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Abstract 

The aim of the thesis was to examine how Ca2+ activates the ERK pathway and the 

contribution of Ca2+ released from intracellular stores in physiological and 

pathophysiological conditions using isolated nerve terminals (synaptosomes) in a 

presynaptic model. The Ca2+-dependent phosphorylation/activation of ERK1 and ERK2 

stimulated by depolarisation of the plasma membrane or by Ca2+ influx mediated by the 

ionophore ionomycin was significantly reduced by the removal of external Ca2+. 

Intrasynaptosomal Ca2+ contribution to the Ca2+-dependent component of ERK1 and 

ERK2 phosphorylation/activation was indicated by the depletion of intrasynaptosomal 

Ca2+ or inhibition of the smooth endoplasmic reticulum Ca2+-ATPase pump. Two main 

pathways were found to lead to the release of Ca2+ from intrasynaptosomal stores. 

Firstly, external Ca2+ influx directly activated ryanodine receptors (RyRs) to mediate 

Ca2+-induced Ca2+ release (CICR). Secondly, Ca2+ influx or activation of GPCRs 

coupled to Gq/11 activated phospholipase C (PLC) to effect PIP2 metabolism and IP3 

production, with consequent activation of IP3-induced Ca2+ release (IPCR). The 

activation of group I metabotropic glutamate receptor (mGluR1/5) stimulation 

supported IPCR. Intriguingly, inhibition of Ca2+ influx through voltage-dependent 

calcium channels (VDCCs) by stimulating GABAB, group III mGluRs, 5-HT1A and A1 

receptors was suppressed by prior depletion of the smooth endoplasmic reticulum. 

Mitochondria and acidic compartments also appear to store Ca2+ intrasynaptosomally, 

with mitochondrial depolarisation resulting in a transient increase in ERK1 and ERK2 

phosphorylation/activation. Finally, a pathophysiological model of nerve terminal 

ischemia showed that intrasynaptosomal Ca2+ release contributes to the Ca2+-dependent 

component of phosphorylation/activation of ERK1 and ERK2 occurring when Na+/K+-

ATPase is inhibited. In conclusion, extracellular Ca2+ influx and intracellular Ca2+ store 

release together support Ca2+ mediated stimulation of the ERK pathway in 
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synaptosomes. This has important implications in the cross-talk of signalling pathways 

to ERK1 and ERK2 phosphorylation/activation and neurotransmitter release from nerve 

terminals in physiological and pathophysiological conditions.  
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1. Introduction 

A chemical synapse is structurally a presynaptic nerve terminal, a synaptic cleft and a 

postsynaptic membrane. Chemical synapses are able to send signals from the 

presynaptic terminal to the postsynaptic membrane by releasing a neurotransmitter that 

diffuses across the synaptic cleft and activates the corresponding receptor at the 

postsynaptic membrane. Accordingly the regulation of neurotransmitter release from the 

presynaptic nerve terminal is paramount to ensure the postsynaptic membrane is 

activated to the degree intended. The presynaptic nerve terminal regulates 

neurotransmitter release by storing the neurotransmitter in small synaptic vesicles 

(SSVs). Consequently, the release of neurotransmitter into the synaptic cleft can only 

occur when SSVs fuse with the plasma membrane of the presynaptic nerve terminal. 

This fusion step of the two plasma membranes of SSVs and presynaptic nerve terminal 

requires an energy barrier to be overcome.  

 

When an action potential arrives at the presynaptic nerve terminals it opens the Na+ 

channels that allow Na+ entry into the cytosol causing depolarisation. Most importantly 

depolarisation of the plasma membrane activates voltage-dependent calcium channels 

(VDCCs) causing influx of calcium (Ca2+) ions into the cytosol. Depolarisation is 

terminated by the inactivation of the Na+ channels followed by efflux of K+ ions 

through K+ channels which returns the plasma membrane to its resting state.  

 

The influx of Ca2+ plays a critical role in the mobilisation, docking, priming and fusion 

of SSVs, this is a process known as exocytosis. Following exocytosis Ca2+ also plays a 

critical role in a process of initiation, curvature of the vesicle, scission of the budding 

vesicle from the plasma membrane and uncoating of adaptor proteins occurs which is 

known as endocytosis.  
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The synaptic signal can be boosted by facilitating neurotransmitter release and 

diminished by inhibiting neurotransmitter release processes known as neuromodulation. 

There are numerous sites of neuromodulation in the processes of depolarisation, 

exocytosis and endocytosis. Depolarisation can be modulated by the activation or 

inhibition of the K+ channels which leads to the increase or decrease of nerve terminal 

excitability and thereby alteration of Ca2+ influx. Furthermore, direct and indirect 

modulation of VDCCs by presynaptic receptors and signalling cascades regulate the 

level of Ca2+ influx. This is important as it has great effect on the downstream processes 

of exocytosis and endocytosis. This system allows for modulation at multiple sites and 

integrates signalling of numerous signalling cascades involving kinases and 

phosphatases that can regulate the release of neurotransmitter from the presynaptic 

nerve terminals.  

 

1.1. Neurotransmitter Release  

1.1.1. Exocytosis 

In the nerve terminals SSVs are compartmentalised into distinct juxtapositioned pools. 

The ready-releasable pool (RRP) contains SSVs that are docked and primed and ready 

to undergo the fusion process. The reserve pool (RP) is important in sustaining 

neurotransmitter release upon repetitive stimulation. Finally the largest pool of SSVs is 

the resting pool that could be involved in spontaneous release of neurotransmitter but  is 

not involved in the Ca2+-dependent release (Fredj & Burrone, 2009). Together the RRP 

and RP vesicle pools are referred to as the recyclable pools as only the SSVs from these 

two pools can be mobilised and release neurotransmitter in a Ca2+-dependent manner. 

Upon depolarisation the SSVs in the RRP exocytose but the SSVs in the RP have to be 

mobilised, docked and primed before they can fuse with the membrane.  
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The mobilisation of SSVs from the RP to the RRP occurs through the dissociation of 

SSVs from actin filaments. When the nerve terminals are in the resting state the SSVs in 

the RP are tethered to actin filaments by synapsins. There are three forms of synapsin I, 

II and III of which synapsin I and II are the most abundant in the presynaptic nerve 

terminals. At the presynaptic terminals synapsin I is localised on the cytoplasmic side of 

the SSVs membranes (De et al., 1983) and it is the ability of synapsin I to interact with 

actin and SSV membranes that tethers the SSVs and forms the RP (Petrucci & Morrow, 

1987). Synapsin I interacts with the SSVs and cytoskeletal elements in a 

phosphorylation-dependent manner thereby allowing for the modulation of the tethering 

of the SSVs to actin (Sihra et al., 1989). The importance of synapsin I and II 

maintaining the RP has been shown in synapsin I or synapsin I and II knockout mice in 

which the size and mobilisation of the RP was impaired while endocytosis and 

repriming of SSVs were unaffected (Ryan et al., 1996;Chi et al., 2001;Lonart & 

Simsek-Duran, 2006). In other studies, it has been shown that Ca2+ influx and brain 

derived neurotrophic factor (BDNF) are able to enhance neurotransmitter release 

through increased synapsin I phosphorylation (Nichols et al., 1990;Jovanovic et al., 

1996;Jovanovic et al., 2000). 

 

Function of synapsin I can be modulated through seven sites that can be phosphorylated 

and dephosphorylated. At the N terminus Ser 9 (site 1) is phosphorylated by cAMP-

dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I 

(CaMKI). Furthermore, Ser 62 (site 4) and Ser 67 (site 5) are also localised on the N 

terminus and are phosphorylated by extracellular signal-regulated kinase 1 & 2 (ERK1 

& ERK2). At the C terminus Ser 566 (site 2) and Ser 603 (site 3) are phosphorylated by 

CaMKII. Ser 551 (site 6) is phosphorylated by ERK1 and ERK2 and cyclin-dependent 

kinase 5 (CDK5) while Ser 553 (site 7) is phosphorylated by CDK5 (Matsubara et al., 
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1996). Sites 1, 2 and 3 are dephosphorylated by protein phosphatase 2A (PP2A) while 

sites 4, 5 and 6 are dephosphorylated by calcineurin (Jovanovic et al., 2001). 

 

It has generally been observed that phosphorylation of synapsin I reduces its affinity for 

actin and/or SSVs membrane thus making more SSVs available for exocytosis. While 

dephosphorylation of synapsin I has the opposing effect and enhances its affinity for 

actin or SSVs membrane and thereby decreases SSV availability for exocytosis 

(Jovanovic et al., 2001). Depolarisation of the nerve terminal causes Ca2+ influx that can 

result in the activation of CaM Kinases, ERK1 and ERK2 and CDK5 which can 

phosphorylate synapsin I at their target sites. However, it is the strength of the 

stimulation that determines the phosphorylation state of synapsin I at the 

phosphorylation sites. It has been shown that CaM Kinases phosphorylate sites 1, 2 and 

3 better at weaker stimulations but site 3 can be phosphorylated by stronger 

stimulations. The ERK kinases phosphorylate sites 4, 5 and 6 at weaker stimulations but 

at stronger stimulations these sites are dephosphorylated by calcineurin (Chi et al., 

2003). Consequently, it seems that only CaM Kinases phosphorylation at sites 1, 2, 3 

operates to reduce synapsin I affinity for actin filaments and SSV membranes and 

thereby increase SSVs availability for exocytosis during normal (weak) depolarisation 

(Benfenati et al., 1992). Although ERK1 and ERK2 phosphorylate synapsin I at sites 4, 

5 (but not at site 6) results in the reduction of synapsin I affinity for actin filaments. 

During strong depolarisation it is thought calcineurin activation leads to sites 4 and 5 

being dephosphorylated and thereby increases synapsin I affinity for actin filaments.  

 

After mobilisation, the SSVs are docked at the active zone by a process that involves 

bringing SSVs in close proximity to the plasma membrane and VDCCs. The active zone 

is organised by cytoskeletal multi domain proteins such as piccolo, bassoon and Rab3A 
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interacting molecule (RIM 1α). Piccolo and bassoon knockout mice show that these 

proteins are important in the function of maintaining SSV clusters but have no effect on 

regulating neurotransmitter release.  

 

RIM1α and RIM2α knockout study shows that the RIM proteins are essential for 

neurotransmitter release and that they compensate each other’s function (Schoch et al., 

2006). The reason for this is that RIM1α is able to interact with various proteins that are 

necessary for neurotransmitter release. RIM1α has been shown to interact directly with 

the β subunit of VDCCs that mediates Ca2+ influx thus anchor vesicles near the VDCCs 

(Kiyonaka et al., 2007). There are some reports that suggest rabphilin and RIMs are 

effectors for Rab3A (Deak et al., 2006;Foletti et al., 2001). Rab3A is highly 

concentrated on the membranes of SSVs and is a key protein (Geppert et al., 1994). The 

cycling between the Rab3A-GTP form found on the vesicle membrane, and cytosolic 

Rab3A-GDP form, is a crucial step prior to exocytosis (Stahl et al., 1994). However, 

other studies argue that rabphilin and RIM are not specific effectors of Rab3A (Fukuda, 

2004). Interestingly, synapsin I is another effector for Rab3A (Giovedi et al., 2004), 

with the two proteins mutually modulating each other’s function (Lonart & Simsek-

Duran, 2006). 

 

Furthermore, RIM 1α interacts with Munc 13-1 through the highly conserved zinc 

finger domains (Koushika et al., 2001).  Munc13-1 is a brain-specific presynaptic 

phorbol ester receptor (Augustin et al., 1999) and is known to be critical in the 

maturation of SSVs, as neurotransmitter release from Munc13-1 deficient neurons is 

abolished when triggered by action potentials (Augustin et al., 1999). Furthermore, 

Munc 13-1 has a C2B domain that is able to bind to two Ca2+ ions which facilitates 

neurotransmitter release (Shin et al., 2010). This interaction between RIM and Munc13 
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promotes Munc 13-1 interaction with another key protein in the docking of SSVs 

known as Munc 18-1. Its importance to neurotransmitter release is highlighted by 

studies which have shown a complete abolition of neurotransmitter release following 

the deletion of Munc18-1 at the synapse (Verhage et al., 2000).  

 

After docking the SSVs undergo priming which makes them fusion competent and this 

involves soluble N-ethylmaleimide sensitive factor attachment protein receptor 

(SNARE) proteins that form a tight four-helix SNARE complex. There are three 

SNARE proteins thought to be involved in the fusion competence of SSVs which 

include syntaxin 1, 25kDa synaptosomal-associated protein (SNAP-25) and 

synaptobrevin (also known as VAMP). Syntaxin 1 and SNAP25 are plasma membrane 

bound and are referred to as Qa, Qb-Qc – SNAREs respectively while synaptobrevin is 

bound to the vesicle membrane and is referred to as R-SNARE. This classification is 

based upon the critical contribution of three glutamines (Q) from syntaxin 1 and 

SNAP25 and one arginine (R) from synaptobrevin to the formation of a tight four-helix 

SNARE complex (Rizo & Sudhof, 2002). Studies conducted using tetanus and 

botulinum-B neurotoxins show that disruption to the formation of the tight four helix 

SNARE complex results in the inhibition of the neurotransmitter release (Schiavo et al., 

1992) (Lawrence & Dolly, 2002). 

 

It is thought that the priming sequence is initiated by the interaction between Munc 13-1 

and Munc 18-1. In the resting state Munc 18-1 is bound to syntaxin 1 which conforms 

syntaxin 1 into a ‘closed’ state. Munc 13-1 interaction with Munc 18-1 leads to the 

dissociation of Munc18 and syntaxin 1 complex which brings about a conformational 

change in syntaxin 1 from a ‘closed’ state to an ‘open’ state (Rizo & Sudhof, 2002) thus 

making it possible for syntaxin 1 to interact with the other SNARE proteins. The 
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SNARE proteins can interact with other SNARE proteins through the SNARE motif 

that they possess. Syntaxin 1 which has a single SNARE motif, SNAP25 which has two 

SNARE motifs and synaptobrevin with a single SNARE motif. It is important in 

understanding how the SNARE complex forms; syntaxin 1, when it is in its ‘open’ 

formation has a favourable interaction with SNAP25 to form a binary product. The 

binary complex allows for the R-SNARE to interact with the Q-SNAREs which forms a 

loose SNARE complex (Rizo & Sudhof, 2002;Jahn & Scheller, 2006). It is the 

subsequent regulatory interactions with proteins such as complexins and synaptotagmin 

that help to form the tight four helix SNARE complex (Rizo & Sudhof, 2002;Jahn & 

Scheller, 2006;Tang et al., 2006).  

 

After the SSVs are primed, depolarisation of the presynaptic membrane causes an influx 

of Ca2+ through VDCC which leads to the SSVs fusing with the plasma membrane to 

release neurotransmitter into the synaptic cleft. The exact mechanism as to how fusion 

occurs is still unclear and it is also debated whether SSVs only undergo full-fusion or 

also can partially fuse through a ‘kiss-and-run’ mechanism (Gandhi & Stevens, 2003;He 

et al., 2006).  

 

There are numerous proteins that have been implicated in controlling synaptic fusion 

including synaptotagmins and complexins. Synaptotagmins have the N-terminus in the 

SSV membrane with two C-terminal C2 domains that are known as C2A and C2B 

facing the cytosol (Perin et al., 1991). There are 15 isoforms of synaptotagmins of 

which only synaptotagmin 1, 2, 3, 5, 6, 7, 9 and 10 are capable of binding to Ca2+. 

These synaptotagmins are thought to act as Ca2+ sensors through their two binding sites 

for Ca2+ at the C2 domains that interact with both SNAREs and acidic phospholipids in 

a Ca2+ dependent manner (Pang et al., 2006). Synaptotagmin 1, 2 and 9 are found on the 
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SSV membrane and is thought to play the triggering role in fast/synchronous Ca2+ 

triggered neurotransmitter release (Xu et al., 2007b) and also spontaneous release (Xu et 

al., 2009).  

 

In order for fusion to occur effectively, synaptotagmin 1 undergoes a conformational 

change from the cis-conformer to the trans-conformer depending on the Ca2+ 

concentration. The cis-conformation of synaptotagmin 1 occurs when it is bound to 

negatively charged phospholipids on the synaptic vesicle membrane and this is the 

deactivated state of synaptotagmin 1 under resting (1µM) and high (100µM) Ca2+ 

concentration. The trans-conformation is the converse in which synaptotagmin binds to 

phosphatidylinositol 4,5-bisphosphate  (PIP2) found in the plasma membrane under 

physiological Ca2+ concentrations (10µM) and thereby promotes fusion (Lee et al., 

2010). Synaptotagmins interact with the C-terminus of SNAP-25 and the disruption of 

this interaction causes an impairment of fast/synchronous Ca2+ triggered exocytosis 

(Zhang et al., 2002).  

 

Complexins are small cytosolic proteins that are found to have stimulatory and 

inhibitory effect on neurotransmitter release depending on the domain of complexins 

that interact with the SNARE complex (Xue et al., 2007). There is evidence to suggest 

that the N-termini of the complexins have facilitatory function in fast/synchronous 

exocytosis (Xue et al., 2010). In addition, the accessory α-helix of complexins has an 

inhibitory function in fusion by displacing synaptobrevin 2 and thus weakening the 

SNARE complex (Lu et al., 2010).  Furthermore, there is evidence that suggests that 

complexins and synaptotagmins compete with each other for binding to SNARE 

complexes and that complexins displacement by synaptotagmins promote SSV fusion 

(Tang et al., 2006;Maximov et al., 2009). 
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The last step following exocytosis and before endocytosis is the dissolution of the 

SNARE complex by N-ethylmaleimide-sensitive factor (NSF) and its cofactor SNAPs. 

It is still unclear how NSF and SNAP are able to disassemble the SNARE complex but 

this is clearly an energy dependent step requiring the input of ATP (Jahn & Scheller, 

2006) and may in part underlie the ATP-dependence of exocytosis. 

 

1.1.2. Endocytosis 

Endocytosis is important in allowing a continuous neurotransmitter release under 

repetitive stimulation conditions, which would otherwise deplete the RRP. There are 

several forms of endocytosis that are implicated in the nerve terminal including those 

described as rapid, bulk and slow. Rapid endocytosis is clathrin-independent and occurs 

under intense stimulation (Artalejo et al., 1995). Bulk endocytosis is triggered under 

intense activity and is characterised as a clathrin independent process that internalises a 

large area of the plasma membrane than that required for SSVs formation (Wu & Wu, 

2007;Clayton & Cousin, 2009). The dominant form of endocytosis that is found in the 

nerve terminals is slow endocytosis which is clathrin-dependent (Granseth et al., 2006). 

The main process by which the SSV are recycled through the latter mechanism occurs 

in four stages: clathrin recruitment, curvature of the membrane, scission of the vesicular 

bud and finally un-coating of clathrin. 

 

Recently, studies have been conducted that indicate that the initiation of endocytosis is 

by the influx of Ca2+ that activates calmodulin. Furthermore, it has been suggested that 

at lower stimulation strengths slow endocytosis is observed which gives way to rapid 

endocytosis with increasing stimulation strengths while even higher stimulation causes 

bulk endocytosis (Wu et al., 2005;Wu et al., 2009a). The source for the influx of Ca2+ is 

neither through VDCCs nor does the Ca2+ from the exocytosis contribute to 
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endocytosis. Interestingly, a protein called Flower is localised on SSVs and the plasma 

membrane which has Ca2+ channel properties. At rest Flower, is localised to the SSVs 

but is inserted into the plasma membrane at sites for endocytosis after full fusion of 

SSVs. This concentration of Flower at the site of endocytosis leads to an increase in the 

influx of Ca2+ to initiate endocytosis and is again localised to SSVs after fission (Yao et 

al., 2009).  

 

The assembly of clathrin on the membrane is achieved by plasma membrane specific 

adaptors such as the complex AP-2 and AP180. Both of these adaptor proteins interact 

with clathrin and coordinate the assembly of the clathrin-coated pits with cargo proteins 

and lipids (Di & De, 2006). Furthermore, SV2A which are localised to the SSVs are 

important in reconstitution of synaptotagmin 1 to recycled SSVs membranes (Yao et al., 

2010). AP-2 is able to interact with synaptotagmin 1 (Zhang et al., 1994b) while 

synaptobrevin interacts with AP180 and provides another important function in 

reconstitution of SSVs proteins into the recycling SSVs membranes (Bao et al., 2005). 

Lack of SSV protein reconstitution can cause disruptions to rapid exocytosis and 

endocytosis as has been shown in synaptobrevin 2 knockout mice (Deak et al., 2004). 

  

After the clathrin-coated pits have been formed the curvature of the membrane is 

initiated by epsin (Ford et al., 2002). This curvature recruits BAR domain proteins that 

include amphiphysin 1 (Wu et al., 2009b), endophilin A1 and syndapin 1 (Andersson et 

al., 2008). Amphiphysin 1 at the membrane binds to clathrin coated pits and induce 

further curvature of the SSVs membrane following dephosphorylation by calcineurin 

(Bauerfeind et al., 1997). The importance of the BAR domain has been highlighted in a 

report that shows the selective disruption to the endophilin BAR domain inhibits 

endocytosis (Andersson et al., 2010).  
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BAR domain proteins, once dephosphorylated recruit dynamin 1 to the neck of the 

budding vesicle through the interaction of a src-3 homology (SH3) domain and a 

proline-rich domain (PRD) (Shupliakov et al., 1997). Dynamin 1 is GTPase that 

requires dephosphorylation by calcineurin to be activated. When dynamin-GTP is 

hydrolysed, it constricts the size of the neck of the budding SSV and results in the 

scission of the vesicular bud (Hinshaw, 2000). Dynamin 1 is also regulated by CDK5 

which phosphorylates dynamin 1 at Ser774 and Ser778 to reduce endocytosis (Tan et 

al., 2003;Evans & Cousin, 2007). Furthermore there is evidence that CDK5 is able to 

also regulate endocytosis by phosphorylating amphiphysin 1 (Tomizawa et al., 2003).  

 

Finally, free clathrin-coated SSVs undergo rapid uncoating supported by ATP-

hydrolysing hsc7027 and its chaperones, G-dependent kinase and auxilin. Auxilin 

knockout mice express impaired clathrin-dependent endocytosis which results in 

defective synaptic transmission (Yim et al., 2010). The newly formed SSVs can then be 

filled with the neurotransmitter at a concentration that is dependent on the vesicular 

neurotransmitter concentration (Wu et al., 2007) and enter the general recycling pool 

but not the RRP (Wu & Wu, 2009). 

 

1.2. Regulation of neurotransmitter release by modulation of excitability 

Neurotransmitter release can be controlled by bringing the membrane potential closer to 

the depolarisation threshold thus making the plasma membrane more excitable. 

Conversely, the membrane potential can be moved further from the depolarisation 

threshold thus making the plasma membrane less excitable.  
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1.2.1. Sodium channels 

There are two types of Na+ channels, ligand-gated ion channels and voltage-gated 

sodium channels both of which conduct Na+ ions across the membrane. The voltage-

gated sodium channels have an important role in initiating and propagating the action 

potential down the axon. The three most important functional features of the voltage-

gated sodium channels include voltage-dependent activation, rapid inactivation and 

selective ion conductance (Catterall et al., 2005). Furthermore, voltage-gated sodium 

channels are thought to have three states, an open state when they are activated and two 

closed states that include deactivated and inactivated (Yu & Catterall, 2003). 

 

The voltage-gated sodium channels can also be modulated by different kinases. There is 

evidence that shows that phosphorylation by protein kinase C (PKC) at site Ser1506 

slows inactivation and reduces peak currents of voltage-gated sodium channels (West et 

al., 1991;Li et al., 1993). Furthermore, activation of the protein kinase A (PKA) 

pathway is also known to reduce Na+ currents by accelerating the inactivation state of 

voltage-gated sodium channels from an open state (d'Alcantara et al., 1999). 

 

1.2.2. Potassium channels 

There are four types of potassium channels that include voltage-gated potassium 

channels,  Ca2+-activated potassium channel, inwardly rectifying potassium channel, 

tandem pore domain potassium channel and voltage-gated potassium channels.  The 

voltage-gated potassium channels that include the Shaker channels are important in 

returning the plasma membrane potential to its resting state (Gutman et al., 2005). The 

Shaker channels also exist in different states when they are activated they are in the 

‘open’ conformation but they also have two inactive states. In one inactive state the 

channel can open if the membrane potential becomes positive inside. The other inactive 
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state is known as the N-type inactive state occurs by a ‘ball-and-chain’ mechanism and 

is known to inactive the channel even in conditions that should give a positive effect on 

the channel (Cuello et al., 2010). 

 

The Shaker channels have phosphorylation sites for PKA. In a study the authors found a 

phosphate mechanism that slows the kinetics of N-type inactivation but this rate can be 

reversed by PKA activation (Drain et al., 1994). In addition, PKC activation has been 

shown to inhibit the Shaker K+ current which could possibly be due to a novel 

mechanism as PKC does not affect the gating or promote the internalisation of the 

channel (Boland & Jackson, 1999). 

 

1.2.3. Voltage-dependent Ca2+ channels (VDCCs) 

The VDCCs do not regulate the excitability of the plasma membrane but are activated 

by the depolarisation of the plasma membrane to cause the influx of Ca2+. The 

importance of Ca2+ entry via VDCCs in neurotransmitter release was first established by 

the experiments conducted by Bernard Katz. It has now been established there are L-

type, P/Q-type, N-type and R-type Ca2+ channels which are activated by high-voltage 

depolarisation of the plasma membrane. These types are also known as Cav1.1 to 

Cav1.4, Cav2.1, Cav2.2 and Cav2.3, respectively in modern nomenclature. In addition, 

there are a T-type Ca2+ channels which is activated by low-voltage depolarisation of the 

plasma membrane, these also being known as Cav3.1, Cav3.2 and Cav3.3 (Catterall et 

al., 2005).  

 

All the Ca2+ channel subtypes share a common structure in having four or five distinct 

subunits; α1, α2δ complex, β and γ. The main pore-forming subunit is the α1 also being 

the voltage sensor and gating apparatus and most of the known sites of channel 
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regulation by second messengers, drug and toxins (Catterall & Few, 2008). The α1 is 

composed of four homologous domains and each one of these domain contain six 

transmembrane helices (conventionally labelled from S1 to S6) and a membrane-

associated P-loop between S5 and S6. Through various structure and function studies it 

has been established that helices S1 to S4 function as voltage sensors while S5 and S6 

function as the pore (Catterall, 2000;Catterall & Few, 2008). The other subunits of the 

Ca2+ channels (α2δ complex, β and γ) are often referred to as the auxiliary subunits. 

These auxiliary subunits provide a major contribution to Ca2+ channel trafficking and 

also influence the biophysical properties of the channels (Dolphin, 2009). Furthermore, 

it has been hypothesised that the antiepileptic and antinociceptive drugs bind to the α2δ 

subunit to perhaps disrupt the trafficking of Ca2+ channels to the plasma membrane 

(Hendrich et al., 2008;Bauer et al., 2010).  

 

Cav2.1 and Cav2.2 can regulate neurotransmitter release by interacting with exocytotic 

and endocytotic machinery. There is also suggestion that in neurotransmitter release 

Cav2.1 channels play a more important role than Cav2.2 channels (Ambrosio et al., 

1997). Neuromodulation by Ca2+ channels is capped because the Cav2.1 and Cav2.2 

channels are limited by the binding sites to channel proteins that give them capacity to 

participate in neurotransmission. Cav2.1 could interact with these sites through a 

synaptic interaction site (synprint) motif in the II-III loop while Cav2.2 can interact with 

its specific sites and compete with Cav2.1 channel sites independent of synprint 

interaction (Cao et al., 2004;Cao & Tsien, 2010). There have been studies which show 

that using specific antagonists for the Cav2.1 and Cav2.2 channels (ω-agatoxin IVA and 

ω-conotoxin GIVA, respectively) block of synaptic currents is more than 100% (Reid et 

al., 1997). This suggests that there are two VGCCs that are localised in the presynaptic 
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nerve terminals that include both Cav2.1 and Cav2.2 and that nerve terminals have a 

non-uniform distribution of these channels (Reid et al., 2003). 

 

It has been shown that Cav2.1 and Cav2.2 channels colocalise with syntaxin-1 and 

SNAP-25 at the synprint found between the intracellular loop between domains II and 

III of the Ca2+ channel α1 subunit (Yokoyama et al., 2005;Keith et al., 2007) (Catterall 

& Few, 2008). In addition, synaptotagmin 1 and 2 have binding sites at the α1 domain of 

Cav2.1 channels (Charvin et al., 1997) and the C2B domain of synaptotagmin 1 is also 

able to interact with Cav2.2 channels (Sheng et al., 1997). Furthermore, it has been 

reported that RIM1 interacts with the β subunit of the Ca2+ channels (Kiyonaka et al., 

2007). These interactions have led to the suggestions that the Ca2+ channels are 

anchored at the active zone to facilitate SSV fusion. SNARE proteins can regulate the 

activation properties of Ca2+ channels as syntaxin-1 or SNAP-25 binding to synprint is 

known to cause a negative shift in the activation of Ca2+ channels. The inhibitory effect 

of syntaxin-1 is relieved via SNAP-25 binding and the inhibitory effect of SNAP-25 is 

relieved via synaptotagmin 1 binding. This regulatory mechanism could ensure that 

only when the docked SSVs are in place does the Ca2+ channel activity increase to 

initiate neurotransmitter release. There is evidence to suggest the involvement of Cav2.1 

and Cav2.2 channels in endocytotic mechanisms. For example, it has been reported that 

synprint binds to the µ subunit of AP-2 and that AP-2 µ subunit competes with 

synaptotagmin 1 is a Ca2+-dependent manner (Watanabe et al., 2010). 

 

Repetitive activation of Ca2+ channels can alter neurotransmission in the long term 

through a process known as short-term synaptic plasticity. This can be in the form of 

synaptic enhancement through processes termed facilitation, augmentation and 

posttetanic potentiation (PTP) or synaptic depression (Catterall & Few, 2008;Park & 
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Kim, 2009). Short-term plasticity in the synaptic terminals is due to the Ca2+ 

accumulation from repetitive stimulations which result in the activation of Ca2+ binding 

proteins that bind to the Cav2.1 channel (Mochida et al., 2008). On the other hand, 

synaptic depression at the presynaptic terminal maybe due to inactivation of Cav2.1 by 

Ca2+ binding proteins (Xu et al., 2007a;Mochida et al., 2008). 

 

1.3. Regulation of neurotransmitter release by presynaptic receptors 

There are also numerous ionotropic and metabotropic presynaptic receptors that are able 

to facilitate and inhibit neurotransmitter release. Ionotropic receptors are permeable to 

ions that determine the membrane potential thus changes in permeability through 

ionotropic receptor activation can modulate neurotransmitter release. Metabotropic 

receptors modulate neurotransmitter release by activating second messenger signalling 

cascades.  

 

1.3.1. Glutamate receptors 

The principle excitatory neurotransmitter in the CNS is glutamate; highlighted by the 

fact that 60% of all neurons are glutamatergic. Glutamate is known to play important 

roles in learning and memory consolidation in synaptic plasticity processes (Paoletti & 

Neyton, 2007). There are two families of glutamate receptors: ionotropic glutamate 

receptors (iGluRs) which are involved in fast neurotransmission and metabotropic 

glutamate receptors (mGluRs) that produce their effects through G-protein mediated 

signalling (Mayer, 2005). 

 

There are three iGluRs that include N-methyl-D-aspartic acid (NMDA), α-amino-3-

hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and kainate receptors. NMDA, 

AMPA and kainate receptors are found presynaptically and postsynaptically. The 
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NMDA receptors can allow Ca2+, Na+, and K+ to pass into the cell but upon activation 

the NMDA receptors causes a significant increase in Ca2+ concentration which allows 

NMDA receptors to play a significant role in mechanisms such as synaptic plasticity. 

Interestingly, the NMDA are blocked endogenously by Mg2+ and require membrane 

depolarisation to lift this inhibition (Paoletti & Neyton, 2007).  

 

AMPA receptors are permeable to Na+ and K+ ions but Ca2+ permeability occurs in the 

absence of the GluR2 or with non-edited GluR2 subunits. Given that native AMPA 

receptors have the GluR2 thus upon activation they allow Na+ ions to enter which 

depolarises the cell to lift the Mg2+ inhibition on NMDA receptors (Santos et al., 2009). 

Furthermore, the AMPA receptors have metabotropic properties and are able to activate 

G proteins (Wang et al., 1997;Schenk & Matteoli, 2004).  

 

Kainate receptors are permeable to Na+ and K+ ions and have the same conductance for 

these ions as the AMPA receptors but over a shorter duration (Huettner, 2003). The 

activation of presynaptic kainate receptors has a facilitatory effect on glutamate release 

(Perkinton & Sihra, 1999) and GABA release from GABAergic nerve terminals 

(Mathew et al., 2008;Mathew & Hablitz, 2008). Kainate receptors are also thought to 

have metabotropic properties and are thought to couple to Gi/o protein in hippocampal 

interneurons (Rodriguez-Moreno & Sihra, 2007).  

 

There are eight mGluRs receptors including mGluR1 and mGluR5 (group I), mGluR2 

and mGluR3 (group II) and mGluR4, mGluR6, mGluR7 and mGluR8 (group III) (Enz, 

2007). Group I and group II mGluRs are localised pre- and postsynaptically while group 

III are localised presynaptically. All mGluRs are seven transmembrane proteins with an 

external N – terminus that binds agonists and antagonists, a cytosolic C – terminus and 
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three intracellular loops that together serve to activate cognate G proteins (Enz, 2007). 

Group I mGluRs are positively linked to PLC through the Gq/G11 proteins, whereas both 

group II and III mGluRs are negatively linked to adenylate cyclase through the Gi/Go 

proteins.  

 

Neurotransmitter release is increased when presynaptic mGluR1/5 receptors are 

stimulated in glutamatergic nerve terminals (Herrero et al., 1992). These receptors have 

different affinity for glutamate with mGluR1 having low affinity while mGluR5 has a 

high affinity in mouse cortical nerve terminals (Musante et al., 2008). However, there is 

also other evidence that suggests that mGluR1 receptors are not involved in the 

facilitation of glutamate release (Sistiaga et al., 1998). Interestingly in this regard, the 

mGluRs can undergo a functional switch in which the facilitatory effect turns to 

inhibition of glutamate release following receptor desensitisation (Rodriguez-Moreno et 

al., 1998;Herrero et al., 1998). 

 

The group III glutamate receptors can have a facilitatory or inhibitory effect on evoked 

glutamate release. Specifically, presynaptic mGluR7 is found to colocalise and crosstalk 

with other presynaptic receptors (Ladera et al., 2007). The inhibitory effect of mGluR7 

can be through Ca2+ channel inhibition or decreasing cAMP levels (Millan et al., 2002). 

Furthermore, mGluR7 is also found to colocalise with Cav2.2 channels and activation of 

mGluR7 inhibits Ca2+ influx supporting component glutamate release (Vazquez & 

Sanchez-Prieto, 1997;Millan et al., 2003). In addition, mGluR7 is also able to inhibit 

Cav2.1 channels through a PKC independent pathway in hippocampal neurons (Martin 

et al., 2007). The facilitatory effect of mGluR7 on glutamate release is through PLC 

activation via a pertussis toxin insensitive G-protein after prolonged activation (Martin 

et al., 2010). 



36 
 
1.3.2. GABA receptors  

The major inhibitory neurotransmitter in the central nervous system is γ-Aminobutyric 

acid (GABA) that is released from GABAergic nerve terminals. GABA is then able to 

activate the inhibitory synapses by activating the postsynaptic GABAA and/or GABAB 

receptors but also modulate release of neurotransmitter by presynaptic localisation. 

 

GABAA receptors are ligand-gated ion channels that are permeable to Cl- anions when 

GABA molecules bind to two GABA binding sites. GABAA receptors are pentamers 

with the subunits deriving from six types of α subunits, three types of β subunits, three 

types of γ, δ, ε, θ and π subunits. Furthermore, there are three ρ subunits that form a 

receptor and are known as variant of the GABAA receptor called GABAA-ρ receptors. 

The most abundant combination is the (α1)2 (β2) 2γ2 formation, the minimum 

requirement for GABAA receptor function is the inclusion of α and β subunits. Different 

combinations of these subunits forming GABAA receptors determine the receptor’s 

agonist affinity, channel conductance and regulation by allosteric modulators. 

Benzodiazepines are positive modulators of GABAA receptors and bind at the interface 

of α and γ subunits. However, benzodiazepine activity only occurs in α subunits that 

contain a histidine amino acid residue which only includes α1, α2, α3 and α5 subunits 

(Wafford et al., 2004). Thus, GABAA receptors that contain α4 or α6 in a combination 

with β and γ2 subunits are insensitive to benzodiazepine modulation (Olsen & Sieghart, 

2008). 

 

Activation of GABAA receptors on presynaptic nerve terminals have been shown to be 

inhibitory or stimulatory. This is likely determined by the differences in the composition 

of the receptors at the presynaptic nerve terminals. Furthermore, the expression of Cl- 

transporters such as NKCC1 also has significant effect on the stimulatory or inhibitory 
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actions of GABAA receptors. In cortical presynaptic nerve terminals, GABAA receptor 

activation decreases depolarisation evoked glutamate release but has no effect on 

spontaneous glutamate release (Long et al., 2009). In contrast, presynaptic GABAA 

receptors in hippocampal neurons facilitate spontaneous glutamate release via 

depolarisation of the plasma membrane (Jang et al., 2006). 

 

GABAB receptors are metabotropic and mediate their effects via the activation of Gi/o 

proteins and downstream signalling. However, GABAB receptors have a different 

structure from many other seven transmembrane GPCRs in that they exist and function 

as heterodimers consisting of GABAB1 and GABAB2 subunits. This was discovered due 

to the differences in the affinity of drugs between the native GABA and recombinant 

GABAB1 receptors. The GABAB2 subunit is a seven transmembrane with an N –

terminus and it functions to traffic the GABAB1 subunit to the plasma membrane and 

link it to the G protein, while GABAB1 subunit is required for receptor activation. At the 

plasma membrane these two subunits need to be linked to form a functional GABAB 

receptor as GABAB2 subunit in the absence of GABAB1 subunit cannot function as an 

autonomous receptor. The mechanism of GABAB receptor activation is triggered by 

agonist binding to the GABAB1 subunit which causes a conformational change that 

directs GABAB2 subunit stimulation leading to Gi/o protein activation (Bowery et al., 

2002;Bettler et al., 2004). Furthermore, there are also K+ channel tetramerization 

domain-containing proteins that act as auxiliary subunits. The assembly of K+ channel 

tetramerization domain-containing proteins appear essential for GABAB G protein 

signalling and agonist potency of GABAB receptors (Schwenk et al., 2010). 

 

When GABAB receptors are activated at the presynaptic nerve terminals they mediate 

their effects that include inhibition of VDCCs, inhibition of G protein-coupled inwardly 
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rectifying K+ (GIRK) channels and modulation of cAMP levels. As GABAB receptors 

couple to Gi/o protein they can inhibit adenylate cyclase thereby decreasing cAMP levels 

which reduces the activation of protein kinase A (PKA). However, it is unlikely that 

glutamate release inhibition observed with GABAB receptor agonist such as baclofen is 

due to the down regulation of PKA. Rather a number of studies have shown that 

GABAB reduces glutamate release by inhibiting VDCCs, in particular Cav2.1 channels, 

and that this inhibition is pertussis toxin sensitive (Wu & Saggau, 1995;Santos et al., 

1995;Takahashi et al., 1998;Wang et al., 2004b). While many studies have suggested 

that inhibition of VDCCs is the primary mechanism by GABAB inhibits glutamate 

release, there other studies that suggest GABAB receptors are able to open GIRK 

channels that would hyperpolarise the neurons and thereby reduce glutamate release. 

Thus GIRK2 and GIRK3 channels or shown to colocalise with GABAB receptors but 

this inhibition is not pertussis toxin-sensitive (Ladera et al., 2008;Fernandez-Alacid et 

al., 2009). 

 

1.3.3. Adenosine receptors 

Over the years a modulatory role of adenosine receptors in glutamatergic nerve 

terminals has become increasingly apparent. There are pathways by which adenosine is 

released into the synaptic cleft to activate the adenosine receptors. Firstly an increase in 

cAMP levels causes its breakdown by phosphodiesterases to form more 5´-AMP which 

is further broken down by cytosolic 5´-nucleotides to form adenosine. As the cytosolic 

concentration of adenosine increases, it diffuses through the nucleotide transporters 

from the cytosolic to the synaptic cleft. These nucleotide transporters equilibrate the 

concentration of adenosine across the plasma membrane thus if adenosine concentration 

in the synaptic cleft is high then adenosine passively diffuses into the cytosol (Wang & 
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Sihra, 2003). The second pathway that has been suggested is the release of adenosine in 

an activity dependent manner with the neurotransmitter release (Xia et al., 2009).  

 

All the adenosine receptors are seven transmembrane GPCRs that include A1, A2A, A2B 

and A3. Thus, all adenosine receptors are coupled to G proteins, A1 and A3 receptors are 

coupled to the Gi/o protein while A2A and A2B receptors are coupled to the Gs protein 

(Fredholm et al., 2001;Dunwiddie & Masino, 2001;Fredholm et al., 2005). The G 

proteins that adenosine receptors are coupled to determine the modulatory effect on 

neurotransmitter release. The adenosine receptors are distributed to various cells but 

only the A1 and A2A receptors are thought to be found on presynaptic nerve terminals 

(Ladera et al., 2007;Sichardt & Nieber, 2007).  

 

Activation of the A1 receptors in cortical nerve terminals results in the inhibition of 

neurotransmitter release which is likely due to the reduction of Ca2+ influx through 

Cav2.1 and Cav2.2 channels by a membrane-delimited pathway (Ladera et al., 

2007;Gundlfinger et al., 2007). This is further supported by evidence which shows  A1 

receptors negative modulation of Cav2.2 channels in the hippocampal nerve terminals 

(Manita et al., 2004) where they are abundant, especially the CA1 region (Ambrosio et 

al., 1997). In addition, in the presynaptic nerve terminals, A1 and A2A receptors can 

form heteromers which allows the A2A receptors to negatively modulate the A1 

receptors thus giving a fine control over neuromodulation (Ciruela et al., 2006).  

 

The A2A receptor has a facilitatory effect on glutamate release but requires a higher 

concentration of adenosine to be activated over the A1 receptor (Ciruela et al., 2006). 

Once activated it induces the facilitation by activation of PKA and negative modulation 

of the A1 receptor. There is evidence that A2A receptor enhances synaptic release in 
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aged rats (21-24 months old) that express the receptor more than the A1 receptor 

(Rebola et al., 2003).  

 

1.3.4. Serotonin (5-HT) receptors 

There are 14 known types of 5-HT receptors that are divided into seven classes based on 

their structural and functional characteristics. However, there remain some 5-HT 

receptors that have yet to have their function classified (distinguished by the lower case 

notation). The first well defined group contain receptors that are 5-HT1-like that 

includes 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E and 5-HT1F receptors. These are GPCRs that 

activate the Gi/o subunit which cause the inhibition of adenylate cyclase. The second 

group of 5-HT receptors includes 5-HT2A, 5-HT2B and 5-HT2C receptors which activate 

Gq/11 proteins to stimulate PLC activation. 5-HT3 receptors are the only 5-HT receptors 

that belong to a family of ligand-gated ions channel and its pentameric structure is 

composed of two subunits, 5-HT3R-A and 5-HT3R-B. The other 5-HT receptor classes 

include 5-HT4, 5-HT6 and 5-HT7 which also have subtypes and which are thought to 

activate the Gs subunit to direct the activation of adenylate cyclase. 5-ht5 function has 

not been characterised but it thought these receptors might interact with the Gi/o or Gs 

subunit. Presynaptically, 5-HT1A, 5-HT2A and 5-HT3 receptors are localised to 

glutamatergic neurons in cortex and hippocampus thus are the receptors of interest in 

the regulation of neurotransmission (Hoyer et al., 1994;Hoyer et al., 2002;Hannon & 

Hoyer, 2008). 

 

5-HT1A receptors are GPCRs that are coupled to the G protein Gi/o which can decrease 

adenylate cyclase activation and thereby reduce intracellular cAMP levels. However, 

this does not appear the mechanism of action by which 5-HT1A receptors are able to 

inhibit glutamate release. Rather these receptors are able to directly inhibit Cav2.1 and 



41 
 
Cav2.2 channels activation thus reducing Ca2+ influx during depolarisation (Lin et al., 

2001) (Wang et al., 2002). This is supported by reports that show 5-HT1A receptor 

activation causes a reduction in glutamate release hippocampal slices and in an in vivo 

model that mimics ischemia, therefore highlighting the 5-HT1A receptor as a 

neuroprotective receptor (Mauler et al., 2001). Furthermore, presynaptic 5-HT1A 

receptor activation has been shown to tonically inhibit synaptic GABA release (Koyama 

et al., 2002). 

 

5-HT2A receptors are also GPCRs and found on the presynaptic nerve terminals. 5-HT2A 

receptor activation reduces neurotransmitter release by attenuation of nerve terminal 

excitability by reduction of Ca2+ influx through Cav2.1 channels (Wang et al., 2006). 

This is supported by another report that shows 5-HT2A receptors inhibit glutamate 

release from rat cerebellar mossy fibers (Marcoli et al., 2001).  

 

5-HT3 receptor activation has been shown to increase Ca2+ concentration in 

synaptosomes from regions that include the hippocampus, cerebellum, striatum and 

amygdala. This Ca2+ influx is due to the permeability of 5-HT3 receptors to Ca2+ (Nayak 

et al., 1999). The consequence of Ca2+ influx suggests that 5-HT3 could play a role in 

neurotransmitter release. Indeed, it has been shown that 5-HT3 activation causes a 

transient increase in spontaneous and evoked GABA release (Turner et al., 2004) 

(Dorostkar & Boehm, 2007). There is also a degree of cross-talk between the 5-HT 

receptors as has been shown in a report that 5-HT1A receptors via G-protein activation 

are able to inhibit the transient facilitation of GABA release by activation of presynaptic 

5-HT3 receptors (Koyama et al., 2002). 
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1.4. Regulation of neurotransmitter release by intraterminal signalling cascades 

The effect of receptor stimulation can be mediated via two pathways. The first is the 

membrane-delimited pathway in which the receptor directly interacts with its target and 

has no cytoplasmic messengers. The second pathway is the downstream activation of 

signalling cascades. There are numerous signalling cascades that can be themselves 

regulated thus allowing for cross-talk between different receptors that can lead to 

amplification or dampening of the signal.  

 

1.4.1. Calmodulin 

One of the consequences of Ca2+ entry through VGCCs during depolarisation is the 

activation of calmodulin (CaM) a Ca2+-binding protein that is bound to membranes and 

soluble in the cytoplasm. CaM is sensitive to the increases in cytosolic Ca2+ as it has 

been shown that CaM in isolation binds to Ca2+ with an Kd value in the range of 0.5 to 

5µM (Saimi & Kung, 2002). CaM is comprised of 4 helix-loop-helix protein folding 

motifs which are called EF hands. The 4 EF each hands bind to one Ca2+ ion and it has 

been shown that these sites have different affinities for Ca2+ which increase as Ca2+ ion 

consecutively bind to one of the EF hand sites. After two Ca2+ ions bind to two their 

sites this causes the EF hands to pull apart which exposes a hydrophobic pocket within 

the domain that binds to CaM target proteins (Hook & Means, 2001). 

