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Abstract

In this work we describe a novel parallel space-time algorithm for the computation of periodic

solutions of the driven, incompressible Navier-Stokes equations in the turbulent regime. Efforts to

apply the machinery of dynamical systems theory to fluid turbulence depend on the ability to accurately

and reliably compute such unstable periodic orbits (UPOs). These UPOs can be used to construct the

dynamical zeta function of the system, from which very accurate turbulent averages of observables

can be extracted from first principles, thus circumventing the inherently statistical description of fluid

turbulence.

In order to identify these orbits we use a space-time variational principle, first introduced in 2004.

This approach has not, to the best of our knowledge, been used before on dynamical systems of high

dimension because of the formidable storage and computation required. In this thesis we describe

the utilization of petascale high performance computation to the problem of applying this space-time

algorithm to hydrodynamic turbulence.

The lattice-Boltzmann method is used to simulate the Navier-Stokes equations, due to its locality,

and is implemented in a fully-parallel software package using the Message Passing Interface. This

implementation, called HYPO4D, was successfully deployed on a large variety of platforms both in the

UK and the US with an extremely good scalability to tens of thousands of computing cores. Based

on this fluid solver other routines were developed, for the systematic location of suitable candidate

spacetime minima and their numerical relaxation, using the gradient descent and conjugate gradient

algorithms.

Following this methodology, several UPOs are identified in homogeneous turbulence driven by an

Arnold-Beltrami-Childress force field in three spatial dimensions, at Reynolds numbers corresponding

to weakly-turbulent flow. We characterize the transition to turbulence in the ABC flow and the periodic

orbits computed, for a flow with Re = 371, after the transients have died down. The work concludes

with a discussion of the potential for this approach to become a new paradigm in the study of driven

dissipative dynamical systems.
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“Etant données des équations ... et une solution particulière quelconque de ces équations, on peut

toujours trouver une solution périodique (dont la période peut, il est vrai, étre trés longue), telle que

la différence entre les deux solutions soit aussi petite qu’on le veut, pendant un temps aussi long qu’on

le veut. D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, cest qu’elles sont, pour

ansi dire, la seule bréche par où nous puissions esseyer de pénétrer dans une place jusqu’ici réputée

inabordable.”

– Henri Poincaré [1]

“I, whose calling was really only that of a violinist storyteller, was responsible for the provision of music

for our group, and I then discovered how a long time devoted to small details exalts us and increases

our strength. ”

– Hermann Hesse [2]
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CHAPTER 1

Introduction

1.1 Background

FLUID dynamics is arguably one of the most crucial areas of science and technology, present in

areas ranging from the flow of blood in the human body to very large flows of plasma inside

stars. The most common distinction is the one that separates laminar flows from turbulent ones. In

laminar flows the velocity and pressure fields are characterized by a low time dependence. Such flows

are easily predictable and smooth. Turbulent flow on the other hand exhibits highly time-dependent

velocity and pressure fields which appear in large measure unpredictable. This can give rise to chaotic

behaviour and thus to a wealth of complex spatio-temporal patterns that have fascinated mankind from

times immemorial.

The transition between these two states can in most cases be quantified by a dimensionless control

parameter that expresses the ratio between inertial and viscous forces within the fluid. In this work we

are concerned with the study of turbulent flow. Whenever laminar flow is addressed it will be used as a

benchmark or to better illustrate a given point in the work.

The study of turbulence can be described as one of the most important fundamental problems still

faced by current research, sometimes hailed as the last great unsolved problem from classical mechanics

[3]. Besides the huge theoretical challenge, it is of great practical relevance in areas as diverse as weather

forecasting, transport and dispersion of pollutants, gas flows in engines, blood circulation, cosmological

flows and many others.

As pointed out by several authors, e.g. [3, 4], it is remarkable that the fundamental equations which

are widely believed to implicitly contain all of turbulence dynamics (the Navier-Stokes equations) have

been known for more than 150 years, with so few exact results following from them.

Most engineering applications in which turbulent behaviour is relevant are usually focused in find-

ing ways to minimize or suppress such behaviour. In a typical application, such as flow of a single

component fluid through a pipe, the onset of turbulent behaviour increases the rate of energy dissipation

thus requiring more work to be performed on the system in order to maintain the flow rate. However,
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turbulence can also play a useful role, for example, by enhancing the mixing of different components in

a combustion reaction.

Computational simulation and analysis provides us with ways to test theoretical models and to vi-

sualize scales of matter (in both space and time) which are out of bounds to experimental studies. The

case of turbulent hydrodynamics illustrates this well, being one of the first problems to be simulated in

modern computers, from the 1940s onwards [5]. Due to the huge number of degrees of freedom active

in turbulent flow, it becomes extremely difficult to track any quantities experimentally. The present work

describes a computational investigation of some aspects of flow behaviour in this regime and describes

and illustrates a novel way to address the problem.

The computational complexity scales with a power of ∼ 9/4 of the number of degrees of freedom

and typical flows that can be seen in everyday life are still out of the reach of present day computers [6].

As in the case of protein folding (another cutting edge problem which is also described by the equa-

tions of classical mechanics), the time taken to simulate a relatively small system can quickly become

unfeasible.

Questions that can be easily stated, such as what are the heat transfer properties of a turbulent flow

or the force applied by a fluid to its boundary in this regime, still continue to evade any general answers.

After the onset of turbulence, fluid flow becomes intrinsically chaotic, varying randomly both in space

and in time, making it extremely difficult to extract universal dynamical properties. In this context, we

would like to find some easily reproducible flows that could represent the actual turbulent state.

The importance of periodic orbits in dynamical systems has been recognized at least since the work

of Poincaré [1]. The attracting set [7] for a driven dissipative system can be thought of as the closure

of the set of all the unstable periodic orbits (UPOs) of the system. These UPOs provide a countable

sequence of orbits and can therefore provide a useful characterisation of the structure and dynamics

of the attractor [8]. Following the renewed interest in dynamical systems that began in the 1960’s, a

concerted picture has emerged of how to obtain averages from these UPOs in a systematic fashion. An

excellent introduction to the formalism and main ideas of this approach, which will be discussed in

Chapter 2, can be found in the book by Cvitanović et. al. [9].

For the sake of clarity we will sketch here the main lines of thought, which will be developed later

on in this work. It is widely accepted that a driven dissipative dynamical system will spend most of its

time in the neighbourhood of the UPOs for that system. How long it will hover around one of them will

depend on the stability eigenvalue of that UPO, as explained in more detail in section 2.3. These orbits

are highly unstable, otherwise the whole system could easily become locked in periodic behaviour,

something which is not observed in turbulent dynamics.

Following this approach, it was the purpose of this work to test a novel methodology for computing

UPOs in turbulent flow, with the long-term goal to construct a digital library of these orbits, in order to

compute any given observable that we wish. Although this is, in computational terms, very expensive
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to achieve, it needs to be done only once. Indeed, this approach has the potential to ultimately turn the

study of turbulence into an activity of digital curation, since every time we wish to compute some other

average of the flow we will only need to perform a summation on the UPO library, with no need to redo

the initial value problem. The other great advantage is that this computation converges exactly to the

true value, with an accuracy that depends on the number of lower period UPOs we include.

It is one of the main goals of this study to establish the feasibility of this methodology and discuss

what further steps can be made in order to take full advantage of it.

1.2 Outline of the work

The present work is an application of the theory of dynamical systems to 3D incompressible viscous

flow [10]. In section 2.2 we present the Navier-Stokes equations, and discuss some of their properties, as

well as the main approaches that have been used to simulate turbulent flow. In section 2.3 we introduce

some concepts of dynamical systems theory which are relevant to this work, in particular the dynamical

zeta function formalism (DZF) which allows us to extract averages of the time-dependent flow from the

UPOs of a given system.

The literature on the subject of UPOs in dynamical subjects comprises a huge body of work. Most of

it can for practical purposes be divided in two main (broad) categories. The first one is the identification

of such orbits in experimental data, usually in the form of time series. One avenue where this approach

has been particularly successful is neuronal dynamics [11, 12]. So et al. [12] suggest that UPOs can

be used as a natural symbolic representation of the states of a complex system. This methodology is

then applied to the electrical activity of cells from the hippocampus of rats and the large-scale activity

from human cortical electroencephalographs. Another fruitful application lies in the control of chaos in

experimental situations where the knowledge of periodic orbits is used to enhance the performance of a

given system [13].

The other large category where these ideas have been applied focuses on the discussion of numerical

methods to track UPOs and the accuracy of the predictions thus obtained on systems with (relatively)

few degrees of freedom, such as the Lorenz model [14, 15] and shell models of turbulence [16], which

approximate the more difficult problem of fluid turbulence. We discuss this issue in section 2.4, where

variational methods for identifying UPOs are described.

The first authors to identify UPOs within the Navier-Stokes equations were Kawahara and Kida,

who published their findings in 2001 [17]. The particular configuration considered by these authors

was plane Couette flow (flow between two parallel planes with a fixed relative velocity between them

acting as the driving force on the viscous fluid) within a weakly-turbulent regime. In the aforementioned

work and its continuation [18] the authors describe several periodic solutions and report good agreement

between the averages obtained through these solutions and the whole time sequence of the flow. Exam-
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ples of the computed quantities include the Reynolds shear stress and the mean velocity and vorticity

components [17]. Their findings illustrate that periodic solutions can indeed be found in turbulent 3D

hydrodynamics. This served as an initial inspiration for the present work and will be referred to often

throughout.

Several methods to track and identify UPOs have been proposed in recent years, which will be

discussed in section 2.4. In this work we chose to use the variational approach, following the method

suggested by Lan and Cvitanović [19]. This variational principle is described in section 2.4.2. We

discuss there how to efficiently parallelize time and space, by simultaneously searching for the UPO

and its period in phase space. This is achieved by minimising a well defined functional that measures

the distance in phase space between the trajectory and a neighbouring UPO.

This novel approach to turbulence studies requires a very substantial amount of resources. A col-

lection of time slices of the system must be loaded onto the (RAM) memory of a large supercomputer.

Since the flow studied here is three-dimensional this collection of slices, which we will call orbit from

now on, can be said to be 4D. As shown in Chapter 5, for turbulent flow even the smallest UPOs already

have periods of a magnitude that place the whole 4D orbit size in the domain of terabytes of data.

Two things follow immediately from this. The first one is that since we are dealing with such vast

amounts of data the code we use must be as efficient and scalable as possible. In order to achieve

this we have chosen to use the lattice-Boltzmann method to simulate incompressible fluid flow. This

has several advantages, discussed in detail in Chapter 3. Perhaps the most relevant to this work lies in

its requiring only communication between nearest neighbours on a computational grid, thus making it

highly parallelizable. Using some of the world’s current largest supercomputers we have demonstrated

the scalability of the code developed in this project up to several tens of thousands of cores. It is also

straightforward to apply the variational principle to the particular type of lattice-Boltzmann model used

in this work, and this is carried out in Appendix A.

The other consequence of the memory requirements, already hinted at, is that this work would

not be possible without access to massive computational resources. In Appendix B we present and

discuss some new paradigms and technologies required to efficiently utilize these resources. More

specifically, we initially studied the possibility of performing the larger simulations reported in this work

over geographically distributed resources, in order to harness the required amount of memory, using the

framework and techniques of grid computing [20]. With the advent of our access to two petascale

resources, this possibility was temporarily abandoned. Nevertheless we believe this is definitely an

avenue worth pursuing, and that the resource providers should be encouraged to unify their efforts and

machines in a transparent, seamless way, since there will always be problems too big to fit onto a single

machine. Therefore, part of this work is described in some detail in section B.3.

The present work has been carried out in close cooperation with computer scientists, in the frame-

work of the EPSRC project “User-Friendly Authentication and Authorization for Grid Environments”,



1.2. Outline of the work 20

ref. EP/D051754/1. With the emergence of grid computing, and the increasingly distributed nature of

computational science, security and usability have become core aspects that cannot be overlooked and

thus a discussion of some relevant issues in this area is included in section B.4.

