS, NMI and PIK3CA (by study)

G		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	371	64	4	439	1065	132	0	1197
		SEARCH	647	66	0	713	771	76	4	851
		UKOPS	92	5	1	98	215	18	2	235
		USC	173	15	2	190	187	18	2	207
		GEOCS	239	71	12	322	326	84	8	418
		MALOVA	322	111	7	440	884	282	23	1189
BRAF	rs10281173	SEARCH	526	175	10	711	651	185	17	853
		UKOPS	65	26	3	94	169	50	6	225
		USC	140	41	7	188	155	57	8	220
		GEOCS	255	62	3	320	318	98	5	421
		MALOVA	331	89	12	432	917	234	17	1168
BRAF	rs17623382	SEARCH	542	163	7	712	646	188	16	850
		UKOPS	78	17	1	96	189	46	5	240
		USC	149	41	3	193	179	40	2	221
		GEOCS	237	74	12	323	325	86	8	419
		MALOVA	318	112	6	436	888	284	24	1196
BRAF	rs6944385	SEARCH	524	177	10	711	646	185	18	849
		UKOPS	61	28	3	92	161	49	5	215
		USC	138	42	6	186	150	55	9	214
		GEOCS	182	112	14	308	239	136	29	404
EDDD2		MALOVA	263	159	21	443	700	458	49	1207
ERBB2	rs2952155	SEARCH	391	272	50	713	485	322	44	851
		USC	105	78	10	193	117	88	11	216
ERBB2	rs2952156	GEOCS	152	162	0	314	194	219	0	413

C	46100	C4		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	216	186	41	443	581	536	90	1207
		SEARCH	323	316	75	714	405	365	83	853
		UKOPS	48	49	0	97	94	129	1	224
		USC	83	104	0	187	92	124	0	216
		GEOCS	190	97	16	303	245	120	19	384
		MALOVA	255	162	26	443	695	427	84	1206
ERBB2	rs1801200	SEARCH	408	259	43	710	507	297	40	844
		UKOPS	71	31	3	105	159	85	19	263
		USC	123	61	10	194	146	64	9	219
		GEOCS	267	49	7	323	340	78	3	421
		MALOVA	363	78	2	443	990	201	7	1198
KRAS	rs12305513	SEARCH	599	112	5	716	682	157	14	853
		UKOPS	89	13	0	102	205	45	2	252
		USC	158	32	2	192	166	40	5	211
		GEOCS	97	147	75	319	127	202	89	418
		MALOVA	109	218	110	437	298	599	288	1185
KRAS	rs12822857	SEARCH	211	347	150	708	250	395	198	843
		UKOPS	32	56	16	104	69	122	56	247
		USC	57	75	40	172	65	86	57	208
KRAS	rs10842508	GEOCS	199	102	21	322	239	157	25	421
		MALOVA	247	164	27	438	670	460	65	1195
		SEARCH	403	269	43	715	491	304	58	853
		UKOPS	65	33	6	104	146	88	15	249

G		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		USC	107	68	11	186	121	78	18	217
		GEOCS	91	150	80	321	113	213	94	420
		MALOVA	117	216	104	437	305	586	287	1178
KRAS	rs12579073	SEARCH	203	343	157	703	237	401	206	844
		UKOPS	28	53	19	100	62	126	49	237
		USC	58	91	44	193	62	100	59	221
		GEOCS	274	46	4	324	346	74	3	423
l		MALOVA	362	69	2	433	937	200	15	1152
KRAS	rs10842513	SEARCH	591	115	5	711	720	121	5	846
l		UKOPS	78	22	0	100	197	41	4	242
		USC	155	31	5	191	185	29	2	216
		GEOCS	238	68	9	315	289	118	6	413
		MALOVA	312	115	11	438	841	325	27	1193
KRAS	rs4623993	SEARCH	496	186	19	701	615	203	19	837
		UKOPS	63	26	2	91	161	59	8	228
		USC	147	41	5	193	153	60	7	220
		GEOCS	130	141	52	323	171	185	66	422
		MALOVA	150	212	73	435	409	563	201	1173
KRAS	rs6487464	SEARCH	280	324	107	711	343	383	127	853
		UKOPS	34	46	9	89	94	108	30	232
		USC	79	87	28	194	85	95	35	215
KRAS	rs10842514	GEOCS	97	157	67	321	134	195	88	417
		MALOVA	144	201	87	432	386	577	208	1171

C	ACNID	C4		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		SEARCH	213	333	171	717	253	421	178	852
		UKOPS	29	48	19	96	77	110	48	235
		USC	60	84	37	181	67	97	46	210
		GEOCS	271	41	2	314	365	41	1	407
KRAS	rs11047917	MALOVA	386	54	3	443	1052	147	5	1204
		SEARCH	645	62	2	709	741	102	2	845
		GEOCS	216	85	3	304	281	110	8	399
		MALOVA	321	99	5	425	909	245	11	1165
NMI	rs394884	SEARCH	507	170	8	685	620	198	8	826
		UKOPS	69	28	3	100	171	80	3	254
		USC	132	41	10	183	141	64	4	209
NMI	rs11551174	MALOVA	394	41	1	436	1048	141	5	1194
11/1/11	1811551174	SEARCH	629	78	6	713	762	80	4	846
		GEOCS	231	83	3	317	300	107	10	417
		MALOVA	328	85	6	419	955	222	15	1192
NMI	rs289831	SEARCH	545	158	9	712	668	176	7	851
		UKOPS	69	22	0	91	106	45	0	151
		USC	84	29	2	115	78	29	1	108
		GEOCS	98	166	56	320	164	187	69	420
		MALOVA	146	199	92	437	384	584	229	1197
NMI	rs3771886	SEARCH	250	327	129	706	294	420	134	848
		UKOPS	29	51	21	101	99	120	30	249
		USC	66	84	39	189	70	100	43	213
NMI	rs11683487	GEOCS	91	123	56	270	111	170	83	364

G		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	140	192	83	415	356	549	257	1162
		SEARCH	162	204	124	490	164	321	138	623
		UKOPS	32	46	12	90	45	113	40	198
		USC	66	87	41	194	78	96	44	218
		GEOCS	237	82	2	321	300	106	13	419
		MALOVA	340	91	7	438	957	231	14	1202
NMI	rs2113509	SEARCH	548	156	9	713	666	174	6	846
		UKOPS	75	28	1	104	189	68	1	258
		USC	141	44	4	189	162	56	1	219
DIV2CA		MALOVA	393	48	0	441	1083	115	0	1198
PIK3CA	rs2865084	SEARCH	630	79	0	709	758	83	0	841
		GEOCS	211	103	10	324	293	116	10	419
		MALOVA	311	114	15	440	814	318	30	1162
PIK3CA	rs7621329	SEARCH	487	195	19	701	583	237	23	843
		UKOPS	65	14	5	84	130	46	4	180
		USC	129	55	6	190	147	62	6	215
		GEOCS	243	64	3	310	337	61	7	405
		MALOVA	351	71	4	426	956	215	13	1184
PIK3CA	rs1517586	SEARCH	580	109	7	696	697	141	7	845
		UKOPS	85	14	2	101	209	39	6	254
		USC	165	30	0	195	176	41	3	220
PIK3CA	rs2699905	GEOCS	157	113	25	295	231	124	37	392
		MALOVA	264	144	32	440	658	440	103	1201
		SEARCH	392	248	70	710	487	288	72	847

C	ACNID	C4		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		UKOPS	50	34	8	92	117	53	30	200
		USC	126	57	10	193	118	75	23	216
		GEOCS	277	46	0	323	360	56	3	419
		MALOVA	393	43	3	439	1044	144	8	1196
<i>РІКЗСА</i>	rs7641889	SEARCH	627	82	6	715	731	115	2	848
		UKOPS	87	12	1	100	231	27	1	259
		USC	168	22	1	191	192	24	1	217
		GEOCS	257	52	3	312	314	82	5	401
		MALOVA	348	80	6	434	932	235	15	1182
PIK3CA	rs7651265	SEARCH	568	128	12	708	657	186	5	848
		UKOPS	79	14	2	95	205	34	0	239
		USC	145	43	1	189	179	33	1	213
		GEOCS	223	98	1	322	312	102	9	423
		MALOVA	335	94	11	440	857	320	26	1203
РІКЗСА	rs7640662	SEARCH	493	200	19	712	619	202	25	846
		UKOPS	65	20	2	87	164	53	10	227
		USC	149	39	5	193	155	58	4	217
		GEOCS	91	165	59	315	100	203	104	407
		MALOVA	98	218	115	431	315	605	268	1188
<i>РІКЗСА</i>	rs2677760	SEARCH	209	322	179	710	230	416	201	847
		UKOPS	23	56	21	100	67	122	72	261
		USC	45	104	46	195	62	116	44	222

AA – common homozygous; Aa – heterozygous; aa – rare homozygous;

Appendix II-B: Genotype distributions of tSNPs in AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8,

Gene	tSNP	Study		Number	of cases			Number o	of controls	
Gene	ISNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	406	34	1	441	1053	91	5	1149
AIFM2	rs2394655	SEARCH	768	59	1	828	1123	85	0	1208
		UKOPS	443	36	3	482	526	39	2	567
		MALOVA	352	78	8	438	862	246	19	1127
AIFM2	rs7908957	SEARCH	612	175	20	807	883	275	21	1179
		UKOPS	363	103	8	474	443	113	11	567
		MALOVA	308	42	1	351	767	124	8	899
AIFM2	rs1053495	SEARCH	727	109	7	843	1046	163	11	1220
		UKOPS	430	70	3	503	504	77	4	585
		MALOVA	234	179	30	443	589	405	91	1085
AIFM2	rs2894111	SEARCH	437	333	70	840	600	505	108	1213
		UKOPS	253	194	40	487	297	223	43	563
	2204656	MALOVA	303	125	12	440	746	351	37	1134
AIFM2	rs2394656	UKOPS	310	143	20	473	376	167	26	569
AIFM2	rs6480440	MALOVA	259	138	25	422	697	368	75	1140
		MALOVA	342	94	6	442	928	212	22	1162
AIFM2	rs2280201	SEARCH	631	187	13	831	925	260	23	1208
		UKOPS	372	101	9	482	451	118	6	575
		MALOVA	373	65	2	440	1017	152	4	1173
AIFM2	rs10999147	SEARCH	695	148	2	845	1032	178	12	1222
		UKOPS	418	77	5	500	488	78	9	575
AIFM2	rs3750772	MALOVA	383	57	3	443	1043	129	5	1177
		SEARCH	740	72	3	815	1059	128	3	1190

RGC32, RUVBL1 and STAG3

C		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		UKOPS	435	47	3	485	529	48	0	577
		MALOVA	160	198	81	439	423	533	217	1173
AIFM2	rs4295944	SEARCH	284	400	158	842	404	602	204	1210
		UKOPS	164	238	91	493	201	269	104	574
AIEMO		SEARCH	635	183	14	832	863	231	22	1116
AIFM2	rs2394644	UKOPS	373	108	11	492	438	122	9	569
		MALOVA	221	105	14	340	602	241	32	875
AIFM2	rs10999152	SEARCH	535	239	23	797	806	322	41	1169
		UKOPS	329	135	17	481	401	143	22	566
		MALOVA	145	211	85	441	362	553	235	1150
AKTIP	rs9931702	UKOPS	149	224	103	476	183	278	111	572
		MALOVA	265	78	5	348	670	214	14	898
AKTIP	rs17801966	UKOPS	344	128	8	480	426	130	15	571
		MALOVA	212	182	45	439	557	471	124	1152
AKTIP	rs7189819	SEARCH	398	354	73	825	538	536	126	1200
		UKOPS	236	190	55	481	275	242	54	571
AKTIP	rs3743772	MALOVA	371	40	2	413	971	119	3	1093
		MALOVA	114	204	118	436	268	578	298	1144
AXIN2	rs11868547	SEARCH	185	314	141	640	293	456	238	987
		UKOPS	127	249	107	483	160	297	116	573
		MALOVA	175	196	70	441	492	524	157	1173
AXIN2	rs7591	SEARCH	308	412	117	837	446	512	168	1126
		UKOPS	194	239	68	501	219	277	86	582
		MALOVA	274	143	22	439	721	345	43	1109
AXIN2	rs4074947	SEARCH	508	303	27	838	775	383	55	1213
		UKOPS	297	181	20	498	356	188	32	576

C		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	348	90	2	440	934	225	18	1177
AXIN2	rs7210356	SEARCH	658	173	12	843	972	235	13	1220
		UKOPS	395	92	7	494	447	125	5	577
AVINO		SEARCH	448	312	66	826	648	475	83	1206
AXIN2	rs11655966	UKOPS	272	173	30	475	313	228	32	573
AVINO		SEARCH	203	430	191	824	332	574	296	1202
AXIN2	rs4541111	UKOPS	132	234	107	473	141	289	138	568
4 1/ 1/ 1/2	4701171	MALOVA	173	136	36	345	475	352	69	896
AXIN2	rs4791171	SEARCH	412	351	77	840	619	491	103	1213
AXIN2	rs11079571	SEARCH	573	238	28	839	869	310	27	1206
		MALOVA	285	138	17	440	757	332	40	1129
AXIN2	rs3923087	SEARCH	498	289	49	836	741	417	50	1208
		UKOPS	295	180	29	504	338	203	32	573
		MALOVA	171	208	64	443	422	570	165	1157
AXIN2	rs3923086	SEARCH	274	392	160	826	409	585	211	1205
		UKOPS	166	216	102	484	175	296	102	573
CASD5	519604	MALOVA	105	225	108	438	369	568	258	1195
CASP5	rs518604	SEARCH	262	411	158	831	375	628	201	1204
CASP5	rs523104	SEARCH	223	424	177	824	330	617	252	1199
		MALOVA	365	75	2	442	933	193	22	1148
CASP5	rs3181328	SEARCH	702	116	11	829	1013	179	14	1206
		UKOPS	398	78	1	477	491	71	9	571
CACDE		SEARCH	647	146	10	803	930	235	12	1177
CASP5	rs17446518	UKOPS	360	106	22	488	451	97	26	574
CASP5	rs9651713	MALOVA	363	73	4	440	936	197	9	1142
		SEARCH	634	173	11	818	943	235	11	1189

C	40.000	G4 J		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		UKOPS	367	97	8	472	427	130	10	567
CACD5		MALOVA	298	128	13	439	774	359	31	1164
CASP5	rs3181175	SEARCH	554	257	32	843	800	379	36	1215
		MALOVA	370	68	3	441	986	179	9	1174
CASP5	rs3181174	SEARCH	729	103	4	836	1036	165	6	1207
		UKOPS	436	63	4	503	508	72	1	581
		MALOVA	131	183	37	351	363	416	119	898
CASP5	rs2282657	SEARCH	363	366	114	843	510	586	123	1219
		UKOPS	214	234	52	500	241	274	65	580
		MALOVA	90	236	115	441	235	570	324	1129
CASP5	rs507879	SEARCH	167	407	251	825	239	609	346	1194
		UKOPS	104	251	147	502	110	249	157	516
		MALOVA	188	188	61	437	541	488	137	1166
FILIP1L	rs796977	SEARCH	622	190	13	825	912	261	26	1199
		UKOPS	362	108	8	478	436	123	9	568
		MALOVA	145	205	88	438	407	536	216	1159
FILIP1L	rs793446	SEARCH	292	415	135	842	438	582	196	1216
		UKOPS	180	233	80	493	213	274	85	572
		MALOVA	379	59	1	439	958	151	6	1115
FILIP1L	rs3921767	SEARCH	718	114	4	836	1062	148	9	1219
		UKOPS	444	51	3	498	453	69	3	525
		MALOVA	349	81	9	439	954	200	30	1184
FILIP1L	rs17338680	SEARCH	677	162	5	844	979	225	17	1221
		UKOPS	390	105	8	503	460	116	8	584
FILIP1L	rs9864437	MALOVA	265	135	39	439	685	415	66	1166
		SEARCH	507	300	38	845	739	418	64	1221

C	ACNID	C4		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		UKOPS	312	161	29	502	372	184	29	585
		MALOVA	161	212	67	440	418	534	192	1144
FILIP1L	rs6788750	SEARCH	165	241	88	494	270	402	146	818
		UKOPS	161	239	80	480	186	291	93	570
		MALOVA	294	121	19	434	781	314	40	1135
<i>FILIP1L</i>	rs12494994	SEARCH	562	260	17	839	845	324	43	1212
		MALOVA	352	83	8	443	889	255	15	1159
RBBP8	rs7239066	SEARCH	674	146	9	829	942	251	14	1207
		UKOPS	365	111	5	481	469	99	6	574
		MALOVA	403	37	2	442	1058	96	3	1157
RBBP8	rs11082221	SEARCH	777	50	1	828	1134	72	2	1208
		UKOPS	432	45	1	478	534	37	1	572
		MALOVA	187	197	51	435	444	507	155	1106
RBBP8	rs4474794	SEARCH	342	378	115	835	479	571	165	1215
		UKOPS	201	229	64	494	230	261	83	574
RBBP8	rs9304261	MALOVA	207	122	17	346	531	291	66	888
		MALOVA	344	90	9	443	853	228	18	1099
RGC32	rs10467472	SEARCH	628	193	16	837	914	282	23	1219
		UKOPS	367	112	10	489	426	131	12	569
		MALOVA	272	71	6	349	728	184	8	920
RGC32	rs3783194	SEARCH	662	171	11	844	951	254	13	1218
		UKOPS	394	102	1	497	465	112	8	585
		MALOVA	349	83	8	440	956	201	11	1168
RGC32	rs11618371	SEARCH	664	168	9	841	971	233	11	1215
		UKOPS	403	82	5	490	459	110	7	576
RGC32	rs9532824	MALOVA	383	59	2	444	929	161	11	1101

C		G(1		Number	of cases			Number o	of controls	
Gene	tSNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		SEARCH	720	119	2	841	1037	178	8	1223
		UKOPS	437	58	2	497	506	58	4	568
DCC22		MALOVA	230	171	35	436	636	451	76	1163
RGC32	rs995845	SEARCH	468	317	53	838	657	467	78	1202
		MALOVA	306	120	14	440	771	291	22	1084
RGC32	rs9594551	SEARCH	630	194	14	838	912	286	21	1219
		UKOPS	339	135	14	488	396	145	19	560
		MALOVA	252	169	19	440	658	449	62	1169
RGC32	rs975590	SEARCH	474	304	46	824	700	424	72	1196
		UKOPS	287	171	27	485	343	196	36	575
		MALOVA	341	86	7	434	895	253	22	1170
RUVBL1	rs9860614	SEARCH	649	175	19	843	973	233	13	1219
		UKOPS	386	107	7	500	457	114	6	577
	12062604	SEARCH	450	283	55	788	709	383	63	1155
RUVBL1	rs13063604	UKOPS	266	176	36	478	333	202	34	569
		MALOVA	163	218	57	438	450	544	171	1165
RUVBL1	rs3732402	SEARCH	290	425	127	842	478	559	180	1217
		MALOVA	88	185	76	349	242	423	233	898
RUVBL1	rs7650365	SEARCH	206	445	168	819	313	594	297	1204
		UKOPS	141	222	114	477	151	270	149	570
		MALOVA	237	180	25	442	658	462	69	1189
RUVBL1	rs4857836	SEARCH	443	341	60	844	648	482	90	1220
		UKOPS	264	195	42	501	306	226	52	584
		MALOVA	321	114	5	440	855	271	20	1146
RUVBL1	rs9821568	SEARCH	604	190	22	816	866	301	30	1197
		UKOPS	344	117	16	477	397	152	19	568

Como	tSNP	Study		Number	of cases		Number of controls			
Gene	ISNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
		MALOVA	266	146	28	440	705	396	64	1165
<i>STAG3</i> rs11762932	SEARCH	518	287	39	844	753	412	55	1220	
	UKOPS	304	179	20	503	362	192	26	580	
STAG3	rs2246713	SEARCH	218	415	189	822	290	621	286	1197
STAGS	182240713	UKOPS	123	248	102	473	162	285	121	568
		MALOVA	263	148	29	440	608	472	87	1167
STAG3	rs1637001	SEARCH	451	324	68	843	612	505	99	1216
		UKOPS	269	193	39	501	321	222	41	584

AA – common homozygous; Aa – heterozygous; aa – rare homozygous;

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1680	All	1.09 (0.93-1.28)	1.02 (0.86-1.22)	0.902
				804	Serous	1.21 (0.99-1.49)	1.09 (0.87-1.37)	0.5747
BRAF	rs10487888	0.47	2694	251	Endometrioid	0.84 (0.61-1.17)	0.88 (0.61-1.25)	0.5007
				180	Mucinous	1.32 (0.86-2.03)	1.61 (1.03-2.53)	0.0357
				125	Clear cell	1.04 (0.66-1.64)	0.88 (0.52-1.48)	0.5947
				1159	All	1.08 (0.86-1.36)	3.39 (0.96-11.89)	0.1985
				525	Serous	1.15 (0.86-1.53)	2.99 (0.66-13.46)	0.1847
BRAF	rs1733832	0.06	2043	182	Endometrioid	1.25 (0.79-1.98)	3.18 (0.33-30.71)	0.2301
				135	Mucinous	0.58 (0.29-1.16)	15.23 (3.16-73.29)	0.9086
				95	Clear cell	1.18 (0.63-2.20)	5.89 (0.62-55.68)	0.335
				1751	All	0.99 (0.87-1.12)	0.97 (0.75-1.26)	0.7894
				831	Serous	1.04 (0.88-1.22)	0.90 (0.64-1.26)	0.9055
BRAF	rs1267622	0.24	2880	268	Endometrioid	0.76 (0.58-1.01)	1.06 (0.63-1.77)	0.2725
				187	Mucinous	0.67 (0.48-0.94)	0.71 (0.35-1.43)	0.0278
				135	Clear cell	1.24 (0.87-1.78)	1.12 (0.53-2.37)	0.3392
				1602	All	0.98 (0.85-1.12)	0.86 (0.69-1.08)	0.2715
				733	Serous	1.01 (0.85-1.20)	0.91 (0.68-1.23)	0.7063
BRAF	rs13241719	0.31	2488	246	Endometrioid	0.93 (0.70-1.23)	0.88 (0.56-1.39)	0.5238
				176	Mucinous	1.14 (0.82-1.58)	0.98 (0.57-1.67)	0.7484
				123	Clear cell	0.79 (0.54-1.16)	0.57 (0.28-1.16)	0.0734
BRAF	rs17695623	0.07	2901	1744	All	0.97 (0.81-1.16)	1.14 (0.52-2.46)	0.8642
				829	Serous	1.04 (0.83-1.31)	1.19 (0.45-3.10)	0.6437

Appendix III-A: Genotype specific ratios of BRAF tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				264	Endometrioid	0.99 (0.68-1.45)	0.63 (0.08-4.85)	0.8421
				186	Mucinous	0.47 (0.26-0.86)	0.79 (0.10-6.08)	0.0191
				135	Clear cell	1.25 (0.78-2.03)	1.37 (0.18-10.56)	0.3393
				1771	All	1.13 (0.93-1.38)	1.29 (0.57-2.93)	0.1802
				847	Serous	1.04 (0.80-1.34)	1.43 (0.53-3.82)	0.5816
BRAF	rs17161747	0.5	2909	272	Endometrioid	1.03 (0.67-1.58)	2.85 (0.91-8.91)	0.3223
				191	Mucinous	1.14 (0.70-1.84)	0.96 (0.12-7.47)	0.6521
				132	Clear cell	1.42 (0.84-2.41)	1.55 (0.20-12.12)	0.1738
				1764	All	1.01 (0.87-1.17)	1.01 (0.61-1.66)	0.9035
				841	Serous	0.97 (0.80-1.18)	0.98 (0.51-1.86)	0.7935
BRAF	rs17623382	0.12	2900	270	Endometrioid	0.87 (0.64-1.20)	0.22 (0.03-1.62)	0.1391
				186	Mucinous	1.08 (0.76-1.55)	1.74 (0.67-4.51)	0.3566
				134	Clear cell	0.90 (0.58-1.40)	1.86 (0.65-5.30)	0.8512
				1758	All	1.14 (0.99-1.32)	0.99 (0.66-1.50)	0.1407
				840	Serous	1.25 (1.05-1.50)	0.78 (0.44-1.38)	0.114
BRAF	rs6944385	0.14	2893	268	Endometrioid	0.98 (0.72-1.33)	1.18 (0.53-2.62)	0.9193
				187	Mucinous	0.63 (0.42-0.95)	0.88 (0.31-2.47)	0.057
				133	Clear cell	1.41 (0.96-2.09)	1.54 (0.54-4.34)	0.0691

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Appendix III-B: Haplotype-specific risks of BRAF on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.07 (0.97-1.19)	0.182
			Serous	1.07 (0.93-1.24)	0.325
BRAF	h10000000	21.5	Endometrioid	1 (0.8-1.27)	0.966
			Mucinous	1.28 (0.99-1.66)	0.059
			Clear cell	1.24 (0.91-1.69)	0.174
			All	0.88 (0.76-1.01)	0.07
			Serous	0.99 (0.86-1.15)	0.921
BRAF	h10010000	19.4	Endometrioid	1.04 (0.82-1.31)	0.769
			Mucinous	0.92 (0.69-1.22)	0.547
			Clear cell	0.67 (0.46-0.97)	0.033
			All	0.90 (0.78-1.04)	0.15
			Serous	0.96 (0.83-1.12)	0.605
BRAF	h00000000	17.3	Endometrioid	1.06 (0.84-1.35)	0.612
			Mucinous	0.98 (0.73-1.31)	0.881
			Clear cell	0.83 (0.57-1.19)	0.303
	1		All	0.96 (0.82-1.12)	0.57
			Serous	1.01 (0.85-1.2)	0.931
BRAF	h10010010	11.8	Endometrioid	0.87 (0.65-1.17)	0.36
			Mucinous	1.19 (0.87-1.62)	0.282
			Clear cell	1.03 (0.7-1.51)	0.895
			All	0.81 (0.68-0.95)	0.012
			Serous	0.8 (0.66-0.98)	0.028
BRAF	h00100000	10.3	Endometrioid	0.88 (0.64-1.21)	0.439
			Mucinous	0.87 (0.59-1.27)	0.463
			Clear cell	0.86 (0.55-1.34)	0.508
			All	0.94 (0.78-1.13)	0.49
			Serous	1.09 (0.88-1.35)	0.444
BRAF	h00101001	6.8	Endometrioid	0.99 (0.69-1.42)	0.947
			Mucinous	0.54 (0.31-0.93)	0.027
			Clear cell	1.36 (0.87-2.11)	0.175
			All	1.15 (0.95-1.39)	0.14
			Serous	1.2 (0.97-1.5)	0.095
BRAF	h01100001	6.1	Endometrioid	1.17 (0.81-1.69)	0.398
			Mucinous	0.93 (0.58-1.48)	0.76
			Clear cell	1.32 (0.81-2.16)	0.262
			All	1.08 (0.88-1.31)	0.48
			Serous	1.11 (0.88-1.4)	0.382
BRAF	h00000100	5.2	Endometrioid	1.17 (0.81-1.69)	0.405
			Mucinous	1.11 (0.7-1.75)	0.661
			Clear cell	1.36 (0.84-2.22)	0.213
			All	0.6 (0.4-0.91)	0.007
			Serous	0.52 (0.28-0.97)	0.038
BRAF	Rare	0.6	Endometrioid	0.52 (0.17-1.61)	0.258
	-		Mucinous	0.87 (0.38-1.99)	0.748
				· /	

susceptibility

OR - odds ratio, CI - confidence interval; SNP order in haplotype (5' to 3') – rs10487888, rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1667	All	1.01 (0.89-1.15)	1.11 (0.84-1.47)	0.5745
				795	Serous	0.93 (0.79-1.10)	0.97 (0.67-1.40)	0.4832
ERBB2	rs2952155	0.24	2678	250	Endometrioid	1.06 (0.81-1.40)	1.26 (0.73-2.20)	0.4297
				177	Mucinous	1.32 (0.96-1.81)	1.11 (0.54-2.27)	0.175
				126	Clear cell	0.95 (0.65-1.39)	1.20 (0.56-2.55)	0.9093
				1766	All	0.97 (0.86-1.10)	1.15 (0.89-1.49)	0.7416
				840	Serous	0.92 (0.79-1.08)	1.24 (0.90-1.72)	0.8924
ERBB2	rs2952156	0.29	2912	269	Endometrioid	0.95 (0.73-1.23)	1.05 (0.61-1.78)	0.8719
				186	Mucinous	1.25 (0.92-1.71)	0.81 (0.39-1.65)	0.5535
				135	Clear cell	0.89 (0.63-1.28)	0.89 (0.41-1.90)	0.5537
				1766	All	1.04 (0.92-1.19)	1.01 (0.77-1.31)	0.6401
				847	Serous	1.04 (0.88-1.22)	0.86 (0.60-1.23)	0.8257
ERBB2	rs1801200	0.22	2916	263	Endometrioid	1.16 (0.88-1.52)	1.71 (1.05-2.76)	0.0389
				188	Mucinous	0.79 (0.57-1.11)	0.82 (0.41-1.66)	0.2007
				134	Clear cell	1.51 (1.05-2.17)	1.30 (0.61-2.76)	0.0564

Appendix III-C: Genotype specific risks of *ERBB2* tSNPs on ovarian cancer susceptibility

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

susceptibility

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	0.95 (0.87-1.04)	0.284
			Serous	0.99 (0.88-1.11)	0.808
ERBB2	h000	53.6	Endometrioid	0.85 (0.7-1.04)	0.108
			Mucinous	1.03 (0.82-1.3)	0.792
			Clear cell	0.87 (0.67-1.15)	0.331
			All	1.19 (1.03-1.37)	0.016
			Serous	1 (0.85-1.19)	0.964
ERBB2	h110	16.3	Endometrioid	1 (0.75-1.34)	0.982
			Mucinous	1.39 (1.02-1.9)	0.036
			Clear cell	0.94 (0.63-1.4)	0.752
			All	1.17 (1.02-1.34)	0.022
			Serous	1.08 (0.92-1.27)	0.329
ERBB2	h001	16	Endometrioid	1.25 (0.97-1.62)	0.079
			Mucinous	0.88 (0.63-1.23)	0.466
			Clear cell	1.6 (1.15-2.21)	0.005
			All	0.99 (0.82-1.20)	0.9
			Serous	1.1 (0.87-1.38)	0.435
ERBB2	h010	6.6	Endometrioid	0.86 (0.57-1.3)	0.474
			Mucinous	0.63 (0.37-1.1)	0.102
			Clear cell	0.65 (0.34-1.24)	0.193
			All	0.84 (0.68-1.05)	0.12
			Serous	0.85 (0.64-1.14)	0.275
ERBB2	h111	6.5	Endometrioid	1.36 (0.89-2.06)	0.151
			Mucinous	0.85 (0.48-1.48)	0.563
			Clear cell	0.85 (0.44-1.64)	0.626
			All	0.7 (0.43-1.15)	0.157
			Serous	0.46 (0.23-0.95)	0.035
ERBB2	Rare	5.6	Endometrioid	1.14 (0.48-2.74)	0.761
			Mucinous	0.61 (0.14-2.63)	0.507
			Clear cell	0.93 (0.22-3.92)	0.923

OR - odds ratio, CI - confidence interval; SNP order in haplotype (5' to 3') - rs2952155, rs2952156, rs1801200.

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1788	All	0.87 (0.74-1.03)	0.71 (0.38-1.31)	0.0526
				852	Serous	0.86 (0.70-1.06)	0.89 (0.42-1.89)	0.1677
KRAS	rs12305513	0.1	2934	272	Endometrioid	0.75 (0.53-1.07)	0.83 (0.25-2.76)	0.1342
				189	Mucinous	0.89 (0.6-1.33)	1.22 (0.36-4.06)	0.7436
				136	Clear cell	1.06 (0.69-1.65)	0.61 (0.08-4.56)	0.9825
				1751	All	1.01 (0.88-1.17)	0.94 (0.80-1.12)	0.5281
				835	Serous	1.08 (0.90-1.30)	0.97 (0.78-1.20)	0.8167
KRAS	rs12822857	0.47	2901	268	Endometrioid	0.99 (0.73-1.33)	1.06 (0.75-1.50)	0.7605
				187	Mucinous	0.74 (0.53-1.04)	0.63 (0.41-0.96)	0.0232
				132	Clear cell	1.14 (0.75-1.74)	1.04 (0.63-1.72)	0.8398
				1776	All	0.97 (0.86-1.10)	0.95 (0.73-1.22)	0.5789
KD A C				841	Serous	0.95 (0.81-1.12)	1.03 (0.74-1.41)	0.7882
KRAS	rs10842508	0.25	2935	273	Endometrioid	1.05 (0.80-1.37)	1.26 (0.77-2.05)	0.4115
				190	Mucinous	0.93 (0.68-1.27)	0.46 (0.20-1.06)	0.1345
				136	Clear cell	0.93 (0.64-1.34)	1.12 (0.57-2.21)	0.9696
				1765	All	0.97 (0.84-1.12)	0.92 (0.78-1.09)	0.3591
				836	Serous	1.01 (0.84-1.22)	0.88 (0.70-1.10)	0.2746
KRAS	rs12579073	0.48	2900	269	Endometrioid	0.95 (0.70-1.28)	1.02 (0.72-1.44)	0.9418
				190	Mucinous	0.72 (0.51-1.01)	0.74 (0.49-1.10)	0.1074
				135	Clear cell	1.29 (0.84-2.01)	1.32 (0.80-2.18)	0.2772
KRAS	rs10842513	0.09	2878	1770	All	1.03 (0.87-1.21)	0.93 (0.50-1.74)	0.8581
				846	Serous	0.91 (0.74-1.13)	0.91 (0.41-2.01)	0.4011
				271	Endometrioid	1.28 (0.93-1.77)	0.86 (0.20-3.67)	0.2085

Appendix III-E: Genotype specific ratios of KRAS tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				187	Mucinous	1.04 (0.69-1.57)	0.62 (0.08-4.66)	0.9898
				137	Clear cell	1.26 (0.81-1.95)	1.77 (0.41-7.57)	0.2217
				1748	All	0.96 (0.83-1.10)	1.13 (0.77-1.67)	0.845
				834	Serous	0.93 (0.77-1.11)	1.06 (0.64-1.76)	0.5753
KRAS	rs4623993	0.16	2892	268	Endometrioid	1.17 (0.88-1.53)	1.21 (0.54-2.69)	0.2623
				187	Mucinous	0.73 (0.50-1.06)	1.07 (0.42-2.72)	0.2037
				132	Clear cell	0.80 (0.52-1.23)	2.55 (1.18-5.50)	0.5715
				1763	All	1.04 (0.91-1.18)	0.99 (0.82-1.19)	0.9408
				836	Serous	1.09 (0.92-1.29)	0.98 (0.77-1.24)	0.8783
KRAS	rs6487464	0.38	2895	269	Endometrioid	1.13 (0.86-1.5)	1.15 (0.79-1.67	0.3878
				192	Mucinous	0.61 (0.44-0.85)	0.76 (0.50-1.18)	0.0379
				136	Clear cell	1.02 (0.70-1.48)	0.95 (0.56-1.61)	0.8918
				1757	All	0.98 (0.86-1.13)	1.08 (0.91-1.29)	0.4153
				835	Serous	1.04 (0.87-1.24)	1.09 (0.88-1.36)	0.4379
KRAS	rs10842514	0.44	2886	269	Endometrioid	0.85 (0.64-1.13)	0.97 (0.68-1.38)	0.7294
				188	Mucinous	1.13 (0.78-1.64)	2.02 (1.35-3.01)	0.0006
				134	Clear cell	0.95 (0.64-1.40)	0.79 (0.47-1.33)	0.4026
				1476	All	0.92 (0.75-1.14)	1.62 (0.57-4.57)	0.7116
				685	Serous	0.99 (0.76-1.29)	1.91 (0.57-6.40)	0.7757
KRAS	rs11047917	0.06	2456	231	Endometrioid	0.68 (0.42-1.11)	1.4 (0.17-11.64)	0.171
				163	Mucinous	0.76 (0.44-1.32)	1.97 (0.24-16.40)	0.4739
				118	Clear cell	1.20 (0.69-2.06)	2.87 (0.35-23.69)	0.354

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Appendix III-F: Haplotype-specific risks of KRAS on ovarian cancer

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.02 (0.94-1.11)	0.66
KRAS			Serous	1.01 (0.9-1.12)	0.894
haplotype	h100	52.1	Endometrioid	0.92 (0.77-1.1)	0.366
block 1			Mucinous	1.23 (0.99-1.52)	0.061
			Clear cell	0.97 (0.76-1.24)	0.81
			All	1.00 (0.9 - 1.11)	0.99
KRAS			Serous	1.03 (0.9-1.18)	0.643
haplotype	h000	22.8	Endometrioid	1.04 (0.84-1.29)	0.736
block 1			Mucinous	0.92 (0.71-1.2)	0.53
			Clear cell	1.13 (0.84-1.52)	0.406
			All	1.03 (0.91 – 1.16)	0.67
KRAS			Serous	1.04 (0.89-1.22)	0.591
haplotype	h001	15.1	Endometrioid	1.25 (0.98-1.59)	0.068
block 1			Mucinous	0.79 (0.57-1.09)	0.152
			Clear cell	0.98 (0.69-1.4)	0.917
			All	0.89 (0.77 – 1.04)	0.15
KRAS			Serous	0.88 (0.72-1.07)	0.195
haplotype	h101	9.5	Endometrioid	0.85 (0.62-1.18)	0.329
block 1			Mucinous	0.9 (0.62-1.31)	0.584
			Clear cell	0.9 (0.58-1.4)	0.652
			All	0.43 (0.17-1.06)	0.0465
KRAS			Serous	0.54 (0.19-1.55)	0.253
haplotype	Rare	0.1	Endometrioid	0.53 (0.08-3.74)	0.527
block 1			Mucinous	0.7 (0.09-5.2)	0.724
			Clear cell	0.02 (0-19174)	0.587
			All	1.04 (0.95-1.15)	0.389
KRAS			Serous	1.07 (0.94-1.21)	0.306
haplotype	h000010	30.6	Endometrioid	0.99 (0.81-1.21)	0.916
block 2			Mucinous	1.3 (1.03-1.64)	0.025
			Clear cell	0.79 (0.59-1.06)	0.121
			All	1.00 (0.85-1.17)	0.98
KRAS			Serous	0.97 (0.82-1.16)	0.772
haplotype	h100010	12.9	Endometrioid	1 (0.72-1.37)	0.979
block 2			Mucinous	1.37 (0.99-1.89)	0.058
			Clear cell	1.07 (0.71-1.62)	0.74
			All	1.03 (0.88-1.19)	0.75
KRAS			Serous	1.08 (0.9-1.3)	0.381
haplotype	h100100	11.9	Endometrioid	1.16 (0.88-1.53)	0.301
block 2			Mucinous	0.78 (0.54-1.13)	0.195
			Clear cell	0.87 (0.57-1.33)	0.521
KRAS	h101100	10.6	All	0.98 (0.84-1.14)	0.77
haplotype block 2			Serous	0.96 (0.8-1.16)	0.703
DIOCK 2			Endometrioid	1.15 (0.86-1.53)	0.337

susceptibility

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			Mucinous	0.75 (0.51-1.1)	0.143
			Clear cell	1.21 (0.82-1.79)	0.326
			All	1.01 (0.82-1.25)	0.91
KRAS			Serous	0.92 (0.7-1.2)	0.526
haplotype	h010000	5.5	Endometrioid	1.11 (0.74-1.66)	0.629
block 2			Mucinous	0.78 (0.45-1.35)	0.375
			Clear cell	1.36 (0.8-2.29)	0.254
			All	0.92 (0.73-1.18)	0.52
KRAS			Serous	0.91 (0.68-1.2)	0.487
haplotype	h000100	5.4	Endometrioid	1.09 (0.66-1.82)	0.731
block 2			Mucinous	1.09 (0.61-1.95)	0.775
			Clear cell	1.13 (0.59-2.16)	0.708
			All	0.81 (0.65-1.01)	0.06
KRAS			Serous	0.8 (0.6-1.07)	0.136
haplotype	h100000	5.4	Endometrioid	0.68 (0.42-1.11)	0.123
block 2			Mucinous	0.61 (0.33-1.12)	0.11
			Clear cell	1.07 (0.6-1.92)	0.817
			All	0.96 (0.74-1.24)	0.74
KRAS			Serous	0.95 (0.7-1.29)	0.759
haplotype	h001100	4.7	Endometrioid	1 (0.57-1.78)	0.988
block 2			Mucinous	1.15 (0.62-2.12)	0.664
			Clear cell	0.66 (0.26-1.65)	0.369
			All	0.82 (0.64-1.05)	0.11
KRAS			Serous	0.92 (0.66-1.27)	0.616
haplotype	h100101	4.3	Endometrioid	0.82 (0.48-1.38)	0.45
block 2			Mucinous	0.94 (0.53-1.69)	0.845
			Clear cell	1.33 (0.71-2.46)	0.371
			All	0.94 (0.70-1.27)	0.69
KRAS			Serous	0.78 (0.53-1.16)	0.224
haplotype	h110000	3.2	Endometrioid	1.16 (0.63-2.16)	0.633
block 2			Mucinous	1.12 (0.54-2.35)	0.761
			Clear cell	1.68 (0.84-3.36)	0.139
			All	0.89 (0.64-1.23)	0.48
KRAS			Serous	1.08 (0.75-1.58)	0.67
haplotype	h000000	3.1	Endometrioid	0.36 (0.14-0.92)	0.033
block 2			Mucinous	0.3 (0.09-0.99)	0.049
			Clear cell	0.61 (0.21-1.78)	0.365
			All	1.27 (0.93-1.73)	0.131
KRAS			Serous	1.55 (1.09-2.2)	0.014
haplotype	Rare	1.7	Endometrioid	0.93 (0.42-2.07)	0.861
block 2			Mucinous	0.83 (0.31-2.23)	0.712
			Clear cell	1.14 (0.44-2.96)	0.793

OR - odds ratio, CI - confidence interval; SNP order in haplotype (5' to 3') haplotype block 1 - rs12305513, rs12822857, rs10842508; haplotype block 2 - rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1708	All	1.01 (0.88-1.17)	1.40 (0.84-2.32)	0.474
				809	Serous	0.98 (0.81-1.18)	1.56 (0.85-2.87)	0.6587
NMI	rs394884	0.15	2852	260	Endometrioid	1.01 (0.75-1.36)	1.97 (0.81-4.82)	0.4804
				184	Mucinous	0.98 (0.69-1.39)	0.45 (0.06-3.31)	0.6601
				129	Clear cell	1.26 (0.85-1.86)	0.68 (0.09-5.03)	0.3847
				1159	All	0.96 (0.76-1.23)	1.23 (0.45-3.38)	0.9163
				524	Serous	0.90 (0.65-1.24)	1.23 (0.33-4.58)	0.6308
NMI	rs11551174	0.06	2040	185	Endometrioid	1.25 (0.78-1.99)	1.18 (0.14-9.63)	0.3592
				133	Mucinous	1.05 (0.59-1.87)	1.61 (0.20-13.17)	0.7416
				95	Clear cell	0.69 (0.31-1.51)	2.41 (0.30-19.70)	0.608
				1665	All	1.05 (0.91-1.22)	1.08 (0.61-1.89)	0.4843
				792	Serous	1.04 (0.86-1.27)	1.47 (0.78-2.79)	0.3594
NMI	rs289831	0.13	2718	258	Endometrioid	1.13 (0.84-1.53)	1.07 (0.32-3.58)	0.4472
				176	Mucinous	0.89 (0.61-1.31)	0.48 (0.06-3.53)	0.4077
				132	Clear cell	1.23 (0.82-1.84)	0.71 (0.09-5.26)	0.448
				1764	All	1.03 (0.90-1.18)	1.19 (1.00-1.42)	0.0753
				843	Serous	1.10 (0.92-1.31)	1.25 (1.00-1.56)	0.0546
NMI	rs3771886	0.41	2927	266	Endometrioid	0.85 (0.65-1.12)	0.85 (0.58-1.24)	0.2876
				191	Mucinous	1.02 (0.73-1.43)	1.51 (1.01-2.27)	0.0747
				132	Clear cell	0.92 (0.62-1.35)	0.90 (0.53-1.53)	0.6514
NMI	rs11683487	0.46	2564	1464	All	0.80 (0.69-0.93)	0.87 (0.71-1.02)	0.0379
				713	Serous	0.81 (0.67-0.98)	0.80 (0.63-1.01)	0.0377
				227	Endometrioid	0.82 (0.59-1.13)	1.09 (0.75-1.57)	0.7567

Appendix III-G: Genotype specific risks of NMI tSNPs on ovarian cancer susceptibility

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				154	Mucinous	0.67 (0.47-0.96)	0.62 (0.39-0.99)	0.0269
				107	Clear cell	0.97 (0.62-1.52)	0.90 (0.52-1.57)	0.7186
				1776	All	1.05 (0.91-1.21)	1.16 (0.68-1.97)	0.4222
				843	Serous	1.03 (0.86-1.25)	1.37 (0.73-2.57)	0.457
NMI	rs2113509	0.13	2944	272	Endometrioid	1.21 (0.91-1.62)	1.02 (0.31-3.38)	0.2417
				190	Mucinous	0.90 (0.62-1.31)	1.38 (0.42-4.61)	0.8066
				138	Clear cell	1.21 (0.81-1.79)	0.65 (0.09-4.82)	0.5121

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	0.91 (0.84-0.99)	0.027
			Serous	0.89 (0.8-1)	0.048
NMI	h00001	45.9	Endometrioid	1.05 (0.87-1.25)	0.631
			Mucinous	0.84 (0.68-1.05)	0.128
			Clear cell	0.96 (0.74-1.23)	0.729
			All	1.11 (1.003-1.22)	0.043
			Serous	1.13 (1.01-1.28)	0.041
NMI	h00010	33.7	Endometrioid	0.9 (0.74-1.1)	0.305
			Mucinous	1.11 (0.88-1.4)	0.361
			Clear cell	0.97 (0.74-1.28)	0.832
			All	1.09 (0.95-1.25)	0.22
			Serous	1.04 (0.87-1.23)	0.686
NMI	h10100	11.8	Endometrioid	1.14 (0.87-1.5)	0.346
			Mucinous	1 (0.71-1.4)	0.979
			Clear cell	1.06 (0.72-1.57)	0.774
			All	1.05 (0.84-1.3)	0.67
			Serous	0.98 (0.73-1.32)	0.915
NMI	h01010	5.7	Endometrioid	1.01 (0.63-1.63)	0.951
			Mucinous	1.23 (0.75-2.03)	0.418
			Clear cell	0.85 (0.43-1.69)	0.643
			All	1.11 (0.87-1.43)	0.399
			Serous	0.94 (0.66-1.33)	0.713
NMI	Rare	1.9	Endometrioid	0.85 (0.47-1.56)	0.607
			Mucinous	1.4 (0.78-2.51)	0.257
			Clear cell	1.7 (0.9-3.19)	0.101

Appendix III-H: Haplotype-specific risks of NMI on ovarian cancer

susceptibility

OR - odds ratio, CI - confidence interval; SNP order in haplotype (5' to 3') - rs394884, rs11551174, rs289831, rs3771886, rs11683487.

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1164	All	1.14 (0.89-1.45)	0.43 (0.37-0.50)	0.294
				525	Serous	1.13 (0.83-1.55)	0.77 (0.63-0.93)	0.4279
PIK3CA	rs2865084	0.06	2046	183	Endometrioid	1.60 (1.03-2.50)	0.30 (0.22-0.42)	0.0344
				135	Mucinous	1.32 (0.77-2.25)	0.32 (0.22-0.46)	0.3093
				95	Clear cell	0.51 (0.21-1.28)	0.37 (0.24-0.57)	0.1465
				1749	All	0.99 (0.86-1.13)	1.23 (0.86-1.77)	0.6387
				834	Serous	1.04 (0.88-1.24)	1.59 (1.04-2.43)	0.1222
PIK3CA	rs7621329	0.16	2818	268	Endometrioid	0.95 (0.71-1.27)	1.44 (0.73-2.87)	0.7763
				186	Mucinous	0.90 (0.64-1.27)	0.39 (0.09-1.60)	0.2353
				135	Clear cell	1.05 (0.71-1.54)	0.57 (0.14-2.37)	0.826
				1739	All	0.98 (0.83-1.15)	0.77 (0.42-1.40)	0.5448
				827	Serous	0.98 (0.79-1.20)	0.78 (0.36-1.70)	0.6412
РІКЗСА	rs1517586	0.1	2908	267	Endometrioid	0.90 (0.64-1.28)	0.62 (0.15-2.61)	0.4212
				183	Mucinous	1.16 (0.79-1.71)	0.49 (0.07-3.64)	0.7202
				134	Clear cell	0.82 (0.50-1.35)	1.22 (0.29-5.16)	0.5886
				1741	All	1.01 (0.88-1.15)	0.89 (0.71-1.11)	0.4877
				825	Serous	1.00 (0.84-1.18)	0.84 (0.63-1.13)	0.4006
PIK3CA	rs2699905	0.27	2855	266	Endometrioid	0.97 (0.73-1.28)	1.08 (0.70-1.67)	0.8835
				184	Mucinous	1.09 (0.80-1.50)	0.72 (0.39-1.33)	0.65
				135	Clear cell	1.02 (0.70-1.48)	1.04 (0.57-1.90)	0.893

Appendix III-I: Genotype specific risks of *PIK3CA* tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR [§] (95% CI)	HomOR [§] (95% CI)	P-trend
				1779	All	0.89 (0.74-1.07)	1.28 (0.58-2.84)	0.377
				845	Serous	0.90 (0.71-1.14)	2.22 (0.96-5.14)	0.989
РІКЗСА	rs7641889	0.07	2939	273	Endometrioid	0.75 (0.50-1.14)	0.78 (0.10-6.05)	0.1854
				192	Mucinous	0.88 (0.56-1.40)	1.14 (0.15-8.78)	0.655
				136	Clear cell	1.04 (0.63-1.74)	1.68 (0.22-12.93)	0.741
				1794	All	0.89 (0.76-1.04)	1.58 (0.89-2.80)	0.5447
				828	Serous	0.89 (0.73-1.09)	2.08 (1.09-3.98)	0.9988
РІКЗСА	rs7651265	0.1	2883	267	Endometrioid	0.90 (0.65-1.24)	1.80 (0.61-5.31)	0.8684
				189	Mucinous	0.89 (0.61-1.30)	0.63 (0.08-4.69)	0.4749
				136	Clear cell	0.98 (0.64-1.51)	0.90 (0.12-6.78)	0.9072
				1765	All	1.02 (0.89-1.17)	0.85 (0.57-1.27)	0.8572
				842	Serous	0.99 (0.83-1.18)	0.58 (0.31-1.07)	0.3077
РІКЗСА	rs7640662	0.15	2916	268	Endometrioid	1.15 (0.87-1.54)	1.46 (0.74-2.91)	0.1748
				188	Mucinous	1.02 (0.73-1.44)	0.61 (0.19-1.96)	0.7189
				135	Clear cell	1.04 (0.69-1.55)	1.41 (0.55-3.58)	0.5889
				1762	All	1.01 (0.87-1.16)	1.04 (0.88-1.23)	0.663
				836	Serous	0.92 (0.76-1.10)	0.96 (0.77-1.19)	0.6718
РІКЗСА	rs2677760	0.49	2925	268	Endometrioid	1.08 (0.80-1.47)	1.02 (0.71-1.46)	0.9136
				189	Mucinous	1.29 (0.89-1.89)	1.37 (0.89-2.11)	0.1488
				134	Clear cell	1.03 (0.68-1.56)	0.90 (0.55-1.49)	0.7044

MAF – minor allele frequency; Het – heterozygous; Hom – homozygous; OR – odds ratio; CI – confidence interval; § compared with common homozygous; Emboldened tSNP and histology names, and P-values are statistically associated with susceptibility; emboldened OR are statistically significant or do not cross 1.