 

There are numerous target proteins that have been reported for CaM but the main targets 

for presynaptic terminals are those involved in the regulation of neurotransmitter 

release. CaM targets Cav2.1 channels by binding to the IQ motif of the C-terminus 

domain of the α1A which direct the inactivation of the channel (Lee et al., 1999;Lee et 

al., 2000;Lee et al., 2003). Furthermore, this interaction enhances recovery from 

inactivation and augments further Ca2+ influx by facilitating the Ca2+ current so that it is 
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greater after full recovery from inactivation (Kim et al., 2008). Conversely, Cav2.2 

channels has IQ motifs that bind to CaM albeit with reduced affinity thus show little 

Ca2+-dependent inactivation (Hook & Means, 2001). CaM is also shown to interact with 

the Munc-13 CaM binding motifs which results in the increase of priming activity 

(Rodriguez-Castaneda et al., 2010). Furthermore, CaM might also play a vital role in 

endocytosis as it is suggested that CaM initiates all forms of endocytosis which is 

important in the repletion of RRP (Wu et al., 2009a). CaM in presynaptic function was 

demonstrated in CaM knockdown study which showed that while neurons were viable, 

neurotransmitter release was significantly reduced an affect that was rescued via 

constitutive activation of CaMKII. This suggests CaM boosts synaptic release through 

the activation of CaMKII (Pang et al., 2010). 

 

1.4.2. Ca2+/calmodulin-dependent kinase II (CaMKII) 

CaMKII is one of a family of homologous kinases and has broad substrate specificity 

and it is found in 4 isoforms that include α, β, γ and δ but only α and β isoforms are 

found in the nervous system (Miller & Kennedy, 1986;Hook & Means, 2001). The 

major consensus phosphorylation site for CaMKII is RXXS/T though it also 

phosphorylates Ser or Thr residues in the sequence S/TXD (Yamauchi, 2005).  

 

CaMKII consists of a C-terminus domain that is essential for multimerization and a N-

terminal domain that contains the autoinhibitory domain and CaM binding domain 

(Hook & Means, 2001). Under basal conditions, the autoinhibitory domain and the CaM 

binding domain bind to each other making the kinase inactive. Binding of Ca2+ and 

CaM to CaMKII displaces the autoinhibitory domain causing the kinase to become 

activated. CaMKII can then be converted to a Ca2+-independent enzyme by a process of 

autophosphorylation in which the autoinhibitory domain action is further disrupted by 
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the phosphorylation of Thr286 found on the α isoforms and Thr287 found on the β 

isoforms. Autophosphorylation also results in the inactivation of CaMKII through 

phosphorylation of Thr305 and Thr306 on α and β isoforms respectively after 

autophosphorylation in a Ca2+-independent manner. This is responsible for the loss of 

ability of CaM kinase II to bind Ca2+ or calmodulin, resulting in a reduction in the 

kinase activity (Hook & Means, 2001). 

 

CaMKII is able to regulate neurotransmitter release through several effectors. It has 

been shown that synaptobrevin is a substrate of CaMKII as well as other SNARE 

proteins thus CaMKII could play an important role in the efficiency of docking and 

fusion of SSVs (Nielander et al., 1995). However, the effect of α CaMKII deficiency in 

mice has shown that α CaMKII might not be essential for vesicular cycling including 

control of the size of the RRP. Nevertheless, α CaMKII might serve an essential 

function in neurotransmitter release by placing an inhibitory constraint on release during 

repetitive presynaptic depolarisation (Hinds et al., 2003). 

 

CaMKII activation is known to increase neurotransmitter release through the 

phosphorylation of synapsin I at sites 2 and 3 which makes more SSVs available for 

release (Nichols et al., 1990). There is a distribution shift of CaMKII from basal to 

depolarising stimuli. In basal conditions synapsin I and CaMKII are not associated but 

after depolarisation they are distributed together. Furthermore, under depolarisation 

conditions, CaMKII is accumulated at the presynaptic active zone (Tao-Cheng et al., 

2006).  

 

CaMKII is also shown to be constitutively bound to Cav2.1 channels at the α1 subunit 

even in the absence of Ca2+. It is the binding to Cav2.1 by which CaMKII exerts its 
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modulatory effect and not by phosphorylating a specific site. CaMKII modulates the 

Cav2.1 channels to substantially increase the Ca2+ entry into presynaptic terminals by 

slowing Cav2.1 channels inactivation and positively shifting the voltage dependence of 

inactivation (Jiang et al., 2008;Takahashi et al., 2010). 

 

1.4.3. Protein kinase A (PKA) 

Activation of protein kinase A (PKA) also known as cAMP-dependent protein kinase 

occurs downstream of second messenger cAMP production stimulation mediated by G 

protein coupled receptor (GPCR) activation of adenylate cyclase. Intracellular targeting 

and compartmentation of PKA is determined mainly by association with AKAPs, a 

family of structurally related proteins.  

 

PKA is a holoenzyme and a heterotetramer that is composed of two regulatory and two 

catalytic subunits. The regulatory subunit has two cAMP binding sites, A and B which 

can each bind to two cAMP molecules. All four cAMP molecules need to bind to the 

two regulatory subunits for PKA to undergo a conformational change. This 

conformational change dissociates the regulatory and catalytic subunits which in turn 

become catalytically active (Seino & Shibasaki, 2005).  

 

Activation of PKA can phosphorylate many different substrates that are part of the 

exocytosis machinery leading to a stimulatory effect in many cases (Leenders & Sheng, 

2005). Cysteine string protein which is localized exclusively to vesicle membranes, 

interacts with syntaxin and synaptotagmin (Evans & Morgan, 2002). Phosphorylation of 

cysteine string protein by PKA produces an inhibition of the interactions with syntaxin 

and synaptotagmin (Evans & Morgan, 2003). Snapin is a SNAP-25 associated protein 

which acts as a SNARE regulator. PKA dependent phosphorylation of Snapin has been 
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shown to enhance its binding to the SNARE complex and to increase the fusion 

competence of SSVs. Rabphilin and RIM are also substrates for PKA thus PKA 

phosphorylation of RIM in mossy fibres is thought to cause an induction of long term 

potentiation (Leenders & Sheng, 2005). Also both syntaxin 1 and SNAP25 can be 

phosphorylated by PKA leading to increased neurotransmitter release (Leenders & 

Sheng, 2005).  

 

During vesicle recruitment synapsin I can be phosphorylated by PKA at site 1 which 

makes more SSVs available for release leading to a facilitation of neurotransmitter 

release (Leenders & Sheng, 2005;Menegon et al., 2006). Furthermore, it has been 

suggested that phosphorylation of synapsin at site 1 is important post-tetanic 

potentiation (PTP) thereby implying a role for PKA in synaptic plasticity (Fiumara et 

al., 2007). PKA also plays a stimulatory role in glutamate release by phosphorylating 

specifically Cav2.2 channels that produce increased Ca2+ influx compared to exocytosis 

(Wang & Sihra, 2003;Ladera et al., 2007). 

 

1.4.4. Protein kinase C (PKC) 

There are 12 isoforms of PKC in mammals which are classified based on their cofactor 

requirements as classical α, β and γ isoforms that are activated by Ca2+, diacylglycerol 

and lipids. The second category of isoforms is called novel and includes the δ, ε, η and θ 

isoforms, activated by diacylglycerol. There is also a group of atypical isoforms that 

include ζ and ι/λ which are activated by neither Ca2+ nor diacylglycerol (Morgan et al., 

2005;Rosse et al., 2010). The structural studies of PKC have shown that they share a 

highly conserved carboxyterminal kinase domain that is linked by a hinge region to a 

more divergent amino-terminal regulatory domain. PKC in the inactive state is auto-

inhibited by a pseudo-substrate sequence in the regulatory domain occupying the 
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substrate binding site in the kinase domain. Binding of the PKC activators to the 

regulatory domain recruits PKC to the plasma membrane which displaces the bound 

pseudo-substrate region from the active site, allowing the activated PKC to act on its 

target substrates (Rosse et al., 2010). 

 

The main presynaptic consequence of PKC activation is the potentiation of 

neurotransmitter release as has been shown for example in experiments in which 

phorbol esters have been applied to brain slices (Malenka et al., 1986). The two main 

exocytotic machinery proteins that are activated by PKC include Munc-18 and SNAP-

25. Munc-18 is phosphorylated by PKC at Ser313 causing the disruption of Munc-18 and 

syntaxin 1 interaction leading to both faster release kinetics and more rapid vesicle 

recycling (Barclay et al., 2003). More recently it has been hypothesised that phorbol 

ester potentiation requires the convergence of two pathways, one is the phosphorylation 

of Munc18-1 by PKC and the second is the activation of Munc13 in a PKC independent 

manner. The exact molecular mechanism of this interaction is still unclear as to whether 

Munc18-1 and Munc13 compete for syntaxin 1 binding or Munc18-1 dissociation from 

syntaxin 1 produces a favourable equilibrium shift towards activation of priming by 

Munc13 (Wierda et al., 2007).  

 

It has also been shown in various studies that SNAP-25 is phosphorylated at Ser187 by 

PKC though it has been shown to be a poor substrate in vitro (Morgan et al., 2005). 

Nevertheless, phosphomimetic mutants of the Ser187 site (Ser to Glu/Asp) has shown a 

stimulatory effect on the refilling of the RRP after an RRP emptying stimulation, 

whereas phosphonull mutants (Ser to Ala), or inhibition of PKC, inhibited vesicle pool 

refilling (Nagy et al., 2002). In hippocampal synapses however it has been reported that 
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the increase in transmitter release after phorbol esters treatment is not through PKC 

phosphorylation of SNAP-25 at site Ser187 (Finley et al., 2003). 

 

1.4.5. Lipid kinases 

There is a growing interest in the modulatory effect of lipids such as 

phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-3,4,5-

bisphosphate (PIP3) have on neurotransmitter release. The Cav2.1 and Cav2.2 channels 

have been shown to be dually regulated by PIP2 that maintains but can also inhibit the 

activity of Cav2.1 and Cav2.2 channels (Wu et al., 2002). Furthermore, there is evidence 

that decreasing the PIP2 concentration can lead to postnatal lethality and synaptic 

defects in mice (Di et al., 2004). The lipid kinases such as phosphatidylinositol 4-kinase 

(PI4K) and phosphatidylinositol-3 kinase (PI3K) are important in maintaining 

neurotransmitter release and have been found in presynaptic nerve terminals.  

 

There are different forms of PI4Ks that are grouped as type II which include PI4KIIα 

and PI4KIIβ and type III which include PI4KIIIα and PI4KIIIβ (Barylko et al., 

2001;Minogue et al., 2001). There is evidence which suggests that the majority of PI4K 

activity is conducted by the PI4KIIα form (Guo et al., 2003). It is known that the PI4Ks 

phosphorylate phosphatidylinositol to phosphatidylinositol-4-phosphate which is the 

first step in the production of phosphatidylinositol-4,5-bisphosphate (PIP2) (Gehrmann 

& Heilmeyer, Jr., 1998;Balla & Balla, 2006). Functional studies have provided evidence 

that PI4K is localised to SSVs and that inhibition of PI4K can attenuate the Ca2+-

dependent component of neurotransmitter release (Wiedemann et al., 1998).  

 

Class-I PI3Ks are heterodimers composed of a catalytic subunit (p110) and an 

adaptor/regulatory subunit (p85). This class is further divided into the subclass IA and 
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the subclass IB that are activated by GPCRs (Fresno Vara et al., 2004). The class I PI3K 

is a member of a lipid kinase family that is characterized by the ability to phosphorylate 

PIP2 to PIP3. The modulatory effects of PI3K activation include the upstream activation 

of H-Ras (Hu et al., 1995;Giglione & Parmeggiani, 1998). More recently the lipid 

kinase PI3K has also been shown to alter neurotransmitter release. Synapsin I is thought 

to interact with PI3K in intact nerve terminals and that disruption to this interaction 

decreases the repletion of the RRP which results in a reduction of glutamate release 

after sustained stimulation (Cousin et al., 2003). In addition, a study conducted showed 

that PI3K plays a key part in neurotrophin induced synaptic potentiation in presynaptic 

motoneurons (Yang et al., 2001).  

 

1.5. Regulation of neurotransmitter release by receptor tyrosine kinases 

Neurotransmitter release can also be modulated by a class of cell surface receptors that 

are called receptor tyrosine kinases (RTKs) and that are activated by growth factors 

known as neurotrophins as well as other extracellular signals. This function adds to 

diverse key functions of RTKs that include cell survival, morphogenesis, neuronal 

plasticity and apoptosis.  

 

1.5.1. Trks 

There are three different types of tropomysin related kinase (Trk) receptors that include 

TrkA, TrkB and TrkC. They can be distinguished from other RTKs and have a 

homologous structure. The extracellular domains of Trks contain two cysteine clusters 

in between leucine-rich repeats followed by two immunoglobin-like domains and they 

also have a single cytoplasmic tyrosine kinase domain (Roux & Barker, 2002). These 

receptors are activated by a wide variety of neurotrophins that bind to the second 

immunoglobin-like domain of Trks. 
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Neurotrophins have been divided into four main members that include brain-derived 

neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophins 3, 

neurotrophins 4/5 and neurotrophins 6 (Poo, 2001). In addition, they have different 

affinities for each of the TrK receptors. TrkA receptors have a high affinity for NGF, 

while TrkB receptors are activated by BDNF and neurotrophins 4/5 and TrkC receptors 

are stimulated by neurotrophin 3 (Schecterson & Bothwell, 2010).  

 

When the neurotrophins bind to Trk receptors they cause Trks dimerisation and initiate 

the autophosphorylation of tyrosine residues in their cytoplasmic tyrosine kinase 

domains. The phosphorylated tyrosine residues function as binding sites for recruiting 

specific cytoplasmic signalling proteins. A major consequence of TrK receptor 

activation by neurotrophins is the activation of the extracellular signal regulated kinase 

(ERK) pathway.  

 

1.5.2. ERK pathway 

Extracellular signal regulated kinases 1 and 2 (ERK1 and ERK2) are activated through 

numerous extracellular stimuli that include RTKs, GPCRs and Ca2+-dependent 

processes and all these pathways are convergent to the ERK pathway. The ERK 

pathway is a well characterised cascade that uses the sequential activation of distinct 

kinases at each level of the cascade. Culminating in the activation of ERK1 and ERK2 

which then activate downstream targets found in the nucleus and cytoplasm. 

 

Trk activation leads to the initiation of the ERK pathway through the recruitment of 

signalling proteins that activate the small GTP binding protein Ras which has three 

forms that include H-Ras, N-Ras and K-Ras. Ras is a membrane bound protein and 

undergoes cycles of inactivation and activation depending on the GDP or GTP binding 
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state, respectively. There is evidence which suggests that the Shc adaptor protein is 

recruited by phosphorylated tyrosine residues on Trks together with another adaptor 

protein Grb2. The adaptors then recruit and activate son of sevenless (Sos), a GTP 

exchange factor (GEF) that is able to exchange the GDP on Ras to GTP and thereby 

activate Ras (Egan et al., 1993).  

 

The key step that is immediately downstream of Ras is activation of Raf a 

serine/threonine kinase which is also known as mitogen-activated protein (MAP) kinase 

kinase kinase. There are three forms of Raf including c-Raf-1, B-Raf and A-Raf that are 

thought to participate in the ERK pathway. Structural studies looking at Raf show that 

key features of Raf are that it has a catalytic domain at the C-terminus and regulatory 

domain at the N-terminus.  

 

In its inactive state c-Raf-1 is in the cytoplasm and forms a complex with Hsp90, Hsp50 

and 14-3-3 proteins. It is the 14-3-3 dimer formation at Ser259 and Ser621 that folds 

Raf into a closed configuration. When Ras is bound to GTP it interacts directly with the 

N-terminus on c-Raf-1. This does not mutually activate c-Raf-1 but makes it membrane 

bound. Once at the membrane and bound to the Ras effector loop Raf is able to interact 

with a second site on Ras through a zinc finger. This interaction with the second site 

displaces the 14-3-3 half-dimer from the Ser259 to cause a partial activation of c-Raf-1 

being still dependent on the presence of Ras. The mechanism of the full activation of c-

Raf-1 is debatable but it is thought that c-Raf-1 undergoes phosphorylation at an 

unidentified site in the catalytic domain. At this site, the binding of 14-3-3 stabilises an 

open, active configuration of c-Raf-1 which unbinds from Ras-GTP and is translocated 

to the cytosol where it remains active until deactivated by phosphatase action (Avruch 

et al., 2001). 
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Sequentially in the next level of the ERK pathway, the activated form of c-Raf-1 in the 

cytoplasm acts on MAPK/ERK kinase (MEK) another serine/threonine kinase known as 

MAP kinase kinase. MEKs are small proteins that have a proline-rich loop which is an 

important regulatory subdomain found in MEK1 and MEK2 called IX and X 

subdomains, respectively (Crews et al., 1992;Ohren et al., 2004). This proline-rich loop 

is not necessary for Raf binding but is important in ensuring the activation of its 

downstream targets is effective and contains the phosphorylation sites Ser298 and 

Tyr300 (Dang et al., 1998). Mutational studies have found that Ser218 and Ser222 are 

important in Raf-1 activation of MEK1 and that phosphorylation of a single site is 

sufficient for MEK1 activation (Zheng & Guan, 1994). There are seven forms of MEK 

(MEK1 to MEK7) of which MEK1 and MEK2 are thought to be responsible for ERK1 

and ERK2 phosphorylation/activation with MEK2 having higher activity than MEK1 

(Zheng & Guan, 1993).  

 

ERK1 and ERK2 kinases are known as central transducers of extracellular signals from 

growth factors, cytokines, and environmental stresses. The two forms ERK1 and ERK2 

are part of the MAPK family and are also known as MAP kinases. These kinases are 

proline-directed serine/threonine protein kinases that mediate phosphorylation of serine 

or threonine residues directly upstream of proline. ERK2 knockout mice are not viable 

and die early in development suggesting that ERK1 is unable to compensate for the 

function of ERK2. However, knockout studies have shown that ERK1 knockout mice 

are viable except for the deficits in thymocyte maturation indicating that the functions 

of ERK1 are largely compensated for by ERK2 (Pages et al., 1999). 

 

Structural studies of ERK1 and ERK2 have shown that they are composed of a small β-

strand rich N-terminal lobe and a large α-helix rich C-terminal lobe that are linked by a 
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hinge region. The N-terminal domain contains a gatekeeper residue that regulates 

binding of nucleotide. Furthermore, the gatekeeper residue is part of an N-terminal 

structural unit that impedes auto-activation of ERK2 (Emrick et al., 2006). The C-

terminal domain contains the phosphorylation lip and the catalytic loop (Zhang et al., 

1994a;Kinoshita et al., 2008).  

 

Both ERK1 and ERK2 can be in three states, unphosphorylated, mono-phosphorylated 

and dual-phosphorylated. In the unphosphorylated state the kinases are inactive with the 

phosphorylation lip folded. The mono-phosphorylated states of ERK1 and ERK2 are 2 

to 3 fold less active than the fully active form but they may have distinct biological 

functions. When the ERKs are in the dual-phosphorylated state the kinases become fully 

active and phosphorylate their downstream targets (Zhou & Zhang, 2002). ERK2 is 

dually phosphorylated at sites Thr183 and Tyr185 within the phosphorylation lip 

(Canagarajah et al., 1997) while Thr202 and Tyr204 sites are phosphorylated in the 

phosphorylation lip of ERK1 (Butch & Guan, 1996). 

 

1.5.3. Ca2+ mediated activation of the ERK pathway 

The Ca2+-dependent signalling pathways of the ERK pathway are not well defined but 

numerous components have been implicated which includes Src, Pyk2, CaM, CaMKII, 

GEFs and GAPs. All of these components are activated directly or indirectly by an 

increase in intracellular Ca2+ concentration and act on targets found in the ERK pathway 

which can promote or inhibit ERK1 and ERK2 phosphorylation/activation. 

 

Src kinase is a non-receptor tyrosine kinase which consists of three domains, a SH3 

domain on the N-terminal, a central SH2 domain and a tyrosine kinase domain and is 

enriched in synaptic membrane and vesicles (Ross et al., 1988). The Src kinase has been 
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implicated in the tyrosine phosphorylation of c-Raf-1 independent of Ras activation 

(Marais et al., 1995;Stokoe & McCormick, 1997). Furthermore, the A-Raf is also 

phosphorylated and activated by Src but B-Raf is not activated (Marais et al., 1997). 

There is evidence that Src can increase influx of Ca2+ through VDCCs when the nerve 

terminals are stimulated via membrane depolarisation (Wang, 2003). This could be a 

positive feedback mechanism that further stimulates Src activity. 

 

Another tyrosine kinase proline-rich tyrosine kinase (Pyk2) which contains a protein 

tyrosine kinase and two proline-rich domains has been suggested to be involved in 

activation of the ERK pathway. The mechanism of action for ERK pathway activation 

by Pyk2 is not fully characterised but it is thought an increase in intracellular Ca2+ 

concentration triggers autophosphorylation of Pyk2 at site Tyr402. This allows Pyk2 to 

bind to Src through its SH2 domain which causes Src activation. Which can recruit the 

Grb2/Sos complex via two pathways, firstly Src can phosphorylate Shc and secondly 

Pyk2 can be phosphorylated at site Tyr881 which allows Pyk2 to recruit the Grb2/Sos 

complex independent of Shc phosphorylation. The recruitment of the Grb2/SOS 

complex by either pathway then results in the sequential activation of the ERK pathway 

(Lev et al., 1995;Dikic et al., 1996;Finkbeiner & Greenberg, 1996;Blaukat et al., 1999).  

 

CaM has been investigated for its role in Ca2+-dependent activation of the ERK pathway 

and the results provide a mixture of stimulatory and inhibitory effects which likely 

occurs due to different conditions (Moreto et al., 2009). All forms of Ras (H-Ras, N-

Ras and K-Ras) can bind to CaM and binding of CaM to K-Ras causes an inhibition of 

its activation (Villalonga et al., 2001). CaM stimulatory effects include the promotion of 

Raf-1 stimulation from H-Ras activation through PI3K (Moreto et al., 2008). 

Furthermore, Ras-specific guanine nucleotide-releasing factor (RasGRF) is a GEF that 
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has IQ motif which allows it to interact with calmodulin in a Ca2+-dependent manner. 

Studies have shown that CaM binding to RasGRF promotes its activation and thereby 

the Ras-GTP formation (Farnsworth et al., 1995;Freshney et al., 1997).  

 

CaMKII could also be a downstream target of calmodulin and can be activated to affect 

the ERK pathway. Ras-GTPase activating protein (SynGAP) is a GAP that hydrolyses 

the GTP bound to Ras thereby reducing Ras activity and decreases the ERK pathway. 

CaMKII activation is able to phosphorylate SynGAP and inhibit its activity and thereby 

enhance the activation of the ERK pathway (Chen et al., 1998). In vascular smooth 

muscle cells, CaMKII has been shown to inhibit Ca2+-dependent Pyk2 activation of the 

ERK pathway (Ginnan & Singer, 2002). 

 

An increase in intracellular Ca2+ concentration could also directly bind to GEFs that 

activate Ras and the ERK pathway. Two such GEFs have been described as Ca2+ and 

diacylglycerol-regulated GEFI (CalDAG-GEFI) and CalDAG-GEFII also known as 

RasGRP. They can be activated by Ca2+ and DAG that targets the Rap1 which could 

lead to B-Raf activation (Kawasaki et al., 1998b;Ebinu et al., 1998). In addition, shoc2 

scaffolding protein which has been shown to accelerate the interaction between Ras and 

c-Raf-1 also requires an increase in intracellular Ca2+ concentration (Matsunaga-

Udagawa et al., 2010;Yoshiki et al., 2010). 

 

1.5.4. GPCR mediated activation of the ERK pathway 

Activation of GPCRs coupled to Gs, Gi/o or Gq/11 proteins are able to converge and are 

all able to stimulate the ERK pathway but through different mechanisms (Faure et al., 

1994). However, it is thought that these mechanisms work to activate Ras or Raf which 
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then activates the sequential cascade leading to ERK1 and ERK2 

phosphorylation/activation. 

 

Phosphorylation/activation of ERK1 and ERK2 through GPCRs coupled to the Gs 

protein is thought to involve increases in intracellular cAMP concentration induced by 

the stimulation of adenylate cyclase. Increases in intracellular cAMP concentration are 

thought to involve direct action of cAMP and activation of PKA by cAMP on (Ras-

proximate-1) Rap1. Rap1 is a small GTP binding protein which is inactive when bound 

to GDP and is activated by GTP binding. It is thought that Rap1 has inhibitory action on 

c-Raf-1 but it might also stimulate B-Raf which could result in the activation of the 

ERK pathway (Ohtsuka et al., 1996). The direct action of cAMP is thought to involve 

the binding of cAMP to Epac which is a GEF that promotes the GTP binding to Rap1 

hence Rap1 activation (Kawasaki et al., 1998a;de et al., 1998). Activation of PKA by 

cAMP also leads to the phosphorylation of Src at site Ser17 which is thought to activate 

Rap1 which then consequently actives B-Raf and the ERK pathway (Schmitt & Stork, 

2000;Schmitt & Stork, 2002). An example of this is the A2A receptor that can influence 

the excitatory action of BDNF on hippocampal slices (Diogenes et al., 2004) and the 

neuromuscular junction (Pousinha et al., 2006). In both of these studies it was shown 

that it is specifically the A2A receptor that PKA activation is necessary for excitatory 

actions of BDNF. 

 

The mechanism of ERK1 and ERK2 phosphorylation/activation by GPCRs coupled to 

the Gq/11 protein is thought to be the stimulation of PLC which metabolises PIP2 to form 

DAG which can further stimulate PKC activation. It is thought that upon activation 

PKC can directly phosphorylate c-Raf-1 at sites Ser499 and Ser259 that results in the 
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activation of the ERK pathway (Kolch et al., 1993;Ueda et al., 1996;Schonwasser et al., 

1998).  

 

The GPCRs coupled to Gi/o proteins are thought to stimulate the ERK1 and ERK2 

phosphorylation through the dissociation of the βγ subunit. It is not thought the 

inhibition of adenylate cyclase mediates the stimulatory effects. The dissociation of the 

βγ subunit results in an increase in Shc phosphorylation on tyrosine residues which 

leads to the recruitment of Grb2 and Sos; thus activating the sequential ERK pathway 

(van et al., 1995). There is also evidence that c-Src might also be activated by the βγ 

subunit which results in enhanced Shc and Grb2 complexes (Luttrell et al., 

1996;Luttrell et al., 1997). 

 

1.5.5. Regulation of ERK1 and ERK2 phosphorylation/activation 

The regulation of ERK1 and ERK2 phosphorylation/activation is important given the 

diverse range of stimuli for this pathway. The ways in which the ERK1 and ERK2 are 

regulated is through scaffolding proteins, spatial localisation and MAPK phosphatases 

(MKPs) activity.  

There are several scaffolding proteins including MEK partner 1 (MP1), kinases 

suppressor of Ras (KSR) and MAPK organizer 1 (MORG1) associated with ERK 

signalling. These scaffolding proteins act to bring together the different kinases of the 

ERK pathway and facilitate the activation of ERK1 and ERK2 (Dhanasekaran et al., 

2007). MP1 functions as an adaptor that has been shown to specifically bind to MEK1 

and ERK1 and facilitate ERK1 phosphorylation/activation. A mutant form of MP1 is 

unable to bind to MEK1 and is not able stimulate Ras activated ERK pathway (Sharma 

et al., 2005). Interestingly, MP1 does not interact with Raf, MEK2 or ERK2 and is not 

involved in ERK2 phosphorylation/activation (Schaeffer et al., 1998). Furthermore, p14 
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a small protein interacts with MP1 which is required for the activation of the ERK 

pathway and localises the MP1 and ERK pathway to endosomes and lysosomal 

compartments (Wunderlich et al., 2001;Teis et al., 2002). MORG1 interacts with MP1 

can also associate independently with Raf-1, B-Raf, MEK1, MEK2 ERK1 and ERK2. 

Interestingly, MORG1 facilitates ERK1 and ERK2 phosphorylation/activation to a 

specific agonist but not to epidermal growth factor (Vomastek et al., 2004).  

 

KSR1 is also a scaffolding protein that interacts with Raf-1, MEK1, MEK2 and ERK1 

and ERK2 as well as other proteins and facilitates the Ras activated ERK pathway. 

KSR1 binding to MEK1 and MEK2 causes a change in the molecular mass and causes 

the translocation of MEK from the cytosol to the plasma membrane where it colocalises 

with Raf-1 and ERK and thereby activates the ERK pathway (Therrien et al., 

1996;Stewart et al., 1999). The mechanism of KSR1 binding and translocation of MEK 

is further regulated by c-TAK1 which constitutively phosphorylates Ser392 on the 

KSR1 structure. Upon growth factor stimulation, the phosphorylation state of Ser392 is 

significantly reduced leading to the translocation of KSR1-MEK complex (Muller et al., 

2001). 

 

The dephosphorylation of ERK1 and ERK2 by phosphatases is a negative feedback 

mechanism to regulate their activation. There are two phases of inactivation of ERK1 

and ERK2 that are described as rapid and delayed. There is evidence that suggests 

PP2A dephosphorylates threonine residues and another tyrosine specific phosphatase 

dephosphorylates tyrosine residues (Alessi et al., 1995). The delayed phase is likely to 

involve dual specific phosphatases that include MKP 1, 2, 3 and 4 which can 

dephosphorylate both the phosphoserine/threonine and phosphotyrosine residues in one 

substrate. In addition, MKPs localise in different compartments; MKP1 and 2 are 
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expressed in the nucleus, MKP3 is expressed in cytoplasm. MKPs are dual specific 

phosphatases that are capable of dephosphorylating both phosphorylated tyrosine and 

threonine residues on ERK1 and ERK2 (Pouyssegur et al., 2002). MKP1 and 2 are 

activated by the activation of ERK pathway (Brondello et al., 1997) and ERK2 is able 

to physically associate and activate MKP3 (Camps et al., 1998;Zhou et al., 2001). 

Furthermore, ERK1 and ERK2 phosphorylation of MKP1 at sites Ser359 and Ser364 

reduce the degradation of MKP1 which could thereby prevent prolonged activation of 

ERK1 and ERK2 (Brondello et al., 1999). 

 

1.5.6. Downstream targets of ERK1 and ERK2 

At the presynaptic nerve terminals the major consequence of ERK1 and ERK2 

phosphorylation/activation is the modulation of neurotransmitter release by 

phosphorylation of synapsin 1 at sites 4 and 5 (and possibly 6). BDNF stimulation of 

TrkB receptors facilitates glutamate release through the activation of ERK1 and ERK2 

which phosphorylate synapsin 1 leading to increased recruitment of SSVs (Jovanovic et 

al., 1996). Furthermore, this facilitation of neurotransmitter release can be attenuated by 

inhibiting MEK as well as in mice with synapsin deficiency (Jovanovic et al., 2000). 

There is evidence which suggests that BDNF facilitation of neurotransmitter release in 

the hippocampal nerve terminals is limited to a subset of nerve terminals (Pereira et al., 

2006). ERK involvement in neurotransmitter release is further supported by studies that 

highlight inhibition of glutamate release by reduced VDCC activity and ERK1 and 

ERK2 phosphorylation/activation (Chang & Wang, 2009;Chang & Wang, 2010). 

 

Furthermore, there is evidence that ERK1 and ERK2 may also play a role in synaptic 

plasticity in presynaptic nerve terminals. There is evidence that an ERK-dependent 

mechanism is responsible for PTP in presynaptic nerve terminals through 
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phosphorylation of synapsin. In the CA3 region of the hippocampus there is evidence 

that in these synapses ERK1 and ERK2 phosphorylation/activation modulates 

presynaptic plasticity through synapsin 1 (Vara et al., 2009). Transgenic mice with 

constitutively active form of H-ras exhibited enhancements in learning and fear 

conditionings through the phosphorylation of synapsin 1 by an ERK-dependent pathway 

(Kushner et al., 2005). The dependence of synapsin 1 in inducing ERK-dependent 

presynaptic plasticity suggests the mechanism of action is by modulation of SSV 

mobilisation and neurotransmitter release. Furthermore, down-regulation of the ERK 

pathway inhibits neurotransmitter release in synapses during development of neuronal 

circuits (Ghirardi et al., 2004). 

 

1.6. Regulation of neurotransmitter by intracellular Ca2+ release 

The role of extracellular Ca2+ influx on the presynaptic nerve terminal has been well 

established but the influence of intracellular Ca2+ stores on presynaptic nerve terminal 

functions is less well described. There are three possible stores of intracellular Ca2+, 

smooth endoplasmic reticulum, mitochondria and NAADP sensitive stores. 

 

1.6.1. Smooth endoplasmic reticulum 

Smooth endoplasmic reticulum serves different functions in different cells and can 

appear different under an electron microscope. In synaptosomes smooth endoplasmic 

reticulum has been identified as membrane-bound tubules or as isolated vesicles 

(McGraw et al., 1980a). At the nerve terminals smooth endoplasmic reticulum could 

function to sequester Ca2+ or release Ca2+ that contributes to nerve terminal function. 

The role of the endoplasmic reticulum has been well characterised in other cell types 

such as smooth muscle cells and at the postsynaptic cell bodies. From these studies 

certain features and functions of stores have been described that include activity 
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receptors such as the inositol triphosphate (IP3) receptor and ryanodine receptor. In 

addition, the Sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps maintain 

the Ca2+ concentration inside smooth endoplasmic reticulum.  

 

There are three forms of IP3 receptors (IP3Rs) that have been cloned including IP3R1, 

IP3R2 and IP3R3 and through functional studies it has been shown that these forms of 

receptors differ in IP3 binding affinity and receptor modulation. IP3Rs form tetrameric 

structures with each subunit having six transmembrane spanning helices with the C-

terminus facing the cytosol. The key domains of IP3Rs include the N-terminal 

suppressor and IP3 binding domain found at the N-terminus, channel forming and 

coupling domains and gate keeper domain found at the C-terminus (Patterson et al., 

2004;Mikoshiba, 2007a;Mikoshiba, 2007b).  

 

IP3Rs can be regulated by phosphorylation sites in the modulatory domain as well as by 

other proteins. The first form of regulation of IP3Rs is by Ca2+ itself. External Ca2+ 

and/or Ca2+ release by smooth endoplasmic reticulum causes a positive feedback 

response releasing more Ca2+ though higher Ca2+ concentrations have an inhibitory 

effect on IP3Rs (Bezprozvanny et al., 1991;Boehning et al., 2001). Furthermore, it has 

been shown that calcium-binding protein 1 in neuroendocrine cells inhibits Ca2+ release 

by IP3Rs from stores (Haynes et al., 2004). Furthermore, PKC is able to phosphorylate 

IP3Rs at distinct sites which enhances the receptor responsiveness to IP3 (Ferris et al., 

1991). At rest, IP3R binding protein (IRBIT) binds to the IP3R at the IP3 binding domain 

and suppresses the receptor activity. IRBIT also has regulatory domains that can be 

phosphorylated to regulate IRBIT activity (Ando et al., 2006). IP3 is able to displace 

IRBIT by competing for the IP3 binding domain thus when IP3 production increases in 

the cytosol IRBIT is released.  
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There are three types of ryanodine receptors (RyRs) that including RyR1, RyR2 and 

RyR3 and they all form homotetrameric complexes. There are numerous modulators 

that can impact on the gating of the pore that include Ca2+, calmodulin, PKA and 

CaMKII and these modulatory sites are found on the large N-terminus that faces the 

cytosol. Modulation of RyRs by Ca2+ is dependent on the concentration as at low 

concentrations Ca2+ is able to stimulate the RyRs while at higher concentrations the 

receptors are inhibited. It is thought that EF hand motifs contribute to Ca2+ modulation 

of RyRs but there are other Ca2+-binding sites that induce its stimulating effects 

(Hamilton & Serysheva, 2009).  Calmodulin is an inhibitor of RyR when it bound to 

Ca2+ and when free of Ca2+, calmodulin still inhibits cardiac RyR2 but is an agonist for 

RyR1. Interestingly, it is thought that calmodulin whether bound or unbound to Ca2+ 

interacts with the RyRs at the same sites (Zalk et al., 2007). Calstabin 1 and calstabin 2 

are enzymes that inhibit RyR and through mutagenesis studies there is evidence that 

phosphorylation at site Ser2808 by PKA cause the dissociation of the calstabins and an 

increase in the opening of the channel. Furthermore, CaMKII is able to phosphorylate 

the RyR2 at ser2814 which also increases channel opening. 

 

 The distribution of the receptors types suggests that it is most likely that the RyR2 and 

RyR3 are localised in cortical nerve terminals. With respect to brain regions RyR1 is 

highly expressed in the cerebellum, hippocampus and striatum but not in the cortex. 

RyR2 is expressed in all regions while RyR3 are expressed in the cortex, hippocampus 

and in low levels in the cerebellum (Giannini et al., 1995). Furthermore, the RyR have 

been shown to be present in presynaptic nerve terminals using the synaptosomal 

preparation (Padua et al., 1996). 
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IP3Rs are stimulated through the PIP2 metabolism pathway. PLC activation results in 

the metabolism of phosphatidylinositol 4,5-bisphosphate (PIP2) forming two 

metabolites that are IP3 and diacylglycerol (DAG). This continuous metabolism of PIP2 

causes a significant increase in IP3 levels that is then sufficient for IP3R stimulation 

(Mikoshiba, 2007a). The RyRs on the other hand are largely activated by the influx of 

Ca2+ in a process known as Ca2+-induced Ca2+ release (CICR). The stimulation of IP3Rs 

and RyRs results in the efflux of Ca2+ from the smooth endoplasmic reticulum into the 

cytosol. 

 

At the presynaptic nerve terminals studies have focused on the function of intracellular 

Ca2+ stores on neurotransmitter release. There is evidence that at the Purkinje cell 

synapse RyRs in the presynaptic nerve terminals increase neurotransmitter release to 

enhance miniature inhibitory postsynaptic currents (Llano et al., 2000;Galante & Marty, 

2003). Using hippocampal synapses there is evidence that LTD induction in this system 

is dependent on Ca2+ release mediated by RyRs in the presynaptic nerve terminals 

(Reyes & Stanton, 1996;Unni et al., 2004). Furthermore, other studies have provided 

evidence that intracellular Ca2+ stores contribute to spontaneous and evoked exocytosis 

of glutamate from presynaptic nerve terminals (Davletov et al., 1998;Rahman et al., 

1999;Capogna et al., 2003). However, it has also been suggested that intracellular Ca2+ 

store release of Ca2+ is not sufficient per se for regulating exocytosis but rather 

functions to modulate the RRP (Khvotchev et al., 2000). 

 

There are numerous studies that have suggested that intracellular Ca2+ stores maybe 

involved in neuronal pathologies. Thus the effect of intracellular Ca2+ stores has been 

investigated in NMDA induced excitotoxicity in cortical neurons. Evidence suggests 

that endoplasmic reticulum stores release Ca2+ through IP3R and RyR activation and 
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contribute to neuronal death. Moreover, Ca2+ release inhibition also attenuated 

mitochondrial pathways that cause neuronal death (Ruiz et al., 2009). Furthermore, 

there is evidence that impairment of intracellular Ca2+ store function at the presynaptic 

nerve terminals may possibly be a precursor for Alzheimer’s disease (Zhang et al., 

2009). In addition, zonisamide is an antiepileptic drug that is thought to exert its 

inhibitory effect by enhancing GABA neurotransmitter release through the IP3R 

activation (Yamamura et al., 2009). 

 

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps are able to transport the 

Ca2+ across the membrane of the smooth endoplasmic reticulum via an ATP driven 

mechanism known as the SERCA catalytic cycle. The SERCA pumps exist in two states 

in the first (E1) state the SERCA pump has a high affinity for Ca2+ and binds to Ca2+ on 

the cytosolic side of the membrane. In the second (E2) state the affinity for Ca2+ is 

reduced leading to release of Ca2+ in the lumen of the smooth endoplasmic reticulum. 

The catalytic cycle is started when the SERCA pump is in the E1 state and binds to two 

Ca2+ ions and ATP. The hydrolysis of ATP increases the formation of a high-energy 

phosphor-intermediate called the ADP-sensitive form that is phosphorylated and bound 

to two Ca2+ ions. This is followed by a conformational change to the ADP-insensitive 

form in which the Ca2+ binding sites have a lower affinity and are now oriented towards 

the lumen of the smooth endoplasmic reticulum. Ca2+ ions are then released due to the 

lower affinity which is followed by hydrolysis that forms the E2 state. The SERCA 

pump then undergoes a conformational change from the E2 state to the E1 state (Brini 

& Carafoli, 2009). 

 

There are three types of SERCA pumps found in the mammalian cells including 

SERCA1, SERCA2 and SERCA3. Studies of the structure of SERCA pumps have 
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identified four domains that are important in the function of the pump. These domains 

are known as the actuator (A), phosphorylation (P), nucleotide-binding (N) and 

membrane (M) domains. The M domain is the region of the 10 transmembrane helices 

and is connected to the A and P domains while the N domain is connected to the P 

domain. The P domain is important because it contains the amino acid Asp351 which is 

phosphorylated during the catalytic cycle. The N domain is important because it 

contains the amino acid Phe487 that is crucial for ATP binding. The A domain is 

suggested to move significantly during the catalytic cycle. Both these features are 

thought to be important in the hydrolysis of the phosphorylation site. The two Ca2+ 

binding sites found in the M domain suggested that this domain is important in the 

transportation of the Ca2+ (Wuytack et al., 2002). 

 

1.6.2. Mitochondria 

Mitochondria are an essential component of the cell and are found in presynaptic nerve 

terminals. They are important in the production of ATP but also studies have pointed to 

mitochondria playing an important role in Ca2+ homeostasis and dysfunction of the 

mitochondria is the cause of some pathologies. Mitochondria have an outer and inner 

mitochondrial membrane. There are several Ca2+ channels and pathways by which Ca2+ 

is buffered and released by the mitochondria including mCa1 and mCa2, mitochondrial 

RyR, mitochondrial Na+/Ca2+ and H+/Ca2+ exchanger. 

 

Ca2+ uptake by mitochondria is mediated by the mitochondrial Ca2+ uniporter (MCU) 

and non-MCU type that are located in the inner mitochondrial membrane. There is 

evidence to support that the mitochondrial Ca2+ channels mCa1 and mCa2 are MCU and 

non-MCU type, respectively (Michels et al., 2009). The mCa1 and mCa2 channels are 

highly selective for Ca2+ ions and in the presence of Ca2+ are impermeable to Na+, K+, 
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Mg2+ and Cl- ions and that activity is dependent on mitochondrial membrane potential. 

Through electrophysiological studies the current of mCa1 is found to be inwardly 

rectifying with a large capacity (Kirichok et al., 2004). The mCa2 current is different 

from mCa1 because it has smaller single-channel amplitude and a higher open 

probability. Furthermore, there is a difference in the pharmacology as mCa2 is 

insensitive to ruthenium 360 (Michels et al., 2009). 

 

Ca2+ is able to activate mCa1 which is further supported by the finding that calmodulin 

is also able to activate mCa1 uptake of Ca2+ but CaMKII activation does not have an 

effect on mCa1 activity (Moreau et al., 2006). The mCa1 channel is regulated by a 

biphasic mechanism in which the uniporter is inactivated with reduced ability to 

reuptake Ca2+ into the mitochondrial lumen after exposure to high cytosolic Ca2+ 

concentrations. The mechanism by which mCa1 is inactivated is thought to be through 

the acidification of the inner membrane. Ca2+ entry into the inner membrane stimulates 

ATP synthesis which drives H+ ions into the inner membrane which inactivates mCa1. 

This can be described as a negative feedback mechanism to prevent Ca2+ overload in the 

mitochondria (Moreau & Parekh, 2008). 

 

The activation of mCa1 and mCa2 receptors is also dependent on the Ca2+ 

microdomains at the mouth of the IP3Rs (Rizzuto et al., 1993;Nassar & Simpson, 2000). 

There is evidence from Ca2+ probes at the outer mitochondrial membrane that shows the 

Ca2+ concentration at several points is 5 to 10 fold higher than the cytosolic Ca2+ 

concentration. Furthermore, these Ca2+ microdomains can be formed by IP3Rs on the 

ER and regions of Ca2+ influx through VDCCs (Rizzuto et al., 1998;Giacomello et al., 

2010). The close proximity of the ER and mitochondria is thought to also have other 

functional effects that include the refilling of ER with Ca2+ by mitochondrial release of 
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Ca2+ (Malli et al., 2005). Furthermore, the IP3R activity of stores that are close to 

mitochondria is regulated by mitochondria Ca2+ uptake thus suppressing the positive 

feedback effect of Ca2+ release from IP3Rs on IP3Rs (Hajnoczky et al., 1999;Chalmers 

& McCarron, 2009).  

 

In the outer mitochondrial membrane the voltage-dependent anion channels (VDAC) is 

thought to play important role in the passage of ions and small molecules into the 

mitochondria. VDAC are in an open configuration at low potential which it has a high 

conductance and weak anion-selectivity while at higher potentials they are in the closed 

state which has a lower conductance and show cation selectivity. As this channel is 

found on the outer mitochondrial membrane it is an important in the structural coupling 

between mitochondria and smooth endoplasmic reticulum and has a functional 

importance in regulating mCa1 and mCa2 exposure to cytosolic Ca2+ concentration 

(Shoshan-Barmatz et al., 2004). 

 

Ca2+ efflux from the mitochondria is by a Na+ dependent pathway through the Na+/Ca2+ 

exchanger. The type of Na+/Ca2+ exchanger enriched at the mitochondria has been 

identified as NCLX which is not localised in the plasma membrane or the smooth 

endoplasmic reticulum (Palty et al., 2010). The NCLX is an antiporter in that it uptakes 

three Na+ ions into the mitochondria in exchange for one Ca2+ ion efflux into the 

cytosol. In addition, the exchanger can transport Ca2+ in either direction under 

conditions in which Na+ ions are removed the exchanger transports Ca2+ into the 

mitochondria. NCLX is regulated through a negative feedback mechanism via Ca2+ 

accumulation in the mitochondria, so this could provide a positive contribution of Ca2+ 

retention in the mitochondria (Opuni & Reeves, 2000). 
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There is also a Na+ independent pathway that has been described to release Ca2+ from 

the mitochondria. Through RNAi screening Letm1 has been identified as a Ca2+/H+ 

antiporter that is localised in the inner mitochondrial membrane. The antiporter is able 

to exchange one Ca2+ ion for one H+ ion in either direction across the inner 

mitochondrial membrane. In conditions in which the mitochondrial Ca2+ concentration 

is high and the pH is acidic the antiporter is able to extrude excess Ca2+ ions. At low 

mitochondrial Ca2+ concentrations and alkaline pH the antiporter uptakes Ca2+ ions at 

nanomolar concentrations (Jiang et al., 2009). 