In Chapter 4 we describe the code that we have written to simulate turbulent flow using the lattice-

Boltzmann method. The software package was dubbed HYPO4D, which stands for “Hydrodynamic

periodic orbits in 4 dimensions”. It is written in the C programming language and uses MPI (Message

Passing Interface) for parallelization. In that chapter the precise lattice-Boltzmann algorithm used is

described, as well as the strategies adopted for optimizing the parallel performance of the code. We

have used two typical systems, whose solutions are known, to benchmark the application, with very

good results. Timing results on a variety of computational resources are presented and the effects of

writing and reading data from disk (referred to as I/O from now on) discussed. Finally, in section 4.4

we describe the type of force used for the simulation of turbulent flow and the transition from laminar

to time-dependent flow.

The application of the variational principle to 4D orbits is referred to as “numerical relaxation” and is

described in full detail in Chapter 5. We investigated different algorithms, based on several combinations

of gradient descent and conjugate gradient, well known numerical minimization tools [21]. Due to the

large size of the 4D systems studied in this work, this was not always an easy task, with some algorithms

proving to be more efficient than others. Some of the possible reasons for this are listed and discussed. In

all minimization algorithms implemented here, extra arrays, with the same dimension as the full orbit,

have to be kept in memory for the tracking of gradients as well as intermediary quantities needed to

compute the value of the functional that is being minimized. This in turn increases even more the already

large memory requirements and some of the strategies adopted to deal with this issue are discussed. In

sections 5.3 and 5.4 the main results of this work are presented and discussed. This includes a summary

of some of the larger simulations carried out and the UPOs that were found in these.

Several issues are left open by this work; the most pressing ones are discussed in Chapter 6. Some of

these include the future usage of techniques from symbolic dynamics and the extension of this work to

flows with a higher degree of turbulence. We then conclude with a survey of the main insights obtained

through this work and their contribution to the field of turbulence studies.



21

CHAPTER 2

Fluid Turbulence

TURBULENCE is a paradigm problem in non-equilibrium statistical physics, with systems exhibiting

large fluctuations as well as a macroscopic space-time structure. Although the Navier-Stokes

equations [10, 22], which describe an incompressible viscous fluid, have been known for more than 150

years, the systematic description and physical understanding of fluid dynamics in a turbulent regime has

evaded all attempts so far, being hailed as one of the great unsolved problems of classical physics [3, 4,

23–26].

In this chapter we shall address this issue by presenting the Navier-Stokes equation for incompress-

ible fluid motion and commenting on analytical and numerical studies of the solutions of these equations.

We then describe some of the main concepts in dynamical systems theory and the variational approach

adopted in this work for the identification of unstable periodic orbits in forced dissipative systems.

The equations resulting from the application of this novel variational principle to the lattice-Boltzmann

equation are deduced in Appendix A. This is due to organizational issues, since the lattice-Boltzmann

equation itself is only discussed in Chapter 3. However, we note that these equations are also one of the

main original results presented in this thesis.

2.1 Introduction

The difficulty of understanding turbulent behaviour stems from two central aspects of the problem.

The first relates to the large number of degrees of freedom involved, strongly coupled by nonlinear

interactions which transfer energy from the scale at which it is injected down to the damping scale

where dissipation occurs. The second aspect refers to the non-equilibrium nature of turbulence. We

recall that a system is said to be in thermodynamic equilibrium if it is in thermal, mechanical and

chemical equilibrium. This means that there is no flow of energy in the system, no volume changes and

no flow of particles due to chemical reactions [27]. However, in fully-developed turbulence systems are

very far from equilibrium and the methodologies used in equilibrium statistical physics no longer apply,

which in turn makes the statistics of the system much harder to predict and understand [23].
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Although a great deal is known about the onset of turbulence in many different specific situations, as

well as ways to suppress or enhance it, a fundamental theoretical knowledge of the problem is still lack-

ing. The motion of incompressible, viscous Newton fluids for a driven dissipative system, is described

by the Navier-Stokes equations (NSE). Most researchers would agree that these equations probably con-

tain all of turbulence [3, 4]. For the 2D case a proof of existence and smoothness of the solutions for

these equations has been known for a long time [28]. For the 3D case such proof has not been found

yet, and this is widely considered to be one of the most important outstanding mathematical problems

[22, 29]. Analytical solutions are known only for particular, simplified cases, such as Poiseuille and

Couette flow [10, 30].

The Navier-Stokes equations possess a term which is nonlinear with respect to the velocity field. In

this context, O. Reynolds, in his ground-breaking studies on the transition to turbulence in pipe flows

[31], introduced a parameter that now bears his name and which gives a measure of the ratio between

the nonlinear (convective) and dissipative properties of the flow. In modern dynamical systems language

this can be seen as a control parameter for the system. The Reynolds number, Re, to which we shall

refer often throughout this work, is defined as:

Re =
UL

ν
, (2.1)

with U and L being characteristic velocity and length scales and ν the kinematic viscosity1 of the fluid.

This parameter is specially relevant for the study of flows that exhibit maximum vorticity, ω, at their

core, and not at the boundaries [32]. Vorticity is defined as the curl of the velocity field, u:

ω = ∇× u. (2.2)

In other words, when far from the boundaries, turbulent flows (for which the vorticity field is a more

relevant representation than the velocity field) behave similarly for a given value of Re, independently

of the shape of the system. Moreover, the Reynolds similarity principle states that flows with the same

geometry and the same value of Re will behave essentially in the same fashion. This is of major

practical significance, allowing engineers to perform experiments in relatively small apparatus, like

water channels and wind tunnels and extrapolate the results thus obtained to larger systems, by scaling

the dimensions accordingly, and keeping a fixed value of Re [3, 32].

The typical scale of Re for fully developed turbulence in many physical systems of practical rele-

vance, such as the boundary layer of an aircraft fuselage [33] or the motion of air a few metres above

the ground, is in the order of 106 and higher. The Kolmogorov [34] picture for turbulence states that

nonlinear interactions couple very many length scales. The energy injected in the system at the large

scales is transported through progressively smaller length scales until finally the dissipation of energy

1Unless otherwise stated, whenever the word “viscosity” appears in the text, with no further qualification, the kinematic

viscosity should be understood.
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into heat takes over2. According to this picture, the smallest scale, η, still active in the flow is given by:

η ' L

Re3/4
. (2.3)

As pointed out by Succi and Papetti [6], if Re ' 108, a typical value in atmospheric turbulence, then

using Eq. (2.3) we find that the energy injected at the length scale of 1 km can still be detected at the

scale of 1 mm.

In Kolmogorov’s turbulence scenario, which has been widely influential in the turbulence research

of the last half-century [3], the number of degrees of freedom of the system will scale with Re9/4.

Thus, for fully developed turbulence, direct numerical simulation, in which all degrees of freedom are

taken into account [35], becomes an impossible task with the current computing resources and the ones

we can expect to be available for the next decade [36]. In this context and in order to reduce, for

computational purposes, the huge number of degrees of freedom involved, there is great interest in the

study of coherent structures within turbulent flows. These usually take the form of spiral structures,

better known as vortices, possessing very high rotation. These vortices can be interpreted as meta-stable

states facilitating the transfer of energy across multiple length scales until heat dissipation finally takes

over [6, 37].

A further note is required at this point concerning the range of applicability of the NSE. So far we

have been using the term “fluids” somewhat freely. In physics this term refers to gases, liquids and

plasmas. In the present work we focus only on incompressible fluids, thus ruling out some interesting

phenomena such as sound waves and supersonic flows [10]. We also do not consider reactive flows,

which form another major area of research, of great relevance to industrial and environmental situations.

However, following McComb [24], we are still left with a wide range of application, including the vast

majority of environmental flows and even most gases, provided that the velocities in the latter are no

larger than one third of the speed of sound.

The plan of this Chapter is as follows: in the next section we shall write down the NSE and briefly

comment on some analytical methods that have been used to study the possible existing solutions of the

equations. We then proceed to discuss some of the main methodologies used to solve them numerically,

as well as commenting on the inherently statistical nature of turbulence. In section 2.3 we introduce

some concepts of the theory of dynamical systems, with a special emphasis on unstable periodic or-

bits (UPOs) and dynamical zeta functions (DZF). Then in section 2.4 we shall discuss the spacetime

variational approach used in this work to detect UPOs.

2In between these two limiting cases we have the inertial range, of which more will be said in sections 2.2.2 and 4.4.4 of this

thesis.
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2.2 Navier-Stokes equations

2.2.1 Some definitions

The NSE can be written as follows, assuming a Newtonian fluid, where the shear stress and strain

tensors vary linearly, with the proportionality constant being the viscosity3 [6, 24], driven by a force

density field F(r, t):
∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + ν∇2u + F(r, t), (2.4)

∇ · u = 0, (2.5)

where P is the pressure and ν is the viscosity of the fluid. Eq. (2.5) is a constraint that must be obeyed at

all times, imposing a further restriction on the velocity field u. We are here assuming an incompressible

fluid of constant density, ρ. To fully define fluid flow, Eqs. (2.4)-(2.5) must be augmented with appropri-

ate boundary conditions and initial values for the velocity field at time t = 0, along with suitable values

for ρ, P and ν. In the derivation of the equations the conservation of mass, momentum and energy is

implied.

For the case of inviscid fluid we have ν = 0 in Eq. (2.4), which will then correspond to the Euler

equations. These inherit most of the difficulties (mentioned in the previous section) that plague the NSE;

namely, the convective term (second term on the left hand side of Eq. (2.4)) is still present and there is

no proof of existence and smoothness of solutions for the 3D case either [22, 29].

If we assume that the force is divergenceless, and take the divergence of Eq. (2.4) we find that the

condition of a divergenceless velocity field, Eq.(2.5), can be imposed by :

∇2P = −∇ · (u ·∇u). (2.6)

This is a Poisson type equation that needs to be solved at each time step, so as to ensure condition (2.5),

something which is very time consuming, introducing extra numerical difficulties and complexity in

conventional computational fluid dynamics (CFD), the topic of the next section. It is one of the main

advantages of the lattice-Boltzmann method (to be discussed in Chapter 3) that it does not require this

extra condition.

As mentioned in the previous section, the Reynolds number is a measure of the ratio between the

nonlinear and dissipative effects acting on the flow. These are described respectively by the second term

on the left hand side, which represents convection, and the second term on the right hand side of Eq.

(2.4). Decreasing (increasing) the velocity field or increasing (decreasing) the viscosity will result in a

lower (higher) ratio between these two contributions. If this ratio goes over a certain threshold, which

3In the case of ”non-Newtonian” fluids the viscosity will be a function of the stress tensor (i.e., it varies depending on the

applied strain rate) and memory effects assume an important role. Typical examples are ketchup, blood and paint, as well as most

polymers.
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will vary from one system to another, according to geometry and other factors, then the (numerical)

solutions of the NSE become increasingly sensitive to initial conditions and small differences in these

will be magnified exponentially. It is in this sense that fluid turbulence can be claimed to be tightly

connected to modern chaos theory [7, 9, 38], and we shall explore these links a little further in section

2.3.

Before we turn to an overview of the main methods used to simulate the NSE numerically, a mention

should be made of the current state of affairs regarding the problem of finding exact solutions to the

NSE. In this respect, several lines of attack have been pursued over the past one hundred years, with

varied degrees of success [3, 22]. Needless to say, any success in this enterprise could have significant

consequences to our understanding of high Reynolds number flow.