Appendix III-J: Haplotype-specific risks of <i>PIK3CA</i> on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.02 (0.93-1.11)	0.713
			Serous	0.99 (0.89-1.11)	0.866
PIK3CA	h0000001	48.2	Endometrioid	1.01 (0.84-1.21)	0.914
			Mucinous	1.17 (0.95-1.45)	0.146
			Clear cell	0.98 (0.76-1.26)	0.871
			All	1.01 (0.89-1.14)	0.91
			Serous	0.95 (0.81-1.11)	0.543
PIK3CA	h00010010	14.8	Endometrioid	1.13 (0.89-1.45)	0.31
			Mucinous	0.93 (0.69-1.26)	0.649
			Clear cell	1.08 (0.77-1.51)	0.67
			All	0.94 (0.81-1.09)	0.39
			Serous	1 (0.83-1.2)	0.996
PIK3CA	h00000000	10.2	Endometrioid	0.82 (0.59-1.13)	0.223
			Mucinous	0.85 (0.59-1.25)	0.414
			Clear cell	1.1 (0.73-1.65)	0.657
			All	0.98 (0.84-1.14)	0.79
			Serous	0.97 (0.81-1.17)	0.782
PIK3CA	h00110000	9.7	Endometrioid	0.86 (0.63-1.19)	0.374
			Mucinous	1.08 (0.76-1.53)	0.664
			Clear cell	0.89 (0.58-1.38)	0.612
			All	0.94 (0.79-1.12)	0.5
			Serous	0.98 (0.79-1.23)	0.881
PIK3CA	h01001100	6.6	Endometrioid	0.84 (0.57-1.24)	0.372
			Mucinous	0.81 (0.51-1.29)	0.369
			Clear cell	1.02 (0.62-1.68)	0.932
			All	1.02 (0.82-1.28)	0.84
			Serous	1.06 (0.8-1.4)	0.698
PIK3CA	h01000100	4	Endometrioid	0.98 (0.61-1.58)	0.932
			Mucinous	0.82 (0.45-1.5)	0.522
			Clear cell	1.17 (0.63-2.16)	0.625
			All	1.20 (0.97-1.48)	0.102
			Serous	1.29 (0.99-1.67)	0.055
PIK3CA	h11000000	3.9	Endometrioid	1.49 (1-2.22)	0.049
			Mucinous	1.07 (0.63-1.82)	0.795
			Clear cell	0.91 (0.47-1.79)	0.793
			All	0.94 (0.73-1.21)	0.633
			Serous	0.96 (0.69-1.33)	0.795
PIK3CA	Rare	1.6	Endometrioid	1.07 (0.68-1.68)	0.786
			Mucinous	0.66 (0.27-1.58)	0.345
			Clear cell	0.71 (0.27-1.9)	0.499

OR - odds ratio, CI - confidence interval; SNP order in haplotype (5' to 3') – rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1751	All	1.01 (0.80-1.27)	1.37 (0.42-4.42)	0.7773
				827	Serous	1.12 (0.84-1.49)	1.03 (0.21-5.04)	0.4297
AIFM2	rs2394655	0.04	2924	269	Endometrioid	0.65 (0.36-1.16)	2.21 (0.26-18.68)	0.2592
				189	Mucinous	1.11 (0.64-1.94)	4.09 (0.48-35.13)	0.4945
				164	Clear cell	1.53 (0.90-2.58)	3.71 (0.44-31.65)	0.064
				1719	All	0.92 (0.79-1.07)	1.13 (0.73-1.75)	0.5342
				817	Serous	0.91 (0.75-1.11)	0.91 (0.50-1.67)	0.3812
AIFM2	rs7908957	0.13	2873	264	Endometrioid	0.71 (0.50-1.00)	2.06 (1.01-4.18)	0.5702
				184	Mucinous	1.03 (0.71-1.48)	1.84 (0.75-4.49)	0.4123
				159	Clear cell	1.21 (0.84-1.76)	1.05 (0.32-3.44)	0.3951
				1697	All	0.97 (0.81-1.16)	0.72 (0.35-1.51)	0.457
				790	Serous	0.96 (0.75-1.21)	0.88 (0.35-2.18)	0.6293
AIFM2	rs1053495	0.07	2704	267	Endometrioid	0.64 (0.41-0.98)	0.84 (0.19-3.65)	0.0622
				185	Mucinous	1.11 (0.71-1.71)	0.52 (0.06-4.13)	0.9899
				156	Clear cell	1.38 (0.89-2.12)	1.51 (0.35-6.57)	0.1241
				1770	All	0.99 (0.87-1.13)	0.93 (0.74-1.16)	0.5545
				835	Serous	1.02 (0.87-1.20)	0.86 (0.64-1.17)	0.5896
AIFM2	rs2894111	0.28	2861	276	Endometrioid	0.87 (0.67-1.14)	1.26 (0.82-1.94)	0.8942
				192	Mucinous	1.04 (0.76-1.42)	1.03 (0.59-1.80)	0.8834
				164	Clear cell	1.13 (0.81-1.57)	1.27 (0.73-2.22)	0.3776
AIFM2	rs2394656	0.19	1703	913	All	0.96 (0.80-1.15)	0.85 (0.55-1.34)	0.4114
				506	Serous	0.93 (0.75-1.17)	0.85 (0.50-1.47)	0.3965
				136	Endometrioid	0.91 (0.61-1.35)	0.87 (0.33-2.26)	0.5861

Appendix IV-A: Genotype specific ratios of AIFM2 tSNPs on ovarian cancer susceptibility

<u>Appendices</u>

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				85	Mucinous	1.11 (0.69-1.77)	0.58 (0.14-2.44)	0.9529
				78	Clear cell	1.13 (0.69-1.86)	0.99 (0.30-3.31)	0.7857
				422	All	1.01 (0.79-1.29)	0.88 (0.55-1.42)	0.7992
				261	Serous	1.07 (0.80-1.43)	0.75 (0.40-1.39)	0.8126
AIFM2	rs6480440	0.24	1140	56	Endometrioid	0.66 (0.35-1.27)	1.50 (0.61-3.69)	0.9252
				42	Mucinous	1.20 (0.62-2.33)	1.56 (0.52-4.64)	0.3371
				28	Clear cell	1.14 (0.52-2.53)	0.55 (0.07-4.17)	0.8263
				1313	All	1.05 (0.88-1.25)	0.96 (0.53-1.71)	0.59
				556	Serous	1.11 (0.88-1.40)	0.97 (0.44-2.12)	0.5089
AIFM2	rs2280201	0.12	1783	216	Endometrioid	1.03 (0.73-1.47)	1.72 (0.67-4.42)	0.3743
				195	Mucinous	1.03 (0.67-1.60)	1.01 (0.24-4.32)	0.9688
				164	Clear cell	1.39 (0.97-1.99)	0.40 (0.05-2.93)	0.2643
				1285	All	1.25 (1.03-1.51)	0.48 (0.16-1.47)	0.2055
				600	Serous	1.13 (0.88-1.46)	0.79 (0.23-2.75)	0.6396
AIFM2	rs10999147	0.09	2395	277	Endometrioid	1.07 (0.75-1.52)	0.37 (0.05-2.74)	0.8708
				194	Mucinous	0.87 (0.56-1.36)	1.17 (0.27-5.02)	0.606
				165	Clear cell	1.43 (0.95-2.15)	0.64 (0.09-4.81)	0.2092
				1743	All	1.02 (0.83-1.24)	2.28 (0.86-6.04)	0.54
				831	Serous	1.12 (0.88-1.44)	3.43 (1.23-9.58)	0.1043
AIFM2	rs3750772	0.06	2944	266	Endometrioid	1.14 (0.76-1.71)	2.63 (0.32-21.75)	0.4623
				186	Mucinous	0.81 (0.47-1.41)	3.02 (0.36-25.58)	0.5111
				163	Clear cell	1.07 (0.63-1.80)	2.96 (0.36-24.53)	0.6195
AIFM2	rs4295944	0.42	1784	1335	All	0.98 (0.83-1.15)	1.09 (0.88-1.34)	0.4913
				567	Serous	0.95 (0.77-1.18)	1.11 (0.84-1.46)	0.6042
				220	Endometrioid	0.87 (0.64-1.20)	0.88 (0.57-1.35)	0.3373
				149	Mucinous	1.18 (0.78-1.79)	1.50 (0.90-2.50)	0.1196

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				133	Clear cell	0.81 (0.55-1.20)	0.86 (0.51-1.44)	0.413
				1324	All	1.05 (0.88-1.26)	1.03 (0.60-1.79)	0.5245
				561	Serous	1.02 (0.80-1.29)	1.11 (0.55-2.25)	0.7103
AIFM2 rs2394644	0.13	1685	218	Endometrioid	1.13 (0.80-1.59)	1.64 (0.67-4.03)	0.1308	
				149	Mucinous	0.64 (0.39-1.06)	0.42 (0.06-3.15)	0.0727
				133	Clear cell	1.45 (0.97-2.16)	1.44 (0.43-4.83)	0.073
				1618	All	1.14 (0.99-1.32)	0.96 (0.68-1.36)	0.2066
				760	Serous	1.17 (0.98-1.40)	1.01 (0.65-1.57)	0.2171
AIFM2	rs10999152	0.18	2610	251	Endometrioid	1.18 (0.88-1.58)	1.51 (0.82-2.78)	0.0767
		ļ		170	Mucinous	0.83 (0.57-1.20)	0.50 (0.15-1.61)	0.1659
				153	Clear cell	1.46 (1.03-2.08)	1.22 (0.52-2.87)	0.0666

Appendix IV-B: Haplotype-specific risks of AIFM2 on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.04 (0.9-1.2)	0.602
AIFM2			Serous	1.05 (0.93-1.18)	0.465
(haplotype	h0000000	69.8	Endometrioid	0.99 (0.82-1.2)	0.941
block 1)			Mucinous	1 (0.8-1.24)	0.966
			Clear cell	0.95 (0.75-1.21)	0.672
			All	1.22 (0.94-1.59)	0.13
AIFM2			Serous	1.11 (0.9-1.37)	0.348
(haplotype	h0001011	6.5	Endometrioid	1.15 (0.82-1.61)	0.418
block 1)			Mucinous	1.25 (0.85-1.84)	0.253
			Clear cell	1.44 (0.97-2.14)	0.073
			All	1 (0.71-1.42)	0.997
AIFM2			Serous	1.11 (0.84-1.47)	0.458
(haplotype	h1111110	4.2	Endometrioid	0.74 (0.43-1.27)	0.272
block 1)			Mucinous	1.11 (0.64-1.9)	0.714
			Clear cell	1.5 (0.89-2.51)	0.127
			All	0.8 (0.54-1.17)	0.241
AIFM2			Serous	0.91 (0.67-1.24)	0.537
(haplotype	h0001100	3.5	Endometrioid	1.16 (0.74-1.83)	0.511
block 1)			Mucinous	0.97 (0.55-1.72)	0.919
			Clear cell	0.88 (0.46-1.66)	0.689
			All	0.98 (0.66-1.46)	0.929
AIFM2			Serous	1.02 (0.74-1.42)	0.885
(haplotype	h0001010	2.8	Endometrioid	1.09 (0.65-1.8)	0.751
block 1)			Mucinous	0.76 (0.38-1.52)	0.43
			Clear cell	0.76 (0.36-1.59)	0.463
			All	1.06 (0.7-1.6)	0.801
AIFM2			Serous	1 (0.72-1.38)	0.976
(haplotype	h0101111	2.8	Endometrioid	1.12 (0.69-1.83)	0.646
block 1)	10101111		Mucinous	1.22 (0.7-2.13)	0.481
			Clear cell	0.8 (0.39-1.65)	0.544
			All	0.79 (0.5-1.24)	0.309
AIFM2			Serous	0.8 (0.57-1.11)	0.184
(haplotype	h0111110	2.8	Endometrioid	0.69 (0.38-1.24)	0.209
block 1)			Mucinous	1.21 (0.71-2.09)	0.481
			Clear cell	1.35 (0.78-2.35)	0.289
			All	0.98 (0.62-1.55)	0.926
AIFM2			Serous	0.84 (0.67-1.05)	0.128
(haplotype	Rare	1	Endometrioid	1 (0.71-1.4)	0.993
block 1)		_	Mucinous	0.68 (0.42-1.08)	0.101
			Clear cell	0.65 (0.39-1.09)	0.104
			All	1.01 (0.91-1.11)	0.856
AIFM2			Serous	1.02 (0.91-1.14)	0.702
(haplotype	h00100	39	Endometrioid	0.96 (0.8-1.15)	0.637
block 2)			Mucinous	1.26 (1.02-1.55)	0.034
			Clear cell	0.91 (0.72-1.15)	0.437
			All	0.92 (0.83-1.02)	0.119
AIFM2			Serous	0.92 (0.82-1.04)	0.197
(haplotype	h00000	36.3	Endometrioid	1.01 (0.84-1.22)	0.907
block 2)	100000	20.5	Mucinous	0.94 (0.75-1.18)	0.6
-			Clear cell	0.99 (0.78-1.26)	0.939
	L	I		0.77 (0.70 1.20)	0.757

susceptibility

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.12 (0.92-1.36)	0.253
AIFM2			Serous	1.11 (0.89-1.39)	0.359
(haplotype	h00011	6.7	Endometrioid	1.18 (0.83-1.68)	0.346
block 2)			Mucinous	0.77 (0.47-1.26)	0.294
			Clear cell	1.3 (0.84-2)	0.24
			All	1.06 (0.83-1.35)	0.665
AIFM2			Serous	0.97 (0.73-1.3)	0.849
(haplotype	h00001	4.1	Endometrioid	1.05 (0.67-1.67)	0.823
block 2)			Mucinous	1.12 (0.66-1.91)	0.675
			Clear cell	1.13 (0.63-2.02)	0.686
			All	1.15 (0.84-1.58)	0.387
AIFM2			Serous	1.18 (0.83-1.67)	0.352
(haplotype	h10000	3.2	Endometrioid	0.73 (0.37-1.42)	0.351
block 2)			Mucinous	1.11 (0.56-2.17)	0.719
			Clear cell	1.14 (0.55-2.35)	0.719
			All	0.98 (0.68-1.4)	0.895
AIFM2			Serous	1.01 (0.65-1.56)	0.97
(haplotype	h10011	2.3	Endometrioid	0.64 (0.29-1.44)	0.286
block 2)			Mucinous	0.41 (0.13-1.26)	0.119
			Clear cell	1.1 (0.47-2.54)	0.833
			All	1.1 (0.8-1.53)	0.551
AIFM2			Serous	1.33 (0.93-1.9)	0.112
(haplotype	h01011	2.2	Endometrioid	1.53 (0.88-2.65)	0.129
block 2)			Mucinous	0.66 (0.27-1.62)	0.362
			Clear cell	0.81 (0.32-2.03)	0.65
			All	1.33 (0.92-1.93)	0.126
AIFM2			Serous	1.06 (0.68-1.65)	0.792
(haplotype	h10100	2.2	Endometrioid	1.43 (0.76-2.68)	0.263
block 2)			Mucinous	1.24 (0.57-2.67)	0.591
			Clear cell	0.83 (0.31-2.22)	0.709
			All	0.61 (0.19-2)	0.418
AIFM2			Serous	1.05 (0.79-1.4)	0.732
(haplotype	Rare	0.3	Endometrioid	1.04 (0.65-1.65)	0.88
block 2)			Mucinous	0.67 (0.35-1.31)	0.246
			Clear cell	1.43 (0.84-2.42)	0.183

SNP order in haplotypes is 5' to 3' of *AIFM2* (block 1): rs2394655, rs7908957, rs1053495, rs2894111, rs2394656, rs6480440, rs2280201. *AIFM2* (block 2): rs10999147, rs3750772, rs4295944, rs2394644, rs10999152.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				917	All	0.96 (0.80-1.16)	1.01 (0.80-1.27)	0.9734
				506	Serous	1.10 (0.87-1.38)	1.12 (0.85-1.50)	0.4039
AKTIP	rs9931702	0.44	1722	137	Endometrioid	0.89 (0.59-1.34)	1.06 (0.65-1.73)	0.8928
				86	Mucinous	0.83 (0.52-1.34)	0.58 (0.29-1.14)	0.1045
				79	Clear cell	0.52 (0.31-0.88)	0.72 (0.39-1.34)	0.1424
			828	All	1.06 (0.87-1.31)	0.74 (0.38-1.46)	0.9282	
		0.15	1469	450	Serous	1.14 (0.89-1.46)	0.90 (0.40-2.00)	0.4718
AKTIP	rs17801966			125	Endometrioid	0.81 (0.50-1.31)	0.96 (0.28-3.35)	0.3441
				75	Mucinous	1.05 (0.61-1.83)	0.58 (0.08-4.37)	0.8683
				78	Clear cell	1.13 (0.66-1.91)	0.58 (0.08-4.40)	0.9369
			2923	1745	All	0.93 (0.82-1.06)	0.92 (0.75-1.14)	0.2796
				825	Serous	0.99 (0.84-1.17)	1.02 (0.78-1.33)	0.867
AKTIP	rs7189819	0.3		271	Endometrioid	0.95 (0.73-1.24)	1.06 (0.69-1.61)	0.9177
				186	Mucinous	0.87 (0.64-1.19)	0.42 (0.21-0.84)	0.0247
				163	Clear cell	0.62 (0.44-0.87)	0.78 (0.45-1.35)	0.0412
				413	All	0.90 (0.62-1.32)	2.02 (0.32-12.59)	0.6778
				256	Serous	1.12 (0.73-1.72)	1.72 (0.17-17.14)	0.6424
AKTIP	rs3743772	0.07	1093	54	Endometrioid	0.67 (0.24-1.90)	11.42 (1.04-125.41)	0.9435
				43	Mucinous	0.41 (0.10-1.71)	8.79 (0.86-89.58)	0.6759
				26	Clear cell	0.34 (0.05-2.55)	22.33 (1.82-273.37)	0.9875

Appendix IV-C: Genotype specific ratios of AKTIP tSNPs on ovarian cancer susceptibility

Appendix IV-D: Haplotype-specific risks of AKTIP on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.01 (0.88-1.16)	0.9
			Serous	0.92 (0.83-1.03)	0.153
AKTIP	h0000	54.7	Endometrioid	1.04 (0.87-1.25)	0.634
			Mucinous	1.2 (0.97-1.49)	0.086
			Clear cell	1.13 (0.9-1.41)	0.299
			All	1 (0.86-1.16)	0.996
			Serous	0.99 (0.88-1.11)	0.858
AKTIP	h1010	30.4	Endometrioid	0.97 (0.8-1.18)	0.766
			Mucinous	0.73 (0.58-0.94)	0.013
			Clear cell	0.77 (0.59-1)	0.047
	h1100		All	0.97 (0.75-1.25)	0.804
			Serous	0.93 (0.76-1.15)	0.524
AKTIP		7.9	Endometrioid	0.77 (0.54-1.11)	0.158
			Mucinous	0.86 (0.57-1.29)	0.46
			Clear cell	0.97 (0.63-1.49)	0.891
			All	1 (0.75-1.33)	0.999
			Serous	1.29 (1.01-1.66)	0.044
AKTIP	h1101	5.7	Endometrioid	1.02 (0.65-1.59)	0.927
			Mucinous	0.94 (0.54-1.65)	0.835
			Clear cell	1.37 (0.82-2.3)	0.227
			All	73.28 (0.84-6372.38)	0.059
	Rare		Serous	1.8 (1.3-2.49)	3.71x10 ⁻⁴
AKTIP		0.02	Endometrioid	1.53 (0.93-2.52)	0.093
			Mucinous	2.27 (1.39-3.71)	0.001
			Clear cell	1.52 (0.81-2.86)	0.19

<u>susceptibility</u>

SNP order in haplotypes is 5' to 3' of *ATKIP*: rs9931702, rs17801966, rs7189819, rs3743772.

Gene	tSNP	MAF	No.	No.	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				919	All	0.93 (0.76-1.13)	1.02 (0.81-1.29)	0.8178
				509	Serous	0.92 (0.72-1.17)	0.99 (0.74-1.31)	0.9949
AXIN2	rs11868547	0.48	1717	136	Endometrioid	0.87 (0.56-1.35)	1.21 (0.75-1.97)	0.4357
				85	Mucinous	0.91 (0.54-1.55)	0.95 (0.51-1.77)	0.89
				81	Clear cell	0.81 (0.47-1.38)	1.06 (0.57-1.96)	0.9215
				1779	All	1.09 (0.96-1.24)	1.05 (0.87-1.27)	0.4234
				838	Serous	1.19 (1.01-1.41)	1.11 (0.87-1.41)	0.1463
AXIN2	rs7591	0.38	2881	277	Endometrioid	0.80 (0.61-1.06)	1.04 (0.72-1.50)	0.6889
				195	Mucinous	1.29 (0.93-1.77)	0.80 (0.48-1.32)	0.9404
				165	Clear cell	0.84 (0.59-1.18)	1.05 (0.66-1.66)	0.8548
				1775	All	1.16 (1.02-1.32)	0.92 (0.67-1.24)	0.2189
				840	Serous	1.21 (1.03-1.43)	0.76 (0.50-1.16)	0.323
AXIN2	rs4074947	0.22	2898	276	Endometrioid	1.10 (0.84-1.44)	1.20 (0.68-2.11)	0.4121
				192	Mucinous	1.03 (0.75-1.43)	0.96 (0.45-2.01)	0.948
				163	Clear cell	1.02 (0.72-1.44)	1.20 (0.59-2.44)	0.6962
				1777	All	1.01 (0.87-1.17)	0.97 (0.56-1.69)	0.8864
				838	Serous	1.09 (0.90-1.32)	1.08 (0.54-2.14)	0.3518
AXIN2	rs7210356	0.11	2974	277	Endometrioid	0.88 (0.64-1.22)	1.09 (0.33-3.61)	0.5776
				193	Mucinous	1.05 (0.73-1.52)	1.19 (0.34-4.20)	0.5978
				165	Clear cell	0.71 (0.46-1.10)	1.54 (0.46-5.13)	0.3368
				1301	All	0.92 (0.79-1.07)	1.07 (0.80-1.44)	0.9064
				552	Serous	0.99 (0.81-1.22)	1.10 (0.74-1.63)	0.6218
AXIN2	rs11655966	0.27	1779	213	Endometrioid	0.84 (0.61-1.15)	1.35 (0.79-2.28)	0.865
				144	Mucinous	0.95 (0.66-1.39)	0.40 (0.15-1.07)	0.4605
				130	Clear cell	0.78 (0.53-1.15)	1.30 (0.68-2.47)	0.8989
AXIN2	rs4541111	0.48	1770	1297	All	1.09 (0.91-1.30)	0.97 (0.78-1.19)	0.806
				554	Serous	1.10 (0.87-1.40)	1.03 (0.78-1.36)	0.755

Appendix IV-E: Genotype specific ratios of AXIN2 tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No.	No.	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				214	Endometrioid	0.93 (0.65-1.31)	1.04 (0.70-1.55)	0.894
				141	Mucinous	1.32 (0.85-2.04)	0.64 (0.36-1.15)	0.3682
				128	Clear cell	0.92 (0.60-1.39)	0.77 (0.46-1.28)	0.3251
			1185	All	1.08 (0.92-1.25)	1.19 (0.92-1.55)	0.1238	
				539	Serous	1.05 (0.86-1.29)	1.23 (0.88-1.73)	0.2499
AXIN2	rs4791171	0.3	2109	180	Endometrioid	1.04 (0.75-1.45)	1.30 (0.76-2.20)	0.3845
				133	Mucinous	1.37 (0.94-2.00)	1.07 (0.54-2.11)	0.2561
				111	Clear cell	0.88 (0.58-1.32)	1.01 (0.50-2.01)	0.7639
				839	All	1.23 (1.00-1.51)	1.73 (0.99-3.01)	0.0383
				326	Serous	1.22 (0.92-1.63)	1.74 (0.84-3.63)	0.1127
AXIN2	rs11079571	0.17	1206	137	Endometrioid	1.05 (0.69-1.59)	2.32 (0.92-5.87)	0.3712
				104	Mucinous	1.03 (0.63-1.69)	1.77 (0.54-5.80)	0.5048
				83	Clear cell	1.54 (0.95-2.50)	2.00 (0.58-6.89)	0.0625
				1780	All	1.05 (0.93-1.20)	1.26 (0.95-1.68)	0.1545
				843	Serous	1.05 (0.89-1.24)	1.10 (0.75-1.60)	0.4525
AXIN2	rs3923087	0.22	2910	275	Endometrioid	0.96 (0.73-1.26)	1.68 (1.02-2.79)	0.3043
				193	Mucinous	1.03 (0.75-1.42)	1.17 (0.59-2.32)	0.657
				164	Clear cell	0.84 (0.59-1.20)	1.60 (0.85-3.00)	0.8136
				1753	All	0.91 (0.80-1.04)	1.07 (0.90-1.27)	0.813
				833	Serous	0.84 (0.71-1.00)	1.02 (0.81-1.27)	0.6828
AXIN2	rs3923086	0.42	2935	267	Endometrioid	0.89 (0.67-1.18)	1.02 (0.71-1.47)	0.9432
				188	Mucinous	1.18 (0.83-1.66)	1.22 (0.78-1.90)	0.2639
				163	Clear cell	0.81 (0.57-1.16)	1.00 (0.64-1.57)	0.793

Appendix IV-F: Haplotype-specific risks of AXIN2 on ovarian cancer

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.03 (0.93-1.13)	0.599
AXIN2			Serous	1.01 (0.9-1.12)	0.907
(haplotype	h100000	44.9	Endometrioid	1.09 (0.92-1.3)	0.316
block 1)			Mucinous	0.95 (0.77-1.17)	0.639
			Clear cell	1.06 (0.85-1.32)	0.6
			All	0.9 (0.77-1.04)	0.148
AXIN2			Serous	0.81 (0.68-0.97)	0.018
(haplotype	h000001	14.6	Endometrioid	0.95 (0.73-1.24)	0.7
block 1)			Mucinous	1.08 (0.8-1.46)	0.632
			Clear cell	0.97 (0.7-1.36)	0.868
			All	1.05 (0.89-1.23)	0.58
AXIN2			Serous	1.07 (0.9-1.28)	0.421
(haplotype	h010111	10.7	Endometrioid	0.89 (0.65-1.2)	0.431
block 1)			Mucinous	1.13 (0.81-1.57)	0.471
			Clear cell	0.85 (0.57-1.26)	0.414
			All	1.15 (0.98-1.36)	0.082
AXIN2			Serous	1.21 (1.01-1.45)	0.041
(haplotype	h011001	10.4	Endometrioid	1.16 (0.87-1.54)	0.312
block 1)			Mucinous	1.22 (0.87-1.7)	0.246
			Clear cell	0.86 (0.57-1.29)	0.458
			All	1.08 (0.87-1.33)	0.49
AXIN2		6	Serous	1.03 (0.81-1.31)	0.803
(haplotype	h011011		Endometrioid	1.37 (0.97-1.92)	0.075
block 1)			Mucinous	0.66 (0.39-1.14)	0.137
			Clear cell	1.2 (0.76-1.89)	0.433
			All	0.9 (0.72-1.12)	0.355
AXIN2			Serous	1.08 (0.85-1.37)	0.547
(haplotype	h010011	5.5	Endometrioid	0.86 (0.57-1.31)	0.495
block 1)			Mucinous	0.86 (0.53-1.41)	0.553
			Clear cell	1.01 (0.61-1.66)	0.984
			All	0.96 (0.73-1.26)	0.751
AXIN2			Serous	0.96 (0.71-1.3)	0.797
(haplotype block 1)	h011010	3.5	Endometrioid	0.7 (0.4-1.23)	0.216
			Mucinous	1.03 (0.58-1.82)	0.916
			Clear cell	1.38 (0.8-2.4)	0.251
AXIN2	Rare	0.8	All	0.83 (0.49-1.41)	0.488
(haplotype block 1)			Serous	0.86 (0.67-1.11)	0.249
			Endometrioid	0.58 (0.35-0.96)	0.033
			Mucinous	0.97 (0.61-1.53)	0.887

susceptibility

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			Clear cell	0.85 (0.5-1.44)	0.546
		All		0.98 (0.87-1.1)	0.75
AXIN2			Serous	1.03 (0.92-1.15)	0.637
(haplotype	h0000	53.4	Endometrioid	1.02 (0.85-1.22)	0.833
block 2)			Mucinous	0.93 (0.75-1.15)	0.48
			Clear cell	1.04 (0.82-1.3)	0.767
			All	0.93 (0.79-1.11)	0.431
AXIN2			Serous	0.89 (0.75-1.05)	0.167
(haplotype	h0001	14.5	Endometrioid	0.85 (0.64-1.12)	0.24
block 2)			Mucinous	1.23 (0.92-1.65)	0.157
			Clear cell	1.06 (0.76-1.47)	0.744
			All	1.21 (1.03-1.42)	0.023
AXIN2			Serous	1.19 (1.01-1.39)	0.037
(haplotype	h1111	12.8	Endometrioid	1.08 (0.83-1.4)	0.572
block 2)			Mucinous	1.13 (0.83-1.53)	0.434
			Clear cell	0.96 (0.68-1.36)	0.838
			All	1.06 (0.86-1.3)	0.596
AXIN2			Serous	0.95 (0.76-1.19)	0.656
(haplotype	h1011	7	Endometrioid	1.28 (0.93-1.77)	0.134
block 2)			Mucinous	0.83 (0.53-1.31)	0.43
			Clear cell	1.2 (0.79-1.83)	0.395
			All	0.98 (0.77-1.26)	0.873
AXIN2			Serous	0.92 (0.73-1.17)	0.508
(haplotype	h1001	5.8	Endometrioid	0.95 (0.64-1.4)	0.78
block 2)			Mucinous	0.98 (0.63-1.54)	0.943
			Clear cell	0.74 (0.43-1.27)	0.27
			All	0.84 (0.59-1.21)	0.355
AXIN2			Serous	0.91 (0.61-1.35)	0.638
(haplotype	h1000	2.7	Endometrioid	0.7 (0.34-1.44)	0.327
block 2)			Mucinous	0.78 (0.35-1.75)	0.549
			Clear cell	0.6 (0.22-1.62)	0.314
			All	1.67 (0.59-4.69)	0.332
AXIN2			Serous	0.91 (0.69-1.21)	0.511
(haplotype	Rare	0.1	Endometrioid	0.92 (0.58-1.45)	0.708
block 2)			Mucinous	0.88 (0.51-1.53)	0.649
			Clear cell	1 (0.57-1.74)	0.992

SNP order in haplotypes is 5' to 3' of *AXIN2* (block 1): rs11868547, rs7591, rs4074947, rs7210356, rs11655966, rs4541111. *AXIN2* (block 2): rs4791171, rs11079571, rs3923087, rs3923086.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				438	All	1.39 (1.06-1.81)	1.44 (1.05-1.97)	0.0124
				270	Serous	1.36 (0.98-1.88)	1.45 (0.99-2.11)	0.0313
CASP5	rs518604	0.46	1195	56	Endometrioid	1.12 (0.58-2.15)	1.40 (0.67-2.92)	0.3451
				42	Mucinous	1.45 (0.65-3.22)	2.00 (0.84-4.77)	0.0958
				32	Clear cell	1.63 (0.71-3.73)	0.72 (0.21-2.42)	0.8022
				824	All	1.03 (0.83-1.29)	1.07 (0.82-1.39)	0.7689
				320	Serous	0.86 (0.65-1.16)	0.80 (0.55-1.15)	0.1294
CASP5	rs523104	0.46	1199	131	Endometrioid	1.24 (0.78-1.97)	1.45 (0.84-2.48)	0.0826
				102	Mucinous	1.00 (0.60-1.66)	0.87 (0.46-1.66)	0.8518
				81	Clear cell	1.01 (0.60-1.71)	0.81 (0.40-1.60)	0.5623
				829	All	0.95 (0.73-1.23)	1.16 (0.50-2.72)	0.7779
				319	Serous	0.93 (0.65-1.33)	0.68 (0.18-2.64)	0.7345
CASP5	rs3181328	0.09	1206	273	Endometrioid	0.85 (0.59-1.24)	0.54 (0.13-2.25)	0.2291
				102	Mucinous	0.97 (0.52-1.80)	3.90 (1.06-14.34)	0.5649
				83	Clear cell	1.10 (0.60-2.00)	1.12 (0.14-8.75)	0.6481
				803	All	0.88 (0.69-1.12)	1.28 (0.54-3.02)	0.5052
				311	Serous	0.87 (0.63-1.22)	1.01 (0.28-3.69)	0.5292
CASP5	rs17446518	0.11	1177	130	Endometrioid	0.81 (0.50-1.33)	0.79 (0.10-6.24)	0.3787
				97	Mucinous	1.15 (0.66-1.99)	4.12 (1.10-15.36)	0.2146
				81	Clear cell	0.70 (0.37-1.32)	1.20 (0.15-9.47)	0.3467
CASP5	rs9651713	0.11	2898	1730	All	0.99 (0.85-1.15)	1.22 (0.70-2.13)	0.836
				819	Serous	0.96 (0.78-1.17)	1.55 (0.81-2.96)	0.8167
				269	Endometrioid	1.16 (0.86-1.58)	1.80 (0.68-4.77)	0.2196
				183	Mucinous	0.86 (0.57-1.28)	1.10 (0.26-4.69)	0.4883

Appendix IV-G: Genotype specific ratios of CASP5 tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				162	Clear cell	1.09 (0.74-1.61)	1.13 (0.27-4.83)	0.6561
				1282	All	0.96 (0.83-1.12)	1.23 (0.83-1.82)	0.9331
				597	Serous	0.93 (0.76-1.13)	1.34 (0.82-2.19)	0.9482
CASP5	rs3181175	0.19	2379	194	Endometrioid	1.01 (0.73-1.39)	1.66 (0.80-3.44)	0.4992
				147	Mucinous	1.05 (0.73-1.51)	0.72 (0.22-2.37)	0.8575
				115	Clear cell	0.98 (0.65-1.48)	1.19 (0.42-3.37)	0.9266
				1780	All	0.96 (0.80-1.14)	1.21 (0.55-2.65)	0.7967
				840	Serous	1.09 (0.88-1.36)	1.12 (0.41-3.09)	0.4061
CASP5	rs3181174	0.07	2962	278	Endometrioid	0.82 (0.56-1.21)	0.83 (0.11-6.43)	0.3188
				195	Mucinous	0.87 (0.56-1.37)	1.11 (0.14-8.64)	0.6099
				165	Clear cell	0.64 (0.37-1.10)	1.20 (0.16-9.26)	0.151
				852	All	1.08 (0.90-1.30)	0.89 (0.67-1.20)	0.7645
				462	Serous	1.16 (0.92-1.45)	1.11 (0.78-1.56)	0.3615
CASP5	rs2282657	0.35	1478	128	Endometrioid	1.12 (0.76-1.66)	0.87 (0.45-1.69)	0.7802
				80	Mucinous	1.02 (0.64-1.64)	0.63 (0.26-1.52)	0.4369
				73	Clear cell	1.06 (0.65-1.73)	0.35 (0.11-1.18)	0.1926
				1768	All	1.02 (0.87-1.20)	1.00 (0.84-1.19)	0.9144
				835	Serous	1.09 (0.89-1.34)	1.00 (0.79-1.26)	0.8497
CASP5	rs507879	0.46	2839	276	Endometrioid	0.99 (0.72-1.36)	0.83 (0.58-1.20)	0.2713
				194	Mucinous	0.84 (0.57-1.23)	1.01 (0.67-1.53)	0.7951
				164	Clear cell	1.05 (0.70-1.60)	0.97 (0.61-1.54)	0.8762

Appendix IV-H: Haplotype-specific risks of CASP5 on ovarian cancer

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	0.99 (0.9-1.09)	0.79
CASP5			Serous	0.89 (0.79-0.99)	0.033
(haplotype	h010	43.8	Endometrioid	1.07 (0.89-1.28)	0.475
block 1)			Mucinous	0.82 (0.66-1.01)	0.068
			Clear cell	1.02 (0.81-1.29)	0.836
			All	1.13 (1.03-1.24)	0.012
CASP5			Serous	1.2 (1.08-1.35)	0.001
(haplotype	h100	43.3	Endometrioid	1.1 (0.92-1.32)	0.289
block 1)			Mucinous	1.18 (0.95-1.46)	0.126
			Clear cell	1 (0.79-1.26)	0.983
			All	0.9 (0.77-1.06)	0.215
CASP5			Serous	0.92 (0.76-1.12)	0.421
(haplotype	h001	9.8	Endometrioid	0.74 (0.53-1.06)	0.098
block 1)			Mucinous	1.13 (0.8-1.6)	0.476
			Clear cell	0.94 (0.63-1.41)	0.764
			All	0.72 (0.56-0.94)	0.015
CASP5			Serous	0.91 (0.59-1.4)	0.653
(haplotype	h000	2.3	Endometrioid	0.77 (0.37-1.59)	0.477
block 1)			Mucinous	0.84 (0.36-1.99)	0.697
			Clear cell	1.32 (0.65-2.71)	0.443
			All	0.74 (0.54-1.02)	0.069
CASP5		0.8	Serous	0.65 (0.41-1.02)	0.061
(haplotype	h110		Endometrioid	0.37 (0.14-1.01)	0.052
block 1)			Mucinous	1.16 (0.6-2.24)	0.653
			Clear cell	0.46 (0.14-1.48)	0.193
			All	1.02 (0.9-1.14)	0.768
CASP5			Serous	1.01 (0.9-1.13)	0.904
(haplotype	h000001	48.7	Endometrioid	0.96 (0.8-1.15)	0.628
block 2)			Mucinous	1.01 (0.81-1.25)	0.952
			Clear cell	1.03 (0.82-1.3)	0.791
			All	1.1 (0.93-1.3)	0.285
CASP5			Serous	1.07 (0.91-1.26)	0.43
(haplotype	h000010	12.8	Endometrioid	1.28 (0.99-1.64)	0.059
block 2)			Mucinous	1.05 (0.77-1.44)	0.752
			Clear cell	1.17 (0.84-1.63)	0.348
CASP5	h000000	10.1	All	0.87 (0.71-1.07)	0.179
(haplotype block 2)			Serous	0.9 (0.74-1.1)	0.319
DIOCK 2)			Endometrioid	1.01 (0.75-1.38)	0.931
			Mucinous	0.98 (0.68-1.42)	0.931

susceptibility

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	
			Clear cell	0.98 (0.66-1.46)	0.923	
			All		1.15 (0.95-1.39)	0.162
CASP5			Serous	1.02 (0.85-1.23)	0.833	
(haplotype	h011010	9.6	Endometrioid	1.28 (0.97-1.69)	0.076	
block 2)			Mucinous	0.9 (0.63-1.31)	0.593	
			Clear cell	1.17 (0.82-1.68)	0.393	
			All	0.97 (0.77-1.22)	0.787	
CASP5			Serous	1.1 (0.88-1.37)	0.396	
(haplotype	h001110	6.5	Endometrioid	0.82 (0.56-1.22)	0.335	
block 2)			Mucinous	0.79 (0.49-1.27)	0.331	
			Clear cell	0.76 (0.45-1.28)	0.305	
		5.2	All	1.01 (0.82-1.26)	0.902	
CASP5	h100001		Serous	0.97 (0.75-1.26)	0.821	
(haplotype			Endometrioid	0.77 (0.48-1.22)	0.27	
block 2)			Mucinous	1.12 (0.69-1.8)	0.651	
			Clear cell	0.76 (0.42-1.39)	0.38	
			All	1.07 (0.79-1.45)	0.663	
CASP5			Serous	0.88 (0.57-1.34)	0.548	
(haplotype	h100010	2.6	Endometrioid	0.79 (0.39-1.61)	0.517	
block 2)			Mucinous	1.39 (0.7-2.76)	0.343	
			Clear cell	0.72 (0.28-1.82)	0.485	
			All	0.28 (0.12-0.69)	0.005	
CASP5			Serous	0.84 (0.6-1.17)	0.293	
(haplotype	Rare	0.9	Endometrioid	0.45 (0.22-0.89)	0.022	
block 2)			Mucinous	1.1 (0.62-1.95)	0.742	
			Clear cell	0.75 (0.36-1.55)	0.433	

SNP order in haplotypes is 5' to 3' of *CASP5* (block 1): rs518604, rs523104, rs3181328. *CASP5* (block 2): rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				437	All	1.07 (0.84-1.35)	1.33 (0.94-1.89)	0.1458
				269	Serous	0.98 (0.74-1.31)	1.25 (0.83-1.90)	0.4593
FILIP1L	rs796977	0.33	1166	56	Endometrioid	1.67 (0.93-3.02)	1.51 (0.62-3.68)	0.1545
				43	Mucinous	1.20 (0.62-2.34)	1.77 (0.72-4.38)	0.2813
				31	Clear cell	0.93 (0.42-2.03)	1.38 (0.49-3.91)	0.6504
				1653	All	1.02 (0.88-1.18)	0.88 (0.53-1.43)	0.9373
				771	Serous	1.11 (0.92-1.35)	1.08 (0.59-1.99)	0.3224
FILIP1L	rs793477	0.13	2646	257	Endometrioid	0.92 (0.67-1.27)	0.60 (0.18-1.97)	0.4293
				175	Mucinous	1.16 (0.80-1.67)	0.66 (0.16-2.76)	0.8392
				155	Clear cell	1.04 (0.70-1.54)	1.79 (0.69-4.61)	0.4497
				1773	All	1.05 (0.92-1.20)	1.11 (0.93-1.32)	0.3207
				838	Serous	0.95 (0.80-1.13)	1.07 (0.86-1.34)	0.842
FILIP1L	rs793446	0.41	2947	274	Endometrioid	1.36 (1.02-1.81)	1.52 (1.05-2.20)	0.0262
				194	Mucinous	1.14 (0.82-1.58)	0.93 (0.58-1.48)	0.8885
				164	Clear cell	1.05 (0.74-1.50)	1.11 (0.69-1.77)	0.6725
				1773	All	1.00 (0.84-1.20)	0.69 (0.29-1.61)	0.6908
				840	Serous	0.90 (0.71-1.15)	0.19 (0.03-1.43)	0.1194
FILIP1L	rs3921767	0.07	2859	276	Endometrioid	1.09 (0.75-1.57)	1.16 (0.26-5.15)	0.6936
				191	Mucinous	1.12 (0.72-1.73)	0.90 (0.12-6.92)	0.7966
				166	Clear cell	1.00 (0.62-1.61)	1.94 (0.44-8.55)	0.7117
FILIP1L	rs17338680	0.11	2989	1786	All	1.06 (0.91-1.24)	0.77 (0.46-1.28)	0.985
				574	Serous	0.88 (0.69-1.14)	0.98 (0.44-2.20)	0.3051
				221	Endometrioid	1.71 (1.24-2.36)	0.79 (0.19-3.39)	0.0073

Appendix IV-I: Genotype specific ratios of *FILIP1L* tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				196	Mucinous	1.23 (0.86-1.76)	0.35 (0.05-2.58)	0.7109
				133	Clear cell	1.04 (0.67-1.63)	1.12 (0.26-4.81)	0.8406
				1786	All	0.98 (0.86-1.12)	1.18 (0.91-1.53)	0.6077
				843	Serous	0.96 (0.81-1.14)	1.47 (1.08-2.01)	0.2249
FILIP1L	rs9864437	0.22	2972	278	Endometrioid	1.05 (0.80-1.37)	0.86 (0.47-1.59)	0.8102
				195	Mucinous	0.99 (0.72-1.36)	0.91 (0.45-1.85)	0.782
				165	Clear cell	0.81 (0.57-1.15)	0.98 (0.49-1.98)	0.3807
				1414	All	0.98 (0.84-1.13)	0.96 (0.79-1.17)	0.7028
				710	Serous	1.07 (0.88-1.29)	1.12 (0.88-1.44)	0.3295
FILIP1L	rs6788750	0.41	2532	226	Endometrioid	0.84 (0.62-1.14)	0.72 (0.47-1.11)	0.1277
				140	Mucinous	1.01 (0.69-1.48)	0.86 (0.50-1.46)	0.6811
				131	Clear cell	0.91 (0.61-1.35)	1.15 (0.70-1.89)	0.7396
				1273	All	1.14 (0.98-1.33)	0.88 (0.59-1.33)	0.433
				594	Serous	0.95 (0.78-1.17)	0.52 (0.27-0.99)	0.097
FILIP1L	rs12494994	0.18	2347	193	Endometrioid	1.48 (1.08-2.04)	2.16 (1.13-4.12)	0.0024
				145	Mucinous	1.57 (1.10-2.25)	0.25 (0.03-1.83)	0.2574
				113	Clear cell	1.20 (0.79-1.82)	1.69 (0.71-4.03)	0.1986

Appendix IV-J: Haplotype-specific risks of *FILIP1L* on ovarian

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	0.95 (0.84-1.08)	0.445
<i>FILIP1L</i>			Serous	0.97 (0.87-1.08)	0.572
(haplotype	h00000	46.1	Endometrioid	0.86 (0.72-1.03)	0.092
block 1)			Mucinous	0.98 (0.79-1.2)	0.823
			Clear cell	0.9 (0.71-1.13)	0.351
			All	1.08 (0.93-1.24)	0.311
FILIP1L			Serous	1.12 (0.98-1.27)	0.087
(haplotype	h10100	22.5	Endometrioid	1 (0.81-1.24)	0.972
block 1)			Mucinous	1 (0.78-1.29)	1
			Clear cell	0.88 (0.67-1.17)	0.39
			All	0.97 (0.79-1.19)	0.782
FILIP1L			Serous	1.08 (0.91-1.27)	0.383
(haplotype	h01000	11.5	Endometrioid	0.93 (0.71-1.23)	0.62
block 1)			Mucinous	1.1 (0.81-1.49)	0.527
			Clear cell	1.17 (0.85-1.6)	0.347
			All	1.11 (0.91-1.35)	0.29
FILIP1L			Serous	0.94 (0.78-1.13)	0.514
(haplotype	h10101	10.7	Endometrioid	1.56 (1.22-2.01)	5.01x10 ⁻⁴
block 1)			Mucinous	1.09 (0.78-1.51)	0.617
			Clear cell	1.25 (0.89-1.75)	0.204
			All	0.94 (0.74-1.2)	0.617
FILIP1L		7.4	Serous	0.83 (0.66-1.04)	0.111
(haplotype	h00110		Endometrioid	1.05 (0.75-1.47)	0.791
block 1)			Mucinous	1.05 (0.7-1.56)	0.819
			Clear cell	1.06 (0.69-1.63)	0.779
			All	0.34 (0.11-1.03)	0.056
FILIP1L			Serous	0.81 (0.53-1.25)	0.345
(haplotype	Rare	0.4	Endometrioid	0.61 (0.27-1.36)	0.226
block 1)			Mucinous	0.15 (0.02-1.01)	0.051
			Clear cell	1.11 (0.53-2.33)	0.784
			All	0.98 (0.88-1.08)	0.644
<i>FILIP1L</i>			Serous	1.08 (0.96-1.2)	0.197
(haplotype	h010	41	Endometrioid	0.83 (0.69-1)	0.053
block 2)			Mucinous	0.96 (0.77-1.18)	0.672
			Clear cell	1.03 (0.82-1.29)	0.823
FILIP1L	h100	22.6	All	1.04 (0.93-1.16)	0.528
(haplotype block 2)			Serous	1.09 (0.96-1.24)	0.167
OOCK 2)			Endometrioid	0.98 (0.79-1.22)	0.877
			Mucinous	0.99 (0.77-1.27)	0.952

cancer susceptibility

Gene/ haplotype block	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			Clear cell	0.9 (0.69-1.19)	0.473
			All	0.94 (0.83-1.08)	0.383
FILIP1L			Serous	0.9 (0.78-1.04)	0.16
(haplotype	h000	18.9	Endometrioid	0.98 (0.78-1.23)	0.873
block 2)			Mucinous	1.07 (0.82-1.38)	0.615
			Clear cell	0.93 (0.7-1.25)	0.649
			All	1.04 (0.92-1.17)	0.562
FILIP1L			Serous	0.88 (0.76-1.02)	0.092
(haplotype	h001	17.1	Endometrioid	1.37 (1.1-1.69)	0.004
block 2)			Mucinous	1.03 (0.79-1.36)	0.815
			Clear cell	1.17 (0.88-1.56)	0.269

SNP order in haplotypes is 5' to 3' of *FILIP1L* (block 1): rs796977, rs793477, rs793446, rs3921767, rs17338680. *FILIP1L* (block 2): rs9864437, rs6788750, rs12494994.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1272	All	0.80 (0.67-0.96)	1.05 (0.57-1.95)	0.0645
				594	Serous	0.99 (0.79-1.23)	1.18 (0.55-2.53)	0.7647
RBBP8	rs7239066	0.11	2366	188	Endometrioid	0.70 (0.47-1.06)	0.74 (0.17-3.18)	0.1083
				144	Mucinous	0.60 (0.37-0.97)	0.88 (0.20-3.92)	0.1098
				115	Clear cell	0.64 (0.38-1.09)	1.31 (0.30-5.64)	0.2167
				1748	All	1.12 (0.89-1.41)	1.13 (0.31-4.07)	0.2974
				826	Serous	1.17 (0.88-1.57)	0.55 (0.07-4.59)	0.3355
RBBP8	rs11082221	0.04	2937	271	Endometrioid	1.27 (0.80-2.02)	1.56 (0.18-13.31)	0.2858
				188	Mucinous	1.38 (0.81-2.36)	1.92 (0.22-16.89)	0.1282
				165	Clear cell	1.10 (0.60-2.02)	3.56 (0.40-31.29)	0.4888
				1764	All	0.94 (0.82-1.07)	0.88 (0.72-1.06)	0.2066
				829	Serous	0.83 (0.70-0.98)	0.80 (0.63-1.03)	0.0323
RBBP8	rs4474794	0.36	2895	271	Endometrioid	1.16 (0.88-1.52)	1.03 (0.69-1.53)	0.5615
				193	Mucinous	1.11 (0.81-1.53)	0.97 (0.60-1.57)	0.8372
				165	Clear cell	1.03 (0.73-1.46)	1.27 (0.80-2.01)	0.3447
				346	All	1.07 (0.82-1.40)	0.67 (0.38-1.17)	0.5163
				215	Serous	1.08 (0.79-1.49)	0.37 (0.16-0.88)	0.2176
RBBP8	rs9304261	0.22	888	44	Endometrioid	1.34 (0.71-2.52)	0.67 (0.15-2.91)	0.8077
				33	Mucinous	1.26 (0.59-2.69)	1.90 (0.62-5.83)	0.2486
				21	Clear cell	0.58 (0.19-1.83)	3.22 (1.09-9.46)	0.1763

