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ABSTRACT 
 

Acute inflammatory kidney diseases may resolve, leaving limited residual 

damage or progress to cause chronic renal scarring characterized by glomerulosclerosis 

and interstitial fibrosis. Understanding the mechanisms that control inflammation within 

the kidney may facilitate the development of treatment strategies to prevent irreversible 

kidney damage and slow progression of chronic kidney disease. Infiltration of 

mononuclear cells is recognized as an early event in many different conditions that may 

ultimately lead to kidney injury. Having extravasated from blood vessels at sites of 

injury, these multifunctional cells differentiate into tissue macrophages, which 

depending on their phenotype, have the potential to both promote resolution of 

inflammation or to cause scarring, making them an attractive target for therapy. Having 

left the glomerular capillary lumen, mononuclear cells are very likely to encounter the 

mesangial matrix. It was therefore hypothesized that interactions between monocytes 

and matrix components might modify the behavior of the infiltrating cells and thereby 

modify the outcome of the inflammatory process.  

The work presented in this thesis demonstrates that mesangial matrix activates 

monocytes leading to expression of peroxisome proliferators activated receptor γ and the 

CD36 scavenger receptor, both markers of macrophage differentiation. Since LDL 

accumulation in the mesangium may contribute to glomerular injury, the interaction 

between this lipoprotein and the matrix was also examined. These studies demonstrated 

that LDL becomes oxidized when exposed to matrix components, possibly due to loss of 

protective antioxidants. The presence of oxidized LDL has the potential to induce 
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mesangial cell chemokine production, which is likely to promote further monocyte 

influx into the glomerulus. Furthermore, matrix-activated monocytes internalized 

oxidized LDL via CD36 scavenger receptor, leading to foam cell formation, a 

recognized characteristic feature of glomerular injury. Foam cell formation may in turn 

amplify and perpetuate the disease process by driving further production of cytokines 

and growth factors.  

Finally, to establish that these observations were relevant to human glomerular 

disease, the presence of macrophages expressing PPAR-γ and the CD36 scavenger 

receptor in human kidney biopsy samples taken from patients with inflammatory 

glomerular disease was demonstrated, using sections from non-inflamed kidneys as 

controls. These observations imply that monocyte-matrix interactions are important in 

the context of glomerular disease and may represent a potential target for therapies 

designed to limit injury resulting from glomerular inflammation.  
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Glomeruli are susceptible to a variety of inflammatory, metabolic, haemodynamic, 

toxic and infectious insults which induce similar clinicopathologic presentations. 

Despite advances in understanding the factors that initiate glomerular injury, efforts to 

stop or slow the progression of established chronic renal disease have proved largely 

unsuccessful. The fact that multiple pathogenic mechanisms result in a similar 

histological endpoint suggests that the glomerulus has only a limited repertoire of 

responses to injury and that renal scarring can be considered to represent a secondary 

phenomenon rather than a specific disease process. Glomerulosclerosis is the final result 

of a number of interrelated events leading to permanent glomerular injury. Histological 

features of many chronic progressive renal diseases are evidenced by the accumulation 

of matrix, macrophages and cholesterol in sclerotic glomeruli. Several factors act 

independently or together to play a pivotal role in determining whether the final outcome 

of an acute inflammatory glomerular lesion leads to complete resolution or permanent 

scarring. The study of these factors may suggest new targets for therapeutic intervention. 

 

1.1. THE NORMAL GLOMERULUS 

 
Blood enters the glomerulus through the afferent arteriole, which branches into 

tiny clusters of looping blood vessels, which comprise the glomerular (“capillary”) tuft 

(which is actually a highly specialized section of an arteriole). As blood passes through 

the tuft, the plasma is filtered through fenestrations in the endothelial cells and the 

glomerular basement membrane (GBM), then through spaces between the podocyte foot 

processes (in the slit membrane) into Bowman’s space. The capillary endothelium, GBM 

and the slit membrane constitute the filtration barrier that collectively filters plasma 
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allowing passage of water, small solutes such as sodium, urea, and glucose, small 

proteins and small organic molecules. The filtered blood is then drained from the 

glomerular tuft through the efferent arteriole. The GBM is continuous throughout the 

glomerulus, surrounding each capillary loop and the ‘stalk’ region of the glomerular tuft. 

At the vascular pole, the GBM is continuous with Bowman’s capsule. Between the 

glomerular capillaries lie the mesangial cells and the mesangial matrix, which together 

provide structural support by surrounding the glomerular capillaries (Figure 1.1a and 

1.1b). Some mesangial cells are located outside the glomerulus, between the afferent and 

efferent arterioles and are known as Lacis or Goormaghtigh cells.  

 

Figure 1.1a. The Normal Glomerulus  

 

(Image courtesy of PB Works nephrology images) 
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Figure 1.1b. Schematic Diagram of a Single Capillary Tuft within Bowman’s 

Capsule 

 

 

 

Much of the original work describing the mesangium was concerned with the 

ultra-structural appearance of cross-sections of the glomerulus using electron and light 

microscopy. According to current understanding, the mesangium consists of mesangial 

cells and mesangial cell matrix, which are capable of various tasks Table 1.1. The 

interstitial areas of each lobule join at the glomerular stalk and are thereby in direct 

continuity with the renin-secreting juxtaglomerular apparatus. 

 

(Image courtesy of PB Works nephrology images) 
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Table 1.1. Functions of the Glomerular Mesangium 

The table below gives a summary of the various functions of the Mesangial cell and 

Mesangial cell matrix within the mesangium, as reviewed by Professor Detlef 

Schlondorff (Schlondorff 1996; Schlondorff and Banas 2009). 

 

Component of Mesangium Function 

Mesangial Cell 
• Production of Matrix. 

• Production of tissue inhibitor of metalloproteinases 

(TIMPs) and matrix metalloproteinases (MMPs) 

which control turnover of mesangial matrix. 

• Influence GFR by regulating blood flow through the 

glomerular capillaries or by altering capillary surface 

area.  

• Biological handling and clearance of 

macromolecules; advanced glycated end-products 

(AGE’s), immune complexes and lipids. 

• Exhibit phagocytic activity. 

• Production of vasoactive agents; angiotensin II (Ag 

II), nitric oxide (NO), prostaglandin E2 (PGE2) and 

inflammatory mediators. 

Mesangial Cell Matrix 
• Structural support. 

• May potentially trap LDL. 

• Has the capacity to oxidise LDL. 

• Interacts with mesangial cells and infiltrating cells 

via ligands. 

• Sequesters cytokines and growth factors. 
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1.2. GLOMERULAR MESANGIAL CELLS 

 

Mesangial cells are similar to vascular smooth muscle cells and are believed to 

have several functions in vivo. They contain large amounts of actin, myosin and 

tropomyosin indicative of a contractile function. The presence of receptors for the 

vasoactive peptide angiotensin II (AgII) support this role (Kreisberg 1983), which is 

important in the regulation of glomerular haemodynamics. When glomeruli are 

damaged, mesangial cells produce chemotactic factors such as monocyte chemotactic 

protein (MCP-1) (Cushing, Berliner et al. 1990), monocyte colony stimulating factor (m-

CSF) (Rajavashisth, Andalibi et al. 1990) and interleukin-1β (IL-1β) (Ku, Thomas et al. 

1992). Mesangial cells also secrete matrix, which creates the structural framework for 

the glomerular tuft as well as enzymes (and enzyme inhibitors) that maintain the balance 

between synthesis and degradation (Michael, Keane et al. 1980; Davies, Coles et al. 

1990; Sugiyama, Kashihara et al. 1998; Fogo 1999). Additionally the mesangial cell 

possesses phagocytic properties that contribute to the clearance and uptake of 

macromolecules from the glomerulus (Schreiner, Kiely et al. 1981; Davies 1994). Thus, 

inappropriate activation of mesangial cells may lead to excess matrix production, as well 

as release of chemotactic factors resulting in monocyte influx into the mesangium. 

Expansion of the mesangium, both due to the deposition of matrix proteins and 

an increase of mesangial cell numbers, is seen in kidney disease. Estimates of 

proliferation of mesangial cells in vivo suggest a low rate of about 1% per day (Pabst 

and Sterzel 1983; Davies 1994). Mesangial cell proliferation appears to play a role in the 

progression of glomerular pathology, particularly in the early stages. Matrix expansion is 
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generally preceded by mesangial cell proliferation in experimental models of 

glomerulonephritis. Persistent mesangial cell hyperplasia, caused by repeated injury, is 

believed to lead to irreversible scarring and eventual loss of glomerular function (Floege, 

Eng et al. 1993; Shimizu, Kawachi et al. 1999). The proliferation of mesangial cells is 

presumed to be a necessary physiological response required for the reconstitution of 

renal tissue.  

 

1.3. THE MESANGIAL CELL MATRIX 

 
The mesangial extracellular matrix fills the spaces between the mesangial cell 

and the perimesangial basement membrane, in addition a small amount of matrix may be 

found beneath the endothelium. In ultra-structural studies, this matrix has been 

characterized as a dense network of elastic microfibrils similar to the connective tissue 

of many other organs, and contains a network of intercellular channels that traffic 

macromolcules. In immunohistochemical studies, fibronectin is detected within the 

mesangium, along with laminin and type IV collagen, whilst type III collagen is found in 

the tubulointerstitium and type V collagen in the mesangial interstitium and the GBM 

(Oomura, Nakamura et al. 1989; Sugiyama, Kashihara et al. 1998). Fibronectin and 

Collagen type IV comprise the major protein components within the mesangial matrix, 

and were therefore the components studied in the experimental work described in this 

thesis. Minor components present in mesangial matrix include proteins such as laminin, 

vitronectin, entactin and proteoglycans. Fibronectin is the only component to be present 

exclusively within mesangial matrix and is specifically localized to areas immediately 
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surrounding mesangial cell processes. The other protein components mentioned are 

found distributed throughout the mesangial matrix, tubular basement membranes and 

Bowman's capsule (Madri, Roll et al. 1980). 

Fibronectin is closely associated with microfibrils, thus providing a link between 

mesangial cells and other matrix structures (Reale, Luciano et al. 1981; Brown, Andres 

et al. 1982; Cohen and Ku 1984). This microfibrillar network also appears to provide a 

solid base of contact between mesangial cells and the perimesangial GBM. Microfibrils 

are attached to sites in the mesangial cell membrane that serve to anchor intracellular 

actin filaments and penetrate the lamina densa to connect with the GBM. Not only does 

fibronectin serve to interconnect cells and matrix components, but also interconnects the 

microfibrils at their crossing points, so further stabilizing the entire matrix (Schwartz, 

Goldfischer et al. 1985). As a result of these interconnections, the microfibrillar network 

has sufficient three-dimensional tensile strength to balance distending forces acting in all 

directions. The importance of the mesangial matrix as a connecting structure between 

mesangial cells and the GBM is demonstrated by studies in which the failure of such 

connections produces miroaneurysms of the glomerular capillary tuft (Mosher 1984; 

Cohen, Saini et al. 1987; Proctor 1987; Yasuda, Kondo et al. 1996).  

Due to its nature, mesangial matrix has the potential to trap large molecules 

including lipoproteins such as LDL (Gupta, Rifici et al. 1992; Wheeler and Chana 

1993). The involvement of additional factors such as intra-renal hypertension, and 

inflammation are necessary for the induction and progression of lipid-induced renal 

dysfunction. Foam cells and lipid deposits are found in focal segmental sclerosis in 

human renal biopsies (Lee, Lee et al. 1991). Many of the features of progressive 
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glomerular and tubulo-interstitial diseases share biological mechanisms with those of 

atherosclerosis. 

This may be relevant in the pathogenesis of glomerular disease, particularly 

following an insult that has altered the glomerular filtration barrier permeability, 

allowing excess amounts of LDL to penetrate the mesangium. This process may 

potentially contribute to the formation of foam cells within the mesangium as explored 

later in the thesis. 

 

1.4. THE GLOMERULUS IN DISEASE 

 
 

Glomerular injury results from an initial pathogenic insult and may heal without 

consequences or lead to altered function of intrinsic glomerular cells and invasion of 

monocytes/macrophages from the circulation. Such changes result initially in mesangial 

cell proliferation, but if not resolved, continued cell proliferation leads to hyperplasia 

and the concomitant increase in matrix production to glomerulosclerosis. The term 

glomerulosclerosis is a non-specific finding on light microscopic examination that can 

be seen in any primary glomerular, tubulointerstitial, or vascular kidney disease.  

The process may initially involve only a small proportion of glomeruli (focal) 

and within these, only certain segments of the tuft (segmental). These localized lesions 

may progress to involve the whole glomerulus. The sclerotic areas consist of collapsed 

capillary loops obscured by an excess of mesangial matrix. 

A variety of early changes are recognized to precede glomerular obliteration. The 

basement membrane become thickened, is often detached from the overlying epithelial 
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cells and may be adherent to Bowman’s capsule. Epithelial cells are hypertrophied or 

absent at the sites of adhesions and electron microscopy reveals fusion of foot processes. 

Subendothelial eosinophilic deposits of hyaline material are found in both sclerotic and 

non-sclerotic areas of the glomerular tuft. Mesangial hypercellularity may result both 

from an increase in the number of contractile mesangial cells and from invasion of 

inflammatory macrophages. The mesangial area is also expanded by an excess 

deposition of mesangial cell matrix (Couchman, Beavan et al. 1994). 

Lipid deposition is seen within mesangial and epithelial cells both of sclerotic 

and non-sclerotic capillary loops but may also occur in interstitial regions (Chana, 

Wheeler et al. 2000). These histological changes correlate with the clinical 

manifestations of progressive glomerulosclerosis (Klahr, Schreiner et al. 1988; Magil 

and Frohlich 1991; Moorhead 1991). Proteinuria usually precedes a reduction in 

glomerular filtration rate and renal blood flow. Deterioration of renal function 

progresses and is frequently associated with the development of hypertension. Tubular 

atrophy leads to a reduction of the renal concentrating ability and impaired acid 

secretion.  

 

1.5. MESANGIAL CELL MATRIX IN GLOMERULAR DISEASE 

 
 

 The mesangial matrix is no longer seen as a static scaffold in which cells reside; 

but has been shown to be involved in cell proliferation, migration and cell-cell 

interactions. Turnover of the different extracellular matrix components is recognised as 

an active process with multiple levels of regulation (Sterzel, Schulze-Lohoff et al. 1992; 
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Yasuda, Kondo et al. 1996). Net deposition of matrix proteins, as seen in 

glomerulosclerosis, results from both quantitative and qualitative changes to mesangial 

matrix (Bruijn, Hogendoorn et al. 1988; Klahr, Schreiner et al. 1988; Olgemoller and 

Schleicher 1993; Harendza, Schneider et al. 1999). Changes in mesangial matrix may 

modify glomerular function by changing cell-cell interactions and by promoting 

infiltration and entrapment of macrophages.  

Matrix construction and remodelling involves three factors, matrix 

metalloproteinases (MMPs), plasmins that activate latent MMPs and tissue inhibitors of 

MMPs (TIMPs) (Raines 2000; Keeling and Herrera 2008). In inflammatory conditions, 

levels of growth factors such as TGF-β increase and can act to suppress the expression 

of matrix degrading plasminogen-activator inhibitor (PAI), and increase the activity of 

tissue inhibitors of metalloproteinases (TIMPs), thus favoring matrix accumulation. 

One consequence of mesangial matrix remodelling is that changes within this 

complex three-dimensional structure can reveal hidden sites previously unrecognizable 

to various adhesion receptors on the surface of cells coming into contact with the matrix. 

For example the RGD sequence of the fibronectin molecule is able to bind very late 

antigen (VLA)-5 present on the cell surface of monocytes (Pierschbacher and Ruoslahti 

1984; Hemler 1990). Also the CS-1 domain of fibronectin binds VLA-4 on monocytes 

by an RGD-independent mechanism (Wayner, Garcia-Pardo et al. 1989). Matrix 

remodelling, by exposing these sites, may promote monocyte adhesion to this matrix 

component.  
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1.6. THE MONOCYTE – MACROPHAGE LINEAGE 

 
Monocytes and macrophages comprise a family of phagocytic cells that are 

widely distributed throughout the body and are generally referred to as the mononuclear 

phagocyte system because of their common origin, similar morphology and common 

functions. Monocytes originate in the bone marrow, but become widely distributed in 

tissues where they mature into macrophages and take on specialist roles. Macrophages 

are well recognized for their ability to phagocytose, a property that enables them to 

eliminate pathogens and other foreign materials. However, these cells play a pivotal role 

in a variety of processes including inflammation, the induction and regulation of specific 

immune responses and tissue remodelling and repair. There are several basic properties 

of these cells that are relevant to their role in glomerular injury.  

Firstly, mononuclear phagocytes are highly mobile and have the capacity to 

adhere to various biological substrates, a function that facilitates their migration to sites 

of inflammation. Secondly, these cells secrete a range of soluble mediators that 

modulate functions of many other different types of cells. Thirdly, mononuclear 

phagocytes ingest and degrade various materials including senescent cells and tissue 

debris. Finally, mononuclear phagocytes can be activated by the external environment. 

Whilst mononuclear phagocytes play a critical role in host defense, these cells 

may also injure the host while exercising their defensive role. For example, monocytes 

have been shown to contribute to tissue damage by releasing proteolytic enzymes 

(Campbell, Silverman et al. 1989; Senior, Connolly et al. 1989), toxic oxygen 

metabolites (Carp and Janoff 1980; Campbell, Senior et al. 1982), pro-fibrotic cytokines 
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(Martinet, Rom et al. 1987; Shaw 1991) and other mediators (Tracey, Lowry et al. 