The main goal in these analytical studies is usually to reduce as much as possible the number of

degrees of freedom, by finding alternative, more tractable expressions for the equations. One such

breakthrough happened with the work of Leray in the 1930s, of which an excellent account can be

found in the book by Majda and Bertozzi [39]. His proposal was, in very general terms, to look for weak

solutions of the NSE, i.e., solutions in which the velocity field may not be differentiable everywhere,

and then, by providing these solutions with suitable growth properties, to investigate the existence and

regularity of solutions to the NSE (see also [40] for a recent good overview of the subject). Following

this line of thought, Leray showed (see [39] and references therein) that the NSE always have a weak

solution with suitable growth properties. The uniqueness of these weak solutions of the Navier-Stokes

equation has not however been proved, although it is known that for the Euler equations such uniqueness

does not hold [29].

Another approach is to begin with an initial velocity field which is sufficiently regular so that unique

smooth solutions will exist for a finite time, T . If, furthermore, the initial flow field has a small magni-

tude then these unique smooth solutions may persist for an unbounded amount of time. These are called

strong solutions [40]. An interesting line of research consists in studying the sufficiency bounds which

allow the solutions to persist for the longest time, T . This approach is, however, limited to low Reynolds

numbers, once again, due to the requirement of the flow fields having small magnitude.

Summing up these arguments, we can say that the current state of affairs stands as follows. In three

dimensions, the existence and smoothness of solutions to the NSE has been proved, provided that the

initial velocity field satisfies a smallness condition [29]. Alternatively, the existence and smoothness

is also known to hold without the smallness condition, but only for a small time interval [0, T ), where

the size of the blow-up time, T , will depend on the initial values assumed. Near this blow-up time the

values for the velocity field become unbounded, which means they can assume values of any conceivable

magnitude, a clearly unphysical situation [29]. In a similar framework, it is the vorticity field instead

which becomes unbounded, for the case of the Euler equations.

In spite of all these fundamental questions, still left wide open, we can fortunately still iterate nu-
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merically the NSE for very many situations of interest. It is to an overview of such numerical methods

and the main concepts behind them that we now turn our attention to.

2.2.2 Computational Fluid Dynamics

The field of Computational Fluid Dynamics (CFD) is a very extensive one, with very many subdivisions

and different methodologies being used, depending on things such as the geometry and the Reynolds

number of the flows in consideration. One of the most concise introductions to the subject can be

found in the book by Succi and Papetti [6], whose organization of numerical schemes we follow in

this section. Due to the intrinsic nonlinearity of the NSE, these must be time forwarded on a suitably

defined computational grid which discretizes the continuum spacetime assumed in those equations.

This discretization can be performed in a variety of ways, each one usually giving rise to new numerical

schemes, with their respective assets and drawbacks.

Following Succi and Papetti, a first distinction can be made between “grid” and “particle” methods.

In the former, the spacetime continuum is discretized directly, whereas in the latter, the fluid dynamics

is obtained by following bundles of particle trajectories and then summing over an ensemble of such

realizations. Examples of particle methods include the lattice-Boltzmann method, which we apply in

this work; molecular dynamics, which has been useful in deducing macroscopic properties such as

viscosity and conductivity from the microscopic level; Monte-Carlo methods, in which a probabilistic

approach is invoked; and vortex methods in which the “particles” are called “vortons” and represent

the quanta of vorticity. It should be stressed that the term “particle” in this context is quite broad and

frequently no more than a convenient representation for a given numerical approach. We shall encounter

this again in Chapter 3, when discussing in detail the lattice-Boltzmann method. As pointed out by Succi

and Papetti, particle methods are potentially more attractive for parallel computing since they possess

a built-in kind of concurrency, in the form of particle trajectories evolving simultaneously, which grid

methods do not.

Local methods

Regarding grid methods, we begin by discussing local ones, in which the quantities being tracked de-

scribe properties that are local to a given grid point, xl, at time tn. In order to simplify the notation, we

do not explicitly write xl as a vector. The three main approaches in this context are the Finite-Difference

(FD), the Finite-Volume (FV) and the Finite-Element (FE) method. In the first of these methods, a given

function, f(xl, tn), is described as a set of discrete values, fl,n, where:

fl,n ≡ f(xl, tn). (2.7)

This choice of representation does not say anything about the values of f(xl) in between two consecutive

values, xl and xl+1, for a fixed time. In particular, no assumption is made as to the spatial derivatives
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(of both first and second order) which appear in the NSE, Eqs. (2.4)-(2.5). To estimate the value of these

derivatives one must chose a proper numerical method, taking into account requirements of accuracy

and stability. The simplest such choice is probably the Euler-forward representation:

∂f

∂x

∣∣∣
x=xl

≡ fl+1 − fl
∆x

, (2.8)

where ∆x = xl+1 − xl. The derivative, as well as the values of f , are assumed to be taken at the same

value of t.

The previous discretization, Eq. (2.8) will only be first-order accurate, with a discretization error of

the order of ∆x. In order to achieve higher-accuracy, for a given value of ∆x, we must sacrifice locality,

i.e., increase the number of neighbouring points being taken into account. An example of this is the

central difference scheme, in which:

∂f

∂x

∣∣∣
x=xl

≡ fl+1 − fl−1

2∆x
. (2.9)

From Eq. (2.9) we see that the derivative of f at point xl now involves the values of f at xl+1 and

xl−1. This can be seen as a trade-off between accuracy and locality, which is to say, computational

efficiency. As regards parallel implementations, the widening of the neighbourhood of the (discrete)

differentiation will also have (negative) consequences in terms of scalability of the algorithms as the

number of processors is increased.

The main limitation of FD schemes lies however in its inability to deal with complex geometries,

namely when the boundaries of the system cannot be fitted naturally to a mesh coordinate. Although

this can be overcome by adopting immersed boundary methods (see [41] for a recent review of these,

and references therein), the resulting algorithms become increasingly complex and non-intuitive. The

straightforward way to overcome this drawback is to move from a coordinate-based approach to an

element-based one (such as FE) or a cell-based one (such as FV).

The Finite-Volume method overcomes the lack of geometrical flexibility of FD by decomposing the

spatial domain into a series of non-overlapping elementary volumes (or areas, in the case of 2D flows).

The particular representation chosen for these volumes must be topologically equivalent to a cube, in

the sense that the spatial domain must be unambiguously covered, with no overlaps. This means that

there will be a transformation between the chosen discretization and a cubic structured mesh.

One of the most important assets of this method is that it is conservative by construction, i.e., the

flux leaving a given cell in one direction must be equal to the flux entering the closest neighboring cell

in that direction. Another strong asset is the geometrical flexibility it exhibits due to the capability of

local mesh deformations. These allow for a straightforward implementation of complex and irregular

geometries, making FV one of the preferred methods not only in research software packages but also

in commercial applications. One of the main difficulties associated with this approach is the need to

generate an optimal grid at the beginning of the computation. Although this must be done only once
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for each problem (unless we consider a dynamical environment, where boundaries change with time),

it can often be the most time-consuming stage of the analysis. For this reason, there is much interest in

automated grid-generation methods [42].

The last local method we should mention in this context is the Finite-Element method. In this

approach, the constraint of having a structured mesh is relaxed, and the fundamental geometrical entities

are now defined as a collection of nodes linked by a given number of links. The number of such links

for a given element will define the connectivity of that particular element. By adopting this approach the

number of grid points can be clustered in the regions where flow activity is high and rarefied in regions

where that is not the case. We can immediately see that this approach will be extremely useful in the

structural analysis of solids, namely in the study of deformations and rheology.

An important downside of the method does exist, however, similar to the one discussed for the FV:

this is the need to have a matrix that specifies the specific arrangement of the mesh. This means that

each time any given calculation is performed, that matrix must be consulted in order to know the size

and shape of a given element, as well its connectivity, i.e., the number of neighbouring elements and

their geometrical arrangement. This places crucial importance in optimal mesh numbering strategies.

Nevertheless, Finite-Element methods [43] have been used to tackle complex geometries and boundary

conditions, free surfaces, turbulence effects and are widely used in industrial applications, being one of

the main CFD tools.

Spectral methods

All three methods mentioned above are local ones, in the sense that the variables used represent the

values of an unknown function (such as the velocity field, or the pressure) in a localized neighbourhood

of a single spatial location. This focus on locality is particularly useful if the geometry of the system is

a major issue. If that is not the case however, the locality condition can be somewhat relaxed with major

gains in terms of computational efficiency. We then have non-local methods, in which the quantities

being tracked are now global properties of the unknown function (e.g., the velocity field). Examples of

such global properties are the total mass of the system, the total energy and the energy contained in a

given scale of motion.

Among the non-local methods, the most important one is the Spectral Method (SM) [44]. In this

method, the velocity field, u(r, t) is decomposed in a discrete Fourier representation:

u(r, t) =

N∑
n=0

ũn(t)e−ikn·r, (2.10)

where kn are wave numbers, i obeys i2 = −1 and ũn(t) are (discrete) Fourier coefficients (see [21] for

an introduction to this subject, aimed at numerical implementation). The method is particularly well-

suited for the study of homogeneous flow with periodic boundary conditions and has been the mainstay

of homogeneous turbulence research for many years now, but has also been applied with great success
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in other areas such as global weather modelling and in investigating the transition regime in shear flows

[44].

Working in Fourier space presents us with two immediate advantages. The first one is that space

derivatives are now represented by algebraic diagonal operators. Using Eq. (2.10), the derivative of the

j component of the velocity field in the direction m (where j,m = 1, 2, 3) is given by:

∂uj(r, t)

∂rm
=

N∑
n=0

ũjn(t)(−ikmn
)e−ikn·r, (2.11)

and we see that derivation of the velocity field components is now reduced to an algebraic operation,

with multiplying factors −ikmn
. This will have very important efficiency gains for Eqs. (2.4), (2.5) and

(2.6). The other advantage of this approach is that the process of derivation, as outlined in Eq. (2.11),

can be said to be exponentially accurate, as N tends to infinity, which ties in with our discussion of

finite-differences schemes, namely Eqs. (2.8) and (2.9).

However there is also a significant downside of spectral methods, since the non-linear convective

term in the NSE, the second term in Eq. (2.4), becomes highly non-local in k space. In practice this

means that any mode will interact with all others, in a fully global fashion [24]. This then gives rise to

a computational complexity of order O(N2), which is highly undesirable.

The way to surmount this difficulty is to replace the Fourier transform, F , of the convective term in

the following way:

F [u · ∇u] ' F{F−1[ũ · F−1{ikũ}]}, (2.12)

where F−1 represents the inverse Fourier transform and ũ ≡ F [u]. Note that Eq. (2.12) is not an exact

equality, and aliasing effects are involved, due to the fact that there is a critical frequency (referred in the

literature as the Nyquist frequency) limiting the accuracy of the approach [21]. However, the formulation

described by Eq. (2.12) reduces the computational complexity down from O(N2), although at a cost of

a few more Fourier transforms. This is called the pseudo-spectral method and has been the main tool

in turbulence research for the last decades. It must be noted that this approach has also been extended

to describe relatively simple bounded flow geometries (see [44] and references therein) as well as being

combined with the Finite-Element method, discussed above, in order to utilize the best features in both

methods [45].

As we have seen, both the Spectral Method and its pseudo-spectral extension rely heavily on the

computation of very many Fourier transforms. It is easily seen that for a typical problem, assuming

geometry is not a major issue, the time spent calculating these transforms will be the single determining

factor in terms of efficiency. In this respect, it was the appearance of the Fast Fourier Transform (FFT)

algorithm [21] which made this approach a winning one, not only in CFD but in very many areas where

partial differential equations must be iterated extensively. The FFT algorithm reduces the numerical

complexity of the spectral approach fromO(N2) toO(N log2N), withN being the number of points in

the lattice, for all values of N , including prime ones, which is an invaluable achievement. Nevertheless,
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there are still issues regarding the scalability of these approaches as we increase the number of processes

for a given computation. This becomes an even more pressing point as larger and larger machines,

currently in the petascale, become available to the scientific community at large.