 

1.6.3. Acidic stores 

There is accumulating evidence that nicotinic acid adenine dinucleotide phosphate 

(NAADP) and cyclic ADP ribose (cADPR) have a prominent role in intracellular Ca2+ 

signalling. Both of these are formed by ADP ribosyl cyclase that has a synthase and 

hydrolase activity. It is likely the activation of ADP ribosyl cyclase is due to agonist 

activation. In support of this hypothesis there is evidence that in hippocampal neurons 

and glial cells glutamate application results in elevated NAADP cellular levels (Pandey 

et al., 2009).  

 

However, despite both being generated by ADP ribosyl cyclase, NAADP and cADPR 

mobilise intracellular Ca2+ through different mechanisms. The cADPR metabolite is 

thought to act as modulator as it is thought to activate RyRs inducing Ca2+ efflux into 

the cytosol. However, following RyR activation by cADPR there is a desensitisation of 

the release mechanism induced by cADPR. The activation of RyR by cADPR requires 

calmodulin presence and the desensitisation of the release mechanism is due to the 

dissociation of calmodulin from the RyRs (Lee et al., 1994;Thomas et al., 2002). 

Furthermore, cADPR has been shown to enhance IP3 evoked Ca2+ release by increasing 
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SERCA pump function of sequestering Ca2+ (Yamasaki-Mann et al., 2010). In 

functional studies in the frog motor nerve terminals, it has been shown that cADPR 

enhances CICR by inhibiting the RyR inactivation and increases the efficiency of 

activation (Hachisuka et al., 2007). Furthermore, neurotransmitter release has been 

shown be modulated by cADPR in cholinergic synapses of the buccal ganglion of 

Aplysia californica (Mothet et al., 1998). 

 

NAADP is thought to act on NAADP receptors found on acidic stores such as 

lysosomes, release from which has been shown to occur in sea urchin eggs (Churchill et 

al., 2002). It is thought that NAADP mobilises Ca2+ by activating two-pore channels 

(Calcraft et al., 2009). In lysosomal stores it is thought that TPCN2 a member of the 

two-pore channel family is activated by NAADP (Zong et al., 2009). The Ca2+ released 

from these acidic stores is independent and does not interact with Ca2+ release from the 

smooth endoplasmic reticulum or the mitochondria. The Ca2+ enters the acidic stores via 

activity of a Ca2+-ATPase that pump Ca2+ into the store using ATP. Furthermore, the 

membranes of the acidic stores have a large concentration gradient of protons which can 

be used by Ca2+/H+ exchanger to efflux H+ and uptake Ca2+ into the vesicle lumen. In 

the frog neuromuscular junction it has been shown that NAADP can enhance 

neurosecretion induced by IP3 and cADPR and that this enhancement activity is distinct 

from that supported by the smooth endoplasmic reticulum (Brailoiu et al., 2003). 

Furthermore, there is evidence which suggests that NAADP can also enhance 

neurotransmitter release in cholinergic synapses of the buccal ganglion of Aplysia 

californica (Chameau et al., 2001). Interestingly, a study has suggested that NAADP 

enhances release at the frog neuromuscular junction which could involve NAADP 

activity of synaptic vesicles in the RRP (Brailoiu et al., 2001). 
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Ca2+ that is released from acidic stores by NAADP can act on RyRs to activate Ca2+ 

release from smooth endoplasmic reticulum. However, there is evidence which suggests 

that Ca2+ released from the acidic stores is transported into the smooth endoplasmic 

reticulum and so subsequent stimulation of IP3Rs or RyRs produce further Ca2+ release 

(Churchill & Galione, 2001). 

 

1.7. Isolated nerve terminals (Synaptosomes) 

In this thesis we need a good model in which the presynaptic effect can be studied in 

isolation. The paired-recordings method from brain slices is a model that has been 

developed to understand the functional communication between the neurons. The main 

advantages of this model are that many different regions of the brains can be studied. 

Furthermore, this model does not use extracellular stimulations but can use electrical 

stimulation protocols that ensure the triggering of an action potential at the presynaptic 

terminal. However, this technique is not appropriate for studying presynaptic nerve 

terminals in isolation as retrograde signalling can influence the responses at the 

presynaptic nerve terminal (Debanne et al., 2008).   

 

Isolated nerve terminals (synaptosomes) are encapsulated presynaptic nerve endings 

that have been sheared off using a homogenisation process. Synaptosomes contain 

within them the SSVs; some have mitochondria, cytoplasm and smooth endoplasmic 

reticulum (McGraw et al., 1980a;Whittaker, 1993). In functional terms, synaptosomes 

can metabolise glucose to make ATP as they have functioning mitochondria. 

Furthermore, the plasma membrane of synaptosomes contain functional Na+ and K+ 

channels to maintain the membrane potential and ion homeostasis. In addition the SSVs 

within synaptosomes are competent for storing neurotransmitters and undergoing 

exocytosis and endocytosis. Synaptosomes have been shown to possess a Ca2+ 
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dependent exocytotic pool of glutamate (Nicholls & Sihra, 1986) and are sensitive to 

tetanus and botulinum A and B toxin (Sanchez-Prieto et al., 1987;McMahon et al., 

1992).  

 

The consequences of synaptosomal stimulation can also be studied as they contain 

competent and functional signal cascades and downstream kinases and phosphatases. 

However, there are some disadvantages of using a synaptosomal model over the cellular 

methods. Firstly, synaptosomes cannot make new proteins therefore they have a limited 

utility in long term studies. Furthermore, due to their size, single-channel recordings are 

not feasible and Ca2+ measurement using fluorescent dyes is limited. Lastly, due to the 

homogenisation process itself, the synaptosomes that are purified are heterogeneous 

containing both glutamatergic and GABAergic nerve terminals. Despite these 

shortcomings they are suited to address the questions that are posed in this thesis. 

 

1.8. PhD aims 

1. ERK1 and ERK2 phosphorylation/activation could be activated by Ca2+-

dependent mechanisms in presynaptic nerve terminals though the sources of 

Ca2+ cannot be distinguished. The main objective of the thesis was to investigate 

the stimulation paradigms of Ca2+-dependent mechanisms that result in ERK1 

and ERK2 phosphorylation/activation. Thus the first aim was to establish a 

model that separates the external and internal Ca2+-dependent mechanisms 

responsible for ERK1 and ERK2 phosphorylation/activation. 

   

2. In presynaptic nerve terminals there are three potential compartments that store 

Ca2+ these being the smooth endoplasmic reticulum, mitochondria and acidic 

stores. Each store could play a significant role in ERK1 and ERK2 
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phosphorylation/activation. Thus, the functional role of each of the stores to the 

phosphorylation/activation of ERK1 and ERK2 was investigated. 

 

3. Intracellular Ca2+ stores can be mobilised by different signalling pathways. The 

two main mechanisms that were targeted included Ca2+-induced Ca2+ release 

(CICR) and IP3-induced Ca2+ release (IPCR). 

 

4. Ca2+ homeostasis dysfunction can result in a significant pathophysiological 

condition. The effect on intracellular Ca2+ stores was investigated in a model 

that mimicked the pathophysiological conditions.   
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2. Method 

The preparation of synaptosomes has evolved with time with changes in procedure 

aimed at yielding high concentrations of pure synaptosomes that have good metabolic 

properties. The key change in the procedure has been the use of type of gradient used 

during the separation of synaptosomes. Density sucrose gradients were first used but 

this exposes synaptosomes to very hypertonic conditions thus the metabolic condition of 

synaptosomes are poor (Whittaker, 1968). The use of polysaccharide polymers with 

Ficoll gradients yields more metabolic competent synaptosomes as compared to 

synaptosomes prepared from sucrose gradients. However, synaptosomes were also 

found to be more heterogeneous (Verity, 1972). Percoll based gradients have been 

developed which tackles both of these issues. They are non-toxic polymer beads that are 

iso-osmotic and avoid the effects of dehydration which yields synaptosomes with high 

metabolic competency. Furthermore, the synaptosomes are purified and the Percoll 

beads and can be easily removed after centrifugation (Nagy & Delgado-Escueta, 

1984;Dunkley et al., 1986;Dunkley et al., 2008). Thus, we have decided to use 

synaptosomes that are purified using the Percoll gradients. 

 

2.1. Synaptosomal preparation 

Synaptosomes were obtained from male Sprague-Dawley rats weighing between 150-

200 grams. Animals were sacrificed by decapitation according to the Home Office 

Animals (Scientific Procedures) Act of 1986. The cerebral cortex was dissected with the 

hippocampus and any other non-cortical tissues removed. The cortex was then placed 

into separate centrifuge tubes containing ice-cold sucrose medium (320mM). The 

cortices were then homogenised using a Telfon pestle and a glass Potter-Elvehjem 

tissue grinder. The homogenised cortices were then centrifuged in a Beckman J2-21M/E 

centrifuge at 3,020g for 2 minutes. At the end of the first spin, the first pellet (P1), a 
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mixture of blood vessels connective tissue and cell body debris, was discarded. The 

supernatant (S1) was spun at 14,600g for 12 minutes. At the end of this spin, the pellet 

(P2) contained crude synaptosomes and mitochondria while the supernatant contained 

various ‘light’ components such as microsomal membranes, ribosomes and myelin.  

 

The supernatant was discarded and the P2 pellets were re-suspended in the sucrose 

medium (320mM) using a Dounce homogeniser. The re-suspended solution was then 

gently loaded onto ice-cold Percoll gradients. The Percoll gradients were made of three 

discontinuous layers of Percoll at concentrations of 3, 10 and 23% (top-bottom). The 

layered Percoll gradients were then centrifuged at 35,100g for 6 minutes to separate the 

synaptosomes from mitochondria and myelin. There are several advantages in using 

Percoll gradients as opposed to other density gradients. Firstly, Percoll gradient 

separation produces a purer synaptosomal yield and second as the medium is iso-

osmotic; it has no dehydration effects on the synaptosomes as is the case for sucrose 

gradients. Percoll is inert and therefore non-toxic Percoll purification maintains nerve 

terminal viability. 

   

Following Percoll gradient separation, three bands were observed (from the top): the 

first band is myelin, the second band contains the synaptosomes and the third band is 

composed of mitochondria. The first and third bands were discarded but the second 

band containing the synaptosomes was carefully removed and added to ice-cold HBM: 

NaCl (140mM), KCl (5mM), NaHCO3 (5mM), NaH2PO4 (1.2mM), MgCl2 (1mM), 

glucose (10mM), BSA (1mg/ml) and HEPES (10mM); pH7.4 contained in a 50ml 

centrifuge tube. These synaptosomes suspended in HBM were then centrifuged at 

27,000g for 10 minutes. The resulting pellet contained purified synaptosomes which 
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were then re-suspended in a small volume of HBM using a Dounce homogeniser and 

stored on ice.  

 

The concentration of synaptosomes was next determined using the Bradford protein 

assay (Bradford, 1976). The protein determination allows a reproducible synaptosomal 

concentration was aliquoted for each preparation and ensures reliability comparability 

of data between experiments. After determining the synaptosomal concentration from 

the preparation, an appropriate volume of re-suspended synaptosomes was added to ice-

cold test tubes containing 8ml HBM and centrifuged at 3,020g for 10 minutes. The 

supernatant was discarded and the pellets were stored on ice. The resulting pellet 

contains the desired amount of purified synaptosomal protein and ready for subsequent 

use in experiments. 

 

2.2. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Immunoblotting is a procedure by which specific proteins can be analysed and 

quantified. There are three stages to the quantification of proteins; the proteins are 

separated, transferred onto nitrocellulose membranes and immunoblotted with the 

specific antibodies.  

 

Synaptosomal proteins were separated using SDS-PAGE gels composed of acrylamide 

(7.5%), bis-acrylamide (3%) and a running buffer consisting of Tris (25mM), glycine 

(192mM) and SDS (0.1%); pH8.6. The samples contained a STOP solution of Tris 

(12.5mM), SDS (0.4%), glycerol (2%), 3-mercaptoethanol (1%) and bromophenol blue. 

The STOP solution was added at the end of each experiment which not only stops the 

reactions but also denatures the proteins. In addition, SDS in its structure has a 

hydrophobic chain that bind to the main peptide chain at a ratio of one SDS molecule 
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for every two amino acid residues. This effectively imparts a negative charge on the 

protein that is proportional to the mass of that protein and which is greater than the 

original charge of that protein. Thus proteins migrate down the gel relative to their mass 

and not to their native charge. The amount of protein that was loaded onto the gels was 

consistent throughout the experiments at 50µg. The gels were run at room temperature 

at a constant voltage (40V) therefore increasing temperature does not affect the 

migration of proteins.  

 

After the proteins have been separated, they were transferred onto a nitrocellulose 

membrane in electrotransfer buffer containing Tris (23mM), glycine (192mM) and 

methanol (20%). The transfer was conducted over night at a constant current of 200mA. 

After the transfer, the nitrocellulose membrane was stained with Ponceau S solution 

containing Ponceau Red (0.2%), TCA (3%) and sulfosalicyclic acid (3%); this allowed 

for the visualisation of the transferred proteins.  

 

The nitrocellulose membrane was then immunoblotted using a standardised procedure 

for identifying and quantifying ERK1/2 phosphorylation. The membrane was washed 

three times for 10 minutes each in a Tris buffer saline (TBS)-Tween 20 which contains 

Tris (20mM); pH 7.6, NaCl (137mM), Tween-20 (0.5%). This ensured that any excess 

Ponceau S staining was removed and initiated blocking of non-specific binding sites. 

The membrane was then incubated for an hour in a blocking buffer solution made of dry 

milk (5%) in TBS-Tween 20. This incubation step reduced non-specific binding of the 

primary antibody. After the blocking buffer incubation, the membrane was incubated 

overnight at 4ºC with the primary antibody at a 1 in 1000 dilution in TBS-Tween 20. 

The primary antibody was purchased from Cell Signalling Technologies and detects 

endogenous levels of p44 and p42 MAP Kinase (ERK1 and ERK2) when 
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phosphorylated dually at Thr202 and Tyr204 of ERK1 (Thr185 and Tyr187 of ERK2). 

The antibody does not cross-react with non-phosphorylated ERK1 and ERK2 and does 

not cross-react with the corresponding phosphorylated residues of either JNK/SAPK or 

p38 MAP kinase. Following the overnight incubation, the membrane was washed three 

times for 15 minutes each in the blocking buffer containing dry milk (5%) to ensure that 

any unbound primary antibody was removed. After this, the bound primary antibody on 

the membrane was labelled with the secondary antibody that is conjugated with 

radioactive 125I at a 1 in a 1000 dilution for an hour. The membrane was then washed 

using blocking buffer containing dry milk (5%) for 5 and 10 minutes and TBS-Tween 

20 for 5 and 10 minutes to remove any excess secondary antibody. The radioactive 

membrane was then air-dried and exposed to a phosphoimager screen. The screen was 

analysed with a Typhoon 9410 phosphoimager screening system. The data was 

quantified using Image Quant analysis that calculated the volume under the surface of a 

given area created by a 3-D plot of the pixel locations and pixel intensities.  

 

2.3. Incubation protocols 

We have used differing protocols to test the effect various drugs have on ERK1 and 

ERK2 phosphorylation/activation. This has been done to compensate the preincubation 

necessity of some drugs to see their effect as the permeability of the drug into the 

synaptosomes varies from drug to drug.  

 

2.3.1. Standard protocol 

In the standard protocol we resuspended the synaptosomes that were in the pellet 

obtained using the method described in section 2.1. The synaptosomes were 

resuspended using a HBM buffer solution with BSA (1mg/ml) to give a synaptosomal 

concentration of 1mg/ml. The resuspended synaptosomes were then incubated at 37ºC 
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for 3 minutes in 1.5ml eppendorf tubes that were kept on ice prior to the incubation. 

This is necessary as it has been previously shown that in using this protocol temperature 

can affect the ERK1 and ERK2 phosphorylation/activation. After 3 minutes Ca2+ (1mM) 

was added to the incubation or in conditions to achieve Ca2+ free incubation EGTA 

(100µM) was added. In order to cause Ca2+ entry we used 4-AP (1mM) or ionomycin 

(5µM) after 10 minutes of incubation. We stimulated the synaptosomes with 4-AP or 

ionomycin for 5 minutes after which we ended the incubation by adding a STOP 

solution that contains Tris (125mM); pH 6.8, SDS (0.4%), glycerol (2%), 3-

mercaptoethanol (1%) and bromophenol blue. In every experiment control incubation 

was put on ice for the length of time of 37ºC incubation samples which was also ended 

with the STOP solution. 

 

 
 

Schematic 2-1: Standard protocol timeline 
This schematic shows the standard protocol timeline. Synaptosomes were resuspended in HBM buffer 
containing BSA (1mg/ml) followed by the Ca2+ addition after 3 minutes.4-AP (1mM) or ionomycin 
(5µM) was used to stimulate the synaptosomes for 5 minutes and the experiment was ended using the 
STOP solution. 
 

2.3.2. Intracellular Ca2+ store repletion protocol 

We devised a protocol that specifically deals with the detecting the effect of Ca2+ 

release from intracellular Ca2+ stores on ERK1 and ERK2 phosphorylation/activation. 

The synaptosomal pellet obtained through the procedure described in section 2.1 was 

resuspended to give the synaptosomal concentration of 1mg/ml using a HBM buffer 

solution containing BSA (1mg/ml). Synaptosomes were added to 1.5ml eppendorf tubes 

that were kept on ice and incubated at 37ºC for 50 minutes. During this preincubation 
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time various drugs were incubated as required for that specific experiment. 

Furthermore, if required Ca2+ (1mM) was added during this preincubation period. After 

50 minutes the synaptosome suspension was spun down and the supernatant was 

removed and the synaptosome pellet put on ice. We undertook this step to remove any 

drug that was added during the preincubation period. The synaptosomes were then 

resuspended using the HBM buffer containing BSA (1mg/ml) and Ca2+ (1mM) giving a 

final synaptosomal concentration of 2mg/ml and incubated at 37ºC for 2 minutes. 4-AP 

(1mM) or ionomycin (5µM) was then used to cause Ca2+ entry into synaptosomes with 

the stimulation lasting for 5 minutes. The experiment was ended using a STOP solution 

that contains Tris (125mM); pH 6.8, SDS (0.4%), glycerol (2%), 3-mercaptoethanol 

(1%) and bromophenol blue. In every experiment control incubation was put on ice for 

the length of time of 37ºC incubation samples which was also ended with the STOP 

solution. 

 

 
 
Schematic 2-2: Intracellular Ca2+ store repletion protocol timeline 
This is the intracellular Ca2+ store repletion protocol timeline. The synaptosomes were resuspended and 
any drug of interest was added at the beginning of the experiment. After 3 minutes Ca2+ (1mM) was 
added and synaptosomes were preincubated for 50 minutes and spun down at 14,000rpm for 30 seconds. 
The synaptosomes were kept on ice and resuspended after 67 minutes with Ca2+ already present in the 
HBM buffer. 4-AP (1mM) or ionomycin (5µM) was added to the incubation after 70 minutes and this 
stimulated the synaptosomes which lasted for 5 minutes and the experiment was ended using a STOP 
solution.  
 

2.3.3. Metabotropic activation protocol 

We suspected that the high synaptosomal concentration used in other protocols to show 

ERK1 and ERK2 phosphorylation/activation is not suitable for metabotropic 

phosphorylation/activation of ERK1 and ERK2. The high synaptosomal concentration 
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could lead to high levels of endogenous glutamate in the incubation which could lead to 

the desensitisation of the glutamate metabotropic receptors.  Synaptosomes that were 

obtained through the procedure described in section in 2.1 were first resuspended in 

synaptosomal concentration of 1mg/ml. The final suspension concentration was then 

made to 0.067mg/ml using HBM buffer containing BSA (1mg/ml) and incubated at 

37ºC for 50 minutes. During this preincubation period Ca2+ (1mM) was added to the 

suspension as well as any drugs of interest for the experiment. The synaptosomes were 

then stimulated by using DHPG (10µM) for 1 minute after which the synaptosomes 

were spun down and the supernatant removed. The experiment was ended using a STOP 

solution that contains Tris (125mM); pH 6.8, SDS (0.4%), glycerol (2%), 3-

mercaptoethanol (1%) and bromophenol blue. In every experiment control incubation 

was put on ice for the length of time of 37ºC incubation samples which was also ended 

with the STOP solution. 

 

 
 
Schematic 2-3: Metabotropic activation protocol timeline 
This is the metabotropic activation protocol timeline. Synaptosomes were resuspended in HBM buffer 
and any drug of interest for a particular experiment was also added at the beginning of the experiment. 
After 3 minutes Ca2+ (1mM) was added to the incubation. DHPG (10µM) was used to stimulate the 
synaptosomes for 1 minute after which the synaptosomes were spun down with the supernatant removed. 
The experiment was ended using a STOP solution. 
 

2.4. Intracellular [Ca2+] Measurement using Fura-2 

The measurement of intracellular [Ca2+] is achieved through the use of an ion sensitive 

fluorescent dye called Fura-2. Fura-2 is a ratiometric dye that fluoresces on binding to 

Ca2+. Upon Ca2+ binding, Fura-2 exhibits a wavelength shift in the peak of its excitation 

spectrum from 380 nm to 340 nm (Grynkiewicz et al., 1985). Fura-2 has four negative 
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charges which gives Fura-2 its affinity for Ca2+. However, due to the negative charges, 

Fura-2 is membrane impermeable. To overcome this, a hydrophobic acetomethoxy 

group is attached to Fura-2 through an ester bond which makes it membrane permeable 

(Fura-2AM). Once inside the cytosol, the ester bond is hydrolysed leaving Fura-2 

trapped in the synaptosomes.  

 

Synaptosomes (0.2mg) were re-suspended in a HBM containing BSA (1mg/ml) and 

incubated with Fura-2AM at 37ºC for 20 minutes. After 3 minutes Ca2+ (0.1mM) was 

added and at the end of the incubation, synaptosomes were centrifuged for 10,000rpm 

for 1 minute. The supernatant was removed and the pellet was re-suspended in a HBM 

containing BSA (1mg/ml). The recording of the trace was started and Ca2+ (1mM) was 

added after 3 minutes. After 10 minutes, the control or the appropriate drug 

concentration was added to the synaptosome suspension and the action of the control 

and drug was measured for 20 minutes (Schematic 2-4). 

 

To ensure that the measurement of intracellular [Ca2+] is not influenced by varying 

loads of Fura-2 into synaptosomes, a calibration was conducted at end of each 

experiment. The maximum binding by intrasynaptosomal loaded Fura-2 to Ca2+ was 

determined by adding SDS (0.1%). The external Ca2+ is 1mM thus when the 

synaptosomes are lysed, Fura-2 is saturated by Ca2+ and this produces a maximum 

fluorescence ratio (Rmax). The minimum binding by intracellular Fura-2 to Ca2+ was 

determined with the addition of a mixture of EGTA (10mM) and Tris. EGTA has a 

greater affinity for Ca2+ then Fura-2 thus EGTA is able to remove any Ca2+ bound to 

Fura-2. This gives the minimum fluorescence ratio of Fura-2 (Rmin). The amount of Tris 

had been previously calibrated to ensure that there is no pH change with the addition of 

EGTA (10mM). 
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Schematic 2-4: Intracellular [Ca2+] measurement using Fura-2 timeline 
Synaptosomes are re-suspended in HBM containing BSA (1mg/ml) and Fura-2AM (5µl) is added to the 
suspension. During the incubation Ca2+ (0.1mM) is added after 3 minutes. After the incubation the 
synaptosomes were washed and the recording of the experiment conducted. Ca2+ (1mM) was added 3 
minutes after the start of the recording of the experiment. At 10 minutes HBM or drug of interest was 
added to the incubation. The calibration was conducted at the 30 minute time point when SDS (0.1%) was 
added to the incubation and the calibration was completed with the addition of EGTA/Tris (10mM) at the 
34 minute time point.  
 

2.5. Glutamate release 

At the appropriate time, the synaptosomes were re-suspended for measurement of 

glutamate release by on-line fluorimetry using a Perkin-Elmer LS-3B 

spectrofluorimeter. This assay is based on the oxidative deamination of glutamate, 

catalysed by glutamate dehydrogenase (GDH) and coupled to the reduction of NADP+ 

to NADPH which is measured due to its fluorescence. The settings for the 

spectrofluorimeter were excitation wavelength 340nm, emission wavelength 460nm. 

The synaptosomes were re-suspended in 1.5ml HBM containing BSA (1mg/ml) and 

transferred to the spectrofluorimeter. Constant stirring ensured the synaptosomes were 

oxygenated. NADP+ (1mM) and GDH (50 units/ml) were added to the suspended 

synaptosomes at time point 0 and Ca2+ (1mM) was added after 3 minutes. At 6 minutes, 

the recording of the release was started to measure fluorescence emission at intervals of 

2 seconds. At 10 minutes, one of two secretatogues was added to evoke Ca2+-dependent 

glutamate release; 4-AP (1mM) or ionomycin (5µM). Finally, at 15 minutes, exogenous 

glutamate (2.5nmol) was added as an internal standard to quantify the glutamate 

released (Schematic 2-5). Figure 2-1 shows a typical trace in its unanalysed form shown 

in fluorescence units and the time points at which 4-AP and glutamate were added. The 
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figure also shows the same trace analysed with the time point of 4-AP addition set at the 

baseline.  

 

 
 
Schematic 2-5: Glutamate release timeline  
Synaptosomes were re-suspended in HBM containing BSA (1mg/ml) and NADP+ (1mM) and GDH (50 
units/ml) was added to the suspension. At 3 minutes Ca2+ (1mM) was added and the recording of the trace 
was started at 6 minutes. Drugs of interest can be added between 7-10 minutes. At 10 minutes 4-AP 
(1mM) was added and the glutamate (2.5nmol) an internal standard was added at 15 minutes. 
 
A)               B) 

 
 
Figure 2-1: Glutamate release trace shown in its fluorescent and analysed forms 
(A) A fluorescent trace showing the increase in fluorescence with the additions of 4-AP (1mM) at 240 
seconds and glutamate standard (2.5nmol) at 540 seconds. (B) The analysed trace showing the glutamate 
release from synaptosomes stimulated by 4-AP. The 4-AP (1mM) has been added at a time point of 240 
seconds. The protocol used to conduct this experiment has been described in section on glutamate release. 
 

2.6. Data Analysis 

2.6.1. Immunoblot analysis 

Scanning the phosphoimager produced an image of the radioactive bands which were 

then highlighted using uniform-sized boxes. A similar sized box was used to measure 

the levels of background radioactivity which was then used to subtract from the sample 

values. Sample values were then normalised to the 37oC control as shown below: 
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Normalised Sample Value (%) =     Sample value – Background value        x 100 
      37oC control value – Background value 

 

Data was then analysed in Microsoft Excel. For data containing more than two sets 

analysis of variance (ANOVA) was used to assess the statistical significance, followed 

by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 

stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. 

 

2.6.2. Fura-2 analysis 

The intracellular Ca2+ measurement was determined according to the formula: 

[Ca2+]i = Kd*(R-Rmin) * Sf2 
      (Rmax-R)    Sb2 

 
Kd is 224nM,  
Sf2 is the minimum fluorescence of the 380nM wavelength 
Sb2 is the maximum fluorescence of the 380nM wavelength  
R is the experimental fluorescence ratio 
Rmin is the minimum fluorescence ratio  
Rmax is the maximum fluorescence ratio 
 

2.6.3. Glutamate release analysis 

The bar graphs of glutamate release in the results section show independent experiments 

averaged at 300-305 second time points with the mean +/- SEM calculated using these 

averages. All glutamate release data was analysed using Lotus 1, 2, 3. The glutamate 

release was calculated using the formula;  

 
Glutamate release (nmol/mg) = (fluorescence)*Glutamate standard 

    Fstd 
 

Glutamate standard = 2.5nmol/0.1mg/ml (synaptosomal protein concentration)  
Fstd = Glutamate standard fluorescence 
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2.7. Reagents List 

Sucrose, HPLC graded water, N,N,N',N'-tetramethylethylenediamine (TEMED), 

ammonium persulphate (APS), tris(hydroxymethyl)methylamine (tris), glycine and 

sodium dodecyl sulphate (SDS) were obtained from VWR (UK). Percoll, bovine serum 

albumin (BSA), ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(b-

aminoehyl ether)-N,N,N’,N’-tetraacetic acid (EGTA),nicotinamide adenine dinucleotide 

(NADP), 4-aminopyridine (4-AP), baclofen and N6-cyclohexyladenosine (CHA) were 

obtained from Sigma-Aldrich (UK). Ionomycin, thapsigargin, KN93 and PP2 were 

obtained from Calbiochem (UK). Fura-2acetoxymethyl ester (Fura-2AM) was obtained 

from Molecular Probes (Cambridge, UK). Acrylamide and bis-acrylamide were 

purchased as ready-made solutions (30% and 2% solutions, respectively) were obtained 

from National Diagnostic (UK). W7, 2-aminoethoxydiphenyl borate (2-APB), U-73122, 

L-AP4, ryanodine, 8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH DPAT), 

(S)-3,5-Dihydroxyphenylglycine (DHPG), FCCP and oligomycin were obtained from 

Tocris (UK). Rabbit polyclonal phospho-p44/42 MAP kinase (Erk1/2) (Thr202/Tyr204) 

antibody was obtained from Cell Signaling Technology (UK). Goat 125I IgG antibody 

was obtained from PerkinElmer (UK). High range rainbow marker was obtained from 

Amersham Bioscience (UK). 
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3. Ca2+-dependent phosphorylation/activation of ERK1 and ERK2 
Summary: Ca2+-dependent pathways are thought to participate in ERK1 and ERK2 

phosphorylation/activation. Using kinase activity as a sensor for an increase Ca2+ 

concentrations, we investigated the role of external and internal sources of Ca2+ in the 

activation of the ERK pathway. We found that there was a significant increase in ERK1 

and ERK2 phosphorylation/activation when the synaptosomal membrane was 

depolarised with 4-AP or by direct Ca2+ influx using the Ca2+ ionophore, ionomycin. 

The increase in ERK1 and ERK2 phosphorylation/activation could not be mediated in 

the absence of external Ca2+. Thus this stimulation of ERK1 and ERK2 

phosphorylation/activation by 4-AP and ionomycin was found to be completely Ca2+-

dependent. Furthermore, we found that repletion of intracellular Ca2+ stores 

underpinned 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation. In conclusion, Ca2+is necessary for ERK1 and ERK2 

phosphorylation/activation and that intracellular Ca2+ stores could also support the 

Ca2+-dependent mechanisms. 

 

3.1. Introduction 
In presynaptic nerve terminals, Ca2+ influx through VDCCs results in the release of 

neurotransmitter and the activation of modulatory pathways that increase or decrease 

the release. One of these modulatory pathways is the ERK pathway that has been shown 

to enhance neurotransmitter release via brain derived neurotrophic factor (BDNF) 

activation of the TrkB receptors (Jovanovic et al., 2000). The neurotrophin-mediated 

ERK1 and ERK2 phosphorylation/activation is described in more detail in section 1.5.2. 

 

In the ‘classical’ pathway involving Trk activation, Grb2 adaptor protein recruitment in 

turn recruits GTPase – exchange factors (GEFs) such as Sos to the plasma membrane, 
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resulting in the exchange of GDP for GTP on plasma membrane bound Ras, which is 

thereby activated. The reverse inactivation is promoted from GTP hydrolysis to GDP by 

GTPase activating proteins (GAPs). The trigger for the ERK activation cascade is 

essentially the exchange of GDP to GTP on Ras and mediated by the activity of GEFs 

and counter balanced by GAPs activity, thus GEFs promote while GAPs reduce ERK1 

and ERK2 phosphorylation/activation (Walker et al., 2003). Activation of Ras promotes 

a conformational change which causes the recruitment/activation of downstream kinases 

c-Raf-1 and/or B-Raf. Activated c-Raf-1 and/or B-Raf phosphorylate/activate 

downstream targets, mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 

MEK2). Phosphorylated/activated MEK1 and MEK2 then cause the dual 

phosphorylation/activation of their downstream targets ERK1 and ERK2 (Chao, 2003).  

 

Together with the ‘classical’ ERK pathway by Trks, there is evidence to suggest that 

Ca2+ through multiple mechanisms is able to modulate the ERK activation cascade. One 

mechanism involves the proline-rich tyrosine kinase (Pyk2) which is activated by 

increases in Ca2+ concentrations. Activated Pyk2 is thought to phosphorylate Src which 

then phosphorylates tyrosine sites on Shc, leading to the recruitment of the Grb2/Sos 

complex. In addition, possibly, activated Src phosphorylation of Pyk2 may allow 

recruitment of the Grb2/Sos complex which is independent of Shc phosphorylation (Lev 

et al., 1995). Activated Src may also independently phosphorylate A-Raf and c-Raf-1 

directly without the requirement of Ras activation (Marais et al., 1995;Stokoe & 

McCormick, 1997). 

 

Considering the Ca2+-dependent mechanism activation of ERK1 and ERK2, increases in 

Ca2+ could have stimulatory effects on RasGEFs such as Ca2+ and diacylglycerol-

regulated GEFI (CalDAG-GEFI) and CalDAG-GEFII that are respectively activated by 
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Ca2+ and diacylglycerol (DAG), and result in the ERK1 and ERK2 

phosphorylation/activation (Kawasaki et al., 1998b). Furthermore, calmodulin (CaM) 

could also be activated by an influx of Ca2+ which can have stimulatory as well as 

inhibitory effects on the ERK pathway. Binding of CaM to K-Ras inhibits its activity 

either through increasing its GTPase activity or inhibiting the transmission of the Ras 

signals to Raf. Alternatively CaM could also stimulate RasGEFs such as Ras-specific 

guanine nucleotide-releasing factor (RasGRF) that is directly activated by CaM, thus 

activating Ras and the consequent downstream ERK1 and ERK2 

phosphorylation/activation (Farnsworth et al., 1995). There is evidence therefore 

multiple pathways that could be activated to initiate and propagate the ERK activation 

cascade stimulated by Ca2+. 

 

The question remains as to the source(s) of Ca2+ that can mediate the Ca2+-dependent 

ERK pathway, requiring a method to differentiate external and internal Ca2+ influences 

on the mechanism. In order to separate the effects of extracellular and intracellular Ca2+, 

we established the intracellular Ca2+ store repletion protocol described in section 2.3.2. 

The protocol is based on the hypothesis that intracellular Ca2+ stores may become 

partially or completely depleted during the synaptosomal preparation, therefore needing 

repletion in vitro with preincubation in the presence of external Ca2+. 

 

In presynaptic nerve terminals, there is functional evidence for intracellular Ca2+ stores 

but these are too small to be detected by imaging fluorimetry widely used with studies 

with larger compartments. Furthermore, the amount of Ca2+ that is stored and 

subsequently released upon stimulation falls below the detection capabilities of Ca2+ 

indicators like Fura-2. However alternatively, it is possible to detect the changes in Ca2+ 

concentrations by measuring the Ca2+-dependent activation of kinases through 
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phosphorylation of their substrates (Long et al., 2009). Thus here we have used Ca2+-

dependent ERK1 and ERK2 phosphorylation/activation as sensitive indicator of 

increases in intrasynaptosomal Ca2+ concentrations. 

 

The objective of this chapter is to explore the consequences on ERK1 and ERK2 

phosphorylation/activation of Ca2+ increases mediated by membrane depolarisation or 

direct influx through Ca2+ ionophore. In addition, we examined the sensitivity of 

membrane depolarisation and ionophore mediated stimulation to possible mechanism(s) 

that could be activated by the increase in intracellular Ca2+. Furthermore, we sought to 

investigate any potential differences or collusion in the contribution of Ca2+ between 

external and internal sources to ERK1 and ERK2 phosphorylation/activation.  
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3.2. Method 
3.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

3.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

3.2.3. Standard protocol 

The protocol for the experiments that followed the standard protocol is described in 

section in 2.3.1. The synaptosomes were resuspended in HBM buffer containing BSA 

(1mg/ml) and incubated at 37ºC with drug of interest including PP2 (10µM). After 3 

minutes Ca2+ (1mM) or EGTA (100µM) was added to the incubation. 4-AP (1mM), 

ionomycin (5µM) or control (HBM buffer) was added to the incubation at 10 minutes. 

The experiment was terminated using a STOP solution after 15 minutes of incubation. 

 

3.2.4. Intracellular Ca2+ store repletion protocol 

Experiments that followed the intracellular Ca2+ store protocol are described in section 

2.3.2. Synaptosomes were resuspended using the HBM buffer containing BSA 

(1mg/ml) and incubated at 37ºC. After 3 minutes Ca2+ (1mM) or EGTA (100µM) was 

added to the incubation. Synaptosomes were then spun down after 50 minutes of 

incubation, the supernatant removed and the pellet put on ice. At 67 minute time point 

from the start of the incubation, synaptosomes were resuspended the second time with 

HBM containing BSA (1mg/ml) and Ca2+ (1mM) or HBM containing BSA (1mg/ml) 

and EGTA (100µM) and incubated at 37ºC. 4-AP (1mM), ionomycin (5µM) or control 
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(HBM buffer) was then added to the incubation to stimulate synaptosomes for 5 

minutes. The experiment was then terminated using the STOP solution. 

 

3.2.5. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 

significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 

stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. 

  

3.2.6. Reagents 

A stock solution of 4-AP (1mM) was made in water and working solution was further 

diluted using HBM. 

 

A stock solution of PP2 (10µM) was made using with DMSO and further diluted using 

HBM. 

 

A stock solution of ionomycin (5µM) was made in DMSO and working solution was 

further diluted using HBM.  

 

A stock solution of EGTA (100µM) was obtained with water and working solution was 

further diluted using HBM. 

  



94 
 
3.3. Results 
ERK1 and ERK2 phosphorylation/activation is reflected by dual phosphorylation on 

threonine and tyrosine sites. Using an antibody that specifically detects this dual 

phosphorylation, we conducted immunoblot analysis to determine the 

phosphorylation/activation state of ERK1 (p44 ERK) and ERK2 (p42 ERK).  

 

We first assessed the basal activity of ERK1 and ERK2 that is produced once 

synaptosomes are maintained at physiological temperature (37ºC). Synaptosomes were 

incubated at different temperatures; one set was maintained at 4ºC while the other set 

was at 37ºC. There was a significant increase in the basal phosphorylation/activation 

when synaptosomes incubation is begun by shifting from 4ºC to 37ºC, with ERK1 and 

ERK2 increasing to 170.5 + 5.2% and 168.6 + 6.9% compared to the 4ºC control value, 

respectively (Figure 3-1D). The phosphorylation/activation of ERK1 and ERK2 at 37ºC 

suggests that the basal activity of ERK is significant under resting physiological state in 

synaptosomes. 

 

To investigate the possible role of Ca2+ in presynaptic activation of the ERK pathway, 

we established conditions to obtain depolarisation mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation. 4-aminopyridine (4-AP) is a K+ channel blocker 

which destabilises the resting plasma membrane and thus increases the likelihood of 

voltage-gated Na+ channels opening and results in depolarisation of the plasma 

membrane. Previous work in the laboratory has shown that depolarisation of the plasma 

membrane leads to Ca2+ influx through VGCCs, which then leads to the 

phosphorylation/activation of ERK1 and ERK2. We therefore considered the effect of 

4-AP stimulation on ERK1 and ERK2 phosphorylation/activation as compared to 37ºC 

basal activity. Synaptosomes that were stimulated with 4-AP (1mM) showed significant  
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A)  4ºC        37ºC   B)  Con  4-AP C)  Con Iono 

D)  E)  F) 

 

 
 Stimulation  Stimulation  Stimulation 

Calcium + + Calcium + + Calcium + + 
Temp 4ºC 37ºC 4-AP - + Ionomycin - + 

 
Figure 3-1: Basal, 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation using the standard protocol 
(A) (B) (C) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively and 
labels Con = 37ºC control and Iono = Ionomycin shows the condition of each lane. (D) Synaptosomes 
were incubated at temperatures 4ºC and 37ºC for 15 minutes. Temp = temperature. (E) ERK1 and ERK2 
phosphorylation/activation mediated by 4-AP (1mM) stimulation in the presence of Ca2+ (1mM). (F) 
ERK1 and ERK2 phosphorylation/activation mediated by ionomycin (5µM) stimulation in the presence 
of Ca2+ (1mM). All values represent the mean + SEM. p<0.001(***) p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=6). 
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increase in the phosphorylation/activation of ERK1 (164.1 + 7.5%) and ERK2 (158.9 + 

5.2%) compared to the 37ºC control (Figure 3-1E).   

 

As an alternative paradigm for increasing Ca2+ concentrations without VDCC activation 

we affected direct increase of Ca2+ influx using a Ca2+ ionophore, ionomycin. 

Synaptosomes stimulated with ionomycin (5µM) displayed a significant increase in 

ERK1 (133.8 + 3.8%) and ERK2 (135.7 + 3.7%) phosphorylation/activation when 

compared to the 37ºC controls (Figure 3-1F). Interestingly, the increase in ERK1 and 

ERK2 phosphorylation/activation for ionomycin is less when compared to 4-AP 

stimulation, reflecting the different ‘routes’ of Ca2+ entry. 

 

We next wanted to directly confirm that external Ca2+ influx is required for ERK1 and 

ERK2 phosphorylation/activation when the synaptosomes were stimulated with 4-AP. 

Therefore Ca2+ was omitted from the incubation and EGTA (100µM) was added to 

chelate any residual extracellular Ca2+ (Figure 3-2A&B). We found that, in the presence 

of Ca2+ 4-AP mediated stimulation caused a significant increase in ERK1 (145.5 + 

5.1%) and ERK2 (157.5 + 6.5%) phosphorylation/activation compared to the 37ºC 

control (Figure 3-2C). In the absence of Ca2+, 4-AP mediated stimulation caused no 

significant increase of ERK1 (102.6 + 4.4%) and ERK2 (102.4 + 4.4%) 

phosphorylation/activation compared to the 37ºC control. In addition, the absence of 

Ca2+ had no significant effect on the basal activity of ERK1 (94.1 + 8.0%) or ERK2 

(91.1 + 6.5%) compared to the 37ºC control. The net change revealed that there was a 

significant inhibition of 4-AP mediated stimulation of ERK1 and ERK2 

phosphorylation in the absence of Ca2+ (Figure 3-2D). 
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A)  Con  E  4-AP  4-AP+E  B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 
4-AP - - + + + + 

 
Figure 3-2: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ using the standard protocol 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and E = EGTA shows the condition of each lane. (B) Timeline of the experiment showing 
that EGTA (100µM) or Ca2+ (1mM) was added at 3 minutes followed HBM or 4-AP (1mM) stimulation 
after 10 minutes and the experiment ended after 15 minutes of incubation. (C) Basal effect of absence of 
Ca2+ and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 
37ºC control in the presence and absence of Ca2+. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=3). 
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To investigate whether ionomycin mediation stimulation of ERK1 and ERK2 

phosphorylation/activation was similarly sensitive to external Ca2+ we conducted the 

experiment by omitting external Ca2+ with EGTA (100µM) addition (Figure3-3A&B). 

While ionomycin mediated stimulation of synaptosomes in the presence of Ca2+ resulted 

in a significant increase in ERK1 (133.8 + 3.8%) and ERK2 (135.7 + 3.7%) 

phosphorylation/activation compared to the 37ºC control (Figure3-3C). We found that 

in the absence of Ca2+ the ionophore did not significantly increase ERK1 (102.6 + 

4.4%) and ERK2 (105.7 + 3.4%) phosphorylation/activation compared to the 37ºC 

control. In addition, the absence of Ca2+ had no significant effect on the basal activity of 

ERK1 (94.1 + 8.0%) and ERK2 (91.1 + 6.5%) compared to the 37ºC control. Thus, the 

net change of ERK1 and ERK2 phosphorylation/activation showed ionomycin mediated 

stimulation was significantly reduced by the absence of external Ca2+ (Figure3-3D). 

Altogether, these results suggest that extracellular Ca2+ influx underpins 4-AP and 

ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation. 

 

Given the demonstrated importance of external Ca2+ influx we next investigated the 

mechanisms activated by the influx of Ca2+. One of the Ca2+-dependent mechanisms 

that could be activated includes Src activation through Pyk2. Using the Src inhibitor 

PP2 (20µM) we investigated how sensitive 4-AP (1mM) mediated stimulation of ERK1 

and ERK2 phosphorylation/activation is to Src inhibition (Figure 3-4A&B). ERK1 

(162.1 + 2.5%) and ERK2 (178.6 + 4.7%) phosphorylation/activation compared to the 

37ºC control, was significantly increased by 4-AP mediated stimulation in the absence 

of PP2 (Figure 3-4C). However, there was no significant stimulation of ERK1 (102.3 + 

4.9%) and ERK2 (115.4 + 8.0%) phosphorylation/activation compared to the 37ºC 

control in the presence of PP2. Interestingly, incubation of PP2 also resulted in a 

significant decrease of ERK1 (77.6 + 4.8%) and ERK2 (71.6 + 0.7%) basal activity 
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A)  Con  E  Iono  Iono+E  B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 

Ionomycin - - + + + + 
 
Figure 3-3: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ using the standard protocol 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = Ionomycin and E = EGTA shows the condition of each lane. (B) Timeline of the 
experiment showing that EGTA (100µM) or Ca2+ (1mM) was added at 3 minutes followed HBM or 
ionomycin (5µM) stimulation after 10 minutes and the experiment ended after 15 minutes of incubation. 
(C) Basal effect of absence of Ca2+ and ionomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of Ca2+.  (D) The 
net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n shows a significant decrease of ionomycin mediated 
stimulation in the absence of Ca2+ when compared to the presence of Ca2+. All values represent the mean 
+ SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were 
immunoblotted is described in section 2.2. (n=3). 
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A)  Con  P 4-AP 4-AP+P B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 

PP2 - + - + - + 
4-AP - - + + + + 

 
Figure 3-4: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of PP2 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and P = PP2 shows the condition of each lane. (B) Timeline of the experiment showing that 
HBM or PP2 (10µM) was incubated at the start of the experiment with Ca2+ (1mM) added at 3 minutes 
followed by HBM or 4-AP (1mM) stimulation after 10 minutes and the experiment ended after 15 
minutes of incubation. (C) Basal effect of PP2 and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of PP2. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3). 
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compared to the 37ºC control. Given the basal effect of PP2, the net change showed that 

ERK1 and ERK2 phosphorylation/activation were still significantly increased in the 

presence of PP2. However this increase was significantly reduced when compared to 

ERK1 and ERK2 phosphorylation/activation in the absence of PP2 (Figure 3-4D).  

 

Ionomycin (5µM) mediated stimulation is also Ca2+-dependent so we questioned to 

what degree is this stimulation sensitive to Src inhibition using PP2 (10µM) treatment 

(Figure 3-5A&B). We found that ERK1 (125.2 + 8.2%) and ERK2 (130.6 + 1.6%) 

phosphorylation/activation compared to the 37ºC control could be significantly 

increased by ionomycin mediated stimulation in the absence of PP2 (Figure 3-5C). In 

the presence of PP2, there was a significant inhibition of ERK1 (64.7 + 4.4%) and 

ERK2 (67.5 + 2.1%) phosphorylation/activation compared to the 37ºC control. 