Appendix IV-K: Genotype specific ratios of RBBP8 tSNPs on ovarian cancer susceptibility

Appendix IV-L: Haplotype-specific risks of RBBP8 on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value	
			All	1.12 (0.98-1.27)	0.092	
			Serous	1.13 (1.01-1.27)	0.032	
RBBP8	h0000	62.3	Endometrioid	0.99 (0.83-1.19)	0.932	
			Mucinous	0.98 (0.8-1.21)	0.865	
			Clear cell	0.91 (0.72-1.13)	0.389	
			All	0.92 (0.8-1.07)	0.273	
			Serous	0.88 (0.77-1)	0.051	
RBBP8	h0011	23	Endometrioid	0.99 (0.81-1.22)	0.958	
			Mucinous	1.05 (0.83-1.34)	0.667	
			Clear cell	1.11 (0.86-1.43)	0.415	
			All	0.83 (0.64-1.07)	0.147	
				Serous	0.93 (0.75-1.16)	0.542
RBBP8	h1010 7.2		Endometrioid	1.02 (0.72-1.45)	0.891	
			Mucinous	0.76 (0.48-1.2)	0.235	
			Clear cell	1.07 (0.7-1.65)	0.742	
			All	1.16 (0.85-1.58)	0.338	
		4.4	Serous	1.2 (0.9-1.59)	0.211	
RBBP8	h1110		Endometrioid	1.11 (0.69-1.78)	0.66	
			Mucinous	1.32 (0.79-2.22)	0.284	
			Clear cell	1.1 (0.61-2.01)	0.745	
			All	0.88 (0.71-1.1)	0.266	
			Serous	0.77 (0.53-1.11)	0.156	
RBBP8	h0010	2	Endometrioid	1.18 (0.73-1.91)	0.502	
			Mucinous	1.15 (0.65-2.03)	0.624	
			Clear cell	1.05 (0.56-2)	0.873	
			All	0.74 (0.25-2.15)	0.579	
			Serous	0.85 (0.52-1.39)	0.517	
RBBP8	Rare	0.1	Endometrioid	0.52 (0.19-1.38)	0.189	
			Mucinous	0.74 (0.28-1.92)	0.532	
			Clear cell	0.64 (0.21-1.99)	0.441	

<u>susceptibility</u>

SNP order in haplotypes is 5' to 3' of *RBBP8*: rs7239066, rs11082221, rs4474794, rs9304261.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1769	All	0.99 (0.86-1.15)	1.05 (0.68-1.64)	0.9822
				839	Serous	0.91 (0.75-1.10)	0.74 (0.39-1.41)	0.2126
RGC32	rs10467472	0.13	2887	273	Endometrioid	1.04 (0.77-1.40)	0.62 (0.19-2.02)	0.8091
				191	Mucinous	0.88 (0.61-1.27)	1.69 (0.70-4.06)	0.9293
				164	Clear cell	0.98 (0.67-1.44)	1.97 (0.82-4.71)	0.4683
				1690	All	1.02 (0.88-1.19)	1.03 (0.57-1.89)	0.8873
				788	Serous	0.89 (0.72-1.09)	0.70 (0.29-1.69)	0.1363
<i>RGC32</i>	rs3783194	0.11	2723	264	Endometrioid	1.13 (0.83-1.54)	1.50 (0.51-4.36)	0.4304
				184	Mucinous	1.09 (0.75-1.59)	1.08 (0.25-4.66)	0.7964
				155	Clear cell	1.50 (1.04-2.17)	1.99 (0.59-6.70)	0.0206
				1771	All	1.01 (0.87-1.18)	1.31 (0.74-2.32)	0.5158
				835	Serous	1.03 (0.85-1.26)	1.33 (0.66-2.70)	0.4921
RGC32	rs11618371	0.11	2959	275	Endometrioid	0.95 (0.69-1.32)	1.48 (0.51-4.31)	0.9104
				193	Mucinous	1.03 (0.71-1.51)	0.55 (0.07-4.09)	0.871
				164	Clear cell	1.12 (0.76-1.66)	1.31 (0.31-5.62)	0.4759
				1782	All	0.96 (0.81-1.15)	0.47 (0.19-1.16)	0.3412
				841	Serous	0.94 (0.74-1.18)	0.46 (0.14-1.54)	0.3245
RGC32	rs9532824	0.07	2892	276	Endometrioid	1.22 (0.86-1.72)	0.54 (0.07-4.07)	0.4241
				196	Mucinous	1.23 (0.82-1.83)	0.93 (0.12-7.06)	0.288
				164	Clear cell	0.94 (0.58-1.50)	0.82 (0.11-6.13)	0.7749
RGC32	rs995845	0.2	2365	1274	All	1.01 (0.87-1.16)	1.09 (0.82-1.45)	0.8121
				595	Serous	0.89 (0.74-1.09)	1.06 (0.73-1.52)	0.4695
				193	Endometrioid	0.99 (0.73-1.36)	1.04 (0.56-1.90)	0.9679

Appendix IV-M: Genotype specific ratios of RGC32 tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				146	Mucinous	0.98 (0.69-1.40)	0.93 (0.45-1.92)	0.8142
				112	Clear cell	1.41 (0.95-2.10)	1.45 (0.70-3.03)	0.1034
				1766	All	1.01 (0.88-1.16)	1.10 (0.74-1.65)	0.611
				833	Serous	1.09 (0.91-1.29)	0.97 (0.56-1.65)	0.4095
RGC32	rs9594551	0.15	2863	275	Endometrioid	1.02 (0.77-1.36)	0.78 (0.31-1.99)	0.9957
				193	Mucinous	0.95 (0.67-1.34)	0.46 (0.11-1.90)	0.5421
				163	Clear cell	1.03 (0.72-1.49)	0.82 (0.25-2.66)	0.9809
				1749	All	1.02 (0.90-1.16)	0.89 (0.68-1.17)	0.8348
				828	Serous	1.03 (0.87-1.21)	0.84 (0.59-1.21)	0.7862
RGC32	rs975590	0.23	2940	268	Endometrioid	1.08 (0.83-1.41)	1.03 (0.60-1.78)	0.5433
				188	Mucinous	1.11 (0.81-1.51)	0.65 (0.30-1.44)	0.9566
				161	Clear cell	1.08 (0.78-1.51)	0.41 (0.15-1.12)	0.465

Appendix IV-N: Haplotype-specific risks of RGC32 on ovarian cancer

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value				
			All	0.98 (0.89-1.08)	0.674				
			Serous	1.11 (0.99-1.25)	0.063				
RGC32	h0000000	41.5	Endometrioid	0.93 (0.78-1.13)	0.478				
			Mucinous	1.07 (0.86-1.33)	0.549				
			Clear cell	0.89 (0.7-1.12)	0.32				
			All	1.01 (0.87-1.18)	0.851				
			Serous	0.89 (0.74-1.07)	0.212				
RGC32	h0100100	10.8	Endometrioid	1.02 (0.76-1.36)	0.89				
			Mucinous	1.01 (0.72-1.41)	0.962				
			Clear cell	1.53 (1.11-2.11)	0.01				
			All	1.04 (0.89-1.21)	0.608				
			Serous	1.09 (0.91-1.3)	0.352				
RGC32	h0000100	10.4	Endometrioid	0.97 (0.72-1.31)	0.826				
			Mucinous	0.8 (0.55-1.17)	0.25				
			Clear cell	0.78 (0.52-1.18)	0.239				
			All	1 (0.84-1.2)	0.957				
			Serous	0.92 (0.74-1.15)	0.466				
RGC32	h1000000	8.1	Endometrioid	1.12 (0.8-1.56)	0.511				
			Mucinous	1.11 (0.75-1.64)	0.603				
			Clear cell	1.11 (0.73-1.69)	0.635				
			All	1.1 (0.93-1.31)	0.278				
			Serous	1.15 (0.95-1.4)	0.146				
RGC32	h0010011	7.8	Endometrioid	0.98 (0.7-1.36)	0.892				
			Mucinous	0.87 (0.58-1.32)	0.521				
			Clear cell	1.15 (0.78-1.71)	0.478				
			All	0.92 (0.75-1.12)	0.405				
			Serous	0.92 (0.73-1.16)	0.501				
RGC32	h0001001	6.7	Endometrioid	1.15 (0.81-1.63)	0.433				
			Mucinous	1.16 (0.77-1.75)	0.484				
			Clear cell	0.94 (0.58-1.53)	0.816				
			All	0.93 (0.74-1.17)	0.54				
			Serous	0.97 (0.75-1.26)	0.829				
RGC32	h0000011	4.9	Endometrioid	0.96 (0.63-1.47)	0.849				
			Mucinous	0.66 (0.37-1.19)	0.169				
			Clear cell	0.85 (0.49-1.51)	0.587				
RGC32	h1000100	4.1	All	0.99 (0.79-1.26)	0.958				
			Serous	0.9 (0.67-1.22)	0.502				
			Endometrioid	0.83 (0.51-1.36)	0.458				
			Mucinous	1.03 (0.61-1.75)	0.905				

susceptibility

Gene	Haplotype	Freq (%)	Histology	Histology OR (95% CI)	
			Clear cell	1.24 (0.73-2.1)	0.429
		0.8	All	1.15 (0.66-2.02)	0.621
			Serous	0.61 (0.42-0.89)	0.009
RGC32	Rare		Endometrioid	0.8 (0.46-1.39)	0.428
			Mucinous	0.7 (0.34-1.41)	0.317
			Clear cell	0.74 (0.35-1.55)	0.422

SNP order in haplotypes is 5' to 3' of *RGC32*: rs10467472, rs3783194, rs11618371, rs9532824, rs995845, rs9594551, rs975590.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1777	All	1.05 (0.90-1.22)	1.44 (0.89-2.31)	0.2094
				839	Serous	1.16 (0.96-1.40)	1.03 (0.52-2.02)	0.1425
RUVBL1	rs9860614	0.12	2966	276	Endometrioid	0.90 (0.65-1.24)	1.76 (0.72-4.27)	0.9619
				193	Mucinous	0.85 (0.58-1.25)	1.73 (0.59-5.11)	0.8531
				162	Clear cell	0.85 (0.56-1.29)	1.97 (0.69-5.67)	0.983
				1266	All	1.14 (0.97-1.34)	1.39 (1.02-1.89)	0.0192
				537	Serous	1.42 (1.15-1.74)	1.63 (1.10-2.42)	0.0002
RUVBL1	rs13063604	0.25	1724	207	Endometrioid	0.74 (0.53-1.04)	1.29 (0.73-2.31)	0.3904
				143	Mucinous	0.95 (0.64-1.41)	1.39 (0.69-2.83)	0.5473
				124	Clear cell	1.22 (0.83-1.80)	1.07 (0.48-2.40)	0.4113
				1280	All	1.20 (1.03-1.40)	1.06 (0.85-1.31)	0.207
				596	Serous	1.35 (1.10-1.64)	1.14 (0.86-1.52)	0.0677
RUVBL1	rs3732402	0.4	2382	194	Endometrioid	1.25 (0.90-1.74)	1.24 (0.79-1.94)	0.236
				147	Mucinous	0.91 (0.64-1.31)	0.70 (0.40-1.24)	0.1882
				114	Clear cell	1.00 (0.67-1.49)	0.61 (0.31-1.20)	0.2799
				1645	All	1.08 (0.93-1.26)	0.86 (0.72-1.03)	0.1081
				769	Serous	0.97 (0.80-1.17)	0.74 (0.58-0.93)	0.009
RUVBL1	rs7650365	0.46	2672	256	Endometrioid	1.12 (0.83-1.53)	0.74 (0.50-1.09)	0.1777
				175	Mucinous	1.04 (0.70-1.53)	1.25 (0.81-1.93)	0.371
				155	Clear cell	1.08 (0.73-1.60)	0.93 (0.58-1.48)	0.7821
RUVBL1	rs4857836	0.2	2993	1787	All	1.05 (0.93-1.19)	0.97 (0.76-1.23)	0.8219
				845	Serous	1.11 (0.95-1.31)	1.04 (0.77-1.41)	0.3458
				278	Endometrioid	1.05 (0.80-1.37)	1.38 (0.89-2.14)	0.2742

Appendix IV-O: Genotype specific ratios of *RUVBL1* tSNPs on ovarian cancer susceptibility

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				195	Mucinous	0.85 (0.62-1.16)	0.76 (0.40-1.44)	0.1432
				165	Clear cell	0.89 (0.63-1.24)	0.91 (0.49-1.69)	0.5199
				1733	All	0.97 (0.84-1.11)	0.93 (0.63-1.37)	0.5613
				820	Serous	0.99 (0.82-1.18)	0.57 (0.31-1.06)	0.2966
RUVBL1	rs9821568	0.15	2911	269	Endometrioid	1.14 (0.86-1.52)	2.09 (1.16-3.78)	0.0286
				186	Mucinous	0.86 (0.60-1.23)	0.62 (0.19-2.00)	0.1981
				161	Clear cell	0.68 (0.45-1.02)	0.85 (0.30-2.38)	0.0967

Appendix IV-P: Haplotype-specific risks of RUVBL1 on ovarian

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	0.96 (0.86-1.07)	0.491
			Serous	0.76 (0.62-0.93)	0.0315
RUVBL1	h000100	48	Endometrioid	0.75 (0.54-1.05)	0.137
		-	Mucinous	1.22 (0.83-1.79)	0.3395
			Clear cell	0.9 (0.6-1.38)	0.624
			All	0.98 (0.84-1.15)	0.833
			Serous	0.86 (0.64-1.17)	0.429
RUVBL1	h001011	14.5	Endometrioid	1.61 (1.03-2.52)	0.0465
			Mucinous	0.59 (0.32-1.11)	0.1085
			Clear cell	0.605 (0.32-1.17)	0.1645
			All	0.91 (0.77-1.07)	0.247
			Serous	1.22 (0.9-1.67)	0.3585
RUVBL1	<i>UVBL1</i> h000000	13.3	Endometrioid	1.43 (0.89-2.32)	0.1805
			Mucinous	1.23 (0.7-2.18)	0.485
			Clear cell	1.51 (0.85-2.75)	0.165
			All	1.15 (0.97-1.36)	0.114
			Serous	1.44 (1.04-1.98)	0.027
RUVBL1	h011010	11.7	Endometrioid	0.79 (0.45-1.39)	0.401
			Mucinous	0.91 (0.48-1.75)	0.751
			Clear cell	1.32 (0.7-2.51)	0.395
			All	1.17 (0.99-1.4)	0.071
			Serous	1.4 (0.99-2)	0.1915
RUVBL1	h111000	9.8	Endometrioid	0.95 (0.55-1.67)	0.8565
			Mucinous	0.96 (0.49-1.9)	0.7185
			Clear cell	1.02 (0.51-2.1)	0.74
			All	0.99 (0.54-1.8)	0.963
			Serous	0.98 (0.69-1.38)	0.892
RUVBL1	Rare	0.8	Endometrioid	0.89 (0.49-1.6)	0.69
			Mucinous	0.89 (0.46-1.75)	0.746
			Clear cell	1.06 (0.54-2.07)	0.861

cancer susceptibility

SNP order in haplotypes is 5' to 3' of *RUVBL1*: rs9860614, rs13063604, rs3732402, rs7650365, rs4857836, rs9821568.

Gene	tSNP	MAF	No. controls	No. cases	Histology	HetOR (95% CI)	HomOR (95% CI)	P-trend
				1787	All	1.03 (0.90-1.17)	1.06 (0.80-1.40)	0.6327
				846	Serous	1.03 (0.88-1.22)	1.06 (0.74-1.52)	0.6639
STAG3	rs11762932	0.22	2965	279	Endometrioid	0.98 (0.75-1.28)	1.22 (0.71-2.11)	0.695
				194	Mucinous	0.83 (0.60-1.15)	0.79 (0.37-1.67)	0.2541
				164	Clear cell	1.29 (0.93-1.79)	1.01 (0.46-2.23)	0.2781
				1295	All	0.97 (0.81-1.15)	0.96 (0.78-1.19)	0.6593
				549	Serous	0.95 (0.75-1.20)	0.87 (0.66-1.16)	0.2436
STAG3	rs2246713	0.47	1765	212	Endometrioid	0.98 (0.69-1.40)	1.02 (0.67-1.54)	0.8107
				143	Mucinous	1.11 (0.71-1.73)	0.90 (0.52-1.55)	0.9446
				130	Clear cell	1.02 (0.66-1.58)	1.16 (0.70-1.92)	0.5676
				1784	All	0.86 (0.76-0.98)	0.92 (0.73-1.16)	0.0692
				843	Serous	0.84 (0.71-0.99)	0.77 (0.56-1.05)	0.0177
STAG3			Endometrioid	0.79 (0.61-1.04)	0.92 (0.57-1.48)	0.2456		
				194	Mucinous	1.23 (0.90-1.68)	1.27 (0.74-2.18)	0.1363
				165	Clear cell	1.02 (0.73-1.41)	0.61 (0.29-1.28)	0.4137

Appendix IV-Q: Genotype specific ratios of STAG3 tSNPs on ovarian cancer susceptibility

Gene	Haplotype	Freq (%)	Histology	OR (95% CI)	P-value
			All	1.06 (0.96-1.16)	0.257
			Serous	1.12 (1.01-1.25)	0.039
STAG3	h000	50.7	Endometrioid	1.06 (0.89-1.27)	0.523
			Mucinous	0.97 (0.79-1.2)	0.805
			Clear cell	1 (0.8-1.25)	0.996
			All	0.94 (0.85-1.05)	0.29
			Serous	0.88 (0.78-1)	0.046
STAG3	h011	26.8	Endometrioid	0.89 (0.73-1.09)	0.251
			Mucinous	1.22 (0.97-1.53)	0.084
			Clear cell	0.89 (0.69-1.16)	0.401
			All	1.03 (0.92-1.16)	0.627
			Serous	1.05 (0.92-1.2)	0.48
STAG3	h110	20.5	Endometrioid	1.03 (0.83-1.28)	0.765
			Mucinous	0.87 (0.66-1.13)	0.297
			Clear cell	1.16 (0.89-1.51)	0.285

Appendix IV-R: Haplotype-specific risks of STAG3 on ovarian cancer

susceptibility

SNP order in haplotypes is 5' to 3' of STAG3: rs11762932, rs2246713, rs1637001

Dathway	Gene/cytoband	SNP	Study	Number of cases				Number of controls					
Pathway	Gene/Cytoballu	SINE	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
BCAC	2q22.1	rs4954956	GEOCS	171	129	20	320	240	156	25	421		
BCAC	2q22.1	rs4954956	MALOVA	224	158	29	411	686	440	69	1195		
BCAC	2q22.1	rs4954956	SEARCH	414	262	39	715	466	323	64	853		
BCAC	5q11.2	rs889312	GEOCS	166	129	25	320	202	174	45	421		
BCAC	5q11.2	rs889312	MALOVA	225	178	31	434	616	485	86	1187		
BCAC	5q11.2	rs889312	SEARCH	378	286	55	719	447	341	64	852		
BCAC	8q24.21	rs13281615	GEOCS	97	167	57	321	138	204	79	421		
BCAC	8q24.21	rs13281615	MALOVA	162	193	67	422	462	557	170	1189		
BCAC	8q24.21	rs13281615	SEARCH	267	337	111	715	281	439	134	854		
BCAC	8q24.21	rs6983267	GEOCS	77	157	85	319	125	206	90	421		
BCAC	8q24.21	rs6983267	MALOVA	100	156	73	329	311	572	285	1168		
BCAC	8q24.21	rs6983267	SEARCH	210	370	136	716	224	423	203	850		
BCAC	8q24.21	rs9283954	GEOCS	250	65	6	321	340	79	2	421		
BCAC	8q24.21	rs9283954	MALOVA	290	80	4	374	927	209	13	1149		
BCAC	8q24.21	rs9283954	SEARCH	582	124	8	714	683	158	9	850		
BCAC	11p15.5	rs2107425	GEOCS	156	124	39	319	170	204	48	422		
BCAC	11p15.5	rs2107425	MALOVA	226	157	50	433	558	518	114	1190		
BCAC	11p15.5	rs2107425	SEARCH	385	263	60	708	390	376	85	851		
BCAC	12p11.22	rs7313833	GEOCS	138	147	35	320	194	174	53	421		
BCAC	12p11.22	rs7313833	MALOVA	187	191	45	423	527	505	152	1184		
BCAC	12p11.22	rs7313833	SEARCH	315	308	94	717	397	372	83	852		
BCAC	FLJ41481	rs4666451	GEOCS	107	161	49	317	146	209	65	420		
BCAC	FLJ41481	rs4666451	MALOVA	153	195	74	422	417	584	198	1199		

Appendix V: Genotype distributions of tagging SNPs in candidate genes analysed with AML test

Dathanan	Canadantahand	CND	Star Jay		Number	of cases		Number of controls					
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
BCAC	FLJ41481	rs4666451	SEARCH	260	336	119	715	306	409	135	850		
BCAC	HCN1	rs981782	GEOCS	103	150	67	320	136	204	80	420		
BCAC	HCN1	rs981782	MALOVA	98	192	93	383	327	577	258	1162		
BCAC	HCN1	rs981782	SEARCH	180	381	155	716	233	404	213	850		
BCAC	LOC100131885	rs2981582	GEOCS	117	161	42	320	149	205	69	423		
BCAC	LOC100131885	rs2981582	MALOVA	169	188	73	430	469	537	183	1189		
BCAC	LOC100131885	rs2981582	SEARCH	296	314	103	713	302	420	132	854		
BCAC	LSP1	rs3817198	GEOCS	140	151	31	322	226	162	35	423		
BCAC	LSP1	rs3817198	MALOVA	195	183	48	426	606	460	101	1167		
BCAC	LSP1	rs3817198	SEARCH	313	306	90	709	380	381	84	845		
BCAC	ТОХЗ	rs12443621	GEOCS	63	186	72	321	100	211	110	421		
BCAC	ТОХЗ	rs12443621	MALOVA	156	190	69	415	395	561	232	1188		
BCAC	ТОХЗ	rs12443621	SEARCH	214	352	143	709	237	425	186	848		
Cell cycle	CCND1	rs602652	GEOCS	93	153	70	316	121	217	85	423		
Cell cycle	CCND1	rs602652	MALOVA	108	206	123	437	364	590	263	1217		
Cell cycle	CCND1	rs602652	SEARCH	193	381	141	715	257	418	178	853		
Cell cycle	CCND1	rs3862792	GEOCS	302	19	0	321	402	19	0	421		
Cell cycle	CCND1	rs3862792	MALOVA	414	18	0	432	1130	64	0	1194		
Cell cycle	CCND1	rs3862792	SEARCH	688	30	0	718	803	50	0	853		
Cell cycle	CCND1	rs603965	GEOCS	97	151	73	321	129	217	79	425		
Cell cycle	CCND1	rs603965	MALOVA	117	202	118	437	365	578	242	1185		
Cell cycle	CCND1	rs603965	SEARCH	212	368	138	718	269	427	158	854		
Cell cycle	CCND1	rs3212879	GEOCS	87	144	85	316	101	211	108	420		
Cell cycle	CCND1	rs3212879	MALOVA	145	206	90	441	324	608	285	1217		
Cell cycle	CCND1	rs3212879	SEARCH	206	355	154	715	236	419	199	854		
Cell cycle	CCND1	rs3212891	GEOCS	91	151	79	321	118	211	95	424		

Dathman	Canalantahand	SNP	64 J	Number of cases				Number of controls					
Pathway	Gene/cytoband	SINP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
Cell cycle	CCND1	rs3212891	MALOVA	153	203	79	435	356	589	253	1198		
Cell cycle	CCND1	rs3212891	SEARCH	228	354	137	719	245	428	181	854		
Cell cycle	CCND1	rs678653	GEOCS	108	145	50	303	138	195	60	393		
Cell cycle	CCND1	rs678653	MALOVA	202	191	50	443	538	538	145	1221		
Cell cycle	CCND1	rs678653	SEARCH	302	321	96	719	341	390	123	854		
Cell cycle	CCND1	rs7178	GEOCS	279	41	1	321	369	49	5	423		
Cell cycle	CCND1	rs7178	MALOVA	359	78	5	442	1040	168	7	1215		
Cell cycle	CCND1	rs7178	SEARCH	596	119	2	717	732	120	1	853		
Cell cycle	CCND2	rs3217795	GEOCS	277	44	2	323	356	66	6	428		
Cell cycle	CCND2	rs3217795	MALOVA	365	76	2	443	1026	188	4	1218		
Cell cycle	CCND2	rs3217795	SEARCH	601	115	3	719	709	140	5	854		
Cell cycle	CCND2	rs3217805	GEOCS	120	158	44	322	171	183	73	427		
Cell cycle	CCND2	rs3217805	MALOVA	152	224	65	441	435	589	197	1221		
Cell cycle	CCND2	rs3217805	SEARCH	252	343	100	695	299	405	150	854		
Cell cycle	CCND2	rs3217820	GEOCS	127	154	41	322	181	185	59	425		
Cell cycle	CCND2	rs3217820	MALOVA	195	192	56	443	532	532	156	1220		
Cell cycle	CCND2	rs3217820	SEARCH	247	314	81	642	361	378	113	852		
Cell cycle	CCND2	rs3217852	GEOCS	194	113	14	321	250	147	23	420		
Cell cycle	CCND2	rs3217852	MALOVA	252	158	25	435	702	438	76	1216		
Cell cycle	CCND2	rs3217852	SEARCH	422	261	35	718	493	310	49	852		
Cell cycle	CCND2	rs3217862	GEOCS	224	93	3	320	308	104	12	424		
Cell cycle	CCND2	rs3217862	MALOVA	308	116	11	435	850	332	34	1216		
Cell cycle	CCND2	rs3217862	SEARCH	503	186	26	715	566	263	24	853		
Cell cycle	CCND2	rs3217863	GEOCS	267	47	6	320	331	85	6	422		
Cell cycle	CCND2	rs3217863	MALOVA	340	77	5	422	1018	176	5	1199		
Cell cycle	CCND2	rs3217863	SEARCH	615	96	6	717	725	119	7	851		

Dathman	Canadantahand	CND	S4 J	Number of cases				Number of controls					
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
Cell cycle	CCND2	rs3217869	GEOCS	118	152	52	322	170	174	84	428		
Cell cycle	CCND2	rs3217869	MALOVA	152	215	76	443	446	564	206	1216		
Cell cycle	CCND2	rs3217869	SEARCH	268	322	128	718	298	430	126	854		
Cell cycle	CCND2	rs3217901	GEOCS	105	165	50	320	124	225	72	421		
Cell cycle	CCND2	rs3217901	MALOVA	136	208	97	441	386	590	240	1216		
Cell cycle	CCND2	rs3217901	SEARCH	214	382	122	718	294	394	164	852		
Cell cycle	CCND2	rs3217906	GEOCS	190	112	19	321	246	153	23	422		
Cell cycle	CCND2	rs3217906	MALOVA	227	170	31	428	661	457	79	1197		
Cell cycle	CCND2	rs3217906	SEARCH	392	283	43	718	472	319	63	854		
Cell cycle	CCND2	rs3217916	GEOCS	165	142	17	324	238	148	38	424		
Cell cycle	CCND2	rs3217916	MALOVA	249	163	21	433	602	494	103	1199		
Cell cycle	CCND2	rs3217916	SEARCH	361	297	61	719	440	342	72	854		
Cell cycle	CCND2	rs3217925	GEOCS	174	133	13	320	255	141	27	423		
Cell cycle	CCND2	rs3217925	MALOVA	265	154	16	435	628	475	84	1187		
Cell cycle	CCND2	rs3217925	SEARCH	390	277	48	715	468	323	60	851		
Cell cycle	CCND2	rs3217926	GEOCS	119	155	48	322	157	192	78	427		
Cell cycle	CCND2	rs3217926	MALOVA	174	204	66	444	477	569	174	1220		
Cell cycle	CCND2	rs3217926	SEARCH	274	342	102	718	332	375	146	853		
Cell cycle	CCND2	rs3217933	GEOCS	182	122	20	324	242	164	18	424		
Cell cycle	CCND2	rs3217933	MALOVA	221	180	34	435	662	458	76	1196		
Cell cycle	CCND2	rs3217933	SEARCH	389	294	36	719	479	309	66	854		
Cell cycle	CCND2	rs3217936	GEOCS	151	147	24	322	218	162	47	427		
Cell cycle	CCND2	rs3217936	MALOVA	210	197	32	439	512	559	139	1210		
Cell cycle	CCND2	rs3217936	SEARCH	320	322	75	717	386	372	94	852		
Cell cycle	CCND3	Rs1410492	GEOCS	181	125	17	323	251	142	34	427		
Cell cycle	CCND3	Rs1410492	MALOVA	245	173	24	442	708	423	86	1217		

Dathman	Canadantahand	CND	S4 J	Number of cases				Number of controls					
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
Cell cycle	CCND3	Rs1410492	SEARCH	398	265	51	714	478	333	35	846		
Cell cycle	CCND3	rs3218092	GEOCS	212	96	13	321	261	130	32	423		
Cell cycle	CCND3	rs3218092	MALOVA	265	149	17	431	783	363	46	1192		
Cell cycle	CCND3	rs3218092	SEARCH	492	208	16	716	569	257	27	853		
Cell cycle	CCND3	Rs2479717	GEOCS	160	139	16	315	244	150	31	425		
Cell cycle	CCND3	Rs2479717	MALOVA	224	173	45	442	667	454	96	1217		
Cell cycle	CCND3	Rs2479717	SEARCH	382	276	57	715	414	352	81	847		
Cell cycle	CCND3	Rs1051130	GEOCS	81	173	65	319	112	203	110	425		
Cell cycle	CCND3	Rs1051130	MALOVA	118	215	110	443	373	540	298	1211		
Cell cycle	CCND3	Rs1051130	SEARCH	213	362	138	713	235	398	219	852		
Cell cycle	CCND3	rs9529	GEOCS	149	152	20	321	221	168	34	423		
Cell cycle	CCND3	rs9529	MALOVA	242	162	37	441	633	456	110	1199		
Cell cycle	CCND3	rs9529	SEARCH	381	281	57	719	423	340	90	853		
Cell cycle	CCND3	rs3218110	GEOCS	184	123	15	322	246	152	24	422		
Cell cycle	CCND3	rs3218110	MALOVA	250	157	31	438	684	443	79	1206		
Cell cycle	CCND3	rs3218110	SEARCH	382	295	42	719	503	308	43	854		
Cell cycle	CCND3	rs3218114	GEOCS	225	87	10	322	274	126	22	422		
Cell cycle	CCND3	rs3218114	MALOVA	279	147	17	443	812	356	48	1216		
Cell cycle	CCND3	rs3218114	SEARCH	496	207	16	719	576	252	26	854		
Cell cycle	CCNE1	rs997669	GEOCS	120	154	48	322	172	204	50	426		
Cell cycle	CCNE1	rs997669	MALOVA	151	218	73	442	436	601	180	1217		
Cell cycle	CCNE1	rs997669	SEARCH	259	349	108	716	331	389	134	854		
Cell cycle	CCNE1	rs3218036	GEOCS	147	146	26	319	207	183	33	423		
Cell cycle	CCNE1	rs3218036	MALOVA	192	193	54	439	545	546	114	1205		
Cell cycle	CCNE1	rs3218036	SEARCH	325	310	83	718	414	355	84	853		
Cell cycle	CCNE1	rs3218038	GEOCS	287	33	2	322	377	48	1	426		

Dathman	Constational	CND	64 J	Number of cases				Number of controls					
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
Cell cycle	CCNE1	rs3218038	MALOVA	418	22	0	440	1160	58	0	1218		
Cell cycle	CCNE1	rs3218038	SEARCH	660	56	1	717	784	68	1	853		
Cell cycle	CCNE1	rs3218076	GEOCS	164	130	26	320	205	185	37	427		
Cell cycle	CCNE1	rs3218076	MALOVA	211	203	28	442	614	512	92	1218		
Cell cycle	CCNE1	rs3218076	SEARCH	370	291	57	718	445	352	55	852		
Cell cycle	CDK2	Rs2069408	GEOCS	167	128	27	322	194	190	43	427		
Cell cycle	CDK2	Rs2069408	MALOVA	189	202	46	437	522	549	145	1216		
Cell cycle	CDK2	Rs2069408	SEARCH	332	300	85	717	369	388	96	853		
Cell cycle	CDK2	Rs1045435	GEOCS	266	56	1	323	367	57	2	426		
Cell cycle	CDK2	Rs1045435	MALOVA	356	82	3	441	996	209	13	1218		
Cell cycle	CDK2	Rs1045435	SEARCH	583	123	12	718	708	144	1	853		
Cell cycle	CDK4	rs2270777	GEOCS	87	180	53	320	141	217	68	426		
Cell cycle	CDK4	rs2270777	MALOVA	138	231	70	439	379	626	207	1212		
Cell cycle	CDK4	rs2270777	SEARCH	238	347	133	718	289	419	145	853		
Cell cycle	CDK4	rs2069506	GEOCS	155	134	34	323	211	164	50	425		
Cell cycle	CDK4	rs2069506	MALOVA	214	178	51	443	507	556	144	1207		
Cell cycle	CDK4	rs2069506	SEARCH	321	305	88	714	396	363	91	850		
Cell cycle	CDK6	rs8179	GEOCS	200	106	15	321	265	139	14	418		
Cell cycle	CDK6	rs8179	MALOVA	264	150	22	436	721	420	56	1197		
Cell cycle	CDK6	rs8179	SEARCH	447	230	31	708	508	280	37	825		
Cell cycle	CDK6	rs2285332	GEOCS	180	117	22	319	208	177	37	422		
Cell cycle	CDK6	rs2285332	MALOVA	264	151	24	439	681	450	66	1197		
Cell cycle	CDK6	rs2285332	SEARCH	414	263	41	718	495	298	51	844		
Cell cycle	CDK6	rs42046	GEOCS	152	142	27	321	212	168	26	406		
Cell cycle	CDK6	rs42046	MALOVA	216	188	31	435	626	492	86	1204		
Cell cycle	CDK6	rs42046	SEARCH	383	279	48	710	448	328	60	836		

Dathman	Canadantahand	CND	64 J	Number of cases				Number of controls				
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total	
Cell cycle	CDK6	rs3731348	GEOCS	273	44	1	318	372	46	2	420	
Cell cycle	CDK6	rs8	GEOCS	203	102	9	314	277	127	10	414	
Cell cycle	CDK6	rs3731348	MALOVA	384	42	1	427	1049	139	4	1192	
Cell cycle	CDK6	rs8	MALOVA	255	162	26	443	736	428	55	1219	
Cell cycle	CDK6	rs3731348	SEARCH	631	86	1	718	761	86	6	853	
Cell cycle	CDK6	rs8	SEARCH	412	269	35	716	543	276	29	848	
Cell cycle	CDK6	rs2237570	GEOCS	264	54	2	320	329	87	6	422	
Cell cycle	CDK6	rs2237570	MALOVA	344	91	3	438	946	240	13	1199	
Cell cycle	CDK6	rs2237570	SEARCH	572	134	10	716	652	182	13	847	
Cell cycle	CDK6	rs3731343	GEOCS	111	153	59	323	156	191	77	424	
Cell cycle	CDK6	rs3731343	MALOVA	126	205	111	442	335	622	264	1221	
Cell cycle	CDK6	rs3731343	SEARCH	184	380	155	719	238	427	189	854	
Cell cycle	CDK6	rs3757823	GEOCS	242	77	5	324	341	84	3	428	
Cell cycle	CDK6	rs3757823	MALOVA	368	71	4	443	956	247	9	1212	
Cell cycle	CDK6	rs3757823	SEARCH	578	137	4	719	713	134	8	855	
Cell cycle	CDK6	rs2079147	GEOCS	69	165	90	324	95	224	108	427	
Cell cycle	CDK6	rs2079147	MALOVA	116	215	107	438	300	628	287	1215	
Cell cycle	CDK6	rs2079147	SEARCH	191	372	156	719	238	417	199	854	
Cell cycle	CDK6	rs2282991	GEOCS	274	46	1	321	330	84	4	418	
Cell cycle	CDK6	rs2282991	MALOVA	342	77	3	422	935	215	9	1159	
Cell cycle	CDK6	rs2282991	SEARCH	580	116	10	706	659	157	11	827	
Cell cycle	CDK6	rs4729049	GEOCS	263	59	3	325	351	75	2	428	
Cell cycle	CDK6	rs4729049	MALOVA	360	74	4	438	975	225	16	1216	
Cell cycle	CDK6	rs4729049	SEARCH	574	139	6	719	692	154	9	855	
Cell cycle	CDK6	rs445	GEOCS	235	78	7	320	331	87	8	426	
Cell cycle	CDK6	rs445	MALOVA	370	70	2	442	985	224	9	1218	

Detheres	Constantshand	CND	64 J	Number of cases				Number of controls				
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total	
Cell cycle	CDK6	rs445	SEARCH	595	120	4	719	703	144	6	853	
Cell cycle	CDK6	rs992519	GEOCS	235	78	6	319	308	107	8	423	
Cell cycle	CDK6	rs992519	MALOVA	320	111	9	440	935	262	22	1219	
Cell cycle	CDK6	rs992519	SEARCH	533	171	14	718	625	210	19	854	
Cell cycle	CDKN1A	rs762624	GEOCS	149	142	29	320	206	180	40	426	
Cell cycle	CDKN1A	rs762624	MALOVA	230	171	36	437	673	463	70	1206	
Cell cycle	CDKN1A	rs762624	SEARCH	385	281	52	718	458	327	66	851	
Cell cycle	CDKN1A	rs2395655	GEOCS	103	163	52	318	164	192	66	422	
Cell cycle	CDKN1A	rs2395655	MALOVA	161	203	78	442	484	567	166	1217	
Cell cycle	CDKN1A	rs2395655	SEARCH	274	327	117	718	331	374	143	848	
Cell cycle	CDKN1A	rs3176331	GEOCS	241	77	4	322	324	95	5	424	
Cell cycle	CDKN1A	rs3176331	MALOVA	325	93	13	431	911	263	22	1196	
Cell cycle	CDKN1A	rs3176331	SEARCH	545	161	12	718	642	192	18	852	
Cell cycle	CDKN1A	rs3176336	GEOCS	100	154	66	320	141	199	82	422	
Cell cycle	CDKN1A	rs3176336	MALOVA	179	203	62	444	461	577	178	1216	
Cell cycle	CDKN1A	rs3176336	SEARCH	272	334	111	717	318	385	147	850	
Cell cycle	CDKN1A	rs3176343	GEOCS	279	43	0	322	380	41	1	422	
Cell cycle	CDKN1A	rs3176343	MALOVA	405	36	1	442	1101	113	1	1215	
Cell cycle	CDKN1A	rs3176343	SEARCH	639	79	1	719	758	94	2	854	
Cell cycle	CDKN1A	rs1801270	GEOCS	259	56	3	318	334	80	5	419	
Cell cycle	CDKN1A	rs1801270	MALOVA	394	49	0	443	1046	147	3	1196	
Cell cycle	CDKN1A	rs1801270	SEARCH	619	95	2	716	725	118	5	848	
Cell cycle	CDKN1A	rs3176352	GEOCS	158	131	32	321	213	173	37	423	
Cell cycle	CDKN1A	rs3176352	MALOVA	236	162	39	437	680	442	79	1201	
Cell cycle	CDKN1A	rs3176352	SEARCH	388	278	53	719	460	328	64	852	
Cell cycle	CDKN1A	rs1059234	GEOCS	263	55	4	322	338	82	5	425	

Dathanan	Canadantahand	SNP	64 J	Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	CDKN1A	rs1059234	MALOVA	394	48	1	443	1053	147	4	1204
Cell cycle	CDKN1A	rs1059234	SEARCH	624	92	2	718	733	114	5	852
Cell cycle	CDKN1A	rs6457937	GEOCS	307	18	0	325	401	26	0	427
Cell cycle	CDKN1A	rs6457937	MALOVA	414	25	0	439	1148	66	0	1214
Cell cycle	CDKN1A	rs6457937	SEARCH	686	33	0	719	812	42	0	854
Cell cycle	CDKN1B	rs3759217	GEOCS	225	88	9	322	314	101	8	423
Cell cycle	CDKN1B	rs3759217	MALOVA	345	90	8	443	958	243	14	1215
Cell cycle	CDKN1B	rs3759217	SEARCH	546	167	5	718	671	169	14	854
Cell cycle	CDKN1B	rs34330	GEOCS	189	122	14	325	249	154	26	429
Cell cycle	CDKN1B	rs34330	MALOVA	262	144	28	434	703	417	66	1186
Cell cycle	CDKN1B	rs34330	SEARCH	413	259	37	709	470	330	52	852
Cell cycle	CDKN1B	rs2066827	GEOCS	189	118	14	321	239	152	33	424
Cell cycle	CDKN1B	rs2066827	MALOVA	249	165	28	442	660	468	79	1207
Cell cycle	CDKN1B	rs2066827	SEARCH	449	235	34	718	476	314	63	853
Cell cycle	CDKN1B	rs34329	GEOCS	140	149	33	322	179	186	57	422
Cell cycle	CDKN1B	rs34329	MALOVA	212	191	37	440	590	513	112	1215
Cell cycle	CDKN1B	rs34329	SEARCH	337	312	70	719	402	380	72	854
Cell cycle	CDKN1B	rs3093736	GEOCS	305	17	0	322	406	17	0	423
Cell cycle	CDKN1B	rs3093736	MALOVA	409	32	1	442	1119	94	3	1216
Cell cycle	CDKN1B	rs3093736	SEARCH	675	43	1	719	794	60	0	854
Cell cycle	CDKN1B	rs7330	GEOCS	112	157	54	323	154	194	78	426
Cell cycle	CDKN1B	rs7330	MALOVA	177	194	71	442	468	562	190	1220
Cell cycle	CDKN1B	rs7330	SEARCH	260	338	121	719	297	427	129	853
Cell cycle	CDKN1B	rs1420023	GEOCS	271	48	3	322	342	77	2	421
Cell cycle	CDKN1B	rs1420023	MALOVA	346	83	7	436	969	229	15	1213
Cell cycle	CDKN1B	rs1420023	SEARCH	565	144	8	717	667	173	12	852

Dathman	Constantshand	CND	64 J	tudy Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	CDKN2A	Rs3217992	GEOCS	119	157	45	321	158	200	68	426
Cell cycle	CDKN2A	Rs3217992	MALOVA	206	182	48	436	514	567	136	1217
Cell cycle	CDKN2A	Rs3217992	SEARCH	282	351	84	717	343	399	104	846
Cell cycle	CDKN2A	Rs3218005	GEOCS	252	59	5	316	345	69	3	417
Cell cycle	CDKN2A	Rs3218005	MALOVA	346	79	5	430	979	215	11	1205
Cell cycle	CDKN2A	Rs3218005	SEARCH	588	117	10	715	702	142	7	851
Cell cycle	CDKN2A	Rs2811712	GEOCS	254	61	5	320	349	73	3	425
Cell cycle	CDKN2A	Rs2811712	MALOVA	347	88	8	443	966	239	14	1219
Cell cycle	CDKN2A	Rs2811712	SEARCH	584	119	13	716	681	162	7	850
Cell cycle	CDKN2A	Rs3218020	GEOCS	123	154	38	315	166	178	56	400
Cell cycle	CDKN2A	Rs3218020	MALOVA	226	175	39	440	565	539	110	1214
Cell cycle	CDKN2A	Rs3218020	SEARCH	303	332	77	712	377	377	95	849
Cell cycle	CDKN2A	rs3731197	GEOCS	110	157	52	319	147	192	83	422
Cell cycle	CDKN2A	rs3731197	MALOVA	175	208	60	443	488	561	156	1205
Cell cycle	CDKN2A	rs3731197	SEARCH	274	328	112	714	331	410	111	852
Cell cycle	CDKN2A	Rs3731211	GEOCS	164	128	29	321	215	177	33	425
Cell cycle	CDKN2A	Rs3731211	MALOVA	228	181	31	440	646	476	86	1208
Cell cycle	CDKN2A	Rs3731211	SEARCH	395	269	51	715	443	353	55	851
Cell cycle	CDKN2A	Rs3731222	GEOCS	235	84	2	321	303	114	8	425
Cell cycle	CDKN2A	Rs3731222	MALOVA	343	92	8	443	944	252	23	1219
Cell cycle	CDKN2A	Rs3731222	SEARCH	532	170	14	716	641	194	18	853
Cell cycle	CDKN2A	rs4074785	GEOCS	258	55	8	321	331	82	9	422
Cell cycle	CDKN2A	rs4074785	MALOVA	362	67	2	431	990	192	7	1189
Cell cycle	CDKN2A	rs4074785	SEARCH	565	146	8	719	699	149	5	853
Cell cycle	CDKN2A	rs3731239	GEOCS	139	152	32	323	201	171	49	421
Cell cycle	CDKN2A	rs3731239	MALOVA	146	225	70	441	461	577	180	1218

Dathanan	Canadantahand	CND	S4 J	v Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	CDKN2A	rs3731239	SEARCH	283	332	99	714	319	419	110	848
Cell cycle	CDKN2A	rs3731249	GEOCS	301	18	2	321	397	22	1	420
Cell cycle	CDKN2A	rs3731249	MALOVA	405	30	0	435	1094	98	1	1193
Cell cycle	CDKN2A	rs3731249	SEARCH	685	22	1	708	804	33	2	839
Cell cycle	CDKN2A	rs11515	GEOCS	227	82	12	321	316	104	6	426
Cell cycle	CDKN2A	rs11515	MALOVA	304	127	9	440	870	321	25	1216
Cell cycle	CDKN2A	rs11515	SEARCH	544	157	17	718	624	214	12	850
Cell cycle	CDKN2A	rs3088440	GEOCS	261	55	6	322	329	89	9	427
Cell cycle	CDKN2A	rs3088440	MALOVA	367	67	2	436	1024	186	5	1215
Cell cycle	CDKN2A	rs3088440	SEARCH	567	143	7	717	695	150	3	848
Cell cycle	CDKN2A	rs3731257	GEOCS	173	131	18	322	230	160	32	422
Cell cycle	CDKN2A	rs3731257	MALOVA	266	154	20	440	684	449	72	1205
Cell cycle	CDKN2A	rs3731257	SEARCH	413	265	40	718	451	350	48	849
Cell cycle	CDKN2B	rs3217986	GEOCS	259	56	8	323	335	83	9	427
Cell cycle	CDKN2B	rs3217986	MALOVA	367	71	2	440	1009	197	7	1213
Cell cycle	CDKN2B	rs3217986	SEARCH	568	140	7	715	696	145	5	846
Cell cycle	CDKN2B	rs1063192	GEOCS	120	146	53	319	165	189	68	422
Cell cycle	CDKN2B	rs1063192	MALOVA	119	212	110	441	351	591	274	1216
Cell cycle	CDKN2B	rs1063192	SEARCH	221	376	119	716	245	440	168	853
Cell cycle	CDKN2B	rs3218009	GEOCS	255	51	5	311	324	79	4	407
Cell cycle	CDKN2B	rs3218009	MALOVA	317	111	13	441	859	339	21	1219
Cell cycle	CDKN2B	rs3218009	SEARCH	544	161	12	717	648	187	17	852
Cell cycle	CDKN2B	rs3218012	GEOCS	89	156	75	320	114	198	110	422
Cell cycle	CDKN2B	rs3218012	MALOVA	170	199	67	436	418	586	203	1207
Cell cycle	CDKN2B	rs3218012	SEARCH	208	358	142	708	267	426	155	848
Cell cycle	CDKN2C	Rs12855	GEOCS	254	64	4	322	354	72	2	428

Dathman	Canadantahand	CND	S4 J	Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	CDKN2C	Rs12855	MALOVA	353	84	5	442	967	234	16	1217
Cell cycle	CDKN2C	Rs12855	SEARCH	597	114	7	718	697	152	5	854
Cell cycle	CDKN2C	rs3176459	GEOCS	128	148	38	314	188	184	44	416
Cell cycle	CDKN2C	rs3176459	MALOVA	201	194	42	437	590	489	134	1213
Cell cycle	CDKN2C	rs3176459	SEARCH	321	312	82	715	362	375	114	851
Cell cycle	CDKN2D	rs1465702	GEOCS	294	27	1	322	375	47	0	422
Cell cycle	CDKN2D	rs1465702	MALOVA	406	36	0	442	1118	83	5	1206
Cell cycle	CDKN2D	rs1465702	SEARCH	646	72	1	719	786	66	1	853
Cell cycle	CDKN2D	rs3218222	GEOCS	185	113	23	321	207	174	34	415
Cell cycle	CDKN2D	rs3218222	MALOVA	273	149	19	441	720	424	63	1207
Cell cycle	CDKN2D	rs3218222	SEARCH	391	268	47	706	502	295	40	837
Cell cycle	RB1	rs1981434	GEOCS	163	133	21	317	203	181	30	414
Cell cycle	RB1	rs1981434	MALOVA	210	183	40	433	586	494	115	1195
Cell cycle	RB1	rs1981434	SEARCH	370	282	61	713	438	349	64	851
Cell cycle	RB1	rs2854345	GEOCS	206	104	11	321	280	135	8	423
Cell cycle	RB1	rs2854345	MALOVA	288	133	19	440	757	396	61	1214
Cell cycle	RB1	rs2854345	SEARCH	470	217	28	715	575	235	33	843
Cell cycle	RB1	rs399413	GEOCS	169	130	23	322	210	188	29	427
Cell cycle	RB1	rs399413	MALOVA	123	124	26	273	367	282	62	711
Cell cycle	RB1	rs399413	SEARCH	380	280	59	719	452	340	59	851
Cell cycle	RB1	rs4151540	GEOCS	173	124	21	318	216	179	24	419
Cell cycle	RB1	rs4151540	MALOVA	228	164	42	434	572	502	114	1188
Cell cycle	RB1	rs4151540	SEARCH	379	287	51	717	453	341	54	848
Cell cycle	RB1	rs4151551	GEOCS	265	52	4	321	365	56	2	423
Cell cycle	RB1	rs4151551	MALOVA	357	74	3	434	998	202	12	1212
Cell cycle	RB1	rs4151551	SEARCH	590	120	7	717	707	138	7	852