In this context, we should mention another recent commercial development which also shows great

promise, and has been generically termed “cloud computing” [46]. Several projects exist already, ad-

dressing (arguably) fundamental scientific issues, in which the idle CPU time of personal computers is

effectively exploited, through the medium of distributed computing. The first of these projects, which

started in 1999, is the famous “SETI@home” [47], developed at Berkeley University, in which users

can donate their spare CPU time to analyze data from the Arecibo radio telescope in search of unusual

signal patterns that might indicate extraterrestrial intelligent activity. More recent examples include the

simulation of protein folding [48], at Stanford University, the simulation of particle trajectories on the

Large Hadron Collider [49] and simulation of climatological evolution [50], at Oxford University.

Celani [36] notes that a “Turbulence@home” could also become a reality in the near future. How-

ever, parallel FFT algorithms require a very large amount of synchronized communications and would

probably be highly ineffective in this context. A good alternative would be the lattice-Boltzmann

method, with its inherently local nature and almost embarrassingly-parallel communication pattern,

which we also use in this work and will discuss in Chapter 3.

CFD studies of Turbulence

One further important distinction that must be made in the CFD field is that between direct numerical

simulation (DNS) and “non-DNS” methods. By DNS is meant that all (spatial) scales of fluid motion,

down to the smallest active length scale, the Kolmogorov length, η, are taken into account. By contrast,

in non-DNS methods only the larger scales of the flow are explicitly accounted for, while a given model,

based on sound physical assumptions, is assumed to describe the finer scales which have been averaged

out. This approach also stems from the Kolmogorov description [3] and basically relies on the assump-

tion that the smaller eddies in turbulent flow will have a universal character, and thus may not require to

be simulated in great detail.

Using Eq. (2.3) we see that the number of degrees of freedom in turbulent flow will scale as a power

of Re9/4, for a 3D simulation. The overall numerical complexity will scale as Re3, since we require a

time of ∼ Re3/4 magnitude to observe the complete sweeping of the finest scales across one dimension

[3]. This becomes therefore a daunting enterprise, and for many decades effort has focused on finding

models which could somehow average the finer length scales while still maintaining sufficient numerical

accuracy. One such approach, whose roots can be found in the work of Smagorinsky in the 1960s [51],

consists in filtering the smaller scales of the motion and finding effective equations for the motion of

the larger eddies. This approach is commonly referred to as large eddy simulation (LES), for obvious

reasons. The velocity field ũ(r, t) describing the motion of eddies of size larger than ∆ can be obtained
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by the convolution of the velocity field u(r, t) with an appropriate kernel (acting as a filter), G∆(r, r′),

which eliminates the fluctuations below scale ∆:

ũ(r, t) =

∫
G∆(r, r′)u(r′, t)dr′. (2.13)

The main task now is to find reasonable ways to effectively model the subgrid-scale (SGS), i.e., the

effect of the eddies of size smaller than ∆, which still interact with the larger sized eddies. A good

introduction to the LES models can be found in the work of Scotti and Meneveau [52]. Using this type

of approach, a large field of literature exists with researchers routinely reporting results for flows with

Rλ ∼ O(104) [53]. The quantity Rλ stands for the Taylor-scale Reynolds number [54], defined as:

Rλ =
urmsλ

ν
, (2.14)

where urms is the root-mean-squared velocity and the Taylor scale, λ, is defined as:

λ =
urms〈(
∂u
∂x

)2〉1/2
, (2.15)

and the derivative in the previous expression is assumed to be performed over the first component, u, of

the velocity field. The Taylor-scale based Reynolds number is related [3] to the integral-scale one by:

Rλ ∼ Re1/2, (2.16)

with the proportionality constant being
√

15 for the case of homogeneous and isotropic flow [54].

In some fields of application of fluid mechanics, such as atmospheric and geophysical flows, the

relevant values of the Reynolds number can be very high indeed and the the length scales involved of

a very high order of magnitude. For these cases, models coarser than LES exist to further reduce the

numerical complexity, still believed to be too high in the LES. The most well-known of these methods

utilizes the Reynolds-averaged Navier-Stokes (RANS) equations, which rely on the separation between

the time-averaged part of the velocity and pressure fields and its fluctuations. Some methods will then

use a mixture of RANS for solving the core portions of the fluid and LES for dealing with the fluid at

the walls, where greater numerical accuracy is required [53].

The past decades have nevertheless seen a massive increase in the sheer capacity of the supercom-

puters becoming available to the scientific community, which has been continually pushing the limit of

what is possible in this area. Some of the milestones in DNS of homogeneous isotropic turbulence can

be seen on Table 2.1, adapted from Celani [36], where a cubic lattice with L3 points is considered, and

the respective values for Rλ are also shown.

All of the results mentioned on Table 2.1 used, without exception, some form of spectral method,

which has been the main tool in CFD studies of homogeneous isotropic turbulence studies for several

decades now. Looking at the more recent entries, we note that the work of the Kaneda et al. group

[63, 64] was performed on the “Earth Simulator” machine in Japan, which was for some years the



2.2. Navier-Stokes equations 32

Year L Rλ Reference

1972 32 35 Orszag & Patterson [55]

1981 128 84 Rogallo [56–58]

1991 256 150 Vincent & Meneguzzi [59]; Sanada [60]

1993 512 200 She et al. [61]

2001 1024 460 Gotoh & Fukuyama [62]

2003 2048 730 Kaneda et al. [63]

2006 4096 1200 Kaneda & Ishihara [64]

Table 2.1: Progress in computing homogeneous isotropic turbulence, adapted from [36]. Cubic lattices

with a number of sites given by L3 are assumed. Rλ is the Taylor-scale based Reynolds number, defined

in Eqs. (2.14)-(2.15). The first authors of each article are referenced in the fourth column, and the

complete reference to each original paper can be found in the bibliography. The values are sometimes

approximated. As an example, the grid size in [59] was actually 2403, not 2563.

fastest supercomputer in the world. Actually, in their 2003 work [63] this group already reported using

a 40963 lattice (with an estimated value of Rλ = 1201), although with very little statistics, i.e., that

particular simulation ran for much less time than for the other reported lattice sizes and values of Rλ.

Another research group which has been quite active in recent years is the one headed by D. A.

Donzis and P. K. Yeung. These authors reported a value of Rλ ∼ 700 using DNS applied to the mixing

of passive scalars in Lagrangian4 turbulence [65]. This is very close to the maximum experimental value

reported for this case, of Rλ ∼ 800. We note in passing that Lagrangian turbulence is a very active area

of research currently (see [54] for a recent review of the field and references therein). More recent work

explores the role of resolution effects in passive scalar mixing [66], and in dissipation and enstrophy5 in

isotropic turbulence [67], both based on DNS data obtained with grids of size up to 20483.

As already mentioned, we left out of this discussion several important topics. One of these is the

time-dependence of the numerical schemes [6], which can be either implicit or explicit6, since we only

addressed the spatial discretization of the NSE. Another crucial approach in this field has been two-

equation turbulence models, namely the k − ε and k − ω models [68], as they are usually referred to,

where k stands for turbulent kinetic energy, ω is the turbulent dissipation and ε the specific dissipation.

These are still within the overall framework of RANS models, but they now introduce two further

4Related to the Lagrangian view of fluid flows, as opposed to the Eulerian one. We shall define these terms in section 4.4.1, in

the context of ABC flows.
5Enstrophy is a scalar quantity, defined as

Ω =
1

2

∫
ω2d3r, (2.17)

where ω is the vorticity, defined in Eq. (2.2).
6This issue will be briefly discussed in section 3.4.3, in the context of discussing lattice-Boltzmann methods within the CFD

framework.
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transport equations which can account for history effects such as convection and diffusion of turbulent

energy, an approach which has found great acceptance in industrial applications [69, 70].

Finally, another method which has made some headway on the problem is the renormalization group

(RG) method, which had its origin in the field of modern particle physics and quantum field theory but

was afterwards generalized to several branches of statistical physics, with applications to critical phe-

nomena and phase transitions [71] . The basic idea is the concept of a hierarchy of scales of increasing

length, defined in such a way that the dynamics at a given scale will have an impact, conveniently

parametrized, on the dynamics of the next scale. Due to the almost paradigmatic multiscale nature of

turbulence, attempts were very quickly made of applying the RG framework to it, and for some time

it seemed these showed good promise of throwing some new light into the nature of fully developed

turbulence [24], but as with many trends in turbulence research the enthusiasm seems to have faded over

the years.

We must finish this section by remarking that this is by no means an overview of the entire field of

CFD turbulence research, which would be an impossible task in the present context. Good introductions

can be found in the book by Succi and Papetti [6], on the subject of computational techniques and in

the book by Uriel Frisch [3], with its focus on Kolmogorov phenomenology, the onset of turbulence

and intermittency. Also of great use is the guide to the literature included in the last chapter of that

book. Finally, a very accessible introduction to the subject can also be found in the review article by

McComb [24]. Although heavily oriented towards the renormalization group approach, it includes a

quite readable exposition of the main physical issues involved and the statistical character of turbulent

flows.

2.2.3 Exact coherent structures

One line of research that has been fruitful in recent years and bears some relation to the present work is

the study of “exact coherent structures”. The term was first coined by Waleffe [72] and describes exact

invariant solutions of the Navier-Stokes equations, which have also been observed in direct numerical

simulation and experiment. They usually take the form of travelling waves and can be seen as the

physical images of the least unstable invariant solutions of the flow [73].

One of the first examples of such solutions was found by Nagata [74], in plane Couette flow. The

method used consisted of continuation and bifurcation from a vortex solution of Taylor-Couette flow.

In this way, two solutions were found, one with very high energy dissipation rate and a smoother one,

with lower dissipation rate. These are usually referred to in the literature as “upper-branch” and “lower-

branch”, respectively. He then found travelling waves for plane Couette flow [75], using a continuation

method.

Following this initial work, other exact solutions have been identified in a variety of configurations.

Itano and Toh [76] found travelling waves in pressure-driven channel flow, using a shooting method.
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Waleffe [72, 77, 78] found exact 3D equilibria and travelling waves in both plane Couette and Poiseuille

flows at several Reynolds numbers. This was then extended to pipe flow by Faisst and Eckhardt [79]

and Wedin and Kerswell [80] using continuation methods.

The central idea in this line of work is the concept of “self-sustaining processes”, also introduced by

Waleffe [81, 82]. Very briefly, this concept describes how streamwise streaks and vortices (sometimes

referred to as “rolls” in this context) interact near the boundary turbulent layer, in a quasi-cyclic man-

ner. The insights obtained by the description of this process are now being actively explored by other

authors [73] in the visualization of the space state in wall-bounded shear flows.

To conclude this brief discussion, we should mention that these travelling wave structures are also

being experimentally observed in pipe flows, by the technique of high-speed stereoscopic image ve-

locimetry [83], and their role in the transition to turbulence is being increasingly recognized.

2.2.4 Statistical description of turbulence

Returning to our main argument, after a value of Re greater than some threshold, which will depend

on the particular geometry of the problem, the fluid flow becomes time-dependent and a probabilistic

description must be introduced [3, 24]. This means that in order to compute relevant quantities, such as

the velocity field, we must perform averages over an interval of time considered to be “long enough”.

The relevant time scale tl, for a certain length scale l is given by the ratio

tl ∼
l

vl
, (2.18)

with vl naturally being the typical value of the velocity associated with scale l. This quantity provides

us with an estimation of the typical amount of time for a structure of size ∼ l to undergo a significant

distortion due to the motion of its components relative to one another (i.e., not their absolute, collective

motion). In turbulence studies, the “large-eddy turnover time” is usually referred to, meaning the esti-

mated turnover time for the larger coherent structures found in the fluid, as defined by Eq. (2.18). The

value for observable dynamical quantities is usually estimated by taking averages from the data obtained

for just a few of these time lengths [63, 65]. The quantities found this way will always be stochastic in

nature, and it may be very difficult to assess whether the particular time interval chosen for computing

a given average was long enough, or representative enough.