1986).  

Extravasation of monocytes from the vasculature into the mesangium involves 

directional migration of cells in response to chemoattractant factors. Since the 

mesangium forms the core of each tuft and is in direct contact with plasma constituents 

without an intervening membrane, monocytes directly encounter matrix during the 

migration stage. It is clear that regulated and reversible adherence of monocytes to 

extracellular matrix components is a prerequisite for the accumulation of these cells at 

sites of tissue inflammation (Snyderman and Goetzl 1981); however, little is known 

about the biological and pathological factors that regulate monocyte adherence to 

extracellular matrix and the resulting changes that occur to the monocyte.  

 

1.7. MONOCYTES 

 
Monocytes represent 3 to 8% of peripheral blood leukocytes. These mature cells 

measure 12 to 15 μM in diameter and posses a characteristic kidney-shaped nucleus. 

Their cytoplasm contains a well-developed Golgi apparatus, numerous lysosomal 

granules, microtubules and actin-containing filaments (which are cross-linked by actin-

binding protein and myosin). Monocytes are slowly motile, exhibit phagocytic activity 

and have a strong tendency to adhere and spread on glass surfaces (Lasser 1983). 

Monocytes give a positive reaction for non-specific esterases and contain peroxidase, 

acid phosphatase, lysozyme, aryl sulphatase and glucuronic acid (Yam, Li et al. 1971). 

Monocytes express HLA-DR antigens on their surface (McKinney, Boto et al. 1980; 
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Smith and Ault 1981) along with receptors for Fc component of IgG, complement C3 

(Huber, Polley et al. 1968; Schwartz, Bianco et al. 1975) and insulin (Schwartz, Bianco 

et al. 1975). 

 

1.8. MACROPHAGES 

 
Macrophages measure 20 to 80μM in diameter and contain a large vacuolated 

nucleus often with prominent nucleoli. Their cytoplasm contains a large well-developed 

Golgi apparatus, abundant rough endoplasmic reticulum and ribosomes, large 

mitochondria, microtubules, microfilaments and numerous lysosomes rich in hydrolytic 

enzymes.  

The transition from monocyte to macrophage is associated with increases in: 1) 

the number of lysosomes and mitochondria; 2) the activity of mitochondrial enzymes 

and the rate of cellular respiration; 3) phagocytic activity; 4) protein synthesis; 5) the 

capacity to interact with lymphocytes (Lasser 1983); 6) the expression of Scavenger 

receptor-A (Xu, Yu et al. 2006) and 7) the expression of Peroxisome proliferator-

activated receptor-gamma (PPAR-γ) (von Knethen and Brune 2003).  

Macrophages are also facultative anaerobes, with the exception of the pulmonary 

alveolar macrophage. They are highly motile and have marked phagocytic activity. In 

contrast to monocytes, macrophages have been shown to proliferate in response to 

certain stimuli in vitro (Diesselhoff-den Dulk, Crofton et al. 1979; Lasser 1983). As with 

monocytes, macrophages also express receptors for the Fc component of IgG, C3 

(Griffin, Spertini et al. 1990) and insulin (Bar, Kahn et al. 1977) however macrophages 
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also express receptors for IgE which is important in mediating host immunity to various 

parasites (Dessaint, Torpier et al. 1979; Melewicz and Spiegelberg 1980). Some 

macrophages express HLA-DR antigens and can function as antigen presenting cells for 

lymphocytes. The expression of HLA-DR antigen varies with the type of macrophage; 

only 15% of peritoneal macrophages express HLA-DR antigen compared with 50% of 

spleen and thymus macrophages (Cowing, Schwartz et al. 1978; Beller and Unanue 

1980). 

Macrophages are widely distributed throughout the body, but are particularly 

prominent in the spleen, lymph nodes, liver (Kupffer Cells), peritoneum, skin 

(Langerhans cells) and pulmonary alveoli. Macrophages resident in different tissues 

have widely differing morphological and functional properties. It has been postulated 

that the profile of local stimuli, to which macrophages are exposed in a particular tissue, 

influences their maturation and thereby accounts for their diversity of form and function 

(Cline, Lehrer et al. 1978).  

 
 
1.8.1. Macrophage Heterogeneity 

 
Local factors are important in determining the phenotype adopted by the 

recruited monocyte. The resultant tissue macrophages can be broadly divided into two 

groups; ‘resident macrophages’ and ‘inflammatory macrophages’(Gordon 2003).  

Tissue macrophages are heterogeneous and those isolated from different 

anatomical sites differ in function, presumably because of adaptive responses to the local 

microenvironment. Inflammatory macrophages are derived largely from circulating 
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monocytes which infiltrate damaged tissue; some also arise by local cell division. 

Different macrophage activation states have been recognized and result from exposure to 

specific stimuli that initiate differentiation into A) classically or B) alternatively 

activated macrophages (see table 1.2). 

Classically activated macrophages exhibit a Th1-like phenotype, promoting 

inflammation, extracellular matrix destruction, and apoptosis, while alternatively 

activated macrophages display a Th2-like phenotype, promoting extracellular matrix 

construction, cell proliferation, and angiogenesis (Erwig and Rees 1999; Duffield 2003). 

Although both phenotypes are important for clearance of pathogens and apoptotic cells, 

the classically activated macrophage tends to elicit chronic inflammation and tissue 

injury whereas the alternatively activated macrophage tends to resolve inflammation and 

facilitate wound healing. 
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Table 1.2. Stimuli for classically and alternatively activated macrophages. 

The table below summarises the various stimuli giving rise to a particular macrophage 

activation status as reviewed by Dr. Jeremy Duffield, a prominent author within the field 

inflammation research (Duffield 2003). 

 

Macrophage Activation Status Stimulus 

 

Classical Activation 

Pro-inflammatory cytokines 

Abnormal matrix 

Hypoxia 

Bacterial DNA 

 

Alternative Activation 

IL-4 

IL-10 

IL-13 

TGF-β 

 

As a result of their opposing phenotypic states, macrophages play a central role 

in innate protection both through the clearance of infective pathogens and through the 

repair of tissue injury that occurs, in part, as a consequence of this response. For 

example, the initial response of infiltrating monocytes to bacterial infection results in 

macrophage differentiation favoring a classically activated phenotype and so is cytotoxic 

and proinflammatory; then, once the infection is under control, macrophages 

phagocytose cellular debris and apoptotic bodies and begin tissue repair (Duffield 2003; 

Erwig, Kluth et al. 2003).  
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1.9. MONOCYTES/MACROPHAGES IN GLOMERULAR INJURY 

 
In the normal kidney there are small numbers of interstitial leukocytes thought to 

perform an immune surveillance function. These are predominantly monocytes. Only a 

small fraction of leukocytes in the normal kidney comprise B cells, T cells, natural killer 

cells, and neutrophils. 

In an acutely inflamed glomerulus, the predominant leukocyte is the macrophage. 

In human glomerular disease, macrophage numbers correlate with the extent of 

histological damage at the time of biopsy and predict renal outcome in certain disease 

settings (Ootaka, Saito et al. 1997). Macrophages expressing activation and proliferation 

markers have been identified in more aggressive forms of human and experimental 

glomerulonephritis and correlate with disease severity (Kerr, Nikolic-Paterson et al. 

1994; Lan, Nikolic-Paterson et al. 1995; Yang, Isbel et al. 1998). Strategies that limit 

disease progression in this setting include (A) the systemic depletion of macrophages; 

(B) Inhibition of pro-inflammatory cytokines that both activate and are produced by 

activated macrophages; and (C) the blocking of factors that promote the recruitment of 

macrophages to tissue sites (e.g; blockade of cytokines and adhesion molecules). 

   

1.9.1. The Potential For Monocyte-Matrix Interactions To Influence Glomerular 

Injury 

  

The mesangial matrix has the potential to play a key role in monocyte 

differentiation (Sugiyama, Kashihara et al. 1998; Jacob, Shastry et al. 2002). There are 
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two main mechanisms by which matrix can influence cell behavior. Firstly matrix 

harbours growth factors and growth factor binding proteins (Ignotz, Heino et al. 1989; 

Lee and Streuli 1999). These factors are passively sequestering but may be actively 

released by remodelling enzymes such as the MMPs and may thereby influence the 

behaviour of cells that are exposed to matrix components.  Secondly, matrix can directly 

regulate cells via receptor-mediated signalling (Schoecklmann, Rupprecht et al. 1996; 

Gauer, Yao et al. 1997; Hamerski and Santoro 1999). Since monocytes enter the 

mesangium through the fenestrated endothelium, they are unlikely to have undergone 

endothelial activation and therefore may encounter mesangial matrix in an inactivated 

state. The first activation signals that these cells encounter may therefore take the form 

of receptor-mediated signalling by matrix components. This monocyte-matrix 

interaction may play a key role in influencing monocyte behaviour within the 

glomerulus and the resulting macrophage phenotype is likely to be highly dependant on 

the local microenvironment within the glomerulus. For example, in a disease situation, 

matrix remodelling may be disrupted, leading to qualitative and quantitative changes in 

matrix composition which in turn may influence the sequestration of growth factors. A 

change in the composition of matrix components may potentially trigger different signal 

transduction cascades which, in turn, may influence monocyte behavior. (Wesley, Meng 

et al. 1998; Ingram, Ly et al. 1999; Urushihara, Takamatsu et al. 2010). Furthermore, 

subtle changes in the matrix composition resulting from enzymatic digestion may release 

bioactive matrix fragments or expose sequestered growth factors. 

As an example, fibronectin, one of the major matrix proteins, binds to very late 

antigen (VLA)-5 integrin subunits on the surface of monocytes. Binding of fibronectin 
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to this receptor depends on its conformation. Since fibronectin production is increased in 

diseased mesangial matrix, it is conceivable that an excess of this matrix component or 

conformational changes might influence these signalling pathways and thereby modulate 

monocyte activation and behaviour. The same may be true of collagen type IV, another 

matrix protein that is increased in diseased mesangial cell matrix. The RGD sequence of 

the fibronectin molecule binds VLA-5 present on the cell surface of monocytes thus 

signalling to the cell (Pierschbacher and Ruoslahti 1984; Hemler 1990). Likewise the 

CS-1 domain of fibronectin binds VLA-4 on monocytes by an RGD-independent 

mechanism (Wayner, Garcia-Pardo et al. 1989).  

 

1.10. LIPIDS IN GLOMERULAR INJURY 

 

The pathological effects of lipoprotein in progressive kidney disease may be 

similar to those in atherosclerosis. In recent years, an improved understanding of 

atherosclerosis has illuminated the pathology of glomerulosclerosis and supported the 

concept of lipoproteins as mediators of renal disease (Moorhead, Brunton et al. 1997). 

The possible role of lipoproteins in progressive renal disease may be understood in the 

more familiar context of atherosclerosis.  

Atherosclerosis results from a complex sequence of events in which normal 

cycling of LDL through the vascular endothelium is altered, leading to trapping of LDL. 

In addition, monocytes are recruited from the blood, smooth muscle cells proliferate and 

fibrous tissue is deposited. Trapped LDL may become oxidized, partly as a result of pro-

oxidant factors produced by monocytes (Parthasarathy, Printz et al. 1986; Quinn, 
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Parthasarathy et al. 1987; Boullier, Bird et al. 2001). The similarity between 

atherosclerosis and glomerulosclerosis is based on the assumption that the glomerulus 

posses cell types which are known to respond to lipoprotein injury, namely monocytes, 

or which resemble smooth muscle, namely the mesangial cell. Thus the mechanisms 

involved in atherosclerosis may also apply to glomerulosclerosis.  

Oxidised LDL (Ox-LDL) has been demonstrated to be more cytotoxic when 

compared with unmodified native LDL (Fernando, Varghese et al. 1993). Ox-LDL has 

also been proven to be important in lesion progression in atherosclerosis since uptake by 

macrophages via scavenger receptors causes the generation of foam cells. A similar 

mechanism may play an important role in lipid-mediated glomerulosclerosis. Ox-LDL 

has also been shown to stimulate monocyte influx (Pai, Kirschenbaum et al. 1995) by 

inducing mesangial cells to release chemotactic cytokines.  

Another prominent feature of lipid-induced glomerular injury is the accumulation 

of mesangial cell matrix. Studies in vitro indicate that lipid-activated mesangial cells 

produce excess matrix (Schlondorff 1993; Wheeler and Chana 1993; Lee 1999) as has 

been described in the atheromatous artery (Ross 1984). Lee et al has demonstrated that 

LDL stimulates mesangial cells through the induction of the phosphokinase C (PKC) 

pathway to synthesize TGF-β, which favours matrix production (Lee 1999). Chana et al 

reported that LDL also selectively enhances the synthesis of specific proteoglycans and 

hyaluronan in mesangial cells (Chana, Wheeler et al. 2000). The incubation of mesangial 

cells with native LDL (25-100 μg/ml) increased the synthesis and secretion of both 

fibronectin and laminin in a dose-dependant manner. Similarly, oxidized forms of LDL 
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(25-100 μg/ml) increased fibronectin and laminin and had a greater effect than native 

LDL (Roh, Kamanna et al. 1998).  

Therefore, lipoproteins and modified lipoproteins may get trapped in the 

mesangial matrix, become oxidized and get taken up by infiltrating 

monocyte/macrophages which form foam cells. 

 

1.11. MACROPHAGE DEACTIVATION AS A TARGET FOR THERAPY 

 

The exact mechanism of macrophage activation and accumulation within the glomerulus 

is largely unknown, although there is a considerable amount of experimental evidence 

implicating adhesion molecules as being relevant in the setting of glomerulosclerosis. 

Many of the interactions between adhesion molecules and infiltrating macrophages have 

been successfully blocked and could serve as targets for therapeutic interventions (Adler 

and Brady 1999; Allen, McHale et al. 1999; Chana and Wheeler 1999; Cook, Khan et al. 

2002). For example, the beta-1 integrin, α4β1, also known as very late antigen 4 (VLA-

4), is present on macrophages and binds to VCAM-1, which has been shown to be up-

regulated in the glomerular endothelium in experimental glomerulonephritis. Blocking 

using anti-α4 antibodies can prevent experimental crescentic glomerulonephritis as 

demonstrated by Allen et al (Allen, McHale et al. 1999) and has been shown to halt 

progression of established disease (Khan, Allen et al. 2003), making it a very attractive 

candidate for therapy. The humanized version of this anti-α4 monoclonal antibody 

known as Natalizumab has been used successfully in multicenter double-blind controlled 

studies in Crohn's disease and multiple sclerosis (Ghosh, Goldin et al. 2003; Miller, 
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Khan et al. 2003; Miller, Soon et al. 2007; Targan, Feagan et al. 2007). Despite its initial 

approval Natalizumab was withdrawn from the market by its manufacturer after it was 

linked with three cases of the rare neurological condition progressive multifocal 

leukoencephalopathy (PML) when administered in combination with interferon β-1a, 

another immunosuppressive drug often used in the treatment of multiple sclerosis (Tyler 

and Khalili 2005; Ransohoff 2007). After a review of safety information and no further 

deaths, the drug was returned to the US market in 2006 under a special prescription 

program. As of June 2009, ten cases of PML were known. However, twenty-four cases 

of PML had been reported since its reintroduction by October 2009, showing a sharp rise 

in the number of fatalities and prompting a review of the chemical for human use. By 

January 2010, 31 cases of PML were attributed to natalizumab, however it was not 

withdrawn from the market because its clinical benefits outweighed the risks involved 

(Ransohoff 2010; Steiner 2010). 

The beta-2 integrins include CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-

1/Complement receptor 3). A humanized monoclonal antibody to CD18 known as 

Efalizumab, which blocks CD11a/CD18 and CD11b/CD18 has been reported to reduce 

infiltrating leukocytes and improve vasculitic ulcers in four of five patients with 

systemic vasculitis (Lockwood, Elliott et al. 1999). Despite these beneficial effects 

Efalizumab was withdrawn from the market ten years later as it was associated in some 

cases with fatal brain infections (Major 2010). 
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1.12. AIMS OF THIS WORK 

 
Monocyte/macrophage accumulation within the glomerular mesangium is a 

recognized feature of glomerular injury in man. Although the mechanisms of 

macrophage trafficking and activation within the glomerulus are not properly 

understood, it is generally assumed that these cells are derived from circulating 

monocytes that migrate from the glomerular capillary lumen. During this process the 

monocyte encounters many extracellular signals that promote differentiation to a 

macrophage and other cellular responses. Recent studies suggest that such interactions 

may program macrophages, thereby potentially modifying their behavior in the setting 

of acute or chronic glomerular disease (Erwig, Kluth et al. 1998; Min, Lyons et al. 

2009).  

To begin to address the pathobiological importance of alterations in monocyte 

phenotype following interaction with matrix components, there is the need to firstly 

identify the nature of the interaction taking place and the resulting changes in monocyte 

phenotype. A representative matrix component (fibronectin) was used to conduct 

blocking studies to examine the extent to which binding to matrix modifies the secretory 

behavior of monocytes. 

Secondly to address the extent of monocyte differentiation into macrophages 

upon exposure to matrix, three macrophage specific markers were studied: a) the 

peroxisomal proliferator-activated receptor-γ (PPAR−γ), a nuclear receptor that acts as a 

transcriptional mediator for genes involved in lipid metabolism and adipogenesis 
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((Moore, Rosen et al. 2001), b) CD36, a class B scavenger receptor and c) Scavenger 

receptor class-A.  