However, this inhibitory effect might be attributed to the inhibitory effect of PP2 on the 

ERK1 (71.9 + 6.7%) and ERK2 (67.3 + 4.3%) basal activity compared to the 37ºC 

control. Thus, the net change shows that ERK1 and ERK2 phosphorylation/activation 

mediated by ionomycin stimulation is completely inhibited in the presence of PP2 

(Figure 3-5D). Overall we can conclude that both 4-AP and ionomycin mediated 

stimulation of ERK1 and ERK2 are sensitive to Src inhibition but to different extents. 

 

We next investigated the role of Ca2+ potentially released from intracellular Ca2+ stores 

in the activation of the ERK pathway. We first investigated the basal activity of ERK1 

and ERK2 when the synaptosomes are maintained at physiological temperature (37ºC) 

using the intracellular Ca2+ store repletion protocol (Figure 3-6A). We found that there 

was a significant increase in basal phosphorylation/activation of ERK1 (148.1 + 6.0%) 

and ERK2 (158.4 + 8.4%) compared to the 4ºC controls (Figure 3-6D). The increase in 

ERK1 and ERK2 phosphorylation/activation using this protocol is comparable to 
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A) Con P Iono Iono+P B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 

PP2 - + - + - + 
Ionomycin - - + + + + 

 
Figure 3-5: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of PP2 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = Ionomycin and P = PP2 shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM or PP2 (10µM) was incubated at the start of the experiment with Ca2+ 
(1mM) added at 3 minutes followed by HBM or ionomycin (5µM) stimulation after 10 minutes and the 
experiment ended after 15 minutes of incubation. (C) Basal effect of PP2 and ionomycin mediated 
stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence 
and absence of PP2. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is 
calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=3). 
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increases using the standard protocol. 

 

We next investigated the effect on ERK1 and ERK2 phosphorylation mediated by 4-AP 

stimulation of synaptosomes under the intracellular Ca2+ store repletion protocol. 

Synaptosomes were incubated in the presence of Ca2+ (1mM) during the preincubation 

stage and stimulated with 4-AP (1mM) in the presence of Ca2+ during the stimulation 

stage (Figure 3-6B). Under Ca2+-repletion conditions, there was a significant increase in 

the phosphorylation/activation of ERK1 (168.3 + 1.9%) and ERK2 (159.9 + 3.2%) 

compared to the 37ºC control (Figure 3-6E). 

 

Naturally, we also wanted to establish the effect on ionomycin mediated stimulation of 

ERK1 and ERK2 phosphorylation/activation under the intracellular Ca2+ store repletion 

protocol. Synaptosomes were incubated in the presence of Ca2+ (1mM) during the 

preincubation stage and stimulated with ionomycin (5µM) in the presence of Ca2+ 

during the stimulation stage (Figure 3-6C). We found ionomycin mediated stimulation 

also caused a significant increase in ERK1 (127.6 + 3.1%) and ERK2 (125.0 + 2.1%) 

phosphorylation/activation compared to the 37ºC control (Figure 3-6F). The 4-AP and 

ionomycin responses using the intracellular Ca2+ store repletion protocol were 

comparable to those achieved with the standard protocol suggesting that the 

preincubation step does not compromise the responsiveness of synaptosomes. 

 

Investigating this further, we sought to establish that 4-AP and ionomycin mediated 

responses are also completely dependent of Ca2+ using the intracellular Ca2+ store 

repletion protocol. We first assessed 4-AP mediated stimulation by incubating 

synaptosomes with Ca2+ (1mM) or in the absence of Ca2+ with EGTA (100µM) addition 
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A)  4ºC 37ºC B) Con 4-AP  C)                 Con Iono   

D) E) F)  

 

 
 Preincubation  Preincubation  Preincubation 

Calcium + + Calcium + + Calcium + + 
 Stimulation  Stimulation  Stimulation 

Calcium + + Calcium + + Calcium + + 
Temp 4ºC 37ºC 4-AP - + Ionomycin - + 

 
Figure 3-6: Basal, 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation using the intracellular Ca2+ store protocol 
(A) (B) (C) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively and 
labels Con = 37ºC control and Iono = Ionomycin shows the condition of each lane. (D) Synaptosomes 
were incubated for 50 minutes in the presence of Ca2+ (1mM) at 4ºC and 37ºC which is described as the 
preincubation stage. After spin and removal of the supernatant the pellet were resuspended in the 
presence of Ca2+ (1mM) and incubated at 37ºC for a further 8 minutes this is described as the stimulation 
stage. Temp = temperature. (E) Synaptosomes incubated at 37ºC for 50 minutes in the presence of Ca2+ 
(1mM) were stimulated with 4-AP (1mM) in the presence of Ca2+ (1mM) during the stimulation stage. (F) 
Synaptosomes incubated at 37ºC for 50 minutes in the presence of Ca2+ (1mM) were stimulated with 
ionomycin (5µM) in the presence of Ca2+ (1mM) during the stimulation stage. All values represent the 
mean + SEM. p<0.001(***) p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 
proteins in the sample were immunoblotted is described in section 2.2. (n=6). 
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during the preincubation and stimulation stages (Figure 3-7A&B). Similar to previous 

results, 4-AP mediated stimulation in the presence of Ca2+ in the preincubation and 

stimulation stage resulted in significant increase in ERK1 (151.4 + 12.4%) and ERK2 

(149.7 + 5.9%) phosphorylation/activation compared to the 37ºC control (Figure 3-7C). 

In the absence of Ca2+ during the preincubation and stimulation stages, 4-AP mediated 

stimulation did not significantly increase ERK1 (70.3 + 12.4%) but ERK2 (60.7 + 

13.6%) phosphorylation/activation compared to the 37ºC control was significantly 

reduced. However, ERK2 inhibition could be attributed to the basal activity of Ca2+ 

absence during the preincubation and stimulation stages. The basal activity of ERK1 

(71.7 + 9.3%) was not affected but ERK2 (52.1 + 9.79%) was significantly reduced 

compared to the 37ºC control by the absence of Ca2+ during the incubation. The net 

change of 4-AP mediated stimulation showed that ERK1 and ERK2 

phosphorylation/activation is significantly reduced by the absence of Ca2+ during the 

preincubation and stimulation stages (Figure 3-7D). 

 

We now assessed the effect absence of Ca2+ would have on ERK1 and ERK2 

phosphorylation/activation mediated by ionomycin stimulation. Synaptosomes were 

incubated in the presence of Ca2+ (1mM) or in the absence of Ca2+ with EGTA (100µM) 

addition present during the preincubation and stimulation stages (Figure 3-8A&B). 

Ionomycin mediated stimulation significantly increased ERK1 (122.3 + 5.3%) and 

ERK2 (134.4 + 3.3%) phosphorylation/activation compared to the 37ºC control in the 

presence of Ca2+ during the preincubation and stimulation stages (Figure 3-8C). While 

ionomycin mediated stimulation in the absence of Ca2+ caused no significant 

stimulation of ERK1 (86.9 + 11.2%) phosphorylation/activation but ERK2 (64.4 + 

0.5%) phosphorylation/activation was significantly reduced compared to the 37ºC 

control. But this significant reduction could be largely due to the basal activity. There 
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A) Con E 4-AP 4-AP+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
EGTA - + - + - + 

 Stimulation Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 
4-AP - - + + + + 

 
Figure 3-7: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ during the preincubation and stimulation stages 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and E = EGTA shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM in the presence of EGTA (100µM) or Ca2+ (1mM) were incubated at the start of the experiment 
for 50 minutes which was spun down with the supernatant removed. During the stimulation stage 
synaptosomes were resuspended in EGTA (100µM) or Ca2+ (1mM) and stimulated with 4-AP (1mM) and 
the experiment ended after 75 minutes of incubation. (C) Basal effect of the absence of Ca2+ during the 
preincubation and stimulation stages and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of Ca2+. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3). 
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was significant inhibition of basal activity of ERK2 (63.0 + 4.2%) but not ERK1 (83.6 + 

9.2%) compared to the 37ºC control in the absence of Ca2+ during the preincubation and 

stimulation stages. Overall we found that the net change in ERK1 and ERK2 

phosphorylation/activation stimulated by ionomycin is significantly reduced by the 

absence of external Ca2+ during the preincubation and stimulation stages (Figure 3-8D). 

This shows that 4-AP and ionomycin responses are also Ca2+-dependent using the 

intracellular Ca2+ store repletion protocol. Interestingly, there is difference in the basal 

activity between the standard and intracellular Ca2+ store repletion protocols. Under the 

intracellular Ca2+ store repletion protocol there is a significant reduction in ERK2 basal 

activity which does not occur with the standard protocol. 

 

We next sought to delineate the extracellular and intracellular Ca2+ contribution to the 

Ca2+-dependent activation of ERK1 and ERK2 phosphorylation/activation using 4-AP 

and ionomycin mediated stimulation paradigms. According to our hypothesis, 

intrasynaptosomal Ca2+ concentrations are significantly affected during the 

synaptosomal preparation leading to partial depletion of the intracellular Ca2+ stores. 

The preincubation stage should replete any intracellular Ca2+ stores which should 

enhance their ability to contribute Ca2+ to the phosphorylation/activation of ERK1 and 

ERK2. We thereby reasoned that incubation with EGTA (100µM) instead of Ca2+ 

during the preincubation stage should keep the intracellular Ca2+ stores depleted. If 

intracellular Ca2+ stores contribute Ca2+ to the stimulation of the ERK pathway, then in 

these conditions there would be a significant reduction in ERK1 and ERK2 

phosphorylation/activation during 4-AP or ionomycin mediated stimulation in the 

presence of Ca2+.  

 

We first tested this hypothesis by looking at the effect of 4-AP stimulation on ERK1 
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A) Con E Iono Iono+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
EGTA - + - + - + 

 Stimulation Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 

Ionomycin - - + + + + 
 
Figure 3-8: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ during preincubation and stimulation stages 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and E = EGTA shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM in the presence of EGTA (100µM) or Ca2+ (1mM) were incubated at the 
start of the experiment for 50 minutes which was spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in EGTA (100µM) or Ca2+ (1mM) and stimulated with 
ionomycin (5µM) and the experiment ended after 75 minutes of incubation. (C) Basal effect of the 
absence of Ca2+ during the preincubation and stimulation stages and ionomycin mediated stimulation of 
ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of 
Ca2+. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by 
removing the basal percentage from the stimulated groups for each n. All values represent the mean + 
SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were 
immunoblotted is described in section 2.2. (n=3). 
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and ERK2 phosphorylation/activation and thus ascertain if intracellular Ca2+ stores are 

activated when the plasma membrane is depolarised (Figure 3-9A&B). We found that in 

the presence of Ca2+ during the preincubation and stimulation stages, 4-AP mediated 

stimulation resulted in significant increase in ERK1 (163.8 + 11.1%) and ERK2 (149.7 

+ 5.9%) phosphorylation/activation compared to the 37ºC control (Figure 3-9C). The 

absence of Ca2+ during the preincubation stage still resulted in a significant increase of 

ERK1 (133.0 + 4.9%) and ERK2 (150.6 + 9.6%) phosphorylation/activation compared 

to the 37ºC control when stimulated by 4-AP. The basal activity of ERK1 (99.9 + 4.7%) 

and ERK2 (98.8 + 4.0%) was largely unaffected by the incubation of EGTA during the 

preincubation stage compared to the 37ºC control. However, the net change shows 4-AP 

mediated stimulation of ERK1 is significantly reduced but ERK2 

phosphorylation/activation was unaffected by the depletion of Ca2+ of intracellular Ca2+ 

stores (Figure 3-9D).  

 

We next assessed the consequence of direct Ca2+ influx stimulation with ionomycin 

using this protocol in which the intracellular Ca2+ stores remain depleted (Figure 

3-10A&B). We found that incubation of Ca2+ during the preincubation and stimulation 

stages followed by ionomycin stimulation resulted in significant increase in ERK1 

(122.3 + 5.3%) and ERK2 (133.4 + 3.3%) phosphorylation/activation compared to the 

37ºC control (Figure 3-10C). These responses with ionomycin failed in incubations in 

which the intracellular Ca2+ stores remain depleted. ERK1 (80.5 + 9.4%) was unaffected 

but ERK2 (75.5 + 11.5%) phosphorylation/activation compared to the 37ºC control was 

significantly reduced but this could again be attributed to a basal effect. Given that the 

basal activity of ERK2 (73.0 + 7.3%) was significantly reduced but ERK1 (85.5 + 

9.5%) which was unaffected compared to the 37ºC control. The net change therefore 
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shows that depletion of intracellular Ca2+ stores significantly inhibits ERK1 and ERK2 

phosphorylation/activation mediated by ionomycin stimulation (Figure 3-10D). 
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A) Con E 4-AP 4-AP+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
EGTA - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 

4-AP - - + + + + 
 
Figure 3-9: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ during the preincubation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and E = EGTA shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension in the presence of Ca2+ (1mM) or EGTA (100µM) was used to resuspended 
synaptosomes and incubated for 50 minutes. After which they were spun down with the supernatant 
removed. During the stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and stimulated 
with 4-AP (1mM) and the experiment ended after 75 minutes of incubation. (C) Basal effect of the 
absence of Ca2+ during the preincubation stage and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of Ca2+ during the 
preincubation stage. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is 
calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=3). 
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A) Con E Iono Iono+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
EGTA - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 

Ionomycin - - + + + + 
 
Figure 3-10: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in 
the presence and absence of Ca2+ during the preincubation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and E = EGTA shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM suspension in the presence of Ca2+ (1mM) or EGTA (100µM) was used to 
resuspended synaptosomes and incubated for 50 minutes. After which they were spun down with the 
supernatant removed. During the stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and 
stimulated with ionomycin (5µM) and the experiment ended after 75 minutes of incubation. (C) Basal 
effect of the absence of Ca2+ during the preincubation stage and ionomycin mediated stimulation of ERK1 
and ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of Ca2+ 
during the preincubation stage. (D) The net change of ERK1 and ERK2 phosphorylation/activation which 
is calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=3). 
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3.4. Discussion 
The first objective of this chapter was to establish that ERK1 and ERK2 

phosphorylation/activation can be mediated by depolarisation of the membrane or Ca2+ 

ionophore stimulation. Both of these methods of stimulation result in the influx of Ca2+ 

but though through different pathways. Depolarisation of the membrane results in the 

activation of VDCCs such as Cav2.1 and Cav2.2 channels that leads to the increase in 

intracellular Ca2+ concentrations. Ca2+ ionophore, ionomycin allows Ca2+ influx without 

the activation of Cav2.1 and Cav2.2 channels thus representing a good way to delineate 

effects downstream of Cav2.1 and Cav2.2 channels.  We found that Ca2+ influx either 

through Cav2.1 and Cav2.2 channels mediated by 4-AP stimulation or direct Ca2+ influx 

mediated by ionomycin stimulation resulted in a significant and reproducible increase in 

ERK1 and ERK2 phosphorylation/activation. 

 

The second objective of the chapter was to provide supporting evidence that 4-AP and 

ionomycin mediated stimulation is Ca2+-dependent and that the underlying mechanisms 

that could be activated by the influx of Ca2+. We hypothesised that if 4-AP and 

ionomycin mediated stimulation is Ca2+-dependent then the absence of external Ca2+ or 

inhibition of its downstream target(s) should significantly inhibit ERK1 and ERK2 

phosphorylation/activation. Indeed, in the absence of external Ca2+ both 4-AP and 

ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation were 

significantly inhibited. Given that this resulted in a complete inhibition, we can 

conclude that stimulation of ERK1 and ERK2 by 4-AP and ionomycin is completely 

Ca2+-dependent and no other Ca2+-independent mechanisms are activated. Thus, we 

need to consider the Ca2+-dependent mechanisms potentially involved in ERK1 and 

ERK2 phosphorylation/activation. 
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There have been studies conducted that could explain the underlying Ca2+-dependent 

mechanisms that translate Ca2+ influx into ERK1 and ERK2 phosphorylation/activation. 

Largely, the mechanisms revolve around the hypothesis that promotion of GEFs and 

inhibition of GAPs stimulate Ras-GTP formation and the subsequent activation of the 

downstream targets of the ERK activation cascade. One of the underlying mechanisms 

that we investigated was ERK1 and ERK2 phosphorylation/activation sensitivity to Src 

inhibition during 4-AP and ionomycin mediated stimulation. Src is a good candidate for 

mediating the signalling because it has been shown to phosphorylate c-Raf-1 

independently of Ras activation, which could thereby activate the ERK pathway (Marais 

et al., 1995;Stokoe & McCormick, 1997). Furthermore, Src can be activated by Pyk2 to 

phosphorylate Shc and Pyk2, both of which subsequently recruit the Grb2/Sos complex 

again to promote the activation of the ERK pathway (Lev et al., 1995). 

 

We found that Src inhibition resulted in a complete reduction of ERK1 and ERK2 

phosphorylation/activation mediated by ionomycin stimulation. Since this inhibition is 

absolute, we consider that Ca2+ influx through the Ca2+ ionophore only converges on the 

activation of Src. 4-AP mediated stimulation of ERK1 and ERK2 

phosphorylation/activation was significantly reduced by Src inhibition but not 

completely abolished as with ionomycin. This suggests that as well as a Src-dependent 

mechanism, other Ca2+-dependent mechanisms may be activated by Ca2+ influx through 

Cav2.1 and Cav2.2 channels. This could also be a possible explanation for the difference 

in ERK1 and ERK2 phosphorylation/activation between 4-AP and ionomycin mediated 

stimulations. The explanation as to why ionomycin mediated stimulation is unable to 

activate these additional Ca2+-dependent mechanisms require further investigation. 

These other Ca2+-dependent mechanisms that could be considered might include those 

involving RasGEFs such as RasGRF that are activated by calmodulin (Farnsworth et 
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al., 1995;Freshney et al., 1997). In addition, CalDAG-GEFI and CalDAG-GEFII that 

are activated by Ca2+ could phosphorylate/activate ERK1 and ERK2 through Rap1/B-

Raf mechanism. However, Src has been found to tonically phosphorylate and enhance 

VDCCs thus the Src inhibitory effect could be due to the reduction of Ca2+ influx 

through Cav2.1 and Cav2.2 channels when stimulated by 4-AP (Wang, 2003). Thus, it 

could be that 4-AP mediated stimulation activates other Ca2+-dependent mechanisms 

but unlike ionomycin stimulation is Src-independent. We could corroborate if 4-AP 

mediated stimulation is indeed Src-independent by possibly inhibiting the Pyk2 kinase. 

Under these conditions 4-AP mediated stimulation is Src-independent then Src should 

still phosphorylate and enhance VDCC, a process not dependent on Pyk2 activation, 

and the Src inhibitory effect observed here should be occluded. On the other hand if a 

Pyk2/Src dependent mechanism is activated, then there should be an inhibition of ERK1 

and ERK2 phosphorylation/activation by 4-AP mediated stimulation. It is important to 

clarify the effects of Src as we found that Src inhibition resulted in an inhibition of 

ERK1 and ERK2 basal activity. This could be due to reduced activity of VDCCs but 

since these are not activated under basal conditions or it likely shows that basal ERK1 

and ERK2 activity is sustained through a Ca2+-independent Src-dependent mechanism. 

 

The final objective that we wanted to address in this chapter was the source of Ca2+ that 

contributes to the Ca2+-dependent mechanisms that phosphorylate/activate ERK1 and 

ERK2. We considered three possible sources with respect to Ca2+ including the influx of 

extracellular Ca2+, release of Ca2+ from intracellular Ca2+ stores or possibly a 

combination extracellular and intracellular Ca2+ sources. We designed an intracellular 

Ca2+ store repletion protocol in order to delineate the influences of extracellular and 

intracellular Ca2+ sources which involved preincubation and stimulation stages. The 

intracellular Ca2+ store repletion protocol does not affect the viability or responsiveness 
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of the synaptosomes. This is based on the comparison of ERK1 and ERK2 

phosphorylation/activation responses with the standard protocol for both 4-AP and 

ionomycin mediated stimulation. Interestingly, the absence of Ca2+ over longer 

incubation periods during the intracellular Ca2+ store repletion protocol significantly 

reduced ERK1 and ERK2 basal activity. This was not observed using the standard 

protocol suggesting that the preincubation stage of the intracellular Ca2+ store repletion 

protocol plays a significant role. In addition, this suggests that Ca2+-dependent 

mechanisms tonically maintain the basal activity of ERK1 and ERK2 in nerve 

terminals. 

 

The intracellular Ca2+ store repletion protocol is based on the hypothesis that after the 

synaptosomal preparation the intracellular Ca2+ stores are somewhat depleted and 

require incubation Ca2+ for repletion. Thus by incubating synaptosomes in the presence 

(repletion) and absence (depletion) of Ca2+ during preincubation stage we could test the 

effect that depletion of stores would have on Ca2+-dependent stimulation of ERK1 and 

ERK2 phosphorylation/activation (Schematic 3-1). We found that there was a difference 

between 4-AP and ionomycin mediated stimulation using this protocol. Ionomycin 

mediated stimulation of ERK1 and ERK2 phosphorylation/activation was completely 

inhibited by continued depletion of intracellular Ca2+ stores. In contrast, 4-AP mediated 

stimulation of ERK1 phosphorylation/activation was significantly inhibited but ERK2 

phosphorylation/activation was unaffected by continued depletion of intracellular Ca2+ 

stores. This suggests that direct Ca2+ influx is more sensitive to intracellular Ca2+ store 

depletion than Ca2+ influx through Cav2.1 and Cav2.2 channels. The reasoning behind 

this difference could be that the two paradigms activate different mechanisms. 

Ionomycin mediated stimulation may affect Ca2+ release from intracellular which then 

activates a Ca2+-dependent process perhaps through a Pyk2/Src dependent mechanism. 
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On the other hand 4-AP mediated stimulation may again instigate Ca2+ release from 

intracellular Ca2+ store but unlike ionomycin could also cause ERK2 

phosphorylation/activation by just the influx of extracellular Ca2+ through the Cav2.1 

and Cav2.2 channels. This might indicate a differential localisation and/or sensitivity of 

ERK1 and ERK2 to the upstream Ca2+-dependent mechanisms.  

 

In conclusion, the ERK pathway can be activated in synaptosomes by Ca2+ influx 

mediated either by membrane depolarisation or by direct Ca2+ entry through the Ca2+ 

ionophore. In addition, the underlying mechanism may involve the promotion of GEFs 

through Src-dependent activation that results in Grb2 and Sos recruitment. Finally 

intracellular Ca2+ stores have been implicated in the phosphorylation/activation of 

ERK1 and ERK2 by the experiments in this chapter. We therefore proceeded to 

examine the nature and properties of those Ca2+ stores. 
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Schematic 3-1: Repletion of possible intracellular Ca2+ stores is a requirement for ERK pathway 
activation 
Influx of extracellular Ca2+ through VDCCs or ionomycin can stimulate the ERK pathway through Src 
activation which could be stimulated by Pyk2. Increases in [Ca2+] could also stimulate further release 
from possible intracellular Ca2+ stores. Incubation with EGTA prior to stimulation could cause the 
continued depletion of possible intracellular Ca2+ stores which could result in a reduction of intracellular 
Ca2+ release. 
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4. Smooth endoplasmic reticulum 

Summary: One of the intrasynaptosomal Ca2+ stores that could potentially contribute 

Ca2+ to the Ca2+-dependent process of ERK1 and ERK2 phosphorylation/activation is 

the smooth endoplasmic reticulum. We targeted three key features of the smooth 

endoplasmic reticulum including the sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA) pump, ryanodine receptors (RyRs) and IP3 receptors (IP3Rs). By inhibiting the 

SERCA pump we depleted the Ca2+ from the store thus reducing the stimulus capability 

for the smooth endoplasmic reticulum. We found that this resulted in significant 

reduction of ERK1 and ERK2 phosphorylation/activation mediated by 4-AP and 

ionomycin stimulation. Inhibition of RyR using high concentrations of ryanodine 

showed the Ca2+-induced Ca2+ release (CICR) mechanism could be triggered by Ca2+ 

influx mediated by 4-AP and ionomycin stimulation. Lastly, by inhibiting IP3Rs using 2-

APB and inhibiting PLC activity using U-73122 we established the presence of an IP3-

induced Ca2+ release (IPCR) mechanism that can be triggered through Ca2+ influx 

mediated by 4-AP and ionomycin stimulation. Overall we conclude that smooth 

endoplasmic reticulum like Ca2+ stores are present in presynaptic nerve terminals and 

can be mobilised by CICR and IPCR mechanisms which results in ERK1 and ERK2 

phosphorylation/activation. 

 

4.1. Introduction 

In the previous chapter we produced some evidence indicating that intracellular Ca2+ 

stores may contribute to ERK1 and ERK2 phosphorylation/activation. The increase in 

ERK1 and ERK2 phosphorylation/activation is evidently a sensitive assay to indicate 

intracellular Ca2+ concentrations. According to the literature there are numerous 

potential compartments that can store Ca2+ which could contribute to cellular processes. 

One such potential store for intracellular Ca2+ is the smooth endoplasmic reticulum 
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which in cells such as the smooth muscle forms the sarcoplasmic reticulum and plays a 

prominent role in excitation-contraction coupling. 

 

The role that the smooth endoplasmic reticulum plays in presynaptic nerve terminals is 

less well defined though there have been morphological and functional studies that have 

identified elements of the smooth endoplasmic reticulum in presynaptic nerve terminals. 

These morphological studies of synaptosomes have identified membrane-bound tubular 

or isolated vesicles structures resembling smooth endoplasmic reticulum (McGraw et 

al., 1980a). Functional studies have identified a facilitatory role of smooth endoplasmic 

reticulum in neurotransmitter release. One such study has shown that α-latrotoxin 

secretion of norepinephrine from nerve terminals is enhanced by Ca2+ released from 

intracellular Ca2+ stores which were proposed to resemble smooth endoplasmic 

reticulum (Davletov et al., 1998). Furthermore, α-latrotoxin mutant is able to enhance 

spontaneous and evoked release from CA3 pyramidal neurons by increasing cytosolic 

Ca2+ concentrations from intracellular Ca2+ stores (Capogna et al., 2003). To identify if 

a similar facilitatory role of smooth endoplasmic reticulum can be observed on ERK1 

and ERK2 phosphorylation/activation using 4-AP and ionomycin mediated stimulation. 

We targeted three features of smooth endoplasmic reticulum, the SERCA pump, RyR 

and IP3R. 

 

The SERCA pumps establish and maintain the Ca2+ concentration in the lumen of the 

smooth endoplasmic reticulum. They do this via an ATP driven mechanism known as 

the SERCA catalytic cycle which pumps Ca2+ from the cytosol into the lumen of the 

smooth endoplasmic reticulum (Brini & Carafoli, 2009). The functional role of smooth 

endoplasmic reticulum has been investigated by inhibiting the SERCA pump using the 

drug thapsigargin. This is based on the hypothesis that the Ca2+ accumulated in the 
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lumen of the store continuously ‘leaks’ out into the cytosol. This ‘leaked’ Ca2+ is 

recovered by the SERCA pump thus there is no net change in the concentration of Ca2+  

in the lumen of smooth endoplasmic reticulum under ‘resting’ conditions. Inhibiting the 

SERCA pump depletes Ca2+ from the smooth endoplasmic reticulum as Ca2+ still 

continuously ‘leaks’ out and is now not recoverable by the SERCA pump. This results 

in a net loss of Ca2+ in the lumen of the smooth endoplasmic reticulum. If Ca2+ released 

by the smooth endoplasmic reticulum contributes to a Ca2+-dependent process, then the 

reduction of the store Ca2+ concentration should significantly reduce the Ca2+-dependent 

responses.  

 

There are two mechanisms that can be activated that stimulate Ca2+ release from smooth 

endoplasmic reticulum. The first mechanism is known as CICR in which Ca2+ is able to 

stimulate RyR to release store Ca2+ and thus further increase the Ca2+ concentration in 

the cytosol (Hamilton & Serysheva, 2009). The trigger for RyR is thought to be Ca2+ 

itself that can be generated by the influx of Ca2+ through VDCCs or Ca2+ released by 

other intracellular stores in the proximity of RyR containing compartments. Ca2+ 

stimulation of the RyR has a bimodal nature in that low concentrations (<1µM) have a 

stimulatory effect while high concentrations (>10µM) result in the inhibition of the 

receptors (Nagasaki & Fleischer, 1988).  

 

The second mechanism that can be activated by the release Ca2+ from smooth 

endoplasmic reticulum is IPCR. Here IP3 generation through PIP2 metabolism by 

phospholipase C (PLC) activation results in the stimulation of IP3Rs found on the 

smooth endoplasmic reticulum (Mikoshiba, 2007a). But PIP2 metabolism also produces 

DAG which may activate protein kinase C (PKC) and mediate some independent effects 

but notably PKC can also phosphorylate IP3Rs to make them more responsive to IP3 
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stimulation (Ferris et al., 1991). The IP3Rs also display a bimodal response to 

concentrations of Ca2+ with low concentrations being facilitatory and higher Ca2+ 

concentrations have an inhibitory effect (Bezprozvanny et al., 1991;Boehning et al., 

2001). 

 

The objective of this chapter is to investigate the functional role of smooth endoplasmic 

reticulum during 4-AP and ionomycin mediated stimulation using ERK1 and ERK2 

phosphorylation/activation as an indicator for increases in intrasynaptosomal Ca2+ 

concentration. We investigated if 4-AP and ionomycin mediated stimulation results in 

the activation of a CICR mechanism. Furthermore, we determined whether the IPCR 

mechanism contributes to Ca2+ signalling during 4-AP and ionomycin mediated 

stimulation of nerve terminals.  
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4.2. Method 

4.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

4.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through Immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

4.2.3. Intracellular Ca2+ store repletion protocol 

Experiments that followed the intracellular Ca2+ store protocol are described in section 

2.3.2. Synaptosomes were resuspended using the HBM buffer containing BSA 

(1mg/ml) and incubated at 37ºC with any drug of interest such as 2-APB (50µM) or U-

73122 (10µM) or thapsigargin (10µM), added to the incubation. After 3 minutes Ca2+ 

(1mM) or EGTA (100µM) was added to the incubation. Synaptosomes were then spun 

down after 50 minutes of incubation with the supernatant removed and the pellets put 

on ice. At the 67 minute time point from the start of the incubation synaptosomes are 

resuspended a second time with HBM containing BSA (1mg/ml) and Ca2+ (1mM) or 

HBM containing BSA (1mg/ml) and EGTA (100µM) and incubated at 37ºC with the 

addition of the drug of interest ryanodine (30µM), 2-APB (50µM), U-73122 (10µM) or 

thapsigargin (10µM) in the resuspension HBM buffer. 4-AP (1mM), ionomycin (5µM) 

or control (HBM buffer) was then added to the incubation to stimulate synaptosomes for 

5 minutes. The experiment was then terminated using the STOP solution. 

 

4.2.4. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 
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significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 

stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. 

 

4.2.5. Reagents 

A stock solution of 4-AP (1mM) was made in water and working solution was further 

diluted using HBM. 

 

A stock solution of ionomycin (5µM) was made in DMSO and working solution was 

further diluted using HBM.  

 

A stock solution of EGTA (100µM) was obtained with water and working solution was 

further diluted using HBM. 

 

A stock solution of thapsigargin (1µM) was made in DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of ryanodine (30µM) was obtained with DMSO and working solution 

was further diluted using HBM. 

 

A stock solution of 2-APB (50µM) was obtained with DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of U-73122 (10µM) was obtained with DMSO and working solution 

was further diluted using HBM.  
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4.3. Results 

Smooth endoplasmic reticulum is a potential intracellular Ca2+ store that may be able to 

release the intracellular Ca2+ to activate Ca2+-dependent processes such as the ERK 

pathway. If the Ca2+ stored in smooth endoplasmic reticulum were to be depleted, the 

hypothesis would be that there should be a significant decrease in ERK1 and ERK2 

phosphorylation/activation under 4-AP and ionomycin mediated stimulation. 

 

In order to examine this hypothesis we used thapsigargin which is a well characterised 

inhibitor of the SERCA pumps found in the smooth endoplasmic reticulum. We 

conducted the experiment by incubating the synaptosomes with thapsigargin (1µM) in 

the presence of external Ca2+ (1mM) during the preincubation stage (Figure 4-1A&B). 

This ensures that any effect observed is due to thapsigargin inhibition of the SERCA 

pump and not simply a reflection of external Ca2+ absence as demonstrated in chapter 3 

(Figure 3-7). Absence of thapsigargin incubation resulted in a significant increase in 

ERK1 (165.3 + 1.8%) and ERK2 (159.9 + 3.2%) phosphorylation/activation compared 

to the 37ºC control when the synaptosomes were stimulated with 4-AP (Figure 4-1C). 

This 4-AP mediated stimulation also resulted in significant increase of ERK1 (150.2 + 

2.2%) and ERK2 (133.4 + 4.5%) phosphorylation/activation compared to the 37ºC 

control when thapsigargin was included. The basal activity of ERK1 (102.7 + 5.2%) and 

ERK2 (91.8 + 3.4%) compared to the 37ºC control was unaffected in the presence of 

thapsigargin during preincubation stage. Despite this, the net change of ERK1 and 

ERK2 phosphorylation/activation showed that thapsigargin incubation significantly 

reduced 4-AP mediated stimulation (Figure 4-1D).  

 

We next tested this hypothesis on ionomycin mediated stimulation using the same 

conditions. Thus, we incubated thapsigargin (1µM) in the presence of Ca2+ (1mM) 



127 
 
A) Con T 4-AP 4-AP+T B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 

4-AP - - + + + + 
 
Figure 4-1: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of thapsigargin during the preincubation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and T = thapsigargin shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM suspension with or without thapsigargin (1µM) and in the presence of Ca2+ (1mM) 
was used to resuspended synaptosomes and incubated for 50 minutes. After which they were spun down 
with the supernatant removed. During the stimulation stage synaptosomes were resuspended in Ca2+ 
(1mM) and stimulated with 4-AP (1mM) and the experiment ended after 75 minutes of incubation. (C) 
Basal effect of the presence of thapsigargin during the preincubation stage and 4-AP mediated stimulation 
of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence 
of thapsigargin during the preincubation stage. Thapsi = thapsigargin. (D) The net change of ERK1 and 
ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=6). 
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during the preincubation stage (Figure 4-2A&B). Ionomycin mediated stimulation in the 

absence of thapsigargin during the preincubation stage caused a significant increase of 

ERK1 (127.6 + 3.1%) and ERK2 (125.8 + 1.6%) phosphorylation/activation compared 

to the 37ºC control (Figure 4-2C). Unlike 4-AP mediated stimulation, the incubation of 

thapsigargin did not significantly stimulate ERK1 (89.6 + 1.3%) and ERK2 (95.0 + 

3.7%) phosphorylation/activation compared to the 37ºC control when stimulated with 

ionomycin. Interestingly, the ERK1 (87.7 + 4.4%) basal activity was significantly 

reduced but ERK2 (99.4 + 5.1%) basal activity compared to the 37ºC control was 

unaffected by thapsigargin incubation. The net change analysis confirmed that 

ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation is 

significantly decreased by thapsigargin incubation (Figure 4-2D). Overall, the results 

support the hypothesis that both 4-AP and ionomycin mediated stimulation of ERK1 

and ERK2 phosphorylation/activation both invoke mobilisation of Ca2+ from the smooth 

endoplasmic reticulum type Ca2+ store in nerve terminals. 

 

However, the mechanism for the mobilisation of the aforementioned Ca2+ store requires 

further investigation. It is possible that depletion of smooth endoplasmic reticulum 

during the preincubation stage subsequently diminishes the ability of 4-AP and 

ionomycin to stimulate Ca2+ release. If this is true then continued depletion of 

intracellular Ca2+ stores during the preincubation and stimulation stages should maintain 

the inhibitory effect. Therefore, we incubated synaptosomes with Ca2+ (1mM) in the 

presence and absence of thapsigargin (1µM) during the preincubation and stimulation 

stages (Figure 4-3A&B). We found that the absence of thapsigargin permitted 

significant increases ERK1 (146.0 + 2.0%) and ERK2 (160.2 + 5.0%) 

phosphorylation/activation compared to the 37ºC control during stimulation by 4-AP 

(Figure 4-3C). 4-AP mediated stimulation of ERK1 (149.8 + 2.0%) and ERK2 (171.4 + 
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A) Con T Iono Iono+T B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 

Ionomycin - - + + + + 
 
Figure 4-2: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of thapsigargin during the preincubation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and T = thapsigargin shows the condition of each lane. (B) Timeline of 
the experiment showing that HBM suspension with or without thapsigargin (1µM) and in the presence of 
Ca2+ (1mM) was used to resuspended synaptosomes and incubated for 50 minutes. After which they were 
spun down with the supernatant removed. During the stimulation stage synaptosomes were resuspended 
in Ca2+ (1mM) and stimulated with ionomycin (5µM) and the experiment ended after 75 minutes of 
incubation. (C) Basal effect of the presence of thapsigargin during the preincubation stage and ionomycin 
mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the 
presence and absence of thapsigargin during the preincubation stage. Thapsi = thapsigargin. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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6.7%) phosphorylation/activation compared to the 37ºC control was also significant 

increase in the presence of thapsigargin. Like previous results the basal activity of 

ERK1 (91.5 + 2.3%) and ERK2 (93.4 + 4.9%) compared to the 37ºC control was 

however unaffected by thapsigargin incubation. Surprisingly, the net change analysis 

showed that incubation with thapsigargin during the preincubation and stimulation 

stages actually significantly increased the 4-AP mediated stimulation rather than 

inhibiting the response (Figure 4-3D). This result may appear to contradict the previous 

one with 4-AP added following thapsigargin incubation during the preincubation. 

However, this could reflect the additional role of smooth endoplasmic reticulum in that 

during 4-AP mediated stimulation it could be sequestering Ca2+. 

 

We next investigated if a CICR mechanism is activated during 4-AP and ionomycin 

stimulation paradigms. We first wanted examined the CICR pathway by observing the 

direct consequences of Ca2+ influx on ERK1 and ERK2 phosphorylation/activation. 

Synaptosomes were incubated with Ca2+ (1mM) during the preincubation stage to 

ensure the repletion of intracellular Ca2+ stores. This was followed by the stimulation 

stage in which the synaptosomes were incubated in the presence of EGTA (100µM) and 

with the absence of Ca2+ (Figure 4-4A&B). 4-AP mediated stimulation in the presence 

of Ca2+ caused a significant increase in ERK1 (151.4 + 9.7%) and ERK2 (164.9 + 

11.3%) phosphorylation/activation compared to the 37ºC control (Figure 4-4C). There 

was a no significant stimulation on ERK1 (125.4 + 9.7%) and ERK2 (124.2 + 13.3%) 

phosphorylation/activation compared to the 37ºC control by 4-AP mediated stimulation 

in the absence of Ca2+. The basal activity of (99.1 + 2.2%) and ERK2 (94.6 + 0.9%) 

compared to the 37ºC control was unaffected by the absence of Ca2+. The net change 

showed that the absence of Ca2+ during the stimulation stage significantly reduced 4-AP 

mediated stimulation of ERK1 and ERK2 phosphorylation/activation (Figure 4-4D). 
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A) Con  T 4-AP 4-AP+T B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 
Thapsi - + - + - + 
4-AP - - + + + + 

 
Figure 4-3: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of thapsigargin during the preincubation and stimulation stages 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and T = thapsigargin shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM with or without thapsigargin (1µM) and in the presence of Ca2+ (1mM) were 
incubated at the start of the experiment for 50 minutes which was spun down with the supernatant 
removed. During the stimulation stage synaptosomes were resuspended in with or without thapsigargin 
(1µM) and Ca2+ (1mM) and stimulated with 4-AP (1mM) and the experiment ended after 75 minutes of 
incubation. (C) Basal effect of thapsigargin incubation during the preincubation and stimulation stages 
and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC 
control in the presence and absence of thapsigargin. Thapsi = thapsigargin. (D) The net change of ERK1 
and ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=7).   
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A) Con E 4-AP 4-AP+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 
4-AP - - + + + + 

 
Figure 4-4: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ during the stimulation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and E = EGTA shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM in the presence of Ca2+ (1mM) were incubated at the start of the experiment for 50 minutes 
which was spun down with the supernatant removed. During the stimulation stage synaptosomes were 
resuspended in the presence of EGTA (100µM) or Ca2+ (1mM) and stimulated with 4-AP (1mM) and the 
experiment ended after 75 minutes of incubation. (C) Basal effect of EGTA incubation during the 
stimulation stages and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation 
compared to the 37ºC control in the presence and absence of Ca2+. (D) The net change of ERK1 and 
ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4).  
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The consequence of Ca2+ influx of ionomycin was also investigated using the same 

protocol in which repletion of intracellular Ca2+ stores was followed by stimulation in 

the absence of Ca2+ during the stimulation stage (Figure 4-5A&B). We found that there 

was a significant increase in ERK1 (122.3 + 5.3%) and ERK2 (133.3 + 2.6%) 

phosphorylation/activation compared to the 37ºC control by ionomycin mediated 

stimulation in the presence of Ca2+ (Figure 4-5C). As expected the absence of Ca2+ 

caused ionomycin mediated stimulation to have no significant effect on ERK1 (91.1 + 

7.5%) and ERK2 (87.9 + 2.9%) phosphorylation/activation compared to the 37ºC 

control. There was also no significant effect on the basal activity of either ERK1 (98.4 + 

4.6%) or ERK2 (92.7 + 7.1%) compared to the 37ºC control by the absence of Ca2+ 

during the stimulation stage. Overall, the absence of Ca2+ during the stimulation stage 

significantly reduced ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation as seen from the net change comparison (Figure 4-5D). 

From these results, we can conclude that 4-AP and ionomycin mediated stimulation of 

ERK1 and ERK2 phosphorylation/activation is significantly dependent on Ca2+ influx 

during stimulation.  

 

We hypothesised that the influx of Ca2+ either through VDCC or direct influx results in 

the activation of the RyR to activate the CICR mechanism. To investigate the 

involvement of RyR, we considered inhibiting them with high concentrations of 

ryanodine. If RyR are involved then 4-AP and ionomycin mediated stimulation of 

ERK1 and ERK2 phosphorylation/activation should be significantly inhibited. To test 

RyR involvement, synaptosomes were incubated with Ca2+ (1mM) during the 

preincubation stage in order to replete the intracellular Ca2+ stores. During the 

stimulation stage, incubation with ryanodine (30µM) was considered sufficient to 

inhibit the RyR (Figure 4-6A&B). 



134 
 
A) Con E Iono Iono+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 

Ionomycin - - + + + + 
 
Figure 4-5: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ during the stimulation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and E = EGTA shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM in the presence of Ca2+ (1mM) were incubated at the start of the 
experiment for 50 minutes which was spun down with the supernatant removed. During the stimulation 
stage synaptosomes were resuspended in the presence of EGTA (100µM) or Ca2+ (1mM) and stimulated 
with ionomycin (5µM) and the experiment ended after 75 minutes of incubation. (C) Basal effect of 
EGTA incubation during the stimulation stages and ionomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of Ca2+. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3).  
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4-AP mediated stimulation resulted in a significant increase in ERK1 (151.6 + 6.3%) 

and ERK2 (159.3 + 6.1%) phosphorylation/activation compared to the 37ºC control in 

the absence of ryanodine incubation (Figure 4-6C). Interestingly, ryanodine incubation 

reduced the stimulation of ERK1 (106.4 + 8.7%) and ERK2 (137.8 + 8.0%) 

phosphorylation/activation but ERK2 phosphorylation/activation was significantly 

increased compared to the 37ºC control. In addition there was no basal effect of 

ryanodine incubation during the stimulation stage on ERK1 (95.5 + 4.8%) or ERK2 

(100.0 + 4.1%) compared to the 37ºC control. The net change in ERK1 and ERK2 

phosphorylation/activation shows that ryanodine incubation during the stimulation stage 

significantly reduced 4-AP mediated stimulation (Figure 4-6D). 

 

Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation 

sensitivity to ryanodine was also examined using the same protocol. After the repletion 

of intracellular Ca2+ stores, ryanodine (30µM) was used to inhibit RyR during the 

stimulation stage (Figure 4-7A&B). We found that ionomycin mediated stimulation in 

the absence of ryanodine during the stimulation stage resulted in significant increase in 

ERK1 (126.7 + 2.4%) and ERK2 (123.1 + 2.3%) phosphorylation/activation compared 

to the 37ºC control (Figure 4-7C). There was no significant stimulatory increase of 

ERK1 (100.7 + 7.3%) and ERK2 (93.8 + 8.7%) phosphorylation/activation compared to 

the 37ºC control when stimulated with ionomycin in the presence of ryanodine. 

Furthermore, ryanodine incubation during the stimulation stage had no significant effect 

on ERK1 (111.2 + 1.8%) but the ERK2 (100.8 + 3.8%) basal activity compared to the 

37ºC control. From this it clearly evident that ryanodine incubation during the 

stimulation stage significantly inhibits ionomycin mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation as shown by the net change (Figure 4-7D). These 

results indicate that both 4-AP and ionomycin mediated stimulation appear to
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A) Con R 4-AP 4-AP+R B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 

Rya - + - + - + 
4-AP - - + + + + 

 
Figure 4-6: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of ryanodine during the stimulation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and R = ryanodine shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM in the presence of Ca2+ (1mM) were incubated at the start of the experiment for 50 
minutes which was spun down with the supernatant removed. During the stimulation stage synaptosomes 
were resuspended in the presence of ryanodine (30µM) and Ca2+ (1mM) and stimulated with 4-AP (1mM) 
and the experiment ended after 75 minutes of incubation. (C) Basal effect of ryanodine incubation during 
the stimulation stages and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation 
compared to the 37ºC control in the presence and absence of ryanodine. Rya = ryanodine. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3).  
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A) Con R Iono Iono+R B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 

Rya - + - + - + 
Ionomycin - - + + + + 

 
Figure 4-7: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of ryanodine during the stimulation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and R = ryanodine shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM in the presence of Ca2+ (1mM) were incubated at the start of the experiment for 50 
minutes which was spun down with the supernatant removed. During the stimulation stage synaptosomes 
were resuspended in the presence of ryanodine (30µM) and Ca2+ (1mM) and stimulated with ionomycin 
(5µM) and the experiment ended after 75 minutes of incubation. (C) Basal effect of ryanodine incubation 
during the stimulation stages and ionomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of ryanodine. Rya = 
ryanodine. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by 
removing the basal percentage from the stimulated groups for each n. All values represent the mean + 
SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were 
immunoblotted is described in section 2.2. (n=3).  
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activate RyR found on putative smooth endoplasmic reticulum in presynaptic nerve 

terminals. 