An alternative approach, which will be pursued in this thesis, based on dynamical systems theory,

is to locate and characterize some of the lower-period UPOs of the equations and use these to calculate

averages, via the formalism of the dynamical zeta function. These averages will then be given by an

exact expansion, in analogy with a Taylor expansion in analysis, whose accuracy will depend on the

number of lower-period UPOs included. Fortunately, these expansions have very good convergence

properties [9] and we thus find ourselves with a tool to compute quantities in turbulent flow from first

principles, as will be explained in more detail in the next section.
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2.3 Unstable Periodic Orbits

2.3.1 Dynamical systems approach

In this work we adopt the view that the strange attractor [7, 84, 85] for driven dissipative systems (of

which one well known example is the Lorenz attractor [14]) can be thought of as the closure of the set

containing all the unstable periodic orbits (UPOs) of a given system. These UPOs provide a countable

sequence of orbits and can therefore provide a powerful characterization of the structure and dynamics

of the attractor [8].

In dynamical systems whose phase space consists of 3 or more dimensions there are infinitely many

UPOs close to a strange attractor, in the neighbourhood of which the system will spend most of its

time. In the case of a driven, viscous, incompressible fluid in the turbulent regime, the state space

is the infinite-dimensional function space of all divergenceless vector fields. For the 2D case it has

been rigorously proven that the attracting set is finite-dimensional, albeit with a dimension that scales

as a power law of the Reynolds number [22, 86]. For the 3D case there exist strong indications, both

theoretical [7, 86, 87] and numerical [88], that this should also be the case.

The notion of a “strange attractor” was first proposed by Ruelle and Takens, in their seminal 1971

paper, “On the nature of Turbulence” [84]. In this paper7 the authors proposed a new scenario for the

onset of turbulence in fluid motion. The main stimulus for this proposal came from their dissatisfaction

with a previous scenario, suggested by Landau [10], in which turbulent behaviour is assumed to be

decomposable in a series of quasi-periodic motions. According to this scenario, the physical parameters,

x, describing turbulent behavior are given by

x(t) = f(ω1t, · · · , ωkt), (2.19)

where the frequencies ω1, · · · , ωk are not rationally related, i.e., cannot be decomposed into a more

fundamental description. As the control parameter for the system is increased (such as the Reynolds

number, or another relevant adimensional quantity), more and more of these frequencies become active,

until the superposition of very many of them will signal the onset of turbulent behavior. This had also

been independently suggested by Hopf [90], and as a result these are usually called Hopf bifurcations

[91].

As opposed to this picture, Ruelle and Takens argued that these quasi-periodic motions were not

actually observed in turbulent flow and drawing inspiration from (then) recent advances in the qualita-

tive theory of differential equations suggested the concept of the strange attractor underlying turbulent

behavior.
7For a mainly non-technical (aimed at a more general audience but still highly challenging) explanation of these ideas and the

motivation behind them see also the book written by Ruelle, “Chance and Chaos”, [89].
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Following Eckmann [91] we can define an attractor as follows:

Definition An attractor for the flow T t is a compact set X satisfying:

(1)X is invariant under T t : T tX = X.

(2)X has a shrinking neighborhood, i.e., there is an open neighborhood U of X,U ⊃ X, such that

T tU ⊂ U for t > 0 and X = ∩t>0T
tU.

(3) The flow T t on X is recurrent and indecomposable.

A few qualifying remarks are in order. Expression (2) actually excludes repellors, i.e., isolated

points from which the system steers away in its time evolution. These do not play a role in experimental

setups, where we are usually interested in long-term behavior. The fact that the flow T t is recurrent

means that all transients have been ignored. Again, from an experimental point of view, we are interested

in the long-term behavior of a dynamical system after all transients have died out. The fact that X is

indecomposable means it cannot be split into two closed invariant pieces.

A few misconceptions that sometimes arise in this context are the following.

i) The fact that the flow T t contracts volumes does not necessarily mean it will contract all lengths.

There may be directions in which contraction occurs and others where stretching takes place, in phase

space. In a strange attractor, in particular, there is mixing of points at all stages, which is a signal of

sensitive dependence on initial conditions, one of the main ingredients of chaotic behavior [91]. It should

also be noted that many strange attractors (as opposed to more trivial ones) will have a non-integer or

fractal dimension [92], although this is not a necessary condition [9].

ii) Simple dynamical systems can still have an infinity of distinct attractors. One particular such

case is the Hénon map:  xn+1

yn+1

 =

 1 + yn − ax2
n

bxn

 , (2.20)

where a and b are constants [93]. For the values of a near 1.15357 and b = 0.3 there occurs an infinity

of attractors, corresponding to periodic points with higher and higher period [91].

iii) The basins of attraction, i.e., the set of initial conditions from which the system will evolve

towards the attractor, can be very complicated, and there is a large body of literature discussing these

topologies [94]. The most dramatic example is probably that of riddled basins, i.e., chaotic attractors

with basins in which at any point there are pieces of another attractor basin arbitrarily nearby, and so the

basin is said to be “riddled” with holes [95].

Applying Fourier analysis on the motion of a strange attractor (e.g., on one of its coordinate compo-

nents) will in general result in a continuous power spectrum. This can either be interpreted as a system

exploring an infinite number of dimensions in phase space or a system evolving in a nonlinear fashion

on a finite-dimensional attractor [7]. As it happened it was found in the last decades that the latter al-

ternative frequently occurs, even in systems with very few degrees of freedom. Celebrated examples
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of systems exhibiting strange attractors include the Lorenz model for the convection of air in the atmo-

sphere [14], the Hénon map [93], defined in Eq. (2.20), the Rössler equations for modeling chemical

reactions [96] and the Ueda attractor found in electrical circuits described by the Duffing equation [97].

Before we move on to the description of the mathematical formalism that allows one to compute the

values of observable quantities in a physical system from the knowledge of some of its UPOs, a further

qualification is required. Although great progress has been made in recent years on the identification of

UPOs in fluid dynamics, it is still not clear how this approach can translate to fully-developed turbulence,

as noted by several authors (e.g., [7, 9]). In this thesis, as has been the case in other recent efforts in

this field [17, 18, 73, 98–104], we only consider flows in a weakly-turbulent regime. The problem of

fully-developed turbulence, where the values of the Reyolds number are at least of order O(105), may

still elude researchers for many years to come.

2.3.2 Dynamical Zeta Function

As we have discussed throughout this chapter, although the NSE have been known for a long time, and

several methodologies have been developed to simulate them numerically, very few exact results about

turbulence have actually followed from them [4]. In particular, we still lack the ability to make a pri-

ori predictions of the turbulent averages of observables. The dynamics of the Navier-Stokes equations

define a trajectory in the state space formed by the infinite-dimensional function space of all divergence-

less vector fields. In the long-time limit, this trajectory is expected to settle onto a finite-dimensional

attracting set [7], and the turbulent average of an observable may be thought of as its integral over a

natural measure on this attracting set.

In low-dimensional examples, such as the Lorenz attractor [14], the attracting sets are replete with

UPOs. These comprise a set of measure zero that is nonetheless dense in the attracting set. That is, the

attracting set can be thought of as the closure of the set of all UPOs. The natural measure of the attractor

is an eigenfunction of the Frobenius-Perron operator, L, of the dynamics under consideration [9]. The

characteristic equation of this operator is one way of defining the dynamical zeta function (DZF),

ζ(z) = 1/ det (I − zL) , (2.21)

where I is the identity.

The location of the poles of ζ(z), as well as closely related functions, may be used to extract turbulent

averages of observables and their correlations [9]. As is the case for other zeta functions, most notably

the Riemann zeta function, ζ(z) can be expressed as an infinite product over the prime periodic orbits

(i.e., periodic orbits that cannot be decomposed into a sum of smaller periodic ones) of the corresponding

dynamical system. Formally this can be written as

1

ζ(z)
=
∏
p

(1− tp) , tp =
znp

|Λp|
, (2.22)
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where p stands for prime orbits, tp is the period of the prime orbit p, np is the number of orbits with pe-

riod tp and Λp their respective stability eigenvalues. These eigenvalues are computed from the Jacobian

matrix of the system, evaluated at the p periodic point with period tp. Eigenvalues of magnitude greater

then one represent unstable directions and diverging distances between orbits, magnitude less than one

corresponds to stable directions (approaching distances) and a magnitude of one signals marginal direc-

tions, along which different trajectories in phase space maintain their distance.

For many systems, a good approximation to the DZF can be constructed by using the lowest-period

UPOs of the flow, determined numerically [8]. As described in detail by Cvitanović et al., knowledge

of a finite set of low-period UPOs is often sufficient to estimate statistical averages over the natural

measure of the attracting set. More recently, Kawasaki and Sasa [105] have argued that even a single

UPO, with a large period, might suffice to characterize high-dimensional chaotic dynamical systems.

The main advantages of the UPO approach can be quickly summarized as follows:

i) The degree of accuracy obtained can be very high and converges quickly with the number of

known lower period UPOs. There is however a truncation factor, meaning that the accuracy will be

limited by the first smaller period UPO we fail to include in the computation [9]. Techniques must then

be developed to insure that we in fact found all of the UPOs up to a value of the period T .

ii) There is no need to re-run lots of initial value problems every time we wish to compute the

average of some new quantity. A long term goal is thus to construct and maintain a library of UPOs,

from which all observable quantities can be systematically computed.

iii) The averages thus obtained are no longer inherently stochastic since we now possess an exact

expansion for their computation, as shown in great detail in [9]. This then presents us with the potential

to get rid of the need for a statistical description of turbulence and thus signals the beginning of a new

methodology for the study of turbulent fluid flow and possibly other driven dissipative systems as well.

The dynamical zeta function approach to the analysis of fluid turbulence has evolved through three

historical stages. The first was the development of the DZF formalism in the 1970s [106]. The second

was the recognition, in the late 1980s and 1990s, that this could be used as a practical numerical tool

if it were only possible to compute UPOs for these systems [8]. Because the latter require petascale

resources, and since those have only recently become available to academic researchers, we believe that

this methodology is about to enter a third stage of research activity. By computing and classifying some

of the smallest UPOs in the driven NSE we can now expect to be able to make statistical predictions for

several important quantities from first principles.

In the next section we discuss several numerical methods that have been proposed to track UPOs in

dynamical systems, with special emphasis on the variational approach suggested by Lan and Cvitanović

[19].
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2.4 Numerical methods

2.4.1 Introduction

In this section we turn our attention to the methods for locating UPOs in dynamical systems. Due to

their inherent instability these periodic orbits cannot be found by forward integrating the equations of

motion and special methods for their numerical detection must be devised. Several such methods have

been proposed in recent years. Of these, the most commonly used by far is the Newton-Raphson method

[21], in its many variants, with Poincaré sections.

The main criticism applied to this approach is that in chaotic systems the basin of attraction will

shrink exponentially and Newton-Raphson will not converge unless the initial guess is already excep-

tionally good [107, 108]. However, this is still the main method of choice for most researchers in the

field, usually using different increments to the basic Newton-Raphson method.

Examples of this include the work of Eckhardt and Ott [15] which located UPOs in the Lorenz

system of equations, up to a symbolic length of 9. (For this system, the notation 0̄ and 1̄ is used to

identify the different lobes in phase space traversed by the time-evolution of the system, and an orbit

described by 0̄1̄0̄ will have a symbolic length of 3.) Using this approach good estimates for the Lyapunov

exponent and the Hausdorff dimension8 of the attractor were obtained.

Another example can be found in the work of Saiki [108] which applied the damped Newton-

Raphson-Mees algorithm to the Lorenz model, obtaining more than a thousand UPOs in this fashion.