Finally since LDL accumulation in the mesangium may contribute to glomerular 

injury, the interaction between this lipoprotein and the mesangial matrix was examined.  
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2.1. HUMAN MESANGIAL CELL CULTURE 

 

Techniques used for the isolation and maintenance of mesangial cells in vitro 

have been refined since these cells were first cultured in vitro in the late 1970’s. The two 

methods for mesangial cell culture used are enzymatic isolation (Striker and Striker 

1985) and explantation (Kreisberg and Karnovsky 1983; Striker, Lange et al. 1987). The 

starting material used for both methods is glomeruli isolated by differential sieving 

techniques. 

Enzymatic isolation uses collagenases to partially digest away the glomeruli, thus 

exposing the glomerular ‘cores’ comprising capillary loops and mesangium depleted of 

endothelial cells and the majority of epithelial cells. These cores are then explanted in to 

plastic cell culture flasks, and give rise to a heterogeneous outgrowth of cells within 2-4 

days.  

The choice of a culture medium with a high serum concentration (10-20%) 

promotes growth of mesangial cells rather than endothelial or glomerular epithelial cells, 

which require lower serum concentrations. The fact that mesangial cells attach more 

readily to plastic than endothelial and epithelial cells also aids in their purification. Thus 

within 2-3 passages, homogenous mesangial cell cultures are obtained. 

The alternative method of mesangial cell isolation (the explantation method), 

involves plating of undigested glomeruli into plastic flasks and use of high 

concentrations of foetal calf serum (FCS). Due to the different growth rates of intrinsic 

glomerular cell, the timing of subculture is used to select the cell type of interest. Both 

the enzymatic isolation and explantation methods provide reproducible and reliable 
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mesangial cell cultures, although cells have to be subcultured several times before 

sufficient numbers can be obtained for use in experiments. These cells retain many of 

the morphological and functional characteristics of mesangial cells in vivo (Lee 1995). 

 

2.1.1. Materials 

 

1) RPMI 1640 (Gibco BRL, Paisley, UK) 

2) Foetal calf serum (Gibco BRL, Paisley, UK) 

3) Glutamine (Sigma, Dorset, UK) 

4) Penicillin (Sigma, Dorset, UK) 

5) Streptomycin (Sigma, Dorset, UK) 

6) ITS (insulin-human transferrin-sodium selenite) (Sigma, Dorset, UK) 

7) Trypsin, ethylene diamine tetra acetic acid (EDTA) (0.025% and 0.01% respectively) 

8) 75 cm2 and 25 cm2 conical flasks (Falcon, UK) 

9) Sterile stainless steel sieves with the following mesh sizes: 425μm, 180μm and 

125μm. 

10) Glass syringe plunger (20ml) 

11) Collagenase (Type 1A) (Sigma, Dorset, UK) 
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2.1.2. Method for Human Mesangial Cell (HMC) culture 

 

 Human cadaver kidneys that could not be used for transplantation for technical 

reasons were used as a source of cultured cells with permission from the United 

Kingdom Transplant Sharing Scheme (UKTS). Under sterile conditions, the capsule was 

removed and the cortex excised from the underlying medulla. Cortical fragments were 

minced to a pulp and pushed through a 425μm mesh stainless steel sieve using a plastic 

syringe (20ml) plunger. The material on the underside of the sieve was washed through a 

180μm sieve and the glomeruli retained on the top surface of a third sieve with a mesh 

diameter of 125μm (Figure 2.1).  

 

Figure 2.1. Separation of Human Glomeruli by Differential Sieving 

 

 
 

These glomeruli were collected by aspiration, pelleted by centrifugation at 

1000g, placed in collagenase (type 1A) solution (400-600 units/ml) and digested for 20 

minutes at 37oC. The digestion was arrested by adding medium containing 20% FCS, the 
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glomeruli were harvested by centrifugation and plated on 25cm2 or 75cm2 Falcon tissue 

culture flasks depending upon the number of glomeruli obtained. 

 

2.1.3. Media and growth condition 

 

Growth medium consisted of 80% RPMI-1640 (Gibco BRL, Paisley, UK) and 

20% FCS (Life Technologies, Paisley, UK), supplemented with insulin (5μg/ml) human 

transferrin (5μg/ml), and sodium selenite (5ng/ml) (Insulin-Transferrin-Sodium selenite 

media supplement, Sigma). Benzyl penicillin (100 units/ml), and Streptomycin sulphate 

(50 μg/ml) were added to minimise the risks of infection. 

 

2.1.4. Passaging cells 

 

Primary cultures were left undisturbed for 9 days after which time the growth 

medium was changed. Glomeruli attached to the plastic within 3-4 days and after an 

initial outgrowth of epithelial cells (day 7-14), human mesangial cells began to 

predominate and outgrew the epithelial cells within 3 weeks of plating (Fernando, 

Varghese et al. 1993). Cells were subcultured when they reached confluence. Growth 

medium was removed and cells washed with PBS. Trypsin and ethylene diamine tetra 

acetic acid (EDTA), (0.025% and 0.01% respectively dissolved in sterile PBS, Life 

Technologies) was then added and the cells incubated for 3-5 minutes at 37oC. Cell 

detachment was assessed by phase-contrast microscopy and enhanced by vigorous 
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agitation. The enzymatic action of trypsin was arrested by adding growth medium; next 

the detached cells were pelleted by centrifugation at 1000g for 10 minutes. The cell 

pellet was then re-suspended in fresh growth medium. The cells detached from one 

25cm2 flask were placed in two new flasks of the same size at a plating density of 1-5 x 

106 cells/ml. Medium was changed every 3-4 days and subsequent passages carried out 

at 7-14 day intervals when confluence was reached. Mesangial cells from passages 2-10 

were used in characterisation studies and for the experiments described in the following 

chapters.  

 

2.2. MESANGIAL CELL MATRIX ISOLATION 

 

Mesangial cells were grown to approximately 90% confluence, washed 3 times 

with RPMI medium then growth arrested in serum-free RPMI medium for 48 hours. The 

cell layer was removed by addition of 2.5 mM NH4OH and 0.1% Triton X-100 for 3 

minutes, leaving behind cell matrix (Weiss and Regiani 1984). This matrix layer was 

then washed 3 times with PBS before commencing adhesion experiments. 

For experiments requiring solubilised matrix, the isolated matrix layer described 

above was collected by mechanical scraping and sonicated for 30 seconds using an 

ultrasonic probe to apply ultrasound energy.  

Protein concentration of matrix was carried out using a modified Lowry method 

(Lowry OH 1951), the matrix was then re-suspended in RPMI medium at concentrations 

of 10, 50, 100 and 500 μg/ml. Matrix was isolated from mesangial cells derived from 4 

different glomerular preparations and used on the day of isolation. The matrix contained 
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very low concentrations of TGF-β (<0.05 pg/μg), and virtually undetectable amounts of 

TNF-α (<0.02 pg/μg), IL-1β (<0.003 pg/μg) and IL-6 (<0.003 pg/μg) as measured by 

enzyme-linked immunosorbent assay (Felisaz, Boumediene et al.) (R&D Systems, 

Abingdon, Oxon, UK) according to the manufacturer’s instructions. Individual matrix 

proteins; collagen type IV, fibronectin and laminin were sourced from Sigma (Sigma 

Chemical Co, Poole, Dorset, UK). All reagents and materials including matrix and 

buffers were tested for endotoxin contamination using a Limulus amebocyte lysate test 

kit (Sigma) and proved negative  

 

2.3. IMMUNOHISTOCHEMICAL LABELLING 

 

These studies were designed to confirm that matrix preparations were free of mesangial 

cells and contained fibronectin. Human mesangial cells were grown on glass cover slips, 

then removed from the underlying matrix as described in section 2.2. The remaining 

matrix was then fixed with 100% ethanol and exposed to a mouse monoclonal anti-

human fibronectin antibody for 30 minutes at room temperature. Cells and matrix were 

then exposed to a bridging rabbit anti-mouse antibody for one hour, followed by an 

alkaline phosphatase-conjugated mouse anti-alkaline phosphatase complex. After 

rinsing, the coverslips were developed using fast red for 5 mins and counter-stained for 

nuclei with Mayer’s acid alum haematoxylin. 
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2.4. FIBRONECTIN ASSAY 

 

The synthesis of fibronectin by mesangial cells was measured by ELISA 

(Burton, Combe et al. 1996). After washing, the cell layer was solubilized overnight in 

wash buffer (0.3M NaCl, 0.1% Triton X-100 in PBS) containing 1% P40.  

The standards and appropriately diluted cell layer extracts were then incubated 

overnight in wells that had been pre-coated with a rabbit polyclonal anti-human 

fibronectin antibody (1:1000, Sigma). This was followed by the addition of a mouse 

monoclonal anti-human fibronectin (1:500, Sigma) and a horseradish peroxidase-

conjugated anti-mouse antibody (1:1000, Dako) for 2 hours each.  

Plates were then developed using a phenylenediamine substrate. After the color 

had appeared, the reaction was stopped by adding 1M sulphuric acid and the absorbance 

recorded at 492 nm. All fibronectin concentrations were measured as ng/ml and then 

expressed as % of control (growth arrested cells). 

 

2.5. CULTURE OF HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS 

 

2.5.1. Materials 

1) RPMI 1640 with L-glutamine containing 25mm HEPES 

2) 10% FCS (fibronectin free) 

3) 1% L-glutamine (200mM) 

4) 1% Penicillin-streptomycin solution (10,000 units and 10,000 μg/ml respectively) 

5) Ficoll-Hypaque (Pharmacia Biotech AB, Uppsala, Sweden 
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6) 0.15 mmol/L sterile NaCl solution 

7) 5 mmol/L sterile EDTA 

 

2.5.2. Methods of peripheral human blood mononuclear cell culture 

 

Peripheral blood was collected into lithium-heparin tubes and diluted with an 

equal volume of sterile 0.15 mol/L NaCl solution. The diluted blood (30ml) was layered 

over ficoll-Hypaque (Pharmacia Biotech AB, Uppsala, Sweden) (15ml) and centrifuged 

at 900 g for 30 min at room temperature. The mononuclear cells were harvested and 

washed twice with 20 ml of sterile 0.15 mol/L NaCl solution. The cells were re-

suspended at 2 x 106 cells/ml in supplemented RPMI 1640 medium, containing 10% 

fibronectin free foetal calf serum, L-glutamine and penicillin-streptomycin. An adherent 

step was then performed to separate the monocytes, which are the adherent cells, from 

the lymphocytes which are the non-adherent cells (Ackerman and Douglas 1978). This 

involved plating aliquots (1 ml) of the mononuclear suspension into 35 x 10 mm tissue 

culture dishes. The dishes were incubated at 37oC for 2 hours in a humidified incubator 

at 37oC, 5% CO2. Non-adherent cells were removed by washing four times with 2 ml of 

sterile 0.15 mol/L NaCl solution. The adherent cells were then detached by incubating 

the dishes with sterile 0.15 mol/L NaCl solution containing 5 mmol/L EDTA for 45 min 

at 4oC whilst gently agitating. The dishes were again washed three times with 2 ml 

sterile 0.15 mol/L NaCl solution. The suspension of previously adherent cells was 

centrifuged (600 g for 5 min at 4oC) and the supernatant was discarded.  
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The cells were re-suspended in 2 ml of RPMI medium, counted three times using 

a haemocytometer and the mean value was determined. Cell viability was shown to be 

between 90 and 95% when assessed by cellular exclusion of trypan blue under phase-

contrast microscopy.  

For experiments the cells were re-suspended at 1.5 x 106 cells/ml in 

supplemented RPMI medium with 5% fibronectin-free homologous serum. All reagents 

and materials used in the experiment had been tested for endotoxin contamination using 

a Limulus amebocyte lysate test kit (Sigma) and proved negative. 

 

2.6. CULTURE OF THE HUMAN MONOCYTE CELL LINE THP-1 

 

The THP-1 cell line was originally derived from the peripheral blood of a one 

year old male with acute monocytic leukaemia (Tsuchiya, Yamabe et al. 1980). These 

cells were sourced from ATCC (Middlesex, UK). The cells are grown in continuous 

suspension in the medium described below and can be differentiated into macrophages 

by exposure to phorbol esters (Tsuchiya, Yamabe et al. 1980; Tsuchiya, Kobayashi et al. 

1982). 

 

2.6.1. Materials 

 

Medium A 

1) RPMI 1640 with L-glutamine containing 25mm HEPES 

2) 10% FCS 
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3) 1% L-glutamine (200mM) 

4) 1% Penicillin-streptomycin solution (10,000 units and 10,000 μg/ml respectively) 

5) 40 nmol/ml mercaptoethanol 

 

Medium B 

1) RPMI 1640 with L-glutamine containing 25mm HEPES 

2) 10% FCS  

3) 1% L-glutamine (200mM) 

4) 1% Penicillin-streptomycin solution (10,000 units and 10,000 μg/ml respectively) 

5) 40 nmol/ml mercaptoethanol 

6) 125 nmol/ml phorbol ester myristate acetate (Chinetti, Griglio et al.) 

 

2.6.2. Method of human monocyte THP-1 cell culture 

 

Cells were grown to a concentration of 2-4 x 106 cells/ml during a 7 day growth 

period and were then harvested by centrifugation for 10 min at 400 g and re-suspended 

in medium A to give a concentration of 1 x 106 cell/ml. 

To differentiate THP-1 monocytes into macrophages, cells were re-suspending in 

medium B at a concentration of 5.25 x 105 cells/ml and 1 ml of this suspension placed 

into each well of a 12-well plate. The medium was then replaced with 1ml/well of 

medium B every 2 days and the plates incubated in a humidified incubator at 37oC, 5% 

CO2 for 5 days. For experiments the cells were re-suspended at 1.5 x 106 cells/ml in 
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supplemented RPMI medium with 5% fibronectin-free homologous serum. All reagents 

and materials used in the experiments including matrix and buffers had been tested for 

endotoxin contamination using a Limulus amebocyte lysate test kit (Sigma) and proved 

negative. 

 

2.7. CULTURE OF THE HUMAN MONOCYTE CELL LINE U937 

 

Human myelomonocytic leukaemia cells of the U-937 cell line (European 

Collection of Cell Culture, Salisbury, UK) were grown in supplemented RPMI 1640 

medium as above. Cultures were expanded by seeding approximately 2 x 106 cells into 

15 ml 20% foetal calf serum supplemented RPMI medium in T75 culture flasks (Falcon 

Scientific supplies, London, UK) and medium changed every 4 days. For experiments, 

cells were centrifuged at 180g for five minutes. The monocyte pellet was rinsed twice in 

RPMI medium. For experiments the cells were re-suspended at 1.5 x 106 cells/ml in 

supplemented RPMI medium with 5% fibronectin-free homologous serum. All reagents 

and materials used in the experiments including matrix and buffers had been tested for 

endotoxin contamination using a Limulus amebocyte lysate test kit (Sigma) and proved 

negative. 

 

2.8. FLOW CYTOMETRY ANALYSIS OF MONOCYTES 

 

Monocyte associated cell surface markers, CD 69 and late HLA-DR expression 

were assessed on peripheral blood and U-937 monocytes. A change in the expression of 
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these antigens would allow us to identify if the monocytes have become activated. 

Briefly, 200μl of monocyte cell suspension (1.0 x 106 cells/ml) was aliquoted and 

centrifuged at 400g for 5 minutes. The pellet was resuspended in 80μl of PBS/10% 

FCS/0.1% sodium azide. Then 10μl of anti-CD 14 antibody coupled to fluorescein 

isothiocyanate (FITC) (Becton Dickinson, Cowley, UK) together with 10μl of either 

anti-CD 69 antibody coupled to phycoerythrin (PE) (Becton Dickinson, Cowley, UK) or 

anti-HLA-DR PE antibody (Becton Dickinson, Cowley, UK) was added and samples 

incubated in the dark at room temperature for 30 minutes. Cells were then washed with 

PBS containing 1% BSA and fixed for flow cytometric analysis in equal amounts of 

PBS/10% FCS/0.1% NaN3 and 2% paraformaldehyde solution. Data were acquired on a 

FACS 440-flow cytometer using an argon ion laser at 488nm. FITC fluorescence was 

assessed using a 530 + 15 nm filter and PE using a 575 + 15nm filter. Collected data 

were edited and analysed using in house software. 

 

2.9. SCANNING ELECTRON MICROSCOPY 

 

 I thank Professor Alan Phillips at the Department of Paediatric Gastroenterology, 

Royal Free Hospital for the initial training and subsequent use of his departmental 

scanning electron microscope. Coverslips measuring 1cm in diameter were placed at the 

bottom of 24 well plates. Mesangial cells were grown to confluence within the wells and 

relevant wells were subsequently treated with Trypsin and ethylene diamine tetra acetic 

acid (EDTA), (0.025% and 0.01% respectively dissolved in sterile PBS, Life 
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Technologies) to expose the underlying matrix and incubated with human PBMCs for 48 

hours in a humidified incubator at 37oC, 5% CO2.  

After the culture period, tissue specimens were washed three times with fresh 

culture medium to remove any non adherent cells, fixed in 3% phosphate-buffered 

glutaraldehyde, and post fixed in 1% aqueous osmium tetroxide. For scanning electron 

microscopy (SEM), specimens were taken through a graduated series of ethanol and 

critical point dried in liquid CO2, using a Polaron E3000 critical point drying apparatus. 