 

To confirm this point we considered the possibility that the inhibitory effects of 

ryanodine effect on ERK1 and ERK2 phosphorylation/activation could be occluded if 

the intracellular Ca2+ stores are depleted prior to stimulation. Thus, synaptosomes were 

incubated in the absence of Ca2+ with EGTA (100µM) during the preincubation stage 

and then incubated with ryanodine (30µM) during the stimulation stage (Figure 

4-8A&B). 4-AP mediated stimulation significantly increased ERK1 (135.8 + 6.4%) and 

ERK2 (142.7 + 8.7%) phosphorylation/activation compared to the 37ºC control with 

depleted intracellular Ca2+ stores (Figure 4-8C). In the presence of ryanodine 4-AP 

mediated stimulation still caused a significant increase in ERK1 (140.6 + 8.5%) and 

ERK2 (157.0 + 14.2%) phosphorylation/activation compared to the 37ºC control with 

depleted of intracellular Ca2+ stores. Incubation with ryanodine and with depleted 

intracellular Ca2+ stores had no significant effect on the basal activity of ERK1 (95.5 + 

8.7%) and ERK2 (94.3 + 12.0%) compared to the 37ºC control. The net change analysis 

shows that 4-AP mediated stimulation in ERK1 and ERK2 phosphorylation/activation 

was not significantly different (Figure 4-8D). Therefore this indicates that the inhibitory 

effect of ryanodine that was previously observed in which the intracellular Ca2+ stores 

were replete is occluded if the stores are prevented from repletion by the absence of 

Ca2+ during the preincubation stage. We could not apply this protocol to ionomycin 

mediated stimulation. Previously we had shown that the continued depletion of 

intracellular Ca2+ stores results in the failure of ionomycin to significantly increase 

ERK1 and ERK2 phosphorylation/activation (Figure 3-10). 

 



139 
 
A) Con ER 4-AP 4-AP+ER B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - - - - - 
EGTA - + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 

Rya - + - + - + 
4-AP - - + + + + 

 
Figure 4-8: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation with prior 
absence of Ca2+ during the stimulation stage in the presence and absence of ryanodine 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, ER = EGTA + ryanodine shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM in the presence of Ca2+ (1mM) or EGTA (100µM) was incubated at the start of the 
experiment for 50 minutes which was spun down with the supernatant removed. During the stimulation 
stage synaptosomes were resuspended in the presence and absence of ryanodine (30µM) with Ca2+ 
(1mM) and stimulated with 4-AP (1mM) and the experiment ended after 75 minutes of incubation. (C) 
Basal effect of absence of Ca2+ during preincubation and ryanodine incubation during the stimulation 
stages and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 
37ºC control in the presence and absence of ryanodine. Rya = ryanodine. (D) The net change of ERK1 
and ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=3).   
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From the foregoing data, it is evident that there still remains a component of ERK1 and 

ERK2 phosphorylation/activation that is activated during Ca2+ influx that is ryanodine 

insensitive. We therefore considered the possibility that IP3Rs also being activated by 

external Ca2+ influx which could act as the trigger for an IPCR mechanism. To target 

the IP3Rs we used the IP3R inhibitor 2-APB to elucidate the actions of IP3Rs in ERK1 

and ERK2 phosphorylation/activation mediated by 4-AP and ionomycin stimulation. 

Thus, 2-APB (50µM) was included in the presence of Ca2+ (1mM) during the 

preincubation and stimulation stages (Figure 4-9A&B). There was a significant increase 

in ERK1 (148.8 + 8.1%) and ERK2 (133.4 + 4.1%) phosphorylation/activation 

compared to the 37ºC control mediated by 4-AP stimulation in the absence of 2-APB 

incubation (Figure 4-9C). Interestingly, 2-APB reduced the 4-AP mediated stimulation 

of ERK1 (115.7 + 2.8%) and ERK2 (117.8 + 3.3%) phosphorylation/activation 

compared to the 37ºC control but ERK2 was still significantly increased. But there is a 

significant increase of ERK2 and not of ERK1 phosphorylation/. Incubation with 2-

APB during the preincubation and stimulation stages did not significantly affect the 

basal activity of ERK1 (104.7 + 2.3%) and ERK2 (103.6 + 4.3%) compared to the 37ºC 

control. The net change in ERK1 and ERK2 phosphorylation/activation shows that there 

is a significant reduction in 4-AP mediated stimulation of ERK1 and ERK2 in 

synaptosomes incubated with 2-APB during the preincubation and stimulation stage 

(Figure 4-9D). 

 

We now investigated the inhibitory effect of 2-APB on ionomycin mediated stimulation 

of ERK1 and ERK2 phosphorylation/activation. We used the same protocol in which 2-

APB (50µM) was included during the preincubation and stimulation stages (Figure 

4-10A&B). Ionomycin mediated stimulation of ERK1 (140.1 + 3.0%) and ERK2 (142.4 
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A) Con A 4-AP 4-AP+A B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
2-APB - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 
2-APB - + - + - + 
4-AP - - + + + + 

 
Figure 4-9: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of 2-APB 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, A = 2-APB shows the condition of each lane. (B) Timeline of the experiment showing that 
HBM in the presence of Ca2+ (1mM) with or without 2-APB (50µM) was incubated at the start of the 
experiment for 50 minutes which was spun down with the supernatant removed. During the stimulation 
stage synaptosomes were resuspended in the presence and absence of 2-APB (50µM) with Ca2+ (1mM) 
and stimulated with 4-AP (1mM) and the experiment ended after 75 minutes of incubation. (C) Basal 
effect of 2-APB during preincubation and stimulation stages and 4-AP mediated stimulation of ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of 2-APB. 
(D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the 
basal percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3).  
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+ 2.3%) phosphorylation/activation compared to the 37ºC control was significantly 

increased in the absence of 2-APB (Figure 4-10C). The presence of 2-APB resulted in a 

decreased stimulation of ERK1 (126.8 + 5.1%) and ERK2 (127.4 + 2.7%) 

phosphorylation/activation compared to the 37ºC control mediated by ionomycin. 

Similar to previous results the basal activity of ERK1 (104.7 + 2.3%) and ERK2 (103.6 

+ 4.3%) compared to the 37ºC control were unaffected by the presence of 2-APB during 

preincubation and stimulation stages. The net change in ERK1 and ERK2 

phosphorylation/activation analysis shows that ionomycin mediated stimulation is 

significantly inhibited by 2-APB incubation during the preincubation and stimulation 

stages (Figure 4-10D). These results therefore support the hypothesis that Ca2+ influx 

could also be the trigger of mechanisms that lead to the IP3R activation to affect IPCR 

and contribute to ERK1 and ERK2 phosphorylation/activation. 

 

Given the indicated involvement of IP3R in both 4-AP and ionomycin mediated 

stimulation we sought to target signalling upstream of IP3R in the generation of the IP3 

signal. The hypothesised IPCR mechanism would suggest IP3 production is evoked by 

PLC metabolism of PIP2, thus inhibition of PLC activity should inhibit IP3 production 

and thereby prevent IP3R mediated stimulation. To investigate if PLC is activated 

during 4-AP and ionomycin mediated stimulation we used the PLC inhibitor U-73122 

and observed it effects on ERK1 and ERK2 phosphorylation/activation. U-73122 

(10µM) was incubated in the presence of Ca2+ (1mM) during the preincubation and 

stimulation stages (Figure 4-11A&B). 4-AP mediated stimulation caused a significant 

increase in ERK1 (148.8 + 8.1%) and ERK2 (133.4 + 4.1%) phosphorylation/activation 

compared to the 37ºC control during the absence of U-73122 (Figure 4-11C). 

Incubation of U-73122 during 4-AP mediated stimulation reduced the responses of 

ERK1 (117.7 + 9.7%) and ERK2 (115.4 + 2.4%) phosphorylation/activation, but ERK2 
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A) Con A Iono Iono+A B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
2-APB - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 
2-APB - + - + - + 

Ionomycin - - + + + + 
 
Figure 4-10: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in 
the presence and absence of 2-APB 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and A = 2-APB shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM in the presence of Ca2+ (1mM) with or without 2-APB (50µM) was 
incubated at the start of the experiment for 50 minutes which was spun down with the supernatant 
removed. During the stimulation stage synaptosomes were resuspended in the presence and absence of 2-
APB (50µM) with Ca2+ (1mM) and stimulated with ionomycin (5µM) and the experiment ended after 75 
minutes of incubation. (C) Basal effect of 2-APB during preincubation and stimulation stages and 
ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC 
control in the presence and absence of 2-APB. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=3).  
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A) Con U 4-AP 4-AP+U B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
U-73122 - + - + - + 

 Stimulation Stimulation 
Calcium + - + - + - 
U-73122 - + - + - + 

4-AP - - + + + + 
 
Figure 4-11: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of U-73122 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, U = U-73122 shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM in the presence of Ca2+ (1mM) with or without U-73122 (10µM) was incubated at the start of 
the experiment for 50 minutes which was spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in the presence and absence of U-73122 (10µM) with 
Ca2+ (1mM) and stimulated with 4-AP (1mM) and the experiment ended after 75 minutes of incubation. 
(C) Basal effect of U-73122 during preincubation and stimulation stages and 4-AP mediated stimulation 
of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence 
of U-73122. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by 
removing the basal percentage from the stimulated groups for each n. All values represent the mean + 
SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were 
immunoblotted is described in section 2.2. (n=3).  
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compared to the 37ºC control was significantly increased. Incubation of U-73122 during 

the preincubation and stimulation stage did not have any significant effect on the basal 

activity of ERK1 (104.5 + 2.5%) and ERK2 (102.5 + 4.2%) compared to the 37ºC 

control. The net change therefore reveals that U-73122 incubation significantly reduced 

ERK1 and ERK2 phosphorylation/activation during 4-AP mediated stimulation (Figure 

4-11D).  

 

Since 2-APB incubation had a significant effect on ionomycin stimulation of ERK1 and 

ERK2 phosphorylation/activation it is reasonable to assume that it might also be 

sensitive to the PLC inhibition. We investigated the involvement of PLC with this 

stimulatory paradigm by incubating U-73122 (10µM) during the preincubation and 

stimulation stages as previously described (Figure 4-12A&B). In the absence of U-

73122 incubation ionomycin mediated stimulation significantly increased ERK1 (140.1 

+ 3.0%) and ERK2 (142.4 + 2.3%) phosphorylation/activation compared to the 37ºC 

control (Figure 4-12C). In the presence of U-73122 ionomycin mediated stimulation 

was able to significantly increase ERK1 (118.8 + 2.4%) and ERK2 (127.4 + 2.7%) 

phosphorylation/activation compared to the 37ºC control. Like previous observations 

the basal effect of ERK1 (104.5 + 2.5%) and ERK2 (103.6 + 4.3%) compared to the 

37ºC control was not significantly affected by U-73122 incubation. Analysis of the net 

change in ERK1 and ERK2 phosphorylation/activation indicated that ionomycin 

stimulation is significantly reduced in synaptosome samples incubated with U-73122 

during the preincubation and stimulation stages (Figure 4-12D). These results show that 

4-AP and ionomycin mediated stimulation are indeed sensitive to PLC inhibition this 

further supporting the role of IPCR in ERK1 and ERK2 phosphorylation/activation. 
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A) Con U Iono Iono+U B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
U-73122 - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 
U-73122 - + - + - + 

Ionomycin - - + + + + 
 
Figure 4-12: Ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation in 
the presence and absence of U-73122 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, Iono = ionomycin and U = U-73122 shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM in the presence of Ca2+ (1mM) with or without U-73122 (10µM) was 
incubated at the start of the experiment for 50 minutes which was spun down with the supernatant 
removed. During the stimulation stage synaptosomes were resuspended in the presence and absence of U-
73122 (10µM) with Ca2+ (1mM) and stimulated with ionomycin (5µM) and the experiment ended after 75 
minutes of incubation. (C) Basal effect of U-73122 during preincubation and stimulation stages and 
ionomycin mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC 
control in the presence and absence of U-73122. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=3).  
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4.4. Discussion 

The first objective of this chapter was to address the functional role that smooth 

endoplasmic reticulum can play in nerve terminals during 4-AP and ionomycin 

mediated stimulation. We examined this by inhibiting the SERCA pumps found on 

smooth endoplasmic reticulum which should over time result in the depletion of Ca2+ 

from the store, as it ‘leaks’ out into the cytosol. Using thapsigargin as a store inhibitor, 

both 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation was significantly reduced. Interestingly, ionomycin 

mediated stimulation was shown to be more sensitive to Ca2+ depletion from smooth 

endoplasmic reticulum than 4-AP mediated stimulation.  

 

There are two possible functional roles of smooth endoplasmic reticulum that could be 

used to explain these results. Firstly, it could be that Ca2+ depletion removes the ability 

of 4-AP and ionomycin mediated stimulation to stimulate the Ca2+ release from the 

smooth endoplasmic reticulum. Thus, there is an insufficient Ca2+ concentration to 

stimulate the Ca2+-dependent mechanisms of ERK1 and ERK2 

phosphorylation/activation. However, in this experiment thapsigargin was not present 

during the 4-AP and ionomycin mediated stimulation which might suggest that the 

SERCA pump are functional during the stimulation stage and are able to sequester the 

influx of Ca2+. Indeed, continued incubation of thapsigargin during the preincubation 

and stimulation stages indicates that Ca2+ is being sequestered at least for 4-AP 

mediated stimulation. This is based on the reasoning that as SERCA pumps are unable 

to sequester the cytosolic Ca2+ during stimulation stage the Ca2+-dependent mechanisms 

that phosphorylate/activate ERK1 and ERK2 are further stimulated by the presence of 

excess Ca2+ in the cytosol. This explanation is further supported by previous studies that 

show smooth endoplasmic reticulum in synaptosomes is able to sequester Ca2+ from the 



148 
 
cytosol during stimulation (Blaustein et al., 1978;Blaustein et al., 1980;McGraw et al., 

1980b;Rasgado-Flores & Blaustein, 1987).  

 

We suspected that ionomycin mediated stimulation sensitivity to thapsigargin could also 

be due to sequestration, but we need to conduct an experiment in which thapsigargin is 

incubated continuously. If there is an enhancement of ERK1 and ERK2 

phosphorylation/activation by ionomycin mediated stimulation then this points to 

sequestration by smooth endoplasmic reticulum. The sequestration ability of smooth 

endoplasmic reticulum could also be important in pathophysiological conditions as 

failure by smooth endoplasmic reticulum to sequester Ca2+ could result in its excess and 

cytosolic accumulation in the cytosol. 

 

The second objective of this chapter was to investigate the involvement of CICR 

mechanism to stimulate Ca2+ release from the smooth endoplasmic reticulum. The 

CICR mechanism involves an increase in Ca2+ concentration which can be induced by 

the Ca2+ influx or local intracellular Ca2+ increases. This Ca2+ stimulates RyR which 

causes Ca2+ release from the smooth endoplasmic reticulum to further increase the Ca2+ 

concentration and thereby enhance Ca2+-dependent mechanisms operating in nerve 

terminals. 

 

By stimulating the synaptosomes with 4-AP and ionomycin in the absence of Ca2+ 

during stimulation we directly assessed the dependency in Ca2+ influx of ERK1 and 

ERK2 phosphorylation/activation. The intracellular Ca2+ stores underwent the repletion 

protocol thus the effects are unlikely to be due to and depletion of intracellular Ca2+ 

stores. Both 4-AP and ionomycin mediated stimulation had significantly reduced 

responses in the absence of Ca2+ during stimulation. This indicates that extracellular 
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Ca2+ influx through VDCCs or Ca2+ ionophore is an essential requirement for ERK1 

and ERK2 phosphorylation/activation. In addition, given that the reduction for both 4-

AP and ionomycin mediated stimulation was complete; it suggests that no Ca2+-

independent mechanisms are involved in ERK1 and ERK2 phosphorylation/activation.  

 

By inhibiting RyR using high concentrations of ryanodine we were able to show that 

both 4-AP and ionomycin mediated stimulations lead to activation of RyR. RyR have 

been implicated in the CICR mechanism thus this indicates that Ca2+ influx induced by 

4-AP and ionomycin could be triggering Ca2+ release through RyR contain stores 

(Bouchard et al., 2003). Confirming the inhibitory effect of ryanodine incubation could 

be occluded by prior depletion of intracellular Ca2+ stores. Although further supports the 

involvement of ryanodine receptor activation by Ca2+ influx, there appears to be a 

difference in the responses between 4-AP and ionomycin mediated stimulation. While 

ionomycin mediated stimulation was completely inhibited by ryanodine inhibition, 4-

AP mediated stimulation had a complete inhibitory effect on ERK1 but only partial 

inhibition on ERK2 phosphorylation/activation. This indicates ionomycin mediated 

stimulation is able to stimulate Ca2+ release using the CICR mechanism more than 4-AP 

mediated stimulation and may be indicative of a differential localisation of ERK1 and 

ERK2. 

 

The final objective of this chapter was to investigate the activation of the IPCR 

mechanism by 4-AP and ionomycin mediated stimulation. If the mechanism is activated 

then inhibition of IP3R or decreasing the IP3 production should produce a reduction in 

ERK1 and ERK2 phosphorylation/activation by 4-AP and ionomycin mediated 

stimulation. We found that using 2-APB as an IP3R antagonist or inhibiting PLC 

activity using U-73122, both 4-AP and ionomycin mediated stimulation of ERK1 and 
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ERK2 phosphorylation/activation were significantly reduced. Interestingly, ryanodine 

receptor inhibition resulted in a complete reduction of ERK1 and ERK2 

phosphorylation/activation mediated by ionomycin stimulation. Targeting the IPCR 

mechanism with IP3R or PLC inhibition only resulted in a partial reduction. This could 

highlight a preference of ionomycin mediated stimulation which causes direct Ca2+ 

through ionophore to be more effective in CICR than in invoking IPCR mechanism. 

The 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation displays 

the similar pattern for CICR and IPCR mechanisms thus does not appear to have a 

preference (Schematic 4-1).  

 

In conclusion, in this chapter we show two functional abilities of the smooth 

endoplasmic reticulum in nerve terminals. Firstly, we provide evidence that the smooth 

endoplasmic reticulum is able to sequester Ca2+ from the cytosol. Secondly, we 

demonstrated that both CICR and IPCR mechanisms are able to stimulate these Ca2+ 

stores and have a significant effect on Ca2+-dependent mechanisms that result in ERK1 

and ERK2 phosphorylation/activation. 
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Schematic 4-1: Influx of Ca2+ through VDCCs and ionomycin can stimulate Ca2+-dependent 
mechanisms that activate the ERK pathway 
Influx of extracellular Ca2+ through VDCC or ionomycin can possibly directly stimulate Pyk2 which 
activates the ERK pathway and stimulate efflux of Ca2+ from intracellular Ca2+ stores. (i) Extracellular 
Ca2+ could directly stimulate RyR to efflux Ca2+. (ii) Increases in [Ca2+] can also stimulate PLC which 
metabolises PIP2 to form DAG and IP3 which stimulates IP3Rs to release Ca2+. (iii) Depletion of 
intracellular Ca2+ stores by inhibiting SERCA pumps diminishes this recruitment decreasing the ERK 
stimulation response.  
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5. Metabotropic activation of IP3-induced Ca2+ release 

Summary: We investigated IP3-induced Ca2+ release (IPCR) activation through the 

stimulation of the metabotropic receptors that increase inositol 1,4,5-trisphosphate 

(IP3) production. A good candidate in this regard is the mGluR1/5 receptors which are 

present in nerve terminals and are known to activate phospholipase C (PLC) to 

facilitate neurotransmitter release. Using the agonist (S)-3,5-dihydroxyphenylglycine 

(DHPG) to stimulate mGluR1/5 receptors, we found that receptor activation resulted in 

a significant increase in ERK1 and ERK2 phosphorylation/activation dependent on 

DHPG concentration and desensitising with time. By targeting components of IPCR 

mechanism we propose a general mechanism that explains how mGluR1/5 receptor 

stimulation results in ERK1 and ERK2 phosphorylation/activation. Stimulation of 

mGluR1/5 with DHPG causes the activation of PLC through the Gq/11 subunit. PLC 

activation metabolises PIP2 to form IP3 and DAG; the increase in IP3 production results 

in the stimulation of IP3 receptors (IP3Rs) found on the smooth endoplasmic reticulum. 

Stimulation of IP3Rs releases Ca2+ from the smooth endoplasmic reticulum which 

stimulates calmodulin and thereby Ca2+/calmodulin-dependent kinase II (CaMKII). The 

activation of the latter underpins the Ca2+-dependent mechanisms that lead to ERK1 

and ERK2 phosphorylation/activation. 

 

5.1. Introduction 

The IPCR mechanism describes the recruitment of Ca2+ from IP3R sensitive stores such 

as the smooth endoplasmic reticulum to activate Ca2+-dependent mechanisms. The 

Ca2+-dependent mechanisms lead to phosphorylation/activation of ERK1 and ERK2 

which can be therefore serve as sensitive sensors indicating increases in 

intrasynaptosomal Ca2+ concentrations. We have provided evidence that IPCR 

mechanism could be activated by the influx of Ca2+ through VDCCs mediated by 4-AP 
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and ionomycin stimulation (Chapter 4). However, 4-AP and ionomycin mediated 

stimulation are also able to recruit Ca2+ via other mechanisms such as Ca2+-induced 

Ca2+ release (CICR). To directly investigate the recruitment of Ca2+ from IP3R sensitive 

stores we considered using metabotropic mediated stimulation.  Previous studies have 

suggested that the IPCR mechanism can be activated through metabotropic receptor 

mediated stimulation (Herrero et al., 1998).  

 

Metabotropic glutamate receptors (mGluRs) are composed of seven transmembranes, an 

N-terminal that binds to agonists and antagonist and a C-terminal and intracellular loops 

which couple to the G protein. There are eight mGluRs that are split into three groups 

including group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3) and group 

III (mGluR4, mGluR6, mGluR7 and mGluR8). Group 1 mGluRs are known to couple 

to the Gq/11 protein, while the group II and III mGluRs are coupled to the Gi/Go proteins. 

The G protein that the mGluR couples to is important in determining the downstream 

effects of the receptor upon activation. Given that group II and III mGluRs are coupled 

to Gi/Go protein, so they are negatively coupled to adenylate cyclase which results in the 

decrease of cAMP concentration which generally leads to a reduction in cellular 

activity. This is in contrast to mGluR1/5 activation which generally have facilitatory 

actions through its Gq/11 protein and PLC activation. 

 

There are two main pathways that can be activated by the stimulation of mGluR1/5 

which include an IPCR mechanism and PKC activation. When the mGluR1/5 receptors 

are stimulated the α subunit is activated by GTP binding and dissociates from the βγ 

subunit which acts on its own targets. The α subunit is able to activate PLC bound to the 

plasma membrane resulting in the metabolism of PIP2 forming part of the phospholipid 

content of the inner leaflet of the plasma membrane. The two metabolites that are 
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formed from PIP2 breakdown include IP3 and diacylglycerol (DAG) which active the 

IPCR mechanism and PKC, respectively.  

 

DAG remains bound to the membrane and is able to stimulate PKC which has 

downstream targets on presynaptic channels and the exocytotic machinery but could 

also directly phosphorylate c-Raf-1 causing its activation and therefore possible 

downstream activation of the ERK pathway (Kolch et al., 1993;Ueda et al., 

1996;Schonwasser et al., 1998). The IP3 metabolite is hydrophilic and therefore is not 

bound to the membrane and can subsequently be able to diffuse into the cytosol where it 

interacts with binding sites found on the IP3R. Binding causes the displacement of 

inositol 1,4,5-trisphosphate receptor binding protein (IRBIT), thus making the IP3R 

open to effect an efflux of Ca2+ from the smooth endoplasmic reticulum (Ando et al., 

2006). The Ca2+ released could be sufficient for activating Ca2+-dependent mechanisms 

but alternatively it might propagate a Ca2+ wave which triggers ryanodine receptors 

(RyRs) to become active causing further release of Ca2+ from the smooth endoplasmic 

reticulum. Upon removal of IP3 IRBIT is able to bind to the IP3R causing the closing of 

the channel. 

 

The Ca2+-dependent mechanisms that the IPCR mechanism could activate include Src-

dependent mechanism inhibition of which has been shown in this thesis to cause 

suppression of 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation (Chapter 3). The activity of GEFs and GAPs that promote 

and inhibit, respectively the active form of Ras (Ras-GTP) can regulate the ERK 

pathway. Calmodulin has been shown to have some inhibitory consequences for the 

ERK pathway for example it can inhibit K-Ras (Villalonga et al., 2001). However, it 

can also bind to a RasGEF such as RasGRF to promote the formation of Ras-GTP 
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(Farnsworth et al., 1995;Freshney et al., 1997). In addition, through PI3K it can 

stimulate H-Ras activation which promotes c-Raf-1 stimulation and the subsequent 

downstream activation of the ERK pathway (Moreto et al., 2008). Another stimulatory 

consequence of calmodulin activation is the activation of CaMKII which has been 

shown to inhibit SynGAP thus this would again promote Ras activation (Chen et al., 

1998). 

 

The objective of this chapter is to investigate whether mGluR1/5 stimulation results in 

the ERK1 and ERK2 phosphorylation/activation. Moreover, we aimed to test whether 

any ERK1 and ERK2 phosphorylation/activation is due to the IPCR and the 

components involved in this mechanism. Furthermore, we investigated the Ca2+-

dependent mechanisms that could be activated by the Ca2+ release from the smooth 

endoplasmic reticulum through IP3Rs stimulation.  
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5.2. Method 

5.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

5.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

5.2.3. Metabotropic activation protocol 

Experiments that followed the metabotropic activation of ERK protocol are described in 

section 2.3.3. Synaptosomes were resuspended in HBM buffer containing BSA 

(1mg/ml) with the drug of interest U-73122 (10µM), 2-APB (50µM), thapsigargin 

(1µM), levetiracetam (100µM), W7 (50µM) or KN-93 (10µM) and incubated at 37ºC. 

After 3 minutes Ca2+ (1mM) was added to the suspension and DHPG (10µM) was added 

to the incubation after 49 minutes of incubation unless otherwise stated. After 1 minute 

stimulation with DHPG (10µM) the synaptosomes were spun down and the supernatant 

removed. The experiment was terminated using the STOP solution. 

 

5.2.4. Glutamate release 

Synaptosomes were resuspended in 1.5ml HBM containing BSA (1mg/ml) and 

transferred to the spectrofluorimeter. Constant stirring ensured that the synaptosomes 

were oxygenated and NADP+ (1mM) and GDH (50 units/ml) were added to the 

suspended synaptosomes at the start of the experiment which was followed by the 

addition of Ca2+ (1mM) after 3 minutes. When the recording of fluorescence had started 

we added our drug of interest in this period. Levetiracetam (10 or 100µM) was added at 

7 minutes and DHPG (10 and 100µM) was added at 9 minutes. Glutamate release was 
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then evoked using 4-AP (1mM) at 10 minutes. Finally, at 15 minutes, exogenous 

glutamate (2.5nmol) was added as an internal standard to quantify the glutamate release. 

 

5.2.5. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 

significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 

stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. The bar graphs of glutamate release in the results 

section show independent experiments averaged at 300-305 second time points. 

 

5.2.6. Reagents 

A stock solution of DHPG (10µM) was made in water and working solution was further 

diluted using HBM.  

 

A stock solution of thapsigargin (1µM) was made in DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of ryanodine (30µM) was obtained with DMSO and working solution 

was further diluted using HBM. 

 

A stock solution of 2-APB (50µM) was obtained with DMSO and working solution was 

further diluted using HBM. 
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A stock solution of U-73122 (10µM) was obtained with DMSO and working solution 

was further diluted using HBM. 

 

A stock solution of Levetiracetam (100µM) was made using with water and further 

diluted using HBM. 

 

A stock solution of W7 (50µM) was made using with water and further diluted using 

HBM. 

 

A stock solution of KN-93 (10µM) was made using with DMSO and further diluted 

using HBM. 
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5.3. Results 

We examined the effect of Gq/11 coupled G-protein coupled receptors (GPCRs) 

stimulation of PLC activation on ERK1 and ERK2 phosphorylation/activation in 

synaptosomes. We used DHPG to stimulate mGluR1/5 receptors to potentially mobilise 

the Ca2+ stores to cause ERK1 and ERK2 phosphorylation/activation. We first 

conducted a dose-response curve of DHPG at the concentrations of 0.1, 1, 10 and 

100µM and quantified the phosphorylation/activation of ERK1 and ERK2. 

Synaptosomes were stimulated in the presence of Ca2+ (1mM) for 1 minute by the 

indicated concentration of DHPG (Figure 5-1A&B). Analysis of immunoblots showed a 

bell shaped concentration dependency for ERK1 and ERK2 phosphorylation/activation. 

At 0.1µM DHPG had no significant effect on ERK1 (106.8 + 6.5%) and ERK2 (108.5 + 

9.4%) phosphorylation/activation compared to the 37ºC control (Figure 5-1C). There 

was a significant increase in ERK1 (129.0 + 3.4%) and ERK2 (134.9 + 5.9%) 

phosphorylation/activation compared to the 37ºC control at 1µM DHPG. This was again 

observed with 10µM DHPG which caused a significant increase of ERK1 (146.7 + 

3.9%) and ERK2 (136.4 + 5.1%) phosphorylation/activation compared to the 37ºC 

control. However, there appears to be a declining trend at 100µM DHPG, a 

concentration that caused no significant effect on ERK1 (120.6 + 8.7%) and ERK2 

(123.9 + 4.6%) phosphorylation/activation compared to the 37ºC. For subsequent 

experiments we employed a DHPG 10µM to elicit a maximum response.  

 

To ensure that 1 minute of DHPG mediated stimulation was sufficient for maximum 

response, we conducted a time-course of DHPG (10µM) in the presence of Ca2+ (1mM) 

with 10, 30, 60, 120, 300 and 600 second(s) stimulations (Figure 5-2A&B). DHPG 

stimulation for 10 or 30 seconds (10 seconds: ERK1 97.7 + 6.1% and ERK2 97.6 + 
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A) Con 0.1 1 10 100 B) 

C) 

 

 
 Stimulation 

Calcium + + + + + 
DHPG (µM) 0 0.1 1 10 100 

 
Figure 5-1: Dose-dependent effect of DHPG on ERK1 and ERK2 phosphorylation/activation 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment showing that synaptosomes 
were resuspended with HBM with Ca2+ (1mM) added at 3 minutes. Different concentration of DHPG that 
include 0.1, 1, 10 or 100µM was used at 49 minutes or HBM for control and the experiment ended after 
50 minutes of incubation. (C) DHPG effect on ERK1 and ERK2 phosphorylation/activation compared to 
the 37ºC control at concentrations 0.1, 1, 10 and 100µM. All values represent the mean + SEM. 
p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were 
immunoblotted is described in section 2.2. (n=4).  
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3.5%; and 30 seconds ERK1 105.9 + 4.1% and ERK2 102.8 + 4.4%) had no significant 

effect on ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control 

(Figure 5-2C). As expected from the previous result DHPG stimulation for a minute 

caused a significant increase in ERK1 (118.2 + 4.4%) and ERK2 (116.8 + 2.1%) 

phosphorylation/activation compared to the 37ºC control. ERK1 and ERK2 

phosphorylation/activation was sustained over the 2 and 5 minutes (2 minutes: ERK1 

122.4 + 6.6% and ERK2 118.5 + 5.5% and 5 minutes: ERK1 121.6 + 2.2% and ERK2 

120.3 + 2.7%). Subsequently there was no significant effect on ERK1 (113.7 + 4.8%) 

and ERK2 (107.9 + 4.8%) phosphorylation/activation compared to the 37ºC control 

after 10 minutes of DHPG stimulation. The time course shows that initially there is little 

activity but this is followed by a significant increase which declines with time. For the 

subsequent experiments we stimulated the synaptosomes for 1 minute with 10µM 

DHPG. 

 

Having shown that mGluR1/5 mediated stimulation results in ERK1 and ERK2 

phosphorylation/activation, we investigated if this stimulation can be attributed to Ca2+-

release from the smooth endoplasmic reticulum. To do this we incubated synaptosomes 

with thapsigargin (1µM) to deplete the smooth endoplasmic reticulum in the presence of 

Ca2+ (1mM) and stimulated with DHPG (10µM) for 1 minute (Figure 5-3A&B). We 

found that in the absence of thapsigargin, DHPG mediated stimulation resulted in a 

significant increase in ERK1 (133.2 + 10.6%) and ERK2 (133.0 + 10.0%) 

phosphorylation/activation compared to the 37ºC control (Figure 5-3C). After 

thapsigargin incubation we found that the DHPG mediated stimulation of ERK1 (89.5 + 

10.4%) or ERK2 (91.9 + 7.8%) phosphorylation/activation compared to the 37ºC 

control was diminished. Incubation with thapsigargin had no significant effect on the 

basal activity of ERK1 (99.2 + 12.4%) or ERK2 (104.2 + 9.6%) compared to the 37ºC 
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A) Con 0.1 0.3 1 2 5 10 B) 

C) 

 

 
 
Figure 5-2: DHPG time course of ERK1 and ERK2 phosphorylation/activation. 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment showing that synaptosomes 
were resuspended with HBM with Ca2+ (1mM) added at 3 minutes. DHPG (10µM) was used to stimulate 
the synaptosomes at 50 minutes or HBM for control and the experiment ended at different time points 
after DHPG addition that include 10 and 30 seconds, 1, 2, 5 and 10 minutes. (C) DHPG effect on ERK1 
and ERK2 phosphorylation/activation compared to the 37ºC control over a time course including 10 and 
30 seconds, 1, 2, 5 and 10 minutes. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4).  
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A) Con T DHPG DHPG+T B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 
Thapsi - + - + - + 
DHPG - - + + + + 

 
Figure 5-3: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of thapsigargin 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and T = thapsigargin shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM suspension with or without thapsigargin (1µM) and Ca2+ (1mM) addition at 3 
minutes. DHPG (10µM) was used to stimulate the synaptosomes at 1 minute and the experiment ended 
after 50 minutes of incubation. (C) Basal effect of the presence of thapsigargin and DHPG mediated 
stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence 
and absence of thapsigargin. Thapsi = thapsigargin. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4). 
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control. Overall, from the analysis of the net change, we found that the DHPG mediated 

stimulation is sensitive to thapsigargin and results in a significant inhibition of ERK1 

and ERK2 phosphorylation/activation (Figure 5-3D). 

 

We further investigated the IPCR mechanism by considering the action of PLC. It has 

been shown that the mGluR1/5 receptor couples through the G protein, Gq/11 which is 

capable of activating PLC. In order to directly test if PLC is being activated by 

mGluR1/5 stimulation, we used the PLC inhibitor U-73122 to examine whether this 

inhibits the ERK1 and ERK2 phosphorylation/activation in response to DHPG mediated 

stimulation. Thus, we incubated the synaptosomes with U-73122 (10µM) in the 

presence of Ca2+ (1mM) and stimulated DHPG (10µM) for 1 minute (Figure 5-4A&B). 

During incubation without U-73122 DHPG mediated stimulation resulted in significant 

increase in ERK1 (132.4 + 4.6%) and ERK2 (130.3 + 4.9%) phosphorylation/activation 

compared to the 37ºC control (Figure 5-4C). However, when U-73122 was present, 

DHPG mediated stimulation did not increase ERK1 (77.9 + 6.5%) and ERK2 (79.3 + 

8.7%) phosphorylation/activation compared to the 37ºC control. The incubation of U-

73122 per se had no significant effect on the basal activity of ERK1 (79.6 + 10.2%) or 

ERK2 (80.3 + 11.9%) compared to the 37ºC control. The net change of ERK1 and 

ERK2 phosphorylation/activation shows that incubation with U-73122 significantly 

inhibits DHPG mediated stimulation of Ca2+ store release (Figure 5-4D).  

 

To ensure that DHPG mediated stimulation is due to the stimulation of IP3Rs found on 

smooth endoplasmic reticulum we inhibited the latter receptors. Synaptosomes were 

incubated with 2-APB (50µM) in the presence of Ca2+ (1mM) and stimulated with 

DHPG (10µM) for 1 minute (Figure 5-5A&B). We found that DHPG stimulation in the 

absence of 2-APB resulted in a significant increase in ERK1 (132.4 + 4.6%) and ERK2 
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A) Con U DHPG DHPG+U B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 
U-73122 - + - + - + 
DHPG - - + + + + 

 
Figure 5-4: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of U-73122 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and U = U-73122 shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension with or without U-73122 (10µM) and Ca2+ (1mM) addition at 3 minutes. DHPG 
(10µM) was used to stimulate the synaptosomes at 1 minute and the experiment ended after 50 minutes of 
incubation. (C) Basal effect of the presence of U-73122 and DHPG mediated stimulation of ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of U-73122. 
(D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the 
basal percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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A) Con A DHPG DHPG+A B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 
2-APB - + - + - + 
DHPG - - + + + + 

 
Figure 5-5: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of 2-APB 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and A = 2-APB shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension with or without 2-APB (50µM) and Ca2+ (1mM) addition at 3 minutes. DHPG 
(10µM) was used to stimulate the synaptosomes at 1 minute and the experiment ended after 50 minutes of 
incubation. (C) Basal effect of the presence of 2-APB and DHPG mediated stimulation of ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of 2-APB. 
(D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the 
basal percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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(130.3 + 4.9%) phosphorylation/activation compared to the 37ºC control (Figure 5-5C). 

DHPG mediated stimulation in the presence of 2-APB produced a diminished increase 

of ERK1 (97.5 + 10.1%) and ERK2 (94.3 + 13.6%) phosphorylation/activation 

compared to the 37ºC control. Incubation with 2-APB by itself had no significant effect 

on the basal activity of ERK1 (105.0 + 9.8%) and ERK2 (96.5 + 12.1%) compared to 

the 37ºC control. Thus the net change in DHPG mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation shows this is a significant inhibition with 2-APB 

incubation (Figure 5-5D).  

 

To further support the hypothesis that IP3Rs are indeed activated by mGluR1/5 

stimulation, we considered using another inhibitor of IP3Rs. Levetiracetam is not 

specific for IP3Rs like the inhibitor 2-APB because it should also inhibit RyRs but in the 

context of DHPG mediated stimulation it inhibits IP3R responses only. Synaptosomes 

were incubated with levetiracetam (100µM) in the presence of Ca2+ (1mM) and 

stimulated with DHPG (10µM) for 1 minute (Figure 5-6A&B). As expected from 

previous results DHPG mediated stimulation in the absence of levetiracetam caused a 

significant increase in ERK1 (133.2 + 10.6%) and ERK2 (141.2 + 8.3%) 

phosphorylation/activation compared to the 37ºC control (Figure 5-6C). However, 

during incubation with levetiracetam DHPG mediated stimulation did not significantly 

increase ERK1 (84.4 + 6.1%) and ERK2 (88.2 + 8.5%) phosphorylation/activation 

compared to 37ºC control. We also found that there was no significant effect on the 

basal activity of ERK1 (88.0 + 5.0%) and ERK2 (87.0 + 6.9%) when the synaptosomes 

were incubated with levetiracetam. The net change in ERK1 and ERK2 

phosphorylation/activation shows that DHPG mediated stimulation is significantly 

reduced in the presence of levetiracetam (Figure 5-6D). Interestingly, the effect of 

levetiracetam was quite similar to the effect of 2-APB which might be seen to  
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A) Con L DHPG DHPG+L B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 

Lev - + - + - + 
DHPG - - + + + + 

 
Figure 5-6: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of levetiracetam  
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and L = levetiracetam shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM suspension with or without levetiracetam (100µM) and Ca2+ (1mM) addition at 3 
minutes. DHPG (10µM) was used to stimulate the synaptosomes at 1 minute and the experiment ended 
after 50 minutes of incubation. (C) Basal effect of the presence of levetiracetam and DHPG mediated 
stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control in the presence 
and absence of levetiracetam. Lev = levetiracetam. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4). 
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indicate these two drugs are acting on a common target. 

 

We next investigated the Ca2+-dependent mechanisms that could be activated by the 

release of Ca2+ from the smooth endoplasmic reticulum. Calmodulin activation occurs 

following increases in Ca2+ concentration which could result in ERK1 and ERK2 

phosphorylation/activation modulation. To test if calmodulin is involved in the 

mechanism, we incubated synaptosomes with a calmodulin inhibitor W7 (50µM) in the 

presence of Ca2+ (1mM) and stimulated with DHPG (10µM) for 1 minute (Figure 

5-7A&B). We found that in the absence of W7 DHPG mediated stimulation was able to 

significantly increase ERK1 (133.2 + 10.6%) and ERK2 (133.0 + 10.0%) 

phosphorylation/activation compared to the 37ºC control (Figure 5-7C). In the presence 

of W7, DHPG mediated stimulation of ERK1 (36.8 + 3.3%) and ERK2 (23.8 + 2.5%) 

phosphorylation/activation compared to the 37ºC control was reduced. This inhibitory 

effect might however be attributable to the basal effect of W7 incubation which causes a 

significant inhibition of ERK1 (42.1 + 5.1%) and ERK2 (23.8 + 1.9%) compared to the 

37ºC control. However, accounting for this, we found from the net change of ERK1 and 

ERK2 phosphorylation/activation that W7 significantly inhibits DHPG mediated 

stimulation of the ERK pathway (Figure 5-7D). 

 

Another consequence of Ca2+ release and calmodulin activation in presynaptic nerve 

terminals is the activation of CaMKII which could also modulate ERK1 and ERK2 

phosphorylation/activation. To test the involvement of CaMKII we used an inhibitor of 

the kinase, KN-93 to examine its effect on DHPG mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation. Synaptosomes were incubated with KN-93 (10µM) 

in the presence of Ca2+ (1mM) and then stimulated with DHPG (10µM) for 1 minute 

(Figure 5-8A&B). In the absence of KN-93 incubation there was a significant increase 
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A) Con W DHPG DHPG+W B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 

W7 - + - + - + 
DHPG - - + + + + 

 
Figure 5-7: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of W7 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and W = W7 shows the condition of each lane. (B) Timeline of the experiment showing that 
HBM suspension with or without W7 (50µM) and Ca2+ (1mM) addition at 3 minutes. DHPG (10µM) was 
used to stimulate the synaptosomes at 1 minute and the experiment ended after 50 minutes of incubation. 
(C) Basal effect of the presence of W7 and DHPG mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of W7. (D) The net 
change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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A) Con K DHPG DHPG+K B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + + + + + + 
KN-93 - + - + - + 
DHPG - - + + + + 

 
Figure 5-8: DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of KN-93 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and K = KN-93 shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension with or without KN-93 (10µM) and Ca2+ (1mM) addition at 3 minutes. DHPG 
(10µM) was used to stimulate the synaptosomes at 1 minute and the experiment ended after 50 minutes of 
incubation. (C) Basal effect of the presence of KN-93 and DHPG mediated stimulation of ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of KN-93. 
(D) The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the 
basal percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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in ERK1 (132.4 + 4.6%) and ERK2 (130.3 + 4.9%) phosphorylation/activation 

compared to the 37ºC control in response to DHPG stimulation (Figure 5-8C). In the 

presence of KN-93 however DHPG mediated stimulation of ERK1 (89.2 + 8.6%) and 

ERK2 (74.2 + 5.5%) phosphorylation/activation compared to the 37ºC control was 

suppressed though only the ERK2 was significantly inhibited. Interestingly, KN-93 had 

a clear significant inhibitory effect on the basal activity of ERK1 (75.1 + 5.4%) and 

ERK2 (60.4 + 6.9%) compared to the 37ºC control. The net change analysis shows that 

both ERK1 and ERK2 phosphorylation/activation mediated by DHPG are reduced in 

the presence of KN-93 though only ERK1 is significantly inhibited (Figure 5-8D). 

 

Finally, another aspect that we investigated was the effect of intracellular calcium stores 

on evoked glutamate release. We investigated both the possible stimulatory and 

inhibitory effects on 4-AP mediated glutamate release by stimulating and inhibiting 

IP3R, respectively. We used DHPG (10µM) to stimulate the IP3R 1 minute prior to 4-AP 

(1mM) while levetiracetam (100µM) used to inhibit IP3R was added 3 minutes prior to 

4-AP. The initial findings suggest that prior DHPG mediated stimulation might produce 

a slight facilitation of the 4-AP mediated glutamate release (Figure 5-9A&B). However, 

levetiracetam incubation per se was unable to effect 4-AP mediated glutamate release 

(Figure 5-9C&D).  
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A)   DHPG   C)      Levetiracetam 

 
B)      D) 

     
DHPG (µM)  Levetiracetam (µM) 

0 10 100 0 10 100 
 
Figure 5-9: Effect of IP3R stimulation or inhibition on 4-AP mediated glutamate release 
Synaptosomes were re-suspended in HBM medium containing BSA (1mg/ml) NADP+ (1mM) and GDH 
(50units/ml). Ca2+ (1mM) was added after 3 minutes and levetiracetam (10 or 100µM) was added 3 
minutes or DHPG (10 or 100µM) was added 1 minute prior to 4-AP (1mM) addition at 10 minutes and 
then at 15 minutes glutamate (2.5nmol) is added as an internal standard. (A) A trace of the 10 and 100µM 
DHPG effect on 4-AP mediated glutamate release. (B) Quantification of the DHPG glutamate release 
averaged at 300-305 seconds. (C) A trace of the 10 and 100µM levetiracetam effect on 4-AP mediated 
glutamate release. (D) Quantification of the levetiracetam glutamate release averaged at 300-305 seconds. 
(n=1).   
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5.4. Discussion 

In this chapter, we determined to investigate the metabotropic activation of intracellular 

Ca2+ stores, in particular the smooth endoplasmic reticulum. Previous studies have 

shown a facilitatory effect on glutamate release following mGluR1/5 activation through 

the mechanisms activated by inositol phospholipid metabolism (Herrero et al., 

1992;Schwartz & Alford, 2000). The mechanism that has been proposed to be activated 

following the mGluR1/5 receptor stimulation is as follows; mGluR1/5 receptors couple 

to Gq/11 proteins which are known to stimulate PLC thus mGluR1/5 stimulation results 

in PLC activation. PLC activation metabolises PIP2 to form IP3 and DAG which 

subsequently activate signalling pathways that could potentially have facilitatory effects 

on release. The increased IP3 production stimulates IP3Rs to release Ca2+ from smooth 

endoplasmic reticulum activating Ca2+-dependent processes (Schematic 5-1). Increased 

DAG production stimulates PKC to target its downstream targets such as the facilitation 

of Ca2+ influx and regulate release (Wang & Sihra, 2004). 

 

DHPG has also been used in many studies as an agonist for the mGluR1/5 receptor 

though a study has suggested mGluR5 receptors have a higher affinity for DHPG than 

mGluR1 receptors (Musante et al., 2008). Nevertheless, in most studies DHPG has been 

used to stimulate mGluR1/5 receptors collectively so the first objective of this chapter 

was to show any effectiveness of mGluR1/5 stimulation on ERK1 and ERK2 

phosphorylation/activation. By conducting a dose-response curve of DHPG, we found 

that the effect was bimodal with ERK1 and ERK2 phosphorylation/activation peaking at 

1µM and proceeding to a decline at the higher concentration (100µM). Furthermore, a 

time course using DHPG (10µM) also showed ERK1 and EKR2 

phosphorylation/activation peaks after 1 minute and is sustained over 5 minutes after 

which there is towards a decline at the longer time points of stimulation. This suggests 
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that there is a degree of receptor desensitisation of mGluR1/5 or that there is a 

mechanism which dephosphorylates ERK1 and ERK2 after prolonged exposure to 

DHPG. Other studies have pointed to the desensitisation of the mGluR1/5 receptor we 

suspect this to be the cause for the decline in ERK1 and ERK2 

phosphorylation/activation (Herrero et al., 1994). 