Kato and Yamada [16] also used Newton-Raphson and the Newton-Raphson-Mees extension to locate

UPOs in shell models of turbulence. These models use the Fourier transform representation of the NSE

to reduce the number of degrees of freedom, whilst maintaining some of the basic features of turbulent

behavior. Using this approach these authors found several UPOs and compared the probability density

functions (PDFs) thus obtained for the velocity field with the ones obtained by straightforward statistical

methods, with good agreement. More recently, Viswanath suggested the use of Newton-Krylov itera-

tions, augmented by the locally constrained hook step, and applied this methodology to plane Couette

flow, identifying several periodic orbits [100].

A very different numerical approach relies on stabilising the UPOs of the system through self-

controlling feedback. The literature in this field is also quite extensive (see [110] and references therein).

However, the emphasis of this line of enquiry lies rather in eliminating chaotic behaviour from experi-

8The Lyapunov exponent is a measure of the exponential separation of two adjacent trajectories, and thus of the amount of

sensitivity of the system to initial conditions. The Hausdorff dimension can be defined as a generalization of the notion of the

dimension of a real vector space. Trivial cases are the Hausdorff dimension of a single point, which is zero, of a line, which is one,

and of a plane which is two. However, non-integral Hausdorff dimensions are also possible, and this, as we have seen, becomes

relevant in the context of strange attractors, which often possess a fractal geometry. See [109] for an intuitive definition of these

concepts.
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mental systems and not so much on the detection of the UPOs per se. Finally we have the variational

approach [9], which we adopt in this work, following a method that evolves from the one suggested by

Lan and Cvitanović [19].

The numerical methods for finding periodic orbits in a system described by a group of differential

equations have usually proceeded by the use of a shooting method. This procedure can be easily sum-

marised. Let S be a surface contained in the set of total states of the system Ω (also called the phase

space), and through which the orbit is known to pass. A point in S is chosen as an initial condition,

r(0), and its time evolution followed until it returns to the surface S (usually referred to in this context

as Poincaré section) at some time T . If we define the displacement δ = r(T ) − r(0) then the rationale

is to vary the initial starting point r(0) so as to make δ = 0.

This procedure, which can be implemented using a multidimensional Newton-Raphson method, will

not be likely to converge unless the initial point is already extremely close to a closed orbit (i.e., with

δ ' 0). Therefore other approaches for locating nearly periodic orbits should be considered. One of the

most effective ones [8] consists in plotting the quantity

∆(t, T ) =‖ r(t+ T )− r(t) ‖≥ 0, (2.23)

versus T , for several values of t, where ∆(t, 0) = 0, with a suitably-defined norm. If we can find a value

T > 0 for which ∆(t, T ) is at a local minimum and has very small magnitude then the orbit will be

nearly periodic. This approach will be followed throughout this work, and several plots of the quantity

defined by Eq. (2.23), considering an Euclidean norm, will be shown and discussed in section 5.1.2. In

the next section we discuss the next step after a suitable initial condition has been located.

2.4.2 Variational approach

Recently, progress has been made in this field by the introduction of a variational method [19] which

searches for the whole periodic orbit of the system, beginning with a guess for a neighbouring closed

trajectory. Based on this approach, new variational principles have been suggested [111], that extend

this procedure to include the search for the period of the orbit as well. Preliminary numerical searches,

on classic test cases such as the Lorenz model [14] and a limit cycle [109], suggest these principles to

be well suited to the task of numerically computing UPOs. For the sake of brevity we delineate here

only one of them, which illustrates the basic methodology adopted in this work.

Our aim is to find a solution r(t) for the differential equations

ṙ = f(r), (2.24)

where f is a vector field, r can contain many degrees of freedom and the dot represents differentiation

with respect to time t. If T is the unknown period to be determined, one way to achieve this can then be
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to minimise the functional defined as:

F [r, T ] ≡ 1

2

∫ T

0

dt|ṙ(t)− f(r(t))|2, (2.25)

where F ≥ 0 from the definition and F = 0 is valid only for solutions of Eq. (2.24). It will be assumed

that r(t) is twice differentiable with respect to time. We now intend to vary the functional with respect

to both r(t) and the unknown period T . From the Fundamental Theorem of Calculus we have:

∂F [r, T ]

∂T
=

1

2
|ṙ(T )− f(r(T ))|2, (2.26)

and so the derivative of F with respect to the unknown period must vanish, as long as the equation of

motion is valid at time T . Thus the problem of finding periodic solutions for Eq. (2.24) turns into the

problem of minimising the functionalF [r, T ]. The way this functional was defined invokes theL2 norm,

also called Euclidian norm, between the vector field f(r) and the time derivative of the variables r. After

a lengthy but straightforward calculation we can find expressions for the derivatives of the functional

and obtain an explicit expression for the unknown period. Considering the change of variables

τ ≡ t

T
∈ [0, 1);ρ(τ) ≡ r(τT ), (2.27)

the new variable ρ will be periodic with period one. Setting Eq. (2.26) equal to zero, the expression for

the period can be found to be:

T =

√√√√ ∫ 1

0
dσ|ρ′(σ)|2∫ 1

0
dσ|f(ρ(σ))|2

. (2.28)

Another equation can be obtained, by computing the Fréchet derivative δF [ρ,T ]
δρ(τ) , and setting it to zero:

0 =
ρ′′

T
+ {∇f(ρ(τ))− [∇f(ρ(τ))]>} · ρ′(τ)− 1

2
T∇|f(ρ(τ))|2, (2.29)

which will have periodic boundary conditions ρ(0) = ρ(1). The superscript > denotes the transpose

operator and must not be confused with the period T , which is given by Eq. (2.28).

These two equations can now be used to search for minima of the functional F . One possible way to

do this is by means of Ginzburg-Landau [112] equations, a method that has been used in previous fluid

turbulence studies [37, 113]). In order to do that we introduce a new independent variable, a fictitious

time, s, on which both ρ and T depend. We then have:

∂ρ(τ, s)

∂s
= −Γρρ

δF [ρ, T ]

δρ(τ, s)
(2.30)

dT (s)

ds
= −ΓTT

δF [ρ, T ]

δT (s)
. (2.31)

Γ is a positive-definite linear operator, here assumed to be diagonal. The resulting equations (which we

do not write here explicitly) can be simulated numerically, with the time step being s, and a suitable

stopping criteria defined as the upper limit for the variation of each of the two main quantities, in
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successive iterations. In order to say we have found a periodic orbit we must also have F = 0. Only

then is a solution to the equations of motion effectively found. In the work previously mentioned [111]

this method was applied to some canonical systems with very encouraging results. For the Lorenz

equations, after a fourth-order Runge-Kutta time integration was performed for an initial condition

reasonably close to an UPO, Ginzburg-Landau equations were used to evolve the estimate of the orbit

and its period, with a high convergence rate.

The approach outlined here is a novel approach to the search for periodic orbits in differential equa-

tions, which parallelizes time and space. In Appendix A we apply this method to the lattice-Boltzmann

method, via the lattice-BGK equation, introduced in Chapter 3, which simulates the NSE for the limit

of low Mach number. First we discuss some of the preliminary work that made use of this variational

principle and related computational issues.

2.4.3 Computational aspects

Based on this new variational approach, a C++ library was written by Jonas Lätt called “LUPO”, which

stands for “Locator for Unstable Periodic Orbits”. LUPO includes modules for:

i) Defining and manipulating dynamical systems;

ii) Solving dynamical systems with a fourth-order Runge-Kutta integrator [21];

iii) Locating unstable periodic orbits by a combination of Ginzburg-Landau relaxation, conjugate

gradient solver [21], and multigrid technique in time;

iv) Treating the Lorenz equations through a comprehensive list of tools;

v) Searching for UPOs for 2D fluids simulated using the lattice-Boltzmann method, implemented in

the OpenLB library [114].

Some of these points deserve further comment. For the Lorenz model, a comprehensive tool ex-

ists in LUPO which locates periodic orbits for a given symbolic sequence and whose results compare

favourably with previous work in this area [15, 108]. Item v , mentioned above, is being actively pur-

sued by the research collaboration based at Tufts University. Encouraging preliminary results have been

obtained of UPOs in the quasi-2D experimental apparatus mentioned in [115]. This system consists of a

thin layer of conducting fluid under a magnetohydrodynamic forcing and exhibits spatiotemporal chaos

for sufficiently high Reynolds numbers.

Item iii , however, deserves a lengthier note. In the present work we did not make use of LUPO, al-

though some of its philosophy and concepts were incorporated in our numerical relaxation algorithms.

The main reasons for this will be made clearer in section 5.3. For now we should point out that the

Lorenz equations only have 3 variables. Using LUPO, several thousands of Ginzburg-Landau and con-

jugate gradient iterations can be carried out on a desktop machine in a matter of just a few seconds. The

computational time required will increase linearly with the length of period T of the orbit. Within the

LUPO framework, the doubling of the number of discretized points for this system is carried out several
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times, in order to zoom in on the correct value of the period of the orbit. Again, this is still trivially

performed on a serial machine.

For the case of 2D fluid simulations, memory requirements begin to be an issue and some level

of parallelization is already required. Roughly speaking, for a 2002 grid, an orbit with T = 103 will

require about 6 Gigabytes of memory. As we move from the 2D to the 3D case two things happen. First

of all we note that the memory requirements increase linearly by a factor of the order of the size of the

(spacetime) lattice. This means that for typical 3D systems of interest we already need several Terabytes

of memory, which requires the use of a rather large cluster. Indeed, the amounts of memory involved

are so large that we encounter limits on the use of multigrid techniques and the doubling of grid points

that LUPO performs. The second point is that the time needed to carry out either Ginzburg-Landau or

conjugate gradient iterations also increases with the size of the lattice and again some severe limitations

are found on the number of iterations that can be performed on realistic 3D systems. For these practical

reasons our algorithms for UPO search in 3D fluids do not have the flexibility and generality that was

implemented in LUPO and applied to lower dimensional problems.

With these caveats in mind we now return to the main argument in this thesis, which is to numerically

search for unstable periodic solutions of the Navier-Stokes equations. In the next chapter we thus discuss

the lattice-Boltzmann method, which we used to simulate the NSE.
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CHAPTER 3

The lattice-Boltzmann Method

THE theory and concepts behind the lattice-Boltzmann method are discussed in this chapter. A brief

overview is given of the hierarchy of physical approximations, going from Newton’s equations

of motion for individual particles to the Navier-Stokes equations, which follow the evolution in time of

continuous macroscopic quantities. In between these two extremes we have “mesoscale” modelling, in

which the lattice-Boltzmann method is included. By lattice-Boltzmann method we mean any numerical

scheme that solves the Boltzmann equation for a distribution of interacting quasi-particles moving with

constant velocities on a discrete lattice. We discuss some of the main assets and drawbacks of this

approach, as well as some of the improvements that have been suggested to tackle the latter. This

numerical framework has been used to simulate turbulent flow in various systems and a discussion is

included of some of the main work done in this field.

3.1 Mesoscale modelling

Mesoscale models aim to describe systems which have intermediate length or time scales between a fine-

grained, microscopic approach, and the macroscopic approach, such as the Navier-Stokes equations, for

the case of fluid flow. These models are also particularly relevant in physical situations where processes

operate at distinct scales [116], a case in point being complex liquids [117]. Another important area

of application for mesoscale modelling is the study of multicomponent systems, such as amphiphilic

liquids [118, 119], and immiscible, neutrally buoyant drops [120].

3.1.1 Atomistic dynamics

When considering a fluid we can view it as a collection of molecules, interacting in a given region of

space. In what follows we shall ignore quantum effects, i.e., we assume that the de Broglie wavelength,

λ = h/p, where h is the Planck constant and p the momentum, is much smaller than all other relevant

length-scales. This assumption applies to the vast majority of fluids which surround us and are essential

for life on this planet, from blood flow to atmospheric flows and ocean tides.
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For a single-component fluid of non-interacting particles, this ensemble of molecules of equal mass,

m, can then be described by the classical Newton equations of motion:

ṙi =
pi
m

and ṗi = Fi, (3.1)

relating their individual position, ri, and linear momentum, pi, with the force, Fi acting on each one of

them. This is the starting point for all Molecular Dynamics methods in CFD. If we consider a number

of N particles in 3D space we will then need to solve 6N differential equations. The quantity 6N is

the dimensionality of the phase space for this system. A reasonable estimate for the order of magnitude

of N is given by the Avogadro number, Av ∼ 6.022 × 1023, that gives the number of atoms contained

in 12-grams of carbon-12. This order of magnitude makes the task of solving Newton’s equations of

motion for each atom all but impossible. The largest existing computers on the planet are only now

starting to tackle the petascale, memory-wise [121], a far cry from the order of magnitude implied by

the Avogadro number.

