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We present a new measurement of the time-dependent CP-violating parameters in B — 7" 7~ decays
with 275 X 10® BB pairs collected with the Belle detector at the KEKB asymmetric-energy et e~ collider
operating at the Y(4S) resonance. We find 666 + 43 B — 77" 77~ events and measure the CP-violating

parameters: S, =

—0.67 = 0.16(stat) = 0.06(syst) and A ., = +0.56 = 0.12(stat) * 0.06(syst). We

find evidence for large direct CP violation with a significance greater than 4 standard deviations for
any S, value. Using isospin relations, we obtain 95.4% confidence intervals for the Cabibbo-Kobayashi-
Maskawa quark-mixing matrix angle ¢, of 0° < ¢, < 19° and 71° < ¢, < 180°.

DOI: 10.1103/PhysRevLett.95.101801

Kobayashi and Maskawa (KM) pointed out in 1973 that
CP violation can be incorporated as an irreducible com-
plex phase in the weak-interaction quark mixing matrix in
the standard model framework [1]. The KM model predicts
CP-violating asymmetries in the time-dependent rates of
neutral B meson decays to the CP eigenstate 77+ 7~ [2]. In
the decay chain of Y(45) — B°B" — (7" 7 )(f ,g), one of
the neutral B mesons decays into 77+ 77~ at time ¢, and the
other decays at time #,, to a final state f,, that distin-
guishes its flavor. The time-dependent decay rate is given
by

—lAdl/ 70
Pha(An) = —

4T BO

+ A .. cos(Am An}], (1)

[1+ ¢{S,,sin(Am A1)

where At = t,, — t,,, Tpo is the B® lifetime, Amy is the
mass difference between the two neutral B mass eigen-
states, and ¢ = +1 (—1) for f,, = B%(B"). We measure
S.»and A __, which are the mixing-induced and direct
CP-violating parameters, respectively. In the case where
only a b — u “tree” transition contributes to the decay
B’ — 77~ [3], we would have S, =sin2¢, and
A .. = 0. Because of possible contributions from b — d

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

“penguin”’ transitions that have different weak and strong
phases, S, may deviate from sin2¢,, and direct CP
violation, A . # 0, may occur. Our previous measure-
ment based on a 140 fb~! data sample indicated large S,
and A . values [4], while no significant CP asymmetry
was observed by the BABAR Collaboration [5]. It is there-
fore important to measure the CP-violating parameters
with larger statistics.

The measurement in this Letter is based on a 253 fb™~!
data sample containing 275 X 10° BB pairs collected with
the Belle detector at the KEKB e™ ¢~ asymmetric-energy
(3.5 on 8 GeV) collider [6] operating at the Y(4S) reso-
nance. The Y(45S) is produced with a Lorentz boost factor
of By = 0.425 along the z axis, which is antiparallel to the
positron beam direction. Since the two B mesons are
produced nearly at rest in the Y (4S) center-of-mass system
(CMS), the decay time difference At is determined from
the distance between the two B meson decay positions
along the z direction (Az): At = Az/cBy, where c is the
velocity of light.

The Belle detector [7] is a large-solid-angle magnetic
spectrometer that consists of a silicon vertex detector, a 50-
layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like ar-
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rangement of time-of-flight scintillation counters, and an
electromagnetic calorimeter comprised of CsI(TI) crystals
located inside a superconducting solenoid coil that pro-
vides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K mesons and
to identify muons. A sample containing 152 X 10° BB
pairs (Set I) was collected with a 2.0 cm radius beampipe
and a 3-layer silicon vertex detector, while a sample with
123 X 10° BB pairs (Set IT) was collected with a 1.5 cm
radius beampipe, a 4-layer silicon detector, and a small-
cell inner drift chamber [8].