Samples were then sputter coated with gold-palladium in a Polaron E5100 series II 

coating system and examined in a JOEL JSM-5300 scanning electron microscope. Scans 

of 5 random fields of view for each specimen were taken. 

 
 
 
2.10. MONOCYTE ADHESION ASSAY 

 

The binding of U-937 and peripheral blood-derived monocytes to mesangial 

matrix was determined using a colorimetric method as described by Mené et al (Mene, 

Fais et al. 1995). Mesangial cells plated at a density of 25,000 cells/well in 24 well 

plates were grown for 96 hours then growth arrested for 48 hours in serum free medium. 

To determine the impact of matrix accumulation, mesangial cells were prestimulated 

with TGF-β (10 ng/ml), TNFα (10 ng/ml) or a combination of both cytokines for 48 

hours. After thorough washing, the cell layer was removed by adding 2.5 mM NH4OH 

and 0.1% Triton X-100 for 10 minutes as described by Weiss and Regiani leaving 

behind the cell matrix which was also washed extensively (Weiss and Regiani 1984). 
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Monocytes (2 x 106 cells/well) were then incubated with the residual matrix produced by 

the pre-stimulated or non-stimulated mesangial cells for one hour at 37oC in serum free 

medium. Non-adhered monocytes were removed by washing. Adhered cells were fixed 

with 1.0% glutaraldehyde and stained with a crystal violet solution (0.1% (w/v). Cells 

were washed, solubilized overnight in Triton X-100 (1.0%) and absorbance readings 

recorded at 595nm. The results obtained were corrected by subtracting background 

staining of the underlying matrix. The corrected values were then taken to be 

proportional to the number of monocytes bound to matrix.  

To confirm the role of fibronectin and specific monocyte integrins in the binding 

process, anti-human fibronectin (25 μg/ml, Sigma), anti-VLA-4 (10 μg/ml, AMS 

Biotechnology) and anti-VLA-5 (5 μg/ml, AMS Biotechnology) antibodies were used in 

blocking experiments. In each case, the optimal antibody concentrations were chosen on 

the basis of preliminary experiments using a range of dilutions. The anti-human 

fibronectin antibody was pre-incubated with matrix whilst either U937 or peripheral 

blood-derived monocytes were pre-exposed to the anti-integrin antibodies for one hour 

at room temperature prior to the adhesion assays. 

 

2.11. CYTOKINE PRODUCTION 

 

IL-1β, IL-6 and TNFα secreted by peripheral blood-derived monocytes 

following exposure to matrix and individual protein components were measured by 

ELISA (R&D Systems). Briefly monocytes (0.5 x 106 cells/ml) were added to 24 

multiwell plates containing mesangial matrix or to empty plastic wells for 24 hours. 
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Alternatively, solubilized matrix, fibronectin, laminin and collagen IV were added to 

monocytes pre-plated in 24 well plates. For positive and negative controls, monocytes 

were incubated in plastic wells for 24 hours with or without lipopolysaccharide (LPS, 10 

μg/ml) respectively. In each case, the resulting conditioned medium was collected and 

spun at 6500 rpm for 5 mins on a microfuge to remove non-adherent monocytes. 

Samples were stored at -80oC prior to the analysis. All reagents and materials used in the 

experiments including matrix, matrix components and buffers were tested for endotoxin 

contamination using a Limulus amebocyte lysate test kit (Sigma) and proved negative. 

 

2.12. THYMIDINE INCORPORATION 

 

 The ability of mesangial cell matrix to induce proliferation of blood-derived and 

U-937 monocytes was assayed by measuring the incorporation of 3H-thymidine. Briefly, 

3H-thymidine (3.6 Ci/ml) was added to peripheral-blood derived (0.25 x 106 cells/ml) or 

U-937 monocytes (1.25 x 106 cells/ml) plated on matrix or in empty plastic culture 

plates for up to 96 hours. At the end of the incubation period, the adherent and non-

adherent cells were collected, washed with PBS and treated with 50% methanol 

containing 10% glacial acetic followed by 10% Trichloroacetic acid. After further 

washes, the cells were solubilized in 0.1 M NaOH containing 1% SDS and the 

radioactivity incorporated determined by liquid scintillation counting. 
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2.13. GELATINOLYTIC ACTIVITY 

 

The secretion of gelatinolytic enzymes by peripheral blood-derived monocytes 

incubated with mesangial cell matrix and matrix proteins was determined by 

zymography as previously described (Martin, Davies et al. 1989). Briefly, mesangial 

cells grown in 24 well plates were removed from the underlying matrix and incubated 

with human monocytes (0.5 x 106 cells/ml) for 24 hours in the absence of foetal calf 

serum. The resulting conditioned medium was isolated, centrifuged and stored at –80oC 

for batch analysis.  

The enzyme activity of MMP-9 was assessed by SDS-PAGE using a 7.5% gel, 

incorporating gelatin (1 mg/ml), under non-reducing conditions. Following 

electrophoresis the gel was washed with 2.5% Triton X-100 for 1 hour and incubated in 

50 mM Tris HCl pH 7.6 containing CaCl2 (10 mM) and Brij (0.05%) at 37oC overnight. 

The gel was then fixed and stained with Coomassie blue and enzymatic activity 

demonstrated by zones of lysis, analysed by comparison to controls and quantified by 

densitometry. 

 

2.14. ANALYSIS OF TIMP I AND TIMP II 

 

Concentrations of TIMP I and TIMP II secreted by blood-derived monocytes into 

conditioned medium were measured by ELISA (Baker, Tickle et al. 1994; Martin, 

Steadman et al. 1998). Standards of TIMP 1 (0.15 to 150 ng/ml) and TIMP II (0.15 to 

300 ng/ml) were prepared using purified TIMP kindly supplied by Prof. T. E. Cawston 
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(Department of Medicine, University of Newcastle, UK). Antibodies to TIMP were 

kindly provided by Dr. A Docherty, Cell Tech, Slough, and Dr G Murphy, University of 

East Anglia, Norwich, U.K. 

 

2.15. RNA ISOLATION 

 

Total RNA was isolated from cultured human mesangial cells by the 

guanidinium method (Chirgwin, Przbyla et al. 1979). In this method, Guanidine 

thiocyanate, in association with β-mecaptoethanol and N-lauroyl sarcosine powerfully 

inhibit RNase and act to disrupt the nucleoprotein complex, allowing RNA to be 

released into solution. Intact RNA was purified from contaminants by 

phenol:chloroform extraction. RNA selectively partitions into the aqueous phase, free 

from DNA and protein and was concentrated by precipitation with isopropanol (Perry, 

La Torre et al. 1972; Chirgwin, Przbyla et al. 1979). 

 

2.15.1. Materials 

 

1) RNase-Free Water: ddH2O was treated with 0.1% DEPC (Sigma, Dorset, UK) at 37oC 

overnight, then autoclaved. 

2) 0.75M sodium citrate (pH 7.0): 11.029g of citrate 3 Na (Sigma, Dorset, UK) was 

dissolved in dH2O and reconstituted to 50ml. Next 0.1ml of DEPC was added and the 

mixture stirred for 2 hours, then autoclaved. 



 64

3) 10% Sarcosyl: 10g of n-lauroylsarosine sodium salt (Sigma, Dorset, UK) was 

dissolved in dH2O and reconstituted to 100ml. Then 0.2ml of DEPC was added and the 

mixture was stirred for about 2 hours, then autoclaved. 

4) Denaturing solution: 250g of guanidinium thiocyanate (GTC) (Sigma, Dorset, UK) 

(final concentration 4M) was mixed with 17.6ml of 0.75M sodium citrate (pH 7.0) (final 

concentration 25mmol/l), 26.4ml of 10% sarcosyl (final concentration 0.5%) and 293ml 

of RNase-free water. The mixture was stirred at 65oC until GTC was dissolved. Before 

use, 2-mercaptoethanol was added (Sigma, Dorset, UK) 0.36ml per 5ml solution. 

5) 2M Sodium acetate (pH 4.0): 27.216g sodium acetate (Sigma, Dorset, UK) was 

dissolved in dH2O. The pH was adjusted using glacial acetic acid, reconstituted to 

100ml, then filtered. 

6) 0.5M EDTA: 186.1g of disodium ethylene diamine tetraacetate (Sigma, Dorset, UK) 

was added to 800ml of dH2O and stirred vigorously. The pH was adjusted to 8.0 with 

NaOH. The solution was dispensed into aliquots and sterilised by autoclaving. 

7) 3M Sodium acetate (pH 5.2): 408.1g of sodium acetate was dissolved in dH2O and pH 

adjusted to 5.2 with glacial acetic acid. The volume was adjusted to 1 litre. The solution 

was dispensed into aliquots and sterilised by autoclaving. 

8) Phenol: Chloroform:Isoamyl Alcohol (125:24.1, pH 4.7) (Sigma, Dorset, UK) 

9) Isopropanol (Sigma, Dorset, UK) 

10) Ice-cold 75% ethanol, RNase-free (Sigma, Dorset, UK) 
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2.15.2. Steps to avoid Ribonuclease contamination 

 

Sterile disposable plastic ware was used for handling RNA. Non-disposable 

glassware and plastic ware were treated before use to ensure that they were RNase-free. 

Glassware was baked at 200oC overnight. Plastic ware was thoroughly rinsed with 0.1N 

NaOH, 1mM EDTA and then with nuclease-free water. RNase-free materials were used 

for weighing chemicals. Solutions were treated by the addition of diethyl pyrocarbonate 

(DEPC) 0.1% overnight at room temperature, and then autoclaved for 30 minutes to 

remove any traces of DEPC. Tris buffers were prepared using containers which were 

designated for Tris only and which had been treated with DEPC and autoclaved. 

 
 
 
2.15.3. Total RNA purification 

 

Human mesangial cells were cultured in 75 cm2 flasks. Before RNA extraction, 

cells were pelleted and washed once in ice-cold phosphate-buffered saline and lysed in 

ice-cold denature solution using 600μl per 1 flask (about 5x106). Cell lysates were 

sheared eight times through a 21-gauge needle. Next, 60μl of 2M sodium acetate (pH 

4.0) was added to the lysate in each flask and mixed thoroughly by inverting 4-5 times. 

One volume of phenol:chloroform:isoamyl alcohol was then added. The mixture was 

vortexed after each addition and for at least 10 seconds after the final step. The emulsion 

was incubated on ice for 15 minutes and then centrifuged at 12,000 rpm for 20 minutes 

at 4oC. The aqueous phase was carefully transferred to a fresh RNase free tube, taking 
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care not to touch the interface. To this an equal volume of isopropanol was added and 

mixed, then precipitated by incubating at –20oC for 2 hours. The crude RNA pellet was 

recovered by centrifugation at 12,000 rpm for 20 minutes at 4oC and washed by 

resuspension in 1ml of 75% ice-cold ethanol.  

The RNA was recovered by centrifugation at 12,000 rpm for 10 minutes at 4oC. 

The pellet was then dried in air and resuspended in 150μl RNase free water. 10μl of 3M 

sodium acetate (pH 5.2) was added and mixed thoroughly by inverting the tube 4-5 

times. One volume (150μl) of phenol:chloroform:isoamylalcohol was added. The 

mixture was then vortexed for 10 seconds, then centrifuged for 10 minutes at 4oC. The 

aqueous phase was carefully transferred to a fresh RNase free tube, then an equal 

volume of ethanol (100%) was added, this was then mixed and precipitated by 

incubating at –20oC for 2 hours. The concentration of RNA was determined by 

measuring the absorbance at 260nm using a spectrophotometer. 

 

2.16. RT-PCR 

 

The RNA sample was reverse transcribed to cDNA to provide the necessary 

DNA template for the thermostable polymerase. (Becker-Andre and Hahlbrock 1989). 
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2.16.1. Materials 

 

All reagents were obtained from Perkin-Elmer (PE Applied Biosystems Ltd, 

Warrington, Cheshire, UK) 

1) 10x PCR buffer II: 500mmol/l KCl, 100mmol/l Tris/HCl 

2) 25 mmol/l MgCl2 solution 

3) dNTPs: 10mmol/l deaoxyribonucleoside triphosphates 

4) Random hexamers 50μmol/l 

5) RNase inhibitor (20 Unit/�l) 

6) M-MLV reverse transcriptase (50 Unit/�l) 

7) Taq DNA polymerase (5 Unit/�l) 

 
 
 
 
2.16.2. Method of RT-PCR 

 

Total RNA (500ng) was used as a template for RT-PCR. The RT reaction was set 

up in a 20μl mixture containing 50mmol/l KCl, 10mmol/l Tris/HCl, 5mmol/l MgCl2, 1 

mmol/l of each of the dNTPs, 2.5μmol/l random hexamers, 20 U RNase inhibitor 

(RNAsin), and 50 U of M-MLV reverse transcriptase. Incubations were performed in a 

DNA Thermal Cycler (Perkin-Elmer 9600) for 10 minutes at room temperature, 

followed by 30 minutes at 42oC and 5 minutes at 99oC. After cDNA synthesis by RT, 

the incubation mixture was split into two 10μl aliquots for separate amplification of 
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cDNA using specific primers. For PCR, the final concentrations of the PCR reaction 

mixture were 50mmol/l KCL, 10mmol/l Tris/HCl, 2mmol/l MgCl2, 200μmol/l dNTPs, 

0.125-0.25μmol/l of primers, 1.25U Taq DNA polymerase. After incubation at 145 

seconds at 95oC, 30 seconds at 55-65oC and 60 seconds at 72oC twenty microlitres of 

each PCR reaction were subjected to electrophoresis in a 2% agarose gel. 

 

2.17. ANALYSIS OF PPAR-γ, CD36 AND SCAVENGER RECEPTOR-A GENE EXPRESSION 

USING RT-PCR 

 
Based on previous experiments, monocytes were incubated in the presence of 

soluble matrix for various times up to 120 hours (5 days) at 37oC in a humidified 

atmosphere of 5% CO2. PMA (125 nM) and cell culture grade bovine serum albumin 

(BSA, 500 μg/mL) (Sigma) served as positive and negative controls respectively. Cells 

were trypsinised and recovered by centrifugation. Total RNA (approximately 500 ng) 

was extracted from the cell pellet by a SDS/double phenol extraction method (Ruan, 

Varghese et al. 1999). The RNA was used as a template for reverse transcriptase-

polymerase chain reaction (RT-PCR) and the resultant cDNA was amplified for PPAR-

γ, CD36 and scavenger receptor-A by PCR, using β-actin as a control. The following 

primers were used: PPAR-γ upper primer 5’-GGC AAT TGA ATG TCG TGT CTG 

TGG AGA TAA 3’ and PPAR-γ lower primer 5’-AGC TCC AGG GCT TGT AGC AGG 

TTG TCT TGA-3’, CD36 upper primer 5’ CAG CCT CAT TTC CAC CTT TTG TT and 

CD36 lower primer 5’ GTT GAC CTG CAG CCG TTT TG, scavenger receptor-A 

upper primer 5' TCG CTC AAT GAC AGC TTT GC 3’ and scavenger receptor-A lower 
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primer 5’ CCA TGT TGC TCA TGT GTT CC 3’, β-actin upper primer 5'-ATG GAT 

GAT GAT ATC GCC GCG-3’ and β-actin lower primer 5’-CTA GAA GCA TTT GCG 

GTG GAC GAT GGA GGG GCC-3’ (Biogenesis, Poole, UK). Twenty microlitres of 

the PCR product was subjected to electrophoresis on a 2% agarose gel and bands 

visualised by staining with ethidium bromide under UV light. Gels were subjected to 

densitometric analysis using a Gel Doc 2000 scanner (Bio-Rad, Herts, UK), and band 

intensity normalised to β-actin to control for variations in loading then normalised to the 

appropriate control conditions (100%).  

 

2.18. Analysis Of PPAR-γ Protein Expression Using Western Blot 

Modulation of PPAR-γ in THP-1 monocytes in response to mesangial cell matrix 

was examined by Dr. Ravinder Chana using Western blot analysis. Monocytes seeded 

into 24 well plates at a density of 1.5 x 106 cells/well and incubated with matrix (500 

μg/ml) for various times up to 48 hours. Supplemented RPMI media containing either 

PMA or BSA served as a positive and negative control respectively. After stimulation, 

cells were collected, washed twice with cold PBS and lysed in Laemmli buffer (60 

mmol/L Tris, pH 6.8, 10% glycerol, 2% sodium deoxycholate, 100 mmol/L 

dithiothreitol and 0.01% bromophenol blue). Cell lysates were heated at 100oC for 5 

minutes and subjected to 10% SDS-polyacrylamide gel electrophoresis (Bio-Rad, Herts, 

UK). Proteins were transferred on to Protran nitrocellulose membranes (Schleicher and 

Schuell BioSciences GmbH, Dassel, Germany). PPAR-γ was detected using a 

monoclonal antibody (SC7273; SantaCruz Biotech, Cambridge, UK) at 1:1000 dilution 
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and a secondary horseradish peroxidase-linked anti-mouse IgG antibody (A4416; 

Sigma) at 1:2000. Bound antibodies were visualized using an enhanced 

chemiluminescence system (Amersham Biosciences, Bucks, UK). For densitometric 

analysis, bands from Western blots were scanned and quantified using Scion Image 

version 4.0.2. 