 

The second objective of this chapter was to target the individual components of the 

IPCR mechanism to confirm their significance. We especially targeted the smooth 

endoplasmic reticulum rather than the other potential intracellular Ca2+ stores because 

the literature supports IPCR from these stores. In order to test if DHPG mediated 

stimulation is dependent of Ca2+ release from the smooth endoplasmic reticulum we 

first depleted the store by inhibiting the SERCA pump thus allowing the ‘leakage’ of 

Ca2+. We found that by depleting the smooth endoplasmic reticulum, DHPG mediated 

stimulation of ERK1 and ERK2 phosphorylation/activation was completely inhibited. 

This therefore indicates that mGluR1/5 stimulation is sensitive to thapsigargin and also 

the degree of the inhibition suggests it is unlikely that other potential Ca2+ stores are 

activated by mGluR1/5 stimulation. 

 

We next investigated the triggers for the release of Ca2+ from the smooth endoplasmic 

reticulum so we examined the role of PLC activation in ERK1 and ERK2 

phosphorylation/activation mediated by DHPG stimulation. According to the 

mechanism, mGluR1/5 stimulation should active PLC through Gq/11 protein thus the 

inhibition of PLC should result in inhibition of DHPG mediated stimulation. Indeed, 

inhibiting PLC activity we found that DHPG mediated stimulation of ERK1 and ERK2 

phosphorylation/activation was again completely abrogated implying that PLC 

activation is obligatory for the DHPG mediated stimulation of the ERK pathway.  
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To delineate and confirm the downstream pathway from PLC that is responsible for 

ERK1 and ERK2 phosphorylation/activation we again used the IP3R antagonist 2-APB, 

to inhibit the receptors resident on smooth endoplasmic reticulum. Inhibiting the IP3Rs 

we found that ERK1 and ERK2 phosphorylation/activation mediated by DHPG 

stimulation of mGluR1/5 was again completely abolished. The role of IP3Rs was 

confirmed using levetiracetam which has been described as an inhibitor of IP3Rs 

amongst its other targets (Cataldi et al., 2005;Nagarkatti et al., 2008). Known 

nonspecific actions associated with levetiracetam include the inhibition of RyR at lower 

concentrations (Nagarkatti et al., 2008). However CICR was not being induced under 

the condition used here thus any levetiracetam inhibition would likely be a reflection of 

IP3R inhibition. RyR could be activated by subsequent release of Ca2+ due to IP3R 

activation, but if these are already inhibited by levetiracetam then the subsequent release 

of Ca2+ would not occur and any inhibition of RyR by levetiracetam would be 

irrelevant. Using levetiracetam to inhibit the IP3R we again found complete abolition of 

ERK1 and ERK2 phosphorylation/activation mediated by DHPG stimulation.  

 

The combined data from the 2-APB and levetiracetam inhibitory effects on IP3Rs 

suggest that Ca2+ release from the smooth endoplasmic reticulum is essentially 

responsible for all of the ERK1 and ERK2 phosphorylation/activation mediated by 

mGluR1/5 stimulation. This further suggests that despite PKC being activated in 

parallel to the IPCR mechanism the former is not responsible for ERK1 and ERK2 

phosphorylation/activation. However, in future experiments we should conduct 

experiments with PKC inhibition to confirm or refute the role of the kinase in the 

DHPG mediated stimulation of ERK1 and ERK2 phosphorylation/activation. 
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The final objective in this chapter was to investigate the consequence of Ca2+-dependent 

mechanisms that are activated by the IPCR mechanism. We targeted the two Ca2+ signal 

transducers that include calmodulin (CaM) and CaMKII that have been implicated in 

the regulation of the ERK pathway in our laboratory. We found that the inhibition of 

CaM resulted in a complete abolition of DHPG mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation, distinct from the CaM inhibition of the basal activity 

of both ERK1 and ERK2. In addition, although CaMKII inhibition had a significant 

effect on the basal activity of ERK1 and ERK2 just like CaM, CaMKII inhibition 

abrogates ERK1 phosphorylation/activation by DHPG while the effect of ERK2 

phosphorylation/activation was reduced but not statistically significantly. This could be 

expected given that CaM can stimulate ERK1 and ERK2 phosphorylation/activation 

independently of CaMKII activation. 

 

CaM and CaMKII play a significant role in maintaining the basal activity of ERK1 and 

ERK2 and both can be further activated by Ca2+ released from the smooth endoplasmic 

reticulum. There are possible targets that calmodulin and CaMKII could activate which 

could result in the facilitatory effect on ERK1 and ERK2 phosphorylation/activation 

that have been described here but this requires further investigation. CaM could for 

example stimulate RasGRF or could stimulate H-Ras through PI3K so it would be of 

interest to observe if Ras is activated during DHPG mediated stimulation and whether 

this is sensitive to calmodulin inhibition. CaMKII could induce its stimulatory effects 

by inhibiting SynGAP but SynGAP has not been described in presynaptic nerve 

terminals to date. Furthermore, there is evidence which suggests that SynGAP 

colocalise with scaffold proteins and NMDA in the postsynaptic cell body (Chen et al., 

1998). Thus, an alternative mechanism(s) may need to be invoked to explain how 

CaMKII regulates the ERK pathway in presynaptic nerve terminals. Finally, given the 
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inhibitory effect of Src inhibition has had on 4-AP and ionomycin mediated stimulation 

of ERK1 and ERK2 phosphorylation/activation it would be interesting to see what 

effect Src inhibition has on DHPG mediated stimulation. 

 

The preliminary examination into the role of smooth endoplasmic reticulum during 4-

AP mediated glutamate release was also made. 4-AP mediated stimulation causes influx 

of Ca2+ through VDCCs which acts as the trigger for exocytosis of the neurotransmitter. 

The role of intracellular Ca2+ stores in presynaptic nerve terminals in the exocytotic 

machinery is unclear though there are studies that have found evidence of a facilitatory 

role (Davletov et al., 1998;Narita et al., 2000;Ashton et al., 2001). We hypothesised 

that the intracellular Ca2+ stores would also have a facilitatory effect on neurotransmitter 

release, based on two mechanisms: firstly, the excess Ca2+ released by the smooth 

endoplasmic reticulum supporting exocytosis further and secondly the activation of 

facilitatory mechanisms by ERK1 and ERK2 mediated phosphorylation/activation 

leading to SSVs mobilisation. Using DHPG we sought to facilitate 4-AP mediated 

glutamate release by stimulating IP3R. Additionally we also considered that 4-AP 

mediated glutamate release could be inhibited if IP3Rs are inhibited using levetiracetam. 

Indeed, DHPG incubation enhanced 4-AP glutamate release which could be further 

stimulatory under submaximal release potentials (Herrero et al., 1992). Levetiracetam 

had no effect on glutamate release but the lack of effect may indicate that the IPCR 

mediated by 4-AP does not significantly support release in the absence of mGluR1/5 

activation. As these are preliminary experiments further investigation needs to take 

place before we can draw conclusions.  

 

In conclusion, in this chapter we have shown that mGluR1/5 stimulation results in 

ERK1 and ERK2 phosphorylation in a transient manner. The mechanism for DHPG 
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mediated stimulation is the IPCR mechanism which undergoes the following cascade; 

mGluR1/5 stimulation activates PLC resulting in PIP2 metabolise to significantly 

increase IP3 concentration which stimulates IP3R. The subsequent release of Ca2+ 

through IP3Rs converges on CaM that independently and through CaMKII activation 

lead to the phosphorylation/activation of ERK1 and ERK2. The downstream activity of 

latter supports the facilitation of glutamate release as has been observed with 

neurotrophin induced activation of the ERK pathway (Jovanovic et al., 1996;Jovanovic 

et al., 2000). 
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Schematic 5-1: GPCRs coupled to Gqα are able to stimulate the efflux of Ca2+ from IP3R sensitive 
stores resulting in the ERK pathway activation 
DHPG stimulation of mGluR1/5 receptors results in PLC activation which metabolises PIP2 to form DAG 
and IP3. (i) Under repletion conditions the increase in [IP3] stimulates IP3Rs to efflux Ca2+ which is 
sufficient for CaM activation. CaM is able to stimulate the ERK pathway and CaMKII which can also 
activate the ERK pathway. (ii) Depletion of the intracellular Ca2+ stores through SERCA pump inhibition 
using thapsigargin decreases Ca2+ efflux from these stores leading to a decrease in the activation of the 
ERK pathway. 
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6. Inhibitory modulation of Ca2+-induced Ca2+ release 

Summary: The Ca2+-induced Ca2+ release (CICR) mechanism that 

phosphorylates/activates ERK1 and ERK2 is dependent on the influx of extracellular 

Ca2+ through voltage-dependent Ca2+ channels (VDCCs). There is considerable 

evidence that Ca2+ influx through VDCCs is negatively modulated by presynaptic 

GPCRs that include GABAB, group III mGluRs, 5-HT1A and A1 receptors. Thus by 

stimulating these presynaptic GPCRs we could show that reduced VDCC activity results 

in a diminished CICR mechanism activation; reported by reduced ERK1 and ERK2 

phosphorylation/activation. We show here that stimulation of GABAB, group III 

mGluRs, 5-HT1A and A1 receptors results in a reduction of ERK1 and ERK2 

phosphorylation/activation mediated by 4-AP stimulation. This is likely to be due to 

negative modulation of VDCC activity by these groups of GPCRs. Surprisingly, we also 

found that prior depletion of the smooth endoplasmic reticulum by inhibiting the 

SERCA pump resulted in removing the inhibitory effect of these GPCRs on VDCC 

activity. This perhaps suggests a link between the filling state of the smooth 

endoplasmic reticulum and the ability of these GPCRs to negatively modulate VDCCs. 

 

6.1. Introduction 

When the presynaptic plasma membrane is depolarised it results in the activation of 

VDCCs such as the Cav2.1 and Cav2.2 channels to affect the influx of Ca2+ into the 

nerve terminal. This results in the Ca2+-dependent exocytosis of neurotransmitter release 

into the synaptic cleft but can also activate other Ca2+-dependent processes including the 

CICR mechanism. By stimulating ryanodine receptors (RyRs) on the smooth 

endoplasmic reticulum this mechanism is able to increase the cytosolic Ca2+ 

concentration and thereby possibly enhance the Ca2+-dependent processes. Studies 

discussed earlier in this thesis have shown that pharmacological inhibition of RyR using 
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ryanodine can result in the inhibition of the CICR mechanism. However, 

physiologically, one way to modulate the CICR mechanism would be to control the 

influx of Ca2+ through VDCCs upon stimulation. Reduction of Ca2+ influx through 

VDCCs would reduce the stimulation of RyR thereby decrease Ca2+ release from the 

smooth endoplasmic reticulum.  

 

In order to decrease the Ca2+ influx during stimulation we considered the presynaptic 

GPCRs that couple to Gi/o proteins and thereby negatively modulate VDCCs. One of the 

GPCRs involved in this type of modulation is the GABAB receptor. GABAB receptors 

are stimulated by γ-aminobutyric acid (GABA) and are found on presynaptic nerve 

terminals (Perkinton & Sihra, 1998). Studies have shown that stimulation of GABAB 

receptors using baclofen results in the inhibition of glutamate release because they are 

able to inhibit both Cav2.1 and Cav2.2 channels that are involved in exocytotic release 

(Marchetti et al., 1991;Wang et al., 2004b). Furthermore, a study has shown that 

different GABAB receptor subtypes could be involved to affect the various VDCCs to 

different extents (Guyon & Leresche, 1995). Similarly, after GPCRs that can negatively 

modulate VDCCs include the group III mGluRs (comprising mGluR4, mGluR6, 

mGluR7 and mGluR8 subtypes), 5-HT1A and A1 receptors all of which are coupled to 

Gi/o proteins. In addition, they are all found on the presynaptic nerve terminals where 

they negatively modulate neurotransmitter release (Wang et al., 2002;Wang & Sihra, 

2003). 

 

The mechanism by which GABAB, group III mGluRs, 5-HT1A and A1 receptors are able 

to negatively modulate the VDCCs is thought to be through membrane delimited 

regulation of the α subunit of the VDCCs by βγ subunit of the G-protein (Kajikawa et 
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al., 2001). This is based on evidence showing that prevention of the activation of the G 

proteins results in the occlusion of their inhibitory effects (Takahashi et al., 1998).  

 

The objective of this chapter was to determine whether negative modulation of VDCC 

activity through GABAergic, group III mGluRs, 5-HT and adenosine receptor 

stimulation inhibits Ca2+-dependent processes such as ERK1 and ERK2 

phosphorylation/activation. Further we asked whether the activation of these GPCRs 

could also modulate VDCCs following conditions through depletion of the smooth 

endoplasmic reticulum in which only the external Ca2+ influx was able to 

phosphorylate/activate ERK1 and ERK2. 
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6.2. Method 

6.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

6.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through Immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

6.2.3. Intracellular Ca2+ store repletion protocol 

Experiments that followed the intracellular Ca2+ store protocol are described in section 

2.3.2. Synaptosomes were resuspended using the HBM buffer containing BSA 

(1mg/ml) and Ca2+ (1mM) with thapsigargin (1µM) if necessary for the experiment and 

incubated at 37ºC. Synaptosomes were then spun down after 50 minutes of incubation 

with the supernatant removed and the pellet was put on ice. At 67 minute time point 

from the start of the incubation synaptosomes are resuspended the second time with 

HBM containing BSA (1mg/ml) and Ca2+ (1mM) and incubated at 37ºC. The drug of 

interest adenosine (1µM), baclofen (100µM), 8-OH-DPAT (10µM) or L-AP4 (100µM) 

was added to the suspension after 2 minutes. The synaptosomes were then stimulated 

with 4-AP (1mM) at 72 minutes from the start of the incubation for 5 minutes The 

experiment was then terminated using the STOP solution. 

 

6.2.4. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 

significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 
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stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. 

 

6.2.5. Reagents 

A stock solution of 4-AP (1mM) was made in water and working solution was further 

diluted using HBM. 

 

A stock solution of thapsigargin (1µM) was made in DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of CHA (1µM) was made in water and working solution was further 

diluted using HBM. 

 

A stock solution of baclofen (100µM) was made in DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of 8-OH-DPAT (10µM) was made in water and working solution was 

further diluted using HBM. 

 

A stock solution of L-AP4 (1µM) was made in water and working solution was further 

diluted using HBM.  
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6.3. Results 

We first investigated the involvement of GABAB receptors in modulating nerve 

terminal excitability and Ca2+ influx and thereby affect ERK1 and ERK2 

phosphorylation/activation mediated by 4-AP stimulation.  Using baclofen (100µM) to 

stimulate GABAB receptors in the presence of Ca2+ (1mM), we assessed its effect on 4-

AP (1mM) mediated stimulation (Figure 6-1A&B). In the absence of GABAB receptor 

stimulation, we found that 4-AP mediated stimulation resulted in a significant increase 

in ERK1 (157.5 + 6.3%) and ERK2 (156.2 + 4.9%) phosphorylation/activation 

compared to the 37ºC control (Figure 6-1C). In the presence of baclofen synaptosomes 

stimulated with 4-AP showed a reduced but significant increase in ERK1 (137.0 + 

6.3%) and ERK2 (131.4 + 5.2%) phosphorylation/activation compared to the 37ºC 

control. The basal activity of ERK1 (104.3 + 3.3%) and ERK2 (95.0 + 2.4%) compared 

to the 37ºC control was unaffected by baclofen treatment. The net change analysis 

revealed a significant inhibition of 4-AP mediated stimulation of ERK1 and ERK2 

phosphorylation/activation by GABAB receptor activation (Figure 6-1D).  

 

We next investigated whether the inhibitory effect of GABAB receptor activation was 

affected by the Ca2+ depletion of the depleted smooth endoplasmic reticulum Ca2+ 

stores. We used a protocol in which the synaptosomes were incubated with thapsigargin 

(1µM) in the presence of Ca2+ (1mM) during the preincubation stage, after which the 

synaptosomes were incubated with or without baclofen (100µM) in the presence of Ca2+ 

(Figure 6-2A&B). 4-AP mediated stimulation with thapsigargin incubation, as expected, 

caused a significant increase in ERK1 (138.2 + 3.6%) and ERK2 (137.5 + 9.7%) 

phosphorylation/activation compared to the 37ºC control in the absence of baclofen 

treatment (Figure 6-2C). This 4-AP mediated stimulation in the presence of thapsigargin 

response was still reproducible in the presence of baclofen as
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A) Con B 4-AP 4-AP+B B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
Baclofen - + - + - + 

4-AP - - + + + + 
 
Figure 6-1: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of baclofen 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and B = baclofen shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension in the presence of Ca2+ (1mM) was used to resuspended synaptosomes and 
incubated for 50 minutes. After which they were spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and baclofen (100µM) was added at 69 
minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. (C) 
Basal effect of baclofen during the stimulation stage and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of baclofen. (D) 
The net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3). 
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ERK1 (148.2 + 9.2%) and ERK2 (156.0 + 11.5%) phosphorylation/activation was 

significantly increased. The preincubation of thapsigargin and baclofen stimulation had 

no significant effect on the basal activity of ERK1 (106.1 + 4.5%) and ERK2 (102.1 + 

4.7%) compared to the 37ºC control. From the net change of ERK1 and ERK2 

phosphorylation/activation we found that, surprisingly there is no inhibitory effect of 

GABAB stimulation under a condition where Ca2+ from smooth endoplasmic reticulum 

is presumably depleted (Figure 6-2D). 

 

Other presynaptic receptors that could negatively modulate VDCC activity include 

those constituting group III mGluRs. We hypothesised that if group III mGluRs 

stimulation results in a reduction in ERK1 and ERK2 phosphorylation/activation it 

could indicate reduction of VDCC activity. In the presence of Ca2+ (1mM) we used L-

AP4 (100µM) an agonist of group III mGluRs to inhibit VDCCs during 4-AP mediated 

stimulation (Figure 6-3A&B). As expected we found that in the absence of L-AP4 

during the stimulation stage there was a significant increase in ERK1 (162.9 + 9.7%) 

and ERK2 (155.2 + 8.5%) phosphorylation/activation compared to the 37ºC control 

mediated by 4-AP stimulation (Figure 6-3C). In the presence of L-AP4, 4-AP mediated 

stimulation still resulted in a significant increase in ERK1 (148.4 + 11.9%) and ERK2 

(145.4 + 8.8%) phosphorylation/activation when compared to the 37ºC control. The 

incubation of L-AP4 had no significant effect on the basal activity of ERK1 (119.2 + 

5.4%) and ERK2 (112.7 + 12.1%) compared to the 37ºC control. The net change 

analysis revealed that there is a significant decrease in ERK1 and ERK2 

phosphorylation/activation when the synaptosomes were incubated with L-AP4 

mediated by 4-AP stimulation (Figure 6-3D). 

 

Again we next looked at whether the L-AP4 was effected by depletion of Ca2+ from the 
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A) Con BT 4-AP 4-AP+BT B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
Baclofen - + - + - + 

4-AP - - + + + + 
 
Figure 6-2: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation prior 
incubation with thapsigargin in the presence and absence of baclofen 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, BT = baclofen and thapsigargin shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM suspension with or without thapsigargin (1µM) in the presence of Ca2+ 
(1mM) incubated for 50 minutes. After which they were spun down with the supernatant removed. 
During the stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and baclofen (100µM) was 
added at 69 minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of 
incubation. (C) Basal effect of thapsigargin and baclofen during the preincubation and stimulation stage, 
respectively and 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to 
the 37ºC control with prior thapsigargin incubation during the preincubation stage in the presence and 
absence of baclofen. Thapsi = thapsigargin. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4).  
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A) Con L 4-AP 4-AP+L B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
L-AP4 - + - + - + 
4-AP - - + + + + 

 
Figure 6-3: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of L-AP4 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and L = L-AP4 shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension in the presence of Ca2+ (1mM) was used to resuspended synaptosomes and 
incubated for 50 minutes. After which they were spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and L-AP4 (100µM) was added at 69 
minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. (C) 
Basal effect of L-AP4 during the stimulation stage and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of L-AP4. (D) The 
net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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smooth endoplasmic reticulum. Thus thapsigargin (1µM) in the presence Ca2+ (1mM) 

was added during the preincubation stage and synaptosomes in the presence and 

absence of L-AP4 (100µM) were stimulated with 4-AP (1mM) during the stimulation 

stage (Figure 6-4A&B). Preincubation with thapsigargin gives reduced responses but 4-

AP mediated stimulation was still able to significantly increase ERK1 (139.9 + 8.0%) 

and ERK2 (134.2 + 9.7%) phosphorylation/activation compared to the 37ºC control in 

the absence of L-AP4 stimulation (Figure 6-4C). Nevertheless when L-AP4 was used 

for stimulating group III mGluRs we found that there was significant increase in ERK1 

(141.9 + 5.6%) and ERK2 (150.3 + 6.6%) phosphorylation/activation compared to the 

37ºC control by 4-AP mediated stimulation. The combination of thapsigargin 

preincubation and L-AP4 stimulation of group III mGluRs had no effect on the basal 

activity of ERK1 (110.1 + 8.1%) and ERK2 (101.5 + 5.7%) compared to the 37ºC 

control. We compared the net change of ERK1 and ERK2 phosphorylation/activation 

between 4-AP stimulation in the presence and absence of L-AP4 with prior thapsigargin 

incubation. We found that there was no significant difference between the two sets of 

data. Thus it would appear that thapsigargin incubation during the preincubation has 

occluded the inhibitory effect of L-AP4 (Figure 6-4D). 

 

We continued the investigation into GPCR that negatively modulate VDCCs by 

targeting the 5-HT1A receptors. We used the agonist 8-OH DPAT to stimulate the 5-

HT1A receptors and to see if the reduction in VDCC activity correlated with a reduction 

in ERK1 and ERK2 phosphorylation/activation. The protocol was similar to one used 

previously in which after the repletion of intracellular Ca2+ stores synaptosomes were 

stimulated with 4-AP (1mM) in the presence and absence of 8-OH DPAT (10µM) 

during the stimulation stage (Figure 6-5A&B). 4-AP mediated stimulation caused a 

significant increase in ERK1 (171.8 + 5.6%) and ERK2 (162.1 + 7.0%) 
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A) Con LT 4-AP 4-AP+LT B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
L-AP4 - + - + - + 
4-AP - - + + + + 

 
Figure 6-4: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation prior 
incubation with thapsigargin in the presence and absence of L-AP4 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, LT = L-AP4 and thapsigargin shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM suspension with or without thapsigargin (1µM) in the presence of Ca2+ 
(1mM) was used to resuspended synaptosomes and incubated for 50 minutes. After which they were spun 
down with the supernatant removed. During the stimulation stage synaptosomes were resuspended in Ca2+ 
(1mM) and L-AP4 (100µM) was added at 69 minutes followed by 4-AP (1mM) addition; the experiment 
ended after 77 minutes of incubation. (C) Basal effect of thapsigargin and L-AP4 during the 
preincubation and stimulation stage, respectively and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control with prior thapsigargin incubation during the 
preincubation stage in the presence and absence of L-AP4. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4).  
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phosphorylation/activation compared to the 37ºC control in the absence of 8-OH DPAT 

(Figure 6-5C). Consistent with previous results with inhibitory GPCR agonists the 

presence of 8-OH DPAT also resulted in a reduced increase in ERK1 (137.7 + 7.2%) 

and ERK2 (124.3 + 4.8%) phosphorylation/activation compared to 37ºC control. There 

was no significant effect on the basal activity of ERK1 (102.8 + 4.9%) and ERK2 (96.4 

+ 4.9%) compared to 37ºC control with 8-OH DPAT incubation. Considering the net 

change in ERK1 and ERK2 phosphorylation/activation we found that 4-AP mediated 

stimulation was significantly inhibited in the presence of 8-OH DPAT (Figure 6-5D). 

 

To assess if the 8-OH DPAT inhibitory effect on VDCCs was also abrogated by the 

depletion of smooth endoplasmic reticulum as seen before, we conducted the 

experiment under the same protocol. Synaptosomes were incubated with thapsigargin 

(1µM) in the presence of Ca2+ (1mM) and stimulated using 4-AP (1mM) with or 

without 8-OH DPAT (10µM) during the stimulation stage (Figure 6-6A&B). We found 

that with prior incubation with thapsigargin and in the absence of 8-OH DPAT there 

was a significant increase in ERK1 (139.9 + 8.0%) and ERK2 (134.2 + 9.7%) 

phosphorylation/activation compared to the 37ºC control with 4-AP mediated 

stimulation (Figure 6-6C). 4-AP mediated stimulation of ERK1 (135.5 + 10.1%) and 

ERK2 (156.3 + 7.6%) phosphorylation/activation compared to the 37ºC control showed 

a diminished increase in the presence of 8-OH DPAT. 8-OH DPAT incubation during 

the stimulation stage had no significant effect on the basal activity of ERK1 (106.3 + 

4.0%) and ERK2 (104.4 + 5.0%) compared to the 37ºC control. The net change of 

ERK1 and ERK2 phosphorylation/activation again shows that with prior thapsigargin 

incubation 8-OH DPAT mediated inhibition does not affect 4-AP mediated stimulation 

of ERK1 and ERK2 phosphorylation/activation (Figure 6-6D). 
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A) Con D 4-AP 4-AP+D B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
DPAT - + - + - + 
4-AP - - + + + + 

 
Figure 6-5: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of 8-OH DPAT 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and D = 8-OH DPAT shows the condition of each lane. (B) Timeline of the experiment 
showing that HBM suspension in the presence of Ca2+ (1mM) was used to resuspended synaptosomes and 
incubated for 50 minutes. After which they were spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and 8-OH DPAT (10µM) was added at 
69 minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. (C) 
Basal effect of 8-OH DPAT during the stimulation stage and 4-AP mediated stimulation of ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control in the presence and absence of 8-OH 
DPAT. DPAT = 8-OH DPAT (D) The net change of ERK1 and ERK2 phosphorylation/activation which 
is calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=4). 
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A) Con DT 4-AP 4-AP+DT B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 
DPAT - + - + - + 
4-AP - - + + + + 

 
Figure 6-6: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation prior 
incubation with thapsigargin in the presence and absence of 8-0H DPAT 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, DT = 8-OH DPAT and thapsigargin shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM suspension with or without thapsigargin (1µM) in the presence of Ca2+ 
(1mM) for 50 minutes. They were spun down with the supernatant removed. During the stimulation stage 
synaptosomes were resuspended in Ca2+ (1mM) and 8-OH DPAT (10µM) was added at 69 minutes 
followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. (C) Basal effect 
of thapsigargin and 8-OH DPAT during the preincubation and stimulation stage, respectively and 4-AP 
mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control with 
prior thapsigargin incubation during the preincubation stage in the presence and absence of 8-OH DPAT. 
Thapsi = thapsigargin. DPAT = 8-OH DPAT. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4).  
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The last of receptor type that we tested for their ability to negatively modulate VDCCs 

was the adenosine A1 receptor. To look at the involvement of A1 receptors 

aforementioned we used CHA, a selective agonist for A1 receptors. Using the same 

protocol synaptosomes were incubated with Ca2+ (1mM) and in the presence and 

absence of CHA (1µM) and then stimulated with 4-AP (1mM) during the stimulation 

stage (Figure 6-7A&B). We found that 4-AP mediated stimulation caused a significant 

increase in ERK1 (151.7 + 6.0%) and ERK2 (141.9 + 8.8%) phosphorylation/activation 

compared to the 37ºC control in the absence of CHA (Figure 6-7C). ERK1 (136.2 + 

4.6%) and ERK2 (124.7 + 7.1%) phosphorylation/activation compared to the 37ºC 

control showed a reduced increase after 4-AP mediated stimulation in the presence of 

CHA. CHA stimulation had no significant effect on the basal activity of ERK1 (107.0 + 

2.6%) and ERK2 (105.9 + 0.7%) compared to the 37ºC control. The net change in 

ERK1 and ERK2 phosphorylation/activation confirmed that there is a significant 

inhibition of 4-AP mediated stimulation in the presence of CHA (Figure 6-7D). 

 

Finally, we investigated if A1 receptor mediated negative modulation of VDCCs was 

also mitigated by depleted smooth endoplasmic reticulum. Thapsigargin (1µM) was 

incubated to deplete the smooth endoplasmic reticulum in the presence of Ca2+ (1mM) 

followed by 4-AP (1mM) mediated stimulation in the presence and absence of CHA 

(1µM) during the stimulation stage (Figure 6-8A&B). Prior incubation with 

thapsigargin but absence of CHA resulted in a significant increase of ERK1 (138.5 + 

4.7%) and ERK2 (137.5 + 9.7%) phosphorylation/activation compared to the 37ºC 

control during 4-AP mediated stimulation (Figure 6-8C). In the presence of CHA there 

was also a significant but reduced increase in ERK1 (135.6 + 5.0%) and ERK2 (135.0 + 

6.7%) phosphorylation/activation compared to the 37º control in incubations with 

thapsigargin and stimulated. Incubation with thapsigargin and subsequent incubation 
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A) Con C 4-AP 4-AP+C B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 

CHA - + - + - + 
4-AP - - + + + + 

 
Figure 6-7: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of CHA 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and C = CHA shows the condition of each lane. (B) Timeline of the experiment showing 
that HBM suspension in the presence of Ca2+ (1mM) was used to resuspended synaptosomes and 
incubated for 50 minutes. After which they were spun down with the supernatant removed. During the 
stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and CHA (1µM) was added at 69 
minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. (C) 
Basal effect of CHA during the stimulation stage and 4-AP mediated stimulation of ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control in the presence and absence of CHA. (D) The 
net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=4). 
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A) Con CT 4-AP 4-AP+CT B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + + + + + + 
Thapsi - + + + + + 

 Stimulation Stimulation 
Calcium + + + + + + 

CHA - + - + - + 
4-AP - - + + + + 

 
Figure 6-8: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation prior 
incubation with thapsigargin in the presence and absence of CHA 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, CT = CHA and thapsigargin shows the condition of each lane. (B) Timeline of the 
experiment showing that HBM suspension with or without thapsigargin (1µM) in the presence of Ca2+ 
(1mM) and incubated for 50 minutes. After which they were spun down with the supernatant removed. 
During the stimulation stage synaptosomes were resuspended in Ca2+ (1mM) and CHA (1µM) was added 
at 69 minutes followed by 4-AP (1mM) addition; the experiment ended after 77 minutes of incubation. 
(C) Basal effect of thapsigargin and CHA during the preincubation and stimulation stage, respectively and 
4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control 
with prior thapsigargin incubation during the preincubation stage in the presence and absence of CHA. 
Thapsi = thapsigargin (D) The net change of ERK1 and ERK2 phosphorylation/activation which is 
calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=4).  
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with CHA had no significant effect on the basal activity of ERK1 (102.2 + 4.3%) and 

ERK2 (97.1 + 4.2%) compared to the 37ºC control. Consistently with the previous 

observations the net change in ERK1 and ERK2 phosphorylation/activation showed that 

there was no significant difference with 4-AP mediation stimulation during CHA 

incubation (Figure 6-8D). Thus, interestingly, when taking into account all four 

inhibitory receptors treated, we found that there was a consistent effect on ERK1 and 

ERK2 phosphorylation/activation in both conditions. All the receptors reduced 4-AP 

mediated stimulation of ERK1 and ERK2 responses presumably through VDCC 

inhibition but were all unable to modulate Ca2+ influx when the smooth endoplasmic 

reticulum Ca2+ stores were depleted.      
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6.4. Discussion 

In this chapter we wanted to negatively modulate the CICR mechanism by reducing the 

influx of Ca2+ through VDCCs during 4-AP mediated stimulation. We have 

hypothesised from the results described in Figure 4-1 that there are two sources of Ca2+ 

that can phosphorylate/activate ERK1 and ERK2. The first source is external Ca2+ entry 

through VDCCs and the second source are Ca2+ stores in the smooth endoplasmic 

reticulum. However, the smooth endoplasmic reticulum behaviour is dependent on the 

concentration of Ca2+ inside the lumen of the store. Repletion of the smooth 

endoplasmic reticulum causes the efflux of Ca2+ during 4-AP mediated stimulation. 

Under conditions in which the smooth endoplasmic reticulum is depleted of Ca2+ it may 

act as sequester of Ca2+ thereby reducing the cytosolic concentration and downstream 

phosphorylation/activation of ERK1 and ERK2.  

 

In order to negatively modulate the VDCCs we stimulated presynaptic GPCRs that 

couple to Gi/o proteins, these including GABAB, group III mGluRs, 5-HT1A and A1 

receptors. The first objective of the chapter was to investigate the negative modulation 

of VDCCs by presynaptic GPCRs during intrasynaptosomal Ca2+ repletion conditions. 

We found that stimulation of GABAB, group III mGluRs, 5-HT1A and A1 receptors 

resulted in an inhibition of ERK1 and ERK2 phosphorylation/activation. It is likely that 

this reduction is due to the inhibition of the VDCCs but could also result from a 

decreased CICR from the smooth endoplasmic reticulum compounding the inhibition of 

ERK1 and ERK2 phosphorylation/activation (Schematic 6-1). 

 

It is likely that the mechanism for the inhibition of VDCCs is that by the GPCRs is 

through membrane delimited modulation mediated by the βγ subunit of Gi/o proteins. 

Interestingly, the inhibitory effects of all the receptors were very similar in that they 
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inhibited the ERK1 and ERK2 phosphorylation/activation to similar extents. Thus, it 

was not the case that one completely inhibited ERK1 and ERK2 

phosphorylation/activation while another only partially inhibited the response. This 

could perhaps confirm the similarity of these receptors in acting through a similar 

mechanism. 

 

The final objective of this chapter was to investigate negative modulation of VDCC by 

GPCRs after depletion of smooth endoplasmic reticulum during preincubation. This 

would not only eliminate any potential CICR but should also cause the store to 

sequester Ca2+ from the cytosol. Thus we hypothesised that since there is no Ca2+ 

release from the smooth endoplasmic reticulum then only the external Ca2+ influx would 

stimulate the Ca2+-dependent mechanisms of ERK1 and ERK2 

phosphorylation/activation. Therefore, stimulation of the inhibitory GPCRs should then 

produce an inhibition of Ca2+-influx mediated by 4-AP and thereby reflect this in 

reduced ERK1 and ERK2 phosphorylation/activation. However, unexpectedly we found 

that GABAB, group III mGluRs, 5-HT1A and A1 receptor stimulation did not 

significantly modulate VDCC activity following depletion of intrasynaptosomal Ca2+ 

store. This suggests that the depletion of the smooth endoplasmic reticulum through an 

unknown mechanism is able to occlude or uncouple the inhibitory effects of GABAB, 

group III mGluRs, 5-HT1A and A1 receptors that were observed in Ca2+ store repletion 

conditions. 

 

Previous studies have shown that GABAB inhibition of exocytosis through reduction of 

Ca2+ influx through VDCC can be reversed by the stimulation of protein kinase C 

(PKC) in nerve terminals (Taniyama et al., 1992;Perkinton & Sihra, 1998). It is likely 

that the depletion of the smooth endoplasmic reticulum Ca2+ stores during the 
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preincubation stage perhaps initially results in an increase in cytosolic Ca2+ 

concentration. Over the time period of the preincubation stage in which Ca2+ 

concentration is high it could possibly result in the stimulation of phospholipase C 

(PLC) that could metabolise PIP2 to form IP3 and diacylglycerol (DAG). The latter 

could then be sufficient for PKC stimulation and thus uncouple the GPCR inhibitory 

activity on VDCCs during the stimulation stage. The result in Figure 4-3 supports this 

mechanism as it was shown that ERK1 and ERK2 phosphorylation/activation mediated 

by 4-AP stimulation was enhanced by thapsigargin incubation during preincubation and 

stimulation. However, to better support this mechanism we could directly inhibit PKC 

under depleted smooth endoplasmic reticulum condition and observe if the GPCR 

stimulation is now able to once again inhibit ERK1 and ERK2 

phosphorylation/activation. If the GPCR are able to inhibit ERK1 and ERK2 

phosphorylation/activation under depleted smooth endoplasmic reticulum conditions 

then this supports a role for PKC as indicated above. Furthermore, we should conduct a 

time course of thapsigargin incubation over the time period of the preincubation stage 

and observe if the basal activity of ERK1 and ERK2 is enhanced which might again 

suggest high Ca2+ concentrations during the thapsigargin incubation. 

 

A more remote but tenable possibility is that smooth endoplasmic reticulum is able to 

occlude/uncouple GABAB, group III mGluRs, 5-HT1A and A1 receptor activity by an 

unknown secondary messenger. That is mobilised as a consequence of Ca2+ store 

depletion and would be akin to the paradigm thought to consist when depletion of Ca2+ 

stores operate so called store operated Ca2+-channels. In the current context however 

such a mechanism remains a matter of speculation. 
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In conclusion, we found that stimulation of GABAB, group III mGluRs, 5-HT1A and A1 

receptors under smooth endoplasmic reticulum repletion results in the inhibition of 

ERK1 and ERK2 phosphorylation/activation mediated by 4-AP stimulation. The 

mechanism for this inhibition is most likely through negative modulation of VDCC via 

the membrane delimited pathway. Curiously, under conditions in which the smooth 

endoplasmic reticulum is depleted prior to stimulation with 4-AP, the inhibitory effect 

of GABAB, 5-HT1A, group III mGluRs and A1 receptors on VDCCs is abrogated. 

Although the mechanism underlying this effect are unclear the implication is that Ca2+ 

loss of intrasynaptosomal stores indicating antagonises the negative modulation of 

external Ca2+-influx. 
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Schematic 6-1: Inhibitory GPCRs negative modulation of VDCCs is abrogated by prior depletion 
of intracellular Ca2+ stores 
4-AP mediated depolarisation of the plasma membrane leads to the influx of Ca2+ through VDCC. Influx 
of Ca2+ can cause further efflux of Ca2+ from intracellular Ca2+ stores and both sources of stimulate Ca2+-
dependent mechanisms that activate the ERK pathway. (i) Stimulation of inhibitory GPCRs can result in 
the inhibition of VDCC during 4-AP mediated depolarisation resulting in the reduction of Ca2+ influx and 
subsequent reduction in ERK pathway activation. (ii) Prior depletion of intracellular Ca2+ store through 
SERCA pump inhibition occludes this inhibition perhaps through PKC activation. 
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7. Mitochondria and acidic stores 

Summary: We have investigated the utility of mitochondria and acidic stores as storage 

compartments of intrasynaptosomal Ca2+. Using the ERK1 and ERK2 

phosphorylation/activation as a sensor for increases in intrasynaptosomal Ca2+ 

concentration, we observed mitochondria and acidic stores contribution to Ca2+-

dependent mechanisms. We found that disruption of mitochondrial function with FCCP 

and oligomycin caused a transient increase in ERK1 and ERK2 

phosphorylation/activation. In addition, inhibition of the SERCA pump enhances the 

transient effect on ERK1 and ERK2 phosphorylation/activation indicating that the Ca2+ 

released from the mitochondria in this condition is being sequestered by the smooth 

endoplasmic reticulum. Furthermore, we also sought to investigate the role of 

mitochondria during plasma membrane depolarisation mediated by 4-AP.  Notably, the 

disruption of mitochondrial membrane potential resulted in inhibition of ERK1 and 

ERK2 phosphorylation/activation when the synaptosomes were stimulated with 4-AP. 

Finally inhibiting Ca2+ accumulation into acidic stores resulted in the decrease of 

ERK1 and ERK2 phosphorylation/activation indicating their involvement in 

maintenance of some component of the intrasynaptosomal Ca2+ store. Overall, we found 

that release of Ca2+ from mitochondria in presynaptic nerve terminals results in ERK1 

and ERK2 phosphorylation/activation. In addition, 4-AP mediated stimulation might be 

sufficient in triggering this release through an unknown mechanism.  

 

7.1. Introduction 

We examined the involvement of intracellular Ca2+ stores other than the smooth 

endoplasmic reticulum in 4-AP and ionomycin mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation. The two intracellular Ca2+ stores that have been 

implicated in previous studies include mitochondria and acidic stores.  
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Mitochondria are found in presynaptic nerve terminals and are described as structures 

that include the outer mitochondrial membrane, the intermembrane space, the inner 

mitochondrial membrane, the crista space, and the matrix. There are two important 

functions that have been identified from studies that have looked at mitochondria. 

Firstly they are essential in generating mostly all of the ATP that is used in the cell by 

oxidative phosphorylation. Secondly, there is considerable evidence that mitochondria 

also have an important function in Ca2+ homeostasis (Malli & Graier, 2010).  

 

The Ca2+ storage function of mitochondria is thought to occur mainly through the MCU 

and non-MCU that are found in the inner mitochondrial membrane and are also referred 

to as mCa1 and mCa2, respectively. Both mCa1 and mCa2 are highly selective for Ca2+ 

over Na+ or K+ and are inwardly rectifying though the mCa2 current is different and has 

smaller amplitude compared to the mCa1 (Michels et al., 2009). The mCa1 and mCa2 

are activated by significant increases in Ca2+ concentrations which are higher than those 

achieved under normal physiological stimulation conditions. Rather, the mCa1 and 

mCa2 channels are likely activated by the Ca2+ microdomains created at the mouth of 

IP3Rs found on the smooth endoplasmic reticulum (Rizzuto et al., 1993) (Nassar & 

Simpson, 2000). The ability of mCa1 and mCa2 to take up Ca2+ can be inhibited by the 

acidification of the inner membrane which can be achieved through a high exposure to 

cytosolic Ca2+ or through pharmacological means using protonophore such as FCCP 

(Moreau & Parekh, 2008). 

 

Efflux of Ca2+ from mitochondria occurs through Na+-dependent and Na+-independent 

mechanisms and is less well characterised. The Na+-dependent mechanism involves the 

Na+/Ca2+ exchanger which are found on the inner mitochondrial membrane and uptakes 

three Na+ into the lumen in exchange for efflux of one Ca2+ from the mitochondrial 
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lumen (Palty et al., 2010). Interestingly, in conditions such as low cytosolic Ca2+ 

concentrations the Na+/Ca2+ exchanger can uptake Ca2+. The Na+-independent 

mechanism is thought to involve the H+/Ca2+ exchanger which are also found on the 

inner mitochondrial membrane. The H+/Ca2+ exchanger are thought to exchange one H+ 

for one Ca2+ in conditions in which Ca2+ concentration is high in the lumen of the 

mitochondria (Jiang et al., 2009;Santo-Domingo & Demaurex, 2010). In addition, Ca2+ 

efflux for both exchangers can be sequestered by the smooth endoplasmic reticulum 

through the SERCA pump activity. This shows the connectivity between two putative 

intracellular Ca2+ stores.  

 

The other type of potential Ca2+ store are the acidic stores which is based on the role of 

nicotinic acid adenine dinucleotide phosphate (NAADP) which is thought to be 

involved in intracellular Ca2+ signalling. NAADP stimulates NAADP receptors found 

on acidic stores such as lysosomes and other organelles (Zong et al., 2009). There are 

two pathways by which Ca2+ enters the lumen of the acidic stores. Firstly the Ca2+-

ATPase pump uses ATP to actively accumulate Ca2+ into the store. Secondly, the large 

concentration gradient of H+ ions can be used by a Ca2+/H+ exchanger to efflux H+ ions 

in exchange for Ca2+ into the lumen of the acidic store. The Ca2+ released from acidic 

stores could then potentially act on ryanodine receptors (RyRs) to promote further Ca2+ 

release. It may also be sequestered by the smooth endoplasmic reticulum through the 

SERCA pump thereby increasing the concentration of Ca2+ in the lumen of that store 

such that subsequent stimulation of smooth endoplasmic reticulum could produce larger 

than expected responses (Churchill & Galione, 2001). 

 

The objective of this chapter is to identify the effect of release of mitochondrial Ca2+ 

release on ERK1 and ERK2 phosphorylation/activation. We sought to investigate if the 
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mitochondrial Ca2+ has a functional role during 4-AP mediated stimulation and identify 

the contribution of Ca2+ from acidic stores into the Ca2+-dependent mechanism of the 

ERK1 and ERK2 phosphorylation/stimulation.   
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7.2. Method 

7.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

7.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through Immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

7.2.3. Intracellular Ca2+ store repletion protocol 

Experiments that followed the intracellular Ca2+ store protocol are described in section 

2.3.2. Synaptosomes were resuspended in HBM buffer containing BSA (1mg/ml) with 

thapsigargin (1µM) if necessary for the experiment and the suspension was incubated at 

37ºC. After 3 minutes Ca2+ (1mM) or EGTA (100µM) was to the suspension. 

Synaptosomes were then spun down at 50 minutes and with the supernatant removed 

the synaptosomes were put on ice. At 67 minutes from the start of the incubation the 

synaptosomes were resuspended with HBM buffer containing BSA (1mg/ml) and Ca2+ 

(1mM) with thapsigargin (1µM) if it is necessary for the experiment. After 70 minutes 

bafilomycin A1 (1µM), 4-AP (1mM) and/or FCCP (1µM) & oligomycin (1µg/ml) is 

added to the suspension at concentrations and at the times stated. The experiment was 

terminated using a STOP solution. 

 

7.2.4. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 

significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 
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stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. 

 

7.2.5. Reagents 

A stock solution of 4-AP (1mM) was made in water and working solution was further 

diluted using HBM. 

 

A stock solution of FCCP (1µM) & oligomycin (1µg/ml) was made in DMSO and 

water, respectively and working solution was further diluted using HBM. 

 

A stock solution of EGTA (100µM) was obtained with water and working solution was 

further diluted using HBM.  

 

A stock solution of Bafilomycin A1 (1µM) was obtained with DMSO and working 

solution was further diluted using HBM. 

 

A stock solution of thapsigargin (1µM) was made in DMSO and working solution was 

further diluted using HBM.  
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7.3. Results 

Ca2+-stimulated intrasynaptosomal Ca2+ stores evidently support ERK1 and ERK2 

phosphorylation/activation. Other than smooth endoplasmic reticulum, there are other 

Ca2+ stores that may contribute to presynaptic signalling. The first ‘alternative’ Ca2+ 

stores that could be involved in Ca2+ release are the mitochondria. There is significant 

evidence to suggest that Ca2+ can accumulate in the lumen of mitochondria driven by 

oxidative phosphorylation. Combination use of a protonophore (FCCP) and an ATP 

synthase inhibitor (oligomycin) can be employed to pharmacologically depolarise 

mitochondria and thereby release mitochondrial Ca2+. Furthermore, the use of FCCP 

and oligomycin will subsequently prevent mitochondria from accumulating Ca2+.  