We employ the identical analysis procedure as the pre-
vious publication [4]. We reconstruct B® — 7" 77~ candi-
dates using oppositely charged track pairs that are
positively identified as pions by combining information
from the ACC and the CDC dE/dx measurements. The
pion detection efficiency is 90%, and 11% of kaons are
misidentified as pions. We select B meson candidates using
the energy difference AE = Ej — Ej,,. and the beam-

beam

energy constrained mass My, = /(Ef.,..)* — (p})?, where

E;.. is the CMS beam-energy, and Ej and pj are the
CMS energy and momentum of the B candidate. We
define the signal region as 5.271 GeV/c? < My, <
5.287 GeV/c? and |AE| < 0.064 GeV, which corresponds
to £3 standard deviations (o) from the central values.

We identify the flavor of the accompanying B meson
from inclusive properties of particles that are not associ-
ated with the reconstructed B* — 7% 7~ decay. We use ¢
defined in Eq. (1) and r to represent the tagging informa-
tion. The parameter r is an event-by-event, Monte Carlo
(MC) determined flavor-tagging dilution factor that ranges
from r = 0 for no flavor discrimination to » = 1 for un-
ambiguous flavor assignment. It is used only to sort data
into six r intervals. The wrong tag fractions for the six r
intervals, w; (I = 1, 6), and the differences between B and
B decays, Aw,, are determined from data [9,10].

To suppress the continuum background (e*e™ — ¢g;
q = u,d, s, c), we apply the technique used in Ref. [4].
We form a likelihood function Lg) for the signal (back-
ground) based on event topology variables and impose
requirements on a likelihood ratio LR = Lg/(Lg + Lp)
to suppress continuum events. The LR requirement is
determined by optimizing the expected sensitivity using
MC signal events and events in the sideband region in
5.20 GeV/c* < My, <5.26 GeV/c?> or +0.1 GeV <
AE < +0.5 GeV. We accept events having LR > 0.86.
In order to include additional events with LR < 0.86, we
optimize LR separately for each of the r bins, as the r also
suppresses continuum events. We then determine the lower
LR thresholds of 0.50, 0.45, 0.45, 0.45, 0.45, and 0.20 for
the six r bins. There are thus 12 distinct bins of LR r for
selected events.

We extract 2820 signal candidates by applying the above
requirements and the vertex reconstruction algorithm used
in Ref. [10] to the data sample. Figure 1 shows the AE
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FIG. 1. AE distributions in the M, signal region for B —

7"~ candidates with (a) LR > 0.86 and (b) LR < 0.86.

distributions for the events with (a) LR > 0.86 and
(b) LR < 0.86 in the M, signal region. The B® — v+ 77~
signal yield is determined from an unbinned two-
dimensional maximum likelihood fit to the A E-M,,. distri-
bution in the range of M, >5.20 GeV/c*> and
—0.3 GeV < AE < +0.5 GeV with signal events plus
contributions from misidentified B® — K+~ events, the
continuum background, and three-body B decays. We use a
single Gaussian for the signal and B — K" 7~ events in
AFE and My.. The continuum background shapes in AE and
M, are described by a first-order polynomial and an
ARGUS function [11], respectively. For the three-body B
decay background shape, we employ a smoothed two-
dimensional histogram obtained from a large MC sample.
The fit to the subset with LR > 0.86 yields 415 = 277" 7~
events and 154 = 19K" 77~ events in the signal region,
where the errors are statistical only. The K* 7~ contami-
nation is consistent with the K — 7 misidentification
probability, which is measured independently. Extrapo-
lating from the size of the continuum background in this
fit, we expect 315 = 3 continuum events in the signal
region. We use MC-determined fractions as in [4] to cal-
culate the numbers of decays for LR < 0.86, since the fit to
the low LR events gives large statistical fluctuation because
of the poor signal-to-noise ratio. We expect 251 *=
1677w, 93+ 12KT#~, and 1592 =15 continuum
events in the signal region. The contribution from three-
body B decays is negligibly small in the signal region.
We determine S, and A ... by applying an unbinned
maximum likelihood fit to the distribution of proper-time
difference Ar. The probability density function (PDF) for
the signal events is given in Eq. (1) modified to incorporate
the effect of incorrect flavor assignment w; and Aw,. The
distribution is convolved with the proper-time interval
resolution function Rg;,(A?) in order to take into account
the finite position resolution [10,12]. The PDF for B —
K'm is PL_(At,w, Aw) = (1/47g0)e 1A/ —
gAw; + g(1 = 2w) A cos(AmyAr)]. We use A =
(Agr+A)/ A+ A, . A,), where Ag,. = —0.109 =
0.019 is the measured direct CP-violating parameter in
B® — K7~ decays [13], and A, is the difference in
the product of the pion efficiency and kaon misidentifica-
tion probability between 77" (K~) and 77 (K ) divided by
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their sum [14]. The inclusion of A, changes the A,
value by 11%. We make use of the same resolution func-
tion Ry,(A7) for the B — K" 7~ events. The PDF for