 
2.19. MODIFIED LOWRY ASSAY FOR LIPOPROTEIN AND CELL MEMBRANE PROTEIN 

ESTIMATION 

 

Protein concentration was estimated using a modified Lowry assay as described 

by Markwell. (Markwell, Haas et al. 1978). 

 

2.19.1. Materials  

 

1) 100μg/ml stock solution of BSA (Sigma Ltd. Dorset UK) 

2) Reagent A: consisting of 2% Na2CO3, 0.4% NaOH, 0.16% Sodium tartrate and 1% 

SDS (Sigma Ltd. Dorset UK) 

3) Reagent B containing 4% CuSO45H2O (Sigma Ltd. Dorset UK) 

4) 1 N Folin-Ciocalteu solution (F-C) (Sigma Ltd. Dorset UK) 
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2.19.2. Lowry Assay 

 

BSA stock was diluted in dH2O to obtain standards as follows: 0, 5, 10, 20, 40, 

60, 80 and 100μg/ml. Next 3ml of reagent C (solution A: solution B at 100:1) were 

added to 1 ml of sample containing 10-100μg of protein and incubated at room temp for 

10 min. Next 0.3 ml of 1 N F-C reagent was added and vortex mixed then incubated for 

45 min at room temperature. Finally, absorbance was read at 660nm using a 

spectrophotometer and the content of sample protein calculated using the BSA standard 

curve. 

 

2.20. PREPARATION OF HUMAN LOW DENSITY LIPOPROTEIN (LDL)  

 

LDL was isolated from plasma by sequential ultracentrifugation as described by 

Havel (Havel, Eder et al. 1955). 

 

2.20.1. Materials 

 

1) 0.2M disodium EDTA (pH 7.4) (Merck Ltd. Lutterworth, Leics, UK) 

2) 2.5% sodium azide (Sigma, Dorset, UK) 

3) Benzyl penicillin 600 U/ml 

4) Streptomycin sulphate 100 mg/ml 

5) 2000 U/ml Kallikrein inactivator Aprotinin (Trasylol, Bayer UK Ltd, Newbury, UK) 
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6) 0.3M Sodium chloride (Merck Ltd. Lutterworth, Leics, UK) 

7) Sodium bromide (Merck Ltd. Lutterworth, Leics, UK) 

8) Visking tubing 

9) 0.15M Phosphate buffered saline (PBS pH 7.4) 

 

2.20.2. LDL isolation 

 

4ml of 0.2M disodium EDTA was mixed with 1ml of 2.5% sodium azide, 

0.125ml of benzyl penicillin (600 U/ml), 0.125ml streptomycin sulphate (100mg/ml), 

0.125ml of kallikrein inactivator aprotinin (200 U/ml) and 7ml of 0.3M sodium chloride. 

1ml of this preservative solution was added to universal tubes to prevent enzymatic 

degradation of lipoprotein particles.  

Venous blood (180ml) was then collected from normo-lipidaemic healthy 

volunteers who had undergone an overnight fast (20ml of blood was added into each 

universal container which had been pre filled with 1ml of the preservative solution). The 

plasma was separated by centrifugation at 3000g for 10 minutes. LDL (density range 

1.019-1.063g/ml) was isolated by ultracentrifugation in a Beckman L8-55 M or L8-80 M 

ultracentrifuge fitted with a 50.3 Ti rotor, using NaBr for density adjustment. The 

plasma was adjusted to a density of 1.019g/ml using formula 1 to calculate the amount 

of NaBr to be added and centrifuged at 40000rpm for 20 hours at 4oC to remove 

chylomicrons (CMs), very low-density lipoprotein (VLDL) and intermediate density 

lipoprotein (IDL). 
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Formula 1 

 

Amount of NaBr (g) to be added  =   vi    (df –di)  

 1 – [V x df] 

 

vi The initial volume 

di The initial density of plasma 

df Final density required 

V Partial specific volume of NaBr (0.235) 

 

Once the tubes had been removed from the rotor, they were placed on ice, the 

tube caps removed and the supernatant containing the VLDL and IDL aspirated and 

discarded using a 19 gauge needle attached to a 10ml syringe. The infranatants were 

pooled, mixed thoroughly and adjusted to a density of 1.063g/ml by adding NaBr using 

formula 1. The tubes were then re-capped and centrifuged at 40000rpm at 4oC for a 

further 20 hours to obtain LDL, which could be visualised as an orange layer at the top 

of the tube. LDL was harvested using a 19 gauge needle attached to a 10ml syringe, 

concentrated and purified by centrifugation at 40000rpm at 4oC for a further 20 hours. 

The LDL was harvested, placed within a dialysis membrane which had been softened by 

boiling in distilled water, and dialysed in 5 L of PBS containing 1mM EDTA for 24 

hours, changing dialysate twice. The EDTA acts as a chelating agent to sequester metal 

ions. Twenty four hours prior to the start of an oxidation experiment, a portion of the 
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LDL was re-dialysed as described above but omitting the EDTA. LDL protein 

concentration was measured using a Lowry assay as modified by Markwell et al (see 

above) (Markwell, Haas et al. 1978). 

 

2.20.3. Agarose gel electrophoresis of lipoproteins 

 

Native and oxidised LDL samples were separated by electrophoresis according 

to their net charge at pH 8.6 using low voltage electrophoresis (Noble 1968). Separated 

lipoproteins were stained using Fat Red 7B. The electrophoretic mobility of each sample 

was compared to that of a native LDL standard and the results expressed as relative 

electrophoretic mobility (REM). 

 
 
2.20.3.1. Materials 

 

1) Barbitone buffer (0.05 mol/L pH 8.6) Sodium barbital 8.85g/L, barbital 1.3g/L, 

sodium chloride 0.5g/L, sodium EDTA 0.35g/L. All chemicals are Analar grade (BDH 

Ltd, Dorset, UK) 

2) Pre-prepared agarose gels (10g/L) catalogue number 470100 (Ciba-Corning, UK) 

3) Fat Red 7B stain (Sigma, Dorset, UK) 

4) Methanol (Rathburn chemicals, UK) 

5) Distilled water 
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2.20.3.2. Preparation of reagents 

 

Barbitone buffer (2L) was prepared, pH adjusted to 8.6 and stored at 4oC for up 

to 4 months. A stock solution of Fat Red 7B stain (0.225g/l) was prepared by stirring 

0.045g of the stain in 100ml methanol in a conical flask for approximately 6 hours. 

Immediately prior to use, a working stain solution was prepared by adding 2ml of 

distilled water to 10ml of stain in a clean dry measuring cylinder. A de-stain was 

prepared by mixing methanol with water (2:1). 

 

2.20.3.3. Agarose gel electrophoresis 

 

The agarose film was gently peeled away from its backing plate and placed on a 

level surface. The wells were filled with approximately 0.8μl of sample or reference 

control. Both the anode and cathode chambers of the Ciba-Corning electrophoresis tank 

were filled with 100ml barbitone buffer and the gel placed in the holder and then 

lowered into the buffer. The sample origin was placed on the cathode side as the samples 

migrated towards the anode.  

The electrophoresis chamber was plugged into the power pack and 

electrophorised at a voltage of 100mV with a current of 4mA for 40 minutes. The 

progress of the electrophoresis was followed by the movement of the tracking dye 

(bromophenol blue). When electrophoresis was complete, the gel was removed from the 

chamber and dried in an oven at 55oC for 20 minutes. The gel was then placed in a 
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staining tray and stained for 1-4 minutes with freshly prepared working stain, in order to 

visualise the bands. The gel was then de-stained in methanol:water (2:1 v/v) and the 

backing on the gel was wiped and dried in an oven for 20 minutes. 

 

2.21. LDL ACETYLATION 

 

LDL was acetylated by incubation with saturated sodium acetate solution at a 

ratio of 1:2 and stirred continuously for 30 minutes at 4oC. Aliquots of acetic anhydride 

(1.5 μl/mg LDL) were added to the mixture over 90 minutes. The Ac-LDL was then 

dialysed against PBS containing 0.01% EDTA, pH 7.4, using a PD10 Column 

(Amersham). Freshly isolated native LDL and Ac-LDL were then passed through a 0.2 

μm filter and protein concentrations were measured using a modified Lowry method 

(Lowry OH 1951). Acetylation of LDL was confirmed by assessing the changes in 

mobility of modified lipoprotein using agarose gel electrophoresis.  

 

2.22. LDL OXIDATION BY MESANGIAL CELL MATRIX 

 

Relative electrophoretic mobility was used to assess oxidation of LDL by matrix 

(Wheeler, Chana et al. 1994). Matrix (500 μg/ml) and native LDL (250 μg/ml) were co-

incubated in the absence of cells. As a positive control, native LDL (250 μg/ml) was 

incubated in the presence of CuSO4 (10 μM). Native LDL co-incubated with BSA (500 

μg/ml) and native LDL alone served as negative controls. The effect of the antioxidants 

EDTA (100 μM) and butylated hydroxytoluene (BHT, 20 μM) on matrix co-incubated 
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with LDL was also assessed. Following incubation for 24 hours at 37oC, 5% CO2, the 

protein fraction was adjusted to 50 μg/ml with PBS and 5 μl of each sample was loaded 

on to a 0.5% agarose gel (Paragon Lipogel, Beckman, Austria) and subjected to 

electrophoresis. Bands were visualised by staining gels according to the manufacturer’s 

instructions.  

 

2.23. ANALYSIS OF SCAVENGER RECEPTOR-A ACTIVITY 

 

Based on previous experiments, THP-1 monocytic cells (1.5 x 106 cells/ml) were 

resuspended in supplemented RPMI medium and incubated with 500 μg/ml of 

solubilized matrix or with 500 μg/ml BSA protein (negative protein control) or 125nm 

PMA for 48 hours at 37oC. Cells were then exposed for a further 3 hours to 10 μg/ml 

Ac-LDL labelled with 1,1’-dioctadecyl-3,3,3’3’-tetramethyllindocarbocynanine 

perchlorate (Dil-labelled Ac-LDL, Biogenesis, Poole, UK) in the presence or absence of 

an excess of unlabelled Ac-LDL (250 μg/ml) to confirm the specificity of receptor-

mediated uptake. After incubation, the cells were recovered by centrifugation at 350 x g 

for 5 minutes, washed three times with PBS and fixed in 5% formalin solution in PBS. 

Ac-LDL binding and uptake was assessed by flow cytometry (EPICS XL-MCL; 

Beckman Coulter, Bucks, UK). Forward and side scatter gates were established to 

exclude dead cells and cell debris from the analysis. Fluorescence signals from the 

accumulated Dil associated with the cells were detected at 555-600 nm by a 

photomultiplier, and then converted to digital format and processed. The mean 
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fluorescence intensity (MFI) of 5 x 103 cells were analysed in each sample. Auto-

fluorescence signals generated by unlabelled cells were used as negative controls in each 

experiment. The MFI of the Dil-labelled cells was calculated by subtracting the auto-

fluorescence intensity from the observed MFI of labelled cells. Each experiment was 

carried out in duplicate, on four separate occasions with different preparations of cells 

and Ac-LDL. The average of the duplicate determinations was used for statistical 

analysis. 

 
2.24. MORPHOLOGICAL EXAMINATION OF FUNCTIONAL SCAVENGER RECEPTORS 

 

THP-1 monocytes were incubated in chamber slides (0.5 x 106 cells/ml) with 

solubilized matrix (500 μg/ml). PMA (125 nM) and BSA (500 μg/ml) served as positive 

and negative controls respectively. Polyinosinic acid (poly I) (100μg/ml) was also added 

as an inhibitor of the scavenger receptor. After 120 hours incubation at 37oC, cells were 

further incubated with 50 μg/ml Ac-LDL for 48 hours. Cells were then washed with 

PBS, fixed for 30 minutes with 5% formalin solution in PBS, stained with Oil Red O for 

30 minutes and counter-stained with haematoxylin for another 5 minutes. Lipid 

inclusion was assessed by observing at least 8 fields under a light microscope.  

 
 
2.25. STAINING OF HUMAN KIDNEY BIOPSY MATERIAL FOR MACROPHAGE 

ACTIVATION MARKERS 

 

Ethical approval to use human kidney biopsy material was obtained. Sections of 

formalin-fixed paraffin embedded kidney tissue were dewaxed and treated with 
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hydrogen peroxide to block endogenous peroxidase. Four kidney samples from patients 

with non-inflammatory conditions (two with ischaemic nephropathy, one with thin 

membrane nephropathy and one with myoglobinuria) and five from patients with 

inflammatory diseases (three with pauci-immune necrotizing/vasculitic 

glomerulonephritis, one with anti-glomerular basement membrane antibody disease and 

one with lupus nephritis) were submitted to Mr. James Gaya who then conducted 

staining for macrophage activation markers. Sections were then heated in TRIS-EDTA 

buffer (pH 9.0) before being stained with either a mouse monoclonal antibody to CD68 

diluted 1:200 (PG-M1 antibody, Dako, Cambridge UK), a mouse monoclonal antibody 

to PPARγ diluted 1:100 (Santa Cruz), or a goat antibody to scavenger receptor diluted 

1:500 (Abcam, Cambridge UK). In the case of the anti-CD68 antibody, samples were 

pre-treated with trypsin for 10 minutes. After incubation with the first stage antibody for 

1 hour, an Envision kit (Dako) was used for the second stage in the case of the mouse 

antibodies and a peroxidase-conjugated rabbit anti-sheep antibody in the case of the goat 

antibody. Hydrogen peroxide and diaminobenzidine were used as substrates and sections 

were counterstained with haematoxylin. 

 

2.26. DATA ANALYSIS 

 Groups of data in all experiments were evaluated for significance using a Mann-

Whitney unpaired non-parametric two tailed test or where indicated by paired student’s 

t-test. Results are expressed as mean + SEM unless otherwise stated and p < 0.05 was 

considered significant.
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CHAPTER 3 

MONOCYTE ADHESION TO MESANGIAL MATRIX 

MODULATES CYTOKINE AND METALLOPROTEINASE 

PRODUCTION 
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3.1. INTRODUCTION  

 

Blocking signalling pathways that determine monocyte/macrophage function 

represents an attractive target for therapeutic intervention. Such strategies have been 

evaluated in animal models of acute glomerulonephritis. For example monoclonal 

antibodies directed against leukocyte functional associated molecule-1 (LFA-1) and its 

endothelial ligand, intercellular adhesion molecule-1 (ICAM-1) were found to block 

monocyte trafficking and inhibit glomerular injury in rats given nephrotoxic serum 

(Kawasaki, Yaoita et al. 1993). In the same model, blocking antibodies directed against 

another monocyte integrin, very late antigen-4 (VLA-4), also attenuated renal injury but 

without affecting the number of infiltrating cells, whilst blockade of vascular cell 

adhesion molecule-1 (VCAM-1), a major ligand of VLA-4, had no effect (Allen, 

McHale et al. 1999). These results suggest that binding of VLA-4 to a ligand other than 

VCAM-1 within the glomerulus may be important in modulating monocyte function in 

the context of glomerular injury. Previous studies by our group demonstrated that 

adhesion of monocytes to activated mesangial cells was mediated, at least in part, by 

cell-associated fibronectin (Chana and Wheeler 1999). It was postulated that this matrix 

component may be an important VLA-4 ligand. The following experiments were 

designed to test the hypothesis that interactions with mesangial matrix modulates the 

secretory function of monocyte/macrophages. The results indicate that matrix may 

promote mononuclear cell accumulation within the mesangium, and that interactions 

between monocytes (in part mediated by VLA-4) and matrix components (particularly 

fibronectin) promote secretion of monocyte products that may modify disease outcome. 
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3.3. RESULTS 

 

3.3.1. Matrix composition 

 

Staining studies demonstrated that after solubilization of mesangial cells, no 

nuclear material remained and that fibronectin was present in the residual matrix. 

Electron microscopy confirmed an absence of cellular debris (Figure 3.1A). In keeping 

with previous published work, pre-stimulation of mesangial cells with TGF-β alone and 

in combination with TNFα led to increased fibronectin production (Pawluczyk and 

Harris 1998). At a concentration of 10 ng/ml, exposure to TGF-β increased cell-

associated fibronectin to (mean ± SEM)) 127.8% ± 10.1% (p < 0.05) compared to 

control cells grown in serum-free medium (100%). The cell-associated fibronectin was 

further increased to 256.7% (3.9%, p < 0.001) when a combination of 10 ng/ml of TNFα 

and 10 ng/ml TGF-β was added suggesting that these cytokines had a synergistic effect 

on matrix synthesis. TNFα alone had little effect on cell-associated fibronectin 

production (114.5% + 4.1%, p = NS). When matrix is assessed for cytokine entrapment, 

it was found to contain very low concentrations of TGF-β ( <0.05 pg/μg), and virtually 

undetectable amounts of TNFα ( <0.02 pg/μg), IL-1β ( <0.003 pg/μg) and IL-6 ( <0.003 

pg/μg). 
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3.3.2. Monocyte characteristics 

  

U937 and peripheral blood-derived monocytes recovered after 24 hours 

incubation on tissue culture plastic plates possessed both early (CD 69) and late (HLA-

DR) monocyte surface markers. There was no change in the expression of either cell 

marker, even after the cells were cultured on matrix or plastic for up to 72 hours.  