Besides the sheer number of variables involved there is another reason why the atomistic approach is

unfeasible for macroscopic systems: the dynamical instability of the phase space. By this we mean that

any small uncertainty, δ0, in the initial positions and/or momenta would grow exponentially in time, as

δ(t) = δ0e
χt. The coefficient χ is known as the Lyapunov exponent and provides us with a measure of

the temporal horizon of the deterministic behaviour of a system. More explicitly, at times greater than

χ−1 the initial uncertainty will have grown in such a way that precludes any deterministic prediction of

the state of the system [122].

Fortunately, we do not require such a level of resolution in order to describe properties at the macro-

scopic scale. It is sensible to assume that the details of how each microscopic particle behaves should

not have a visible effect on length-scales removed from the microscopic one by very many orders of

magnitude. The way to formalize this intuition is to adopt a statistical description instead, as was fully

recognized by some of the greatest physicists of the 19th century, such as Boltzmann, Maxwell and

Gibbs.

3.1.2 The BBGKY Hierarchy and the Boltzmann Equation

Let us first recast Newton’s equations (3.1) in a slightly different form, due to Hamilton [123]. We still

assume a single component fluid, but we now include in the description the possibility of an interaction

between the particles as well. A simplification often used is to consider a pairwise interaction potential

varying with the distance between particles, Φij = Φ(|ri − rj |). The sum of the total kinetic energy T

and total potential energy V for a system of N such particles is called the Hamiltonian H of the system:

H = T + V =

N∑
i=1

p2
i

2m
+

N∑
i=1

∑
j>i

Φij . (3.2)
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Hamilton’s equations, which are found in any standard classical mechanics textbook, such as Gold-

stein’s [123], can then be written as:

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
. (3.3)

Again we have 6N differential equations to solve, and an unfeasible order of magnitude for N . We

also note that these equations, as well as Newton’s, are perfectly time-reversible, i.e., are invariant in

regard to the reversal of time and velocities. As an important aside, r and p do not have to necessarily

represent position and momentum. They are, in general, canonical coordinates in phase space, related

by a canonical transformation and obeying the fundamental Poisson bracket relations [123].

The move towards a statistical description now requires us to introduce the concept of a particle

distribution function. Let ψ (r1,p1, r2,p2, . . . , rN ,pN ; t) represent the probability of finding particle 1

at position r1 with momentum p1, particle 2 at position r2 with momentum p2, all the way to particleN

at position rN with momentum pN . Let us now define, for the sake of brevity, the quantity zi = (ri,pi).

The probability of each particle having a precisely defined position and momentum will be given by a

delta-function. More generically, the continuous function ψ, assuming real values, can describe the

dynamical evolution of a microcanonical ensemble of such well defined systems. The chain rule of

derivation and the conservation of probability then imply that:

dψ

dt
=
∂ψ

∂t
+

N∑
i=1

(
∂ψ

∂zi

∂zi
∂t

)
= 0. (3.4)

The result is called the Liouville equation in which the time derivatives żi are given by Hamilton’s

equations, (3.3).

The next step in this chain of thought is to define a one-body distribution function, which is the cen-

tral object of kinetic theory. Let f1(r,p, t) describe the density of particles at position r with momentum

p at time t. The one-body distribution function will be normalised in such a way that
∫
f1 dz = N ,

whereas ψ, being a probability, is normalised to one. The relation between them can be seen to be:

f1(r′1,p
′
1, t) = f1(z′1, t) ≡ N

∫
ψ(z′1, z2, . . . zN ) dz2 · · · dzN . (3.5)

Any description taking into account only the one-body distribution function will leave out of the pic-

ture the interaction between pairs of particles. We note that Eq. (3.4) is still an exact expression which is

also time-reversible. As regards its analytical solution, Bogoliubov, Born, Green, Kirkwood, and Yvon

found that an infinite cascade of equations is obtained [124]. Each one of these equations will describe

the dynamics of the n-particle distribution function as an integral over the (n + 1)-particle distribution

function. In other words, solving the equation for a one-body distribution, f1, will require knowledge

of the two-body distribution function, f12, solving the equation for f12 will require knowledge of the

three-body distribution function, f123, and so on. This is known as the BBGKY hierarchy [124] and its

framework was developed by the above-mentioned authors between the years 1935 and 1946.
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In order to close this infinite hierarchy some assumption must be made about the behaviour of the

molecules. This is precisely what was suggested by Ludwig Boltzmann in 1872, many decades before

the BBGKY framework and working from first principles. The closure assumption made by Boltzmann

is called Stosszahlansatz or molecular chaos and postulates that no correlations exist between colliding

molecules [125]. Formally this is equivalent to saying:

f12 = f1f2. (3.6)

Boltzmann then derived an equation involving only one-body distribution functions which describes the

dynamics of the molecules in terms of streaming and collision. The molecular interactions are described

solely as localised collisions between two particles, due to a short-range potential. This celebrated

equation can be written as:

(∂t + c1 · ∂r1)f1 =

∫
g[f1(r, c′1)f1(r, c′2)− f1(r, c1)f1(r, c2)]db dc2, (3.7)

where we use the velocities ci = pi

m ; primed velocities are post-collisional, and unprimed pre-collisional.

In this notation, r represents the intermolecular distance r1 − r2 and g is the modulus of the relative

velocity c1 − c2. Eq. (3.7) assumes we consider a coordinate system with z-coordinate parallel to the

relative velocity g and impact parameter b perpendicular to z. An extra term can be introduced on the

left-hand side if an external force is applied to the system.

One of the most important characteristics of Boltzmann’s equation is that time-reversibility has been

lost. The introduction of the Stosszahlansatz assumption, necessary to close the BBGKY hierarchy, puts

an end to the time-reversibility of the atomistic description and signals the appearance of the much-

discussed arrow of time which is observed at macroscopic levels. Boltzmann showed that the following

quantity

H ≡ −
∫
f ln fdc dr. (3.8)

always increases. The famous H-theorem states that

dH

dt
≥ 0, (3.9)

independently of the underlying microscopic potential. The implications of this have been widely dis-

cussed in the literature. Two very readable accounts can be found in the books by Coveney and High-

field [126] and by Cercignani [127]. The former traces the development of the arrow of time concept in

physics and the path from reversible microscopic first-principle equations to macroscopic irreversibility.

The book by Cercignani analyses in great detail the intellectual path followed by Boltzmann and the

cold, even antagonistic reception his ideas encountered at the time.

This brief exposition is meant to illustrate the hierarchy of approximations involved when going

from an atomistic to a macroscopic description of matter. From the Boltzmann equation there is also a
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Figure 3.1: Levels of description in classical and computational kinetic theory.

clear path, via the Chapman-Enskog procedure [128], that leads to the Navier-Stokes equations. The lat-

ter can be seen as the mean field picture emerging from a perturbative treatment of the kinetic equations

[35]. Figure 3.1, due to Jonathan Chin [129], adequately summarises this discussion and the hierarchy

of approximations described. Several of the approaches used in conventional CFD have been discussed

in Section 2.2. From the (continuum) Boltzmann equation we could now apply a discretization proce-

dure and obtain the lattice-Boltzmann equation. However this was not the historical path followed, as

described in the next section.

3.1.3 Lattice gas models

The origin of the lattice-Boltzmann method can be traced back to the lattice gas cellular automata

(LGCA) models of the eighties, and particularly the work of Frisch, Hasslacher, and Pomeau [130]

and Wolfram [131], who were amongst the first pioneers in the application of cellular automata to fluid

flow simulation. Frisch et al. [130] showed that a simple automaton obeying conservation laws at a

microscopic level could reproduce the complexity observed in macroscopic fluid flows.

It is interesting to note that the main motivation behind much of this research was the eventual

simulation of turbulent flow, and even the prospect of tackling the limit of zero viscosity, as discussed in

some detail by Succi [35]. The basic premise for these models is again that the macroscopic dynamics

of a fluid should not be sensitive to the underlying details of the microscopic scale.

The LGCA models simulate a set of particles with discrete velocities, moving in discrete time steps

on a discrete spatial lattice. All particles have the same mass and no two particles sitting on the same site

can move along the same direction (exclusion principle). Mass and momentum conservation are obeyed

at the collisions. In order to obtain the correct macroscopic equations it is necessary for the lattice to
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obey certain symmetry requirements. The correct macroscopic fluid dynamics were thus first obtained

[130] on a 2D hexagonal lattice, i.e., with only just six different discrete velocities. Remarkably, it

was shown that even such a simplified model could reproduce the main features of real fluid flows. A

previous model, first proposed in 1973 by Hardy, Pazzis and Pomeau [132], with only four discrete

velocities (square lattice), failed to achieve rotational invariance, associated with angular momentum

invariance, an important feature of the NSE.

These first models considered Boolean variables for the particle distribution: any given particle had

an occupation number which was either 0 or 1, leading to a Fermi-Dirac local equilibrium distribution.

In this way, it can be said that each particle is still being individually tracked, as indicated in Fig. 3.1,

and these models can be viewed as an ultra-simplified, spatio-temporally discrete dynamics approach.

3.2 The lattice-Boltzmann Equation

3.2.1 Historical development

The first lattice-Boltzmann equation (LBE), proposed by McNamara and Zanetti [133], aimed at elimi-

nating the statistical noise in the LGCA model. Very briefly put, the LGCA, being an N−body Boolean

system, was computing unnecessary many-body details. This, combined with the fact that modern-day

computers are actually biased toward floating-point calculations, was resulting in the method lagging

behind more conventional CFD approaches [35]. However, LGCA has found several areas of appli-

cation and still survives to this day. Grosfils et al. [134] have shown that the statistical noise intrinsic

to LGCA shares many quantitative features with the noise observed in thermodynamic systems, thus

placing the method in a good position to address statistical micro-hydrodynamics.

Going back to the LBE, its basic idea was to replace the Boolean values used in the LGCA with

real values for the single-particle distribution functions. In this approach, the distribution function fi for

particle i is now seen as the (real-valued) ensemble-average of the Boolean occupation numbers ni:

fi =< ni > . (3.10)

This represents a change in perspective in which we no longer track individual particles but instead

follow the evolution in time of a series of microscopic degrees of freedom. This point of view again

reverts to Boltzmann’s equation, discussed in section 3.1.2, as the name “lattice-Boltzmann” already

indicates. More explicitly, fi(r, t) represents the probability of finding a particle whose discrete velocity

is associated with index i at time step t and position r on the lattice. Besides getting rid of statistical

noise, the LBE approach also proved in time to have several advantages over LGCA, such as allowing the

simulation of flows with higher Reynolds numbers, providing a more straightforward implementation in

three dimensions and the better accommodation of mesoscopic physics [35]. Nevertheless one important

feature was lost in the transition: freedom from round-off errors which LGCA, due to the boolean nature
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of its distribution function, naturally possessed. This unconditional numerical stability was seen as a

key asset of the method and one providing great hope to tackle the problem of turbulence [35].

Another crucial point is the following. Although the LBE can be obtained by a discretization of the

continuum Boltzmann equation [135, 136], its collision operator is again a multibody one, as opposed

to the strictly two-body collisions implied in the Boltzmann equation. This in turn means that we

are no longer restricted to the regime of rarefied gas-dynamics, with its low-density and short-range

interactions, but can aim instead at the modelling of more dense medium, such as liquids [35].