 

To observe the effect of FCCP and oligomycin incubation on ERK1 and ERK2 basal 

activity we first conducted a time course. Synaptosomes were incubated in the presence 

of Ca2+ (1mM) during the preincubation stage to ensure the repletion of intracellular 

Ca2+ stores and incubated with FCCP (1µM) & oligomycin (1µg/ml) for 1, 2, 5 and 10 

minutes (Figure 7-1A&B). We found that there was a significant increase in ERK1 

(121.2 + 3.8%) and ERK2 (122.8 + 4.6%) phosphorylation/activation compared to the 

37ºC control after 1 minute FCCP and oligomycin mediated stimulation (Figure 7-1C). 

ERK1 (116.1 + 3.9%) phosphorylation/activation was also significantly increased after 

2 minutes of FCCP and oligomycin mediated stimulation but ERK2 (109.5 + 2.2%) 

phosphorylation/activation compared to the 37ºC control was not significantly different. 

After 5 minutes of FCCP and oligomycin mediated stimulation 

phosphorylation/activation of ERK1 (120.8 + 3.3%) and ERK2 (115.7 + 4.6%) 

compared to 37ºC control were significantly increased. After 10 minutes FCCP and 

oligomycin incubation declined to control levels ERK1 (111.1 + 3.2%) and ERK2 (98.1 

+ 4.4%) phosphorylation/activation compared to the 37ºC control. Thus, we found that 
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A) Con 1 2 5 10 B) 

C) 

 

 
 
Figure 7-1: FCCP & oligomycin stimulation effect on ERK1 and ERK2 phosphorylation/activation 
after 1, 2, 5 and 10 minutes 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment showing that synaptosomes 
were resuspended in the presence of Ca2+ (1mM) for 50 minutes. After which they were spun down with 
supernatant removed and resuspended again in the presence of Ca2+ (1mM). FCCP and oligomycin was 
used to disrupt the mitochondria and the incubation was stopped at various time points. (C) This is the 
time course of FCCP (1µM) and oligomycin (1µg/ml) effect on ERK1 and ERK2 
phosphorylation/activation at time points that include 1, 2, 5 and 10 minutes. All values represent the 
mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample 
were immunoblotted is described in section 2.2. (n=8). 
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FCCP and oligomycin stimulation of ERK1 and ERK2 phosphorylation/activation was 

a transient effect with the maximum effect produced at 1 minute and declining 

thereafter over 10 minutes. In subsequent experiments, we have used the 1 and 10 

minutes incubations with FCCP and oligomycin for different paradigms. The 1 minute 

time point represents the maximum effect of FCCP and oligomycin stimulation while 

the 10 minutes time point represents the minimum point of the stimulatory effect of 

FCCP and oligomycin stimulation. While stimulatory activity no longer persists but the 

mitochondria will be depolarised and therefore presumably unable to sequester Ca2+. 

 

We next investigated if the mitochondrial Ca2+ stores are depleted during the 

synaptosomal preparation and require repletion during the preincubation stage as 

observed with the smooth endoplasmic reticulum. Thus, we incubated the synaptosomes 

in the absence of Ca2+ with EGTA (100µM) to chelate any residual Ca2+ during the 

preincubation stage and stimulated with FCCP (1µM) and oligomycin (1µg/ml) in the 

presence of Ca2+ (1mM) for 1 minute (Figure 7-2A&B). We found, that in the presence 

of Ca2+ there was a significant increase in ERK1 (122.9 + 4.3%) and ERK2 (131.3 + 

4.7%) phosphorylation/activation compared to the 37ºC control with FCCP and 

oligomycin mediated stimulation (Figure 7-2C). Unexpectedly, in the absence of Ca2+ 

FCCP and oligomycin mediated stimulation still resulted in a significant increase in 

ERK1 (125.8 + 5.7%) and ERK2 (119.6 + 5.9%) phosphorylation/activation compared 

to the 37ºC control. There was no significant effect on ERK1 (92.7 + 8.9%) and ERK2 

(89.7 + 5.2%) basal activity compared to the 37ºC control in the absence of Ca2+ during 

the preincubation stage. The net change of ERK1 and ERK2 phosphorylation/activation 

shows that there is no significant difference between the presence and absence of Ca2+ 

during the preincubation stage (Figure 7-2D). Overall, these results suggest that 

mitochondria are not affected by the presence of Ca2+ during the preincubation stage 
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A) Con E F&O F&O+E B) 

C) D)         Net Change 

 

 
 Preincubation 

 

Preincubation 
Calcium + - + - + - 
EGTA - + - + - + 

 Stimulation Stimulation 
Calcium + + + + + + 
F & O - - + + + + 

 
Figure 7-2: FCCP and oligomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation for 1 minute in the presence and absence of Ca2+ during the 
preincubation stage 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, E = EGTA and F&O = FCCP & oligomycin show the condition of each lane. (B) Timeline 
of the experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) or EGTA 
(100µM) for 50 minutes. After which they were spun down with supernatant removed and resuspended 
again in the presence of Ca2+ (1mM). FCCP (1µM) and oligomycin (1µg/ml) was used to disrupt the 
mitochondria for 1 minute and the incubation was stopped at 80 minutes. (C) The change in ERK1 and 
ERK2 phosphorylation/activation compared to the 37ºC control induced by FCCP and oligomycin in the 
presence and absence of EGTA during the preincubation stage. F&O = FCCP and oligomycin. (D) The 
net change of ERK1 and ERK2 phosphorylation/activation which is calculated by removing the basal 
percentage from the stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3). 
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and that the mitochondrial Ca2+ stores are unaffected during the synaptosomal 

preparation. 

 

The mechanism behind the decline in ERK1 and ERK2 phosphorylation/activation after 

10 minutes of stimulation with FCCP and oligomycin was of interest. One possibility is 

that the smooth endoplasmic reticulum, through the SERCA pump re-uptakes the Ca2+ 

released by mitochondria thereby reducing the stimulation of the ERK pathway. To 

examine this possibility, we used thapsigargin to inhibit the SERCA pump which should 

result in an enhancement of ERK1 and ERK2 phosphorylation/activation if the SERCA 

pumps are indeed sequestering Ca2+. Thapsigargin (1µM) in the presence of Ca2+ 

(1mM) was incubated throughout to ensure continued inhibition of the SERCA pumps 

and stimulated with FCCP (1µM) and oligomycin (1µg/ml) for 1 minute (Figure 

7-3A&B). FCCP and oligomycin mediated stimulation for 1 minute resulted in a 

significant increase in ERK1 (123.0 + 3.4%) and ERK2 (114.8 + 2.8%) 

phosphorylation/activation compared to the 37ºC control in the absence of thapsigargin 

(Figure 7-3C). In the presence of thapsigargin, FCCP and oligomycin mediated 

stimulation for 1 minute still resulted in a significant increase in ERK1 (117.0 + 3.6%) 

but ERK2 (99.6 + 4.8%) phosphorylation/activation. This could be due to the 

unexpected significant inhibitory effect on the basal activity of ERK2 (78.7 + 2.0%) by 

thapsigargin incubation, but ERK1 (93.1 + 5.5%) basal activity compared to the 37ºC 

control was unaffected. Thus overall, we found that the net change in ERK1 and ERK2 

phosphorylation/activation with FCCP and oligomycin stimulation for 1 minute was not 

significantly different with and without thapsigargin incubation (Figure 7-3D).  

 

Although, the 1 minute FCCP and oligomycin stimulation of synaptosomes was not 

enhanced by thapsigargin incubation we considered whether an enhancement effect 
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A) Con T F&O F&O+T B) 

C) D)         Net Change 
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Thapsi - + - + - + 
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Thapsi - + - + - + 
F & O - - + + + + 

 
Figure 7-3: FCCP & oligomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation for 1 minute in the presence and absence of thapsigargin 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, T = thapsigargin and F&O = FCCP & oligomycin show the condition of each lane. (B) 
Timeline of the experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) 
with thapsigargin (1µM) for 50 minutes. After which they were spun down with supernatant removed and 
resuspended again in the presence of Ca2+ (1mM) with thapsigargin (1µM). FCCP (1µM) and oligomycin 
(1µg/ml) was used to disrupt the mitochondria for 1 minute and the incubation was stopped at 80 minutes. 
(C) The change in ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control induced by 
FCCP and oligomycin in the presence and absence of thapsigargin during the preincubation and 
stimulation stage. Thapsi = thapsigargin. F&O = FCCP and oligomycin. (D) The net change of ERK1 and 
ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4).  
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could be revealed with 10 minute stimulation. We followed a similar protocol in which 

thapsigargin (1µM) was incubated continuously in the presence of Ca2+ (1mM) but were 

stimulated with FCCP (1µM) and oligomycin (1µg/ml) for 10 minutes (Figure 

7-4A&B). As predicted from previous results, FCCP and oligomycin mediated 

stimulation for had no significant effect on ERK1 (112.2 + 4.9%) and ERK2 (97.4 + 

5.4%) phosphorylation/activation compared to the 37ºC control in the absence of 

thapsigargin incubation (Figure 7-4C). But incubation with thapsigargin before FCCP 

and oligomycin mediated stimulation showed a significant increase of ERK1 (120.7 + 

3.0%) but had no effect on ERK2 (100.4 + 8.5%) phosphorylation/activation compared 

to the 37ºC control. The presence of thapsigargin did not have a significant effect on the 

basal activity of ERK1 (94.2 + 4.3%) but significantly reduced ERK2 (78.7 + 2.0%) 

phosphorylation/activation compared to the 37ºC control. The net change shows that 

thapsigargin incubation significantly increases ERK1 and ERK2 

phosphorylation/activation stimulated by FCCP and oligomycin for 10 minutes (Figure 

7-4D). Overall these results suggest that the SERCA pump found on the smooth 

endoplasmic reticulum is able to remove the Ca2+ released from the mitochondria with 

time. This underpins the ‘transient’ nature of FCCP and oligomycin stimulation seen in 

Figure 7-1. 

 

We have shown that the Ca2+ released from the mitochondrial stores after FCCP and 

oligomycin mediated stimulation can phosphorylate/activate ERK1 and ERK2. We next 

questioned whether this Ca2+ release is able to potentiate the 4-AP mediated stimulation 

of ERK1 and ERK2 phosphorylation/activation which could occur in cases of 

mitochondrial dysfunction. The protocol we used involved incubation with FCCP 

(1µM) and oligomycin (1µg/ml) for 1 minute in the presence of Ca2+ (1mM) followed 

by 4-AP (1mM) mediated stimulation (Figure 7-5A&B). We found that in the absence 
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A) Con T F&O F&O+T B) 

C) D)         Net Change 
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Figure 7-4: FCCP & oligomycin mediated stimulation of ERK1 and ERK2 
phosphorylation/activation for 10 minute in the presence and absence of thapsigargin 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, T = thapsigargin and F&O = FCCP & oligomycin show the condition of each lane. (B) 
Timeline of the experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) 
with thapsigargin (1µM) for 50 minutes. After which they were spun down with supernatant removed and 
resuspended again in the presence of Ca2+ (1mM) with thapsigargin (1µM). FCCP (1µM) and oligomycin 
(1µg/ml) was used to disrupt the mitochondria for 10 minute and the incubation was stopped at 80 
minutes. (C) The change in ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control 
induced by FCCP and oligomycin in the presence and absence of thapsigargin during the preincubation 
and stimulation stage. Thapsi = thapsigargin. F&O = FCCP and oligomycin. (D) The net change of ERK1 
and ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=3).  
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of FCCP and oligomycin stimulation there was significant increase in ERK1 (157.3 + 

7.8%) and ERK2 (161.4 + 6.9%) phosphorylation/activation compared to the 37ºC 

control mediated by 4-AP stimulation (Figure 7-5C). When synaptosomes were 

incubated with FCCP and oligomycin for 1 minute followed by 4-AP mediated 

stimulation we found that 4-AP stimulation still resulted in significant increase of ERK1 

(152.0 + 7.7%) and ERK2 (148.8 + 7.9%) phosphorylation/activation compared to the 

37ºC control. As expected FCCP and oligomycin mediated stimulation significantly 

increased ERK1 (126.2 + 4.3%) and ERK2 (133.2 + 5.5%) phosphorylation/activation 

compared to the 37ºC control. When this effect of FCCP and oligomycin is taken into 

account we found in the net change of ERK1 and ERK2 phosphorylation/activation 

stimulated with 4-AP is significantly inhibited by prior stimulation with FCCP and 

oligomycin (Figure 7-5D).  

 

We further examined if the 4-AP mediated stimulation of ERK1 and ERK2 

phosphorylation/activation could be inhibited by prior stimulation with FCCP and 

oligomycin stimulation for 10 minutes. We followed the same protocol but 

synaptosomes were stimulated with FCCP (1µM) and oligomycin (1µg/ml) for 10 

minutes in the presence of Ca2+ (1mM) prior to 4-AP (1mM) mediated stimulation 

(Figure 7-6A&B). As previously shown 4-AP mediated stimulation significantly 

increased ERK1 (141.6 + 2.5%) and ERK2 (159.0 + 8.5%) phosphorylation/activation 

compared to the 37ºC control in the absence of FCCP and oligomycin stimulation 

(Figure 7-6C). Furthermore, 4-AP mediated stimulation was still able to significantly 

increase ERK1 (128.4 + 2.7%) and ERK2 (148.8 + 4.6%) phosphorylation/activation 

compared to the 37ºC control with prior FCCP and oligomycin stimulation. By itself 

FCCP and oligomycin mediated stimulation for 10 minutes did not significantly affect 

ERK1 (110.4 + 6.0%) phosphorylation/activation but surprisingly did significantly 



223 
 
A) Con F&O 4-AP 4-AP+F&O B) 

C) D)         Net Change 
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Figure 7-5: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation with or 
without prior stimulation with FCCP & oligomycin for 1 minute 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and F&O = FCCP & oligomycin show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) for 50 minutes. 
After which they were spun down with supernatant removed and resuspended again in the presence of 
Ca2+ (1mM) and stimulated with or without FCCP (1µM) and oligomycin (1µg/ml) for 1 minute after 
which they were stimulated with 4-AP (1mM) and the incubation was stopped at 85 minutes. (C) The 
change in ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control induced by FCCP 
and oligomycin in the presence and absence of thapsigargin during the preincubation and stimulation 
stage. F&O = FCCP and oligomycin. (D) The net change of ERK1 and ERK2 phosphorylation/activation 
which is calculated by removing the basal percentage from the stimulated groups for each n. All values 
represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins 
in the sample were immunoblotted is described in section 2.2. (n=3). 
  

100

120

140

160

180

ER
K1

 p
ho

sp
ho

ry
la

tio
n/

ac
tiv

at
io

n 
(%

 o
f 3

7º
C 

co
nt

ro
l) 

ERK1 

0

20

40

60

80

N
et

 c
ha

ng
e 

in
 E

RK
1 

ph
os

ph
or

yl
at

io
n/

ac
tiv

at
io

n 
(%

) 

ERK1 

100

120

140

160

180

ER
K2

 p
ho

sp
ho

ry
la

tio
n/

ac
tiv

at
io

n 
(%

 o
f 3

7º
C 

co
nt

ro
l) 

ERK2 

0

20

40

60

80

N
et

 c
ha

ng
e 

in
 E

RK
2 

ph
os

ph
or

yl
at

io
n/

ac
tiv

at
io

n 
(%

) 

ERK2 

** 
* 

** 

* 

** 
** 

** 

* 

p44 

p42 



224 
 
increase ERK2 (114.9 + 3.5%) phosphorylation/activation compared to the 37ºC 

control. The net change in ERK1 and ERK2 phosphorylation/activation highlighted that 

4-AP mediated stimulation is significantly inhibited by prior stimulation with FCCP and 

oligomycin for 10 minutes (Figure 7-6D). Overall, we found that FCCP and oligomycin 

incubation with synaptosomes for 1 minute and 10 minutes resulted in a significant 

reduction of ERK1 and ERK2 phosphorylation/activation mediated by 4-AP 

stimulation.  

 

Another type of Ca2+ containing compartment store that we tested for its presence and 

capability of stimulating ERK1 and ERK2 phosphorylation/activation was acidic stores 

constituting either NAADP sensitive stores or indeed secretory vesicles. Acidic stores 

are able to store Ca2+ through the Ca2+/H+ exchanger by which Ca2+ enters into the 

lumen of the store in exchange for an H+. The H+ transported into the lumen of the store 

maintains this exchanger by virtue of vacuolar type H+-ATPases. Therefore inhibiting 

the accumulation of H+ should prevent the Ca2+/H+ exchanger for exchanging the Ca2+ 

for H+ and result in an increase in cytosolic Ca2+ and/or depletion of these stores. 

 

To test for the presence of acidic stores we used bafilomycin A1 which inhibits vacuolar 

H+-ATPases and should prevent Ca2+ accumulation into any acidic stores. We 

conducted a time course of bafilomycin A1 (1µM) incubation for 1, 5, 20 or 40 minutes 

in the presence of Ca2+ (1mM) measuring its effect on ERK1 and ERK2 

phosphorylation/activation (Figure 7-7A&B). We found that 1 minute incubation with 

bafilomycin A1 had no significant effect on ERK1 (100.7 + 1.1%) and ERK2 (106.1 + 

3.2%) phosphorylation/activation compared to the 37ºC control (Figure 7-7C). But after 

5 minutes there was a significant decrease in ERK1 (90.8 + 1.2%) 

phosphorylation/activation compared to the 37ºC control but the effect on ERK2 (93.9 + 
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Figure 7-6: 4-AP mediated stimulation of ERK1 and ERK2 phosphorylation/activation with or 
without prior stimulation with FCCP & oligomycin for 10 minute 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control and F&O = FCCP & oligomycin show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) for 50 minutes. 
After which they were spun down with supernatant removed and resuspended again in the presence of 
Ca2+ (1mM) and stimulated with or without FCCP (1µM) and oligomycin (1µg/ml) for 10 minutes after 
which they were stimulated with 4-AP (1mM) and the incubation was stopped at 85 minutes. (C) The 
change in ERK1 and ERK2 phosphorylation/activation compared to the 37ºC control induced by FCCP 
and oligomycin in the presence and absence of thapsigargin during the preincubation and stimulation 
stage. F&O = FCCP and oligomycin. (D) The net change of ERK1 and ERK2 phosphorylation/activation 
which is calculated by removing the basal percentage from the stimulated groups for each n. All values 
represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins 
in the sample were immunoblotted is described in section 2.2. (n=3). 
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3.1%) was not statistically significant. We had a similar effect after 20 minutes of 

bafilomycin A1 incubation at which there was a significant decrease in ERK1 (84.3 + 

1.7%) but not ERK2 (90.0 + 4.2%) phosphorylation/activation compared to the 37ºC 

control. However, after 40 minutes both ERK1 (83.7 + 2.5%) and ERK2 (86.5 + 3.4%) 

phosphorylation/activation compared to the 37ºC control were significantly reduced 

with bafilomycin A1 incubation. Overall, bafilomycin A1 caused a significant decrease 

in ERK1 basal activity after 5 minutes and both ERK1 and ERK2 were significantly 

reduced after 40 minutes. This indicates the presence of acidic Ca2+ stores and which 

could play a role in the maintenance of ERK1 and ERK2 phosphorylation/activation 

and other Ca2+-dependent mechanisms. 
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A) Con 1 5 20 40 B) 

C) 

 

 
 
Figure 7-7: Bafilomycin effect on ERK1 and ERK2 phosphorylation/activation after 1, 5, 20 and 40 
minutes of stimulation 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment showing that Ca2+ (1mM) 
was added at 3 minutes followed HBM or bafilomycin A1 (1µM) stimulation after which the experiment 
was ended at various time points that include 51, 55, 70 and 90 minutes. (C) Time course of bafilomycin 
A1 incubation at 1, 5, 20 and 40 minutes of ERK1 and ERK2 phosphorylation/activation compared to the 
37ºC control in the presence of Ca2+. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4). 
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7.4. Discussion 

The first objective of this chapter was to investigate whether the release of Ca2+ from 

mitochondria is able to stimulate Ca2+-dependent mechanisms that result in ERK1 and 

ERK2 phosphorylation/activation. Using a combination of FCCP (protonophore) and 

oligomycin (ATP synthesis inhibitor) we depolarised mitochondria in synaptosomes to 

invoke the release of accumulated Ca2+. The time course following treatment showed 

that FCCP and oligomycin has a stimulatory effect on ERK1 and ERK2 

phosphorylation/activation. However, this effect is transient with the maximum 

response at 1 minute followed by steadily diminishing response such that at the 10 

minute, ERK1 and ERK2 phosphorylation/activation was not significantly different 

compared to the 37ºC control. Together these data show that mitochondrial Ca2+ can 

phosphorylate/activate ERK1 and ERK2 and obviates the suggestion that the inhibition 

of ATP production leads to a reduction in available substrate for protein 

phosphorylation (Schematic 7-1). 

 

The Ca2+-dependent mechanisms that could be activated by mitochondrial Ca2+ also 

need to be investigated and could involve the Src-dependent mechanism that has already 

been shown to be important in 4-AP and ionomycin mediated stimulation. Other Ca2+-

dependent mechanisms that could be involved include calmodulin activation. 

Calmodulin could have stimulatory effects on ERK1 and ERK2 

phosphorylation/activation as previously described but some studies have indeed 

pointed to calmodulin stimulating Ca2+ uptake through mCa1 (Moreau et al., 2006). 

This function is unlikely to occur here as the mCa1 channel is driven by the negative 

membrane potential which in this case is disrupted by FCCP.  
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The second objective of this chapter was to investigate the functional role of 

mitochondria. As we have provided evidence that Ca2+ is indeed stored in mitochondria 

it was interesting to examine whether the synaptosomal preparation depletes 

mitochondria similarly to smooth endoplasmic reticulum stores. If the mitochondria are 

not depleted than the absence of Ca2+ should not be significantly affect ERK1 and 

ERK2 phosphorylation/activation mediated by FCCP and oligomycin stimulation. We 

found that the absence of Ca2+ during the preincubation stage did not affect FCCP and 

oligomycin mediated stimulation. This indicates that unlike the smooth endoplasmic 

reticulum which has been shown to require repletion in previous chapters, mitochondria 

are unaffected by the synaptosomal preparation. The conclusion from this would be that 

unlike the smooth endoplasmic reticulum Ca2+ does not ‘leak’ out of the mitochondria 

thus they retain the Ca2+ better than the smooth endoplasmic reticulum. 

 

We also investigated the functional interaction of mitochondria and the smooth 

endoplasmic reticulum. In previous studies it is has been suggested that there is a close 

functional interactivity between mitochondria and the smooth endoplasmic reticulum 

which serves, for example, to activate mCa1 channels by the high concentrations of 

Ca2+ at the mouth of the IP3R found on the smooth endoplasmic reticulum. Another 

possible interaction that could serve to modulate the function of both Ca2+ stores is re-

uptake of Ca2+ by SERCA pumps found on the smooth endoplasmic reticulum when 

Ca2+ is released from the mitochondria. We considered the latter as a possible reason for 

the mitochondrial release of Ca2+ mediated by FCCP and oligomycin stimulation being 

transient. This proved to be correct as we found that ERK1 and ERK2 

phosphorylation/activation mediated by FCCP and oligomycin stimulation for 10 

minutes was enhanced by SERCA pump inhibition. This occurs because by inhibiting 

the reuptake the released Ca2+ is able to maintain the stimulation of the Ca2+-dependent 
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mechanisms of ERK1 and ERK2 phosphorylation/activation. Interestingly, SERCA 

pump inhibition was unable to enhance ERK1 and ERK2 phosphorylation/activation of 

FCCP and oligomycin mediated incubated for 1 minute. This may indicate that SERCA 

pump activity requires some time before it significantly abrogates the release of 

mitochondrial Ca2+. 

 

We also considered whether the Ca2+ released by mitochondria could contribute to the 

Ca2+-dependent mechanisms activated by 4-AP mediated stimulation. If 4-AP mediated 

stimulation induces Ca2+ release from mitochondria, then prior release of Ca2+ using 

FCCP and oligomycin mediated stimulation should inhibit ERK1 and ERK2 

phosphorylation/activation. However, if mitochondrial Ca2+ release is unaffected by 4-

AP mediated stimulation, the combined increase in Ca2+ concentration might contribute 

to potentiate ERK1 and ERK2 phosphorylation/activation. We found the former to the 

case as 4-AP mediated stimulation was significantly inhibited by prior stimulation of 

mitochondria with FCCP and oligomycin. Interestingly, the inhibitory effects on ERK1 

and ERK2 phosphorylation/activation are observed at both the 1 and 10 minute time 

points. At the 10 minute time point the Ca2+ released by FCCP and oligomycin 

mediated stimulation should be removed by SERCA pumps as already shown. The 

inhibition is maintained likely due to the continued depletion as FCCP is preventing 

Ca2+ accumulation in the mitochondria. 

 

The mechanism of Ca2+ release by mitochondria mediated by 4-AP stimulation needs 

further investigation, but it could involve the Na+/Ca2+ exchanger found on the inner 

mitochondrial membrane. 4-AP mediated stimulation causes an increase in Ca2+ 

concentration, but also during stimulation, Na+ channels are opened which significantly 

increases the intracellular concentration of Na+ (Galvan & Sitges, 2004). This increase 
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in Na+ concentration could promote Ca2+ release through the Na+/Ca2+ exchanger found 

on the mitochondria. There are studies that have provided evidence of Ca2+ release via 

the Na+/Ca2+ exchanger in motor nerve terminals which promotes transmitter release 

(Tsang et al., 2000;Yang et al., 2003). However, the data from the 4-AP mediated 

stimulation in the absence of extracellular Ca2+ shows lack of significant increase in 

ERK1 and ERK2 phosphorylation/activation which would dispute this mechanism. In 

the absence of external Ca2+ the Na+ concentration should still be significant increased 

to cause an effect on the Na+/Ca2+ exchanger to release Ca2+ from the mitochondria. 

Nevertheless, this mechanism could be further investigated by observing the effect of 

Na+/Ca2+ exchanger inhibition on 4-AP mediated stimulation of ERK1 and ERK2 

phosphorylation/activation. Furthermore, ionomycin mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation does not increase Na+ concentration. Thus, ionomycin 

mediated stimulation should be enhanced by prior stimulation with FCCP and 

oligomycin using the protocol described here for 4-AP. 

 

The final objective of this chapter was to establish any contribution that acidic stores 

might make to Ca2+-dependent mechanisms in the synaptosome. Surprisingly, we found 

that depletion of acidic stores resulted in the decrease of ERK1 and ERK2 

phosphorylation/activation. This suggests that acidic stores in synaptosomes contribute 

to Ca2+-dependent mechanisms by tonically activating them. The exact mechanism for 

this observed inhibition requires further investigation. It is plausible that tonic NAADP 

activity on acidic stores could be releasing Ca2+ that maintains ERK1 and ERK2 basal 

activity. The Ca2+ released from acidic stores might also stimulate RyR on the smooth 

endoplasmic reticulum which also acts to maintain the ERK1 and ERK2 basal activity. 

It would be very interesting to examine whether the Ca2+ released from acidic stores is 

sufficient to phosphorylate/activate ERK1 and ERK2 when the acidic stores are 
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stimulated by NAADP. Furthermore, the stimulatory effect of cADPR in the 

synaptosomal model would also be of interest as cADPR has been implicated in 

stimulation of RyR through the Ca2+-induced Ca2+ release (CICR) mechanism. These 

compartments await the development of cell-permeable analogues of these ligands. 

 

In conclusion, both mitochondria and acidic stores may contribute to intrasynaptosomal 

Ca2+ as indicated by effect on ERK1 and ERK2 phosphorylation/activation. 

Mitochondrial Ca2+ stores are revealed here to be resistant to depletion during the 

synaptosomal preparation. In addition, the observations that SERCA pumps reuptake 

Ca2+ released from the mitochondria indicates a close proximity of the two Ca2+ stores 

in presynaptic nerve terminals. Most importantly, there is evidence to suggest that 

mitochondria could be one of the potential Ca2+ stores that might contribute to the Ca2+-

dependent mechanisms such as ERK1 and ERK2 phosphorylation/activation instigated 

upon 4-AP mediated stimulation. 
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Schematic 7-1: Mitochondrial and acidic store effect on the activation of the ERK pathway 
4-AP mediated depolarisation results in Ca2+ influx through VDCCs and Na+ influx through voltage-
dependent sodium channels. (i) Ca2+ influx can activate the CICR mechanism causing a further release of 
Ca2+ from intracellular Ca2+ stores and both sources of Ca2+ can stimulate CaM and possibly Pyk2 leading 
to the activation of the ERK pathway. (ii) Increases in [Na+] can cause the efflux of Ca2+ from 
mitochondria which stimulate the ERK pathway through CaM and possibly Pyk2 activation. The efflux of 
Ca2+ from mitochondria is subsequently sequestered by SERCA pumps. (iii) Acidic stores can sequester 
cytoplasmic Ca2+ which could be released through unknown stimulus to tonically activate RyR to efflux 
Ca2+ and maintain the basal activity of ERK1 and ERK2. 
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8. Pathophysiological role of intracellular Ca2+ stores 

Summary: Given that intracellular Ca2+ stores have been shown to be contributing to 

Ca2+-dependent processes and maintaining Ca2+ homeostasis, we considered the 

function of intracellular Ca2+ stores in an ischemia model using nerve terminals. The 

main consequence of ischemia is a decrease in ATP production which we have 

mimicked by inhibiting the Na+/K+-ATPase pump using ouabain. We show that 

inhibition of the Na+/K+-ATPase pump results in a significant increase in ERK1 and 

ERK2 phosphorylation/activation that is a transient and dose-dependent. Further 

investigation confirmed that this increase in ERK1 and ERK2 

phosphorylation/activation is a Ca2+-dependent process. We also found that the smooth 

endoplasmic reticulum partially releases Ca2+ which contributes to the Ca2+-dependent 

mechanisms. The increase of Ca2+ concentration activates the Ca2+-dependent 

mechanisms for ERK1 and ERK2 phosphorylation/activation which have been shown in 

previous chapters to include calmodulin activation and a Src-dependent mechanism. 

Ouabain also resulted in the increase in the spontaneous glutamate release but did not 

facilitate 4-AP evoked glutamate release. Using this pathophysiological model we 

suggest the intracellular Ca2+stores especially smooth endoplasmic reticulum 

contributes to Ca2+-dependent mechanisms that result in ERK1 and ERK2 

phosphorylation/activation. 

 

8.1. Introduction 

Under physiological conditions the intracellular Ca2+ concentration is maintained low 

however in pathophysiological conditions, there is a failure of Ca2+ homeostasis systems 

which results in high intracellular Ca2+ concentrations and ultimately necrosis. We have 

so far considered the functional contribution of intracellular Ca2+ stores to Ca2+-

dependent processes such as ERK1 and ERK2 phosphorylation/activation in 
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physiological conditions. Here we considered the mobilisation of intracellular Ca2+ 

stores in model pathophysiological condition mimicking the metabolic consequences of 

ischemia.  

 

Ischemia is a condition that is caused by the restriction in blood supply to an area of the 

body such as the brain or heart. Restriction of the blood supply causes a drop in the 

availability of glucose and thus leads to a drop in ATP production which prevents ATP-

dependent processes from functioning. One of the major users of ATP in the brain is the 

Na+/K+ -ATPase pump in the plasma membrane and is therefore an obvious casualty 

during ischemia injury. 

 

Intracellular [Na+] is maintained low by the Na+/K+ -ATPase pump which transports 

intracellular Na+ to the extracellular medium in exchange for K+ (Lingrel & 

Kuntzweiler, 1994). It is thus predicted that ATP depletion and thereby reduction of 

Na+/K+ -ATPase activity would can lead to the reduction of the Na+ gradient (Tian et 

al., 2001) and consequent depolarisation of the plasma membrane. This latter effect can 

be simulated pharmacologically by Na+/K+ -ATPase inhibition using the glycoside 

ouabain. Interestingly in previous studies it has also been suggested that ouabain 

interaction with the Na+/K+ -ATPase also plays a signalling role by which activation of 

the ERK pathway leads to the phosphorylation/activation of ERK1 and ERK2 without 

invoking the bio-energetic effects of Na+/K+ -ATPase (Tian et al., 2001;Liu et al., 

2003;Wang et al., 2004a;Liang et al., 2006). 

 

There are two mechanisms by which Na+/K+ -ATPase inhibition using ouabain could 

activate the ERK pathway. One of the mechanisms is that the Na+/K+ -ATPase acts as a 

signal transducer which activates Src independently of the changes in Na+ and K+ 
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concentrations (Xie & Askari, 2002). The Na+/K+ -ATPase interacts with Src and is 

thought to inactivate Src by making it less accessible. However ouabain binding to the 

Na+/K+ -ATPase is thought to disrupt this interaction causing the release and activation 

of Src (Liang et al., 2006). The second potential mechanism does involve the changes in 

Na+ and K+ concentrations. Ouabain has been shown to reverse the concentrations of 

Na+ and K+ in nerve terminals by increasing the Na+ concentration and decreasing the 

K+ concentration, respectively (Archibald & White, 1974). This could disrupt the 

function of Na+/Ca2+ exchanger which efflux Ca2+ in exchange for Na+ into the cytosol. 

The increase in Na+ concentration (decrease in gradient) could therefore inhibit the 

efflux of Ca2+ leading to an accumulation of Ca2+ concentration in the cytosol. 

Furthermore, the plasma membrane would be depolarised causing VDCCs to open and 

mediate further Ca2+ influx.  

 

It has also been reported that inhibition of the Na+/K+ -ATPase using ouabain results in 

the excessive exocytosis of glutamate which could be expected in ischemia. This could 

be due to the excess Ca2+ available to stimulate glutamate release but also the processes 

that promote neurotransmitter release are activated. Interestingly, there are studies that 

point to the recruitment of intracellular Ca2+ stores in the ouabain mediated stimulation 

of glutamate release (Lomeo et al., 2003;Amaral et al., 2009). 

 

The objective of this chapter is to establish whether inhibition of the Na+/K+ -ATPase 

pump results in significant increases in ERK1 and ERK2 phosphorylation/activation in 

nerve terminals. Furthermore, we wanted to investigate if any effects on ERK1 and 

ERK2 is indeed utilise Ca2+-dependent mechanisms. In addition, we asked if 

intracellular Ca2+ stores contribute to these underlying mechanisms. Finally, we 

investigated if ouabain mediated stimulation has an effect on neurotransmitter release. 
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8.2. Method 

8.2.1. Synaptosomal Preparation 

Preparation of synaptosomes has been described in section 2.1. 

 

8.2.2. SDS-PAGE and Immunoblotting 

All samples obtained through Immunoblotting experiments underwent the procedure 

described in section 2.2. 

 

8.2.3. Standard protocol 

The protocol for the experiments that followed the standard protocol is described in 

section in 2.3.1. The synaptosomes were resuspended in HBM buffer containing BSA 

(1mg/ml) with drug of interest like PP2 (10µM), EGTA (100µM), Ni2+, Cd2+ and Co2+ 

(100µM), W7 (50µM) or thapsigargin (1µM) and incubated at 37ºC. After 5 minutes 

Ca2+ (1mM) was added to the incubation followed by ouabain (100µM) unless stated at 

20 minutes. Ouabain stimulated the synaptosomes for 20 minutes and the experiment 

terminated using a STOP solution after 15 minutes of incubation. 

 

8.2.4. Glutamate release 

Synaptosomes were resuspended in 1.5ml HBM containing BSA (1mg/ml) and 

transferred to the spectrofluorimeter. Constant stirring ensured that the synaptosomes 

were oxygenated and NADP+ (1mM) and GDH (50 units/ml) were added to the 

suspended synaptosomes at the start of the experiment. After 3 minutes Ca2+ (1mM) 

was added and HBM or ouabain (10 or 100µM) was added at 10 minutes. After 

incubation for 20 minutes, Ca2+-dependent release was evoked by 4-AP (1mM). Finally, 

at 15 minutes, exogenous glutamate (2.5nmol) was added as an internal standard to 

quantify the released glutamate. 
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8.2.5. Intracellular [Ca2+] measurement using Fura-2A 

Synaptosomes (0.2mg) were re-suspended in a HBM containing BSA (1mg/ml) and 

incubated with Fura-2AM at 37ºC for 20 minutes. After 3 minutes Ca2+ (0.1mM) was 

added and at the end of the incubation, synaptosomes were centrifuged for 10,000rpm 

for 1 minute. The supernatant was removed and the pellet was re-suspended in a HBM 

containing BSA (1mg/ml). The recording of the trace was started and Ca2+ (1mM) was 

added after 3 minutes. After 10 minutes, the control or the appropriate drug 

concentration was added to the synaptosome suspension and the effect of the control 

vehicle or drug in fluorescence measured over 20 minutes. 

 

8.2.6. Statistical analysis 

The methods of statistical analysis have been described in section 2.6.1. For data with 

more than two sets analysis of variance (ANOVA) was used to assess the statistical 

significance, followed by Dunnetts post hoc test. The net change in ERK1 and ERK2 

phosphorylation/activation was calculated by removing the basal percentage from the 

stimulated groups for each n. We used Student’s unpaired t-test to assess the statistical 

significance between two sets of data. The bar graphs of glutamate release in the results 

section show independent experiments averaged at 300-305 second time points unless 

stated otherwise. 

 

8.2.7. Reagents 

A stock solution of ouabain (100µM) was made using with water and further diluted 

using HBM. 

 

A stock solution of EGTA (100µM) was obtained with water and working solution was 

further diluted using HBM.  
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A stock solution of thapsigargin (1µM) was made in DMSO and working solution was 

further diluted using HBM. 

 

A stock solution of W7 (50µM) was made using with water and further diluted using 

HBM. 

 

A stock solution of PP2 (10µM) was made using with DMSO and further diluted using 

HBM. 

 

A stock solution of Ni2+, Cd2+ and Co2+ (100µM) was made using with water and further 

diluted using HBM. 
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8.3. Results 

We investigated a potential role for intrasynaptosomal Ca2+ stores in a 

pathophysiological model by using ouabain to inhibit the Na+/K+-ATPase pump. We 

first conducted a dose-response curve with ouabain at 1, 10 and 100µM and quantified 

the effect on ERK1 and ERK2 phosphorylation/activation (Figure 8-1A&B). We 

incubated ouabain concentrations (1, 10 or 100µM) for 20 minutes in the presence of 

Ca2+ (1mM). Using this protocol the maximum response of ERK1 (185.4 + 6.1%) and 

ERK2 (184.0 + 6.7%) phosphorylation/activation compared to the 37ºC control was 

obtained at 100µM ouabain (Figure 8-1C). At 10µM ouabain also caused a significant 

increase in ERK1 (158.2 + 13.5%) and ERK2 (147.5 + 8.4%) 

phosphorylation/activation compared to the 37ºC control. At 1µM ouabain, we found no 

significant effect of Na+/K+-ATPase pump inhibition on ERK1 (109.9 + 7.0%) and 

ERK2 (110.9 + 3.1%) phosphorylation/activation compared to the 37ºC control. These 

data show that Na+/K+-ATPase pump inhibition results in the stimulation of ERK1 and 

ERK2 phosphorylation/activation. 

 

To further elaborate the actions of ouabain on ERK1 and ERK2 

phosphorylation/activation, we conducted a time course of ouabain (100µM) 

stimulation in the presence of Ca2+ (1mM) for 1, 5, 10, 20 or 40 minutes (Figure 

8-2A&B). We found that 1 minute ouabain mediated stimulation had no significant 

effect on ERK1 (111.0 + 7.5%) and ERK2 (107.9 + 9.0%) phosphorylation/activation 

compared to the 37ºC control. However, there was a significant increase in ERK1 

(176.3 + 3.0%) and ERK2 (147.8 + 4.2%) phosphorylation/activation compared to the 

37ºC control after 5 minutes of stimulation mediated by ouabain. The increase in 

phosphorylation/activation compared to the 37ºC control persisting after 10 minutes 

(ERK1: 167.1 + 3.4% and ERK2: 147.4 + 8.7%) and 20 minutes (ERK1: 150.4 + 3.4% 
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A) Con 1 10 100 B) 

C) 

 

 
 Stimulation 

Calcium + + + + 
Ouabain 

(µM) 0 1 10 100 

 
Figure 8-1: Ouabain dose-dependent stimulation of ERK1 and ERK2 phosphorylation/activation 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment shows that Ca2+ (1mM) 
were added at 3 minutes followed HBM or ouabain (1, 10 or 100 µM) stimulation after 10 minutes and 
the experiment ended after 30 minutes of incubation. (C) Effect of ouabain mediated stimulation at 
concentrations 1, 10 and 100µM of ERK1 and ERK2 phosphorylation/activation compared to the 37ºC 
control in the presence of Ca2+. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4). 
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and ERK2:137.5 + 11.1%) of ouabain mediated stimulation. After 40 minutes of 

stimulation with ouabain (ERK1 (120.1 + 11.6%) and ERK2 (103.0 + 7.7%) 

phosphorylation/activation) diminished to the 37ºC control (Figure 8-2C). Overall we 

found that ouabain mediated stimulation over the time course resulted in a transient 

increase in ERK1 and ERK2 phosphorylation/activation which peaked at 5 minutes and 

reverting to basal levels by 40 minutes. 

 

To investigate the involvement of Ca2+ in ouabain mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation, we hypothesised that the absence of Ca2+ should 

result in a decrease in ERK1 and ERK2 phosphorylation/activation. We incubated 

synaptosomes in the absence of Ca2+ with EGTA (100µM) to chelate any residual 

external Ca2+ and stimulated with ouabain (100µM) for 20 minutes (Figure 8-3A&B). 

We found that in the presence of Ca2+ there was a significant increase in ERK1 (132.3 + 

0.5%) and ERK2 (131.1 + 1.0%) phosphorylation/activation compared to the 37ºC 

control mediated by ouabain mediated stimulation (Figure 8-3C). However when the 

external Ca2+ was removed, ouabain stimulation of ERK1 (86.1 + 10.3%) and ERK2 

(85.9 + 14.5%) phosphorylation/activation compared to the 37ºC control was abrogated. 

Notably the basal activity of ERK1 (71.5 + 8.1%) and ERK2 (71.1 + 10.5%) compared 

to 37ºC control was also significantly reduced in the absence of external Ca2+. By 

looking at the net change in ERK1 and ERK2 phosphorylation/activation we found that 

ouabain mediated stimulation was significantly inhibited in the absence of Ca2+ but was 

not totally abolished (Figure 8-3D). Thus we can conclude that the presence of Ca2+ is 

important for the ouabain stimulation of ERK1 and ERK2 phosphorylation/activation 

but the inhibition was not complete. 
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A) Con 1 5 10 20 40 B) 

C) 

 

 
 
Figure 8-2: Ouabain effect on ERK1 and ERK2 phosphorylation/activation after 1, 5, 10, 20 and 40 
minutes of stimulation 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control show the condition of each lane. (B) Timeline of the experiment showing that Ca2+ (1mM) 
was added at 3 minutes followed HBM or ouabain (100µM) stimulation after which the experiment was 
ended at various time points that include 11, 15, 20, 30 and 50 minutes. (C) Time course of ouabain 
mediated stimulation for 1, 5, 10, 20 or 40 minutes of ERK1 and ERK2 phosphorylation/activation 
compared to the 37ºC control in the presence of Ca2+. All values represent the mean + SEM. p<0.01(**) 
p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is 
described in section 2.2. (n=3). 
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A) Con E Oua Oua+E B) 

C) D)         Net Change 

 

 
 Stimulation 

 

Stimulation 
Calcium + - + - + - 
EGTA - + - + - + 

Ouabain - - + + + + 
 
Figure 8-3: Ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ca2+ 

(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, E = EGTA and Oua = ouabain show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of Ca2+ (1mM) or EGTA 
(100µM) and stimulated with ouabain (100 µM) after 10 minutes and the experiment ended after 30 
minutes of incubation. (C) The change in ERK1 and ERK2 phosphorylation/activation compared to the 
37ºC control stimulated by ouabain in the presence and absence of EGTA. (D) The net change of ERK1 
and ERK2 phosphorylation/activation which is calculated by removing the basal percentage from the 
stimulated groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The 
procedure in which the ERK1 and ERK2 proteins in the sample were immunoblotted is described in 
section 2.2. (n=4). 
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The foregoing results show that Na+/K+-ATPase inhibition results in ERK1 and ERK2 

phosphorylation/activation. We next investigated the mechanism underlying this 

stimulation. One possibility is that ouabain is increasing the intrasynaptosomal Ca2+ 

concentration, either through the depolarisation of the plasma membrane and/or perhaps 

through Ca2+ released from smooth endoplasmic reticulum. To look at cytosolic [Ca2+] 

directly, synaptosomes were loaded with Fura-2A, a fluorometric Ca2+ indicator in the 

presence of Ca2+ (1mM) and stimulated with 1µM, 10µM or 100µM ouabain. We show 

that there was no change in the intracellular Ca2+ concentrations at 1µM ouabain while 

an increase in Ca2+ concentrations clearly occurs at the 10 and 100µM ouabain (Figure 

8-4A). This provides evidence that there are changes in Ca2+ concentrations following 

ouabain treatment and could be the trigger for the ERK1 and ERK2 

phosphorylation/activation. Interestingly, there is no difference in intracellular Ca2+ 

concentrations between control and ouabain (100µM) after 5 minutes (Figure 8-4B). 

There is nevertheless a significant increase in ERK1 and ERK2 

phosphorylation/activation (Figure 8-4C) suggesting that other (Ca2+-dependent) 

mechanisms might also be involved in ERK activation downstream of Na+/K+-ATPase 

inhibition. 

 

Given the increase in Ca2+ produced by ouabain the CICR mechanism could be 

activated to support the stimulation of ERK1 and ERK2 phosphorylation/activation. To 

confirm whether the Ca2+ influx stimulation of CICR produced by ouabain is triggered 

by external Ca2+ influx through VDCC, we used Ni2+, Cd2+ and Co2+ to block the 

VDCCs. Synaptosomes were first incubated with Ni2+, Cd2+ and Co2+ (100µM) in 

combination, after which they were stimulated with ouabain (100µM) in the presence of 

external Ca2+ (1mM) for 20 minutes (Figure 8-5A&B). We found that in the absence of 

Ni2+, Cd2+ and Co2+ incubation there was a significant increase in ERK1 (128.7 + 3.8%) 
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A) B) 

 
C) 

 
Time (minutes) 

0 1 5 10 20 40 
 
Figure 8-4: Intrasynaptosomal [Ca2+] measurement with ouabain 
(A) The measurement of intrasynaptosomal cytosolic [Ca2+] treated with 1, 10 and 100µM ouabain over 
time. The black line represents the control, the red line represents 1µM ouabain, the green line represents 
10µM ouabain and the blue line represents 100µM ouabain. At time point 180 seconds Ca2+ (1mM) was 
added and the control and ouabain concentrations added at 600 seconds. (B) The net change in cytosolic 
[Ca2+] between ouabain (100µM) and control. (C) Ouabain (100µM) time course at 1, 5, 10, 20 and 40 
minutes of ERK1 and ERK2 phosphorylation/activation. The protocol used conduct this experiment is 
described in section 8.2.5. Fura data (n=2), ERK1 and ERK2 phosphorylation/activation data (n=5). 
p<0.001(***) p<0.01(**) p<0.05 (*). 
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and ERK2 (132.5 + 3.4%) phosphorylation/activation compared to the 37ºC control 

with ouabain mediated stimulation (Figure 8-5C). In the presence of Ni2+, Cd2+ and Co2+ 

ouabain mediated stimulation of ERK1 (110.6 + 5.8%) and ERK2 (109.1 + 4.5%) 

phosphorylation/activation compared to the 37º control was reduced significantly. Ni2+, 

Cd2+ and Co2+ incubation had no significant effect on the basal activity of ERK1 (97.5 + 

6.9%) and ERK2 (87.4 + 6.2%) compared to the 37ºC control. Thus looking at the net 

change in ERK1 and ERK2 phosphorylation/activation we found that there was a 

significant inhibition of ouabain mediated stimulation in the presence of Ni2+, Cd2+ and 

Co2+ blockade of VDCCs (Figure 8-5D).  