the continuum background events is P,;(Ar) = 1/2(1 +
g A DI/ 27,0)e V7 + (1= £)8(AD). where f, is
the fraction of the background with effective lifetime 7,5,
and & is the Dirac delta function. We use A ,; =0 as a
default. A fit to the sideband events yields A, =
+0.01 = 0.01(—0.00 *= 0.01) for the data in Set I (II).
This uncertainty in the background asymmetry is included
in the systematic error for the S, and A ... measurement.
The background PDF P is convolved with a background
resolution function R ;. All parameters in 2 ; and R ; are
determined from sideband events.

We define a likelihood value for each (ith) event as a
function of S, and A .:

Pi= (1~ fo) f T P A Wy AW S A )
+ f%ﬂ_?;](ﬂ.(At/, Wl, Awl)}Rsig(Ati - A[/)
+f;”q’qu(At’)qu(At,- — AY)]dAY + fu Py (AL).

()

Here, the probability functions f}'(k = 7, Kar, or qq)
are determined on an event-by-event basis as functions of
AE and My, for each LR-r bin (m = 1,12). A small
number of signal and background events that have large
values of Azis accommodated by the outlier PDF, P, with
a fractional area f). In the fit, S, and A .. are the only
free parameters and are determined by maximizing the
likelihood function £ = II,;P;, where the product is over
all the B — 7" 7~ candidates.

The unbinned maximum likelihood fit to the 2820 B® —
mt 7w~ candidates containing 666 = 4377t 7~ signal
events (1486 B tags and 1334 B° tags) yields S,, =
—0.67 = 0.16(stat) = 0.06(syst) and A, = +0.56 =
0.12(stat) * 0.06(syst). The correlation between S, and
A . 1s +0.09. In this Letter, we quote the usual fit errors
from the likelihood functions, called the MINOS errors, as
statistical uncertainties [15]. Figures 2(a) and 2(b) show
the At distributions for the 470 B- and 414 B-tagged
events in the subset of data with LR > 0.86. We define the
raw asymmetry A p in each Af bin by Acp = (N, —
N_)/(N. + N_), where N, _, is the number of observed
candidates with ¢ = +1 (—1). Figures 2(c) and 2(d) show
the raw asymmetries for two regions of the flavor-tagging
parameter r.

The main contributions to the systematic error are due to
the uncertainties in the vertex reconstruction (*=0.04 for
S and fgg? for A ) and event fraction (=0.02 for S,
and *£0.04 for A ,,); the latter includes the uncertainties
in A ; and final state radiation. We include the effect of
tag side interference [16] on S, (*=0.01) and A (7%

—0.04"
Other sources of systematic error are the uncertainties in

—— Total
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FIG. 2. At distributions for the 884 B® — 7" 7~ candidates
with LR > 0.86 in the signal region: (a) 470 candidates with g =
+1, (b) 414 candidates with ¢ = —1. Raw asymmetry, A cp, in
each At bin with (¢) 0<r =0.5 and (d) 0.5 <r = 1.0. The
solid lines show the results of the unbinned maximum likelihood
fit to the Ar distribution of the 2820 B® — 7" 7~ candidates.

the wrong tag fraction (=0.01 for S, and *0.01 for
A ), physics parameters (7g, Amy, and Ag,) (<0.01
for S, and £0.01 for A ), resolution function (+0.04
for S,, and =0.01 for A ), background At shape
(<0.01 for S, and <0.01 for A_,), and fit bias
(%0.01 for S,,, and *+0.01 for A ). We add each con-
tribution in quadrature to obtain the total systematic error.