Dathman	Constantshand	CND	64 J	Number of cases					Number o	f controls	;
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	RB1	rs2854344	GEOCS	282	25	3	310	360	52	5	417
Cell cycle	RB1	rs2854344	MALOVA	240	39	4	283	608	107	3	718
Cell cycle	RB1	rs2854344	SEARCH	633	73	5	711	717	121	2	840
Cell cycle	RB1	rs425834	GEOCS	299	20	2	321	380	42	0	422
Cell cycle	RB1	rs425834	MALOVA	404	31	1	436	1136	59	3	1198
Cell cycle	RB1	rs425834	SEARCH	668	44	3	715	800	48	1	849
Cell cycle	RB1	rs4151611	GEOCS	296	23	2	321	375	46	2	423
Cell cycle	RB1	rs4151611	MALOVA	385	42	3	430	1089	114	2	1205
Cell cycle	RB1	rs4151611	SEARCH	657	55	0	712	770	74	4	848
Cell cycle	RB1	rs4151620	GEOCS	231	79	0	310	311	83	5	399
Cell cycle	RB1	rs4151620	MALOVA	215	62	2	279	547	157	11	715
Cell cycle	RB1	rs4151620	SEARCH	527	182	2	711	635	196	13	844
Cell cycle	RB1	rs3092904	GEOCS	186	114	20	320	229	171	20	420
Cell cycle	RB1	rs3092904	MALOVA	140	113	27	280	373	285	64	722
Cell cycle	RB1	rs3092904	SEARCH	399	273	45	717	472	327	52	851
Cell cycle	RB1	rs4151636	GEOCS	294	20	1	315	372	47	2	421
Cell cycle	RB1	rs4151636	MALOVA	399	37	0	436	1109	107	1	1217
Cell cycle	RB1	rs4151636	SEARCH	650	64	2	716	772	77	2	851
Cell cycle	STK15	rs732417	GEOCS	271	43	1	315	351	64	4	419
Cell cycle	STK15	rs732417	MALOVA	315	52	3	370	770	108	2	880
Cell cycle	STK15	rs732417	SEARCH	589	117	6	712	717	118	5	840
Cell cycle	STK15	rs1047972	GEOCS	216	94	9	319	286	127	14	427
Cell cycle	STK15	rs1047972	MALOVA	298	99	11	408	735	260	21	1016
Cell cycle	STK15	rs1047972	SEARCH	485	207	20	712	566	246	31	843
Cell cycle	STK15	rs2273535	GEOCS	185	99	20	304	271	112	15	398
Cell cycle	STK15	rs2273535	MALOVA	167	126	22	315	391	239	46	676

Dathman	Cons/ortshand	CND	Star Jay	Study Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Cell cycle	STK15	rs2273535	SEARCH	436	250	28	714	524	285	34	843
Cell cycle	STK15	rs8173	GEOCS	161	116	18	295	229	155	22	406
Cell cycle	STK15	rs8173	MALOVA	209	128	24	361	509	339	37	885
Cell cycle	STK15	rs8173	SEARCH	373	271	38	682	458	314	40	812
DNA repair	BRCA1	rs799917	GEOCS	119	151	36	306	178	177	44	399
DNA repair	BRCA1	rs799917	MALOVA	173	176	50	399	436	393	99	928
DNA repair	BRCA1	rs799917	SEARCH	316	325	68	709	388	350	92	830
DNA repair	BRCA1	rs1799950	GEOCS	276	41	1	318	376	50	0	426
DNA repair	BRCA1	rs1799950	SEARCH	633	85	0	718	745	100	4	849
DNA repair	BRIP	rs11871785	GEOCS	131	149	39	319	165	191	67	356
DNA repair	BRIP	rs11871785	MALOVA	195	203	46	444	535	538	144	1073
DNA repair	BRIP	rs11871785	SEARCH	274	343	98	715	346	396	106	742
DNA repair	BRIP	rs1557720	GEOCS	120	139	63	322	175	193	56	368
DNA repair	BRIP	rs1557720	MALOVA	89	135	52	276	245	347	118	592
DNA repair	BRIP	rs1557720	SEARCH	259	352	108	719	315	403	135	718
DNA repair	BRIP	rs11652980	GEOCS	292	25	2	319	374	49	0	423
DNA repair	BRIP	rs11652980	MALOVA	404	38	1	443	1120	98	1	1218
DNA repair	BRIP	rs11652980	SEARCH	637	76	1	714	773	76	4	849
DNA repair	BRIP	rs2191249	GEOCS	191	108	20	319	239	155	33	394
DNA repair	BRIP	rs2191249	MALOVA	158	98	19	275	398	251	51	649
DNA repair	BRIP	rs2191249	SEARCH	413	269	37	719	463	318	62	781
DNA repair	BRIP	rs16945628	GEOCS	147	140	34	321	191	177	55	368
DNA repair	BRIP	rs16945628	MALOVA	195	186	60	441	534	546	131	1080
DNA repair	BRIP	rs16945628	SEARCH	348	302	69	719	377	372	105	749
DNA repair	BRIP	rs2191248	GEOCS	138	141	41	320	202	174	45	376
DNA repair	BRIP	rs2191248	MALOVA	183	205	47	435	453	602	155	1055

Dethereer	Constantshand	CND	Star Jay	Study Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
DNA repair	BRIP	rs2191248	SEARCH	295	317	102	714	381	392	78	773
DNA repair	BRIP	rs16945643	GEOCS	266	47	6	319	357	62	4	419
DNA repair	BRIP	rs16945643	MALOVA	360	77	3	440	1019	189	4	1208
DNA repair	BRIP	rs16945643	SEARCH	617	93	2	712	716	133	2	849
DNA repair	BRIP	rs6504074	GEOCS	170	115	37	322	225	156	40	381
DNA repair	BRIP	rs6504074	MALOVA	137	103	19	259	340	258	52	598
DNA repair	BRIP	rs6504074	SEARCH	412	264	37	713	457	325	65	782
DNA repair	BRIP	rs2378908	GEOCS	241	70	7	318	318	91	10	409
DNA repair	BRIP	rs2378908	MALOVA	198	73	3	274	564	137	10	701
DNA repair	BRIP	rs2378908	SEARCH	509	170	16	695	625	214	13	839
DNA repair	BRIP	rs4988344	GEOCS	227	85	9	321	309	103	15	412
DNA repair	BRIP	rs4988344	MALOVA	188	81	8	277	526	174	12	700
DNA repair	BRIP	rs4988344	SEARCH	491	198	28	717	592	241	20	833
DNA repair	BRIP	rs9908659	GEOCS	131	146	43	320	191	172	59	363
DNA repair	BRIP	rs9908659	MALOVA	169	203	67	439	405	615	192	1020
DNA repair	BRIP	rs9908659	SEARCH	269	333	117	719	341	401	112	742
DNA repair	BRIP	rs4968451	GEOCS	225	87	9	321	306	103	14	409
DNA repair	BRIP	rs4968451	MALOVA	306	121	13	440	877	310	25	1187
DNA repair	BRIP	rs4968451	SEARCH	489	201	26	716	588	247	19	835
DNA repair	BRIP	rs2048718	GEOCS	91	155	74	320	131	195	95	326
DNA repair	BRIP	rs2048718	MALOVA	118	215	96	429	352	632	225	984
DNA repair	BRIP	rs2048718	SEARCH	234	333	143	710	247	428	177	675
DNA repair	KU70	rs132788	GEOCS	144	140	30	314	211	173	37	421
DNA repair	KU70	rs132788	MALOVA	153	169	33	355	356	375	91	822
DNA repair	KU70	rs132788	SEARCH	306	302	105	713	364	369	106	839
DNA repair	NBS1	rs1063045	GEOCS	145	137	39	321	169	201	54	424

Dathman	Constantshand	CND	Star Jay		Number	of cases			Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
DNA repair	NBS1	rs1063045	MALOVA	197	185	42	424	479	454	108	1041
DNA repair	NBS1	rs1063045	SEARCH	295	334	79	708	365	373	102	840
DNA repair	NBS1	rs1805794	GEOCS	140	131	33	304	163	174	52	389
DNA repair	NBS1	rs1805794	MALOVA	196	176	39	411	484	437	109	1030
DNA repair	NBS1	rs1805794	SEARCH	303	327	78	708	369	372	107	848
DNA repair	NBS1	rs709816	GEOCS	128	123	54	305	157	165	71	393
DNA repair	NBS1	rs709816	MALOVA	173	199	53	425	429	470	132	1031
DNA repair	NBS1	rs709816	SEARCH	278	342	98	718	336	388	125	849
DNA repair	NBS1	rs1061302	GEOCS	137	131	34	302	159	178	50	387
DNA repair	NBS1	rs1061302	MALOVA	156	144	32	332	390	346	82	818
DNA repair	NBS1	rs1061302	SEARCH	302	325	72	699	367	364	99	830
DNA repair	RAD51	rs1801320	GEOCS	266	52	4	322	363	61	1	425
DNA repair	RAD51	rs1801320	MALOVA	315	44	2	361	725	88	7	820
DNA repair	RAD51	rs1801320	SEARCH	629	84	3	716	745	100	2	847
DNA repair	RAD51	rs1801321	GEOCS	117	144	56	317	151	193	74	418
DNA repair	RAD51	rs1801321	MALOVA	139	166	73	378	279	330	112	721
DNA repair	RAD51	rs1801321	SEARCH	216	359	142	717	273	433	141	847
DNA repair	RAD52	rs11226	GEOCS	75	169	75	319	122	210	89	421
DNA repair	RAD52	rs11226	MALOVA	119	203	97	419	311	489	232	1032
DNA repair	RAD52	rs11226	SEARCH	217	358	136	711	269	374	197	840
DNA repair	XRCC2	UNKNOWN	GEOCS	286	29	0	315	369	45	4	418
DNA repair	XRCC2	UNKNOWN	MALOVA	303	28	2	333	627	66	1	694
DNA repair	XRCC2	UNKNOWN	SEARCH	634	78	4	716	755	89	3	847
DNA repair	XRCC2	rs3218384*	GEOCS	204	103	12	319	277	134	14	425
DNA repair	XRCC2	rs3218384*	MALOVA	237	134	21	392	522	316	49	887
DNA repair	XRCC2	rs3218384*	SEARCH	426	258	31	715	509	301	38	848

D. 41	Constant about 1	CNID	C4 1	Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
DNA repair	XRCC2	rs3218536	GEOCS	257	53	1	311	334	70	5	409
DNA repair	XRCC2	rs3218536	MALOVA	275	35	0	310	467	67	2	536
DNA repair	XRCC2	rs3218536	SEARCH	620	94	2	716	704	129	9	842
DNA repair	XRCC3	rs1799794	GEOCS	201	111	9	321	269	136	18	423
DNA repair	XRCC3	rs1799794	MALOVA	285	131	8	424	684	316	42	1042
DNA repair	XRCC3	rs1799794	SEARCH	454	242	20	716	552	261	29	842
DNA repair	XRCC3	rs1799796	GEOCS	156	130	35	321	195	185	41	421
DNA repair	XRCC3	rs1799796	MALOVA	200	164	60	424	459	440	127	1026
DNA repair	XRCC3	rs1799796	SEARCH	320	314	82	716	386	381	85	852
DNA repair	XRCC3	rs861539	GEOCS	123	112	31	266	131	177	40	348
DNA repair	XRCC3	rs861539	MALOVA	138	166	49	353	335	377	134	846
DNA repair	XRCC3	rs861539	SEARCH	284	334	95	713	318	404	108	830
Mismatch repair	MLH1	rs1800734	GEOCS	178	114	21	313	246	145	28	419
Mismatch repair	MLH1	rs1800734	MALOVA	182	77	9	268	449	211	27	687
Mismatch repair	MLH1	rs1800734	SEARCH	457	225	36	718	532	285	34	851
Mismatch repair	MLH1	rs1540354	GEOCS	213	94	12	319	286	124	12	422
Mismatch repair	MLH1	rs1540354	MALOVA	172	91	12	275	444	222	30	696
Mismatch repair	MLH1	rs1540354	SEARCH	469	215	27	711	566	245	31	842
Mismatch repair	MLH1	rs1799977	GEOCS	167	114	30	311	209	147	47	403
Mismatch repair	MLH1	rs1799977	SEARCH	340	300	66	706	424	333	78	835
Mismatch repair	MLH1	rs2286939	GEOCS	107	149	62	318	127	205	86	418
Mismatch repair	MLH1	rs2286939	MALOVA	82	139	60	281	260	359	160	779
Mismatch repair	MLH1	rs2286939	SEARCH	208	369	142	719	251	421	182	854
Mismatch repair	MLH3	rs7303	GEOCS	74	132	102	308	101	198	103	402
Mismatch repair	MLH3	rs7303	MALOVA	87	119	58	264	189	322	154	665
Mismatch repair	MLH3	rs7303	SEARCH	179	366	164	709	241	399	199	839

Dathman	Constantshand	CND	64 J	ly Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Mismatch repair	MLH3	rs175080	GEOCS	120	132	58	310	129	202	81	412
Mismatch repair	MLH3	rs175080	MALOVA	78	127	68	273	214	345	166	725
Mismatch repair	MLH3	rs175080	SEARCH	206	373	134	713	249	406	189	844
Mismatch repair	MSH2	rs4952887	GEOCS	262	48	5	315	347	72	3	422
Mismatch repair	MSH2	rs4952887	MALOVA	227	43	3	273	574	118	7	699
Mismatch repair	MSH2	rs4952887	SEARCH	611	95	8	714	699	146	9	854
Mismatch repair	MSH2	rs13425206	GEOCS	284	35	2	321	394	30	1	425
Mismatch repair	MSH2	rs13425206	MALOVA	417	21	1	439	1133	82	2	1217
Mismatch repair	MSH2	rs13425206	SEARCH	667	46	2	715	781	64	4	849
Mismatch repair	MSH2	rs3771274	GEOCS	121	143	50	314	160	194	70	424
Mismatch repair	MSH2	rs3771274	MALOVA	85	140	46	271	244	349	108	701
Mismatch repair	MSH2	rs3771274	SEARCH	261	348	110	719	306	411	136	853
Mismatch repair	MSH2	rs1981928	GEOCS	177	120	24	321	224	159	42	425
Mismatch repair	MSH2	rs1981928	MALOVA	138	115	22	275	384	281	60	725
Mismatch repair	MSH2	rs1981928	SEARCH	393	274	51	718	455	330	66	851
Mismatch repair	MSH2	rs2059520	GEOCS	151	134	34	319	186	181	58	425
Mismatch repair	MSH2	rs2059520	MALOVA	110	125	40	275	311	314	85	710
Mismatch repair	MSH2	rs2059520	SEARCH	304	326	88	718	364	377	105	846
Mismatch repair	MSH2	rs2303428	GEOCS	266	48	1	315	330	72	4	406
Mismatch repair	MSH2	rs2303428	MALOVA	231	46	6	283	626	154	7	787
Mismatch repair	MSH2	rs2303428	SEARCH	592	124	3	719	692	147	15	854
Mismatch repair	MSH3	rs6151662	GEOCS	290	30	1	321	383	43	0	426
Mismatch repair	MSH3	rs6151662	MALOVA	391	43	1	435	1057	122	4	1183
Mismatch repair	MSH3	rs6151662	SEARCH	630	87	1	718	747	93	12	852
Mismatch repair	MSH3	rs40139	GEOCS	104	160	56	320	118	197	102	417
Mismatch repair	MSH3	rs40139	MALOVA	95	136	46	277	270	343	143	756

Dathanan	Constantshand	SNP	S4 J	lv Number of cases					Number of controls				
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total		
Mismatch repair	MSH3	rs40139	SEARCH	213	369	136	718	301	392	160	853		
Mismatch repair	MSH3	rs26282	GEOCS	167	121	27	315	237	141	28	406		
Mismatch repair	MSH3	rs26282	MALOVA	149	109	18	276	386	296	49	731		
Mismatch repair	MSH3	rs26282	SEARCH	380	284	53	717	444	338	69	851		
Mismatch repair	MSH3	rs26779	GEOCS	121	154	47	322	175	171	74	420		
Mismatch repair	MSH3	rs26779	MALOVA	161	209	69	439	442	569	196	1207		
Mismatch repair	MSH3	rs26779	SEARCH	259	343	112	714	287	429	123	839		
Mismatch repair	MSH3	rs33008	GEOCS	171	129	18	318	224	166	36	426		
Mismatch repair	MSH3	rs33008	MALOVA	145	112	20	277	365	285	59	709		
Mismatch repair	MSH3	rs33008	SEARCH	360	300	56	716	463	316	69	848		
Mismatch repair	MSH3	rs10079641	GEOCS	271	48	3	322	350	64	8	422		
Mismatch repair	MSH3	rs10079641	MALOVA	365	63	6	434	1009	180	8	1197		
Mismatch repair	MSH3	rs10079641	SEARCH	579	133	5	717	708	127	16	851		
Mismatch repair	MSH3	rs184967	GEOCS	219	93	6	318	319	91	10	420		
Mismatch repair	MSH3	rs184967	MALOVA	204	66	7	277	514	186	17	717		
Mismatch repair	MSH3	rs184967	SEARCH	505	186	19	710	585	241	20	846		
Mismatch repair	MSH3	rs2897298	GEOCS	232	82	7	321	328	84	9	421		
Mismatch repair	MSH3	rs2897298	MALOVA	342	85	2	429	945	227	7	1179		
Mismatch repair	MSH3	rs2897298	SEARCH	541	162	12	715	646	186	18	850		
Mismatch repair	MSH3	rs26279	GEOCS	142	151	28	321	242	151	34	427		
Mismatch repair	MSH3	rs26279	MALOVA	151	104	23	278	403	289	54	746		
Mismatch repair	MSH3	rs26279	SEARCH	364	268	70	702	417	336	82	835		
Mismatch repair	MSH3	rs2112416	GEOCS	225	82	9	316	289	122	12	423		
Mismatch repair	MSH3	rs2112416	MALOVA	195	75	8	278	525	169	15	709		
Mismatch repair	MSH3	rs2112416	SEARCH	550	151	15	716	649	188	16	853		
Mismatch repair	MSH6	rs3136245	GEOCS	209	97	16	322	266	140	21	427		

Dathanan	Cons/ortshand	SNP	Standar	dy Number of cases					Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Mismatch repair	MSH6	rs3136245	MALOVA	181	84	5	270	435	211	37	683
Mismatch repair	MSH6	rs3136245	SEARCH	454	241	23	718	538	275	37	850
Mismatch repair	MSH6	rs3136272	GEOCS	136	152	34	322	196	184	43	423
Mismatch repair	MSH6	rs3136272	MALOVA	171	177	65	413	445	557	156	1158
Mismatch repair	MSH6	rs3136272	SEARCH	303	319	93	715	334	398	112	844
Mismatch repair	MSH6	rs1800932	GEOCS	206	99	16	321	291	122	13	426
Mismatch repair	MSH6	rs1800932	MALOVA	187	82	8	277	506	191	26	723
Mismatch repair	MSH6	rs1800932	SEARCH	471	220	28	719	560	253	39	852
Mismatch repair	MSH6	rs2348244	GEOCS	227	67	9	303	287	91	13	391
Mismatch repair	MSH6	rs2348244	MALOVA	201	65	2	268	523	164	15	702
Mismatch repair	MSH6	rs2348244	SEARCH	501	193	14	708	614	206	27	847
Mismatch repair	MSH6	rs3136317	GEOCS	204	104	10	318	294	114	15	423
Mismatch repair	MSH6	rs3136317	MALOVA	308	128	5	441	849	360	9	1218
Mismatch repair	MSH6	rs3136317	SEARCH	475	220	22	717	581	243	25	849
Mismatch repair	MSH6	rs1800935	GEOCS	163	131	27	321	228	171	27	426
Mismatch repair	MSH6	rs1800935	MALOVA	135	119	23	277	384	291	72	747
Mismatch repair	MSH6	rs1800935	SEARCH	366	289	63	718	427	350	76	853
Mismatch repair	MSH6	rs2020911	GEOCS	111	154	54	319	158	195	71	424
Mismatch repair	MSH6	rs2020911	MALOVA	118	120	34	272	271	310	97	678
Mismatch repair	MSH6	rs2020911	SEARCH	259	355	101	715	315	392	141	848
Mismatch repair	PMS1	rs3762545	GEOCS	194	109	14	317	257	146	19	422
Mismatch repair	PMS1	rs3762545	MALOVA	167	98	8	273	474	237	34	745
Mismatch repair	PMS1	rs3762545	SEARCH	488	206	24	718	540	278	33	851
Mismatch repair	PMS1	rs5742981	GEOCS	299	23	0	322	387	32	2	421
Mismatch repair	PMS1	rs5742981	MALOVA	233	28	1	262	924	101	3	1028
Mismatch repair	PMS1	rs5742981	SEARCH	676	40	0	716	792	57	1	850

Dathanan	Cons/ortshand	SNP	64 J		Number	of cases			Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Mismatch repair	PMS1	rs5741593	GEOCS	291	31	0	322	373	46	1	420
Mismatch repair	PMS1	rs5741593	MALOVA	378	58	2	438	1037	170	8	1215
Mismatch repair	PMS1	rs5741593	SEARCH	625	75	2	702	705	104	3	812
Mismatch repair	PMS1	rs1233291	GEOCS	169	132	20	321	220	174	31	425
Mismatch repair	PMS1	rs1233291	MALOVA	137	114	22	273	352	294	58	704
Mismatch repair	PMS1	rs1233291	SEARCH	414	260	41	715	443	348	57	848
Mismatch repair	PMS1	rs1233255	GEOCS	194	111	13	318	270	131	23	424
Mismatch repair	PMS1	rs1233255	MALOVA	149	81	7	237	413	193	31	637
Mismatch repair	PMS1	rs1233255	SEARCH	465	223	28	716	530	277	37	844
Mismatch repair	PMS1	rs1233258	GEOCS	167	130	21	318	217	164	40	421
Mismatch repair	PMS1	rs1233258	MALOVA	137	113	28	278	330	320	57	707
Mismatch repair	PMS1	rs1233258	SEARCH	394	260	55	709	447	328	66	841
Mismatch repair	PMS1	rs256571	GEOCS	284	36	1	321	371	49	2	422
Mismatch repair	PMS1	rs256571	MALOVA	378	60	0	438	1074	134	4	1212
Mismatch repair	PMS1	rs256571	SEARCH	636	79	1	716	741	107	2	850
Mismatch repair	PMS1	rs256563	GEOCS	250	65	5	320	318	96	7	421
Mismatch repair	PMS1	rs256563	MALOVA	335	86	6	427	916	265	15	1196
Mismatch repair	PMS1	rs256563	SEARCH	578	136	4	718	650	183	12	845
Mismatch repair	PMS2	rs7797466	GEOCS	186	117	13	316	285	115	14	414
Mismatch repair	PMS2	rs7797466	MALOVA	161	94	15	270	470	202	28	700
Mismatch repair	PMS2	rs7797466	SEARCH	490	201	28	719	580	248	26	854
Mismatch repair	PMS2	rs2345060	GEOCS	191	112	20	323	243	154	29	426
Mismatch repair	PMS2	rs2345060	MALOVA	159	110	10	279	411	256	43	710
Mismatch repair	PMS2	rs2345060	SEARCH	403	278	36	717	479	324	48	851
Mismatch repair	PMS2	rs2286680	GEOCS	227	84	8	319	320	97	8	425
Mismatch repair	PMS2	rs2286680	MALOVA	198	77	3	278	577	158	15	750

Dathanan	Canalantahand	CND	Star Jay		Number	of cases			Number o	f controls	
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
Mismatch repair	PMS2	rs2286680	SEARCH	546	157	16	719	632	205	14	851
Mismatch repair	PMS2	rs12112229	GEOCS	173	117	20	310	231	151	24	406
Mismatch repair	PMS2	rs12112229	MALOVA	152	105	15	272	408	246	46	700
Mismatch repair	PMS2	rs12112229	SEARCH	399	263	55	717	442	351	46	839
Mismatch repair	PMS2	rs1805321	GEOCS	117	143	62	322	142	205	79	426
Mismatch repair	PMS2	rs1805321	MALOVA	100	126	51	277	230	346	127	703
Mismatch repair	PMS2	rs1805321	SEARCH	249	347	122	718	270	436	145	851
Mismatch repair	PMS2	rs2228006	GEOCS	231	84	6	321	308	116	3	427
Mismatch repair	PMS2	rs2228006	MALOVA	324	103	7	434	898	288	20	1206
Mismatch repair	PMS2	rs2228006	SEARCH	509	184	19	712	615	211	19	845
OCAC	ABL1	rs2855192	GEOCS	232	77	13	322	333	85	5	423
OCAC	ABL1	rs2855192	MALOVA	328	98	5	431	929	249	21	1199
OCAC	ABL1	rs2855192	SEARCH	550	151	16	717	624	217	7	848
OCAC	BRCA2	rs144848	GEOCS	173	128	20	321	217	189	21	427
OCAC	BRCA2	rs144848	MALOVA	227	158	35	420	540	399	81	1020
OCAC	BRCA2	rs144848	SEARCH	379	283	56	718	443	337	67	847
OCAC	CDC2	rs2448343	GEOCS	122	152	40	314	169	203	46	418
OCAC	CDC2	rs2448343	MALOVA	181	184	54	419	522	479	158	1159
OCAC	CDC2	rs2448343	SEARCH	297	329	89	715	339	381	123	843
OCAC	CDK7	rs12656449	GEOCS	282	36	2	320	356	61	4	421
OCAC	CDK7	rs12656449	MALOVA	356	75	3	434	988	206	11	1205
OCAC	CDK7	rs12656449	SEARCH	581	132	4	717	705	139	6	850
OCAC	CHR8-P3	rs7000448	GEOCS	121	163	36	320	164	199	57	420
OCAC	CHR8-P3	rs7000448	MALOVA	167	208	58	433	458	546	176	1180
OCAC	CHR8-P3	rs7000448	SEARCH	284	344	91	719	359	387	107	853
OCAC	DESP-1979	rs16901979	GEOCS	295	26	1	322	385	37	1	423

Dathman	Canadantahand	CND	Star Jay		Number	of cases			Number of controls		
Pathway	Gene/cytoband	SNP	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
OCAC	DESP-1979	rs16901979	MALOVA	401	29	0	430	1073	81	1	1155
OCAC	DESP-1979	rs16901979	SEARCH	666	44	1	711	798	51	1	850
OCAC	E2F2	rs760607	GEOCS	103	156	60	319	146	189	66	401
OCAC	E2F2	rs760607	MALOVA	191	181	49	421	489	520	150	1159
OCAC	E2F2	rs760607	SEARCH	270	341	105	716	325	407	118	850
OCAC	E2F3	rs7760528	GEOCS	152	132	36	320	185	185	50	420
OCAC	E2F3	rs7760528	MALOVA	194	186	46	426	572	502	126	1200
OCAC	E2F3	rs7760528	SEARCH	340	311	65	716	404	348	93	845
OCAC	KU70	rs132788	GEOCS	144	140	30	314	211	173	37	421
OCAC	KU70	rs132788	MALOVA	153	169	33	355	356	375	91	822
OCAC	KU70	rs132788	SEARCH	306	302	105	713	364	369	106	839
OCAC	LIG4	rs1805386	GEOCS	207	96	13	316	296	108	11	415
OCAC	LIG4	rs1805386	MALOVA	321	97	13	431	839	330	36	1205
OCAC	LIG4	rs1805386	SEARCH	478	215	22	715	615	210	21	846
OCAC	PGR	rs10895068	GEOCS	294	27	0	321	382	41	0	423
OCAC	PGR	rs10895068	MALOVA	372	51	1	424	997	136	7	1140
OCAC	PGR	rs10895068	SEARCH	638	77	2	717	760	86	4	850
OCAC	PGR	rs1042838	GEOCS	220	98	4	322	306	102	15	423
OCAC	PGR	rs1042838	MALOVA	295	92	10	397	884	233	21	1138
OCAC	PGR	rs1042838	SEARCH	490	187	28	705	629	191	27	847
OCAC	PGR	rs608995	GEOCS	170	136	15	321	228	165	31	424
OCAC	PGR	rs608995	MALOVA	270	142	25	437	754	390	58	1202
OCAC	PGR	rs608995	SEARCH	418	249	50	717	521	280	46	847
OCAC	TGFB1	rs1982073	GEOCS	125	143	46	314	166	189	58	413
OCAC	TGFB1	rs1982073	SEARCH	281	329	102	712	326	393	130	849
OCAC	TNRC9	rs3803662	GEOCS	152	142	27	321	187	189	44	420

Dethway	Constant	SNP	Study		Number	of cases			Number o	f controls	
Pathway	Gene/cytoband	SINF	Study	AA	Aa	aa	Total	AA	Aa	aa	Total
OCAC	TNRC9	rs3803662	MALOVA	244	160	22	426	649	427	81	1157
OCAC	TNRC9	rs3803662	SEARCH	401	258	50	709	464	329	57	850
OCAC	TP53	rs1042522	GEOCS	171	128	19	318	230	171	21	422
OCAC	TP53	rs1042522	MALOVA	231	154	38	423	569	375	79	1023
OCAC	TP53	rs1042522	SEARCH	406	263	49	718	463	328	55	846
OCAC	TP53	rs1625895	GEOCS	242	75	2	319	308	106	3	417
OCAC	TP53	rs1625895	MALOVA	303	82	3	388	720	147	14	881
OCAC	TP53	rs1625895	SEARCH	537	151	14	702	639	183	16	838
OCAC	TP53	rs9894946	GEOCS	219	96	5	320	285	133	4	422
OCAC	TP53	rs9894946	MALOVA	312	116	9	437	900	288	26	1214
OCAC	TP53	rs9894946	SEARCH	514	179	20	713	629	194	26	849
OCAC	VDR	rs10735810	GEOCS	118	136	65	319	158	200	63	421
OCAC	VDR	rs10735810	MALOVA	159	208	57	424	475	545	163	1183
OCAC	VDR	rs10735810	SEARCH	274	341	103	718	332	383	136	851
OCAC	XRCC5	rs16855489	GEOCS	121	153	48	322	152	209	63	424
OCAC	XRCC5	rs16855489	MALOVA	148	218	69	435	428	586	195	1209
OCAC	XRCC5	rs16855489	SEARCH	277	347	95	719	344	394	113	851

AA – common homozygous; Aa – heterozygous; aa – rare homozygous; the distributions for oncogenes and MMCT-18 candidates are tabulated in Appendices II-A and II-B, respectively.

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
BCAC§	2q22.1	rs4954956	98	1446	2469	1.02 (0.89-1.18)	0.94 (0.71-1.25)	0.9634	0.9651
BCAC [§]	5q11.2	rs889312	98	1473	2460	0.98 (0.85-1.12)	0.92 (0.71-1.18)	0.5136	0.533
BCAC§	8q24.21	rs10505477	98	1456	2459	0.97 (0.83-1.14)	0.86 (0.71-1.04)	0.1166	0.1342
BCAC§	8q24.21	rs10808556	98	1462	2453	1.15 (0.99-1.33)	1.20 (0.99-1.46)	0.0446	0.0552
BCAC§	8q24.21	rs13254738	97	1458	2451	0.98 (0.85-1.13)	0.91 (0.73-1.13)	0.4202	0.4416
BCAC§	8q24.21	rs13281615	98	1458	2464	0.93 (0.81-1.08)	0.98 (0.80-1.20)	0.6699	0.6841
BCAC§	8q24.21	rs6983267	95	1364	2439	0.96 (0.82-1.13)	0.88 (0.72-1.07)	0.1965	0.2171
BCAC§	8q24.21	rs6983561	97	1444	2456	0.97 (0.75-1.27)	1.86 (0.31-11.15)	0.9962	0.9964
BCAC§	8q24.21	rs9283954	95	1409	2420	1.06 (0.89-1.26)	1.33 (0.71-2.50)	0.3346	0.3565
BCAC [§]	11p15.5	rs2107425	98	1460	2463	0.71 (0.62-0.82)	0.88 (0.70-1.10)	0.0012	0.002
BCAC [§]	12p11.22	rs7313833	98	1460	2457	1.08 (0.94-1.24)	1.08 (0.87-1.34)	0.3209	0.3434
BCAC [§]	FLJ41481	rs4666451	98	1454	2469	0.96 (0.83-1.11)	1.03 (0.85-1.25)	0.926	0.9294
BCAC [§]	HCN1	rs981782	96	1419	2432	1.12 (0.96-1.32)	1.05 (0.87-1.27)	0.5399	0.5582
BCAC [§]	LOC100131885	rs2981582	98	1463	2466	0.88 (0.76-1.02)	0.89 (0.73-1.09)	0.1381	0.157
BCAC§	LSP1	rs3817198	97	1457	2435	1.16 (1.01-1.34)	1.40 (1.11-1.75)	0.0016	0.0026
BCAC [§]	TOX3	rs12443621	97	1445	2457	0.96 (0.82-1.12)	0.83 (0.69-1.01)	0.0752	0.0894
Cell cycle	CCND1	rs602652	99	1468	2493	1.13 (0.97-1.32)	1.24 (1.03-1.49)	0.0235	0.0307
Cell cycle	CCND1	rs3862792	98	1471	2468	0.83 (0.61-1.13)	0.91 (0.76-1.08)	0.2311	0.2531
Cell cycle	CCND1	rs603965	98	1476	2464	1.06 (0.91-1.23)	1.28 (1.06-1.55)	0.013	0.0178
Cell cycle	CCND1	rs3212879	99	1472	2491	0.85 (0.73-0.99)	0.82 (0.68-0.99)	0.0321	0.0409
Cell cycle	CCND1	rs3212891	98	1475	2476	0.86 (0.74-1.00)	0.83 (0.69-1.00)	0.0376	0.0472
Cell cycle	CCND1	rs678653	98	1465	2468	0.94 (0.81-1.08)	0.93 (0.76-1.15)	0.3791	0.4012
Cell cycle	CCND1	rs7178	99	1480	2491	1.24 (1.04-1.49)	1.24 (0.50-3.04)	0.0211	0.0278

Appendix VI: Genotype-specific risks of all SNPs analysed with AML method

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
Cell cycle	CCND2	rs3217795	99	1485	2500	1.00 (0.84-1.20)	0.71 (0.28-1.76)	0.819	0.8272
Cell cycle	CCND2	rs3217805	99	1458	2502	1.08 (0.93-1.25)	0.86 (0.70-1.05)	0.3599	0.3824
Cell cycle	CCND2	rs3217820	97	1407	2497	1.12 (0.97-1.29)	1.01 (0.82-1.25)	0.4954	0.5152
Cell cycle	CCND2	rs3217852	99	1474	2488	0.99 (0.86-1.14)	0.86 (0.64-1.15)	0.4711	0.4917
Cell cycle	CCND2	rs3217862	99	1470	2493	0.93 (0.80-1.08)	0.94 (0.62-1.40)	0.3481	0.3708
Cell cycle	CCND2	rs3217863	98	1459	2472	0.99 (0.83-1.20)	1.49 (0.75-2.93)	0.6464	0.6615
Cell cycle	CCND2	rs3217869	99	1483	2498	1.01 (0.87-1.16)	1.05 (0.87-1.28)	0.6306	0.6465
Cell cycle	CCND2	rs3217901	99	1479	2489	1.10 (0.95-1.28)	1.03 (0.85-1.25)	0.5991	0.616
Cell cycle	CCND2	rs3217906	98	1467	2473	1.05 (0.91-1.20)	0.97 (0.74-1.28)	0.7711	0.7813
Cell cycle	CCND2	rs3217916	98	1476	2477	1.01 (0.88-1.16)	0.75 (0.58-0.97)	0.1541	0.1739
Cell cycle	CCND2	rs3217925	98	1470	2461	0.98 (0.86-1.13)	0.72 (0.54-0.96)	0.1078	0.1248
Cell cycle	CCND2	rs3217926	99	1484	2500	1.05 (0.91-1.21)	0.90 (0.74-1.10)	0.5268	0.5461
Cell cycle	CCND2	rs3217933	98	1478	2474	1.13 (0.99-1.30)	1.01 (0.76-1.33)	0.241	0.2632
Cell cycle	CCND2	rs3217936	99	1478	2489	1.02 (0.89-1.17)	0.77 (0.61-0.97)	0.1303	0.1489
Cell cycle	CCND3	rs1410492	99	1479	2490	1.08 (0.94-1.24)	1.06 (0.80-1.40)	0.3187	0.3415
Cell cycle	CCND3	rs3218092	98	1468	2468	1.02 (0.89-1.18)	0.74 (0.51-1.06)	0.4626	0.4833
Cell cycle	CCND3	rs2479717	99	1472	2489	1.05 (0.91-1.20)	0.98 (0.76-1.25)	0.7947	0.804
Cell cycle	CCND3	rs1051130	99	1475	2488	1.13 (0.96-1.31)	0.87 (0.72-1.05)	0.2	0.2215
Cell cycle	CCND3	rs9529	99	1481	2475	1.00 (0.87-1.15)	0.79 (0.62-1.02)	0.1898	0.2109
Cell cycle	CCND3	rs3218110	99	1479	2482	1.11 (0.97-1.28)	1.11 (0.83-1.47)	0.145	0.1644
Cell cycle	CCND3	rs3218114	99	1484	2492	1.01 (0.88-1.17)	0.78 (0.53-1.13)	0.5375	0.5565
Cell cycle	CCNE1	rs997669	99	1480	2497	1.10 (0.95-1.27)	1.14 (0.93-1.39)	0.1414	0.1607
Cell cycle	CCNE1	rs3218036	99	1476	2481	1.07 (0.93-1.23)	1.27 (1.01-1.59)	0.0458	0.0567
Cell cycle	CCNE1	rs3218038	99	1479	2497	0.97 (0.76-1.25)	1.90 (0.32-11.42)	0.9863	0.987
Cell cycle	CCNE1	rs3218076	99	1480	2497	1.02 (0.89-1.17)	1.02 (0.79-1.33)	0.7375	0.7492
Cell cycle	CDK2	rs2069408	99	1476	2496	0.90 (0.78-1.03)	0.89 (0.71-1.11)	0.1327	0.1515

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
Cell cycle	CDK2	rs1045435	99	1482	2497	1.11 (0.94-1.33)	1.87 (0.92-3.82)	0.0735	0.0879
Cell cycle	CDK4	rs2270777	99	1477	2491	1.07 (0.92-1.24)	1.07 (0.88-1.30)	0.4203	0.442
Cell cycle	CDK4	rs2069506	99	1480	2482	0.94 (0.82-1.08)	1.00 (0.81-1.24)	0.6775	0.6915
Cell cycle	CDK6	rs8179	97	1465	2440	0.96 (0.84-1.11)	1.07 (0.78-1.48)	0.9164	0.9202
Cell cycle	CDK6	rs2285332	98	1476	2463	0.92 (0.80-1.06)	0.88 (0.66-1.17)	0.1799	0.2006
Cell cycle	CDK6	rs42046	97	1466	2446	1.07 (0.93-1.23)	1.07 (0.82-1.39)	0.3659	0.3881
Cell cycle	CDK6	rs3731348	98	1463	2465	1.08 (0.88-1.32)	0.39 (0.11-1.39)	0.9009	0.9054
Cell cycle	CDK6	rs8	99	1473	2481	1.17 (1.02-1.35)	1.44 (1.04-1.99)	0.0039	0.0059
Cell cycle	CDK6	rs2237570	98	1474	2468	0.89 (0.76-1.06)	0.71 (0.38-1.33)	0.1015	0.1182
Cell cycle	CDK6	rs3731343	99	1484	2499	1.04 (0.89-1.21)	1.09 (0.90-1.31)	0.3637	0.3863
Cell cycle	CDK6	rs3757823	99	1486	2495	1.05 (0.89-1.24)	1.09 (0.53-2.23)	0.534	0.553
Cell cycle	CDK6	rs2079147	99	1481	2496	1.01 (0.86-1.18)	1.01 (0.84-1.22)	0.9246	0.928
Cell cycle	CDK6	rs2282991	96	1449	2404	0.85 (0.71-1.01)	0.86 (0.44-1.69)	0.0626	0.0753
Cell cycle	CDK6	rs4729049	99	1482	2499	1.01 (0.85-1.19)	0.86 (0.44-1.69)	0.9082	0.9125
Cell cycle	CDK6	rs445	99	1481	2497	0.99 (0.83-1.17)	0.89 (0.44-1.78)	0.7706	0.7809
Cell cycle	CDK6	rs992519	99	1477	2496	1.05 (0.90-1.22)	0.99 (0.62-1.59)	0.6382	0.6538
Cell cycle	CDKN1A	rs762624	99	1475	2483	1.06 (0.92-1.21)	1.11 (0.86-1.44)	0.3019	0.3247
Cell cycle	CDKN1A	rs2395655	99	1478	2487	1.12 (0.97-1.29)	1.18 (0.97-1.43)	0.0692	0.083
Cell cycle	CDKN1A	rs3176331	98	1471	2472	1.01 (0.86-1.18)	1.14 (0.70-1.85)	0.7129	0.7255
Cell cycle	CDKN1A	rs3176336	99	1481	2488	0.98 (0.85-1.14)	0.94 (0.77-1.14)	0.5351	0.5541
Cell cycle	CDKN1A	rs3176343	99	1483	2491	1.03 (0.83-1.28)	0.78 (0.14-4.37)	0.8189	0.8272
Cell cycle	CDKN1A	rs1801270	98	1477	2463	0.91 (0.75-1.11)	0.53 (0.19-1.50)	0.1987	0.22
Cell cycle	CDKN1A	rs3176352	98	1477	2476	1.03 (0.89-1.18)	1.17 (0.91-1.50)	0.2978	0.3205
Cell cycle	CDKN1A	rs1059234	99	1483	2481	0.90 (0.74-1.09)	0.73 (0.29-1.83)	0.2182	0.2401
Cell cycle	CDKN1A	rs6457937	99	1483	2495	0.97 (0.72-1.30)	0.90 (0.76-1.08)	0.8263	0.8342
Cell cycle	CDKN1B	rs3759217	99	1483	2492	1.15 (0.98-1.34)	1.04 (0.60-1.79)	0.1301	0.1487

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
Cell cycle	CDKN1B	rs34330	98	1468	2467	0.94 (0.81-1.08)	0.90 (0.67-1.20)	0.2774	0.3
Cell cycle	CDKN1B	rs2066827	99	1481	2484	0.88 (0.77-1.01)	0.68 (0.51-0.90)	0.0035	0.0053
Cell cycle	CDKN1B	rs34329	99	1481	2491	1.01 (0.88-1.16)	0.96 (0.76-1.21)	0.8616	0.868
Cell cycle	CDKN1B	rs3093736	99	1483	2493	0.94 (0.72-1.23)	1.53 (0.25-9.44)	0.7519	0.763
Cell cycle	CDKN1B	rs7330	99	1484	2499	0.95 (0.82-1.09)	1.01 (0.83-1.23)	0.8981	0.9028
Cell cycle	CDKN1B	rs1420023	99	1475	2486	0.95 (0.81-1.13)	1.08 (0.59-1.97)	0.7146	0.7272
Cell cycle	CDKN2A	rs3217992	99	1474	2489	0.96 (0.83-1.10)	0.91 (0.74-1.13)	0.3764	0.3987
Cell cycle	CDKN2A	rs3218005	98	1461	2473	1.04 (0.87-1.24)	1.63 (0.87-3.05)	0.2853	0.3079
Cell cycle	CDKN2A	rs2811712	99	1479	2494	0.97 (0.82-1.15)	1.91 (1.08-3.37)	0.4497	0.4709
Cell cycle	CDKN2A	rs3218020	98	1467	2463	0.99 (0.86-1.14)	0.93 (0.74-1.17)	0.6253	0.6412
Cell cycle	CDKN2A	rs3731197	99	1476	2479	1.02 (0.88-1.17)	1.07 (0.87-1.30)	0.5644	0.5824
Cell cycle	CDKN2A	rs3731211	99	1476	2484	0.95 (0.83-1.09)	1.06 (0.82-1.37)	0.8613	0.8676
Cell cycle	CDKN2A	rs3731222	99	1480	2497	1.01 (0.87-1.19)	0.82 (0.50-1.36)	0.8169	0.8252
Cell cycle	CDKN2A	rs4074785	98	1471	2464	1.04 (0.88-1.24)	1.30 (0.68-2.47)	0.4466	0.4677
Cell cycle	CDKN2A	rs3731239	99	1478	2487	1.08 (0.94-1.24)	1.08 (0.88-1.33)	0.324	0.3468
Cell cycle	CDKN2A	rs3731249	98	1464	2452	0.86 (0.64-1.16)	1.03 (0.23-4.67)	0.3584	0.3806
Cell cycle	CDKN2A	rs11515	99	1479	2492	1.00 (0.86-1.16)	1.53 (0.98-2.41)	0.3809	0.4032
Cell cycle	CDKN2A	rs3088440	99	1475	2490	1.02 (0.86-1.21)	1.33 (0.65-2.70)	0.6122	0.6287
Cell cycle	CDKN2A	rs3731257	99	1480	2476	0.89 (0.78-1.03)	0.80 (0.60-1.07)	0.0452	0.056
Cell cycle	CDKN2B	rs3217986	99	1478	2486	1.04 (0.88-1.24)	1.23 (0.64-2.37)	0.4832	0.5035
Cell cycle	CDKN2B	rs1063192	99	1476	2491	1.01 (0.87-1.17)	0.98 (0.81-1.19)	0.8927	0.8976
Cell cycle	CDKN2B	rs3218009	98	1469	2478	0.93 (0.80-1.09)	1.25 (0.77-2.02)	0.7664	0.7768
Cell cycle	CDKN2B	rs3218012	98	1464	2477	0.96 (0.83-1.12)	0.96 (0.79-1.16)	0.6371	0.6526
Cell cycle	CDKN2C	rs12855	99	1482	2499	0.98 (0.83-1.17)	1.30 (0.68-2.51)	0.8688	0.8748
Cell cycle	CDKN2C	rs3176459	98	1466	2480	1.06 (0.92-1.22)	0.93 (0.75-1.16)	0.9162	0.92
Cell cycle	CDKN2D	rs1465702	99	1483	2481	1.12 (0.89-1.41)	0.65 (0.13-3.33)	0.4518	0.4729

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
Cell cycle	CDKN2D	rs3218222	98	1468	2459	0.97 (0.85-1.12)	1.04 (0.78-1.38)	0.9412	0.9439
Cell cycle	RB1	rs1981434	98	1463	2460	0.97 (0.85-1.12)	1.01 (0.79-1.30)	0.8937	0.8985
Cell cycle	RB1	rs2854345	99	1476	2480	1.02 (0.88-1.17)	1.02 (0.73-1.43)	0.8221	0.8301
Cell cycle	RB1	rs399413	82	1314	1989	1.02 (0.88-1.19)	1.15 (0.88-1.51)	0.3906	0.4093
Cell cycle	RB1	rs4151540	98	1469	2455	0.91 (0.79-1.04)	1.03 (0.80-1.33)	0.5165	0.5358
Cell cycle	RB1	rs4151551	99	1472	2487	1.08 (0.90-1.29)	1.16 (0.58-2.31)	0.3718	0.3941
Cell cycle	RB1	rs2854344	82	1304	1975	0.73 (0.59-0.91)	1.84 (0.78-4.32)	0.0552	0.0653
Cell cycle	RB1	rs425834	98	1472	2469	1.04 (0.80-1.37)	2.59 (0.71-9.43)	0.3967	0.4186
Cell cycle	RB1	rs4151611	98	1463	2476	0.87 (0.69-1.10)	1.03 (0.33-3.23)	0.2988	0.3214
Cell cycle	RB1	rs4151620	81	1300	1958	1.12 (0.95-1.33)	0.22 (0.08-0.62)	0.9699	0.9711
Cell cycle	RB1	rs3092904	82	1317	1993	0.96 (0.83-1.12)	1.09 (0.82-1.45)	0.953	0.9549
Cell cycle	RB1	rs4151636	99	1467	2489	0.87 (0.69-1.10)	0.81 (0.19-3.43)	0.2213	0.2432
Cell cycle	STK15	rs732417	88	1397	2139	1.12 (0.92-1.35)	1.32 (0.55-3.15)	0.2128	0.2324
Cell cycle	STK15	rs1047972	93	1439	2286	0.97 (0.83-1.13)	0.90 (0.60-1.35)	0.5405	0.5583
Cell cycle	STK15	rs2273535	81	1333	1917	1.15 (0.99-1.34)	1.20 (0.87-1.66)	0.0515	0.0611
Cell cycle	STK15	rs8173	86	1338	2103	1.01 (0.88-1.17)	1.29 (0.94-1.76)	0.2747	0.2945
DNA repair	BRCA1	rs799917	89	1414	2157	1.16 (1.01-1.34)	1.09 (0.87-1.37)	0.1299	0.1467
DNA repair	BRCA1	rs1799950	58	1036	1275	1.04 (0.81-1.34)	0.30 (0.03-2.72)	0.9818	0.9823
DNA repair	BRIP	rs11871785	99	1478	2488	1.05 (0.91-1.21)	0.96 (0.78-1.18)	0.9737	0.9749
DNA repair	BRIP	rs1557720	82	1317	1987	1.06 (0.91-1.24)	1.17 (0.95-1.45)	0.1434	0.1596
DNA repair	BRIP	rs11652980	99	1476	2495	1.02 (0.82-1.28)	1.17 (0.31-4.44)	0.7972	0.8064
DNA repair	BRIP	rs2191249	82	1313	1970	0.94 (0.81-1.09)	0.76 (0.56-1.02)	0.0798	0.0921
DNA repair	BRIP	rs16945628	99	1481	2488	0.93 (0.81-1.06)	0.90 (0.73-1.12)	0.2309	0.2531
DNA repair	BRIP	rs2191248	98	1469	2482	1.00 (0.87-1.15)	1.20 (0.97-1.49)	0.2147	0.2364
DNA repair	BRIP	rs16945643	99	1471	2486	0.97 (0.81-1.17)	1.83 (0.76-4.38)	0.8358	0.8433
DNA repair	BRIP	rs6504074	80	1294	1918	0.94 (0.81-1.09)	0.85 (0.65-1.12)	0.208	0.2257

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
DNA repair	BRIP	rs2378908	81	1287	1982	1.10 (0.93-1.30)	1.18 (0.70-2.00)	0.2122	0.2303
DNA repair	BRIP	rs4988344	82	1315	1992	1.09 (0.93-1.28)	1.43 (0.94-2.18)	0.0777	0.09
DNA repair	BRIP	rs9908659	99	1478	2488	0.98 (0.85-1.14)	1.08 (0.88-1.32)	0.6005	0.6174
DNA repair	BRIP	rs4968451	99	1477	2489	1.06 (0.91-1.23)	1.38 (0.93-2.06)	0.1459	0.1653
DNA repair	BRIP	rs2048718	98	1459	2482	0.94 (0.81-1.10)	1.04 (0.86-1.25)	0.8081	0.8167
DNA repair	NBS1	rs1063045	94	1453	2305	0.99 (0.86-1.15)	0.93 (0.74-1.16)	0.5945	0.6107
DNA repair	NBS1	rs1805794	92	1423	2267	1.00 (0.87-1.16)	0.85 (0.68-1.07)	0.3049	0.3262
DNA repair	NBS1	rs709816	93	1448	2273	1.03 (0.89-1.19)	0.96 (0.78-1.18)	0.8746	0.88
DNA repair	NBS1	rs1061302	84	1333	2035	1.02 (0.88-1.18)	0.89 (0.70-1.12)	0.5305	0.5469
DNA repair	RAD51	rs1801320	87	1399	2092	1.08 (0.88-1.33)	1.51 (0.60-3.76)	0.3156	0.3357
DNA repair	RAD51	rs1801321	85	1412	1986	1.02 (0.87-1.18)	1.21 (0.99-1.48)	0.0985	0.1127
DNA repair	RAD52	rs11226	93	1449	2293	1.17 (1.00-1.37)	1.03 (0.85-1.24)	0.6166	0.6321
DNA repair	XRCC2	XRCC212	83	1364	1959	0.95 (0.75-1.20)	1.03 (0.35-2.98)	0.6961	0.7074
DNA repair	XRCC2	rs3218384	89	1426	2160	1.00 (0.86-1.15)	0.99 (0.72-1.38)	0.9722	0.9734
DNA repair	XRCC2	rs3218536	78	1337	1787	0.88 (0.72-1.08)	0.23 (0.07-0.79)	0.0364	0.0439
DNA repair	XRCC3	rs1799794	94	1461	2307	1.07 (0.93-1.24)	0.66 (0.44-0.98)	0.6996	0.7122
DNA repair	XRCC3	rs1799796	94	1461	2299	0.92 (0.80-1.06)	1.12 (0.90-1.39)	0.8358	0.8429
DNA repair	XRCC3	rs861539	84	1332	2024	0.91 (0.78-1.06)	0.91 (0.73-1.14)	0.2705	0.2898
Mismatch	MLH1	rs1800734	81	1299	1957	0.95 (0.82-1.11)	1.07 (0.76-1.49)	0.8455	0.8513
Mismatch	MLH1	rs1540354	81	1305	1960	1.05 (0.90-1.23)	1.10 (0.76-1.60)	0.4616	0.4789
Mismatch	MLH1	rs1799977	56	1017	1238	1.07 (0.90-1.28)	0.96 (0.72-1.28)	0.8334	0.8379
Mismatch	MLH1	rs2286939	84	1318	2051	1.05 (0.89-1.23)	0.98 (0.80-1.20)	0.9276	0.9304
Mismatch	MLH3	rs7303	79	1281	1906	1.03 (0.87-1.22)	1.08 (0.89-1.32)	0.4363	0.4537
Mismatch	MLH3	rs175080	82	1296	1981	0.97 (0.82-1.14)	0.89 (0.73-1.10)	0.2971	0.3161
Mismatch	MSH2	rs4952887	82	1302	1975	0.82 (0.67-1.00)	1.24 (0.63-2.44)	0.1534	0.1698
Mismatch	MSH2	rs13425206	99	1475	2491	0.94 (0.73-1.22)	1.06 (0.33-3.39)	0.698	0.7113