 

3.3.3. Adherence of monocytes to mesangial cell matrix 

 

Both U-937 and peripheral blood-derived monocytes adhered strongly to matrix 

synthesized by mesangial cells grown under standard conditions, following the removal 

of the mesangial cells (Figure 3.1B). Binding occurred predominantly to the matrix 

itself, with minimal adhesion to the uncoated plastic plate determined by subtracting 

background staining to plastic alone. Using U937 cells it was demonstrated that pre-

stimulation of mesangial cells with TGF-β and TNFα led to increased monocyte binding 

to the residual matrix (Figure 3.2). Compared to control matrix (i.e. that produced by 

mesangial cells exposed to serum free medium alone, 100% binding), binding of U937 

cells to matrix synthesized by cells pre-stimulated with TGF-β and TNFα was increased 

by 127.5% ± 17.7%, (p < 0.05) and 123.6% ± 9.7% (p < 0.05) respectively. When a 

combination of the two cytokines was used, binding increased to 188.0% ± 5.5% (p < 

0.001) compared to control matrix. 
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Figure 3.1.  

 

(A) Electron micrograph of mesangial matrix. The cell layer was removed from the 

underlying matrix by adding 2.5mM NH4OH and 0.1% Triton X-100. The matrix was 

then fixed and prepared for electron microscopy as described in the methods section.  

Bar = 1 μm, original magnification X 5000.  

 

(B) U-937 monocytes adherent to cell matrix. U-937 monocytes were incubated with 

matrix for one hour. After washing, adherent monocytes were fixed and stained with 

crystal violet as described in the methods section and visualised under a light 

microscope. Original magnification X 100. 
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Figure 3.2. Adhesion of U-937 monocytes to matrix synthesized by mesangial cells 

prestimulated with TGF-β, TNFα and TGF-β/TNFα. Monocytes were incubated for 

one hour with matrix after removal of mesangial cells. Adherent monocytes were fixed, 

stained, solubilized and quantified by colorimetry. The mean (SEM) of triplicate 

absorbance readings, corrected for background staining of matrix, is expressed as a 

percentage of control (matrix arising from unstimulated cells). The results are 

representative of those obtained in 4 experiments. * p < 0.05, ** p < 0.001 vs. control.   
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3.3.4. Inhibition of monocyte adhesion to matrix 

 

Antibodies directed against VLA-4 and VLA-5 integrins reduced U937 

monocyte binding to mesangial matrix when compared to control (no antibody, 100%). 

Using non-prestimulated mesangial cells, anti-VLA-5 antibody reduced monocyte 

binding to 78.4% ± 6.0%, (p < 0.005) (Figure 3.3A) when compared to control matrix 

(no antibody, 100%). In contrast, binding to matrix synthesized by TGF-β/TNFα pre-

stimulated mesangial cells was reduced by anti-VLA-5 antibody to 44.8% ± 2.5% (p < 

0.0001) (Figure 3.3B). Once again, a reduction in binding was observed when matrix 

from non-prestimulated mesangial cells was primed with anti-VLA-4 antibody, but not 

with anti-fibronectin antibody (Figure 3.3A). Anti-VLA-4 and anti-fibronectin 

antibodies also reduced monocyte adhesion to matrix produced by TGF-β/TNFα pre-

stimulated mesangial cells to 54.9% ± 4.9% (p < 0.0001) and 56.6% ± 5.6% (p < 

0.0001), respectively, compared to control (Figure 3.3B). In a comparative experiment, 

binding of peripheral blood-derived monocytes to mesangial matrix synthesised by non-

prestimulated mesangial cells was inhibited by 61.5 ± 4.3% and 58.5 ± 3.6% by anti-

VLA-4 and anti-VLA-5 antibodies respectively. 
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Figure 3.3. Inhibition of U-937 monocyte adhesion to matrix produced by 

unstimulated mesangial cells (A) or mesangial cells prestimulated with TGF-

β/TNFα (B). The matrix was pre-incubated with anti-fibronectin (25 μg/ml) antibody for 2 

hours before a suspension of U-937 monocytes was added. Alternatively monocytes were pre-

incubated with anti-VLA-4 (10 μg/ml) and anti-VLA-5 (5 μg/ml) antibodies for 1 hour before 

being added to matrix. After washing, adherent monocytes were fixed, stained with crystal 

violet, solubilized and quantified by densitometry. The results are expressed as mean (SEM) 

absorbance, corrected for the background staining of matrix, and expressed as a percentage of 

control (100%). These results are a representative of 4 experiments; each conducted in triplicate 

at optimal antibody concentrations. * p <0.0001 vs. control.  
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3.3.5. Adhesion to mesangial matrix stimulates monocyte cytokine secretion 

 

Adhesion of peripheral blood-derived monocytes to mesangial matrix led to an 

increase in the production of IL-1β by 14-fold when compared to control monocytes 

incubated in plastic wells (7.74 + 1.25 pg/ml vs. 0.55 + 0.23 pg/ml, p < 0.001) (Figure 

3.4). In contrast, there was a 226-fold increase following LPS stimulation (124.7 + 15.26 

pg/ml, p < 0.001). Similar results were obtained when the production of IL-6 and TNFα 

was examined. There were approximately 37-fold and 6-fold increases in IL-6 and 

TNFα production by monocytes bound to matrix when compared to control cells 

incubated in plastic wells. These increases in cytokine levels cannot be attributed to the 

change in monocyte cell number. Proliferation studies using 3H-thymidine showed 

similar radiolabel incorporation into U-937 and peripheral blood-derived monocytes 

incubated on either matrix or plastic culture plates. 

Like whole matrix, individual matrix proteins stimulated cytokine production but 

differed in terms of the magnitude of this effect. For example, there was approximately a 

19-fold increase in IL-1β when peripheral blood-derived monocytes were incubated with 

fibronectin (100μg/ml, p < 0.005) when compared to control (monocytes incubated in 

plastic wells) (Figure 3.5A). In contrast, collagen type IV and laminin increased 

cytokine production by approximately 14- and 5-fold respectively. This compared to a 9-

fold increase when solubilized whole matrix was added at the same concentration. These 

proteins also stimulated monocyte IL-6 and TNFα secretion (Figure 3.5B and 3.5C) with 

a similar pattern of response. 
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Figure 3.4. IL-1β (Α), IL-6 (B) and TNFα (C) production by peripheral blood-

derived monocytes cultured in the presence of mesangial cell matrix. Peripheral 

blood-derived monocytes (0.5 x 106 cells/ml) were incubated with mesangial cell matrix for 24 

hours. For positive and negative controls, monocytes were incubated in plastic wells with or 

without 10 μg/ml LPS respectively. The resulting conditioned medium was collected, spun and 

cytokines measured by ELISA. Results are mean + SEM of 4 experiments, each performed in 

quadruplicate. * p <0.001 vs. control. 
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Figure 3.5. IL-1β (A) and IL-6 (B) and TNFα (C) production by monocytes 

cultured in the presence of soluble matrix and its protein components. PBMCs (0.5 x 

106 cells/well) were incubated with solubilized mesangial cell matrix (100 μg/well) or its protein 

components (100 μg/well) for 24 hours. For positive and negative controls, monocytes were 

incubated in plastic wells with or without 10 μg/ml LPS respectively. The resulting conditioned 

medium was collected, spun and cytokines measured by ELISA. Results (mean + SD) are 

representative of 4 experiments, each performed in quadruplicate. *p <0.005 vs. control.    
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3.3.6. Effects of antibodies on cytokine production  

 

The secretion of cytokines by peripheral blood-derived monocytes was mimicked 

by incubation with anti-integrin antibodies. For example, incubation of monocytes in 

plastic culture plates with anti-VLA-4 (10 μg/ml) and anti-VLA-5 (5 μg/ml) antibodies 

increased IL-1β production compared to control monocytes in medium alone (Table 

3.1). Similarly, TNFα secretion was increased by both antibodies when compared to 

control.  
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Table 3.1. Production of cytokines by human macrophages exposed to anti-VLA-4 

(10 μg/ml) and anti-VLA-5 (5 μg/ml) antibodies for 24 hours. 

 

 

Antibody IL-1β (pg/ml) p value TNFα (pg/ml) p value 

Control 2.0 + 2.4 - 64.2 + 6.0 - 

anti-VLA-4 45.4 + 12.0 <0.005 2649.6 + 424.2 <0.0001 

anti-VLA-5 93.3 + 13.5 <0.0001 

<0.05* 

3551.7 + 458.4 <0.0001 

<0.005* 

 

 

Cytokines were measured in the conditioned medium by ELISA. Results are mean 

+SEM of 4 experiments, each performed in triplicate or quadruplicate. Statistical 

analysis was performed using a paired student’s t-test. p vs. control. *p vs. anti VLA-4. 
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3.3.7. Mesangial cell matrix stimulation of MMP release 

 

Incubation with mesangial matrix resulted in increased peripheral blood-derived 

monocyte MMP-9 secretion (Figure 3.6A). Densitometric analysis showed a significant 

2.4-fold rise in MMP-9 activity compared to control (Figure 3.6B). In contrast, matrix 

had no effect on the release of monocyte MMP-2 (data not shown). Addition of matrix 

proteins also led to increased activity of monocyte MMP-9. The response to fibronectin 

was dose-dependent (Figure 3.7).  
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Figure 3.6. Matrix metalloproteinase (MMP) released by monocytes cultured in the 

presence of mesangial cell matrix (A). Peripheral blood-derived monocytes (0.5 x 106 

cells/ml) were incubated with mesangial cell matrix for 24 hours in the absence of foetal 

calf serum. For controls, monocytes were incubated in plastic wells with or without 10 

μg/ml LPS. The resulting conditioned medium was collected, spun and analyzed by 

zymography. Lane 1, control; Lane 2, cell matrix; Lane 3, LPS. Results are 

representative of 5 experiments. Densitometric evaluation of zymograms (B) shows the 

relative change in metalloproteinase secretion compared to control (100%). 
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Figure 3.7. Matrix metalloproteinase (MMP) release by monocytes cultured in the 

presence of fibronectin (A). Peripheral blood-derived monocytes (0.5 x 106 cells/ml) 

were co-incubated with increasing concentrations of fibronectin for 24 hours in the 

absence of foetal calf serum. The resulting conditioned medium was subjected to 

zymography. Results are representative of 2 experiments. Densitometric evaluation of 

zymograms (B) shows the relative change in metalloproteinase secretion compared to 

control (100%). 
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3.3.8. Effect of matrix and soluble proteins on monocyte TIMP secretion 

 

Matrix did not stimulate peripheral blood-derived monocyte TIMP I or TIMP II 

secretion (Table 3.2), nor was there any effect seen with addition of fibronectin (data not 

shown). The effect of anti-VLA-4 and anti-VLA-5 antibodies on monocyte secretion of 

metalloproteinases or their inhibitors was not investigated. 
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Table 3.2. Release of tissue inhibitors of metalloproteinases by human macrophages 

incubated on plastic culture plates (control), with mesangial cell matrix, and LPS 

for 24 hours. 

 

 TIMP I (ng/ml) TIMP II (ng/ml) 

Control 16.7 + 3.8 848.1 + 126.0 

Matrix 14.3 + 1.3 725.5 + 102.1 

LPS 22.5 + 1.4 630.3 + 99.3 

 

 

TIMP I and II were measured in the conditioned medium by ELISA as described in the 

methods section. Results are mean + SEM of 4 experiments (TIMP I) and 3 experiments 

(TIMP II) each performed in quadruplicate.  
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3.4. DISCUSSION 

 

This study demonstrates that monocytes specifically bind to mesangial matrix 

and to its component proteins including fibronectin and to a lesser extent collagen type 

IV and laminin. Monocyte binding to whole matrix is mediated, at least in part by 

fibronectin. An increase in monocyte binding to mesangial matrix was shown to 

accompany the enhanced synthesis and secretion of fibronectin induced by cytokine pre-

stimulation of mesangial cells. Incubation of monocytes with mesangial matrix and 

individual matrix proteins led to the secretion of pro-inflammatory cytokines (IL-1β, IL-

6, and TNF-α) and to the activation of metalloproteinase (MMP-9). The release of 

MMP-9 was not associated with a change in production of tissue inhibitors of 

metalloproteinase indicating a net breakdown of matrix, thus exposing an increased 

potential for the binding of infiltrating monocytes. By adding radiolabelled thymidine to 

monocytes incubated with mesangial matrix it was possible to demonstrate that this 

increased secretion of cytokines and metalloproteinase was not associated with cell 

proliferation. These results therefore suggest that accumulation of mesangial matrix, 

particularly fibronectin, promotes monocyte entrapment and that binding to matrix 

proteins specifically stimulates monocyte secretion of inflammatory cytokines and 

matrix degrading metalloproteinase. Such interactions may have important implications 

in the pathogenesis of renal injury, particularly because the mechanisms by which 

macrophages are activated is known to determine their functional characteristics (Song, 

Ouyang et al. 2000). 
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Binding of monocytes to fibronectin is likely to be mediated by integrin 

receptors which are composed of the α and β subunits (Hynes 1992). Among these 

integrins, α4β1 (VLA-4) which binds to the CS1 and CS-5 regions of the IIICS domain 

of the fibronectin (Humphries, Komoriya et al. 1987; Mould, Komoriya et al. 1991) and 

α5β1 (VLA-5) which binds to the RGD sequence (Brown and Goodwin 1988; Brown, 

Phillips et al. 1989) are found on activated monocytes (Ferreira, Garcia-Pardo et al. 

1990; Hemler, Elices et al. 1990). The possible involvement of VLA-4, and VLA-5 was 

therefore investigated. Anti-VLA-4 and VLA-5 antibodies caused a marked inhibition of 

U937 and peripheral blood-derived monocyte adhesion to whole matrix, suggesting that 

both cells shared common binding mechanisms involving both integrins. However, 

neither antibody completely blocked the adhesion process thereby indicating that other 

integrins and matrix components including collagen and laminin may participate in this 

interaction. The demonstration of a common binding mechanism allowed us to use U937 

cells, which were more readily available than peripheral blood-derived monocytes, for 

binding studies although the latter were employed to examine the effects of binding on 

secretory function.  

Chronic glomerular diseases are characterised by the accumulation of 

extracellular matrix composed of proteins including collagens, laminin and fibronectin 

along with proteoglycans and glycosaminoglycans. In the healthy glomerulus, these 

components not only provide structural support for glomerular cells but also influence 

their behaviour (Border, Okuda et al. 1989). Fibronectin, one of the most abundant 

mesangial matrix proteins, has been shown to have chemotactic properties for 
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monocytes, macrophages and fibroblast, and to be mitogenic to fibroblasts and 

mesangial cells (Ruoslahti 1988). Since these results demonstrate that individual matrix 

components differ in their ability to bind and activate macrophages, it follows that the 

nature of disease-related changes in matrix composition might in turn influence the 

extent of macrophage accumulation within the diseased glomerulus and the secretory 

characteristics of these infiltrating cells. Such interactions could determine the outcome 

of an acute or chronic inflammatory process.  

Several animal and human studies suggest that monocytes/macrophages play a 

critical role in the initiation and progression of renal diseases. For example, in rats with 

remnant kidneys, macrophage accumulation was shown to strongly correlate with the 

progression of focal sclerosis suggesting that these cells may play a role in the scarring 

process (van Goor, Fidler et al. 1991). In humans, monocyte accumulation is seen in 

most forms of glomerulonephritis, including those associated with progressive fibrosis 

(Magil and Cohen 1989; Li, Hancock et al. 1990). Whilst monocyte infiltration may 

have beneficial functions, for example, promotion of the resolution of inflammation by 

apoptosis of infiltrating cells (Duffield, Erwig et al. 2000; Huynh, Fadok et al. 2002), 

several monocyte/macrophage secretory products may have a detrimental influence on 

the function of adjacent mesangial cells. These results demonstrate that binding of 

monocytes to whole matrix and matrix proteins, particularly fibronectin, enhances 

secretion of proinflammatory cytokines and matrix degrading metalloproteinases. These 

findings are in agreement with those of other investigators who have reported enhanced 

monocyte secretion of IL-1, IL-6, IL-8 and TNFα upon exposure of cells to matrix 
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proteins including fibronectin (Haskill, Johnson et al. 1988; Heinel, Singleton et al. 

1995; Mahnke, Bhardwaj et al. 1995; Takizawa, Nishinarita et al. 1995). For example, 

Takizawa et al demonstrated that addition of fibronectin to monocytes isolated from 

human plasma stimulated production of IL-1, IL-6 and TNFα (Takizawa, Nishinarita et 

al. 1995). There have also been reports of matrix proteins modulating secretion of 

metalloproteinases by various cells including fibroblast (Huhtala, Humphries et al. 1995) 

and keratinocytes (Larjava, Lyons et al. 1993). Studies by Martin et al have 

demonstrated that specific matrix components enhance secretion of MMP-2 and MMP-9 

by human mesangial cells and that membrane type metalloproteinase MTMMP, which is 

selectively induced by fibronectin, is important in this process (Martin, Eynstone et al. 

2001). The present study extends these findings by demonstrating that matrix produced 

by glomerular cells may also modulate the accumulation and activation of infiltrating 

inflammatory cells. Matrix-mediated effects may help to explain the changes in 

metalloproteinase to inhibitor ratios observed by Mené et al in co-culture experiments 

involving mesangial cells and monocytes (Mene, Caenazzo et al. 2001). 