We carry out a number of checks to validate our results.
The B lifetime is measured with B — 7 7~ candidates.
The result is 750 = 1.50 £ 0.07 ps, consistent with the
world average value [17]. The CP fit to the sideband events
yields no significant asymmetry. We check the measure-
ment of A _. using a time-integrated fit and obtain
A .= +052+0.14, consistent with the time-
dependent fit result. We also select B — K7~ candidate
events with charged tracks positively identified as kaons
that have a topology similar to the B — 77~ signal
events. The CP fit to the 4293 B® — K* 7~ candidates
(2207 signal events) yields Sk, = +0.09 = 0.08, consis-
tent with zero, and A, = —0.06 = 0.06, in agreement
with the world average value [13]. With the K* 77~ sample,
we determine Tz = 1.51 20.04 ps and Amy=
0.46 = 0.03 ps~!, which are also in agreement with the
world average values [17].

To determine the statistical significance of our measure-
ment, we apply the frequentist procedure described in
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FIG. 3. AE distributions in the My, signal region for the B® —
777~ candidates with LR >0.86 and 0.5<r=1.0 for

(@) g= +1and (b) g = —1.

Ref. [4] that takes into account both statistical and system-
atic errors. The hypothesis of CP symmetry conservation,
Son = A.»=0,isruled out at a confidence level (C.L.)
of 1 —C.L. =5.6 X 1078, equivalent to a 5.40 signifi-
cance for one-dimensional Gaussian errors. The case of
no direct CP violation, A ... = 0, is also ruled out with a
significance greater than 4.00 for any S, value.

Figure 3 shows the AE distributions for B® — 77+ 7~
candidates with LR>0.86 and 05<r=10 for
(@) g = +1 and (b) g = —1 subsets in the M. signal
region. An unbinned two-dimensional maximum likeli-
hood fit to the ¢ = +1 (¢ = —1) subset yields 107 =
13669 £ 1)7m 7™, 42+943+*9)K"7~, and 38 %
1(38 = 1) continuum events in the signal box. The
K*7~ and continuum background yields are consistent
between the two subsets as expected, while the ata
yields are appreciably different; direct CP violation in
B® — 7 7~ decays is visible in the contrast of the two
subsets. These results also support the expectation from
SU(3) symmetry that A . ~ —3 A, [18].

We constrain the ratio of the magnitude of the penguin to
tree amplitudes |P/T| and the strong phase difference 6§ =
0p — Or by adopting the notation of Ref. [19], where & p(7)
is the strong phase of the penguin (tree) amplitude. By
using ¢; = 23.5° £ 1.6° [13], we find 95.4% confidence
intervals of |P/T| > 0.17 and —180° < § < —4°.

To constrain ¢,, we employ isospin relations [20] and
the approach of Ref. [21] for the statistical treatment. We
use the measured branching ratios of B* — 7t 7~, 7979,
and BT — 7t 7%, and the direct CP asymmetry for B® —
7079 [13] as well as our measured values of S, and A .,
taking into account their correlation. Figure 4 shows the
obtained C.L. as a function of ¢,. We find an allowed
range for ¢, at 95.4% C.L. of 0° < ¢p, < 19° and 71° <
b, < 180°.

In summary, we have performed a new measurement of
the CP-violating parameters in B — 7" 77~ decays using
a 253 fb~! data sample. We obtain S,, = —0.67 =
0.16(stat) = 0.06(syst) and A ., = +0.56 = 0.12(stat) =
0.06(syst). We rule out the CP-conserving case, S, =
A .. =0, at the 5.40 level. We find compelling evidence

7 Belle

O N 4 L ! !
0O 30 60 90 120 150 180
¢, (degrees)

FIG. 4. Confidence level as a function of the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix angle ¢, obtained
with an isospin analysis using Belle measurements of S, and
A ... The dotted line indicates C.L. = 95.4%.

for direct CP asymmetry with 4.00 significance. The
results confirm the previous Belle measurement of the
CP-violating parameters as well as the earlier evidence
for direct CP violation in B — 777~ decays [4].
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