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
Mismatch	MSH2	rs3771274	82	1304	1978	1.02 (0.88-1.20)	1.01 (0.81-1.25)	0.8708	0.8757
Mismatch	MSH2	rs1981928	83	1314	2001	1.00 (0.86-1.16)	0.88 (0.67-1.15)	0.5225	0.5388
Mismatch	MSH2	rs2059520	82	1312	1981	1.03 (0.88-1.19)	1.00 (0.80-1.26)	0.884	0.8885
Mismatch	MSH2	rs2303428	84	1317	2047	0.90 (0.75-1.08)	0.59 (0.28-1.24)	0.1071	0.1217
Mismatch	MSH3	rs6151662	98	1474	2461	1.02 (0.82-1.26)	0.27 (0.08-0.92)	0.4541	0.475
Mismatch	MSH3	rs40139	83	1315	2026	1.17 (1.00-1.38)	0.96 (0.78-1.17)	0.9751	0.976
Mismatch	MSH3	rs26282	82	1308	1988	1.02 (0.88-1.19)	1.01 (0.76-1.33)	0.8299	0.8364
Mismatch	MSH3	rs26779	98	1475	2466	1.00 (0.87-1.16)	0.98 (0.80-1.19)	0.8493	0.8561
Mismatch	MSH3	rs33008	82	1227	1829	0.77 (0.32-1.87)	0.85 (0.35-2.07)	0.8039	0.8113
Mismatch	MSH3	rs10079641	98	1473	2470	1.10 (0.92-1.32)	0.67 (0.36-1.28)	0.7589	0.7696
Mismatch	MSH3	rs184967	92	1305	1983	1.01 (0.86-1.18)	1.04 (0.65-1.65)	0.8937	0.8978
Mismatch	MSH3	rs2897298	98	1465	2450	1.10 (0.94-1.29)	0.87 (0.50-1.52)	0.4274	0.4487
Mismatch	MSH3	rs26279	82	1301	2008	1.08 (0.93-1.25)	1.10 (0.85-1.42)	0.2922	0.3114
Mismatch	MSH3	rs2112416	82	1310	1985	0.99 (0.83-1.16)	1.14 (0.71-1.83)	0.8772	0.8819
Mismatch	MSH6	rs3136245	81	1310	1960	0.98 (0.84-1.14)	0.68 (0.47-0.99)	0.1573	0.1739
Mismatch	MSH6	rs3136272	97	1450	2425	0.92 (0.80-1.06)	1.02 (0.83-1.26)	0.7715	0.7815
Mismatch	MSH6	rs1800932	83	1317	2001	1.09 (0.93-1.28)	1.01 (0.70-1.45)	0.4088	0.4273
Mismatch	MSH6	rs2348244	80	1279	1940	1.07 (0.90-1.26)	0.65 (0.40-1.05)	0.727	0.7369
Mismatch	MSH6	rs3136317	99	1476	2490	1.10 (0.95-1.27)	1.08 (0.70-1.68)	0.227	0.2491
Mismatch	MSH6	rs1800935	83	1316	2026	1.04 (0.90-1.20)	1.03 (0.79-1.33)	0.6797	0.6916
Mismatch	MSH6	rs2020911	81	1306	1950	1.05 (0.90-1.22)	0.90 (0.72-1.12)	0.5504	0.5658
Mismatch	PMS1	rs3762545	83	1308	2018	0.94 (0.81-1.10)	0.81 (0.56-1.18)	0.2317	0.2505
Mismatch	PMS1	rs5742981	90	1300	2299	0.94 (0.72-1.23)	0.36 (0.04-3.10)	0.4592	0.4783
Mismatch	PMS1	rs5741593	97	1462	2447	0.87 (0.71-1.07)	0.63 (0.20-2.00)	0.1275	0.1457
Mismatch	PMS1	rs1233291	82	1309	1977	0.89 (0.77-1.03)	0.84 (0.63-1.12)	0.08	0.0924
Mismatch	PMS1	rs1233255	79	1271	1905	1.03 (0.88-1.21)	0.79 (0.55-1.13)	0.6249	0.6378

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
Mismatch	PMS1	rs1233258	82	1305	1969	0.91 (0.79-1.06)	0.94 (0.72-1.22)	0.3118	0.3307
Mismatch	PMS1	rs256571	99	1475	2484	1.02 (0.83-1.25)	0.41 (0.09-1.97)	0.8635	0.8697
Mismatch	PMS1	rs256563	98	1456	2446	2.50 (0.99-6.33)	2.15 (0.84-5.48)	0.04	0.05
Mismatch	PMS2	rs7797466	82	1305	1968	1.18 (1.01-1.38)	1.38 (0.96-2.00)	0.0108	0.0142
Mismatch	PMS2	rs2345060	82	1319	1987	1.02 (0.88-1.18)	0.82 (0.59-1.12)	0.5412	0.557
Mismatch	PMS2	rs2286680	83	1316	2026	1.09 (0.92-1.28)	1.13 (0.68-1.88)	0.2972	0.3165
Mismatch	PMS2	rs12112229	81	1299	1945	0.95 (0.82-1.10)	1.15 (0.86-1.54)	0.8827	0.8872
Mismatch	PMS2	rs1805321	82	1317	1980	0.85 (0.73-1.00)	0.93 (0.75-1.14)	0.2586	0.2775
Mismatch	PMS2	rs2228006	98	1467	2478	1.01 (0.87-1.18)	1.24 (0.77-2.00)	0.5728	0.5905
MMCT-18*	AIFM2	rs2394655	75	1037	1983	1.11 (0.83-1.49)	0.52 (0.06-4.50)	0.6144	0.6282
MMCT-18*	AIFM2	rs7908957	74	1017	1939	0.84 (0.70-1.02)	1.16 (0.67-2.02)	0.2381	0.2529
MMCT-18*	AIFM2	rs1053495	67	958	1741	0.91 (0.72-1.16)	0.44 (0.14-1.32)	0.1832	0.1945
MMCT-18*	AIFM2	rs2894111	74	1046	1925	0.96 (0.81-1.12)	0.75 (0.56-1.01)	0.1055	0.1173
MMCT-18*	AIFM2	rs2394656	39	440	1134	0.88 (0.69-1.12)	0.80 (0.41-1.55)	0.2354	0.2415
MMCT-18*	AIFM2	rs6480440	39	422	1140	1.01 (0.79-1.29)	0.90 (0.56-1.44)	0.7992	0.8026
MMCT-18*	AIFM2	rs2280201	76	1041	1996	1.04 (0.87-1.26)	0.81 (0.44-1.50)	0.96	0.9614
MMCT-18*	AIFM2	rs10999147	76	1049	2017	1.10 (0.89-1.36)	0.73 (0.19-2.82)	0.4693	0.4866
MMCT-18*	AIFM2	rs3750772	75	1027	1995	1.04 (0.81-1.33)	0.99 (0.25-3.90)	0.7791	0.787
MMCT-18*	AIFM2	rs4295944	76	1047	2008	0.99 (0.84-1.17)	1.08 (0.87-1.34)	0.5842	0.5978
MMCT-18*	AIFM2	rs2394644	34	600	745	1.05 (0.81-1.37)	0.78 (0.35-1.74)	0.9997	0.9997
MMCT-18*	AIFM2	rs10999152	64	908	1672	1.17 (0.98-1.41)	1.11 (0.70-1.75)	0.1151	0.1279
MMCT-18*	AKTIP	rs9931702	40	441	1150	0.95 (0.74-1.22)	0.90 (0.66-1.24)	0.5203	0.528
MMCT-18*	AKTIP	rs17801966	31	348	898	0.92 (0.69-1.24)	0.90 (0.32-2.53)	0.5794	0.5836
MMCT-18*	AKTIP	rs7189819	75	1034	1980	0.89 (0.76-1.04)	0.82 (0.63-1.06)	0.066	0.0754
MMCT-18*	AKTIP	rs3743772	38	413	1093	0.88 (0.60-1.28)	1.74 (0.29-10.48)	0.6778	0.6817
MMCT-18*	AXIN2	rs11868547	65	847	1764	0.95 (0.78-1.16)	0.92 (0.73-1.16)	0.463	0.4768

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	P-trend unadj	<i>P</i> -trend adj. [‡]
MMCT-18*	AXIN2	rs7591	74	1041	1921	1.12 (0.95-1.33)	1.04 (0.82-1.32)	0.461	0.4769
MMCT-18*	AXIN2	rs4074947	74	1043	1946	1.09 (0.92-1.28)	0.98 (0.66-1.45)	0.5141	0.5294
MMCT-18*	AXIN2	rs7210356	76	1047	2019	1.11 (0.92-1.34)	0.84 (0.41-1.71)	0.443	0.4606
MMCT-18*	AXIN2	rs11655966	36	594	832	0.98 (0.79-1.23)	1.03 (0.68-1.57)	0.9882	0.9884
MMCT-18*	AXIN2	rs4541111	35	594	830	1.24 (0.96-1.60)	1.10 (0.82-1.49)	0.5038	0.511
MMCT-18*	AXIN2	rs4791171	67	950	1735	1.08 (0.91-1.28)	1.20 (0.89-1.60)	0.1827	0.1976
MMCT-18*	AXIN2	rs11079571	36	603	831	1.08 (0.86-1.37)	1.68 (0.87-3.25)	0.1748	0.1831
MMCT-18*	AXIN2	rs3923087	75	1041	1961	1.03 (0.87-1.21)	1.37 (0.95-1.98)	0.2081	0.2255
MMCT-18*	AXIN2	rs3923086	75	1039	1990	1.01 (0.86-1.20)	1.13 (0.91-1.42)	0.329	0.3467
MMCT-18*	CASP5	rs518604	76	1041	2029	1.11 (0.93-1.33)	1.27 (1.02-1.58)	0.032	0.0387
MMCT-18*	CASP5	rs523104	75	1017	2006	0.92 (0.77-1.10)	0.89 (0.71-1.11)	0.2633	0.2803
MMCT-18*	CASP5	rs3181328	75	1039	1981	0.98 (0.79-1.21)	0.63 (0.32-1.26)	0.3921	0.4072
MMCT-18*	CASP5	rs17446518	34	574	805	0.82 (0.62-1.08)	1.55 (0.56-4.30)	0.3641	0.3707
MMCT-18*	CASP5	rs9651713	74	1029	1959	1.02 (0.84-1.24)	1.39 (0.67-2.90)	0.5982	0.6117
MMCT-18*	CASP5	rs3181175	76	1046	2001	0.91 (0.77-1.07)	1.14 (0.74-1.76)	0.5699	0.5832
MMCT-18*	CASP5	rs3181174	76	1044	2006	0.85 (0.68-1.06)	0.93 (0.35-2.47)	0.1687	0.1814
MMCT-18*	CASP5	rs2282657	67	958	1739	0.97 (0.82-1.15)	1.01 (0.78-1.32)	0.9472	0.9488
MMCT-18*	CASP5	rs507879	75	1038	1957	1.04 (0.85-1.27)	1.05 (0.85-1.31)	0.6488	0.6603
MMCT-18*	FILIP1	rs796977	40	437	1166	1.11 (0.88-1.40)	1.28 (0.91-1.81)	0.1458	0.1548
MMCT-18*	FILIP1	rs793477	66	944	1705	0.92 (0.76-1.12)	0.72 (0.37-1.40)	0.2396	0.2528
MMCT-18*	FILIP1	rs793446	76	1045	1997	1.06 (0.90-1.26)	1.10 (0.88-1.38)	0.359	0.3766
MMCT-18*	FILIP1	rs3921767	75	1040	1956	1.10 (0.88-1.37)	0.74 (0.26-2.13)	0.5993	0.613
MMCT-18*	FILIP1	rs17338680	77	1046	2027	1.05 (0.87-1.28)	0.70 (0.37-1.32)	0.8847	0.8887
MMCT-18*	FILIP1	rs9864437	76	1047	2009	0.95 (0.80-1.11)	1.15 (0.83-1.60)	0.9395	0.9417
MMCT-18*	FILIP1	rs6788750	57	711	1593	0.99 (0.82-1.21)	0.91 (0.70-1.18)	0.523	0.5341
MMCT-18*	FILIP1	rs12494994	75	1038	1971	1.13 (0.95-1.33)	0.98 (0.63-1.52)	0.3168	0.3352

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
MMCT-18*	RBBP8	rs7239066	76	1040	1993	0.81 (0.67-0.98)	1.20 (0.62-2.32)	0.1062	0.117
MMCT-18*	RBBP8	rs11082221	76	1038	1991	1.00 (0.74-1.34)	1.23 (0.29-5.24)	0.9388	0.942
MMCT-18*	RBBP8	rs4474794	74	1033	1947	0.93 (0.79-1.10)	0.95 (0.75-1.21)	0.5173	0.5318
MMCT-18*	RBBP8	rs9304261	31	346	888	1.08 (0.82-1.40)	0.66 (0.38-1.15)	0.5163	0.5212
MMCT-18*	RGC32	rs10467472	74	1045	1943	1.04 (0.87-1.26)	1.24 (0.70-2.17)	0.4527	0.4696
MMCT-18*	RGC32	rs3783194	68	956	1762	1.00 (0.82-1.22)	1.75 (0.85-3.59)	0.4929	0.5077
MMCT-18*	RGC32	rs11618371	76	1047	2009	1.04 (0.85-1.26)	1.40 (0.70-2.80)	0.4719	0.489
MMCT-18*	RGC32	rs9532824	75	1051	1949	0.88 (0.71-1.10)	0.42 (0.14-1.24)	0.0912	0.1003
MMCT-18*	RGC32	rs995845	76	1040	1995	1.01 (0.86-1.19)	1.16 (0.85-1.58)	0.4767	0.493
MMCT-18*	RGC32	rs9594551	74	1043	1929	0.95 (0.80-1.14)	1.20 (0.70-2.06)	0.9182	0.921
MMCT-18*	RGC32	rs975590	75	1033	1994	1.00 (0.85-1.18)	0.76 (0.53-1.08)	0.3487	0.3652
MMCT-18*	RUVBL1	rs9860614	76	1039	2012	1.04 (0.86-1.25)	1.43 (0.83-2.45)	0.3153	0.3344
MMCT-18*	RUVBL1	rs13063604	34	564	785	1.23 (0.98-1.56)	1.54 (1.00-2.39)	0.016	0.0181
MMCT-18*	RUVBL1	rs3732402	76	1045	2005	1.24 (1.05-1.46)	1.17 (0.93-1.48)	0.0554	0.0649
MMCT-18*	RUVBL1	rs7650365	75	1009	2010	1.17 (0.97-1.40)	0.87 (0.70-1.09)	0.2912	0.3085
MMCT-18*	RUVBL1	rs4857836	77	1049	2031	1.08 (0.93-1.27)	1.13 (0.83-1.54)	0.2526	0.2708
MMCT-18*	RUVBL1	rs9821568	75	1028	1971	1.02 (0.86-1.22)	1.10 (0.65-1.85)	0.6988	0.7092
MMCT-18*	STAG3	rs11762932	76	1047	2007	0.96 (0.82-1.13)	1.00 (0.71-1.41)	0.7446	0.7533
MMCT-18*	STAG3	rs2246713	35	591	824	0.88 (0.68-1.14)	0.89 (0.66-1.20)	0.4251	0.4329
MMCT-18*	STAG3	rs1637001	76	1047	2005	0.83 (0.71-0.97)	0.88 (0.65-1.18)	0.0512	0.0592
OCAC §	11q13.2	rs7931342	98	1466	2474	0.94 (0.80-1.11)	0.93 (0.77-1.12)	0.4153	0.4369
OCAC §	17q22	rs7501993	97	1454	2456	0.90 (0.78-1.05)	1.02 (0.84-1.24)	0.8645	0.8706
OCAC §	17q24.3	rs1859962	97	1446	2464	1.01 (0.86-1.19)	0.98 (0.81-1.18)	0.8063	0.815
OCAC §	3p12.1	rs2660753	96	1437	2428	1.14 (0.96-1.36)	1.53 (0.80-2.94)	0.0628	0.0755
OCAC §	8q24.21	rs7000448	98	1472	2453	1.09 (0.95-1.26)	0.96 (0.78-1.19)	0.8229	0.8308
OCAC §	Xp11.22	rs5945619	98	1457	2479	1.00 (0.87-1.15)	1.08 (0.88-1.33)	0.56	0.5781

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
OCAC [§]	ABL1	rs2855192	98	1470	2470	0.98 (0.84-1.15)	1.76 (1.07-2.88)	0.3501	0.3726
OCAC §	BRCA2	rs144848	93	1459	2294	0.94 (0.82-1.08)	1.03 (0.79-1.33)	0.6796	0.6929
OCAC §	CDC2	rs2448343	96	1448	2420	1.04 (0.90-1.20)	0.95 (0.77-1.17)	0.839	0.8462
OCAC [§]	CDK7	rs12656449	98	1471	2476	1.02 (0.85-1.22)	0.75 (0.34-1.66)	0.9306	0.9338
OCAC [§]	CRCAC	rs10795668	96	1428	2417	1.02 (0.89-1.17)	0.92 (0.73-1.16)	0.7112	0.7235
OCAC §	CRCAC	rs16892766	96	1439	2425	1.17 (0.98-1.41)	0.91 (0.42-1.95)	0.1575	0.177
OCAC §	CTBP2	rs12769019	56	996	1259	0.94 (0.79-1.12)	1.24 (0.91-1.69)	0.6017	0.6116
OCAC §	DESP-1979	rs16901979	97	1463	2428	0.98 (0.75-1.27)	0.96 (0.16-5.86)	0.8539	0.8605
OCAC §	DNMT3A	rs13420827	98	1462	2473	0.96 (0.83-1.11)	1.13 (0.82-1.56)	0.9359	0.9388
OCAC §	DPYD	rs1801265	97	1464	2444	1.00 (0.87-1.15)	1.05 (0.76-1.45)	0.8433	0.8503
OCAC §	E2F2	rs760607	96	1251	2109	2.94 (1.38-6.23)	2.91 (1.37-6.15)	0.8924	0.8972
OCAC [§]	E2F3	rs7760528	98	1462	2465	1.03 (0.90-1.18)	0.92 (0.74-1.16)	0.7598	0.7704
OCAC §	EHBP1	rs2710646	95	1454	2355	0.94 (0.81-1.08)	1.32 (0.95-1.83)	0.7223	0.7342
OCAC [§]	ESR1	rs712221	97	1445	2454	1.08 (0.93-1.25)	1.12 (0.92-1.37)	0.2115	0.233
OCAC [§]	ESR1	rs9322336	98	1453	2464	0.81 (0.70-0.93)	0.73 (0.52-1.02)	0.0013	0.0021
OCAC §	FANCE	rs2395626	98	1460	2480	1.06 (0.91-1.23)	0.98 (0.81-1.18)	0.971	0.9723
OCAC §	5q35.3	SNP4	95	1461	2370	1.04 (0.90-1.20)	1.02 (0.83-1.25)	0.7217	0.7336
OCAC §	5q35.3	SNP3	95	1462	2371	0.96 (0.82-1.12)	0.90 (0.74-1.09)	0.2835	0.3055
OCAC §	5q35.3	SNP2	95	1467	2359	0.96 (0.84-1.11)	0.75 (0.56-1.00)	0.1085	0.1251
OCAC [§]	5q35.3	SNP1	97	1475	2411	0.92 (0.80-1.06)	0.82 (0.58-1.14)	0.1207	0.1384
OCAC §	GALNTL2	rs2271077	98	1460	2479	0.96 (0.77-1.21)	0.97 (0.24-3.97)	0.7433	0.7546
OCAC §	11p15.5	SNP3	96	1457	2396	0.87 (0.75-1.01)	0.85 (0.61-1.17)	0.0503	0.0616
OCAC [§]	11p15.5	SNP2	96	1459	2407	1.20 (1.02-1.40)	1.20 (1.00-1.44)	0.0473	0.0581
OCAC §	11p15.5	SNP1	97	1473	2402	0.84 (0.73-0.97)	0.86 (0.60-1.22)	0.0243	0.0314
OCAC §	IL18	rs1834481	97	1449	2435	0.89 (0.77-1.02)	0.77 (0.59-1.01)	0.0227	0.0295
OCAC [§]	JAZF1	rs10486567	96	1456	2408	1.00 (0.87-1.14)	1.09 (0.83-1.45)	0.7233	0.7352

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
OCAC §	KLK3	rs2735839	98	1459	2481	0.92 (0.79-1.08)	1.38 (0.90-2.11)	0.9525	0.9547
OCAC [§]	KU70	rs132788	86	1382	2082	1.04 (0.90-1.21)	1.08 (0.87-1.36)	0.4333	0.4522
OCAC §	LIG4	rs1805386	98	1462	2466	1.08 (0.93-1.26)	1.24 (0.85-1.83)	0.1498	0.1693
OCAC [§]	LMTK2	rs6465657	97	1439	2454	0.94 (0.80-1.09)	1.00 (0.83-1.21)	0.9184	0.9221
OCAC [§]	MSMB	rs10993994	98	1454	2473	1.03 (0.89-1.19)	1.08 (0.88-1.32)	0.4583	0.479
OCAC [§]	MTHFD1	rs1950902	97	1451	2458	0.97 (0.84-1.12)	0.89 (0.62-1.27)	0.4952	0.515
OCAC [§]	MTHFS	rs17284990	96	1418	2416	0.98 (0.85-1.13)	1.06 (0.79-1.44)	0.9714	0.9727
OCAC §	NRIP1	rs2822986	98	1458	2458	1.03 (0.89-1.18)	0.89 (0.71-1.10)	0.5123	0.5317
OCAC [§]	PGR	rs10895068	97	1462	2413	1.00 (0.81-1.24)	0.49 (0.13-1.80)	0.7231	0.7351
OCAC §	PGR	rs1042838	95	1424	2408	1.25 (1.07-1.46)	1.09 (0.73-1.64)	0.0161	0.0215
OCAC [§]	PGR	rs608995	98	1475	2473	1.08 (0.94-1.24)	1.12 (0.84-1.48)	0.2427	0.265
OCAC [§]	SLC22A3	rs9364554	96	1449	2390	1.07 (0.93-1.24)	1.19 (0.94-1.51)	0.1223	0.1399
OCAC [§]	TGFB1	rs1982073	57	1026	1262	0.98 (0.82-1.17)	0.95 (0.74-1.23)	0.7069	0.7146
OCAC [§]	TNRC9	rs3803662	97	1456	2427	0.94 (0.82-1.08)	0.85 (0.65-1.11)	0.1849	0.2055
OCAC §	TP53	rs2287498	98	1459	2471	1.03 (0.86-1.24)	2.20 (0.95-5.08)	0.3145	0.3371
OCAC §	TP53	rs1042522	93	1459	2291	0.97 (0.84-1.11)	1.11 (0.85-1.45)	0.8221	0.8297
OCAC §	TP53	rs12951053	96	1428	2430	1.03 (0.86-1.24)	1.48 (0.71-3.11)	0.4635	0.4838
OCAC §	TP53	rs1625895	88	1409	2136	1.05 (0.89-1.24)	0.85 (0.48-1.51)	0.8096	0.8173
OCAC [§]	TP53	rs9894946	99	1470	2485	1.09 (0.94-1.27)	1.02 (0.65-1.58)	0.3293	0.3519
OCAC [§]	TYMS	rs495139	97	1433	2469	1.09 (0.94-1.26)	0.93 (0.76-1.14)	0.8128	0.8212
OCAC [§]	12q13.11	SNP1	98	1461	2455	1.06 (0.92-1.23)	1.06 (0.86-1.29)	0.4679	0.4884
OCAC [§]	6p21.1	SNP1	97	1475	2418	1.07 (0.91-1.25)	1.17 (0.97-1.41)	0.0943	0.1102
OCAC [§]	XRCC5	rs16855489	99	1476	2484	1.05 (0.91-1.21)	1.02 (0.83-1.25)	0.7089	0.7217
Oncogene	BRAF	rs10487888	99	1480	2481	1.02 (0.87-1.19)	0.88 (0.73-1.07)	0.2443	0.2666
Oncogene	BRAF	rs1733832	80	1149	2043	1.07 (0.85-1.34)	3.40 (0.97-11.92)	0.2404	0.2585
Oncogene	BRAF	rs1267622	97	1458	2443	0.96 (0.83-1.10)	0.83 (0.62-1.12)	0.2461	0.2682

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	P-trend adj. [‡]
Oncogene	BRAF	rs13241719	83	1304	2032	1.05 (0.91-1.22)	0.89 (0.69-1.14)	0.7355	0.7455
Oncogene	BRAF	rs17695623	96	1441	2434	1.24 (0.61-2.51)	1.28 (0.62-2.64)	0.8847	0.8898
Oncogene	BRAF	rs17161747	98	1473	2467	1.19 (0.96-1.47)	1.38 (0.52-3.62)	0.094	0.11
Oncogene	BRAF	rs17623382	97	1465	2439	0.98 (0.83-1.15)	1.01 (0.59-1.74)	0.8527	0.8593
Oncogene	BRAF	rs6944385	98	1471	2464	1.15 (0.99-1.35)	0.98 (0.61-1.57)	0.1463	0.1657
Oncogene	ERBB2	rs2952155	98	1463	2462	1.01 (0.87-1.15)	1.13 (0.84-1.52)	0.5785	0.596
Oncogene	ERBB2	rs2952156	98	1470	2473	1.00 (0.87-1.14)	1.17 (0.90-1.52)	0.4481	0.4691
Oncogene	ERBB2	rs1801200	97	1455	2434	1.06 (0.92-1.22)	1.07 (0.80-1.42)	0.4236	0.4449
Oncogene	KRAS	rs12305513	99	1483	2472	0.89 (0.75-1.06)	0.83 (0.42-1.62)	0.1668	0.1872
Oncogene	KRAS	rs12822857	97	1465	2446	1.01 (0.86-1.18)	0.99 (0.82-1.19)	0.9441	0.9467
Oncogene	KRAS	rs10842508	98	1476	2469	0.97 (0.84-1.11)	0.99 (0.75-1.31)	0.7587	0.7694
Oncogene	KRAS	rs12579073	97	1460	2442	0.96 (0.82-1.12)	0.94 (0.78-1.14)	0.5369	0.5555
Oncogene	KRAS	rs10842513	97	1469	2421	0.98 (0.82-1.17)	0.84 (0.40-1.75)	0.6988	0.7118
Oncogene	KRAS	rs4623993	79	1140	2030	1.05 (0.88-1.24)	1.17 (0.73-1.89)	0.4498	0.4669
Oncogene	KRAS	rs6487464	98	1470	2448	1.03 (0.89-1.19)	1.02 (0.84-1.24)	0.7956	0.8047
Oncogene	KRAS	rs10842514	98	1473	2442	0.96 (0.83-1.12)	1.12 (0.93-1.35)	0.3125	0.335
Oncogene	KRAS	rs11047917	98	1465	2456	0.88 (0.71-1.08)	1.22 (0.42-3.50)	0.311	0.3335
Oncogene	NMI	rs394884	95	1412	2390	1.07 (0.92-1.26)	0.99 (0.53-1.86)	0.4338	0.4544
Oncogene	NMI	rs11551174	79	1150	2040	0.98 (0.77-1.24)	1.24 (0.45-3.42)	0.9861	0.9866
Oncogene	NMI	rs289831	96	1422	2403	1.07 (0.87-1.33)	0.84 (0.40-1.79)	0.5856	0.6026
Oncogene	NMI	rs3771886	98	1464	2465	1.00 (0.87-1.16)	1.15 (0.95-1.40)	0.2006	0.2219
Oncogene	NMI	rs11683487	83	1172	2149	0.78 (0.66-0.93)	0.85 (0.70-1.04)	0.0668	0.0782
Oncogene	NMI	rs2113509	97	1459	2452	1.09 (0.93-1.28)	1.05 (0.59-1.85)	0.3195	0.342
Oncogene	PIK3CA	rs2865084	80	1154	2046	1.14 (0.89-1.45)	0.91 (0.26-3.17)	0.356	0.3744
Oncogene	PIK3CA	rs7621329	97	1466	2424	1.02 (0.88-1.18)	1.18 (0.79-1.76)	0.557	0.575
Oncogene	PIK3CA	rs1517586	96	1429	2434	0.89 (0.74-1.06)	0.77 (0.39-1.51)	0.143	0.1618

Appendices

Pathway / Group	Gene/cytoband	SNP	Call rate (%)**	Cases	Controls	HetOR (95% CI)	HomOR (95% CI)	<i>P</i> -trend unadj	<i>P</i> -trend adj. [‡]
Oncogene	<i>РІКЗСА</i>	rs2699905	97	1445	2439	0.99 (0.86-1.14)	1.04 (0.82-1.32)	0.8746	0.8802
Oncogene	<i>РІКЗСА</i>	rs7641889	98	1478	2463	0.87 (0.71-1.07)	1.22 (0.51-2.91)	0.297	0.3196
Oncogene	<i>РІКЗСА</i>	rs7651265	97	1449	2435	0.91 (0.77-1.08)	1.33 (0.73-2.42)	0.5891	0.606
Oncogene	<i>РІКЗСА</i>	rs7640662	98	1475	2472	1.06 (0.91-1.23)	0.88 (0.57-1.37)	0.7612	0.7719
Oncogene	<i>РІКЗСА</i>	rs2677760	97	1451	2446	0.99 (0.84-1.16)	1.08 (0.90-1.30)	0.4223	0.4436

‡ Adjusted for population stratification

* GEOCS not done

**Call rate bases on total number of samples analysed.

§ candidate genes identified from the Breast Cancer Association Consortium (BCAC) and Ovarian Cancer Association Consortium (OCAC);

Emboldened P-values are significant at the 5% level. The P-trend looks for a trend between the OR and the heterozygous (Het); and rare homozygous (Hom) when compared with the common homozygous; the P-heterogeneity (P-het) does not assume a correlation with increasing number of rare allele.enboldened odds ratios (OR) do not cross 1.

Come	tSNP	МАБ	No ooror	III stale ser	Univariat	e	Multivariat	e [§]	Diff HR
Gene	ISINP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1680	All	1 (0.89-1.12)	0.972	0.94 (0.82-1.07)	0.357	6
			804	Serous	1.05 (0.9-1.21)	0.549	0.9 (0.8-1.1)	0.468	14
BRAF	rs10487888	0.46	251	Endometrioid	0.97 (0.67-1.39)	0.852	0.87 (0.59-1.28)	0.466	10
			180	Mucinous	1.1 (0.68-1.78)	0.71	1.01 (0.65-1.59)	0.95	8
			95	Clear cell	0.74 (0.43-1.28)	0.277	1 (0.54-1.84)	0.999	35
			1159	All	1.01 (0.79-1.29)	0.936	1.28 (0.96-1.72)	0.095	27
			525	Serous	0.99 (0.72-1.37)	0.966	1.2 (0.8-1.8)	0.291	21
BRAF	rs1733832	0.07	182	Endometrioid	1.03 (0.51-2.08)	0.94	1.67 (0.76-3.69)	0.201	62
			135	Mucinous	0.93 (0.39-2.25)	0.879	0.92 (0.38-2.22)	0.856	1
			94	Clear cell	1.72 (0.66-4.46)	0.264	1.67 (0.52-5.36)	0.389	3
			1751	All	1.12 (0.99-1.27)	0.077	1.19 (1.03-1.38)	0.02	6
			831	Serous	1.03 (0.87-1.22)	0.727	1.2 (1-1.4)	0.134	17
BRAF	rs1267622	0.23	268	Endometrioid	1.07 (0.72-1.59)	0.733	1.1 (0.71-1.71)	0.655	3
			187	Mucinous	1.08 (0.64-1.82)	0.764	0.89 (0.54-1.49)	0.663	18
			123	Clear cell	1.27 (0.7-2.3)	0.429	1 (0.51-1.98)	0.997	21
			1602	All	0.97 (0.85-1.1)	0.606	0.79 (0.67-0.93)	0.004	19
			733	Serous	0.94 (0.79-1.12)	0.507	0.8 (0.6-0.9)	0.006	15
BRAF	rs13241719	0.31	246	Endometrioid	0.77 (0.49-1.21)	0.258	0.79 (0.48-1.29)	0.339	3
			176	Mucinous	0.99 (0.58-1.69)	0.98	1.05 (0.63-1.74)	0.852	6
			135	Clear cell	1.12 (0.59-2.15)	0.723	1.4 (0.64-3.06)	0.404	25
BRAF	rs17695623	0.07	1744	All	1.16 (0.94-1.43)	0.174	0.98 (0.76-1.27)	0.89	16
			829	Serous	0.93 (0.7-1.23)	0.601	0.9 (0.6-1.2)	0.472	3
			264	Endometrioid	1.23 (0.61-2.49)	0.569	0.98 (0.43-2.22)	0.955	20

Appendix VII-A: Univariate and multivariate Cox regression results of BRAF tSNPs

C	ACNID	MAE	N.		Univariat	e	Multivariat	e [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			186	Mucinous	0.78 (0.21-2.97)	0.721	0.29 (0.07-1.25)	0.098	63
			132	Clear cell	1.77 (0.82-3.84)	0.146	1.31 (0.57-3.04)	0.523	26
			1771	All	0.83 (0.66-1.05)	0.119	0.84 (0.65-1.1)	0.209	1
	101 (10 10		847	Serous	0.77 (0.57-1.03)	0.079	0.8 (0.6-1.1)	0.146	4
BRAF	rs17161747	0.06	272	Endometrioid	0.97 (0.45-2.06)	0.928	1.29 (0.61-2.7)	0.506	33
			191	Mucinous	0.99 (0.38-2.56)	0.981	1.64 (0.61-4.46)	0.329	66
			134	Clear cell	0.83 (0.28-2.42)	0.734	1.01 (0.29-3.51)	0.986	22
			1764	All	1.08 (0.92-1.28)	0.333	0.98 (0.81-1.19)	0.874	9
			841	Serous	1.09 (0.89-1.35)	0.408	1 (0.8-1.2)	0.935	8
BRAF	rs17623382	0.12	270	Endometrioid	0.73 (0.36-1.49)	0.382	0.74 (0.35-1.53)	0.413	1
			186	Mucinous	1.54 (0.83-2.87)	0.17	1.86 (0.96-3.58)	0.065	21
			133	Clear cell	0.74 (0.33-1.69)	0.479	0.5 (0.17-1.45)	0.201	32
			1758	All	1.19 (1.03-1.38)	0.021	1.25 (1.05-1.5)	0.013	5
			840	Serous	0.97 (0.79-1.2)	0.804	1.1 (0.9-1.3)	0.516	13
BRAF	rs6944385	0.14	268	Endometrioid	1.31 (0.84-2.07)	0.235	1.43 (0.87-2.35)	0.156	9
			187	Mucinous	0.83 (0.4-1.73)	0.614	0.76 (0.36-1.62)	0.477	8
			124	Clear cell	2.22 (1.18-4.17)	0.014	1.93 (0.95-3.92)	0.07	13
			1786	All	0.89 (0.79-1.01)	0.076	0.84 (0.72-0.97)	0.018	6
	BRAF rs1267622, rs6944385; AA		724	Serous	0.97 (0.82-1.14)	0.708	0.9 (0.7-1)	0.115	7
BRAF		73.3*	246	Endometrioid	0.9 (0.61-1.34)	0.611	0.87 (0.57-1.34)	0.532	3
	1507 47 505, AA		169	Mucinous	0.94 (0.56-1.58)	0.82	1.18 (0.7-1.98)	0.528	26
			126	Clear cell	0.79 (0.44-1.43)	0.434	1 (0.51-1.98)	0.999	27

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant. * Haplotype frequency

Como	Hanlatuna	$\mathbf{E}_{\mathbf{r}}$	Histology	Univariate		Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.98 (0.85-1.13)	0.76	1.09 (0.92-1.3)	0.335	11
			Serous	1.06 (0.89-1.28)	0.502	0.4 (0.1-1.5)	0.16	62
BRAF	h10000000	22.9	Endometrioid	1.24 (0.79-1.95)	0.358	1.06 (0.63-1.79)	0.819	15
			Mucinous	1.09 (0.6-1.98)	0.767	0.93 (0.49-1.76)	0.812	15
			Clear cell	0.63 (0.31-1.31)	0.217	0.87 (0.39-1.91)	0.723	38
			All	0.95 (0.81-1.1)	0.493	0.8 (0.66-0.95)	0.014	16
			Serous	0.95 (0.79-1.16)	0.633	1.1 (0.9-1.4)	0.415	16
BRAF	h10010000	18.8	Endometrioid	0.88 (0.54-1.42)	0.591	0.88 (0.53-1.48)	0.629	0
			Mucinous	0.63 (0.31-1.28)	0.204	0.62 (0.32-1.23)	0.173	2
			Clear cell	1.38 (0.61-3.08)	0.438	2.38 (0.92-6.15)	0.074	72
			All	0.94 (0.81-1.1)	0.443	1 (0.84-1.19)	0.962	6
			Serous	0.98 (0.81-1.18)	0.813	1 (0.8-1.3)	0.944	2
BRAF	h0000000	16.4	Endometrioid	0.99 (0.63-1.55)	0.952	0.98 (0.61-1.56)	0.917	1
			Mucinous	0.84 (0.43-1.65)	0.618	1.31 (0.61-2.86)	0.49	56
			Clear cell	1.24 (0.62-2.45)	0.542	0.93 (0.4-2.19)	0.874	25
			All	1.1 (0.94-1.3)	0.238	1 (0.83-1.21)	0.96	9
			Serous	1.12 (0.91-1.37)	0.296	0.8 (0.6-1)	0.037	29
BRAF	h10010010	12.2	Endometrioid	0.74 (0.36-1.5)	0.401	0.74 (0.36-1.54)	0.425	0
			Mucinous	1.5 (0.81-2.8)	0.199	1.91 (0.96-3.78)	0.065	27
			Clear cell	0.79 (0.35-1.75)	0.557	0.62 (0.23-1.7)	0.351	22
BRAF	h00100000	8.7	All	0.97 (0.79-1.2)	0.804	1.09 (0.86-1.39)	0.48	12
			Serous	1.11 (0.86-1.44)	0.426	0.8 (0.6-1.1)	0.161	28
			Endometrioid	0.86 (0.42-1.74)	0.669	0.78 (0.36-1.65)	0.511	9

Appendix VII-B: Univariate and multivariate Cox regression results of *BRAF* haplotypes

Carra	Hanlatana	$\mathbf{E}_{max}(0/1)$		Univariate	!	Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Mucinous	1.4 (0.64-3.07)	0.4	1.1 (0.46-2.61)	0.833	21
			Clear cell	0.18 (0.02-1.32)	0.092	0.19 (0.03-1.28)	0.087	6
			All	1.21 (1-1.46)	0.055	1.43 (1.14-1.8)	0.002	18
			Serous	1.1 (0.85-1.42)	0.483	0.9 (0.7-1.3)	0.636	18
BRAF	h01100001	7.1	Endometrioid	1.3 (0.71-2.4)	0.393	2.04 (1.05-3.99)	0.036	57
			Mucinous	0.81 (0.33-1.99)	0.652	0.9 (0.38-2.1)	0.804	11
			Clear cell	1.86 (0.84-4.13)	0.127	1.92 (0.74-4.96)	0.179	3
			All	1.17 (0.95-1.44)	0.147	1.01 (0.79-1.3)	0.933	14
			Serous	0.94 (0.71-1.24)	0.66	1.3 (1-1.7)	0.099	38
BRAF	h00101001	7	Endometrioid	1.2 (0.59-2.44)	0.611	0.95 (0.42-2.16)	0.896	21
			Mucinous	0.77 (0.23-2.61)	0.672	0.37 (0.1-1.36)	0.133	52
			Clear cell	1.72 (0.79-3.75)	0.171	1.32 (0.57-3.05)	0.523	23
			All	0.84 (0.67-1.05)	0.128	0.85 (0.65-1.11)	0.232	1
			Serous	0.77 (0.58-1.04)	0.091	1 (0.8-1.3)	0.807	30
BRAF	h00000100	6.2	Endometrioid	0.97 (0.45-2.07)	0.935	1.3 (0.62-2.73)	0.486	34
			Mucinous	1.04 (0.41-2.59)	0.941	1.66 (0.62-4.45)	0.314	60
			Clear cell	0.82 (0.28-2.46)	0.729	1.01 (0.29-3.57)	0.985	23

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *BRAF*: rs10487888, rs1733832, rs1267622, rs13241719, rs17695623, rs17161747, rs17623382, rs6944385.

Appendices

Come	4CNID	MAE	Casas		Univariat	e	Multivariat	e [§]	Diff HR
Gene	tSNP	MAF	Cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1667	All	1.05 (0.92-1.2)	0.451	1.11 (0.95-1.3)	0.184	6
			795	Serous	1.14 (0.96-1.35)	0.127	1.2 (1-1.5)	0.061	5
ERBB2	rs2952155	0.24	250	Endometrioid	1.22 (0.8-1.86)	0.358	1.2 (0.79-1.84)	0.396	2
			177	Mucinous	1.11 (0.64-1.92)	0.705	0.83 (0.46-1.47)	0.517	25
			135	Clear cell	1.11 (0.6-2.06)	0.73	0.97 (0.45-2.06)	0.933	13
			1766	All	1.06 (0.94-1.2)	0.323	1.09 (0.94-1.26)	0.235	3
			840	Serous	1.12 (0.96-1.31)	0.154	1.1 (1-1.4)	0.118	2
ERBB2	rs2952156	0.3	269	Endometrioid	1.27 (0.85-1.89)	0.239	1.24 (0.8-1.91)	0.337	2
			186	Mucinous	1.08 (0.64-1.84)	0.77	0.81 (0.45-1.46)	0.489	25
			134	Clear cell	1.04 (0.58-1.84)	0.906	0.88 (0.42-1.85)	0.731	15
			1766	All	0.92 (0.81-1.05)	0.216	1.02 (0.87-1.19)	0.818	11
			847	Serous	1.04 (0.88-1.22)	0.635	1.1 (0.9-1.3)	0.372	6
ERBB2	rs1801200	0.23	263	Endometrioid	0.81 (0.53-1.22)	0.309	0.74 (0.47-1.19)	0.217	9
			188	Mucinous	1.26 (0.7-2.27)	0.448	1.19 (0.64-2.21)	0.586	6
			136	Clear cell	0.9 (0.5-1.64)	0.738	1.41 (0.71-2.78)	0.328	57

Appendix VII-C: Univariate and multivariate Cox regression results of ERBB2 tSNPs

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Appendices

Carra	Hanlatura	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \cdot (0/1)$		Univariate		Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.02 (0.91-1.14)	0.745	0.95 (0.83-1.09)	0.458	7
			Serous	0.92 (0.79-1.06)	0.224	0.9 (0.2-3.6)	0.928	2
ERBB2	h000	51.2	Endometrioid	0.98 (0.68-1.4)	0.892	1.06 (0.7-1.6)	0.795	8
			Mucinous	0.81 (0.46-1.44)	0.483	1.06 (0.58-1.93)	0.85	31
			Clear cell	1.08 (0.63-1.85)	0.789	0.92 (0.51-1.68)	0.793	15
			All	1.12 (0.95-1.31)	0.171	1.14 (0.94-1.38)	0.171	2
			Serous	1.18 (0.97-1.44)	0.103	1 (0.7-1.3)	0.767	15
ERBB2	h110	18.4	Endometrioid	1.55 (0.9-2.67)	0.111	1.57 (0.9-2.73)	0.111	1
			Mucinous	0.96 (0.5-1.86)	0.911	0.71 (0.35-1.44)	0.343	26
			Clear cell	1.16 (0.56-2.42)	0.684	0.99 (0.38-2.55)	0.978	15
			All	0.9 (0.77-1.05)	0.181	0.98 (0.81-1.18)	0.835	9
			Serous	1.02 (0.84-1.24)	0.853	1.2 (0.9-1.4)	0.179	18
ERBB2	h001	17.7	Endometrioid	0.73 (0.44-1.21)	0.222	0.62 (0.34-1.13)	0.12	15
			Mucinous	1.21 (0.59-2.47)	0.604	1.32 (0.61-2.82)	0.479	9
			Clear cell	0.87 (0.43-1.74)	0.686	1.45 (0.69-3.03)	0.327	67
			All	1 (0.8-1.25)	0.982	0.95 (0.74-1.21)	0.682	5
			Serous	0.94 (0.73-1.21)	0.622	1.1 (0.9-1.3)	0.562	17
ERBB2	h010	6.5	Endometrioid	1.14 (0.45-2.88)	0.776	0.75 (0.26-2.13)	0.588	34
			Mucinous	1.19 (0.4-3.57)	0.753	1.24 (0.41-3.77)	0.699	4
			Clear cell	0.8 (0.23-2.74)	0.722	0.58 (0.13-2.56)	0.47	28

Appendix VII-D: Univariate and multivariate Cox regression results of *ERBB2* haplotypes

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *ERBB2*: rs2952155, rs2952156, rs1801200.