 Since binding of both U937 and peripheral blood-derived monocytes to 

mesangial matrix components involved the integrins VLA-4 and VLA-5, an 

investigation into whether these molecules might be involved in signal transduction was 

carried out. Stimulation of peripheral blood-derived monocytes with either anti-VLA4 or 

anti-VLA5 antibodies mimicked the effects of matrix on cytokine production, as well as 

blocking monocyte binding to matrix. Studies in other cell types have shown similar 

effects, for example, activation of fibroblasts by a crosslinking anti-ICAM-1 antibody 
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(Clayton, Evans et al. 1998) and of fibrosarcoma cells by antibodies to α5, α6 and β1 

integrin subunits (Stanton, Gavrilovic et al. 1998) was associated with activation. Whilst 

the down stream events were not investigated in this study, in other experimental 

settings the binding of integrin components to matrix induces activation of 

phospholipases (Cybulsky, Carbonetto et al. 1993), kinase signalling pathways (Malik 

and Parsons 1996) and the AP-1 transcription factor (Yamada, Nikaido et al. 1991). 

Thus it is reasonable to propose that infiltrating monocytes may be activated by 

interactions with matrix components via integrin receptors. Monocyte responses may be 

influenced by pre-programming as has been observed following exposure to a variety of 

cytokines (Erwig, Kluth et al. 1998; Erwig, Stewart et al. 2000; Song, Ouyang et al. 

2000). Furthermore accumulation and disease-specific modification of matrix 

components may alter monocyte/macrophage behavior and thereby potentially influence 

disease outcome. For example, these results would suggest that accumulation of 

fibronectin enhances metalloproteinase production, without increased inhibitor activity, 

a situation that is likely to promote matrix degradation. Inhibition of monocyte responses 

by blockade of these signalling pathways represents a potential target for therapeutic 

intervention in human glomerular disease and has proved effective in recent animal 

studies (Allen, McHale et al. 1999). 

In summary, these results demonstrate that mesangial matrix plays a key role in 

the immobilization and activation of monocytes within the glomerulus. Since matrix 

proteins differ in their ability to modulate monocyte secretory functions, changes in 

matrix composition or organization in glomerular disease may influence the behavior of 
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infiltrating cells and thereby the outcome of the disease process. Better understanding of 

the potential importance of these processes may help in the design of treatment strategies 

for chronic glomerular diseases.
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CHAPTER 4 

MESANGIAL MATRIX-ACTIVATED MONOCYTES 

EXPRESS FUNCTIONAL SCAVENGER RECEPTORS 

AND ACCUMULATE INTRACELLULAR LIPID 
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4.1. INTRODUCTION 

 

Transendothelial migration of monocytes into the glomerular mesangium is a 

recognized early feature of glomerular injury in man and in experimental models of 

kidney disease (Brady 1993). These cells play a central role in orchestrating tissue 

inflammation and may be critical in determining whether the final outcome of an acute 

inflammatory glomerular lesion is complete resolution or permanent scarring (Duffield 

2003). Interactions between monocytes and extracellular structures encountered during 

the process of transmigration may play a critical role in determining the phenotype and 

therefore the behaviour of the activated tissue macrophage. As described in section 1.3, 

extracellular matrix is a highly ordered network of fibrous proteins and associated 

glycoproteins embedded in a hydrated ground substance of glycosaminoglycans and 

proteoglycans. It is recognised that matrix not only provides a structural framework, but 

also influences cellular behaviour. For example, integrin-mediated adhesion of 

monocytes to extracellular matrix may regulate expression of numerous inflammatory 

and immune response genes (de Fougerolles and Koteliansky 2002). The importance of 

this process is demonstrated by disease states thought to arise from dysregulation of 

matrix-integrin interactions (Campbell, Senior et al. 1987).  

In the previous chapter, it has been demonstrated that exposure of human 

monocytes to both intact glomerular matrix (and to its individual components) enhanced 

the production of a range of inflammatory cytokines and matrix-degrading 

metalloproteinases. However, these experiments did not conclusively demonstrate that 

such interactions induced monocyte to macrophage differentiation. The experiments 
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described in this chapter were designed to test the hypothesis that activation by 

mesangial matrix converts monocytes to a macrophage phenotype. The expression of 

three macrophage specific markers were studied: a) the peroxisomal proliferator-

activated receptor-γ (PPAR−γ), a nuclear receptor that acts as a transcriptional mediator 

for genes involved in lipid metabolism and adipogenesis (Moore, Rosen et al. 2001), b) 

CD36, a class B scavenger receptor and c) scavenger receptor class-A. Both these 

scavenger receptors are located in the plasma membrane of the macrophage and are 

involved in the cellular uptake of modified lipoproteins (Brown, Basu et al. 1980). Since 

unregulated uptake of modified lipoproteins is a characteristic of the tissue macrophage, 

the capacity of matrix-activated monocytes to accumulate intracellular lipid when 

exposed to acetylated low density lipoprotein (Ac-LDL), a scavenger receptor ligand 

was also tested. To further examine the role of matrix in foam cell formation, an 

assessment of the capacity of matrix to modify LDL in the absence of cells to produce 

oxidised LDL (ox-LDL), a naturally occurring scavenger receptor ligand identified in 

diseased glomeruli, was conducted. To confirm the relevance of these observations to 

human glomerular disease, human kidney biopsy sections from patients with 

inflammatory and non-inflammatory glomerular disease were stained for macrophage 

activation markers. These results demonstrate that mesangial cell matrix has the 

potential both to induce monocyte to macrophage maturation and to oxidise LDL, 

thereby indicating a likely modulatory role in glomerular inflammation and foam cell 

formation. It was also possible to demonstrate activated macrophages in glomeruli 

derived from patients with inflammatory glomerular disease.  
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4.3. RESULTS 

 

4.3.1. PPAR-γ expression by matrix-activated monocytes 

 

Whilst no PPAR-γ mRNA was detected by RT-PCR analysis of total RNA 

extracted from freshly isolated THP-1 monocytes, message was detectable within 24 

hours when cells were incubated with soluble mesangial matrix (500 μg/ml). Expression 

was maximal at 48 hours, persisting over at least 5 days and was comparable to that 

observed when cells were stimulated with PMA over a similar time period under 

identical experimental conditions (Figure 4.1). Increased expression of PPAR-γ protein 

within 24 hours of exposure of matrix stimulation was confirmed by Western analysis, 

with levels of expression being similar to those observed following PMA stimulation 

(Figure 4.2). No further increase in expression was observed when incubation was 

extended beyond 48 hours to 7 days.  
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Figure 4.1. Time-dependent expression of PPAR-γ mRNA by THP-1 monocytes. 

Monocytes were incubated with mesangial cell matrix (500 μg/mL) or PMA (125 nM) 

for up to 120 hours. A) PPAR-γ mRNA expression was examined by RT-PCR. B) 

Histogram showing analysis of mean ± SEM density of bands of PPAR-γ mRNA from 4 

experiments, normalised by subtracting BSA protein control and comparison with β-

actin mRNA. 
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Figure 4.2. Western analysis of PPAR-γ protein expression by THP-1 monocytes. 

Monocytes were incubated with 500 μg/mL mesangial cell matrix or PMA (125nM) for 

0, 6, 24 and 48 hours. Cells were lysed and subjected to SDS-PAGE and proteins 

transferred to nitrocellulose membrane. A) Western blot showing PPAR-γ detected using 

an anti-PPAR-γ antibody. B) Histogram showing mean ± SEM density of bands of 

PPAR-γ protein from quadruplicate wells, normalised by comparison with α-actin 

protein, and expressed as percentage of control (0 hours). *p<0.005 vs. Control. 
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4.3.2. CD36 expression by matrix-activated monocytes 

 

Enhanced expression of CD36 mRNA was detected by RT-PCR analysis of total 

RNA extracted from THP-1 monocytes exposed to soluble mesangial matrix (500 

μg/ml). An increase in message was detected after 48 hours of incubation, and was 

comparable with that observed when cells were stimulated with PMA for the same time 

period under identical experimental conditions (Figure 4.3). No further increase in 

expression was observed when incubation was extended beyond 120 hours to 7 days 

(data not shown). 
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Figure 4.3. Time-dependent expression of CD36 mRNA in response to mesangial 

matrix. 

Mesangial cell matrix (500 μg/mL) or PMA (125 nM) were incubated with monocytes 

for 0, 6, 48 and 120 hours. A) RT-PCR analysis of CD36 mRNA expression. B) 

Histogram showing analysis of mean ± SEM of CD36 mRNA bands from 4 

experiments, normalised by subtracting BSA protein control and comparison with β-

actin mRNA. Results are expressed as a percentage of control (0 hours). *p<0.005 vs. 

control. 
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4.3.3. Scavenger receptor expression by matrix-activated monocytes 

 

Scavenger receptor-A mRNA expression increased in a concentration-dependent 

manner when THP-1 monocytes were incubated with increasing concentrations of 

soluble matrix protein for 48 hours with a maximal response at 100 μg/ml (Figure 4.4). 

A time-dependent increase was observed with addition of 500 μg/ml matrix protein 

increasing up to 120 hours incubation (Figure 4.5), with no further change up to 7 days 

(data not shown). No expression was observed under baseline conditions prior to 

stimulation, neither did equivalent concentrations of BSA induce detectable scavenger 

receptor-A message, suggesting that the observed effect was specific.  
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Figure 4.4. Scavenger receptor A mRNA expression by THP-1 monocytes 

incubated in the presence of increasing mesangial matrix for 48 hours. 

Monocytes were incubated with increasing mesangial cell matrix concentrations of 0-

500 μg/mL or PMA (125 nM) for 48 hours. A) Scavenger receptor A mRNA expression 

examined by RT-PCR. B) Histogram of mean ± SEM density of scavenger receptor A 

mRNA bands from 4 experiments, normalised by comparison with β-actin mRNA, and 

expressed as percentage of results obtained when equal amounts of BSA were added. 

*p<0.005 vs. equivalent BSA control. 
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Figure 4.5. Time-dependent expression of scavenger receptor A mRNA in response 

to mesangial matrix. 

Mesangial cell matrix (500 μg/mL) or PMA (125 nM) were incubated with monocytes 

for 0, 6, 48 and 120 hours. A) RT-PCR analysis of scavenger receptor A mRNA 

expression. B) Histogram of mean ± SEM density of scavenger receptor A mRNA bands 

from 4 experiments, normalised by subtracting BSA protein control and comparison 

with β-actin mRNA. Expressed as a percentage of control (0 hours). *p<0.005 vs. 

control. 
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4.3.4. Uptake of modified lipoproteins by matrix-activated monocytes 

 

The presence of functional scavenger receptors was confirmed using flow 

cytometry in which incubation of matrix-activated monocytes with Dil-labelled Ac-LDL 

led to an increase in mean fluorescence intensity (MFI) (Figure 4.6). This effect was 

largely reversed by addition of an excess of unlabelled ligand. The MFI of THP-1 cells 

incubated with Dil-labelled Ac-LDL after exposure to matrix increased to 373±34.8% 

(p<0.005) as compared to cells exposed to BSA (100%). PMA pre-stimulation of 

monocytes, increased MFI to 423±55.5% (p<0.005). These increases in MFI induced by 

matrix-and PMA activation were inhibited by the addition of excess unlabelled Ac-LDL 

to 134±12.1% (p<0.001 vs. no excess of unlabelled lipoprotein) and to 170±16.1% (p 

<0.001) respectively, suggesting specific binding of Dil-labelled Ac-LDL to scavenger 

receptors.  

Incubation of monocytes with unlabelled Ac-LDL following stimulation by 

exposure to matrix for 120 hours led to intracellular accumulation of Oil Red O- stained 

lipid droplets (Figure 4.7A). Lipid uptake did not occur following BSA stimulation 

(Figure 4.7B). Prior exposure to PMA was also associated with intracellular lipid 

deposition but no intracellular lipid staining was observed when poly I was added with 

Ac-LDL following activation of monocytes by matrix or PMA.  
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Figure 4.6. Effects of matrix on Ac-LDL uptake by monocyte/macrophages. 

THP-1 monocytes were incubated with matrix (500 μg/mL) for 48 hours. BSA (500 

μg/mL) and PMA (125 nM) served as negative and positive controls, respectively. 

Monocytes were recovered and incubated for a further 3 hours with 10 μg/mL DiI-

labelled Ac-LDL in the presence or absence of an excess (XS) of unlabelled Ac-LDL 

(250 μg/mL). The mean fluorescence intensity (MFI) was calculated by subtracting the 

auto-fluorescence intensity from the observed fluorescence intensity of labeled cells. 

The histogram represents mean ± SEM MFI calculated from 4 experiments under the 

conditions shown, carried out in duplicate and expressed as percentage above BSA 

control (100%). *p<0.005 vs. BSA control, **p<0.001 vs. no excess unlabelled Ac-

LDL. 
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Figure 4.7. Visualisation of Ac-LDL uptake by THP-1 monocytes following 

exposure to mesangial matrix. 

THP-1 monocytes were incubated with A) mesangial matrix (500 μg/mL) for 120 hours, 

or (500 μg/mL) for 120 hours, or B) BSA (500 μg/mL, negative control). The cells were 

then incubated with 50 μg/mL Ac-LDL for 48 hours at 37oC, fixed and examined for 

lipid inclusions by Oil Red O staining. The results shown are typical of those observed 

in 3 separate experiments. 

 

 
 
 



 118

4.3.5. Oxidation of LDL by mesangial cell matrix  

 

Incubation of LDL with mesangial cell matrix in the absence of cells led to 

enhanced electrophoretic mobility of recovered lipoprotein on agarose gel (Figure 4.8). 

A similar shift in mobility was seen when LDL was exposed to copper sulphate, a 

powerful oxidising agent, but was blocked when the antioxidants EDTA (100 μM) and 

BHT (20 μM) were added, suggesting that matrix induces LDL oxidation. In contrast, 

incubation with BSA did not change the electrophoretic mobility of the lipoprotein. 
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Figure 4.8. Agarose gel electrophoresis demonstrating oxidation of LDL by 

mesangial matrix. 

Lane 1: Freshly isolated native LDL (negative control), Lane 2: LDL incubated with 

BSA protein (500μg/mL), Lane 3: LDL incubated with CuSO4 (10 μM, positive 

control), Lane 4: Matrix (500μg/mL) incubated with LDL, Lane 5: Matrix incubated 

with LDL and with the antioxidants EDTA (100 μM) and BHT (20 μM). LDL incubated 

with mesangial matrix had a mobility similar to that observed with the positive control 

(CuSO4). This effect was abolished by the addition of EDTA and BHT, indicating that 

matrix promotes LDL oxidation.  
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4.3.6. Identification of macrophage activation markers in human kidney biopsy 

material 

 

CD-68 positive cells were extremely difficult to identify in the normal kidney 

section and there was no staining for PPAR-γ or scavenger receptor. In contrast, all three 

markers were readily detected in the inflamed kidney, predominantly within the 

glomeruli (Figure 4.9). CD68 and scavenger receptor were located in a cytoplasmic 

distribution and PPAR-γ within nuclei in keeping with the cellular location of these 

markers.  
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Non-inflamed: CD68     Inflamed: CD68  
 

   
Non-inflamed: PPAR-γ    Inflamed: PPAR-γ  
 

   
Non-inflamed: Scavenger receptor   Inflamed: Scavenger receptor  
 
 
Figure 4.9. Staining of human kidney sections for macrophage activation markers.  

Sections of non-inflamed and inflamed human kidney were stained for the macrophage 

antigen CD-68 and for the activation markers PPAR-γ and Scavenger receptor. 
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4.4. DISCUSSION 

 

These results demonstrate that exposure of monocytes to mesangial cell matrix in 

vitro induces expression of PPAR-γ,  CD36 and scavenger receptor-A and promotes 

phagocytic activity, characteristics usually associated with a macrophage phenotype. 

This would suggest that conversion of infiltrating monocytes to mature tissue 

macrophages within the glomerular mesangium in vivo may not necessarily depend on 

the presence of mesangial cells, but may result from direct interactions with matrix 

components. While circulating monocytes are relatively inert, the activated tissue 

macrophage may take on a destructive role, inducing cell death by apoptosis and 

degrading extracellular matrix. Alternatively, these cells may facilitate repair by 

inducing cell proliferation and secretion of replacement matrix components (Duffield 

2003). Macrophages also play a key role in the phagocytosis of cellular debris, lipids 

and denatured proteins in inflamed tissue, a process that may result in the formation of 

foam cells. Foam cells are characteristically seen at sites of tissue injury, for example in 

the arterial intima in atherosclerosis, and are recognised in the kidney in damaged 

glomeruli (Moorhead 1991). Given the pivotal role of the monocyte/macrophage in 

modulating tissue injury and the diverse biological activities of these cells, these 

findings may have important implications in the context of glomerular disease as 

supported by the demonstration of both PPAR-γ and scavenger receptor expression in 

inflamed human kidney sections. Thus, matrix-mediated activation may influence the 

behaviour of monocytes that infiltrate the glomerular mesangium and thereby potentially 

modify the outcome of an inflammatory process. 
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It is recognised that the phenotypic state adopted by a tissue macrophage is 

influenced by the activation signals that naïve monocytes receive and that broadly, two 

distinct activated phenotypes can be identified. The classical activation pathway results 

from exposure to Th-1 type cytokines such as TNF-α, IL-1β and IL-6 and results in a 

macrophage with pro-inflammatory properties, capable of further generation of pro-

inflammatory cytokines and the degradation of normal and abnormal matrix components 

(Erwig, Kluth et al. 2001). Classically activated cells also possess the ability to take up 

modified lipoproteins, potentially resulting in the formation of lipid-laden foam cells. In 

contrast, the alternative activation pathway induced by Th-2 type cytokines such as IL-4 

and IL-13 produces a macrophage that generates anti-inflammatory cytokines, 

suppresses the synthesis of pro-inflammatory cytokines and is resistant to re-activation, 

thus being responsible for co-ordinating resolution of an inflammatory process (Duffield 

2003). Taken together with the previous chapter, which demonstrated that incubation of 

monocytes with mesangial cell matrix stimulates secretion of the pro-inflammatory 

cytokines IL-6, IL-1β and TNF-α as well as matrix-degrading metalloproteinases, it 

seems reasonable to conclude that mesangial cell matrix activates macrophages via the 

classical pathway.  