 

To further investigate the nature of the ouabain mediated stimulation of ERK1 and 

ERK2 phosphorylation/activation, we looked at the calmodulin dependence. To 

consider the possible role of calmodulin, we incubated the synaptosomes with W7 

(50µM) in the presence of external Ca2+ (1mM) and stimulated with ouabain (100µM) 

for 20 minutes (Figure 8-6A&B).  In the absence of W7 we found that there was a 

significant increase in ERK1 (147.7 + 5.6%) and ERK2 (172.7 + 3.1%) 

phosphorylation/activation compared to the 37ºC control with ouabain mediated 

stimulation. In the presence of W7 ouabain mediated stimulation had a reduced effect 

on ERK1 (112.5 + 6.5%) and ERK2 (108.3 + 5.9%) phosphorylation/activation 

compared to the 37ºC control (Figure 8-6C). Incubation of synaptosomes with W7 also 

significantly reduced the basal activity of ERK1 (90.9 + 3.2%) and ERK2 (90.0 + 5.0%) 

compared to the 37ºC control. However, comparing the net change in ERK1 and ERK2 

phosphorylation/activation after ouabain mediated stimulation we found there was a 

significant inhibition in synaptosomal samples incubated with W7 (Figure 8-6D). These 

results suggest the involvement of calmodulin in the Ca2+-dependent mechanisms 

activated by the increase in intracellular Ca2+ concentration produced by ouabain to 
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A) Con B Oua Oua+B B) 

C) D)         Net Change 
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Stimulation 
Calcium + + + + + + 
Ni2+ Cd2+ 

Co2+ - + - + - + 

Ouabain - - + + + + 
 
Figure 8-5: Ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of Ni2+, Cd2+ and Co2+ 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, B = Ni2+, Cd2+ and Co2+ and Oua = ouabain show the condition of each lane. (B) Timeline 
of the experiment showing that synaptosomes were resuspended in the presence of Ni2+, Cd2+ and Co2+ 
(100µM) with Ca2+ (1mM) added after 3 minutes. They were stimulated with ouabain (100 µM) after 10 
minutes and the experiment ended after 30 minutes of incubation. (C) The change in ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control stimulated by ouabain in the presence and 
absence of Ni2+, Cd2+ and Co2+ incubation. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=5). 
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A) Con W Oua Ouab+W B) 

C) D)         Net Change 
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W7 - + - + - + 
Ouabain - - + + + + 

 
Figure 8-6: Ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of W7 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, W = W7 and Oua = ouabain show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of W7 (50µM) with Ca2+ 
(1mM) added after 3 minutes. They were stimulated with ouabain (100 µM) after 10 minutes and the 
experiment ended after 30 minutes of incubation. (C) The change in ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control stimulated by ouabain in the presence and 
absence of W7 incubation. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is 
calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=5). 
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affect ERK1 and ERK2 phosphorylation/activation.   

 

Finally, to further define the Ca2+-dependent mechanisms involved in ouabain mediated 

stimulation of ERK1 and ERK2 phosphorylation/activation looked at the effect of Src 

inhibitor PP2. Synaptosomes were incubated with PP2 (20µM) in the presence of Ca2+ 

(1mM) and stimulated with ouabain (100µM) for 20 minutes (Figure 8-7A&B). In the 

absence of PP2 treatment synaptosomes stimulated with ouabain displayed a significant 

increase ERK1 (174.3 + 2.4%) and ERK2 (190.5 + 8.6%) phosphorylation compared to 

the 37ºC control (Figure 8-7C). In the presence of PP2, synaptosomes stimulated with 

ouabain showed a diminished increase in ERK1 (121.3 + 8.0%) but ERK2 (104.2 + 

6.8%) phosphorylation/activation compared to the 37ºC control. PP2 incubation with 

synaptosomes also resulted in a significant decrease in the basal activity of ERK1 (74.3 

+ 5.6%) and ERK2 (64.8 + 3.4%) compared to the 37ºC control. Notwithstanding, the 

analysis of the net change in ERK1 and ERK2 phosphorylation/activation showed that 

ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 

presence of PP2 incubation was significantly inhibited (Figure 8-7D).  

 

To investigate whether intracellular Ca2+ stores are activated by the Ca2+ influx in the 

above stimulation of ERK1 and ERK2 phosphorylation/activation we used thapsigargin 

to deplete the smooth endoplasmic reticulum Ca2+ pools. The synaptosomes were 

incubated with thapsigargin (1µM) in the presence of Ca2+ (1mM) for 20 minutes then 

stimulated with 100µM ouabain (Figure 8-8A&B). Ouabain mediated stimulation in the 

absence of thapsigargin resulted in a significant increase in ERK1 (143.6 + 3.9%) and 

ERK2 (140.6 + 2.5%) phosphorylation/activation compared to the 37ºC control (Figure 

8-8C). In the presence of thapsigargin ouabain mediated stimulation resulted in a 

reduced increase in ERK1 (122.3 + 5.8%) and ERK2 (123.4 + 4.9%) 
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A) Con P Oua Oua+P B) 

C) D)         Net Change 
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Stimulation 
Calcium + + + + + + 

PP2 - + - + - + 
Ouabain - - + + + + 

 
Figure 8-7: Ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of PP2 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, P = PP2 and Oua = ouabain show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of PP2 (10µM) with Ca2+ 
(1mM) added after 3 minutes. They were stimulated with ouabain (100 µM) after 10 minutes and the 
experiment ended after 30 minutes of incubation. (C) The change in ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control stimulated by ouabain in the presence and 
absence of PP2 incubation. (D) The net change of ERK1 and ERK2 phosphorylation/activation which is 
calculated by removing the basal percentage from the stimulated groups for each n. All values represent 
the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which the ERK1 and ERK2 proteins in the 
sample were immunoblotted is described in section 2.2. (n=4). 
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phosphorylation/activation compared to the 37ºC control. There was no significant 

effect on the basal activity of ERK1 (97.3 + 1.9%) and ERK2 (96.6 + 4.0%) compared 

to the 37ºC control. Consequently the net change shows that thapsigargin treatment 

caused significant inhibition of ERK1 and ERK2 phosphorylation/activation mediated 

by ouabain stimulation (Figure 8-8D). These results indicate that the smooth 

endoplasmic reticulum contributes to the increase in intracellular Ca2+ concentration 

which results in ERK1 and ERK2 phosphorylation/activation in response to Na+/K+-

ATPase inhibition. 

 

There is evidence that ouabain is able to evoke release given the intracellular effects we 

have observed with ouabain we investigated the effects on neurotransmitter release from 

nerve terminals. There were two effects of ouabain that were investigated; its effect on 

basal/spontaneous release and its role in neurotransmitter release evoked by 4-AP. 

Synaptosomes were resuspended in HBM containing NADP+ (1mM) and GDH (50 

units/ml) with Ca2+ (1mM) added at 3 minutes. Ouabain (100µM) was added at 10 

minutes and 4-AP (1mM) mediated stimulation elicited at 30 minutes. Finally, at 35 

minutes, exogenous glutamate (2.5nmol) was added as an internal standard to quantify 

the glutamate released. There was an increase in basal/spontaneous glutamate release 

when the synaptosomes were stimulated with ouabain at 100µM but not at 10µM 

(Figure 8-9A&B). However, 4-AP stimulated release with prior ouabain stimulation 

were not affected by the presence of ouabain (Figure 8-9C&D). 
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Ouabain - - + + + + 
 
Figure 8-8: Ouabain mediated stimulation of ERK1 and ERK2 phosphorylation/activation in the 
presence and absence of thapsigargin 
(A) Autoradiograph of phosphorylated ERK1 and ERK2 shown as p44 and p42, respectively labels Con = 
37ºC control, T = thapsigargin and Oua = ouabain show the condition of each lane. (B) Timeline of the 
experiment showing that synaptosomes were resuspended in the presence of thapsigargin (1µM) with 
Ca2+ (1mM) added after 3 minutes. They were stimulated with ouabain (100 µM) after 20 minutes and the 
experiment ended after 50 minutes of incubation. (C) The change in ERK1 and ERK2 
phosphorylation/activation compared to the 37ºC control stimulated by ouabain in the presence and 
absence of thapsigargin incubation. Thapsi = thapsigargin. (D) The net change of ERK1 and ERK2 
phosphorylation/activation which is calculated by removing the basal percentage from the stimulated 
groups for each n. All values represent the mean + SEM. p<0.01(**) p<0.05 (*). The procedure in which 
the ERK1 and ERK2 proteins in the sample were immunoblotted is described in section 2.2. (n=4). 
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A) B) 

 
C) D) 

 
Ouabain (µM) 

0 10 100 
 
Figure 8-9: The basal/spontaneous and 4-AP stimulated release with ouabain incubation  
Synaptosomes were re-suspended in HBM medium containing BSA (1mg/ml) NADP+ (1mM) and GDH 
(50units/ml). After 3 minutes Ca2+ (1mM) was added and ouabain (10 or 100µM) was added at 10 
minutes followed by 4-AP (1mM) addition at 30 minutes and then at 35 minutes glutamate (2.5nmol) is 
added as an internal standard. (A) A trace of the basal effect of 10 and 100µM ouabain incubation on 
glutamate release. (B) Quantification of the basal/spontaneous glutamate release averaged at 1135-1140 
seconds. (C) A trace of 4-AP stimulated glutamate release with and without prior incubation of 10 and 
100µM ouabain. (D) Quantification of the 4-AP mediated glutamate release averaged at 300-305 seconds. 
(n=1).   
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8.4. Discussion 

Under physiological conditions we found that intracellular Ca2+ stores in some way 

contribute to the maintenance and activation of Ca2+-dependent mechanism leading to 

the ERK1 and ERK2 phosphorylation/activation. In this chapter we investigated 

whether the smooth endoplasmic reticulum in pathophysiological model could 

contribute to rises in Ca2+ that might precipitate excitotoxic consequences. 

 

The pathophysiological mechanism that we wanted to mimic was ischemia which 

occurs in vivo after restrictions of blood supply to organs including the brain. The 

restriction of blood supply eventually results in necrosis through a decline in ATP 

production, rise in intracellular Ca2+ concentration and cell swelling. The 

pathophysiological model that we formulated does not actually reduce ATP production 

but rather simulates the consequences of a decline in ATP production that occurs in 

ischemia. The major user of ATP in the brain is the Na+/K+-ATPase pump which 

hydrolyses ATP to transport three intracellular Na+ into the extracellular medium in 

exchange for a two K+. A block of the Na+/K+-ATPase pump would occur as ATP 

production declines during ischemia. This can be mimicked by inhibiting the Na+/K+-

ATPase pump pharmacologically using ouabain. This is supported by the reported 

observation that ouabain inhibition of the Na+/K+-ATPase pump results in an increase in 

intracellular Ca2+ concentration which would also occur during ischemia (Tian et al., 

2001). 

 

The first objective of the chapter was to investigate if inhibition of the Na+/K+-ATPase 

pump by ouabain causes the phosphorylation/activation of ERK1 and ERK2. The dose-

dependence curve shows that there was a significant increase in ERK1 and ERK2 

phosphorylation/activation at the 10 and 100µM ouabain. We also conducted a time 
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course of Na+/K+-ATPase pump inhibition using the 100µM concentration of ouabain. 

This time course showed a peak of ERK1 and ERK2 phosphorylation/activation at 5 

minutes which gradually declines over the time course. Therefore, the effect of Na+/K+-

ATPase pump inhibition on ERK1 and ERK2 phosphorylation/activation appears to be 

slow and transient. With reference to its transient effect it is unlikely that the inhibition 

of Na+/K+-ATPase pump induced by ouabain is reversed in the condition. Rather it is 

more plausible that despite continuing Na+/K+-ATPase pump inhibition a secondary 

mechanism is activated over the time course which reverses ERK1 and ERK2 

phosphorylation/activation possibly by dephosphorylation of the kinases.  

 

The next objective of this chapter was to investigate the underlying mechanisms for 

ERK1 and ERK2 phosphorylation/activation involved by the inhibition of the Na+/K+-

ATPase pump (Schematic 8-1). The primary mechanism we investigated was the effect 

of Ca2+ and using Fura-2A we showed an increase in the intrasynaptosomal Ca2+ 

concentration occurring after ouabain treatment. We found that in a slight dose 

dependent manner Na+/K+-ATPase pump inhibition resulted in increase in 

intrasynaptosomal Ca2+ over time. The increase in Ca2+ concentration however does not 

fully correlate with the increase in ERK1 and ERK2 phosphorylation/activation. They 

are two observations that highlight this lack of correlation. Firstly, the difference in Ca2+ 

concentration (control and 100µM ouabain) at the 1 and 5 minute time points were not 

significantly different, yet ERK1/2 phosphorylation is significantly enhanced between 

the 1 and 5 minute time points. This shows that at the peak of ERK1/2 

phosphorylation/activation is not just due to increases in cytosolic Ca2+ concentration 

suggesting that another mechanism could be involved at the 5 minute time point. 

Secondly, although the increase in Ca2+ concentration continues to occur over time, 

ERK1 and ERK2 phosphorylation/activation tended to decline over the same period of 
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time. This could suggest the involvement of phosphatase activity as increases in Ca2+ 

concentration occur. In the future, it would be important to test this possibility by 

pharmacologically inhibiting phosphatases such as PP2A or PP2B and observing if this 

enhances the ERK1 and ERK2 phosphorylation/activation by allowing persistent 

activation. Overall, we conclude that Ca2+ does influence the ERK1 and ERK2 

phosphorylation/activation but there are other mechanisms that have a stimulatory effect 

on the kinase in a Ca2+-independent manner. Those latter affects may relate to the Src 

dependent effect reported (Tian et al., 2001). 

 

To investigate the mechanisms involved in the phosphorylation/activation of ERK1 and 

ERK2 induced by the inhibition of the Na+/K+-ATPase pump, we directly addressed the 

involvement of Ca2+ in the ouabain mediated stimulation of ERK1 and ERK2 

phosphorylation/activation. Thus we incubated the synaptosomes in the absence of Ca2+ 

and found that this protocol resulted in a significant inhibition of ERK1 and ERK2 

phosphorylation/activation mediated by the Na+/K+-ATPase pump inhibition. 

Furthermore, the absence of Ca2+ resulted in the reduction in the basal activity of ERK1 

and ERK2 suggesting that the previous presence of Ca2+ in the incubation maintains 

ERK1 and ERK2 activity.  

 

We considered whether the influx of Ca2+ through VDCC activity could be activating 

the smooth endoplasmic reticulum to release Ca2+ or the increase in intrasynaptosomal 

Ca2+ concentration activates the smooth endoplasmic reticulum. So we blocked the 

VDCC channels using Ni2+, Cd2+ and Co2+ and found in doing so that Na+/K+-ATPase 

pump inhibition mediated stimulation of ERK1 and ERK2 phosphorylation/activation 

was significantly inhibited. This indicates that there may be a degree of depolarisation 

of the membrane by the inhibition of the Na+/K+-ATPase pump which leads to the 
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influx of Ca2+ which is sufficient for simulating further release of Ca2+ from the smooth 

endoplasmic reticulum. However, there could also be another possibility given that Ni2+, 

Cd2+ and Co2+ incubation also inhibits the basal activity of ERK1 and ERK2 indicating 

that Ca2+ influx occurs through VDCCs under basal conditions. Thus it may be possible 

that blocking the VDCCs reduces the repletion of the intracellular Ca2+ stores thus 

limiting the subsequent release of Ca2+ when they are stimulated by other means. 

 

The final objective of this chapter was to investigate the Ca2+-dependent mechanisms 

that could be activated by the increase in intracellular Ca2+ concentration. Given that Src 

activation occurs during Na+/K+-ATPase pump inhibition we considered whether other 

Ca2+-dependent processes are activated by the increase in intracellular Ca2+ 

concentration. By incubating the synaptosomes with W7, an inhibitor of CaM we found 

this also resulted in significant inhibition of Na+/K+-ATPase pump inhibition mediated 

stimulation of ERK1 and ERK2 phosphorylation/activation. This indicates that in these 

conditions the Ca2+-dependent mechanisms are also able to stimulate the ERK1 and 

ERK2 phosphorylation/activation. This is further supported by the inhibitory effect 

CaM inhibition had on the activity of ERK1 and ERK2. 

 

We targeted Src because studies have suggested the Na+/K+-ATPase pump interacts 

with Src and inhibition of the pump results in release and activation of Src (Tian et al., 

2001;Liu et al., 2003;Wang et al., 2004a;Liang et al., 2006). We found that the 

inhibition of Src significantly reduced ERK1 and ERK2 phosphorylation/activation 

induced by the Na+/K+-ATPase pump inhibition. This finding supports the previous 

studies that have also studied the interaction between Src and the Na+/K+-ATPase 

pump. However, the inhibition is not complete suggesting that there are other pathways 

that could be stimulating ERK1 and ERK2 phosphorylation/activation. Interestingly, we 
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also found that Src inhibition also significantly reduced the basal activity of ERK1 and 

ERK2 indicating that Src could be involved in the maintenance of ERK1 and ERK2 

activity. 

 

Given the strong evidence that a Ca2+-dependent process is activated to cause the ERK1 

and ERK2 phosphorylation/activation we next investigated if the smooth endoplasmic 

reticulum contributes to the Ca2+ modulation of this activation. By inhibiting the 

SERCA pump using thapsigargin we found that ERK1 and ERK2 

phosphorylation/activation was significantly inhibited when the Na+/K+-ATPase pump 

was inhibited using ouabain. This confirms that the smooth endoplasmic reticulum 

contributes the Ca2+ by CICR invoking the possibility that this store could play a role in 

neurodegenerative processes during the pathophysiological inhibition of Na+/K+-

ATPase. We should also consider the possible contributions from the other intracellular 

Ca2+ stores such as the mitochondria and the acidic stores. Thus in the future it would be 

interesting to investigate if the dysfunction of the mitochondria further enhances the 

ERK1 and ERK2 phosphorylation/activation seen in this model. 

 

The increase in Ca2+ concentration and activation of processes such as the ERK 

pathway should result in the enhancement of the neurotransmitter release. Indeed we 

found that the basal/spontaneous release was increased by ouabain incubation however 

evoked release with 4-AP was not enhanced with prior addition of ouabain. Studies 

have suggested that the intracellular Ca2+ stores that include the smooth endoplasmic 

reticulum and mitochondria contribute to glutamate release (Lomeo et al., 2003;Amaral 

et al., 2009). The sensitivity of basal/spontaneous glutamate release induced by ouabain 

to thapsigargin requires further investigation.  

 



261 
 
In conclusion, we found that in this chapter, that Na+/K+-ATPase pump inhibition using 

ouabain results in ERK1 and ERK2 phosphorylation/activation. This stimulation is 

dependent on the activation of two pathways, Ca2+-dependent and Src stimulation of the 

ERK activation cascade. In addition, we found that the smooth endoplasmic reticulum 

contributes Ca2+ to the Ca2+-dependent compartment. This indicates that in conditions 

that produce an increase in the intrasynaptosomal Ca2+ concentration such as in 

ischemia, the smooth endoplasmic reticulum further release Ca2+ rather than sequester 

this excess Ca2+. Therefore, the smooth endoplasmic reticulum in such conditions could 

contribute neurodegenerative effects from pathophysiological consequent increase in 

intrasynaptosomal Ca2+. 
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Schematic 8-1: Ouabain mediated inhibition of Na+/K+-ATPase through multiple pathways results 
in ERK1 and ERK2 phosphorylation/activation 
Ouabain inhibition of Na+/K+-ATPase causes the plasma membrane to depolarise causing the activation 
of the VDCCs that results in Ca2+ influx. (i) Ca2+ influx through VDCCs can stimulate CaM and possibly 
Pyk2 leading to the stimulation of the ERK pathway. (ii) The CICR mechanism could also be stimulated 
to release Ca2+ and further support the ERK pathway activation by activating CaM and possibly Pyk2. 
(iii)  Na+/K+-ATPase inhibition can also cause the release of Src which is able to activate the ERK 
pathway independent of the Ca2+-dependent mechanisms. Inhibition of the SERCA pumps using 
thapsigargin results in decrease in efflux of Ca2+ thus there is a reduction of the ERK pathway 
stimulation. 
  



263 
 
 

 

 

 

 

 

 

 

 

 

 

Chapter 9 

  



264 
 
9. Discussion 

The regulation of presynaptic nerve terminal activity is important is the maintenance of 

the central nervous system signalling. Numerous studies have identified key kinases and 

phosphatases that are important in presynaptic regulation and the role of Ca2+ is often 

paramount. However, most studies to date have largely looked at the influences of 

external sources of Ca2+ that participate in these events. Here we considered the 

functional role of intracellular Ca2+ stores in presynaptic nerve terminals and the 

contribution these stores might make to the regulation of Ca2+-dependent mechanisms. 

 

We sought to study the function of intracellular Ca2+ stores solely in presynaptic nerve 

terminals, without the involvement of the postsynaptic cell body. There are limitations 

to this model firstly, due to the size of the synaptosomes it is as of yet impractical to 

directly observe changes in Ca2+ concentrations of intracellular Ca2+ stores. It would 

have been a great advantage to directly assess the intracellular Ca2+ stores’ ability to 

raise the intrasynaptosomal Ca2+ concentration. In addition, there can be no 

electrophysiological work conducted due to the size of the synaptosomes. Furthermore, 

though the experiments conducted are compared to the controls there can be additional 

experimental variability. For example, in these experiments there are neither controls 

that ensure that number of actual synaptosomes is comparable between experiments nor 

can the health of the synaptosomes is assessed during the experiments. In the future, we 

could conduct a single glutamate release after each preparation. If there is no significant 

difference between the glutamate releases it would suggest that the number of 

synaptosomes is similar and that they are healthy. 

 

Using the isolated nerve terminal model does provide numerous advantages that make it 

a desirable choice for studying Ca2+-dependent mechanisms of ERK1 and ERK2 
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phosphorylation/activation. By using the isolated nerve terminal (synaptosome) model 

we can achieve the aim aforementioned as it offers metabolically and functionally 

competent presynaptic nerve terminals that do not have axons or postsynaptic cell body 

associated. Furthermore, the synaptosomal model has been used extensively to study 

neurotransmitter release events as well as numerous signalling pathways including the 

ERK pathway.  

 

The ERK pathway is a sequential process of activation that results from Ras activation 

to Raf-1 activation which is able to phosphorylate/activate MAPK/ERK kinase 1 

(MEK1) and MEK2 which then dually phosphorylates/activates extracellular signal-

regulated kinase 1 (ERK1) and ERK2. This cascade can be activated by ‘classical’ route 

which involves the activation of the tropomysin related kinase (Trks) by neurotrophic 

factors which activates Ras by the recruitment of growth factor receptor-bound protein 2 

(Grb2) and son of sevenless (Sos). Furthermore, increases in intracellular Ca2+ 

concentration can also activate Ca2+-dependent mechanisms that promote the activation 

of the ERK pathway. Thus increases in Ca2+ concentration could be reflected by the 

increases in the ERK1 and ERK2 phosphorylation/activation in cases in which direct 

measurement of Ca2+ concentration is less feasible. This case applies to studying 

intracellular Ca2+ stores in the synaptosomal model in which any potential Ca2+ released 

from intracellular Ca2+ stores is too small to distinguish from background in such a 

small compartment. 

 

The first aim that we addressed in this thesis was investigating the Ca2+-dependent 

phosphorylation/activation of ERK1 and ERK2 and establishing a model in which the 

external and internal sources of Ca2+ could be delineated. We have shown that increases 

in intrasynaptosomal Ca2+ concentration by Ca2+ influx through voltage-dependent Ca2+ 
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channels (VDCC) or direct Ca2+ influx through ionophore result in the significant 

increase in ERK1 and ERK2 phosphorylation/activation. By removing external Ca2+ we 

have shown that this stimulation of ERK1 and ERK2 is completely Ca2+-dependent. 

Thus this suggests Ca2+-independent mechanisms are not involved in ERK1 and ERK2 

phosphorylation/activation under the conditions used.  

 

There are numerous Ca2+-dependent mechanisms that have been identified which can 

lead to the phosphorylation/activation of ERK1 and ERK2 but these are not as well 

characterised as the ‘classical’ TrkB receptor activation. However, Ca2+-dependent 

mechanisms that have been identified show that these mechanisms interact with the 

components of the ‘classical’ ERK pathway. The components that Ca2+ target induce 

the promotion of the Ras activation or through direct phosphorylation/activation of c-

Raf-1 or B-Raf. The Ca2+-dependent mechanisms that have described include proline-

rich tyrosine kinase 2 (Pyk2) activation of Src, calmodulin (CaM), Ca2+/calmodulin-

dependent kinase II (CaMKII), Ras-GEFs and Ras-GAPs.  

 

The Pyk2/Src mechanism has been shown to be activated by the increases in 

intracellular Ca2+ concentrations and activate Ras by recruiting Grb2 which recruits Sos 

via two pathways (Lev et al., 1995;Dikic et al., 1996). In the first pathway Pyk2 

activation of Src activation results in the phosphorylation of Shc domains by Src and in 

the second Pyk2 phosphorylation by Src can directly recruit Grb2 which recruits Sos. 

Although we have not directly assessed the involvement of Pyk2 but using the Src 

inhibitor we were able to assess if this is type of pathway activated by increasing 

intracellular Ca2+ concentrations. Indeed we find that inhibition of Src does result in the 

reduction of ERK1 and ERK2 phosphorylation/activation. In addition, we found that 
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Src inhibition also resulted in significant reduction in the basal activity of ERK1 and 

ERK2. 

 

We also investigated the effect of CaM inhibition on ERK1 and ERK2 

phosphorylation/activation. CaM activation has been shown to have both stimulatory 

and inhibitory effects on ERK1 and ERK2 phosphorylation/activation. K-Ras 

interaction with CaM is shown to inhibit its activity which decreases c-Raf-1 activation. 

The stimulatory effects of CaM could be induced by activation of GEFs such as 

RasGRF which enhances Ras activation. Furthermore, it has been shown that it can 

promote PI3K to stimulate H-Ras which leads to c-Raf-1 activation. These differing 

effects of CaM could be cell/compartment specific. Nevertheless, we found that in the 

synaptosomal model CaM had stimulatory effect on ERK1 and ERK2 

phosphorylation/activation. Thus DHPG and ouabain mediated stimulation of ERK1 

and ERK2 phosphorylation/activation was significantly reduced by CaM inhibition. 

Furthermore, the extent to which the basal activity of ERK1 and ERK2 was affected 

during CaM inhibition suggests that CaM activation is a key component to the Ca2+-

dependent mechanisms of ERK1 and ERK2 phosphorylation/activation maintaining the 

high activity of these kinases. Interestingly, the basal effect of CaM inhibition are 

enhanced with time suggesting that there is a mechanism by which ERK1 and ERK2 are 

dephosphorylated which could involve PP2A and/or MAPK phosphatases (MKPs) 

activity. 

 

Another consequence of CaM activation is the downstream activation of CaMKII which 

was examined in the DHPG mediated stimulation paradigm. During the stimulation 

CaMKII only reduced ERK1 phosphorylation/activation but did not affected ERK2 

phosphorylation/activation. We found that CaMKII has a stimulatory effect on ERK1 
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and ERK2 as inhibition of CaMKII resulted in the reduction of basal activity. It has 

been shown that CaMKII can exert facilitatory effects on ERK1 and ERK2 

phosphorylation/activation by inhibiting the SynGAP and thereby reducing the 

hydrolysis of GTP on Ras. However, SynGAP has been described in the postsynaptic 

cell body and can colocalise with NMDA receptors and scaffolding proteins found on 

the postsynaptic cell body. Another possible mechanism for the effect of CaMKII 

inhibition may be that it reduces Src activity as has been investigated using the vascular 

smooth muscle cells (Ginnan & Singer, 2002).  Therefore, the mechanism by which 

CaMKII is able to stimulate ERK1 and ERK2 phosphorylation/activation requires 

further investigation. It would be interesting to observe if indeed CaMKII is able to 

stimulate Src by possibly directly determining if CaMKII inhibition reduces Src 

phosphorylation in nerve terminals. Thus, we have identified several Ca2+-dependent 

mechanisms in presynaptic nerve terminals that could be stimulated but also appear to 

maintain the basal activity of ERK1 and ERK2. 

 

Nevertheless the Ca2+-dependent mechanisms could also have other effects that are 

independent of intracellular Ca2+ store signalling. There is a study which suggests that 

Src inhibition results in the reduction of VDCC during 4-AP mediated stimulation 

(Wang, 2003). This could mean that the inhibition observed of 4-AP mediated 

stimulation of ERK1 and ERK2 phosphorylation/activation during Src could be due to 

its inhibitory effects on VDCCs. In addition, ouabain mediated stimulation was shown 

to be partially inhibited by Src inhibition which again could be due to the VDCC 

inhibition. However, ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation was completely reduced by Src inhibition. Furthermore, Src 

inhibition effects on the basal activity of ERK1 and ERK2 could not be due to inhibition 

of VDCCs as they are not activated at ‘rest’. This suggests that there could be two 
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potential pathways in which Src is able to enhance ERK1 and ERK2 

phosphorylation/activation. Firstly, phosphorylation of Shc and/or Pyk2 by Src could 

enhance recruitment of Grb2 and subsequent recruitment of Sos could lead to the 

activation of Ras. Secondly, enhanced Src activity during stimulation could 

phosphorylate VDCCs to increase the influx of Ca2+ which could be a positive feedback 

to mechanism to further enhance its activity or other Ca2+-dependent mechanisms. 

 

The main focus of this thesis is to study the functional role of intracellular Ca2+ stores in 

presynaptic nerve terminals. So we constructed a repletion model on the hypothesis that 

the intracellular calcium stores are depleted by the synaptosomal preparation procedure. 

Interestingly, we found that a difference in response to 4-AP and ionomycin mediated 

stimulation under depleted conditions. 4-AP mediated stimulation in the absence of Ca2+ 

only during the preincubation stage affected ERK1 but had no significant effect on 

ERK2. In contrast, ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation was completely abolished by the absence of Ca2+ during the 

preincubation stage. This shows that the repletion of intracellular Ca2+ stores is an 

important step without which certain stimulation paradigms might not stimulate.  

 

However, this does separate the source of Ca2+ that is responsible for this ERK1 and 

ERK2 phosphorylation/activation. It could be that only extracellular Ca2+ influx is 

responsible or that it is the trigger to activate intracellular Ca2+ stores that could 

contribute to the phosphorylation/activation of ERK1 and ERK2. The third possibility is 

that it is the combination of Ca2+ from extracellular and intracellular Ca2+ sources that 

contribute to ERK1 and ERK2 phosphorylation/activation. Thus in order to delineate 

the possible internal source of Ca2+ from the external source of Ca2+ we formed a 

protocol in which the intracellular Ca2+ stores undergo a repletion stage. This is based 
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on the assumption that intracellular Ca2+ stores might be depleted to a certain extent by 

the synaptosomal preparation and so requires repletion to be fully functional. We found 

that this repletion step did not affect the viability and responsiveness of the 

synaptosomes. 

 

The second aim that we addressed in this thesis is the functional role of intracellular 

calcium store found in nerve terminals. The intracellular Ca2+ stores that we have 

targeted in this thesis include the smooth endoplasmic reticulum, mitochondria and 

acidic stores. 

 

In order to investigate the presence and mobilisation of intracellular Ca2+ stores 

supporting Ca2+-dependent stimulation of ERK1 and ERK2 phosphorylation/activation 

we took a pharmacological approach to dissect each store individually. The smooth 

endoplasmic reticulum was the first potential Ca2+ store that we examined as it has been 

shown to be very important in other cell systems such as the smooth muscle cells. 

Furthermore, smooth endoplasmic reticulum has also been identified in nerve terminals 

but the data are limited. From the experiments that we have conducted here the presence 

of smooth endoplasmic reticulum Ca2+ stores effective in stimulating ERK1 and ERK2 

phosphorylation/activation was confirmed by several experiments. 

 

Smooth endoplasmic reticulum is able to store Ca2+ which can be released into the 

cytosol thus increasing Ca2+ concentration and thus provide the facilitatory modulation 

of Ca2+-dependent mechanisms. There are two receptors that are found on the smooth 

endoplasmic reticulum that able to efflux Ca2+ from the store these include the inositol 

1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs). 
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The second function of the smooth endoplasmic reticulum is to sequester Ca2+ from the 

cytosol during stimulation. There were two instances which support this conclusion, 

firstly, thapsigargin incubation throughout the preincubation and stages showed that 

there was an enhancement of 4-AP mediated stimulation. Yet, the protocol in which 

thapsigargin was only incubated during the preincubation stage showed that 4-AP 

mediated stimulation is inhibited. This could suggest that the SERCA pumps have 

recovered during the stimulation stage and are sequestering the influx of Ca2+ thus 

reducing the stimulation of Ca2+-dependent mechanisms. It is also likely that the 4-AP 

mediated stimulation is reduced because it is unable to stimulate the Ca2+ release from 

the smooth endoplasmic reticulum. The second piece of evidence that supports the role 

of smooth endoplasmic reticulum ability to sequester cytosolic Ca2+ comes from the 

enhancement of ERK1 and ERK2 phosphorylation/activation from Ca2+ released from 

the mitochondria. 

 

The second store that was investigated as a potential Ca2+ store was the mitochondria. 

Mitochondria are known to be involved in ATP production and Ca2+ homeostasis but 

we found that it could also be involved in the release of Ca2+ during 4-AP mediated 

stimulation. This is supported by another study which points to the function of Na+/Ca2+ 

exchanger on the mitochondria to release Ca2+ as the Na+ concentration increases by 

depolarisation of the plasma membrane (Yang et al., 2003). However this requires 

further investigation as in the absence of Ca2+ there was a complete reduction of the 

ERK1 and ERK2 phosphorylation/activation. If Ca2+ is released from the mitochondria 

during depolarisation then ionomycin mediated stimulation should not inhibited but 

enhanced by prior release of mitochondrial Ca2+.  
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The third store that was investigated was the acidic stores that include lysosomes and 

SSVs. The finding that ERK1 and ERK2 basal activity is decreased by depleted acidic 

stores suggest that the acidic stores are involved in the maintenance of ERK1 and ERK2 

phosphorylation/activation. However, areas of the acidic stores need to be explored as it 

is suspected that it might involve stimulating Ca2+ release from RyR on the smooth 

endoplasmic reticulum. This could also indicate that multiple stores in the nerve 

terminals are activated during stimulation. 

 

The third aim of this thesis was to investigate the Ca2+-induced Ca2+ release (CICR) and 

IP3-induced Ca2+ release (IPCR) mechanisms in nerve terminals. The RyR are 

stimulated by increases in intracellular Ca2+ concentrations that can be brought about 

Ca2+ influx. By using high concentrations of ryanodine we inhibited RyR and showed 

that 4-AP and ionomycin mediated stimulation of ERK1 and ERK2 

phosphorylation/activation is significantly inhibited. We also noted that inhibition of 

RyR during 4-AP mediated stimulation was only partially inhibited but ionomycin 

mediated stimulation was completely inhibited. This perhaps indicates that other Ca2+-

dependent mechanisms are activated by 4-AP mediated stimulation. 

 

The IP3R are stimulated by IP3 which is produced the metabolism of PIP2 by PLC was 

also investigated. We found that 4-AP, ionomycin and DHPG mediated stimulation 

resulted in the activation of PLC and that inhibition of the IP3R resulted in the reduction 

of the ERK1 and ERK2 phosphorylation/activation. However, there are nonspecific 

effects of drugs that are used to study IP3R. Heparin nonspecific actions include 

uncoupling of G-protein signalling and activating RyR (Ehrlich et al., 1994) (Taylor & 

Broad, 1998). Another commonly used IP3R inhibitor is xestospongin C which has been 

used to inhibit Ca2+ signalling from IP3Rs (Mathew & Hablitz, 2008). However, 
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xestospongin C has also been described as a potent inhibitor of the SERCA pump 

(Castonguay & Robitaille, 2002).We considered using 2-aminoethoxydiphenyl borate 

(2-APB) to inhibit IP3R. While 2-APB is widely used as an IP3R antagonist there have 

been studies which point to nonspecific actions on the SERCA pump (Bootman et al., 

2002;Peppiatt et al., 2003). Although at lower concentrations which we used the non-

specific effects have been shown to be reduced. Thus, we consider that the reduction of 

ERK1 and ERK2 phosphorylation/activation in the presence of 2-APB to be due to 

specific inhibition of IP3R. 

 

In addition, to show that PLC activity is involved in the production of IP3 we used a 

PLC inhibitor called U-73122 which inhibited the ERK1 and ERK2 

phosphorylation/activation. This was true for the 4-AP, ionomycin and DHPG mediated 

stimulation paradigms. Interestingly, ionomycin had a reduced effect on IP3R and PLC 

activity when compared to its effect on RyR perhaps indicating that it is more 

favourable towards the CICR mechanism. However, it could also be possible that these 

effects of PLC inhibition could be due to nonspecific effects. In a study using smooth 

muscle cells it is reported that U-73122 was able to inhibit direct IP3R and ryanodine 

receptor activation without involving the activation of PLC suggesting that it has 

nonspecific actions on the SERCA pumps (Macmillan & McCarron, 2010). However, in 

our experiments we found that ionomycin mediated stimulation inhibitory effects for 

thapsigargin was different to the inhibitory effects of U-73122. This could indicate that 

in the synaptosomal model we are not observing the nonspecific effect of U-73122. 

Nevertheless, we could clarify if this nonspecific effect is being produced by directly 

stimulating IP3R and RyR and observing if U-73122 is able to inhibit these responses. If 

U-73122 is able to inhibit then this could bring into question our previous conclusions 

about PLC activation but at the very at least the results could further support the 
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involvement of the smooth endoplasmic reticulum in 4-AP, ionomycin and DHPG 

mediated stimulation. 

 

The intracellular Ca2+ stores therefore play an important function in presynaptic nerve 

terminals which could include facilitation of neurotransmitter release. We have done 

some preliminary experiments that examine the effect of intracellular Ca2+ stores on 

glutamate release. DHPG mediated stimulation indicates that there is a facilitation of 

glutamate release. We have shown that intracellular calcium stores release sufficient 

Ca2+ to stimulate processes that are facilitatory it is hypothesised that 4-AP mediated 

stimulation should be enhanced by intracellular Ca2+ stores. Previous studies have 

examined the effect of intracellular Ca2+ stores on glutamate release by using α-

Latrotoxin which causes a massive exocytotic release. The study showed that α-

Latrotoxin are dependent on Ca2+ released from intracellular sources and require the 

activation of PLC (Davletov et al., 1998). However, the use of α-Latrotoxin is not very 

physiological as it also causes Ca2+ independent release by forming pores that allow the 

neurotransmitter to ‘leak’ out into the cytosol. Thus, later studies have utilised DHPG 

mediated stimulation to potentiate glutamate release as it does not have non-

physiological effects and can directly mobilise the smooth endoplasmic reticulum with 

minimum side effects. In functional studies there is evidence which suggests that DHPG 

mediated stimulation can result in neurotransmitter release (Moroni et al., 1998;Reid et 

al., 1999). The mechanism of action that is proposed to enhance glutamate release 

through DHPG mediated stimulation has already been described in Chapter 4. 

 

Furthermore, intracellular Ca2+ stores could play a significant role in pathophysiological 

conditions. As we have shown that inhibition of Na+/K+-ATPase pump using ouabain 

triggers release from the smooth endoplasmic reticulum which could promote the 
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accumulation of cytosolic Ca2+ concentration. We have observed the accumulation of 

intracellular Ca2+ with time and this could also be the trigger for the increase in 

glutamate release observed with ouabain (100µM). This could therefore cause 

excitotoxic conditions is the surrounding area of the synapse by excessively activating 

postsynaptic targets such as ionotropic glutamate receptors. These are important targets 

in the treatment of ischemia as it is suggested that excessive glutamate presence in the 

synaptic cleft over stimulates these receptors causing excessive Ca2+ influx. In addition, 

the condition of the presynaptic terminal could be made worse by the stimulation of 

glutamate receptors found on the presynaptic nerve terminal. We have already shown 

that mGluR1/5 stimulation can result in the phosphorylation/activation of ERK1 and 

ERK2 which promotes the mobilisation of SSVs. Therefore, from the initial insult in 

which cytosolic Ca2+ concentrations are continuously rising and the intracellular Ca2+ 

stores contribute to this increase. You can get positive feedback mechanism that 

continuously promotes the accumulation of Ca2+ and ultimately neurosis of the 

presynaptic nerve terminals and surrounding postsynaptic cell bodies if not controlled. 

 

Another pathophysiological condition that intracellular calcium stores could be 

significantly contributing to is epilepsy. Levetiracetam is an antiepileptic drug whose 

mechanism of action is unknown but there have been reports that suggest that it could 

due to binding of SV2A (Lynch et al., 2004;Gillard et al., 2006). However, a study 

showed that variation in the SV2A genes does not influence the predisposition towards 

epilepsy. Furthermore, these variations of SV2A do not influence the levetiracetam 

response, perhaps indicating that SV2A is not the site for levetiracetam mechanism of 

action (Lynch et al., 2009). In addition, the expression of SV2A is significantly reduced 

in several brain areas such as the hippocampus during chronic epilepsy (van Vliet et al., 
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2009). This brings into question the effectiveness of levetiracetam as an epileptic drug 

through binding to SV2A.  

 

In testing the effectiveness of levetiracetam we have found that it is able to significantly 

inhibit IP3R found on the smooth endoplasmic reticulum which results in the reduction 

of ERK1 and EKR2 phosphorylation/activation and other possible Ca2+-dependent 

mechanisms. The activation of the ERK pathway and Ca2+-dependent mechanisms can 

result in the promotion of the neurotransmitter release. However, it is possible in 

epileptic conditions as with ouabain small insult can result in major changes when the 

Ca2+ homeostasis is not maintained sufficiently. The preliminary glutamate release data 

did not show a significant inhibition of the glutamate release with levetiracetam. 

However, this could be due to the property of levetiracetam in which it only affects 

epileptic synapses. Thus perhaps the use of mice those that are prone to the epileptic 

profile could reveal the levetiracetam inhibitory effect on glutamate release. There are 

studies that have shown that firstly that levetiracetam is able to inhibit both IP3R and 

RyR on the smooth endoplasmic reticulum (Nagarkatti et al., 2008). Furthermore, there 

is evidence which shows a novel effect of levetiracetam which is the inhibition of IP3-

dependent mechanisms that increase intracellular Ca2+ concentrations in PC12 cells. 

Levetiracetam was shown to inhibit IP3-dependent increase in Ca2+ by inhibiting the 

IP3R and reducing the Ca2+ concentration (Cataldi et al., 2005). Another interesting 

finding is that other antiepileptic drugs can effect on neurotransmitter release through 

association with IP3R (Yamamura et al., 2009) and RyR (Yoshida et al., 2005).  

 

It would be of interest to observe how the Ca2+-dependent mechanisms interact with 

other known stimulatory pathways of ERK1 and ERK2 such as BDNF stimulation of 

TrkB receptors. BDNF is known to increase ERK1 and ERK2 
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phosphorylation/activation thus could the release of Ca2+ from intracellular Ca2+ stores 

using the stimulatory paradigms described in this thesis result in a further enhancement.  

 

In conclusion we have presented evidence in the thesis which point to the presence of 

synaptosomal Ca2+ stores such as smooth endoplasmic reticulum, mitochondria and 

acidic stores in presynaptic nerve terminals. All of these stores were capable of 

modulating Ca2+-dependent mechanisms leading to the ERK1 and ERK2 

phosphorylation/activation during basal and stimulatory conditions. The smooth 

endoplasmic reticulum has been shown to both release Ca2+ into the cytosol and 

sequester Ca2+ from the cytosol. Mitochondria could also be a store for Ca2+ release 

during 4-AP mediated stimulation and due to the close proximity to the smooth 

endoplasmic reticulum might be able to modulate the function of each other. Acidic 

stores have been shown to maintain the basal activity of ERK1 and ERK2. We also 

investigated some of the Ca2+-dependent mechanisms that could be activated by Ca2+ 

released from the intracellular Ca2+ stores. We found that Src, CaM and CaMKII could 

be some of the Ca2+-dependent mechanisms that are activated which result in ERK1 and 

ERK2 phosphorylation/activation. Overall, this thesis points to the complexity of Ca2+-

dependent mechanisms in nerve terminals due to the presence of intracellular Ca2+ 

stores. 
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Schematic 9-1: Presynaptic pathways that phosphorylate/activate ERK1 and ERK2 through Ca2+-
dependent mechanisms. 
4-AP mediated depolarisation of plasma membrane can lead to Ca2+ influx through VDCCs and direct 
Ca2+ influx is mediated by ionomycin. (i) Extracellular Ca2+ influx through VDCCs can activate CaM and 
possibly Pyk2. (ii) Stimulation of Ca2+ influx through VDCCs and ionomycin can result in direct 
stimulation of RyR and PLC that result in Ca2+ efflux from RyR and IP3Rs. (iii) DHPG stimulation of 
mGluR1/5 receptors results in PLC activation leading to the breakdown of PIP2 that increase IP3 
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concentration to stimulate IP3Rs causing Ca2+ efflux. (iv) VDCCs can be inhibited by the activation of 
inhibitory GPCRs which can inhibited by the depletion of the intracellular Ca2+ stores possibly through 
PLC stimulation leading to PKC activation. (v) 4-AP mediated depolarisation can also significantly 
increase [Na+] which could impact on the mitochondrial Ca2+ store to efflux Ca2+ that can be taken up by 
the SERCA pumps found on smooth endoplasmic reticulum but can also be sufficient to stimulate CaM 
and possibly Pyk2. The acidic store such as SSVs could also contribute Ca2+ to Ca2+-dependent 
mechanisms that cause ERK1 and ERK2 phosphorylation/activation. (vi) Na+/K+-exchanger inhibition 
causes membrane depolarisation resulting in VDCC activation that causes Ca2+ influx which causes 
further Ca2+ efflux from intracellular Ca2+ stores. CaM can stimulate Ras-GEFs and CaMKII. CaMKII 
activation can inhibit SynGAP and possibly phosphorylate Src while Pyk2 stimulation results in Grb2 
activation and Src phosphorylation. These pathways have a positive contribution to the ERK pathway 
leading to ERK1 and ERK2 phosphorylation/activation. ERK1 and ERK2 phosphorylation/activation and 
CaMKII activation can increase the mobilisation of synaptic vesicle from the reserve pool (RP) to the 
ready-releasable pool (RRP). 
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