Como	tSNP	MAF	No coror	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1788	All	1.01 (0.84-1.22)	0.879	0.98 (0.79-1.23)	0.878	3
			852	Serous	0.92 (0.73-1.17)	0.498	0.9 (0.7-1.2)	0.662	2
KRAS	rs12305513	0.09	272	Endometrioid	1.39 (0.77-2.52)	0.272	1 (0.49-2.03)	0.998	28
				Mucinous	1.99 (0.92-4.28)	0.079	1.39 (0.62-3.11)	0.418	30
			132	Clear cell	0.9 (0.37-2.19)	0.824	0.5 (0.18-1.36)	0.175	44
			1751	All	1 (0.9-1.11)	0.959	1.03 (0.91-1.17)	0.622	3
			835	Serous	0.96 (0.83-1.1)	0.517	1 (0.9-1.2)	0.898	4
KRAS	rs12822857	0.47	268	Endometrioid	0.96 (0.66-1.38)	0.821	1.01 (0.67-1.5)	0.976	5
			166	Mucinous	0.99 (0.65-1.52)	0.976	0.94 (0.59-1.53)	0.816	5
			136	Clear cell	0.93 (0.54-1.6)	0.796	0.89 (0.47-1.7)	0.726	4
			1776	All	0.97 (0.86-1.1)	0.683	1 (0.86-1.17)	0.966	3
			841	Serous	0.94 (0.8-1.1)	0.429	1 (0.8-1.2)	0.967	6
KRAS	rs10842508	0.24	273	Endometrioid	1.03 (0.7-1.52)	0.879	0.99 (0.64-1.54)	0.965	4
			190	Mucinous	1.7 (0.96-3.02)	0.071	1.26 (0.64-2.47)	0.503	26
			135	Clear cell	0.97 (0.53-1.77)	0.919	0.65 (0.27-1.54)	0.329	33
			1765	All	0.96 (0.86-1.07)	0.417	0.97 (0.85-1.09)	0.583	1
			836	Serous	0.92 (0.8-1.06)	0.253	0.9 (0.8-1.1)	0.407	2
KRAS	rs12579073	0.48	269	Endometrioid	0.7 (0.49-1)	0.053	0.74 (0.5-1.1)	0.138	6
			190	Mucinous	0.99 (0.65-1.53)	0.981	1.24 (0.77-2)	0.367	25
			137	Clear cell	0.86 (0.51-1.43)	0.554	0.89 (0.49-1.6)	0.694	3
KRAS	rs10842513	0.09	1770	All	1.18 (0.98-1.42)	0.08	1.25 (1.01-1.55)	0.039	6
			846	Serous	1.38 (1.09-1.75)	0.008	1.3 (1-1.6)	0.091	6
			271	Endometrioid	1.19 (0.67-2.1)	0.552	1.47 (0.79-2.74)	0.227	24
			187	Mucinous	0.7 (0.29-1.69)	0.432	0.74 (0.29-1.87)	0.521	6

Appendix VII-E: Univariate and multivariate Cox regression results of KRAS tSNPs

C		MAF	N		Univariat	e	Multivariat	e [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			132	Clear cell	2.02 (1-4.1)	0.052	1.71 (0.81-3.58)	0.156	15
			1748	All	0.93 (0.8-1.09)	0.378	0.96 (0.8-1.16)	0.676	3
			834	Serous	0.89 (0.73-1.08)	0.236	0.9 (0.7-1.1)	0.306	1
KRAS	rs4623993	0.16	242	Endometrioid	0.83 (0.51-1.36)	0.463	0.93 (0.55-1.56)	0.782	12
			187	Mucinous	1.79 (1.02-3.15)	0.044	1.56 (0.83-2.93)	0.163	13
			136	Clear cell	0.93 (0.46-1.89)	0.835	1.18 (0.46-3.01)	0.732	27
			1763	All	1 (0.9-1.12)	0.933	1.03 (0.9-1.16)	0.688	3
			836	Serous	0.97 (0.84-1.12)	0.694	1 (0.8-1.1)	0.795	3
KRAS	rs6487464	0.39	243	Endometrioid	0.77 (0.53-1.13)	0.189	0.93 (0.61-1.41)	0.74	21
			192	Mucinous	0.99 (0.65-1.52)	0.978	0.92 (0.59-1.45)	0.734	7
			134	Clear cell	0.94 (0.56-1.59)	0.823	1.24 (0.68-2.27)	0.484	32
			1757	All	0.95 (0.85-1.06)	0.339	0.93 (0.82-1.05)	0.216	2
			835	Serous	0.96 (0.84-1.1)	0.594	1 (0.9-1.1)	0.82	4
KRAS	rs10842514	0.45	243	Endometrioid	1.09 (0.77-1.55)	0.623	0.94 (0.64-1.37)	0.748	14
			188	Mucinous	1.04 (0.66-1.64)	0.88	1.18 (0.69-2.01)	0.536	13
			118	Clear cell	0.71 (0.42-1.21)	0.21	0.65 (0.35-1.19)	0.162	8
			1476	All	1 (0.79-1.25)	0.982	1.03 (0.81-1.32)	0.805	3
			685	Serous	0.88 (0.66-1.17)	0.373	1 (0.7-1.3)	0.832	14
KRAS	rs11047917	0.06	231	Endometrioid	0.64 (0.2-2.06)	0.455	0.61 (0.19-1.99)	0.409	5
			163	Mucinous	0.72 (0.18-2.82)	0.634	0.77 (0.23-2.57)	0.677	7
			117	Clear cell	1.95 (0.83-4.6)	0.128	2.34 (0.89-6.17)	0.085	20
			1717	All	0.89 (0.71-1.11)	0.289	0.86 (0.65-1.14)	0.3	3
	1622002		698	Serous	0.86 (0.64-1.16)	0.32	0.8 (0.6-1.1)	0.233	7
KRAS	rs4623993, rs12579073; TC	11.6*	238	Endometrioid	0.76 (0.39-1.48)	0.417	0.82 (0.4-1.7)	0.592	8
	1512 <i>313</i> 013, IC		162	Mucinous	1.3 (0.54-3.14)	0.556	0.98 (0.32-2.98)	0.97	25
			119	Clear cell	0.73 (0.28-1.88)	0.513	0.88 (0.22-3.5)	0.856	21

Gene	tSNP	MAF	No correr	Histology	Univariat	е	Multivariat	e [§]	Diff HR						
Gene	ISINF	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)						
			1730	All	1.03 (0.91-1.17)	0.653	1.05 (0.91-1.22)	0.488	2						
	10000057		714	Serous	1.01 (0.86-1.18)	0.904	1 (0.8-1.2)	0.996	1						
KRAS	rs12822857, rs10842508; AC	24.4*	243	Endometrioid	0.87 (0.56-1.38)	0.563	1.01 (0.61-1.66)	0.973	16						
	1310042300, 110		164	Mucinous	0.61 (0.33-1.13)	0.114	0.71 (0.36-1.4)	0.322	16						
			121	Clear cell	1.06 (0.61-1.86)	0.826	1.32 (0.68-2.55)	0.409	25						
			1715	All	0.95 (0.85-1.06)	0.366	0.92 (0.81-1.04)	0.194	3						
	10000057		711	Serous	0.95 (0.83-1.1)	0.494	1 (0.8-1.1)	0.521	5						
KRAS	rs12822857, rs10842514; GT	38.3*	239	Endometrioid	1.03 (0.72-1.48)	0.868	0.88 (0.59-1.31)	0.527	15						
	13100+2314, 01		164	Mucinous	1 (0.62-1.59)	0.983	1.02 (0.59-1.77)	0.934	2						
			120	Clear cell	0.82 (0.45-1.48)	0.508	0.96 (0.46-2.01)	0.916	17						
			1689	All	1.01 (0.89-1.15)	0.824	0.97 (0.83-1.12)	0.659	4						
	rs12822857, rs12579073, 44.5 rs6487464; GAC	44.5*	44.5*	44.5*	44.5*	44.5*	44.5*	695	695	Serous	1.13 (0.96-1.33)	0.133	1.1 (0.9-1.3)	0.331	3
KRAS									236	Endometrioid	1.32 (0.86-2.01)	0.201	1.2 (0.76-1.91)	0.436	9
								164	Mucinous	0.82 (0.48-1.43)	0.49	0.65 (0.37-1.17)	0.152	21	
			129	Clear cell	0.97 (0.52-1.83)	0.931	1.03 (0.46-2.29)	0.942	6						

Come	Harlatar	$\mathbf{E}_{max}(0/1)$		Univariate		Multivariat	e§	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1 (0.9-1.11)	0.989	0.96 (0.85-1.09)	0.542	4
KRAS			Serous	1.05 (0.91-1.2)	0.519	0.3 (0-1.9)	0.198	71
(haplotype	h100	52.7	Endometrioid	1.06 (0.74-1.52)	0.755	1 (0.67-1.48)	0.995	6
block 1)			Mucinous	1 (0.65-1.52)	0.988	1.04 (0.65-1.68)	0.857	4
			Clear cell	0.99 (0.58-1.69)	0.98	1.03 (0.55-1.92)	0.928	4
			All	1.03 (0.91-1.17)	0.591	1.07 (0.92-1.24)	0.382	4
KRAS			Serous	1.03 (0.87-1.2)	0.75	0.9 (0.7-1)	0.084	13
(haplotype	h000	22.8	Endometrioid	0.88 (0.56-1.38)	0.583	1.02 (0.62-1.67)	0.95	16
block 1)			Mucinous	0.65 (0.37-1.16)	0.147	0.77 (0.41-1.46)	0.422	18
			Clear cell	1.04 (0.59-1.81)	0.902	1.28 (0.67-2.44)	0.463	23
			All	0.95 (0.82-1.1)	0.466	0.99 (0.83-1.18)	0.889	4
KRAS			Serous	0.94 (0.78-1.13)	0.504	1 (0.9-1.2)	0.774	6
(haplotype	h001	15.5	Endometrioid	0.89 (0.56-1.43)	0.631	0.99 (0.59-1.66)	0.971	11
block 1)			Mucinous	1.29 (0.67-2.49)	0.448	1.02 (0.46-2.24)	0.964	21
			Clear cell	1.02 (0.5-2.11)	0.949	1.22 (0.49-3.05)	0.676	20
			All	1.04 (0.86-1.26)	0.692	1.02 (0.82-1.28)	0.838	2
KRAS			Serous	0.94 (0.74-1.2)	0.644	1 (0.8-1.2)	0.944	6
(haplotype	h101	8.9	Endometrioid	1.43 (0.79-2.57)	0.238	1.04 (0.51-2.11)	0.916	27
block 1)			Mucinous	2.01 (0.94-4.3)	0.07	1.38 (0.62-3.07)	0.424	31
			Clear cell	0.9 (0.37-2.19)	0.823	0.49 (0.18-1.37)	0.174	46
			All	0.96 (0.84-1.09)	0.495	0.92 (0.79-1.08)	0.322	4
KRAS			Serous	1.03 (0.87-1.22)	0.702	1 (0.7-1.4)	0.988	3
(haplotype	h000010	34.5	Endometrioid	1.23 (0.82-1.85)	0.324	1.03 (0.65-1.64)	0.883	16
block 2)			Mucinous	0.77 (0.43-1.39)	0.387	0.66 (0.33-1.28)	0.218	14
			Clear cell	0.65 (0.32-1.33)	0.238	0.53 (0.22-1.26)	0.15	18
KRAS	h100100	13.8	All	1.05 (0.87-1.25)	0.617	1.06 (0.85-1.31)	0.613	1

Appendix VII-F: Univariate and multivariate Cox regression results of KRAS haplotypes

Carro	II l - 4			Univariate	!	Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Serous	1.13 (0.9-1.43)	0.293	0.9 (0.8-1.1)	0.376	20
			Endometrioid	0.49 (0.24-1)	0.05	0.59 (0.27-1.32)	0.2	20
			Mucinous	0.71 (0.25-2.04)	0.521	1.06 (0.32-3.5)	0.926	49
			Clear cell	0.32 (0.09-1.16)	0.082	0.26 (0.04-1.81)	0.172	19
			All	0.92 (0.75-1.11)	0.375	0.91 (0.71-1.16)	0.429	1
KRAS			Serous	0.89 (0.69-1.15)	0.367	1 (0.6-1.7)	0.908	12
(haplotype	h101100	11.8	Endometrioid	0.83 (0.45-1.52)	0.552	0.93 (0.49-1.77)	0.821	12
block 2)			Mucinous	1.12 (0.49-2.57)	0.787	0.91 (0.33-2.53)	0.861	19
			Clear cell	0.74 (0.31-1.77)	0.505	0.84 (0.25-2.79)	0.771	14
			All	0.96 (0.83-1.12)	0.625	0.95 (0.81-1.12)	0.556	1
KRAS			Serous	0.9 (0.74-1.08)	0.255	0.9 (0.6-1.3)	0.479	0
(haplotype	h100010	10.7	Endometrioid	0.86 (0.51-1.45)	0.571	0.82 (0.47-1.43)	0.481	5
block 2)			Mucinous	1.32 (0.79-2.22)	0.288	1.79 (1.03-3.13)	0.04	36
			Clear cell	0.95 (0.47-1.91)	0.881	0.87 (0.39-1.93)	0.723	8
			All	1.27 (0.99-1.62)	0.056	1.24 (0.93-1.66)	0.15	2
KRAS			Serous	1.69 (1.21-2.36)	0.002	0.9 (0.6-1.3)	0.523	47
(haplotype	h010000	5.9	Endometrioid	1.21 (0.59-2.48)	0.599	1.53 (0.72-3.23)	0.269	26
block 2)			Mucinous	0.66 (0.17-2.55)	0.55	0.48 (0.11-2.12)	0.33	27
			Clear cell	2.81 (0.95-8.33)	0.062	2.29 (0.71-7.45)	0.167	19
			All	0.89 (0.67-1.18)	0.412	0.83 (0.59-1.17)	0.283	7
KRAS			Serous	0.89 (0.62-1.28)	0.536	1.3 (0.9-1.9)	0.203	46
(haplotype	h100000	4.9	Endometrioid	1.1 (0.41-2.94)	0.848	0.72 (0.18-2.91)	0.644	35
block 2)			Mucinous	0.84 (0.28-2.59)	0.767	0.87 (0.27-2.77)	0.814	4
			Clear cell	1.04 (0.33-3.28)	0.95	0.91 (0.25-3.28)	0.885	13
			All	0.96 (0.7-1.31)	0.794	1.06 (0.73-1.54)	0.759	10
KRAS			Serous	0.81 (0.53-1.25)	0.352	1.1 (0.8-1.4)	0.528	36
(haplotype	h100101	4.1	Endometrioid	0.43 (0.09-2.11)	0.296	0.52 (0.12-2.23)	0.377	21
block 2)			Mucinous	0.06 (0-24.2)	0.355	0.11 (0-32.59)	0.451	83
			Clear cell	1.84 (0.67-5.03)	0.236	2.37 (0.73-7.7)	0.15	29

Appendices

C	TT	$\mathbf{F}_{max}(0(1))$		Univariate		Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.03 (0.82-1.29)	0.813	1.05 (0.83-1.34)	0.669	2
KRAS			Serous	1.09 (0.81-1.45)	0.577	1 (0.6-1.6)	0.865	8
(haplotype	h000100	3.7	Endometrioid	1.67 (0.85-3.28)	0.134	1.48 (0.72-3.06)	0.287	11
block 2)			Mucinous	0.43 (0.13-1.43)	0.171	0.42 (0.14-1.31)	0.134	2
			Clear cell	1.11 (0.46-2.66)	0.811	1.21 (0.48-3.05)	0.685	9
			All	1.02 (0.79-1.31)	0.902	1.05 (0.79-1.41)	0.722	3
KRAS			Serous	0.87 (0.62-1.21)	0.411	1.1 (0.8-1.5)	0.631	26
(haplotype	h001100	3.7	Endometrioid	0.99 (0.44-2.18)	0.971	1.21 (0.52-2.82)	0.652	22
block 2)			Mucinous	3.24 (1.55-6.74)	0.002	2.74 (1.27-5.9)	0.01	15
			Clear cell	2.42 (0.6-9.66)	0.212	3.42 (0.65-18)	0.146	41
			All	1.26 (0.87-1.82)	0.219	1.18 (0.78-1.77)	0.44	6
KRAS			Serous	0.96 (0.61-1.53)	0.872	1 (0.9-1.2)	0.956	4
(haplotype	h000000	2.6	Endometrioid	2.47 (0.84-7.23)	0.099	1.55 (0.52-4.65)	0.433	37
block 2)			Mucinous	6.59 (1.37-31.62)	0.018	2.57 (0.5-13.28)	0.26	61
			Clear cell	1.53 (0.32-7.36)	0.593	0.67 (0.09-4.97)	0.698	56
			All	1.07 (0.77-1.5)	0.686	1.28 (0.9-1.82)	0.177	20
KRAS			Serous	1.07 (0.71-1.64)	0.738	0.9 (0.7-1.2)	0.427	16
(haplotype	h110000	2.3	Endometrioid	1.87 (0.57-6.12)	0.302	2.03 (0.56-7.32)	0.282	9
block 2)			Mucinous	0.76 (0.22-2.63)	0.663	1.05 (0.3-3.71)	0.934	38
			Clear cell	1.84 (0.72-4.72)	0.202	1.43 (0.56-3.65)	0.459	22
			All	1.1 (0.8-1.5)	0.57	1.07 (0.79-1.46)	0.66	3
KRAS			Serous	1.03 (0.72-1.47)	0.884	1.2 (0.7-1.8)	0.515	17
(haplotype	Rare	1.7	Endometrioid	0.91 (0.23-3.62)	0.889	1.29 (0.32-5.12)	0.722	42
block 2)			Mucinous	1.82 (0.44-7.61)	0.411	2.47 (0.57-10.6)	0.225	36
			Clear cell	1.37 (0.26-7.1)	0.708	2.22 (0.37-13.1)	0.38	62

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *KRAS* -block 1: rs12305513, rs12822857, rs10842508; *KRAS* -block 2: rs12579073, rs10842513, rs4623993, rs6487464, rs10842514, rs11047917.

Cono	tSNP	MAF	No. cases	Histology	Univariate	9	Multivariat	e [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1708	All	1.04 (0.88-1.22)	0.655	1 (0.82-1.21)	0.975	4
			809	Serous	0.97 (0.79-1.19)	0.771	1 (0.8-1.2)	0.934	3
NMI	rs394884	0.14	260	Endometrioid	1.09 (0.63-1.87)	0.768	1.26 (0.73-2.15)	0.404	16
			184	Mucinous	1.33 (0.64-2.76)	0.443	0.73 (0.32-1.65)	0.452	45
			95	Clear cell	0.37 (0.13-1.06)	0.063	0.47 (0.13-1.63)	0.232	27
			1159	All	0.9 (0.67-1.19)	0.457	1.02 (0.73-1.43)	0.901	13
			524	Serous	1.03 (0.71-1.49)	0.887	1 (0.6-1.5)	0.92	3
NMI	rs11551174	0.06	185	Endometrioid	1.38 (0.67-2.85)	0.382	0.84 (0.37-1.9)	0.675	39
			133	Mucinous	1.03 (0.42-2.55)	0.942	0.95 (0.33-2.7)	0.918	8
			132	Clear cell	0.9 (0.26-3.09)	0.867	1.26 (0.35-4.5)	0.726	40
			1665	All	1.02 (0.86-1.21)	0.8	1.01 (0.83-1.23)	0.933	1
			792	Serous	0.92 (0.74-1.13)	0.425	1 (0.8-1.2)	0.8	9
NMI	rs289831	0.12	258	Endometrioid	1.19 (0.67-2.12)	0.562	1.28 (0.71-2.31)	0.404	8
			176	Mucinous	0.9 (0.38-2.13)	0.809	0.53 (0.18-1.55)	0.246	41
			132	Clear cell	0.46 (0.16-1.32)	0.149	0.61 (0.17-2.16)	0.447	33
			1764	All	1.02 (0.91-1.13)	0.749	1.02 (0.9-1.16)	0.789	0
			843	Serous	1.02 (0.89-1.17)	0.76	1.1 (0.9-1.2)	0.42	8
NMI	rs3771886	0.43	266	Endometrioid	0.94 (0.64-1.37)	0.741	0.81 (0.54-1.23)	0.332	14
			191	Mucinous	1.23 (0.79-1.91)	0.353	1.08 (0.66-1.75)	0.771	12
			107	Clear cell	1.07 (0.64-1.78)	0.798	1.51 (0.81-2.82)	0.194	41
NMI	rs11683487	0.44	1464	All	0.98 (0.88-1.09)	0.683	0.94 (0.83-1.08)	0.397	4
			713	Serous	1 (0.87-1.16)	0.971	0.9 (0.8-1.1)	0.343	10
			227	Endometrioid	0.98 (0.69-1.4)	0.91	1.06 (0.72-1.56)	0.785	8

Appendix VII-G: Univariate and multivariate Cox regression results of NMI tSNPs

Appendices

Como	tSNP	MAF	No correr	Histology	Univariate	9	Multivariat	e [§]	Diff HR
Gene	ISINF	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			154	Mucinous	0.77 (0.49-1.22)	0.265	1.12 (0.68-1.85)	0.659	45
			138	Clear cell	1.15 (0.67-1.96)	0.614	0.7 (0.36-1.37)	0.304	39
			1776	All	1.03 (0.88-1.22)	0.685	1 (0.82-1.21)	0.986	3
			843	Serous	0.95 (0.78-1.17)	0.65	1 (0.8-1.2)	0.931	5
NMI	rs2113509	0.13	272	Endometrioid	1.11 (0.63-1.96)	0.722	1.17 (0.66-2.08)	0.591	5
			190	Mucinous	1.1 (0.54-2.24)	0.788	0.68 (0.3-1.54)	0.36	38
			126	Clear cell	0.45 (0.16-1.31)	0.146	0.6 (0.17-2.1)	0.424	33

Appendices

Como	Hanlatura	$\mathbf{E}_{max}(0/1)$		Univariate		Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.97 (0.87-1.08)	0.573	0.98 (0.86-1.11)	0.744	1
			Serous	1 (0.87-1.15)	0.99	1.4 (0.9-2.3)	0.131	40
NMI	h00001	44.3	Endometrioid	1.01 (0.71-1.42)	0.964	1.13 (0.77-1.66)	0.532	12
			Mucinous	0.8 (0.51-1.25)	0.328	1.12 (0.68-1.83)	0.662	40
			Clear cell	1.11 (0.66-1.87)	0.696	0.71 (0.37-1.36)	0.301	36
			All	1.03 (0.92-1.16)	0.64	1.01 (0.88-1.16)	0.864	2
			Serous	1 (0.86-1.16)	0.979	1.1 (0.9-1.3)	0.55	10
NMI	h00010	35	Endometrioid	0.87 (0.57-1.32)	0.515	0.86 (0.54-1.36)	0.524	1
			Mucinous	1.22 (0.76-1.96)	0.418	1.1 (0.65-1.87)	0.72	10
			Clear cell	1.27 (0.76-2.14)	0.366	1.6 (0.87-2.95)	0.133	26
			All	1.03 (0.87-1.22)	0.755	1.01 (0.83-1.23)	0.932	2
			Serous	0.96 (0.78-1.18)	0.707	1 (0.7-1.5)	0.924	4
NMI	h10100	12.3	Endometrioid	1.05 (0.59-1.87)	0.875	1.22 (0.68-2.2)	0.5	16
			Mucinous	1.07 (0.52-2.19)	0.852	0.66 (0.29-1.5)	0.319	38
			Clear cell	0.45 (0.15-1.31)	0.145	0.59 (0.17-2.1)	0.419	31
			All	0.9 (0.68-1.19)	0.44	1 (0.71-1.39)	0.978	11
			Serous	1.07 (0.75-1.54)	0.7	1 (0.9-1.2)	0.664	7
NMI	h01010	5.6	Endometrioid	1.22 (0.57-2.59)	0.61	0.72 (0.31-1.71)	0.46	41
			Mucinous	0.99 (0.4-2.49)	0.991	0.94 (0.34-2.62)	0.904	5
			Clear cell	1.05 (0.35-3.13)	0.933	1.56 (0.52-4.73)	0.43	49
			All	1.16 (0.83-1.62)	0.397	1.07 (0.74-1.56)	0.712	8
			Serous	1.11 (0.69-1.76)	0.674	1 (0.8-1.2)	0.903	10
NMI	Rare	1.9	Endometrioid	1.66 (0.51-5.37)	0.4	0.8 (0.25-2.59)	0.715	52
			Mucinous	1.21 (0.42-3.44)	0.722	1.02 (0.34-3.03)	0.968	16
			Clear cell	0.35 (0.04-2.93)	0.333	0.39 (0.04-3.37)	0.39	11

Appendix VII-H: Univariate and multivariate Cox regression results of NMI haplotypes

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *NMI*: rs394884, rs11551174, rs289831, rs3771886, rs11683487.

Cono	tSNP	MAE	Casas	Histology	Univariat	e	Multivariat	e [§]	Diff HR
Gene	ISNP	MAF	Cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1164	All	1 (0.75-1.33)	0.984	0.87 (0.61-1.24)	0.449	13
			520	Serous	0.93 (0.64-1.34)	0.69	0.7 (0.4-1.1)	0.086	25
PIK3CA	rs2865084	0.06	183	Endometrioid	1.76 (0.87-3.55)	0.117	1.29 (0.6-2.76)	0.514	27
			99	Mucinous	0.81 (0.25-2.65)	0.722	1.73 (0.36-8.28)	0.495	114
			94	Clear cell	0.79 (0.1-5.98)	0.819	-	-	-
			1749	All	1.11 (0.96-1.27)	0.159	1.05 (0.89-1.24)	0.591	5
			834	Serous	1.05 (0.89-1.25)	0.555	1 (0.8-1.2)	0.807	5
PIK3CA	rs7621329	0.17	268	Endometrioid	1.39 (0.91-2.13)	0.122	1.37 (0.86-2.17)	0.186	1
			186	Mucinous	1.34 (0.7-2.57)	0.384	1.23 (0.6-2.53)	0.569	8
			134	Clear cell	1.68 (0.83-3.37)	0.147	1.48 (0.64-3.43)	0.358	12
			1739	All	1.1 (0.92-1.32)	0.311	0.96 (0.76-1.21)	0.725	13
			827	Serous	1.13 (0.9-1.41)	0.294	0.9 (0.7-1.2)	0.691	20
PIK3CA	rs1517586	0.1	267	Endometrioid	0.67 (0.34-1.34)	0.263	1.21 (0.56-2.59)	0.628	81
			183	Mucinous	0.73 (0.31-1.71)	0.463	0.7 (0.27-1.83)	0.467	4
			135	Clear cell	1.29 (0.53-3.13)	0.57	1.24 (0.37-4.16)	0.727	4
			1741	All	0.98 (0.87-1.1)	0.703	0.92 (0.79-1.06)	0.246	6
			825	Serous	1 (0.85-1.16)	0.95	0.9 (0.7-1)	0.152	10
PIK3CA	rs2699905	0.26	266	Endometrioid	0.98 (0.68-1.42)	0.917	1.09 (0.74-1.6)	0.668	11
			184	Mucinous	0.73 (0.39-1.37)	0.326	1.07 (0.53-2.15)	0.857	47
			136	Clear cell	0.86 (0.49-1.51)	0.598	0.99 (0.48-2.07)	0.983	15
PIK3CA	rs7641889	0.06	1779	All	1.14 (0.92-1.4)	0.229	1.06 (0.83-1.35)	0.639	7
			845	Serous	1.09 (0.85-1.4)	0.497	1.1 (0.9-1.5)	0.343	1
			273	Endometrioid	1.1 (0.53-2.28)	0.791	1.42 (0.66-3.04)	0.367	29

Appendix VII-I: Univariate and multivariate Cox regression results of *PIK3CA* tSNPs

Como	ACNID	MAF	Casas		Univariat	е	Multivaria	e [§]	Diff HR
Gene	tSNP	MAF	Cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			192	Mucinous	0.91 (0.26-3.1)	0.876	0.61 (0.18-2.08)	0.434	33
			136	Clear cell	2.03 (0.85-4.85)	0.111	1.31 (0.47-3.64)	0.607	35
			1794	All	1.07 (0.9-1.26)	0.449	1.02 (0.83-1.24)	0.868	5
			828	Serous	1.05 (0.85-1.29)	0.678	1.1 (0.8-1.3)	0.651	5
PIK3CA	rs7651265	0.1	267	Endometrioid	0.97 (0.56-1.67)	0.913	0.98 (0.54-1.8)	0.958	1
			189	Mucinous	1.66 (0.79-3.46)	0.179	1.02 (0.47-2.21)	0.952	39
			135	Clear cell	2.25 (1.06-4.79)	0.035	1.99 (0.85-4.7)	0.115	12
			1765	All	0.88 (0.75-1.04)	0.133	0.88 (0.73-1.06)	0.169	0
			842	Serous	0.91 (0.74-1.12)	0.374	0.9 (0.7-1.1)	0.311	1
PIK3CA	rs7640662	0.15	268	Endometrioid	1.1 (0.71-1.71)	0.668	0.86 (0.55-1.35)	0.516	22
			188	Mucinous	0.58 (0.24-1.37)	0.215	0.95 (0.38-2.38)	0.914	64
			134	Clear cell	0.7 (0.33-1.52)	0.374	1.07 (0.42-2.71)	0.889	53
			1762	All	0.97 (0.87-1.08)	0.545	1 (0.88-1.14)	0.973	3
			836	Serous	0.92 (0.81-1.05)	0.23	1 (0.9-1.2)	0.851	9
PIK3CA	rs2677760	0.49	268	Endometrioid	0.98 (0.67-1.42)	0.896	0.92 (0.63-1.35)	0.676	6
			189	Mucinous	1.17 (0.67-2.05)	0.572	1.11 (0.62-2)	0.727	5
			125	Clear cell	1.1 (0.66-1.84)	0.703	0.99 (0.51-1.9)	0.964	10

Appendices

Gene	Hanlatura	$\mathbf{E}_{\mathbf{r}}$	Histology	Univariate		Multivariat	e [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.97 (0.87-1.08)	0.539	1.01 (0.89-1.14)	0.911	4
			Serous	0.95 (0.79-1.16)	0.633	0.6 (0.4-1.1)	0.094	37
PIK3CA	h0000001	48.3	Endometrioid	1 (0.69-1.45)	0.99	0.98 (0.67-1.41)	0.894	2
			Mucinous	1.17 (0.67-2.04)	0.582	1.1 (0.61-1.98)	0.748	6
			Clear cell	1.1 (0.65-1.84)	0.73	0.98 (0.5-1.89)	0.942	11
			All	0.9 (0.77-1.06)	0.206	0.91 (0.75-1.09)	0.301	1
			Serous	0.93 (0.75-1.14)	0.461	1.2 (1-1.6)	0.104	29
РІКЗСА	h00010010	15.2	Endometrioid	1.18 (0.75-1.86)	0.467	0.97 (0.6-1.57)	0.911	18
			Mucinous	0.69 (0.31-1.56)	0.376	1.12 (0.47-2.67)	0.796	62
			Clear cell	0.68 (0.31-1.49)	0.34	0.97 (0.38-2.48)	0.945	43
			All	1.07 (0.88-1.29)	0.501	1.16 (0.93-1.43)	0.183	8
			Serous	1.24 (0.98-1.56)	0.078	0.9 (0.8-1.1)	0.438	27
РІКЗСА	h00000000	9.6	Endometrioid	0.72 (0.36-1.46)	0.362	0.8 (0.41-1.56)	0.511	11
			Mucinous	1.05 (0.46-2.4)	0.911	0.74 (0.3-1.82)	0.506	30
			Clear cell	0.57 (0.21-1.54)	0.266	0.49 (0.13-1.79)	0.281	14
			All	1.05 (0.87-1.26)	0.609	0.95 (0.75-1.19)	0.647	10
			Serous	1.08 (0.86-1.35)	0.494	0.9 (0.7-1.1)	0.416	17
PIK3CA	h00110000	9.6	Endometrioid	0.64 (0.32-1.28)	0.21	1.23 (0.57-2.63)	0.6	92
			Mucinous	0.73 (0.31-1.73)	0.479	0.78 (0.3-2.03)	0.604	7
			Clear cell	1.17 (0.48-2.85)	0.734	1.14 (0.34-3.84)	0.838	3
<i>РІКЗСА</i>	h01001100	6.5	All	1.11 (0.9-1.36)	0.332	1.05 (0.82-1.34)	0.7	5
			Serous	1.06 (0.83-1.37)	0.636	1 (0.7-1.5)	0.978	6
			Endometrioid	1.02 (0.49-2.09)	0.966	1.32 (0.62-2.81)	0.466	29
			Mucinous	0.99 (0.3-3.31)	0.991	0.66 (0.2-2.2)	0.497	33

Appendix VII-J: Univariate and multivariate Cox regression results of *PIK3CA* haplotypes

Como	Hanlatura	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \cdot (0/1)$		Univariate		Multivariat	e [§]	Diff HR	
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)	
			Clear cell	2.03 (0.85-4.85)	0.112	1.31 (0.47-3.64)	0.608	35	
			All	1.1 (0.86-1.42)	0.444	1.12 (0.83-1.5)	0.463	2	
			Serous	1.06 (0.78-1.45)	0.701	1.1 (0.9-1.5)	0.365	4	
РІКЗСА	h11000000	4.9	Endometrioid	2.19 (1.1-4.37)	0.026	1.7 (0.81-3.55)	0.157	22	
			Mucinous	0.76 (0.24-2.46)	0.651	1.52 (0.33-7.08)	0.59	100	
			Clear cell	0.38 (0.04-3.48)	0.394	0.44 (0.05-4.05)	0.47	16	
			All	1.01 (0.77-1.33)	0.943	1.06 (0.76-1.46)	0.739	5	
	3CA h01000100			Serous	1.05 (0.73-1.51)	0.782	0.9 (0.7-1.2)	0.532	14
PIK3CA	h01000100	4	Endometrioid	0.98 (0.43-2.23)	0.967	0.67 (0.23-1.98)	0.467	32	
			Mucinous	2.25 (0.98-5.17)	0.057	1.55 (0.65-3.68)	0.323	31	
			Clear cell	1.61 (0.55-4.69)	0.387	2.74 (0.84-8.98)	0.095	70	
			All	1.01 (0.71-1.43)	0.97	0.7 (0.44-1.12)	0.133	31	
			Serous	0.99 (0.65-1.52)	0.971	1 (0.7-1.4)	0.8	1	
РІКЗСА	Rare	1.6	Endometrioid	0.78 (0.21-2.81)	0.699	0.65 (0.17-2.44)	0.525	17	
			Mucinous	0.08 (0-166.25)	0.524	0.23 (0-282.55)	0.687	188	
			Clear cell	1.2 (0.13-10.66)	0.872	-	-	-	

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *PIK3CA*: rs2865084, rs7621329, rs1517586, rs2699905, rs7641889, rs7651265, rs7640662, rs2677760.

Como	tSNP	МАБ	No correr		Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1751	All	1.04 (0.78-1.39)	0.788	1 (0.72-1.4)	0.986	4
			827	Serous	0.97 (0.68-1.39)	0.878	0.91 (0.61-1.36)	0.652	6
AIFM2	rs2394655	0.04	269	Endometrioid	0.22 (0.03-1.56)	0.129	0.32 (0.04-2.35)	0.262	45
			189	Mucinous	4.88 (1.96-12.15)	0.001	3.05 (1.03-8.98)	0.043	38
			150	Clear cell	1.08 (0.55-2.11)	0.824	1.27 (0.6-2.73)	0.532	18
			1719	All	0.97 (0.81-1.15)	0.731	0.92 (0.74-1.14)	0.445	5
			817	Serous	0.83 (0.65-1.05)	0.126	0.85 (0.64-1.13)	0.276	2
AIFM2	rs7908957	0.13	264	Endometrioid	0.67 (0.36-1.25)	0.212	0.64 (0.32-1.27)	0.203	4
			184	Mucinous	1.61 (0.96-2.73)	0.073	1.2 (0.7-2.03)	0.507	25
			159	Clear cell	1.24 (0.86-1.77)	0.244	1.18 (0.74-1.88)	P-value 4) 0.986 .36) 0.652 .35) 0.262 .98) 0.043 73) 0.532 .14) 0.445 .13) 0.276 .27) 0.203 .33) 0.507 .88) 0.482 .27) 0.799 .33) 0.738 .78) 0.408 .99) 0.5 .91) 0.914 .13) 0.678 .07) 0.186 .89) 0.434 .19) 0.194 .43) 0.8 .14) 0.542	5
			1697	All	1.03 (0.82-1.29)	0.794	0.96 (0.73-1.27)	0.799	7
			790	Serous	0.99 (0.75-1.32)	0.968	0.94 (0.67-1.33)	0.738	5
AIFM2	rs1053495	0.07	267	Endometrioid	0.54 (0.2-1.44)	0.218	0.66 (0.24-1.78)	0.408	22
			185	Mucinous	2.47 (1.25-4.9)	0.01	1.32 (0.59-2.99)	0.5	47
			156	Clear cell	1.01 (0.63-1.64)	0.956	1.03 (0.56-1.91)	0.914	2
			1770	All	0.99 (0.87-1.13)	0.914	0.97 (0.83-1.13)	0.678	2
			835	Serous	0.88 (0.74-1.04)	0.145	0.87 (0.72-1.07)	0.186	1
AIFM2	rs2894111	0.28	276	Endometrioid	1.06 (0.72-1.56)	0.766	1.2 (0.76-1.89)	0.434	13
			192	Mucinous	1.59 (1.03-2.46)	0.036	1.37 (0.85-2.19)	0.194	14
			164	Clear cell	1.04 (0.8-1.37)	0.753	1.04 (0.76-1.43)	0.8	0
AIFM2	rs2394656	0.19	913	All	1.01 (0.87-1.17)	0.929	0.94 (0.79-1.14)	0.542	7
			506	Serous	0.89 (0.73-1.08)	0.244	0.96 (0.76-1.21)	0.736	8
			136	Endometrioid	0.96 (0.61-1.53)	0.88	0.9 (0.53-1.55)	0.707	6

Appendix VIII-A: Univariate and multivariate Cox regression results of AIFM2 tSNPs

Gene	tSNP	MAF	No. cases	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	INO. Cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			85	Mucinous	2.01 (1.19-3.4)	0.009	1.31 (0.76-2.26)	0.326	35
			78	Clear cell	1.11 (0.82-1.51)	0.509	1.06 (0.73-1.55)	0.743	5
			422	All	0.99 (0.86-1.13)	0.835	1 (0.85-1.17)	0.973	1
			261	Serous	0.88 (0.73-1.04)	0.14	0.87 (0.71-1.07)	0.191	1
AIFM2	rs6480440	0.24	254	Endometrioid	1 (0.66-1.51)	0.998	1.23 (0.77-1.96)	0.397	23
			180	Mucinous	1.41 (0.9-2.21)	0.13	1.43 (0.88-2.32)	0.145	1
			145	Clear cell	1.1 (0.81-1.49)	0.546	1.15 (0.82-1.61)	0.425	5
			1313	All	0.93 (0.77-1.11)	0.392	0.95 (0.77-1.17)	0.617	2
			556	Serous	0.81 (0.63-1.03)	0.08	0.87 (0.66-1.13)	0.296	7
AIFM2	rs2280201	0.12	216	Endometrioid	1.44 (0.84-2.45)	0.182	2.03 (1.13-3.65)	0.018	41
			146	Mucinous	0.93 (0.49-1.78)	0.833	2.02 (0.96-4.24)	0.065	117
			150	Clear cell	1.01 (0.71-1.45)	0.94	0.86 (0.56-1.33)	0.496	15
			1285	All	0.95 (0.77-1.17)	0.597	0.91 (0.71-1.18)	0.477	4
			600	Serous	1.03 (0.79-1.33)	0.842	0.93 (0.69-1.26)	0.653	10
AIFM2	rs10999147	0.09	260	Endometrioid	0.79 (0.37-1.66)	0.532	0.65 (0.28-1.52)	0.319	18
			183	Mucinous	0.63 (0.23-1.69)	0.359	0.78 (0.29-2.14)	0.636	24
			151	Clear cell	0.92 (0.59-1.43)	0.699	0.89 (0.51-1.57)	0.686	3
			1743	All	0.89 (0.70-1.14)	0.363	1.01 (0.77-1.33)	0.919	13
			831	Serous	0.78 (0.58-1.05)	0.101	0.98 (0.71-1.36)	0.922	26
AIFM2	rs3750772	0.06	266	Endometrioid	1.14 (0.56-2.34)	0.712	1.57 (0.77-3.21)	0.215	38
			0	Mucinous	0.76 (0.18-3.18)	0.71	0.62 (0.08-4.65)	0.646	18
			0	Clear cell	1 (0.59-1.7)	0.995	0.98 (0.53-1.8)	0.938	2
AIFM2	rs4295944	0.42	1335	All	0.93 (0.83-1.04)	0.209	0.92 (0.8-1.05)	0.198	1
			567	Serous	0.97 (0.84-1.13)	0.708	0.9 (0.76-1.07)	0.23	7
			220	Endometrioid	1.13 (0.8-1.6)	0.485	1.05 (0.72-1.53)	0.801	7
			149	Mucinous	0.93 (0.6-1.43)	0.743	0.99 (0.56-1.75)	0.964	6

Gene	tSNP	MAF	No. cases	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	LOINE	MAF	NU. Cases	mstology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			133	Clear cell	0.78 (0.6-1.02)	0.073	0.81 (0.6-1.08)	0.145	4
			1324	All	1.10 (0.93-1.30)	0.26	1.06 (0.87-1.29)	0.581	4
			561	Serous	1.02 (0.83-1.26)	0.843	1.09 (0.85-1.39)	0.506	7
AIFM2	rs2394644	0.13	218	Endometrioid	1.74 (1.07-2.82)	0.025	1.67 (0.98-2.87)	0.061	4
			149	Mucinous	0.46 (0.17-1.25)	0.129	0.68 (0.24-1.9)	0.462	48
			133	Clear cell	1.12 (0.8-1.58)	0.507	0.97 (0.64-1.46)	0.883	13
			1618	All	1.05 (0.91-1.22)	0.509	1.1 (0.93-1.31)	0.276	5
			760	Serous	1.07 (0.89-1.29)	0.451	1.18 (0.96-1.46)	0.12	10
AIFM2	rs10999152	0.18	251	Endometrioid	1.16 (0.74-1.82)	0.521	1.19 (0.73-1.93)	0.488	3
			170	Mucinous	0.48 (0.21-1.06)	0.071	0.69 (0.29-1.66)	0.408	44
			153	Clear cell	1.06 (0.77-1.45)	0.719	1.08 (0.75-1.54)	0.69	2

Gene	Hanlatuna [†]	Freq (%)	Histology	Univariate	è	Multivariate	ŝ	Diff HR
Gene	Haplotype [†]	r req (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.98 (0.87-1.12)	0.849	1.01 (0.87-1.17)	0.905	3
AIFM2			Serous	1.10 (0.93-1.30)	0.255	1.07 (0.88-1.3)	0.486	3
(haplotype	h0000000	69	Endometrioid	0.91 (0.62-1.33)	0.614	0.8 (0.51-1.23)	0.308	12
block 1)			Mucinous	0.62 (0.4-0.96)	0.032	0.76 (0.49-1.19)	0.235	23
			Clear cell	0.95 (0.73-1.24)	0.726	0.96 (0.71-1.32)	0.822	1
			All	0.90 (0.71-1.13)	0.348	1 (0.77-1.3)	0.98	11
AIFM2			Serous	0.80 (0.60-1.08)	0.149	0.86 (0.62-1.19)	0.352	7
(haplotype	h0001011	7	Endometrioid	1.51 (0.81-2.8)	0.191	2.76 (1.36-5.59)	0.005	83
block 1)			Mucinous	0.88 (0.37-2.12)	0.776	1.98 (0.69-5.7)	0.204	125
			Clear cell	0.87 (0.52-1.47)	0.602	0.86 (0.48-1.56)	0.626	1
			All	1.03 (0.75-1.41)	0.855	0.92 (0.62-1.38)	0.697	11
AIFM2			Serous	0.99 (0.65-1.51)	0.967	1.18 (0.72-1.93)	0.514	19
(haplotype	h0001100	4	Endometrioid	1.33 (0.55-3.24)	0.532	0.87 (0.29-2.66)	0.811	35
block 1)			Mucinous	1.98 (0.66-5.92)	0.222	0.65 (0.18-2.34)	0.51	67
			Clear cell	0.88 (0.44-1.78)	0.719	0.94 (0.42-2.07)	0.871	7
			All	1.02 (0.76-1.38)	0.879	0.99 (0.7-1.41)	0.957	3
AIFM2			Serous	0.91 (0.62-1.32)	0.612	0.82 (0.53-1.27)	0.379	10
(haplotype	h1111110	4	Endometrioid	0.34 (0.07-1.71)	0.191	0.5 (0.1-2.58)	0.408	47
block 1)			Mucinous	4.87 (1.95-12.17)	0.001	3.02 (1.02-8.91)	0.045	38
			Clear cell	1.15 (0.58-2.27)	0.69	1.57 (0.71-3.48)	0.27	37
AIFM2	h0001010	3	All	1.19 (0.85-1.65)	0.311	1.12 (0.75-1.68)	0.58	6
(haplotype			Serous	1.33 (0.90-1.98)	0.153	1 (0.6-1.67)	0.997	25
block 1)			Endometrioid	0.83 (0.27-2.53)	0.741	0.86 (0.22-3.3)	0.821	4

Appendix VIII-B: Univariate and multivariate Cox regression results of AIFM2 haplotypes

C	T L (†	F (0()	TT : 4 1	Univariate	e	Multivariate	ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Mucinous	1.09 (0.29-4.05)	0.901	0.93 (0.24-3.65)	0.919	15
			Clear cell	0.96 (0.4-2.32)	0.923	1.12 (0.46-2.73)	0.802	17
			All	1.01 (0.72-1.40)	0.973	0.91 (0.61-1.36)	0.635	10
AIFM2			Serous	0.91 (0.58-1.42)	0.675	1.06 (0.64-1.78)	0.814	16
(haplotype	h0101111	3	Endometrioid	0.71 (0.22-2.29)	0.564	0.63 (0.19-2.06)	0.445	11
block 1)			Mucinous	1.08 (0.35-3.33)	0.898	2.12 (0.65-6.92)	0.215	96
			Clear cell	1.46 (0.78-2.72)	0.236	1 (0.44-2.24)	0.994	32
			All	1.07 (0.75-1.52)	0.715	1.11 (0.71-1.74)	0.649	4
AIFM2			Serous	1.25 (0.79-1.98)	0.337	1.53 (0.87-2.69)	0.142	22
(haplotype	h0111110	3	Endometrioid	0.91 (0.25-3.3)	0.886	0.81 (0.22-2.98)	0.756	11
block 1)			Mucinous	1.02 (0.31-3.35)	0.973	0.55 (0.16-1.87)	0.339	46
			Clear cell	0.92 (0.44-1.9)	0.816	0.95 (0.36-2.51)	0.925	3
			All	1.02 (0.81-1.30)	0.853	0.97 (0.72-1.3)	0.824	5
AIFM2	D	0	Serous	0.81 (0.58-1.12)	0.207	0.84 (0.56-1.26)	0.4	4
(haplotype	Rare	8	Endometrioid	1.39 (0.72-2.68)	0.331	1.54 (0.76-3.13)	0.231	11
block 1)			Mucinous	2.08 (0.89-4.86)	0.091	1.78 (0.68-4.63)	0.237	14
			Clear cell	1.15 (0.72-1.84)	0.559	1.08 (0.62-1.89)	0.788	6
			All	0.95 (0.84-1.07)	0.386	0.93 (0.81-1.07)	0.322	2
AIFM2			Serous	1.00 (0.86-1.16)	0.989	0.93 (0.78-1.11)	0.431	7
(haplotype	h00100	38	Endometrioid	1.15 (0.79-1.67)	0.473	1.11 (0.74-1.67)	0.599	3
block 2)			Mucinous	1.01 (0.65-1.58)	0.948	1.05 (0.59-1.89)	0.862	4
			Clear cell	0.77 (0.58-1.02)	0.066	0.79 (0.58-1.07)	0.127	3
AIFM2	h00000	35	All	1.03 (0.91-1.16)	0.627	1.05 (0.91-1.2)	0.539	2
(haplotype			Serous	0.97 (0.83-1.13)	0.696	0.99 (0.83-1.18)	0.873	2
block 2)			Endometrioid	0.86 (0.6-1.25)	0.431	0.94 (0.63-1.4)	0.771	9
			Mucinous	1.72 (1.03-2.88)	0.038	1.25 (0.65-2.39)	0.498	27

G	T L (†	E (0()	TT : 4 1	Univariate	e	Multivariate	§	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Clear cell	1.17 (0.89-1.53)	0.251	1.17 (0.86-1.57)	0.313	0
			All	1.15 (0.93-1.42)	0.207	1.05 (0.81-1.36)	0.699	9
AIFM2			Serous	1.18 (0.90-1.54)	0.236	1.17 (0.85-1.6)	0.336	1
(haplotype	h00011	7	Endometrioid	1.61 (0.89-2.9)	0.116	1.34 (0.68-2.65)	0.401	17
block 2)			Mucinous	0.57 (0.19-1.76)	0.331	0.76 (0.25-2.31)	0.623	33
			Clear cell	0.96 (0.59-1.56)	0.873	0.93 (0.52-1.66)	0.817	3
			All	1.07 (0.79-1.45)	0.651	1.21 (0.86-1.71)	0.279	13
AIFM2	1.00001		Serous	1.18 (0.79-1.75)	0.414	1.37 (0.89-2.11)	0.155	16
(haplotype	h00001	4	Endometrioid	0.27 (0.05-1.34)	0.11	0.33 (0.07-1.51)	0.153	22
block 2)			Mucinous	0.47 (0.11-1.97)	0.304	1.31 (0.29-5.91)	0.725	179
			Clear cell	1.77 (1-3.12)	0.05	2.29 (1.23-4.28)	0.009	29
			All	1.06 (0.74-1.53)	0.735	1.05 (0.68-1.64)	0.819	1
AIFM2			Serous	1.13 (0.74-1.75)	0.569	1.12 (0.68-1.85)	0.645	1
(haplotype	h10000	3	Endometrioid	0.58 (0.1-3.52)	0.558	0.55 (0.1-3)	0.49	5
block 2)			Mucinous	1.22 (0.3-4.92)	0.778	0.93 (0.23-3.69)	0.918	24
			Clear cell	0.71 (0.28-1.78)	0.461	0.78 (0.23-2.65)	0.694	10
			All	1.14 (0.56-2.33)	0.722	0.8 (0.31-2.07)	0.642	30
AIFM2	100010	2	Serous	0.78 (0.26-2.33)	0.652	1 (0.26-3.84)	0.995	28
(haplotype	h00010	2	Endometrioid	2.73 (0.35-21.44)	0.34	1.01 (0-274.28)	0.998	63
block 2)			Mucinous	0.13 (0-25.3)	0.452	0.21 (0-137.26)	0.638	62
			Clear cell	1.84 (0.59-5.67)	0.291	0.89 (0.22-3.54)	0.864	52
			All	0.93 (0.64-1.35)	0.702	1.16 (0.77-1.74)	0.476	25
AIFM2			Serous	0.73 (0.45-1.17)	0.188	1.04 (0.63-1.73)	0.879	42
(haplotype	h01011	2	Endometrioid	2.74 (1.07-7.04)	0.036	5.31 (2.04-13.8)	0.001	94
block 2)			Mucinous	-	-	-	1	-
			Clear cell	1 (0.43-2.36)	0.992	0.62 (0.22-1.73)	0.36	38

Como	Hanlatuna [†]	$\mathbf{E}_{\mathbf{max}}(0/1)$	Histology	Univariate	9	Multivariate	ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value 0.76 0.945 0.66 - 0.688 0.233 0.206 0.573 0.507 0.432 0.96 0.786	(%)
			All	1.09 (0.70-1.70)	0.702	0.92 (0.52-1.62)	0.76	16
AIFM2	1 1 0 0 1 1	2	Serous	1.16 (0.67-1.99)	0.599	0.98 (0.5-1.91)	0.945	16
(haplotype	h10011	2	Endometrioid	0.73 (0.12-4.39)	0.733	0.67 (0.11-3.95)	0.66	8
block 2)			Mucinous	-	-	-	-	-
			Clear cell	1.36 (0.57-3.26)	0.49	1.28 (0.39-4.24)	0.688	6
			All	0.78 (0.49-1.23)	0.285	0.72 (0.41-1.24)	0.233	8
AIFM2			Serous	0.91 (0.49-1.70)	0.77	0.63 (0.3-1.29)	0.206	31
(haplotype	h10100	2	Endometrioid	1.06 (0.35-3.22)	0.921	0.64 (0.14-3)	0.573	40
block 2)			Mucinous	0.25 (0.02-2.94)	0.27	0.41 (0.03-5.59)	0.507	64
			Clear cell	0.8 (0.31-2.05)	0.645	0.62 (0.19-2.03)	0.432	23
			All	0.89 (0.64-1.23)	0.476	0.99 (0.67-1.46)	0.96	11
AIFM2			Serous	0.89 (0.59-1.34)	0.577	1.06 (0.68-1.66)	0.786	19
(haplotype	Rare	4	Endometrioid	0.54 (0.16-1.83)	0.322	0.65 (0.2-2.17)	0.486	20
block 2)			Mucinous	1.13 (0.27-4.84)	0.866	0.99 (0.13-7.52)	0.989	12
			Clear cell	1.03 (0.49-2.15)	0.937	1.57 (0.68-3.66)	0.293	52

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *AIFM2* - block 1: rs2394655, rs7908957, rs1053495, rs2894111, rs2394656, rs6480440, rs2280201. *AIFM2* -block 2: rs10999147, rs3750772, rs4295944, rs2394644, rs10999152.