In late 2005 the Th-1 type and Th-2 paradigm was further simplified. Monocytes 

primed by Th-1 type cytokines, which promote differentiation into proatherogenic 

‘Classical’ macrophages were termed M1 macrophages, while those primed by Th-2 

type cytokines, which lead to  an “Alternative” anti-inflammatory macrophage 

phenotype, were termed M2 macrophages (Mantovani, Sica et al. 2005). Functional 
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polarization of macrophages into M1 or M2 cells was deemed as more operationally 

useful and provided a simplified conceptual framework describing the plasticity of 

mononuclear phagocytes (Mantovani, Sica et al. 2004). Genetic approaches have begun 

to shed new light on mechanisms underlying macrophage differentiation and attempts to 

dissect the actual in vivo significance of their polarization are currently being 

investigated (Rauh, Ho et al. 2005; Biswas and Mantovani 2010). 

These findings are highly relevant to the fate of monocytes that undergo 

transmigration to become tissue macrophages, but not to cells that undergo reverse-

transmigration since they adopt the phenotype of an immature or mature dendritic cell 

(depending on the absence or presence of inflammatory stimuli respectively) (Randolph, 

Beaulieu et al. 1998).  

Other macrophage-specific markers which have been previously explored by my 

colleagues included CD69 and the HLA-DR antigens (Chana, Martin et al. 2003). 

However it was discovered that both markers were expressed at low levels on THP-1 

monocytes with no significant up-regulation occurring following stimulation with PMA, 

an accepted and potent activator of monocytes. Other investigators have observed that 

HLA-DR expression varies with the source of the macrophage, such that 15% of 

peritoneal macrophages express the antigen compared to 50% of spleen and thymus-

derived cells (Lewis, Norris et al. 1990). Another potential candidate was Mac-1, a 

member of the β2 integrin family also known as CD11b/CD18, however, this cell 

surface adhesion receptor proved not to be specific to macrophages and was also 

expressed at low levels by freshly isolated monocytes as demonstrated by other workers 
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(Miller, Bainton et al. 1987). PPAR-γ expression proved to be a more useful indicator 

since this intracellular receptor showed very low levels of expression in monocytes, but 

is strongly induced during their differentiation into mature macrophages, suggesting that 

it may be involved in the differentiation process. In addition, PPAR-γ has been 

implicated in the modulation of several macrophage functions including the regulation 

of pro-inflammatory activities and stimulation of ox-LDL uptake further strengthening 

the use of this factor as a macrophage marker (Moore, Fitzgerald et al. 2001). PPAR-γ is 

also abundantly expressed in lesions such as atherosclerotic plaques where formation of 

foam cells is observed (Tontonoz, Nagy et al. 1998). It should be emphasised that 

PPAR-γ was used simply as a macrophage marker in these studies and that ligand-

induced activation of this receptor was not examined. It seems likely that other 

signalling pathways are activated by matrix-monocyte interactions, particularly since 

PPAR-γ activation does not explain the increase in cytokine production that has 

previously been reported (Chana, Martin et al. 2003).  

Scavenger receptor-A is a macrophage-specific cell surface protein that 

specifically binds and internalises oxidised and chemically modified LDL particles, 

similar to the class B scavenger receptor; CD36, which also bind modified forms of LDL 

(Brown, Basu et al. 1980). Scavenger receptor expression is restricted to macrophages 

thereby providing a reliable marker for the purpose of these studies. Scavenger receptor-

A has been implicated in mediating a variety macrophage functions, including 

intracellular signalling, endocytosis, adhesion and phagocytosis. Unlike uptake of native 

LDL via the LDL receptor, which is tightly controlled, scavenger receptor-A mediated 
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uptake of modified lipoprotein is not regulated by intracellular cholesterol levels and can 

therefore potentially lead to intracellular cholesterol accumulation and the formation of 

foam cells (Gough, Greaves et al. 1999). The class B scavenger receptor CD36 has also 

been implicated in the process of lipid accumulation in macrophages and serves as an 

adhesion receptor on macrophages for matrix components such as collagen and 

thrombospondin (Tandon, Kralisz et al. 1989). 

In keeping with the changes in lipoprotein receptor expression observed, matrix-

activated monocytes accumulated intracellular lipid when incubated with Ac-LDL, a 

synthetic scavenger receptor ligand, as demonstrated by intracellular Oil Red O staining. 

This phagocytic capacity was further confirmed by flow cytometry of matrix-activated 

monocytes exposed to Dil-labelled Ac-LDL. Uptake of Ac-LDL was shown to be 

specific, since it could be inhibited by addition of an excess of unlabelled acetylated 

lipoprotein, thus confirming receptor involvement. Induction of phagocytic activity was 

also observed following PMA-mediated activation, but not when an irrelevant protein 

(BSA) was added.  

Lipoproteins, including LDL, infiltrate the normal mesangium and are found 

deposited in diseased glomeruli (Wheeler and Chana 1993). Having previously shown 

that mesangial cells oxidise LDL in vitro (Wheeler, Chana et al. 1994), It has been 

demonstrated here that exposure of LDL to mesangial matrix has a similar effect. Thus, 

not only does matrix exposure induce a phagocytic macrophage phenotype in 

monocytes, but also converts LDL to an appropriate scavenger receptor ligand thereby 

potentially contributing to the development of foam cells. The mechanisms by which 

matrix promotes LDL oxidation were not explored but may involve entrapment of 
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lipoprotein by glycosaminoglycans, thereby rendering particles more susceptible to the 

effects of reactive oxidative species (Abuja 2002). 

In conclusion, mesangial matrix has the capacity to convert monocytes to 

macrophages displaying characteristics associated with a classically activated 

phenotype. By inducing macrophage scavenger receptor expression and converting LDL 

to an oxidised product, matrix may also play a key role in the formation of foam cells 

within the glomerular mesangium. The impact of changes in matrix composition on 

these interactions and the potential for such changes to modify the outcome of an 

inflammatory process within the glomerulus warrant further investigation. 
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5.1. RESEARCH QUESTIONS ADDRESSED IN THIS THESIS 
 

Infiltration of mononuclear cells into the mesangium and their differentiation are 

recognized as an early event in many diseases that ultimately lead to chronic kidney 

failure. A variety of factors are likely to play key roles in orchestrating monocyte influx 

and in determining the phenotype that the infiltrating monocytes ultimately adopt. In 

particular, monocyte interactions with components of mesangial matrix may play a key 

role in these processes. 

The work presented in this thesis set out to dissect the nature of the interaction 

between monocytes and mesangial cell matrix and the resulting changes in monocyte 

phenotype. A representative matrix protein component, namely Fibronectin, which is up-

regulated when mesangial cells are exposed to TGF-β and TNF-α (Chana and Wheeler 

1999) was used to conduct matrix binding and blocking studies to examine the extent to 

which matrix exposure modified cytokine, MMP and TIMP production by monocytes. 

Whole matrix, as well as other matrix protein components namely Collagen type IV and 

Laminin were also examined for their effects on cytokine production. 

To address the extent of monocyte differentiation into macrophages upon 

exposure to mesangial cell matrix, one challenge was the identification of a suitably 

robust marker of monocyte to macrophage conversion. After a thorough literature search 

three reliable macrophage specific markers were studied: a) PPAR−γ, b) CD36 and c) 

Scavenger receptor class-A.  

Finally since LDL may play a central role in the pathogenesis of 

glomerulosclerosis it was assessed whether this lipoprotein might become oxidized in 
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the mesangium by exposure to matrix, thereby becoming a ligand for uptake via 

macrophage scavenger receptors and promoting foam cell formation.  

 

5.2. LIMITATIONS OF THE EXPERIMENTAL WORK  

 
5.2.1. Monocyte Binding Studies 

 

From earlier experiments by our group (Chana and Wheeler 1999) it has 

demonstrated that exposure of mesangial cells to LDL stimulates the production of the 

monocyte chemoattractant MCP-1, indicating that the presence of LDL within the 

injured glomerular mesangium might promote monocyte accumulation. It was also 

demonstrated that LDL increases the synthesis of the matrix component fibronectin by 

mesangial cells, thus providing an additional factor by which monocytes might be 

retained. In the experiments described in this thesis, this work was taken forward by 

examining ligand-integrin interactions involving fibronectin and monocytes. One 

criticism is that most of these experiments were based on a monocyte cell line. However, 

although U937 monocytes were used in the earlier experiments, these data were 

strengthened by using the same blocking antibodies in experiments using whole matrix 

and human PBMCs, and also found a decrease in monocyte adhesion to matrix through 

the VLA-4 and VLA-5 integrin receptors. When examining the resulting secretory 

behaviour of monocytes upon binding to whole matrix and individual matrix proteins 

PBMCs were also used in some of these experiments. It can therefore be accepted that 

the U937 cell line provided an appropriate model on which to base these experiments. 
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Ideally it would have been possible to extract individual component proteins of 

mesangial matrix. However this would have required huge amounts of matrix and a 

complex extraction process which would not have guaranteed pure protein components. 

The other option was to qualitatively and quantitatively define the components of 

mesangial cell matrix. Although attempts to do this were investigated, it was not a 

feasible option given the focus of these investigations. Instead, a decision to use an equal 

volume of the three major matrix proteins was taken, namely Collagen Type IV, 

Fibronectin and Laminin and make a comparison with whole matrix when looking at 

changes in inflammatory cytokine secretory behaviour and activation of MMP-9 and 

TIMPs by PBMCs.  

Since experiments involving cytokine and MMP secretion and TIMP activation 

were performed at a single time-point of 24 hours, the possibility that at later time 

points, matrix activated macrophages lose their pro-inflammatory capacity, and take on 

the alternatively activated anti-inflammatory phenotype, cannot be excluded. In vivo, 

both cell phenotypes are likely to be present in inflamed tissue and the balance between 

them may be critical in determining the extent of subsequent fibrosis. It is also possible 

that a classically-activated macrophage programmed by exposure to matrix does not 

respond to the signals usually associated with the alternative activation pathway, 

potentially resulting in an uncontrolled inflammatory response with limited subsequent 

tissue repair (Duffield 2003). Further time-points up to 7 days may prove useful in 

answering this question. 
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5.2.2. Monocyte Activation Studies 

 

When designing these experiments one challenge was the identification of a 

suitably robust marker of monocyte to macrophage conversion. The three macrophage 

specific markers chosen were a) PPAR-γ, b) CD36 and c) Scavenger receptor class-A. 

MAC-1 was considered but was abandoned due to there being low levels of expression 

on freshly isolated monocytes, as also demonstrated by others (Bainton, Miller et al. 

1987; Cifarelli, Libman et al. 2007; Yakubenko, Belevych et al. 2008).  

The observed changes in macrophage specific markers following matrix 

interaction were reproduced using the THP-1 monocyte cell line supplied by two 

companies (ECACC and ATCC) both of which claim that these cells differentiate into 

macrophages. In addition, a number of published studies appear to support the 

differentiation of this cell line (Tsuchiya, Yamabe et al. 1980; Kritharides, Christian et 

al. 1998; Kim, Studer et al. 2008). Taking into account the available literature and 

discussions with experts working in the field of inflammation, it can be accepted that 

these cells provided a reasonable model for these experiments. 

To further validate the model, studies comparing the response of human 

peripheral blood monocytes and THP-1 cells to mesangial matrix assessing the 

production of inflammatory cytokines and MMP-9 were performed. These studies show 

almost identical patterns of induction suggesting that the two cell types show similar 

responsiveness. Furthermore, previous work by our group has demonstrated similarities 
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between monocyte cell lines and cells isolated from peripheral blood in terms of surface 

markers and binding characteristics (Wheeler, Chana et al. 1994).  

 

5.2.3. Disease Specific Matrix Modification 

 

Matrix elaborated by healthy mesangial cells were used, however this did not 

take account of the fact that disease-specific matrix modification may influence 

monocyte activation, since there is strong evidence to suggest that monocyte-

macrophage differentiation is influenced by the nature of the matrix proteins (Laouar, 

Collart et al. 1999) For example, matrix glycation that occurs in diabetes mellitus 

influences the balance between matrix synthesis and degradation by mesangial cells, 

promoting accumulation (Schleicher and Olgemoller 1992) and may also affect 

monocyte to macrophage differentiation. Indeed many studies have shown that non-

enzymatically glycated matrix occurring in diabetes influences monocyte to macrophage 

differentiation (Jacob, Shastry et al. 2001; Min, Lyons et al. 2009). A key matrix protein, 

collagen type 1 when non-enzymatically glycated was shown to accelerate monocyte to 

macrophage differentiation, leading to foam cell formation upon interaction with 

oxidised LDL (Jacob, Shastry et al. 2001). Since mesangial cell matrix may be 

particularly prone to glycation as a result of its prolonged lifespan, an extension to this 

work would be to investigate various matrix modifications on monocyte differentiation 

such as non-enzymatic glycation. 
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5.2.4. Mesangial Cell Matrix Sequesters Cytokines and Growth Factors 

 

The possibility that these results are at least in part explained by retention of low 

concentrations of cytokines within the matrix material cannot be ruled out. More 

detailed experiments investigating the ability of matrix to sequester growth factors and 

cytokines would be the next logical step in investigating the effects on monocyte 

behaviour. For example investigating the effects of matrix impregnated with TGF-β, 

matrix has been shown to sequester this growth factor and it has been shown to play an 

important role in matrix production. (Gambaro and Baggio 1998).  

 

5.2.5. Scavenger receptor: Protein Level Expression 

 

Experiments were limited to examining the expression of scavenger receptors at 

the message level without going on to provide protein expression data as was the case 

with PPAR-γ expression. However, up-regulation of functional scavenger receptors in 

the lipoprotein uptake studies was demonstrated and it is unlikely that further extending 

these studies to examine scavenger receptor expression at the protein level would have 

changed the conclusions.  

 

5.3. IMPLICATIONS OF MAJOR FINDINGS 

 

The work presented in this thesis help us to better understand how matrix 

components contribute to changes in monocyte phenotype. Chapter 3 demonstrates that 

mesangial matrix plays a key role in the immobilization and activation of monocytes 
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within the glomerulus. These results would also suggest that accumulation of fibronectin 

enhances metalloproteinase production, without increased inhibitor activity, a situation 

that is likely to promote matrix degradation.  

In Chapter 4, initial findings were further strengthened by demonstrating that 

mesangial matrix has the capacity to convert monocytes to macrophages displaying 

characteristics associated with a classically activated phenotype. Since lipoproteins, 

including LDL, infiltrate the normal mesangium and are found deposited in diseased 

glomeruli (Wheeler and Chana 1993) mesangial cell matrix may play a key role in the 

formation of foam cells within the glomerular mesangium through its capacity to oxidise 

LDL as well as stimulate monocyte to macrophage differentiation. 

Thus it has been demonstrated that interactions between mesangial matrix 

components and infiltrating monocytes may play a key role in the progression of 

glomerular injury.  

 

5.4. POTENTIAL THERAPEUTIC IMPLICATIONS 

 

 Interactions between adhesion molecules and infiltrating macrophages have been 

successfully blocked and could serve as targets for therapeutic interventions (Adler and 

Brady 1999; Allen, McHale et al. 1999; Chana and Wheeler 1999; Cook, Khan et al. 

2002). The humanized version of this anti-α4 monoclonal antibody known as 

Natalizumab has been used successfully in multicenter double-blind controlled studies in 

Crohn's disease and multiple sclerosis (Ghosh, Goldin et al. 2003; Miller, Khan et al. 

2003; Miller, Soon et al. 2007; Targan, Feagan et al. 2007). Despite there being adverse 
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reactions in some patients to this drug it was given approval by the FDA as its clinical 

benefits outweighed the risks involved (Ransohoff 2010; Steiner 2010). It would be interesting 

to see the effects of this drug on patients suffering from glomerulosclerosis. 

The beta-2 integrins include CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-

1/Complement receptor 3). A humanized monoclonal antibody to CD18 known as 

Efalizumab, which blocks CD11a/CD18 and CD11b/CD18 has been reported to reduce 

infiltrating leukocytes and improve vasculitic ulcers in patients with systemic vasculitis 

(Lockwood, Elliott et al. 1999), however ten years on Efalizumab has been withdrawn 

from the market as it was associated in some cases with fatal brain infections (Major 

2010). Inhibition of monocyte responses by blockade of these signalling pathways 

represents a potential target for therapeutic intervention in human glomerular disease. 

 

5.5. CONCLUSION 
 

In summary, enhanced monocyte adhesion to mesangial cell matrix results in 

monocyte retention, activation and differentiation within the glomerular mesangium. In 

the presence of LDL, macrophages are likely to accumulate lipid to form foam cells. 

Inhibition of monocyte-matrix interactions represents a potential therapeutic intervention 

that may prove protective in the setting of kidney disease. . 
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