Appendices

Como	ACNID	МАБ	No ooror		Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISINP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI) 9 1 (0.88-1.14) 3 0.98 (0.84-1.16) 5 0.99 (0.68-1.46) 1 0.87 (0.5-1.5) 1 1.07 (0.82-1.41) 5 0.99 (0.82-1.2) 7 0.92 (0.72-1.17) 2 0.96 (0.54-1.69) 9 1.62 (0.75-3.51) 2 1.04 (0.71-1.53)	P-value	(%)
			917	All	1.07 (0.96-1.20)	0.229	1 (0.88-1.14)	0.981	7
	AKTIP rs9931702 AKTIP rs17801966 AKTIP rs7189819		506	Serous	1.10 (0.95-1.26)	0.213	0.98 (0.84-1.16)	0.843	11
AKTIP	rs9931702	0.44	137	Endometrioid	0.93 (0.65-1.32)	0.675	0.99 (0.68-1.46)	0.974	6
			86	Mucinous	0.99 (0.62-1.6)	0.981	0.87 (0.5-1.5)	0.605	12
			79	Clear cell	1.03 (0.81-1.3)	0.821	1.07 (0.82-1.41)	0.608	4
			828	All	0.97 (0.82-1.14)	0.695	0.99 (0.82-1.2)	0.91	2
			450	Serous	0.93 (0.75-1.14)	0.477	0.92 (0.72-1.17)	0.475	1
AKTIP	rs17801966	0.15	125	Endometrioid	0.9 (0.52-1.54)	0.692	0.96 (0.54-1.69)	0.88	7
<i>AKTIP</i> rs17801966		0	Mucinous	1.42 (0.73-2.77)	0.299	1.62 (0.75-3.51)	0.222	14	
			78	Clear cell	0.95 (0.67-1.33)	0.762	1.04 (0.71-1.53)	0.845	9
			1745	All	1.12 (1.00-1.27)	0.056	1.02 (0.88-1.18)	0.764	9
			825	Serous	1.17 (1.01-1.36)	0.036	1.05 (0.88-1.26)	0.552	10
AKTIP	rs7189819	0.3	271	Endometrioid	0.92 (0.61-1.38)	0.685	0.89 (0.56-1.41)	0.618	3
			186	Mucinous	0.83 (0.49-1.43)	0.51	0.72 (0.39-1.33)	0.295	13
			163	Clear cell	1.13 (0.88-1.45)	0.324	1.07 (0.8-1.43)	0.665	5
			413	All	0.95 (0.74-1. 23)	0.709	0.9 (0.67-1.23)	0.52	5
			256	Serous	0.92 (0.67-1.27)	0.63	0.94 (0.66-1.33)	0.708	2
AKTIP	rs3743772	0.07	199	Endometrioid	0.4 (0.1-1.6)	0.195	0.27 (0.04-2.03)	0.205	33
			143	Mucinous	0.62 (0.15-2.47)	0.494	0.84 (0.2-3.58)	0.816	35
			109	Clear cell	1.11 (0.68-1.79)	0.678	1.07 (0.62-1.86)	0.81	4

Appendix VIII-C: Univariate and multivariate Cox regression results of AKTIP tSNPs

Como	Hanlatan a [†]	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \left(0 \right)$	Histologra	Univariate	9	Multivariate	}	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.93 (0.83-1.04)	0.196	1 (0.88-1.13)	0.957	8
			Serous	0.91 (0.79-1.05)	0.199	1 (0.85-1.18)	0.954	10
AKTIP	h0000	54	Endometrioid	1.05 (0.74-1.5)	0.784	1 (0.68-1.47)	0.993	5
			Mucinous	0.98 (0.61-1.56)	0.927	1.07 (0.63-1.83)	0.797	9
			Clear cell	1 (0.79-1.26)	0.983	1.02 (0.79-1.33)	0.866	2
			All	0.94 (0.75-1.18)	0.59	0.97 (0.74-1.26)	0.791	3
			Serous	0.85 (0.64-1.14)	0.292	0.8 (0.57-1.12)	0.195	6
AKTIP	h1100	8	Endometrioid	1.36 (0.67-2.74)	0.392	1.52 (0.75-3.1)	0.247	12
			Mucinous	1.69 (0.78-3.65)	0.183	1.77 (0.75-4.18)	0.192	5
			Clear cell	0.8 (0.47-1.36)	0.404	0.95 (0.5-1.77)	0.863	19
			All	1.01 (0.78-1.30)	0.965	1.01 (0.75-1.36)	0.95	0
			Serous	1.00 (0.74-1.36)	0.998	1.01 (0.72-1.41)	0.97	1
AKTIP	h1101	5	Endometrioid	0.41 (0.12-1.4)	0.153	0.34 (0.07-1.56)	0.165	17
			Mucinous	0.84 (0.22-3.15)	0.795	1.09 (0.28-4.32)	0.898	30
			Clear cell	1.17 (0.67-2.05)	0.573	1.38 (0.76-2.5)	0.294	18
			All	1.09 (0.97-1.24)	0.15	1 (0.87-1.16)	0.957	8
	11010	3	Serous	1.15 (0.99-1.34)	0.072	1.03 (0.86-1.23)	0.773	10
AKTIP	h1010	3	Endometrioid	0.94 (0.62-1.41)	0.757	0.96 (0.61-1.51)	0.863	2
			Mucinous	0.76 (0.43-1.35)	0.352	0.62 (0.32-1.2)	0.154	18
			Clear cell	1.07 (0.84-1.38)	0.575	1.07 (0.79-1.43)	0.671	0
			All	1.12 (0.82-1.53)	0.46	1.07 (0.73-1.57)	0.732	4
			Serous	1.14 (0.75-1.74)	0.528	1.34 (0.82-2.18)	0.243	18
AKTIP	Rare	2	Endometrioid	1.45 (0.55-3.84)	0.453	1.28 (0.4-4.05)	0.675	12
			Mucinous	1.42 (0.58-3.49)	0.442	1.5 (0.5-4.51)	0.473	6
			Clear cell	0.75 (0.38-1.51)	0.425	0.31 (0.1-0.97)	0.043	59

Appendix VIII-D: Univariate and multivariate Cox regression results of AKTIP haplotypes

SNP order in haplotypes, 5' to 3', ATKIP: rs9931702, rs17801966, rs7189819, rs3743772.

Como	tSNP	MAE	No correr	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			919	All	0.97 (0.86-1.08)	0.553	0.94 (0.83-1.08)	0.381	3
			509	Serous	0.90 (0.78-1.04)	0.171	0.9 (0.76-1.06)	0.212	0
AXIN2	rs11868547	0.48	136	Endometrioid	0.91 (0.64-1.29)	0.602	0.89 (0.61-1.29)	0.525	2
			85	Mucinous	1.18 (0.74-1.88)	0.492	1.11 (0.71-1.73)	0.655	6
			81	Clear cell	1.04 (0.81-1.34)	0.772	1 (0.74-1.35)	0.983	4
			1779	All	1.06 (0.94-1.19)	0.347	1.03 (0.9-1.18)	0.706	3
			838	Serous	1.10 (0.95-1.28)	0.215	1.06 (0.9-1.26)	0.478	4
AXIN2	rs7591	0.38	277	Endometrioid	1.14 (0.8-1.62)	0.463	1.2 (0.81-1.78)	0.364	5
			195	Mucinous	1.12 (0.71-1.77)	0.618	1 (0.64-1.55)	0.985	11
			165	Clear cell	0.93 (0.73-1.2)	0.596	1.03 (0.76-1.38)	0.86	11
			1775	All	1.06 (0.92-1.22)	0.417	1.05 (0.89-1.24)	0.53	1
			840	Serous	1.07 (0.89-1.28)	0.482	1.06 (0.86-1.31)	0.586	1
AXIN2	rs4074947	0.22	276	Endometrioid	1.06 (0.7-1.62)	0.775	1.19 (0.74-1.93)	0.47	12
			192	Mucinous	1.44 (0.91-2.28)	0.124	1.39 (0.88-2.19)	0.158	3
	AXIN2 rs11868547 AXIN2 rs7591 AXIN2 rs7591 AXIN2 rs4074947 AXIN2 rs7210356 AXIN2 rs11655966		163	Clear cell	1.01 (0.75-1.35)	0.96	1.02 (0.72-1.44)	0.915	1
			1777	All	0.99 (0.82-1.19)	0.922	0.91 (0.73-1.14)	0.409	8
			838	Serous	1.02 (0.81-1.29)	0.836	0.92 (0.7-1.2)	0.523	10
AXIN2	rs7210356	0.11	277	Endometrioid	1.01 (0.56-1.84)	0.962	1.15 (0.59-2.23)	0.687	14
			193	Mucinous	0.61 (0.26-1.41)	0.248	0.6 (0.24-1.53)	0.287	2
			165	Clear cell	0.98 (0.65-1.47)	0.91	1.06 (0.64-1.76)	0.827	8
			1301	All	1.00 (0.88-1.13)	0.971	1.02 (0.88-1.19)	0.753	2
			552	Serous	0.98 (0.83-1.16)	0.847	1 (0.83-1.21)	0.998	2
AXIN2	rs11655966	0.27	213	Endometrioid	1.25 (0.85-1.86)	0.256	1.44 (0.94-2.19)	0.091	15
			144	Mucinous	0.71 (0.42-1.2)	0.204	0.72 (0.42-1.25)	0.242	1
			130	Clear cell	0.98 (0.76-1.27)	0.885	1.13 (0.84-1.52)	0.41	15
AXIN2	rs4541111	0.48	1297	All	1.05 (0.94-1.17)	0.423	1.08 (0.94-1.23)	0.285	3

Appendix VIII-E: Univariate and multivariate Cox regression results of AXIN2 tSNPs

Appendices

Como	tSNP	МАБ	No oggog	II: stale and	Univariat	e	Multivaria	ıte [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			554	Serous	1.16 (1.00-1.34)	0.043	1.15 (0.97-1.35)	0.108	1
			214	Endometrioid	1.07 (0.76-1.51)	0.685	1.07 (0.74-1.55)	0.712	0
			141	Mucinous	0.75 (0.45-1.24)	0.261	0.96 (0.6-1.53)	0.859	28
			128	Clear cell	0.91 (0.71-1.18)	0.493	0.98 (0.73-1.32)	0.917	8
			1185	All	1.06 (0.94-1.20)	0.349	1 (0.86-1.16)	0.988	6
			539	Serous	1.11 (0.95-1.30)	0.176	1.04 (0.87-1.26)	0.649	6
AXIN2	rs4791171	0.3	180	Endometrioid	1.05 (0.72-1.52)	0.8	1.1 (0.73-1.66)	0.642	5
			133	Mucinous	0.94 (0.57-1.54)	0.806	1.01 (0.61-1.67)	0.973	7
			111	Clear cell	1.06 (0.8-1.39)	0.686	1.07 (0.77-1.5)	0.686	1
			839	All	1.05 (0.90-1.22)	0.527	0.98 (0.81-1.18)	0.804	7
			326	Serous	1.11 (0.91-1.34)	0.301	1.07 (0.85-1.35)	0.558	4
AXIN2	rs11079571	0.17	137	Endometrioid	1.12 (0.71-1.77)	0.612	1.1 (0.65-1.86)	0.721	2
			104	Mucinous	1.12 (0.68-1.82)	0.662	0.88 (0.51-1.51)	0.634	21
			83	Clear cell	0.86 (0.61-1.23)	0.42	0.98 (0.65-1.49)	0.932	14
			1780	All	1.05 (0.92-1.21)	0.477	1.05 (0.88-1.25)	0.614	0
			843	Serous	1.11 (0.93-1.33)	0.25	1.16 (0.93-1.44)	0.181	5
AXIN2	rs3923087	0.22	275	Endometrioid	1.2 (0.81-1.79)	0.359	1.26 (0.8-1.97)	0.314	5
			193	Mucinous	1.12 (0.67-1.89)	0.659	1.12 (0.65-1.91)	0.689	0
			164	Clear cell	0.94 (0.69-1.27)	0.664	0.84 (0.57-1.23)	0.368	11
			1753	All	0.98 (0.87-1.1)	0.689	0.99 (0.86-1.14)	0.896	1
			833	Serous	1.05 (0.91-1.21)	0.535	1.09 (0.91-1.3)	0.345	4
AXIN2	rs3923086	0.42	267	Endometrioid	0.88 (0.61-1.26)	0.474	0.92 (0.62-1.36)	0.666	5
			188	Mucinous	0.79 (0.48-1.29)	0.347	1.04 (0.64-1.7)	0.859	32
			163	Clear cell	1.01 (0.79-1.3)	0.92	0.87 (0.64-1.18)	0.379	14

Gene	Hanlatuna [†]	$\mathbf{E}_{\mathbf{max}}(0/1)$	Histology	Univariate)	Multivariate	§	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)e	P-value	(%)
			All	0.95 (0.85-1.07)	0.407	0.93 (0.81-1.06)	0.291	2
AXIN2		1.5	Serous	0.90 (0.78-1.04)	0.164	0.9 (0.76-1.06)	0.205	0
(haplotype	h100000	46	Endometrioid	0.89 (0.63-1.25)	0.508	0.83 (0.57-1.19)	0.313	7
block 1)			Mucinous	1.21 (0.75-1.95)	0.431	1.11 (0.71-1.75)	0.653	8
			Clear cell	1.02 (0.8-1.3)	0.884	1 (0.75-1.34)	0.985	2
			All	0.95 (0.79-1.14)	0.592	1.09 (0.89-1.34)	0.406	15
AXIN2			Serous	1.04 (0.82-1.33)	0.755	1.1 (0.84-1.44)	0.475	6
(haplotype	h000001	14	Endometrioid	0.93 (0.55-1.57)	0.785	0.93 (0.53-1.62)	0.791	0
block 1)			Mucinous	0.61 (0.29-1.27)	0.184	1.04 (0.45-2.38)	0.928	70
			Clear cell	1 (0.68-1.47)	0.998	1.02 (0.66-1.56)	0.931	2
			All	0.92 (0.71-1.19)	0.537	0.95 (0.68-1.32)	0.756	3
AXIN2		<i>(</i>	Serous	0.99 (0.71-1.39)	0.962	0.99 (0.66-1.49)	0.971	0
(haplotype	h011011	6	Endometrioid	1.02 (0.49-2.14)	0.951	1.11 (0.47-2.6)	0.812	9
block 1)			Mucinous	0.74 (0.26-2.09)	0.57	1.06 (0.37-3.08)	0.912	43
			Clear cell	0.87 (0.5-1.53)	0.629	1.06 (0.53-2.11)	0.874	22
			All	1.09 (0.86-1.38)	0.484	1.12 (0.85-1.47)	0.414	3
AXIN2			Serous	1.15 (0.86-1.55)	0.344	1.23 (0.89-1.72)	0.213	7
(haplotype	h010011	5	Endometrioid	1.46 (0.78-2.73)	0.235	1.24 (0.62-2.5)	0.54	15
block 1)			Mucinous	0.58 (0.17-2)	0.385	0.28 (0.06-1.23)	0.091	52
			Clear cell	0.88 (0.5-1.53)	0.648	1.3 (0.72-2.37)	0.388	48
AXIN2	h011010	4	All	1.06 (0.77-1.44)	0.728	1.21 (0.85-1.72)	0.299	14
(haplotype			Serous	0.84 (0.53-1.31)	0.435	1.04 (0.64-1.69)	0.867	24
block 1)			Endometrioid	1.24 (0.41-3.74)	0.707	2.57 (0.82-8)	0.104	107

Appendix VIII-F: Univariate and multivariate Cox regression results of AXIN2 haplotypes

G	T L (†	E (0()	TT• 4 1	Univariate	e	Multivariate	Ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)e	P-value	(%)
			Mucinous	1.8 (0.56-5.82)	0.324	1.39 (0.35-5.63)	0.64	23
			Clear cell	1.25 (0.75-2.1)	0.389	1.39 (0.77-2.49)	0.272	11
			All	1.00 (0.78-1.29)	0.976	0.94 (0.71-1.25)	0.681	6
AXIN2			Serous	1.01 (0.74-1.39)	0.934	0.97 (0.69-1.37)	0.853	4
(haplotype	Rare	6	Endometrioid	1.08 (0.43-2.69)	0.874	1.47 (0.58-3.73)	0.412	36
block 1)			Mucinous	1 (0.42-2.38)	0.995	0.75 (0.29-1.94)	0.55	25
ļ			Clear cell	0.94 (0.56-1.55)	0.801	0.6 (0.31-1.18)	0.139	36
			All	0.98 (0.87-1.10)	0.697	0.99 (0.86-1.14)	0.881	1
AXIN2			Serous	0.91 (0.78-1.05)	0.179	0.9 (0.76-1.08)	0.258	1
(haplotype	h0000	54	Endometrioid	1.1 (0.78-1.57)	0.583	1.03 (0.7-1.51)	0.893	6
block 2)			Mucinous	1.3 (0.83-2.06)	0.256	1.21 (0.79-1.85)	0.387	7
ļ			Clear cell	0.95 (0.74-1.21)	0.659	0.99 (0.73-1.33)	0.933	4
			All	0.97 (0.81-1.17)	0.773	1.08 (0.87-1.33)	0.491	11
AXIN2		14	Serous	1.09 (0.86-1.37)	0.475	1.22 (0.95-1.58)	0.124	12
(haplotype	h0001	14	Endometrioid	0.61 (0.31-1.19)	0.149	0.61 (0.29-1.26)	0.18	0
block 2)			Mucinous	0.72 (0.37-1.4)	0.337	1.02 (0.48-2.16)	0.963	42
			Clear cell	1.05 (0.72-1.54)	0.795	0.84 (0.53-1.32)	0.442	20
			All	1.06 (0.90-1.26)	0.466	0.99 (0.8-1.22)	0.934	7
AXIN2			Serous	1.13 (0.91-1.41)	0.262	1.12 (0.87-1.45)	0.389	1
(haplotype	h1111	12	Endometrioid	1.13 (0.69-1.86)	0.621	1.09 (0.61-1.93)	0.771	4
block 2)			Mucinous	1.23 (0.69-2.19)	0.485	1.04 (0.51-2.1)	0.918	15
ļ			Clear cell	0.86 (0.58-1.29)	0.467	0.86 (0.53-1.41)	0.555	0
AXIN2	h1001	7	All	0.89 (0.70-1.13)	0.324	0.82 (0.62-1.09)	0.177	8
(haplotype			Serous	0.86 (0.63-1.16)	0.32	0.77 (0.54-1.08)	0.125	10
block 2)			Endometrioid	0.66 (0.3-1.47)	0.31	0.74 (0.31-1.77)	0.499	12
			Mucinous	0.57 (0.18-1.8)	0.337	0.83 (0.22-3.18)	0.784	46

Como	Hanlatrun a [†]	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \left(0 \right)$	Histologra	Univariate	è	Multivariate	§	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)e	P-value	(%)
			Clear cell	1.35 (0.83-2.19)	0.229	1.45 (0.79-2.65)	0.226	7
			All	0.99 (0.78-1.25)	0.921	1.04 (0.78-1.38)	0.781	5
AXIN2			Serous	1.06 (0.78-1.43)	0.717	1.06 (0.74-1.52)	0.746	0
(haplotype	h1011	7	Endometrioid	1.24 (0.67-2.32)	0.49	1.35 (0.7-2.58)	0.367	9
block 2)			Mucinous	0.89 (0.38-2.08)	0.792	2.39 (0.95-6.02)	0.065	169
			Clear cell	0.9 (0.53-1.52)	0.69	0.7 (0.35-1.4)	0.314	22
			All	1.32 (0.92-1.91)	0.137	1.06 (0.68-1.65)	0.8	20
AXIN2		2	Serous	1.39 (0.90-2.13)	0.135	1.08 (0.65-1.8)	0.76	22
(haplotype	h1000	2	Endometrioid	0.98 (0.15-6.31)	0.981	1.07 (0.16-7.29)	0.942	9
block 2)			Mucinous	0.82 (0.14-4.76)	0.822	0.22 (0.03-1.55)	0.13	73
			Clear cell	1.39 (0.6-3.24)	0.442	2.2 (0.92-5.28)	0.077	58
			All	1.09 (0.82-1.45)	0.548	1.13 (0.81-1.57)	0.483	4
AXIN2			Serous	1.05 (0.72-1.53)	0.813	1.11 (0.74-1.67)	0.619	6
(haplotype	Rare	4	Endometrioid	1.37 (0.58-3.24)	0.472	1.72 (0.71-4.16)	0.231	26
block 2)			Mucinous	0.75 (0.24-2.37)	0.623	0.37 (0.1-1.33)	0.128	51
			Clear cell	1.16 (0.65-2.07)	0.61	1.63 (0.83-3.19)	0.156	41

†: '0' = common allele and '1' = rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *AXIN2* - block 1: rs11868547, rs7591, rs4074947, rs7210356, rs11655966, rs4541111. *AXIN2* - block 2: rs4791171, rs11079571, rs3923087, rs3923086.

Como	tSNP	MAF	No correr		Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISINP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			438	All	1.13 (1.00-1.27)	0.042	1.08 (0.95-1.24)	0.243	4
			270	Serous	1.16 (1.00-1.34)	0.047	1.11 (0.93-1.31)	0.257	4
CASP5	rs518604	0.46	56	Endometrioid	1.14 (0.79-1.65)	0.485	1.06 (0.74-1.53)	0.74	7
			42	Mucinous	0.89 (0.58-1.39)	0.612	0.7 (0.42-1.18)	0.182	21
			32	Clear cell	1.14 (0.88-1.47)	0.321	1.12 (0.84-1.49)	0.455	2
			824	All	0.90 (0.80-1.02)	0.105	0.91 (0.78-1.04)	0.173	1
			320	Serous	0.85 (0.73 - 1.00)	0.049	0.9 (0.75-1.08)	0.254	6
CASP5	rs523104	0.46	131	Endometrioid	0.82 (0.55-1.22)	0.322	0.88 (0.59-1.32)	0.529	7
			102	Mucinous	1.16 (0.73-1.85)	0.531	1.18 (0.7-2)	0.531	2
			81	Clear cell	1 (0.77-1.29)	0.971	0.95 (0.71-1.28)	0.742	5
			829	All	1.08 (0.89-1.32)	0.421	1.09 (0.86-1.38)	0.497	1
			319	Serous	1.16 (0.91-1.49)	0.232	1 (0.75-1.34)	0.983	14
CASP5	rs3181328	0.09	255	Endometrioid	1.28 (0.66-2.51)	0.465	1.32 (0.64-2.7)	0.455	3
			102	Mucinous	0.62 (0.26-1.46)	0.272	0.86 (0.35-2.11)	0.745	39
			83	Clear cell	0.99 (0.65-1.51)	0.971	1.29 (0.77-2.18)	0.334	30
			803	All	0.83 (0.68-1.01)	0.067	0.96 (0.77-1.2)	0.723	16
			311	Serous	0.92 (0.72-1.17)	0.485	1 (0.76-1.3)	0.977	9
CASP5	rs17446518	0.11	130	Endometrioid	0.72 (0.35-1.51)	0.389	0.96 (0.45-2.04)	0.921	33
			97	Mucinous	0.34 (0.11-1.08)	0.068	0.58 (0.17-1.94)	0.377	71
			147	Clear cell	0.73 (0.47-1.14)	0.165	0.74 (0.45-1.22)	0.237	1
CASP5	rs9651713	0.11	1730	All	0.85 (0.70-1.04)	0.111	0.88 (0.71-1.11)	0.285	4
			819	Serous	0.96 (0.76-1.22)	0.748	0.95 (0.72-1.26)	0.728	1
			269	Endometrioid	0.93 (0.53-1.63)	0.791	0.89 (0.48-1.67)	0.715	4

Appendix VIII-G: Univariate and multivariate Cox regression results of CASP5 tSNPs

Como	ACMD	МАБ	No oogog		Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			183	Mucinous	0.37 (0.13-1.03)	0.056	0.56 (0.2-1.6)	0.282	51
			162	Clear cell	0.77 (0.49-1.23)	0.275	0.81 (0.48-1.38)	0.441	5
			1282	All	0.94 (0.81-1.09)	0.393	0.93 (0.78-1.11)	0.413	1
			597	Serous	1.06 (0.89-1.27)	0.514	1.07 (0.87-1.32)	0.495	1
CASP5	rs3181175	0.19	194	Endometrioid	0.78 (0.48-1.26)	0.313	0.62 (0.35-1.09)	0.095	21
			147	Mucinous	0.4 (0.19-0.86)	0.019	0.5 (0.22-1.15)	0.102	25
			115	Clear cell	0.94 (0.68-1.32)	0.732	0.92 (0.62-1.37)	0.682	2
			1780	All	1.11 (0.90-1.37)	0.316	1.02 (0.8-1.31)	0.876	8
			840	Serous	1.20 (0.92-1.55)	0.174	1.2 (0.9-1.61)	0.209	0
CASP5	rs3181174	0.07	278	Endometrioid	0.66 (0.29-1.47)	0.306	0.34 (0.11-1.07)	0.064	48
			183	Mucinous	0.65 (0.23-1.84)	0.42	0.54 (0.17-1.79)	0.318	17
			165	Clear cell	1.27 (0.83-1.94)	0.268	1.24 (0.73-2.11)	0.434	2
			852	All	0.94 (0.83-1.06)	0.329	0.94 (0.81-1.09)	0.442	0
			462	Serous	1.10 (0.95-1.28)	0.216	1.12 (0.93-1.34)	0.247	2
CASP5	rs2282657	0.35	128	Endometrioid	0.82 (0.55-1.22)	0.327	0.78 (0.5-1.2)	0.254	5
			80	Mucinous	0.75 (0.47-1.19)	0.224	0.92 (0.57-1.48)	0.735	23
			73	Clear cell	0.76 (0.57-1)	0.049	0.68 (0.48-0.96)	0.029	11
			1768	All	0.94 (0.83-1.06)	0.298	0.94 (0.81-1.08)	0.385	0
			835	Serous	1.07 (0.92-1.24)	0.403	1.05 (0.87-1.25)	0.621	2
CASP5	rs507879	0.46	276	Endometrioid	0.78 (0.52-1.17)	0.226	0.81 (0.52-1.26)	0.351	4
			194	Mucinous	0.9 (0.59-1.38)	0.627	1.04 (0.63-1.69)	0.89	16
			164	Clear cell	0.83 (0.64-1.07)	0.145	0.77 (0.57-1.03)	0.079	7

Gene	Hanlatyna [†]	$\mathbf{F}_{\mathbf{r}}$	Histology	Univariate	е	Multivariate	ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P -value	(%)
			All	0.86 (0.77-0.97)	0.014	0.89 (0.78-1.03)	0.116	3
CASP5			Serous	0.81 (0.70-0.94)	0.006	0.89 (0.75-1.06)	0.202	10
(haplotype	h010	45	Endometrioid	0.81 (0.55-1.19)	0.278	0.86 (0.58-1.28)	0.466	6
block 1)			Mucinous	1.29 (0.83-1.99)	0.261	1.35 (0.81-2.25)	0.248	5
			Clear cell	0.93 (0.72-1.2)	0.573	0.9 (0.68-1.2)	0.489	3
			All	1.12 (1.00-1.26)	0.05	1.08 (0.94-1.24)	0.289	4
CASP5			Serous	1.14 (0.99-1.32)	0.077	1.09 (0.92-1.29)	0.339	4
(haplotype	h100	42	Endometrioid	1.14 (0.79-1.64)	0.486	1.04 (0.72-1.49)	0.847	9
block 1)			Mucinous	0.99 (0.62-1.59)	0.965	0.79 (0.45-1.37)	0.401	20
			Clear cell	1.11 (0.86-1.44)	0.422	1.09 (0.81-1.46)	0.561	2
			All	1.04 (0.85-1.28)	0.679	1.02 (0.8-1.31)	0.863	2
CASP5			Serous	1.14 (0.88-1.46)	0.324	0.96 (0.71-1.29)	0.765	16
(haplotype	h001	9	Endometrioid	1.13 (0.56-2.28)	0.741	1.13 (0.53-2.41)	0.747	0
block 1)			Mucinous	0.62 (0.26-1.47)	0.282	0.9 (0.37-2.19)	0.811	45
			Clear cell	0.93 (0.6-1.45)	0.762	1.16 (0.67-1.99)	0.599	25
			All	1.04 (0.63-1.73)	0.871	1.19 (0.68-2.09)	0.549	14
CASP5			Serous	1.26 (0.68-2.35)	0.459	1.31 (0.68-2.53)	0.413	4
(haplotype	h000	2	Endometrioid	0.94 (0.16-5.71)	0.949	1.32 (0.21-8.15)	0.764	40
block 1)			Mucinous	1.19 (0.28-5.06)	0.817	3.31 (0.72-15.19)	0.124	178
			Clear cell	0.42 (0.09-2.03)	0.28	0.24 (0.03-2)	0.186	43
CASP5	h110	2	All	1.05 (0.63-1.76)	0.852	1.05 (0.45-2.42)	0.914	0
(haplotype			Serous	1.34 (0.69-2.59)	0.387	1.94 (0.61-6.18)	0.261	45
block 1)			Endometrioid	1.3 (0.2-8.49)	0.783	2.74 (0.43-17.66)	0.288	111
			Mucinous	0.29 (0.04-2.25)	0.236	0.28 (0.04-2.15)	0.223	3

Appendix VIII-H: Univariate and multivariate Cox regression results of CASP5 haplotypes

C	T L (†		TT * 4 1	Univariate	!	Multivariate	8	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P -value	(%)
			Clear cell	1.43 (0.47-4.39)	0.533	1.34 (0.26-6.88)	0.723	6
			All	4.56 (1.71-12.12)	0.002	11.73 (4.14-33.28)	8.85x10	157
CASP5			Serous	2.80 (0.70-11.25)	0.146	16.8 (3.39-83.24)	0.001	500
(haplotype	Rare	4	Endometrioid	11.54 (1.26-105.63)	0.03	6.52 (0.77-54.93)	0.085	44
block 1)			Mucinous	-	-	-	-	-
			Clear cell	3.82 (0.63-23.06)	0.144	9.13 (1.57-52.94)	0.014	139
			All	1.08 (0.96-1.22)	0.223	1.02 (0.79-1.31)	0.896	6
CASP5			Serous	0.93 (0.80-1.09)	0.385	0.94 (0.67-1.31)	0.697	1
(haplotype	h000000	47	Endometrioid	0.93 (0.49-1.76)	0.816	1.15 (0.56-2.32)	0.706	24
block 2)			Mucinous	1.42 (0.71-2.87)	0.324	1.23 (0.59-2.57)	0.588	13
			Clear cell	1.17 (0.79-1.74)	0.431	1.16 (0.71-1.9)	0.542	1
			All	1.02 (0.87-1.20)	0.821	1.01 (0.83-1.23)	0.916	1
CASP5	h000011	1 13	Serous	1.11 (0.91-1.35)	0.298	1.08 (0.86-1.36)	0.493	3
(haplotype			Endometrioid	1.05 (0.63-1.77)	0.847	1.17 (0.66-2.07)	0.583	11
block 2)			Mucinous	1.69 (0.92-3.1)	0.089	1.64 (0.85-3.15)	0.139	3
			Clear cell	0.62 (0.4-0.97)	0.034	0.57 (0.34-0.97)	0.037	8
			All	1.14 (0.91-1.43)	0.251	1 (0.76-1.32)	0.998	12
CASP5			Serous	1.16 (0.88-1.54)	0.29	1.15 (0.83-1.58)	0.408	1
(haplotype	h001111	7	Endometrioid	0.74 (0.31-1.77)	0.498	0.34 (0.1-1.13)	0.079	54
block 2)			Mucinous	0.74 (0.25-2.17)	0.588	0.56 (0.17-1.87)	0.347	24
			Clear cell	1.3 (0.85-1.99)	0.224	1.3 (0.76-2.22)	0.343	0
			All	0.93 (0.69-1.25)	0.615	1.13 (0.81-1.58)	0.479	22
CASP5			Serous	0.91 (0.63-1.31)	0.61	1.06 (0.7-1.61)	0.786	16
(haplotype	h100000	6	Endometrioid	1.18 (0.46-3.07)	0.73	1.51 (0.59-3.86)	0.384	28
block 2)			Mucinous	0.35 (0.05-2.55)	0.297	0.46 (0.06-3.39)	0.444	31
			Clear cell	0.84 (0.45-1.58)	0.595	1.04 (0.52-2.08)	0.922	24

Como	Hanlatur a [†]	$\mathbf{E}\mathbf{r}$ og $(0/\mathbf{)}$	na (%) Histology	Univariate		Multivariate	Diff HR	
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P -value	(%)
			All	0.5 (0.26-0.98)	0.042	0.73 (0.34-1.58)	0.424	46
CASP5			Serous	0.69 (0.30-1.55)	0.366	0.92 (0.37-2.28)	0.856	33
(haplotype	h100011	3	Endometrioid	0.26 (0.02-3.18)	0.294	0.53 (0.04-6.45)	0.619	104
block 2)			Mucinous	-	-	-	-	-
			Clear cell	0.64 (0.18-2.36)	0.507	0.34 (0.07-1.78)	0.202	47

 \dagger : '0'= common allele and '1'= rare allele; \$: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *CASP5* (block 1): rs518604, rs523104, rs3181328. *CASP5* (block 2): rs17446518, rs9651713, rs3181175, rs3181174, rs2282657, rs507879.

Como	tSNP	MAF	No ooror		Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value 0.38 0.948 0.654 0.094 0.196 0.774 0.43 0.75 0.955 0.162 0.628 0.399 0.501 0.046 0.932 0.014 0.186 0.576 0.932 0.932	(%)
			437	All	0.94 (0.84-1.06)	0.328	0.94 (0.81-1.08)	0.38	0
			269	Serous	1.03 (0.89-1.19)	0.692	1.01 (0.84-1.2)	0.948	2
FILIP1L	rs796977	0.33	56	Endometrioid	1.1 (0.75-1.61)	0.636	1.09 (0.74-1.62)	0.654	1
			43	Mucinous	0.66 (0.41-1.06)	0.084	0.63 (0.37-1.08)	0.094	5
			31	Clear cell	0.84 (0.64-1.1)	0.216	0.82 (0.6-1.11)	0.196	2
			1653	All	0.97 (0.81-1.15)	0.717	1.03 (0.84-1.26)	0.774	6
			771	Serous	1.11 (0.90-1.36)	0.337	1.1 (0.87-1.38)	0.43	1
FILIP1L	rs793477	0.13	257	Endometrioid	0.78 (0.41-1.46)	0.432	0.9 (0.48-1.7)	0.75	15
			175	Mucinous	1.01 (0.51-2.02)	0.976	0.97 (0.4-2.36)	0.955	4
			155	Clear cell	0.62 (0.39-0.99)	0.047	0.68 (0.4-1.17)	0.162	10
			1773	All	0.96 (0.85-1.07)	0.461	1.04 (0.9-1.19)	0.628	8
			838	Serous	1.02 (0.88-1.18)	0.816	1.08 (0.91-1.28)	0.399	6
FILIP1L	rs793446	0.41	274	Endometrioid	1.08 (0.74-1.59)	0.69	1.15 (0.77-1.71)	0.501	6
			194	Mucinous	0.65 (0.41-1.03)	0.065	0.57 (0.33-0.99)	0.046	12
			164	Clear cell	0.97 (0.76-1.25)	0.83	0.99 (0.74-1.32)	0.932	2
			1773	All	1.03 (0.83-1.29)	0.786	1.39 (1.07-1.81)	0.014	35
			840	Serous	0.98 (0.71-1.34)	0.895	1.28 (0.89-1.84)	0.186	31
FILIP1L	rs3921767	0.07	276	Endometrioid	0.99 (0.5-1.93)	0.967	1.23 (0.59-2.57)	0.576	24
			191	Mucinous	1.03 (0.45-2.34)	0.949	1.09 (0.44-2.73)	0.849	6
			166	Clear cell	1.29 (0.88-1.89)	0.196	1.59 (0.99-2.58)	0.057	23
FILIP1L	rs17338680	0.11	1786	All	0.96 (0.80-1.15)	0.675	0.99 (0.81-1.22)	0.932	3
			574	Serous	0.99 (0.78-1.27)	0.944	0.98 (0.74-1.29)	0.866	1
			221	Endometrioid	1.1 (0.69-1.76)	0.688	1.21 (0.76-1.93)	0.414	10

Appendix VIII-I: Univariate and multivariate Cox regression results of *FILIP1L* tSNPs

Carra	ACNID	МАБ	No ooror		Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			184	Mucinous	1.82 (0.93-3.58)	0.083	1.21 (0.58-2.54)	0.606	34
			133	Clear cell	0.86 (0.57-1.3)	0.479	0.82 (0.51-1.31)	0.408	5
			1786	All	0.96 (0.84-1.09)	0.515	0.93 (0.8-1.09)	0.366	3
			843	Serous	1.03 (0.88-1.20)	0.708	1 (0.84-1.2)	0.964	3
FILIP1L	rs9864437	0.22	278	Endometrioid	1.07 (0.69-1.68)	0.752	0.97 (0.6-1.57)	0.892	9
			195	Mucinous	0.45 (0.25-0.82)	0.009	0.46 (0.23-0.91)	0.027	2
			165	Clear cell	0.89 (0.66-1.2)	0.455	0.87 (0.63-1.2)	0.396	2
			1414	All	1.00 (0.89-1.13)	0.944	0.94 (0.81-1.08)	0.363	6
			710	Serous	0.97 (0.84-1.13)	0.727	0.92 (0.77-1.1)	0.368	5
FILIP1L	rs6788750	0.41	226	Endometrioid	1.05 (0.71-1.55)	0.803	0.92 (0.62-1.39)	0.703	12
			140	Mucinous	0.95 (0.58-1.56)	0.843	0.86 (0.48-1.56)	0.62	9
			131	Clear cell	0.96 (0.75-1.24)	0.778	0.98 (0.73-1.32)	0.889	2
			1273	All	0.96 (0.82-1.12)	0.573	1.1 (0.92-1.32)	0.277	15
			594	Serous	0.93 (0.75-1.15)	0.514	1.05 (0.82-1.33)	0.705	13
FILIP1L	rs12494994	0.18	193	Endometrioid	1 (0.65-1.53)	0.986	1.16 (0.75-1.8)	0.512	16
			145	Mucinous	1.36 (0.75-2.5)	0.313	1.16 (0.62-2.18)	0.65	15
			113	Clear cell	1.1 (0.81-1.5)	0.525	1.13 (0.8-1.61)	0.486	3

C	TT 1 - 4 †	F	III at a la sam	Univariat	e	Multivariate	ş	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.06 (0.94-1.19)	0.333	0.95 (0.83-1.09)	0.49	10
FILIP1L			Serous	0.95 (0.82-1.10)	0.485	0.89 (0.75-1.06)	0.211	6
(haplotype	h00000	47	Endometrioid	0.98 (0.67-1.42)	0.904	0.88 (0.59-1.32)	0.542	10
block 1)			Mucinous	1.37 (0.91-2.07)	0.129	1.58 (0.94-2.65)	0.086	15
			Clear cell	1.21 (0.95-1.55)	0.117	1.16 (0.87-1.54)	0.316	4
			All	0.96 (0.84-1.09)	0.52	0.94 (0.8-1.1)	0.424	2
FILIP1L			Serous	1.03 (0.89-1.21)	0.667	0.94 (0.67-1.31)	0.697	9
(haplotype	h10100	21	Endometrioid	1.12 (0.71-1.78)	0.618	1 (0.61-1.63)	0.998	11
block 1)			Mucinous	0.42 (0.22-0.78)	0.006	0.44 (0.21-0.9)	0.024	5
			Clear cell	0.88 (0.65-1.19)	0.419	0.88 (0.64-1.22)	0.447	0
			All	0.97 (0.81-1.16)	0.728	1.02 (0.83-1.25)	0.839	5
FILIP1L			Serous	1.09 (0.88-1.34)	0.427	1.08 (0.86-1.36)	0.516	1
(haplotype	h01000	12	Endometrioid	0.83 (0.44-1.56)	0.562	0.92 (0.49-1.74)	0.799	11
block 1)			Mucinous	0.97 (0.48-1.97)	0.937	0.95 (0.39-2.32)	0.911	2
			Clear cell	0.62 (0.38-0.99)	0.048	0.67 (0.39-1.16)	0.156	8
			All	0.96 (0.80-1.15)	0.651	0.99 (0.8-1.23)	0.94	3
FILIP1L			Serous	0.99 (0.77-1.27)	0.919	1.02 (0.85-1.22)	0.834	3
(haplotype	h10101	11	Endometrioid	1.1 (0.69-1.76)	0.693	1.21 (0.76-1.93)	0.418	10
block 1)			Mucinous	1.82 (0.93-3.59)	0.082	1.22 (0.58-2.54)	0.605	33
			Clear cell	0.87 (0.58-1.31)	0.505	0.82 (0.51-1.32)	0.415	6
			All	1.02 (0.81-1.27)	0.871	1.36 (1.04-1.77)	0.024	33
FILIP1L			Serous	0.95 (0.69-1.30)	0.742	1.22 (0.85-1.76)	0.283	28
(haplotype	h00110	7	Endometrioid	1 (0.5-2)	0.996	1.22 (0.58-2.55)	0.604	22
block 1)			Mucinous	1.01 (0.44-2.31)	0.977	1.08 (0.43-2.69)	0.877	7
			Clear cell	1.29 (0.88-1.89)	0.197	1.61 (0.99-2.6)	0.053	25
FILIP1L	Rare	2	All	1.00 (0.63-1.58)	0.991	0.98 (0.54-1.79)	0.955	2
(haplotype			Serous	0.76 (0.36-1.62)	0.479	0.98 (0.73-1.3)	0.876	29

Appendix VIII-J: Univariate and multivariate Cox regression results of *FILIP1L* haplotypes

Appendices

Gene	Hanlatuna [†]	$\mathbf{E}_{\mathbf{n}} = \mathbf{r} \left(0 \right)$	Histology	Univariate	e	Multivariate	§	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Endometrioid	0.65 (0.14-2.92)	0.574	0.72 (0.15-3.54)	0.691	11
			Mucinous	1.12 (0.17-7.37)	0.903	0.81 (0.11-6.26)	0.843	28
			Clear cell	1.57 (0.77-3.18)	0.211	1.73 (0.78-3.83)	0.177	10
			All	1.01 (0.90-1.14)	0.894	0.94 (0.81-1.08)	0.385	7
FILIP1L			Serous	0.97 (0.84-1.13)	0.719	1.06 (0.83-1.34)	0.652	9
(haplotype	h010	41	Endometrioid	1.01 (0.68-1.49)	0.97	0.9 (0.6-1.34)	0.592	11
block 2)			Mucinous	0.96 (0.6-1.54)	0.857	0.84 (0.47-1.51)	0.571	13
			Clear cell	0.96 (0.75-1.24)	0.781	1 (0.74-1.34)	0.989	4
			All	0.96 (0.84-1.09)	0.506	0.94 (0.8-1.09)	0.42	2
FILIP1L			Serous	1.03 (0.89-1.21)	0.668	0.92 (0.77-1.1)	0.371	11
(haplotype	h100	22	Endometrioid	1.08 (0.69-1.69)	0.727	0.97 (0.6-1.57)	0.902	10
block 2)			Mucinous	0.45 (0.25-0.82)	0.009	0.46 (0.23-0.91)	0.026	2
			Clear cell	0.88 (0.65-1.18)	0.385	0.87 (0.63-1.21)	0.407	1
			All	1.10 (0.94-1.28)	0.223	1.11 (0.92-1.33)	0.292	1
FILIP1L			Serous	1.07 (0.87-1.31)	0.506	0.64 (0.26-1.55)	0.321	40
(haplotype	h000	19	Endometrioid	0.87 (0.53-1.44)	0.594	0.98 (0.59-1.64)	0.946	13
block 2)			Mucinous	1.72 (1.09-2.72)	0.019	1.96 (1.15-3.33)	0.013	14
			Clear cell	1.13 (0.82-1.58)	0.456	1.09 (0.74-1.6)	0.664	4
			All	0.96 (0.82-1.11)	0.563	1.11 (0.93-1.33)	0.24	16
FILIP1L			Serous	0.93 (0.75-1.15)	0.494	1.09 (0.85-1.38)	0.505	17
(haplotype	h001	17	Endometrioid	1.03 (0.68-1.57)	0.89	1.19 (0.78-1.84)	0.42	16
block 2)			Mucinous	1.47 (0.81-2.69)	0.208	1.26 (0.66-2.41)	0.476	14
			Clear cell	1.08 (0.79-1.46)	0.627	1.12 (0.79-1.59)	0.535	4

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *FILIP1L* -block 1: rs796977, rs793477, rs793446, rs3921767, rs17338680. *FILIP1L* - block 2: rs9864437, rs6788750, rs12494994.

Como	ACMD	MAE	No oogog		Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1272	All	1.14 (0.96-1.35)	0.147	1.02 (0.83-1.24)	0.875	11
			594	Serous	1.04 (0.83-1.30)	0.743	0.93 (0.72-1.19)	0.555	11
RBBP8	rs7239066	0.11	188	Endometrioid	1.21 (0.67-2.19)	0.524	1 (0.54-1.85)	0.997	17
			144	Mucinous	0.95 (0.49-1.86)	0.884	0.79 (0.36-1.71)	0.543	17
			115	Clear cell	1.35 (0.95-1.93)	0.098	1.35 (0.91-2)	0.135	0
			1748	All	1.29 (0.99-1.68)	0.055	1.09 (0.8-1.46)	0.593	16
			826	Serous	1.08 (0.77-1.51)	0.664	0.92 (0.62-1.36)	0.67	15
RBBP8	rs11082221	0.04	253	Endometrioid	1.69 (0.72-3.95)	0.228	1.3 (0.51-3.33)	0.587	23
			176	Mucinous	1.23 (0.43-3.54)	0.698	0.54 (0.16-1.84)	0.327	56
			151	Clear cell	1.67 (1.01-2.75)	0.044	1.54 (0.93-2.54)	0.092	8
			1764	All	0.85 (0.75-0.95)	0.007	0.86 (0.74-0.99)	0.034	1
			829	Serous	0.88 (0.75-1.02)	0.098	0.85 (0.71-1.01)	0.065	3
RBBP8	rs4474794	0.36	271	Endometrioid	0.8 (0.53-1.19)	0.265	0.86 (0.56-1.31)	0.479	7
			193	Mucinous	0.67 (0.42-1.05)	0.079	0.83 (0.51-1.36)	0.465	24
			165	Clear cell	0.91 (0.71-1.18)	0.484	0.98 (0.73-1.32)	0.899	8
			346	All	0.83 (0.71-0.95)	0.009	0.83 (0.7-0.99)	0.038	0
			215	Serous	0.87 (0.72-1.05)	0.143	0.82 (0.66-1.02)	0.073	6
RBBP8	rs9304261	0.22	44	Endometrioid	0.87 (0.56-1.35)	0.536	0.99 (0.62-1.6)	0.982	14
			33	Mucinous	0.61 (0.35-1.05)	0.074	0.81 (0.44-1.49)	0.497	33
			21	Clear cell	0.84 (0.62-1.13)	0.242	0.86 (0.61-1.22)	0.401	2

Appendix VIII-K: Univariate and multivariate Cox regression results of *RBBP8* tSNPs

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Como	Hanlater at	$\mathbf{E}_{\mathbf{m}} \in (0/1)$		Univariate	e	Multivariate	8	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.16 (1.03-1.31)	0.015	1.17 (1.01-1.34)	0.032	1
			Serous	1.12 (0.97-1.30)	0.134	0.02 (0-27735)	0.589	98
RBBP8	h0000	62	Endometrioid	1.26 (0.85-1.86)	0.257	1.15 (0.76-1.75)	0.511	9
			Mucinous	1.57 (1-2.47)	0.05	1.22 (0.75-2)	0.422	22
			Clear cell	1.06 (0.83-1.35)	0.659	1 (0.75-1.32)	0.98	6
			All	0.81 (0.71-0.94)	0.005	0.82 (0.69-0.98)	0.029	1
			Serous	0.84 (0.70-1.02)	0.079	0.99 (0.53-1.85)	0.976	18
RBBP8	h0011	23	Endometrioid	0.83 (0.53-1.3)	0.422	0.94 (0.58-1.52)	0.789	13
			Mucinous	0.64 (0.37-1.08)	0.096	0.86 (0.48-1.53)	0.614	34
			Clear cell	0.85 (0.64-1.13)	0.261	0.87 (0.63-1.22)	0.429	2
			All	0.99 (0.78-1.26)	0.941	0.93 (0.7-1.22)	0.588	6
			Serous	1.00 (0.73-1.36)	0.99	0.81 (0.65-1)	0.054	19
RBBP8	h1010	7	Endometrioid	0.85 (0.38-1.88)	0.689	0.78 (0.35-1.73)	0.548	8
			Mucinous	0.87 (0.36-2.13)	0.762	1.15 (0.45-2.93)	0.771	32
			Clear cell	1.05 (0.63-1.75)	0.841	1.03 (0.57-1.87)	0.928	2
			All	1.26 (0.97-1.65)	0.086	1.04 (0.77-1.42)	0.789	17
			Serous	1.06 (0.76-1.49)	0.725	0.92 (0.77-1.11)	0.403	13
RBBP8	h1110	4	Endometrioid	1.43 (0.56-3.63)	0.457	1.02 (0.36-2.89)	0.974	29
			Mucinous	1.27 (0.45-3.63)	0.651	0.55 (0.16-1.85)	0.333	57
			Clear cell	1.64 (0.99-2.72)	0.057	1.51 (0.91-2.5)	0.111	8
RBBP8	h0010	3	All	0.60 (0.39-0.93)	0.022	0.75 (0.45-1.25)	0.275	25
			Serous	0.75 (0.41-1.36)	0.347	1.2 (1.01-1.42)	0.041	60
			Endometrioid	0.35 (0.08-1.56)	0.169	0.54 (0.12-2.46)	0.429	54
			Mucinous	0.56 (0.13-2.31)	0.419	1.03 (0.15-7.23)	0.976	84

Appendix VIII-L: Univariate and multivariate Cox regression results of *RBBP8* haplotypes

Gene	Hanlatuna [†]	Freq (%)	Histology	Univariate)	Multivariate	3	Diff HR
Gene	Haplotype [†]	r req (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Clear cell	0.7 (0.31-1.58)	0.388	0.78 (0.28-2.18)	0.637	11
			All	1.24 (0.72-2.15)	0.436	1.34 (0.71-2.52)	0.366	8
			Serous	1.10 (0.57-2.12)	0.786	1.08 (0.86-1.36)	0.493	2
RBBP8	Rare	1	Endometrioid	2.48 (0.32-19.53)	0.388	11.36 (1.27-101.18)	0.029	358
			Mucinous	-	-	-	-	-
			Clear cell	1.37 (0.44-4.31)	0.587	1.5 (0.47-4.83)	0.493	9

†: '0' = common allele and '1' = rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *RBBP8*: rs7239066, rs11082221, rs4474794, rs9304261.

Como	tSNP	МАБ	No coror	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1769	All	0.94 (0.79-1.12)	0.486	0.99 (0.8-1.22)	0.922	5
			839	Serous	0.91 (0.72-1.15)	0.447	0.95 (0.73-1.24)	0.693	4
RGC32	rs10467472	0.13	273	Endometrioid	1.08 (0.62-1.88)	0.78	1.4 (0.78-2.52)	0.259	30
			191	Mucinous	1.12 (0.64-1.97)	0.688	1.19 (0.62-2.29)	0.591	6
			164	Clear cell	0.97 (0.69-1.38)	0.88	0.72 (0.45-1.13)	0.151	26
			1690	All	0.95 (0.79-1.14)	0.567	1.11 (0.9-1.36)	0.342	17
			788	Serous	1.11 (0.88-1.41)	0.359	1.44 (1.12-1.86)	0.005	30
RGC32	rs3783194	0.11	264	Endometrioid	1.09 (0.65-1.84)	0.742	1.12 (0.61-2.05)	0.713	3
			184	Mucinous	0.63 (0.29-1.35)	0.232	0.64 (0.24-1.73)	0.38	2
			155	Clear cell	0.81 (0.55-1.19)	0.282	0.76 (0.5-1.16)	0.202	6
			1771	All	1.01 (0.84-1.20)	0.931	0.96 (0.79-1.18)	0.72	5
			835	Serous	1.00 (0.81-1.25)	0.968	0.94 (0.73-1.21)	0.63	6
RGC32	rs11618371	0.11	275	Endometrioid	0.88 (0.49-1.6)	0.677	0.8 (0.41-1.57)	0.522	9
			193	Mucinous	1.22 (0.58-2.56)	0.598	0.93 (0.42-2.05)	0.862	24
			164	Clear cell	0.98 (0.67-1.44)	0.918	1.1 (0.72-1.69)	0.65	12
			1782	All	1.18 (0.95-1.46)	0.137	1.12 (0.86-1.46)	0.386	5
			841	Serous	1.19 (0.90-1.57)	0.233	1.06 (0.75-1.48)	0.75	11
RGC32	rs9532824	0.07	276	Endometrioid	0.6 (0.27-1.3)	0.193	0.45 (0.18-1.14)	0.093	25
			196	Mucinous	1.62 (0.81-3.23)	0.169	1.75 (0.82-3.76)	0.149	8
			150	Clear cell	1.69 (1.07-2.67)	0.023	1.45 (0.86-2.42)	0.162	14
RGC32	rs995845	0.2	1274	All	0.96 (0.85-1.08)	0.488	1.13 (0.93-1.38)	0.218	18
			595	Serous	1.03 (0.88-1.21)	0.682	1.25 (0.97-1.61)	0.082	21
			193	Endometrioid	1.55 (0.93-2.6)	0.093	1.8 (1.03-3.14)	0.039	16

Appendix VIII-M: Univariate and multivariate Cox regression results of RGC32 tSNPs

Como	ACNID	МАБ	No ooror		Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			146	Mucinous	1.09 (0.58-2.03)	0.797	0.75 (0.36-1.54)	0.43	31
			112	Clear cell	0.94 (0.66-1.34)	0.716	1.04 (0.69-1.56)	0.851	11
			1766	All	0.97 (0.83-1.13)	0.697	0.92 (0.77-1.11)	0.377	5
			833	Serous	1.02 (0.84-1.24)	0.813	0.92 (0.74-1.15)	0.488	10
RGC32	rs9594551	0.15	275	Endometrioid	0.94 (0.55-1.59)	0.811	0.74 (0.4-1.34)	0.317	21
			193	Mucinous	1.23 (0.67-2.29)	0.505	1.24 (0.68-2.28)	0.482	1
			163	Clear cell	0.78 (0.55-1.11)	0.167	0.94 (0.63-1.42)	0.776	21
			1749	All	1.06 (0.92-1.21)	0.407	0.98 (0.84-1.16)	0.837	8
			828	Serous	1.05 (0.88-1.25)	0.571	0.95 (0.78-1.15)	0.574	10
RGC32	rs975590	0.23	268	Endometrioid	0.77 (0.49-1.22)	0.266	0.6 (0.35-1.01)	0.056	22
			188	Mucinous	1.68 (0.99-2.87)	0.056	1.62 (0.91-2.9)	0.102	4
			161	Clear cell	1.13 (0.84-1.52)	0.421	1.22 (0.86-1.73)	0.262	8

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Gene	Hanlatuna	$\mathbf{E}_{\mathbf{n}}$	Histology	Univaria	te	Multivari	ate [§]	Diff HR
Gene	паріотуре	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	0.96 (0.84-1.1)	0.56	0.92 (0.79-1.07)	0.283	4
			Serous	0.94 (0.81-1.1)	0.46	0.91 (0.76-1.08)	0.265	3
RGC32	h0000000	41.5	Endometrioid	1 (0.68-1.47)	0.986	0.96 (0.62-1.47)	0.838	4
			Mucinous	0.88 (0.56-1.38)	0.586	0.83 (0.51-1.37)	0.476	6
	1 1 132 h0000000 132 h0000011 132 h0000100 132 h0001001		Clear cell	0.65 (0.37-1.14)	0.131	0.82 (0.45-1.52)	0.534	26
			All	1.1 (0.82-1.48)	0.525	0.97 (0.69-1.38)	0.873	12
			Serous	1.12 (0.79-1.57)	0.522	1.04 (0.71-1.54)	0.826	7
RGC32	h0000011	4.9	Endometrioid	1.24 (0.55-2.8)	0.604	0.73 (0.29-1.88)	0.518	41
			Mucinous	1.69 (0.62-4.63)	0.304	2.46 (0.88-6.89)	0.086	46
			Clear cell	0.59 (0.14-2.59)	0.485	0.8 (0.17-3.66)	0.773	36
			All	1.05 (0.86-1.29)	0.611	1.03 (0.82-1.3)	0.785	2
			Serous	1.01 (0.79-1.28)	0.959	1 (0.76-1.3)	0.975	1
RGC32	h0000100	10.4	Endometrioid	1.36 (0.81-2.29)	0.244	1.54 (0.9-2.64)	0.118	13
			Mucinous	0.77 (0.32-1.82)	0.546	0.74 (0.3-1.79)	0.5	4
			Clear cell	1.42 (0.6-3.36)	0.424	1.4 (0.45-4.37)	0.561	1
			All	1.11 (0.86-1.43)	0.434	1.06 (0.78-1.43)	0.73	5
			Serous	1.13 (0.83-1.53)	0.442	1.06 (0.74-1.51)	0.752	6
RGC32	h0001001	6.7	Endometrioid	0.65 (0.29-1.47)	0.303	0.51 (0.19-1.33)	0.168	22
			Mucinous	1.6 (0.77-3.3)	0.208	1.54 (0.69-3.42)	0.289	4
			Clear cell	1.83 (0.63-5.28)	0.267	1.02 (0.23-4.54)	0.977	44
RGC32	h0010011	7.8	All	1.03 (0.84-1.26)	0.791	0.94 (0.74-1.18)	0.575	9
			Serous	1.01 (0.8-1.28)	0.928	0.94 (0.73-1.22)	0.646	7
			Endometrioid	0.93 (0.48-1.81)	0.84	0.9 (0.43-1.88)	0.775	3

Appendix VIII-N: Univariate and multivariate Cox regression results of RGC32 haplotypes

Como	Hanlatuma	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \cdot (0/1)$		Univaria	te	Multivari	ate [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			Mucinous	1.06 (0.47-2.41)	0.89	0.81 (0.35-1.89)	0.627	24
			Clear cell	1.01 (0.47-2.17)	0.989	1.23 (0.5-3.05)	0.649	22
			All	1.01 (0.83-1.23)	0.93	1.29 (1.03-1.62)	0.024	28
			Serous	1.13 (0.89-1.42)	0.324	1.5 (1.16-1.94)	0.002	33
RGC32	h0100100	10.8	Endometrioid	1.23 (0.69-2.2)	0.476	1.34 (0.72-2.49)	0.364	9
			Mucinous	0.65 (0.3-1.4)	0.271	0.64 (0.24-1.71)	0.37	2
			Clear cell	0.94 (0.47-1.88)	0.866	0.95 (0.45-2.01)	0.884	1
			All	0.98 (0.76-1.25)	0.843	1.01 (0.76-1.34)	0.935	3
			Serous	0.88 (0.65-1.2)	0.418	0.89 (0.63-1.25)	0.487	1
RGC32	h1000000	8.1	Endometrioid	0.94 (0.46-1.93)	0.875	1.2 (0.58-2.48)	0.626	28
			Mucinous	1.45 (0.68-3.12)	0.338	1.57 (0.64-3.82)	0.322	8
			Clear cell	1.65 (0.77-3.56)	0.201	1.59 (0.51-4.94)	0.421	4
			All	0.97 (0.69-1.36)	0.863	1.46 (0.98-2.19)	0.063	51
			Serous	1.06 (0.71-1.59)	0.767	1.48 (0.92-2.39)	0.109	40
RGC32	h1000100	4.1	Endometrioid	1.42 (0.55-3.64)	0.469	1.9 (0.72-5.04)	0.196	34
			Mucinous	0.81 (0.29-2.23)	0.686	0.75 (0.17-3.23)	0.695	7
			Clear cell	0.61 (0.14-2.6)	0.501	0.57 (0.14-2.23)	0.415	7
			All	0.67 (0.41-1.1)	0.114	0.49 (0.27-0.9)	0.022	27
			Serous	0.72 (0.42-1.24)	0.234	0.56 (0.29-1.06)	0.073	22
RGC32	Rare		Endometrioid	0.35 (0.05-2.56)	0.298	0.09 (0-9.19)	0.312	74
			Mucinous	0.77 (0.1-6.16)	0.809	1.31 (0.17-10.38)	0.796	70
			Clear cell	0.82 (0.13-5.14)	0.832	0.64 (0.1-4.06)	0.639	22

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *RGC32*: rs10467472, rs3783194, rs11618371, rs9532824, rs995845, rs9594551, rs975590.

Como	tSNP	MAF	No ooror		Univariat	e	Multivaria	te [§]	Diff HR
Gene	ISNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1777	All	1.07 (0.91-1.27)	0.404	0.97 (0.79-1.19)	0.789	9
			839	Serous	1.03 (0.83-1.29)	0.772	1.04 (0.8-1.34)	0.789	1
RUVBL1	rs9860614	0.12	276	Endometrioid	1.19 (0.71-1.98)	0.516	1.19 (0.71-2.01)	0.504	0
			193	Mucinous	1.01 (0.53-1.93)	0.981	0.64 (0.27-1.5)	0.306	37
			162	Clear cell	1.11 (0.79-1.56)	0.555	0.81 (0.53-1.24)	0.335	27
			1266	All	1.08 (0.95-1.23)	0.248	0.99 (0.85-1.16)	0.925	8
			537	Serous	1.04 (0.88-1.23)	0.626	1.02 (0.84-1.24)	0.862	2
RUVBL1	rs13063604	0.25	207	Endometrioid	1.3 (0.88-1.9)	0.186	1.2 (0.78-1.85)	0.397	8
			143	Mucinous	0.75 (0.44-1.28)	0.286	0.75 (0.41-1.38)	0.358	0
			124	Clear cell	1.08 (0.81-1.43)	0.609	0.82 (0.58-1.14)	0.24	24
			1280	All	1.00 (0.89-1.13)	0.977	0.92 (0.8-1.07)	0.275	8
			596	Serous	0.97 (0.83-1.14)	0.729	0.91 (0.76-1.1)	0.326	6
RUVBL1	rs3732402	0.4	194	Endometrioid	0.98 (0.68-1.43)	0.931	1.07 (0.71-1.62)	0.743	9
			147	Mucinous	0.8 (0.51-1.26)	0.344	0.87 (0.53-1.43)	0.58	9
			114	Clear cell	1.06 (0.82-1.39)	0.645	0.91 (0.67-1.24)	0.556	14
			1645	All	1.03 (0.92-1.15)	0.64	1.06 (0.92-1.22)	0.429	3
			769	Serous	1.07 (0.92-1.24)	0.388	1.09 (0.91-1.3)	0.341	2
RUVBL1	rs7650365	0.46	256	Endometrioid	0.9 (0.61-1.34)	0.615	0.81 (0.52-1.28)	0.377	10
			175	Mucinous	1.2 (0.79-1.83)	0.393	0.87 (0.55-1.39)	0.567	28
			155	Clear cell	1.03 (0.81-1.31)	0.824	1.1 (0.84-1.44)	0.486	7
RUVBL1	rs4857836	0.2	1787	All	0.98 (0.86-1.12)	0.758	0.81 (0.67-0.98)	0.03	17
			845	Serous	1.01 (0.86-1.19)	0.879	0.75 (0.59-0.95)	0.018	26
			278	Endometrioid	1.12 (0.67-1.88)	0.66	0.92 (0.52-1.61)	0.762	18

Appendix VIII-O: Univariate and multivariate Cox regression results of RUVBL1 tSNPs

Gene	tSNP	MAF	No cocco	Histology	Univariat	e	Multivaria	te [§]	Diff HR
Gene	LSINF	MAL	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			195	Mucinous	0.8 (0.42-1.55)	0.513	0.9 (0.42-1.95)	0.797	13
			165	Clear cell	0.97 (0.68-1.38)	0.863	0.84 (0.55-1.28)	0.406	13
			1733	All	0.89 (0.76-1.05)	0.179	0.91 (0.74-1.11)	0.336	2
			820	Serous	0.92 (0.75-1.14)	0.45	0.88 (0.68-1.12)	0.292	4
RUVBL1	rs9821568	0.15	269	Endometrioid	0.49 (0.27-0.9)	0.021	0.65 (0.35-1.2)	0.172	33
			186	Mucinous	0.64 (0.31-1.35)	0.244	1.1 (0.47-2.6)	0.824	72
			161	Clear cell	1.13 (0.82-1.55)	0.447	1.37 (0.94-1.98)	0.098	21

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Gene	Hanlatuna	$\mathbf{E}_{\mathbf{r}} = \mathbf{r} \left(0 \right)$	Histology	Univaria	ite	Multivari	ate [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	ДШ ПК
			All	0.95 (0.76-1.2)	0.682	1.04 (0.81-1.34)	0.751	9
			Serous	0.89 (0.68-1.17)	0.405	0.97 (0.72-1.31)	0.855	9
RUVBL1	h000000	13.3	Endometrioid	1.89 (0.97-3.68)	0.061	1.65 (0.84-3.25)	0.149	13
			Mucinous	0.95 (0.42-2.15)	0.91	1.76 (0.75-4.15)	0.195	85
		Clear cell	0.8 (0.31-2.06)	0.646	0.86 (0.33-2.23)	0.754	7	
			All	1.08 (0.92-1.26)	0.367	1.11 (0.93-1.32)	0.246	3
			Serous	1.11 (0.92-1.33)	0.279	1.12 (0.92-1.38)	0.259	1
RUVBL1	h000100	48	Endometrioid	0.76 (0.46-1.26)	0.282	0.76 (0.44-1.32)	0.329	0
			Mucinous	1.58 (0.93-2.7)	0.09	1.05 (0.58-1.88)	0.88	34
			Clear cell	1.23 (0.62-2.43)	0.561	1.45 (0.73-2.91)	0.292	18
			All	0.99 (0.58-1.69)	0.984	1.29 (0.62-2.69)	0.499	30
			Serous	1.34 (0.72-2.48)	0.351	1.72 (0.73-4.07)	0.216	28
RUVBL1	h001011	14.5	Endometrioid	0.21 (0.04-1.09)	0.063	0.47 (0.08-2.73)	0.398	124
			Mucinous	2.34 (0.33-16.57)	0.394	2.8 (0.24-32.22)	0.408	20
			Clear cell	0.28 (0.02-4.97)	0.382	1.18 (0.06-23.01)	0.912	321
			All	1.15 (0.91-1.46)	0.234	1.05 (0.81-1.36)	0.715	9
			Serous	1.11 (0.85-1.45)	0.457	1.05 (0.78-1.41)	0.738	5
RUVBL1	h011010	11.7	Endometrioid	1.93 (0.94-3.97)	0.073	1.35 (0.61-2.96)	0.456	30
			Mucinous	0.6 (0.23-1.58)	0.302	0.77 (0.28-2.1)	0.616	28
			Clear cell	1.35 (0.48-3.78)	0.573	0.77 (0.22-2.66)	0.676	43
RUVBL1	h111000	9.8	All	1.02 (0.8-1.3)	0.855	0.95 (0.73-1.25)	0.724	7
			Serous	1.03 (0.77-1.36)	0.862	1.02 (0.75-1.39)	0.885	1

Appendix VIII-P: Univariate and multivariate Cox regression results of *RUVBL1* haplotypes

Gene	Hanlatuna	$\mathbf{E}_{\mathbf{max}}(0/1)$	Histology	Univaria	ite	Multivari	ate [§]	Diff HR
Gene	Haplotype	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	
			Endometrioid	1.07 (0.49-2.33)	0.869	1.19 (0.53-2.7)	0.676	11
			Mucinous	0.97 (0.42-2.2)	0.934	0.63 (0.23-1.72)	0.368	35
			Clear cell	0.69 (0.21-2.24)	0.539	0.27 (0.04-1.74)	0.17	61
			All	0.82 (0.51-1.33)	0.429	0.93 (0.56-1.55)	0.789	13
			Serous	0.88 (0.51-1.53)	0.655	0.96 (0.54-1.69)	0.877	9
RUVBL1	Rare		Endometrioid	1.43 (0.44-4.66)	0.553	1.47 (0.44-4.89)	0.525	3
			Mucinous	0.05 (0-62.52)	0.405	0.02 (0-2257451)	0.674	60
			Clear cell	0.54 (0.07-4.06)	0.549	1.37 (0.17-11.14)	0.769	154

†: '0'= common allele and '1'= rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *RUVBL1*: rs9860614, rs13063604, rs3732402, rs7650365, rs4857836, rs9821568.

Como	ACNID	MAE	No ooroo		Univariat	e	Multivaria	te [§]	Diff HR
Gene	tSNP	MAF	No. cases	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			1787	All	0.95 (0.83-1.09)	0.482	0.92 (0.78-1.09)	0.342	3
			846	Serous	1.00 (0.84-1.18)	0.985	0.94 (0.77-1.14)	0.533	6
STAG3	rs11762932	0.22	279	Endometrioid	0.87 (0.56-1.34)	0.52	0.86 (0.52-1.42)	0.557	1
			194	Mucinous	0.8 (0.45-1.39)	0.421	0.87 (0.44-1.75)	0.702	9
			164	Clear cell	0.9 (0.66-1.21)	0.473	0.98 (0.7-1.37)	0.893	9
			1295	All	1.07 (0.95-1.19)	0.268	1.06 (0.93-1.21)	0.412	1
			549	Serous	1.17 (1.02-1.35)	0.03	1.11 (0.95-1.31)	0.188	5
STAG3	rs2246713	0.47	212	Endometrioid	0.94 (0.65-1.37)	0.749	0.96 (0.63-1.47)	0.866	2
			143	Mucinous	0.87 (0.56-1.36)	0.544	0.99 (0.61-1.61)	0.972	14
			130	Clear cell	1 (0.79-1.27)	0.992	1 (0.76-1.32)	0.983	0
			1784	All	1.11 (0.97-1.26)	0.119	1.1 (0.95-1.28)	0.198	1
			843	Serous	1.20 (1.02-1.42)	0.029	1.15 (0.95-1.38)	0.157	4
STAG3	rs1637001	37001 0.26	278	Endometrioid	1.15 (0.79-1.68)	0.472	1.15 (0.75-1.74)	0.524	0
			194	Mucinous	0.97 (0.59-1.58)	0.904	1.01 (0.64-1.61)	0.966	4
			165	Clear cell	1.03 (0.78-1.35)	0.852	0.96 (0.7-1.31)	0.777	7

Appendix VIII-Q: Univariate and multivariate Cox regression results of STAG3 tSNPs

HR: Hazard ratio; CI: confidence interval; MAF- minor allele frequency; §: adjusted for clinical factors; emboldened histology names are statistically associated with survival; emboldened HR are statistically significant.

Como	Hanlatin at	$\mathbf{E}_{\mathbf{m}} \in (0/1)$	III: stale and	Univariate	9	Multivariate	\$	Diff HR
Gene	Haplotype [†]	Freq (%)	Histology	HR (95% CI)	P-value	HR (95% CI)	P-value	(%)
			All	1.11 (0.98-1.26)	0.1	0.88 (0.66-1.18)	0.381	21
			Serous	1.21 (1.03-1.43)	0.021	0.76 (0.23-2.51)	0.654	37
STAG3	h011	27	Endometrioid	1.09 (0.74-1.6)	0.678	1.07 (0.7-1.64)	0.758	2
			Mucinous	0.98 (0.6-1.6)	0.932	1.01 (0.64-1.61)	0.953	3
			Clear cell	1.05 (0.8-1.38)	0.708	0.98 (0.72-1.35)	0.914	7
			All	0.96 (0.84-1.11)	0.599	1 (0.77-1.28)	0.977	4
			Serous	1.02 (0.86-1.21)	0.846	1.04 (0.71-1.54)	0.834	2
STAG3	h110	21	Endometrioid	0.82 (0.52-1.3)	0.405	0.83 (0.5-1.39)	0.482	1
			Mucinous	0.75 (0.42-1.36)	0.347	0.81 (0.39-1.69)	0.573	8
			Clear cell	0.93 (0.69-1.25)	0.624	1 (0.71-1.41)	0.998	8
			All	0.96 (0.86-1.07)	0.468	1.38 (0.96-1.99)	0.085	44
			Serous	0.88 (0.76-1.01)	0.077	0.9 (0.76-1.08)	0.267	2
STAG3	h000	5	Endometrioid	0.97 (0.68-1.39)	0.872	0.95 (0.63-1.44)	0.821	2
			Mucinous	1.2 (0.78-1.84)	0.405	1.06 (0.66-1.71)	0.798	12
			Clear cell	1.06 (0.83-1.35)	0.646	1.06 (0.8-1.41)	0.669	0
			All	0.76 (0.45-1.27)	0.296	0.9 (0.46-1.77)	0.762	18
			Serous	0.52 (0.21-1.29)	0.159	0.95 (0.68-1.34)	0.771	83
STAG3	Rare	2	Endometrioid	2.2 (0.88-5.52)	0.093	2.83 (1.01-7.95)	0.048	29
			Mucinous	1 (0.14-7.16)	0.998	1.45 (0.19-10.86)	0.717	45
			Clear cell	0.55 (0.2-1.49)	0.239	0.55 (0.17-1.75)	0.31	0

Appendix VIII-R: Univariate and multivariate Cox regression results of *STAG3* **haplotypes**

†: '0' = common allele and '1' = rare allele; §: adjusted for clinical factors; SNP order in haplotypes, 5' to 3', *STAG3*: rs11762932, rs2246713, rs1637001

SNP	MAF	gDNA (n=95)	C-PROMPPLEY (n=90)		GenomiPhi (n=95)		PEP (n=95)		REPLI-g (n=95)	
			Call rate	Call rate	Discord	Call rate	Discord	Call rate	Discord	Call rate
rs602652	0.44	99%	99%	0%	90%	0%	100%	0%	83%	1%
rs3217805	0.42	100%	99%	0%	93%	0%	100%	0%	87%	0%
rs3217869	0.41	95%	96%	0%	93%	0%	100%	0%	79%	1%
rs2079147	0.48	94%	99%	0%	96%	0%	99%	0%	80%	0%
rs10487888	0.47	98%	94%	0%	100%	0%	88%	0%	99%	2%
Averag	ge	97%	97%	0%	94%	0%	97%	0%	82%	1%

Appendix IX-A: Call rates and concordance of WGA samples vs gDNA genotyped with TaqMan

Discord: discordance rate, the proportion of genotypes which were the same where both gDNA (non-amplified genomic DNA) and WGA method had calls. Bold rates failed quality control of call rate >90%; discordance <2%. Average call rate of assays that passed.

SNP	MAF	Genomic	GenomePlex	GenomiPhi	PEP	REPLI-g
rs10487888	0.47	94 (98%)	90 (100%)	95 (100%)	84 (88%)	95 (100%)
rs10842514	0.44	66 (96%)	75 (83%)	78 (82.1%)	2 (2%)	78 (82%)
rs11047898	0.01	96 (100%)	90 (100%)	95 (100%)	71 (75%)	95 (100%)
rs11047917	0.06	94 (98%)	90 (100%)	95 (100%)	80 (84%)	94 (99%)
rs11551174	0.06	90 (94%)	90 (100%)	94 (98.9%)	87 (92%)	95 (100%)
rs12305513	0.1	94 (98%)	90 (100%)	94 (98.9%)	39 (41%)	94 (99%)
rs12822857	0.48	89 (93%)	89 (99%)	95 (100%)	3 (3%)	93 (98%)
rs17161747	0.05	94 (98%)	90 (100%)	95 (100%)	37 (39%)	94 (99%)
rs17191185	0.04	90 (94%)	90 (100%)	95 (100%)	94 (99%)	95 (100%)
rs1733832	0.06	88 (92%)	89 (99%)	95 (100%)	86 (90%)	95 (100%)
rs17623382	0.12	82 (85%)	88 (98%)	94 (98.9%)	10 (11%)	94 (99%)
rs17695623	0.13	94 (98%)	90 (100%)	95 (100%)	79 (83%)	94 (99%)
rs1801200	0.23	95 (99%)	90 (100%)	94 (98.9%)	95 (100%)	94 (99%)
rs2161841	0.28	95 (99%)	90 (100%)	93 (97.9%)	80 (84%)	95 (100%)
rs2699905	0.26	94 (98%)	89 (99%)	95 (100%)	90 (95%)	95 (100%)
rs2865084	0.05	91 (95%)	90 (100%)	95 (100%)	94 (99%)	94 (99%)
rs2952155	0.26	95 (99%)	90 (100%)	95 (100%)	95 (100%)	93 (98%)
rs2952156	0.3	94 (98%)	90 (100%)	95 (100%)	94 (99%)	95 (100%)
rs3771882	0.43	94 (98%)	90 (100%)	94 (98.9%)	84 (88%)	95 (100%)
rs3771886	0.41	92 (96%)	89 (99%)	95 (100%)	32 (34%)	95 (100%)
rs3854012	0.28	94 (98%)	90 (100%)	95 (100%)	95 (100%)	95 (100%)
rs453226	0.15	94 (98%)	90 (100%)	95 (100%)	59 (62%)	95 (100%)
rs4623993	0.16	90 (94%)	90 (100%)	95 (100%)	56 (59%)	94 (99%)
rs6978734	0.01	95 (99%)	90 (100%)	95 (100%)	94 (99%)	95 (100%)
Avera	ge	84 (88%)	83 (92%)	87 (91%)	64 (67%)	86 (91%)

Appendix IX-B: Call rates of assays genotyped on iPLEX (by

amplification method)

N=95 (GenomePlex =90)

Accov	Geno	mePlex	Geno	mi-Phi	Р	EP	RE	PLI-g
Assay	No. called	Discordance						
rs10487888	88	0 (0%)	94	0 (0%)	82	11 (13.4%)	93	2 (2.2%)
rs10842514	60	0 (0%)	65	0 (0%)	F	ail	63	0 (0%)
rs11047917	88	0 (0%)	94	0 (0%)	78	1 (1.3%)	93	2 (2.2%)
rs11551174	87	2 (2.3%)	89	1 (1.2%)	83	0 (0%)	90	2 (2.2%)
rs12305513	88	0 (0%)	94	0 (0%)	37	1 (2.7%)	93	1 (1.1%)
rs12822857	82	0 (0%)	89	0 (0%)	F	ail	86	1 (1.2%)
rs17161747	88	0 (0%)	94	0 (0%)	35	0 (0%)	92	0 (0%)
rs17191185	85	0 (0%)	90	0 (0%)	88	0 (0%)	89	0 (0%)
rs1733832	81	0 (0%)	88	0 (0%)	77	0 (0%)	87	0 (0%)
rs17623382	74	1 (1.4%)	82	1 (1.2%)	F	ail	80	2 (2.5%)
rs1801200	89	1 (1.1%)	94	0 (0%)	94	2 (2.1%)	93	1 (1.08%)
rs2161841	89	0 (0%)	93	0 (0%)	79	1 (1.3%)	94	0 (0%)
rs2699905	87	1 (1.2%)	94	0 (0%)	88	1 (1.1%)	93	2 (2.2%)
rs2865084	85	0 (0%)	91	0 (0%)	89	0 (0%)	89	0 (0%)
rs2952155	89	0 (0%)	95	0 (0%)	94	0 (0%)	93	1 (1.1%)
rs2952156	88	0 (0%)	94	0 (0%)	92	0 (0%)	92	0 (0%)
rs3771882	89	0 (0%)	93	0 (0%)	82	0 (0%)	93	1 (1.1%)
rs3771886	85	0 (0%)	92	0 (0%)	31	6 (19.4%)	91	1 (1.1%)
rs3854012	88	0 (0%)	94	0 (0%)	93	0 (0%)	93	2 (2.2%)
rs453226	89	0 (0%)	94	0 (0%)	57	0 (0%)	93	0 (0%)
rs4623993	84	0 (0%)	90	0 (0%)	51	0 (0%)	88	2 (2.3%)
rs6978734	89	0 (0%)	95	0 (0%)	93	0 (0%)	94	0 (0%)

Appendix IX-C: Discordance rates on iPLEX (by WGA method)

Discordance rate, the proportion of genotypes which were different where the sample had a genotype in both gDNA and the WGA method. Bold pass rates less than 90% or failed in only one method and discordance 2% or more

Appendix IX-D: Call rates of SNPs genotyped on SNPlex (by WGA

MAF GenomiPhi **SNP** Genomic GenomePlex **REPLI-g** rs1419755 0.08 91 (96.8%) 87 (92.6%) Fail Fail rs1569244 0.17 Fail Fail Fail Fail rs354893 0.21 92 (97.9%) 90 (95.7%) Fail 86 (91.5%) rs729673 0.34 90 (95.7%) 81 (86.2%) 85 (90.4%) Fail rs751340 0.41 92 (97.9%) 87 (92.6%)* Fail 87 (92.6%) 89 (94.7%) rs1323001 0.33 91 (96.8%) 80 (85.1%) 86 (91.5%) 0.44 92 (97.9%) 85 (90.4%) rs1115261 Fail Fail 0.20 Fail Fail 86 (91.5%) rs1323881 Fail rs1507213 0.46 91 (96.8%) Fail Fail 86 (91.5%) 0.24 91 (96.8%) 80 (85.1%) rs1425151 Fail 86 (91.5%) HCV2059319 0.31 Fail Fail Fail Fail 0.22 92 (97.9%) 89 (94.7%)* Fail rs2286216 Fail rs220860 0.22 Fail 88 (93.6%) Fail 86 (91.5%) rs1016146 0.31 92 (97.9%) 89 (94.7%) Fail 85 (90.4%) rs1548543 0.34 Fail Fail Fail 84 (89.4%) 0.23 Fail rs1980408 Fail Fail 86 (91.5%) rs1861606 0.29 91 (96.8%) Fail Fail 85 (90.4%) HCV2962785 0.11 Fail Fail Fail Fail rs705681 0.48 92 (97.9%) Fail Fail Fail rs1007106 0.34 Fail 90 (95.7%) Fail 87 (92.6%) 0.33 Fail 85 (90.4%) rs984071 90 (95.7%) Fail 92 (97.9%) Fail rs992690 0.16 Fail 86 (91.5%) 0.38 Fail Fail rs1520483 89 (94.7%) 86 (91.5%) rs1569125 0.32 91 (96.8%) Fail Fail Fail rs288423 0.34 92 (97.9%) Fail 79 (84%) 87 (92.6%) rs963014 0.40 Fail Fail Fail Fail 0.10 Fail 87 (92.6%) rs238196 Fail Fail rs961495 0.18 92 (97.9%) Fail 81 (86.2%) 86 (91.5%) rs1388276 0.27 91 (96.8%) Fail 79 (84%) 87 (92.6%) rs748573 0.22 Fail Fail Fail 86 (91.5%) rs1457947 0.42 Fail Fail Fail Fail rs927221 0.12 92 (97.9%) 85 (90.4%) 81 (86.2%) 87 (92.6%) 92 (97.9%) 84 (89.4%) rs1378324 0.12 Fail Fail 0.44 rs1570903 Fail Fail Fail Fail 0.48 90 (95.7%) 85 (90.4%) rs893613 Fail Fail rs1597695 0.39 Fail Fail 87 (92.6%) Fail rs954779 0.18 Fail Fail Fail 79 (84%) rs879253 0.47 92 (97.9%) Fail Fail 87 (92.6%) 0.47 rs1156404 90 (95.7%) Fail Fail 86 (91.5%) rs1460239 90 (95.7%) 0.46 Fail Fail 86 (91.5%) 0.24 89 (94.7%) Fail rs1334334 Fail 87 (92.6%) HCV8879897 0.46 Fail Fail Fail Fail rs1713423 0.47 91 (96.8%) 86 (91.5%)* Fail 86 (91.5%)

method)

SNP	MAF	Genomic	GenomePlex	GenomiPhi	REPLI-g
rs1035089	0.42	Fail	Fail	Fail	Fail
rs794108	0.46	92 (97.9%)	Fail	81 (86.2%)	87 (92.6%)
rs1925643	0.30	Fail	89 (94.7%)	Fail	Fail
rs995178	0.41	92 (97.9%)	89 (94.7%)	80 (85.1%)	86 (91.5%)
rs1129167	0.31	92 (97.9%)	Fail	Fail	87 (92.6%)

Based on auto-called results; * Failed after checking clusters.

Appendix IX-E: Discordance rates of WGA-DNA on SNPlex (auto-call

SNP	МАБ	Genom	ePlex	Genor	niPhi	REP	LI-g
SNP	MAF	No. called	Discord.	No. called	Discord.	No. called	Discord
rs1419755	0.08	86	4 (4.7%)	Fa	il	Fa	il
rs354893	0.21	90	1 (1.1%)	Fa	il	85	3 (3.5%)
rs729673	0.34	Fai	il	78 1 (1.3%)		82	3 (3.7%)
rs751340	0.41	83	43 (52%)	Fa	il	86	4 (4.7%)
rs1323001	0.33	88	0 (0%)	78	0 (0%)	84	4 (4.8%)
rs1115261	0.44	Fai	il	Fa	il	86	2 (2.3%)
rs1507213	0.46	Fai	il	Fa	il	84	2 (2.4%)
rs1425151	0.24	Fai	il	78	0 (0%)	84	4 (4.8%)
rs2286216	0.22	89	78 (88%)	Fail		Fa	il
rs1016146	0.31	Fai	il	Fail		84	3 (3.6%)
rs1861606	0.29	Fai	il	Fail		83	2 (2.4%)
rs705681	0.48	Fai	il	Fail		Fail	
rs984071	0.33	Fai	il	Fail		82	5 (6.1%)
rs992690	0.16	Fai	il	Fa	il	85	2 (2.4%)
rs1520483	0.38	Fai	il	Fa	il	82	2 (2.4%)
rs1569125	0.32	Fai	il	Fail		Fail	
rs288423	0.34	Fai	il	78	2 (2.6%)	86	2 (2.3%)
rs961495	0.18	Fai	il	80	1 (1.3%)	85	1 (1.2%)
rs1388276	0.27	Fai	il	77	0 (0%)	85	3 (3.5%)
rs927221	0.12	85	27 (32%)	80	1 (1.3%)	86	5 (5.8%)
rs1378324	0.12	Fai	il	Fa	il	83	4 (4.8%)
rs893613	0.48	Fai	il	Fa	il	82	3 (3.7%)
rs879253	0.47	Fai	il	Fa	il	86	1 (1.2%)
rs1156404	0.47	Fai	il	Fail		83	3 (3.6%)
rs1460239	0.46	Fai	il	Fa	il	83	1 (1.2%)
rs1713423	0.47	85	62 (73%)	Fa	il	84	5 (6%)
rs794108	0.46	Fai	il	80	0 (0%)	86	3 (3.5%)
rs995178	0.41	89	2 (2.3%)	79	0 (0%)	85	4 (4.7%)
rs1129167	0.31	Fai	il	Fa	il	86	5 (5.8%)

genotypes)

N=94 (90 for GenomePlex): Discordance rate, the proportion of genotypes which were different where the sample had a genotype in both gDNA and the WGA method. Bold pass rates less than 90% or failed in only one method and discordance 2% or more.

C117		Genor	nePlex	Geno	miPhi	REP	'LI-g
SNP	MAF	Dropout	Miscall	Dropout	Miscall	Dropout	Miscall
rs1419755	0.08	0	4	Fa	ail	Fa	ail
rs354893	0.21	1	0	Fa	ail	1	2
rs729673	0.34	Fa	ail	1	0	3	0
rs751340	0.41	Fa	ail	Fa	ail	2	2
rs1323001	0.33	0	0	0	0	1	3
rs1115261	0.44	Fa	ail	Fa	ail	1	1
rs1507213	0.46	Fa	ail	Fa	ail	0	2
rs1425151	0.24	Fa	ail	0	0	1	3
rs2286216	0.22	0	0	Fa	ail	2	1
rs1016146	0.31	Fa	ail	Fa	ail	1	1
rs1861606	0.29	Fa	ail	Fa	ail	2	3
rs705681	0.48	Fa	ail	Fail		1	1
rs984071	0.33	Fa	Fail		ail	1	1
rs992690	0.16	Fa	ail	2	0	2	0
rs1520483	0.38	Fa	ail	1	0	1	0
rs1569125	0.32	Fa	ail	0	0	0	3
rs288423	0.34	0	0	1	0	2	3
rs961495	0.18	Fa	ail	Fa	ail	1	3
rs1388276	0.27	Fa	ail	Fa	ail	1	2
rs927221	0.12	Fa	ail	Fa	ail	1	0
rs1378324	0.12	Fa	ail	Fa	ail	1	2
rs893613	0.48	Fa	ail	Fa	ail	0	1
rs879253	0.47	Fa	ail	Fail		0	5
rs1156404	0.47	Fa	ail	0	0	0	3
rs1460239	0.46	1	1	0	0	0	4
rs1713423	0.47	Fa	ail	Fa	ail	0	5
Tota		2	5	5	0	25	51

method)

Discord: discordance rate, the proportion of genotypes which were the same where both gDNA (nonamplified genomic DNA) and WGA method had calls. Bold rates failed quality control of call rate >90%; discordance <2%. Average call rate of assays that passed.

Appendix IX-G: Call rates of polymorphisms genotyped on OpenArray

SNP	MAF	Genomic	GenomePlex	Genomi-Phi	REPLI-g
rs11209026	0.07	85 (91.4%)	85 (91.4%)	81 (87.1%)	78 (83.9%)
rs28665122	UK	81 (87.1%)	Fail	Fail	59 (63.4%)
rs6920220	0.18	90 (96.8%)	79 (84.9%)	Fail	72 (77.4%)
rs10499194	0.18	91 (97.8%)	76 (81.7%)	82 (88.2%)	75 (80.6%)
rs7517847	0.5	90 (96.8%)	80 (86%)	83 (89.2%)	76 (81.7%)
rs12722489	0.16	90 (96.8%)	88 (94.6%)	84 (90.3%)	79 (84.9%)
rs13119723	0.15	89 (95.7%)	Fail	82 (88.2%)	72 (77.4%)
rs6855911	0.31	91 (97.8%)	82 (88.2%)	84 (90.3%)	81 (87.1%)
rs2241880	0.46	89 (95.7%)	Fail	81 (87.1%)	71 (76.3%)
rs12150220	0.47	91 (97.8%)	Fail	84 (90.3%)	72 (77.4%)
rs2066845	0.02	84 (90.3%)	Fail	85 (91.4%)	Fail
rs1048990	0.12	91 (97.8%)	84 (90.3%)	86 (92.5%)	80 (86%)
rs1063857	0.34	91 (97.8%)	81 (87.1%)	83 (89.2%)	80 (86%)
rs216320	0.09	92 (98.9%)	87 (93.5%)	86 (92.5%)	80 (86%)
rs8177374	0.14	90 (96.8%)	Fail	85 (91.4%)	79 (84.9%)
rs2476601	0.14	92 (98.9%)	86 (92.5%)	80 (86%)	80 (86%)
rs6822844	0.2	92 (98.9%)	82 (88.2%)	86 (92.5%)	79 (84.9%)
rs3761847	0.48	91 (97.8%)	78 (83.9%)	77 (82.8%)	66 (71%)
rs2233406	0.27	89 (95.7%)	82 (88.2%)	82 (88.2%)	74 (79.6%)
rs3138053	0.26	91 (97.8%)	80 (86%)	86 (92.5%)	73 (78.5%)
rs1050152	0.46	92 (98.9%)	86 (92.5%)	86 (92.5%)	79 (84.9%)
rs3087243	0.46	88 (94.6%)	82 (88.2%)	82 (88.2%)	76 (81.7%)
rs6897932	0.24	90 (96.8%)	Fail	87 (93.5%)	81 (87.1%)
rs1990760	0.39	92 (98.9%)	85 (91.4%)	79 (84.9%)	76 (81.7%)
rs2076756	0.35	91 (97.8%)	80 (86%)	78 (83.9%)	77 (82.8%)
rs6502867	0.28	92 (98.9%)	80 (86%)	85 (91.4%)	78 (83.9%)
rs4965373	UK	92 (98.9%)	Fail	80 (86%)	74 (79.6%)
rs8025174	UK	90 (96.8%)	Fail	Fail	Fail
rs4790797	UK	89 (95.7%)	76 (81.7%)	72 (77.4%)	78 (83.9%)
rs41295061	UK	89 (95.7%)	85 (91.4%)	86 (92.5%)	79 (84.9%)
rs11597367	UK	89 (95.7%)	Fail	Fail	Fail
rs10487888	0.47	91 (97.8%)	81 (87.1%)	85 (91.4%)	79 (84.9%)

(by WGA method)

N=93; PEP amplified DNA failed for all the assays. UK is unknown

Appendix IX-H: Discordance rates of polymorphisms genotyped on

<u>openning (by the ori methody</u>										
A	Genom	ePlex	Genon	niPhi	RE	PLI-g				
Assay	No. called	Discord	No. called	Discord	No. called	Discord				
rs11209026	80	1 (1.3%)	76	1 (1.3%)	74	3 (4.1%)				
rs28665122	Fa	il	Fai	il	51	9 (17.7%)				
rs6920220	76	3 (4%)	Fai	il	69	7 (10.1%)				
rs10499194	76	2 (2.6%)	81	1 (1.2%)	74	4 (5.4%)				
rs7517847	79	4 (5.1%)	81	2 (2.5%)	74	7 (9.5%)				
rs12722489	86	3 (3.5%)	82	4 (4.9%)	78	6 (7.7%)				
rs13119723	Fa	il	79	1 (1.3%)	70	5 (7.1%)				
rs6855911	81 3 (3.7%)		83	4 (4.8%)	80	8 (10%)				
rs2241880	Fa	il	78	2 (2.6%)	70	5 (7.1%)				
rs12150220	Fa	il	83	2 (2.4%)	72	5 (6.9%)				
rs2066845	Fa	il	77	13 (17%)	F	ail				
rs1048990	83	1 (1.2%)	85	1 (1.2%)	79	4 (5.1%)				
rs1063857	80	1 (1.3%)	82	2 (2.4%)	79	4 (5.1%)				
rs216320	87	1 (1.2%)	86	1 (1.2%)	80	1 (1.3%)				
rs8177374	Fa	il	83	0 (0%)	77	4 (5.2%)				
rs2476601	Fa	il	80	1 (1.3%)	80	1 (1.3%)				
rs6822844	82	0 (0%)	86	1 (1.2%)	79	3 (3.8%)				
rs3761847	77	3 (3.9%)	76	3 (4%)	65	9 (14%)				
rs2233406	80	2 (2.5%)	79	2 (2.5%)	72	6 (8.3%)				
rs3138053	80	3 (3.8%)	85	1 (1.2%)	73	3 (4.1%)				
rs1050152	86	4 (4.7%)	86	1 (1.2%)	79	4 (5.1%)				
rs3087243	80	4 (5%)	79	3 (3.8%)	74	5 (6.8%)				
rs6897932	Fa	il	85	8 (9.4%)	79	9 (11%)				
rs1990760	85	3 (3.5%)	79	0 (0%)	76	6 (7.9%)				
rs2076756	80	3 (3.8%)	78	1 (1.3%)	76	4 (5.3%)				
rs6502867	80	2 (2.5%)	85	1 (1.2%)	78	2 (2.6%)				
rs4965373	Fa	il	80	4 (5%)	74	4 (5.4%)				
rs4790797	73	1 (1.4%)	69	2 (2.9%)	75	22 (29%)				
rs41295061	82	2 (2.4%)	83	2 (2.4%)	76	2 (2.6%)				
rs10487888	80	3 (3.8%)	84	2 (2.4%)	78	5 (6.4%)				

OpenArray (by WGA method)

rs8025174 and rs11597367 failed for all the WGA methods. Discord: discordance rate, the proportion of genotypes which were the same where both gDNA (non-amplified genomic DNA) and WGA method had calls. Bold rates failed quality control of call rate >90%; discordance <2%. Average call rate of assays that passed.

	Genon	nePlex	Geno	miPhi	REP	LI-g
Assay	Dropout	Miscall	Dropout	Miscall	Dropout	Miscall
rs11209026	0	1	0	1	2	1
rs28665122	Fa	uil	Fa	ail	8	1
rs6920220	1	3	Fa	ail	2	5
rs10499194	0	2	0	1	3	1
rs7517847	0	4	0	2	4	3
rs12722489	1	2	0	4	3	3
rs13119723	Fa	ul	0	1	2	3
rs6855911	2	1	0	4	5	5
rs2241880	Fa	ul	0	2	1	3
rs12150220	Fa	ul	0	2	3	1
rs2066845	Fa	ul	13	0	Fa	uil
rs1048990	0	1	0	1	3	1
rs1063857	0	1	1	1	1	4
rs216320	0	1	0	1	0	1
rs8177374	Fa	ul	0	0	2	2
rs2476601	Fa	ul	0	1	0	1
rs6822844	0	0	0	1	0	3
rs3761847	1	2	1	2	7	2
rs2233406	0	2	0	2	4	1
rs3138053	2	1	0	1	2	1
rs1050152	0	4	0	1	2	2
rs3087243	1	3	0	3	0	5
rs6897932	Fa	ul	0	8	4	5
rs1990760	2	1	0	0	5	1
rs2076756	0	3	0	1	2	2
rs6502867	1	1	0	1	1	1
rs4965373	Fa	ul	0	4	2	2
rs4790797	0	1	0	2	1	21
rs41295061	0	2	0	2	0	2
rs10487888	1	2	0	2	3	2
Total	12	38	15	51	72	85

Appendix IX-I: Types of discordances on OpenArray

Dropout- allele dropout

SNP	Geno	mic	Genon	nePlex	Genor	ni-Phi	REP	LI-g
SINP	Call rate	Discord	Call rate	Discord	Call rate	Discord	Call rate	Discord
rs11209026	10 (83.3%)	1 (10%)	11 (91.7%)	0 (0%)	10 (83.3%)	0 (0%)	10 (83.3%)	1 (10%)
rs28665122	10 (83.3%)	1 (10%)	Fail		Fail		Fa	ul
rs6920220	9 (75%)	0 (0%)	11 (91.7%)	0 (0%)	Fa	úl	10 (83.3%)	1 (10%)
rs10499194	12 (100%)	0 (0%)	Fa	il	11 (91.7%)	0 (0%)	11 (91.7%)	1 (9.1%)
rs7517847	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)	12 (100%)	1 (8.3%)	9 (75%)	1 (11.1%)
rs12722489	12 (100%)	0 (0%)	11 (91.7%)	0 (0%)	12 (100%)	0 (0%)	9 (75%)	1 (11.1%)
rs13119723	11 (91.7%)	0 (0%)	Fa	iil	12 (100%)	0 (0%)	8 (66.7%)	0 (0%)
rs6855911	12 (100%)	0 (0%)	11 (91.7%)	0 (0%)	11 (91.7%)	1 (9.1%)	11 (91.7%)	0 (0%)
rs2241880	9 (75%)	0 (0%)	Fa	il	10 (83.3%)	0 (0%)	7 (58.3%)	1 (14.3%)
rs12150220	11 (91.7%)	0 (0%)	Fa	iil	12 (100%)	0 (0%)	11 (91.7%)	2 (18.2%)
rs1048990	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)	12 (100%)	0 (0%)	10 (83.3%)	0 (0%)
rs1063857	12 (100%)	0 (0%)	12 (100%)	0 (0%)	12 (100%)	0 (0%)	11 (91.7%)	2 (18.2%)
rs216320	11 (91.7%)	0 (0%)	12 (100%)	0 (0%)	12 (100%)	0 (0%)	10 (83.3%)	0 (0%)
rs8177374	12 (100%)	0 (0%)	Fa	iil	12 (100%)	0 (0%)	9 (75%)	0 (0%)
rs2476601	12 (100%)	0 (0%)	11 (91.7%)	0 (0%)	10 (83.3%)	0 (0%)	10 (83.3%)	0 (0%)
rs6822844	12 (100%)	0 (0%)	9 (75%)	0 (0%)	12 (100%)	0 (0%)	10 (83.3%)	0 (0%)
rs3761847	11 (91.7%)	0 (0%)	10 (83.3%)	0 (0%)	9 (75%)	0 (0%)	8 (66.7%)	0 (0%)
rs2233406	12 (100%)	1 (8.3%)	12 (100%)	0 (0%)	11 (91.7%)	0 (0%)	9 (75%)	2 (22.2%)
rs3138053	10 (83.3%)	0 (0%)	Fa	il	12 (100%)	0 (0%)	Fa	uil
rs1050152	12 (100%)	0 (0%)	12 (100%)	0 (0%)	12 (100%)	0 (0%)	11 (91.7%)	0 (0%)

Appendix IX-J: Reproducibility of genotyping on OpenArray - comparison of duplicates

528

SNP	Genomic		GenomePlex		Genomi-Phi		REPLI-g	
	Call rate	Discord	Call rate	Discord	Call rate	Discord	Call rate	Discord
rs3087243	9 (75%)	0 (0%)	12 (100%)	0 (0%)	10 (83.3%)	0 (0%)	8 (66.7%)	0 (0%)
rs6897932	11 (91.7%)	1 (9.1%)	Fail		11 (91.7%)	0 (0%)	10 (83.3%)	1 (10%)
rs1990760	11 (91.7%)	0 (0%)	10 (83.3%)	0 (0%)	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)
rs2076756	11 (91.7%)	1 (9.1%)	10 (83.3%)	0 (0%)	9 (75%)	0 (0%)	Fail	
rs6502867	11 (91.7%)	0 (0%)	9 (75%)	0 (0%)	11 (91.7%)	0 (0%)	9 (75%)	1 (11.1%)
rs4965373	10 (83.3%)	0 (0%)	Fail		11 (91.7%)	0 (0%)	10 (83.3%)	1 (10%)
rs4790797	9 (75%)	0 (0%)	Fail		8 (66. 7%)	0 (0%)	9 (75%)	4 (44.4%)
rs41295061	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)	11 (91.7%)	0 (0%)
rs10487888	11 (91.7%)	0 (0%)	10 (83.3%)	0 (0%)	11 (91.7%)	0 (0%)	11 (91.7%)	1 (9.1%)
Average	90.8%	5 (1.6%)	206	0 (0%)	299 (90%)	2 (0.67)	253 (81.1%)	20 (8.03%)

Discord: discordance rate, the proportion of genotypes which were the same where both gDNA (non-amplified genomic DNA) and WGA method had calls. Bold rates failed quality control of call rate >90%; discordance <2%. Average call rate of assays that passed.

Appendix X-K: iPLEX gold vs Illumina genome-wide association data

	MAF	SEA	RCH	UKOPS		
SNP		Total no. of genotypes	Discord. (%)	Total no. of genotypes	Discord. (%)	
rs6788750	0.47	493	2 (0.4%)	469	17 (3.6%)	
rs7650365	0.48	811	4 (0.5%)	452	12 (2.7%)	
rs2280201	0.08	821	0 (0%)	471	7 (1.5%)	
rs2394644	0.13	823	1 (0.1%)	479	7 (1.5%)	
rs3181175	0.21	834	4 (0.5%)	Fail		
rs3783194	0.14	835	4 (0.5%)	486	6 (1.2%)	
rs3923086	0.39	818	3 (0.4%)	473	20 (4.2%)	
rs793477	0.12	817	7 (0.9%)	468	14 (3%)	
rs12494994	0.2	829	1 (0.1%)	Fail		
rs9860614	0.16	832	8 (1%)	489	7 (1.4%)	
rs10999147	0.08	835	2 (0.2%)	Fail		
rs3181328	0.06	820	1 (0.1%)	464	7 (1.5%)	
rs2282657	0.35	832	2 (0.2%)	489	13 (2.7%)	
rs7189819	0.33	815	1 (0.1%)	471	30 (6.4%)	
rs4541111	0.44	814	0 (0%)	460	20 (4.4%)	
rs4791171	0.3	828	1 (0.1%)	Fail		

(based on SEARCH and UKOPS cases only)

Discord- discordance; bold: discordance rate >2%