After the initial model of McNamara and Zanetti several lattice-Boltzmann models were proposed,

in the late eighties and early nineties, all rapidly building on the previous modifications. The next major

contribution was made by Higuera and Jimenez [137] who got rid of some of the spurious degrees of

freedom still implied by the earlier model, thus making the LBE more amenable to three-dimensional

computations. These authors proposed a linear collision operator, thus assuming that the distribution

functions are close to the local equilibrium. Then Higuera, Succi and Benzi [138] proposed a slightly

different version for the local collision operator and demonstrated the linear stability of this version.

This last achievement opened the way to the simulation of high Reynolds number, by eliminating a

previously existing lower constraint on the viscosity (still an inheritance from intrinsinc limitations of

the LGCA), and thus securing a place for the LBE within the fluid turbulence recipe book.

After this period of intense developments, the method was gradually adopted by a large community

of scientists, working in topics as diverse as fluid turbulence, driven cavity flows, flows in complex

geometries and multiphase flows (for early reviews of the method and its applications see the articles by

Benzi, Succi and Vergassola [139] and Chen and Doolen [140]).

The lattice-Boltzmann method (LBM) consists of two basic steps: the streaming of each pseudo-

particle (represented by a distribution function) to a neighbouring site, whose location is precisely de-

fined by the discrete value of its velocity, and a collision after it “arrives” there, which plays the role of a

relaxation mechanism to a local equilibrium, also carefully defined. The expression for the equilibrium

distribution is chosen so as to incorporate significant desired features, such as conservation of mass and

momentum at each lattice site.

Following Chen and Doolen [140] and Succi [35] we point out three main advantages of using the

LBE instead of other more conventional numerical methods for fluid simulation. These can be stated as

follows:

i) The streaming operator (corresponding to the advection of the particles) is linear; the nonlinearity

(intrinsic in the hydrodynamic description) is recovered by means of multi-scale expansions of the

streaming operator combined with the collision operator. This will also have dramatic advantages in

terms of parallelization, which will be discussed later on (Chapter 4);

ii) The pressure term, present in Eq. (2.4), is now given by an equation of state:

P = ρc2s, (3.11)
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with cs being the lattice sound speed and ρ the density. In conventional CFD methods the pressure

usually obeys an equation of Poisson type, with velocity strains acting as sources. The need to solve

this equation often produces extra numerical difficulties, requiring special treatments such as iteration

or relaxation methods;

iii) The fact that only a minimal set of velocities is used greatly simplifies the procedure of obtaining

macroscopic quantities. These are now given by averages computed in the phase space formed by the

particle distribution functions.

3.2.2 Lattice-BGK

We start by writing the lattice-Boltzmann equation, in the following way:

fi(r + ci, t+ 1) = fi(r, t) + Ωi(r, t), (3.12)

where fi(r, t) is the distribution function of the particle located at site r at time t with velocity index i,

Ωi(r, t) is the collision operator and ci represents the velocities of each particle, with i assuming integer

values 1, . . . , Q, with Q being the number of velocities1 It must also be noted that the method obeys an

exclusion principle: no two particles of the same species (assuming the possibility of multicomponent

flows as well) with the same velocity will be at a given instant in the same lattice site.

From the particle distribution functions we can now obtain macroscopic quantities, such as density,

ρ, and velocity field, u, defined as:

ρ =

Q∑
i=1

fi, u =
1

ρ

Q∑
i=1

fici. (3.13)

The previous relations imply the case of a single component fluid with unit mass. This will be assumed

throughout the rest of this work, unless otherwise stated.

The collision operator satisfies both mass and momentum conservation at each lattice site, i.e.:

Q∑
i=1

Ωi = 0,

Q∑
i=1

Ωici = 0. (3.14)

For the collision operator we consider the assumption that the distribution is close to the local equi-

librium state. This approach is called quasi-linear LBE [137] and the corresponding equation is:

fi(r + ci, t+ 1)− fi(r, t) = Sij(fj(r, t)− feqj (r, t)), (3.15)

where feqj denotes the local equilibrium state and Sij is called the scattering matrix, determining the

scattering rate between directions i and j. One further simplification, suggested almost simultaneously

by several authors [141–143], is to consider a diagonal matrix and assume a single relaxation value,

τ , towards the local equilibrium. This picture is based on the Bhatnagar-Gross-Krook model for the

1Lattice units are assumed, as will be the case from here on, unless otherwise stated.
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Boltzmann equation in continuum kinetic theory [144] and is therefore dubbed lattice-BGK (LBGK).

Formally, this is written as:

fi(r + ci, t+ 1)− fi(r, t) = −1

τ
(fi(r, t)− feqi (r, t)). (3.16)

In this model the (kinetic) viscosity, ν, is related to the relaxation time through the expression

ν =

(
τ − ∆t

2

)
c2s, (3.17)

where ∆t is the size of the time step which will be assumed equal to unity throughout this work.

We still need to write the local equilibrium distribution function, in order for the method to be

consistently defined. Since the Navier-Stokes equations have a second order nonlinearity, an expansion

up to O(u2) is usually considered [140, 141]:

feqi (ρ,u) = ρ
[
a+ bci.u + c(ci.u)2 + du2

]
, (3.18)

where ρ and u were defined in Eq. (3.13) and a, b, c, d are lattice constants. The values of these constants

will depend on the particular model (lattice) considered and must obey the following (four) constraints:

Q∑
i=1

feqi = ρ,

Q∑
i=1

feqi ci = ρu, (3.19)

which again impose conservation of mass and momentum, as in Eqs. (3.14). Due to its being a second

order expansion, expression (3.18) will only be valid for relatively small values of the velocity u ≡ |u|.

The adimensional control parameter which is relevant here is the Mach number, defined as u/cs, with

cs being the sound speed in the lattice.

Although historically the lattice-Boltzmann equation was introduced as a way to overcome some of

the problems plaguing the LGCA models, it was later shown [135, 136] that it could also be derived

from the continuum Boltzmann equation for discrete velocities. This is performed by means of a Mach

number expansion, starting from the Boltzmann BGK equation.

Due to its simplicity the lattice-BGK scheme is the one most researchers in this area favour. As

Sauro Succi, one of the main architects of the LBE, points out: “LBGK somehow marks the endpoint

of the basic development of LBE theory (. . . ) it seems fair to say that the hard-core of the basic theory

lies within the 1989-1992 developments.” [35]

However, several important questions have been left out of this account. In the next section we dis-

cuss two other important lattice-Boltzmann models, which address some of the potential shortcomings

of the LBGK model.
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3.3 Beyond lattice-BGK

3.3.1 Multiple Relaxation Time

Going back to Eq. (3.15), which is the more general LB formulation, we do not necessarily have to

assume a diagonal scattering matrix with a single eigenvalue as is done in the LBGK model. The rea-

son why this was done is somewhat involved, but basically, in the LBE suggested by Higuera, Succi

and Benzi [138], the last step before LBGK, the viscosity of the fluid was controlled by the lead-

ing nonzero eigenvalue of the scattering matrix. The other eigenvalues were related to several non-

hydrodynamic modes, so-called “ghost-fields” [35]. It then seemed the next logical step to get rid of

those non-hydrodynamic variables and use instead a diagonal matrix, of the form

Sij(fj − feqj ) ≡ −ωδij(fj − feqj ), (3.20)

where ω = 1
τ .

At the same time that this model was proposed, another approach [145] emphasised and explored

the freedom attained by having more parameters in the scattering matrix. This method, known as

Multiple-Relaxation-Time Lattice-Boltzmann Equation (MRT-LBE), is reported by some authors (see

d’Humières et al. [146] and references therein) to be more numerically stable than LBGK, due to the

possibility to individually tune each different relaxation time towards an optimal stability.

Here we will only briefly sketch the main concept of the method, following the terminology adopted

by d’Humières et al. [146]. We start by defining the set of particle distribution functions for a model

with b discrete velocities in any given site on the lattice as:

< f |= (f1, f2, ..., fb), (3.21)

with the corresponding set of discrete velocities being written as

| c >= (c1, c2, ..., cb). (3.22)

The Dirac notation of bra and ket vectors denote, respectively, row and column vectors. We now define

a set of moments given by

mβ ≡< φβ | f >=< f | φβ >, (3.23)

where β = 1, 2, ..., b and the set formed by all | φβ > is an orthogonal dual basis set constructed by a

Gram-Schmidt orthogonalization procedure from polynomials of the column vectors corresponding to

the different velocity components. Due to this definition, the MRT-LBE is also sometimes referred to as

the moment method. If we denote the velocity space by V, spanned by | f >≡ (f1, f2, ..., fb)
>, with

> denoting the transpose operator, and the moment space by M, spanned by | m >≡ (m1,m2, ...,mb),

there is a linear mapping M between these two spaces, such that:

| m >= M | f >, | f >= M−1 | m > . (3.24)
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If the scattering matrix S is chosen in such a way that the set {| φβ >} are its eigenvectors, then the

collision process can be described by the linear relaxation of the kinetic modes in moment space [145,

147], which allows us to rewrite Eq. (3.15) as:

| f(r + ci, t+ 1) > − | f(r, t) >= M−1Ŝ (| m(r, t) > − | meq(r, t) >) , (3.25)

where Ŝ = MSM−1 is diagonal, and meq
β is the equilibrium value of the moment mβ . We will have

a number b of moments, some of which are locally conserved in the collision process (and thus called

“hydrodynamic”) and others which are not (called “kinetic”). It must be noted that the equilibria {meq
β }

will be functions of the conserved moments and are invariant under the symmetry group of the lattice.

For a model simulating an athermal fluid, the only conserved quantities will be mass density (a scalar)

and momentum (a vector). The equilibrium values of the kinetic moments will be functions of the

density and momentum.

The computational efficiency of the MRT is slightly lower than LBGK, but with good optimisation

techniques it is claimed that it could be only 15% slower than the single relaxation time method [146].

The main advantages are that we now have the maximum number of adjustable relaxation times, and the

maximum freedom in choosing the equilibrium function for the non-conserved moments. This in turn

is claimed to allow for a greater numerical stability as previously stated.

In the exposition of the MRT-LBE made by d’Humières et al. [146] in 2002, the relaxation param-

eters of the kinetic (or ghost) modes are obtained by a linear stability analysis. A separation of scales

is also implied, in which the relaxation times of the non-conserved quantities are much faster than the

hydrodynamic time-scales.

A further refinement to this approach was introduced by Lätt and Chopard in 2006 [148], in which

the values for the relaxation parameters are determined from physical arguments, based on the Chapman-

Enskog expansion of the BGK model. These authors note that the hydrodynamic limit of the BGK model

is only dependent on the values of the first three moments (density, velocity and stress tensor). In their

scheme, these moments are computed at each time step at every lattice site, and this information is

used to “regularise” the distribution functions at the collision. The method is thus called Regularised

Lattice-Boltzmann (RLB). Both the MRT-LBE and RLB have been implemented in OpenLB [114], an

open source numerical library containing several LB models and features.

3.3.2 Entropic lattice-Boltzmann

One thing that has been lost when going from the continuum Boltzmann equation to the lattice-Boltzmann

one is the H-theorem, Eq. (3.9). In fact this was still being obeyed in the LGCA model [130]. The loss

of this important property in the LBE lies in ignoring the microscopic origin of hydrodynamic behaviour

and adopting instead a finite-difference approach, as pointed out by Boghosian et al. [149].

The fact that evolution of entropy to a maximum is no longer guaranteed implies in turn that the
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nonlinear stability of the LBE is also not guaranteed. This state of affairs becomes particularly relevant

as we increase the Reynolds number and nonlinear effects become progressively more relevant. We note

that this causal link between the existence of an H-theorem and the guarantee of numerical stability is

not specific to the LBE, but an important guiding concept in computational physics [150].

The solution to this drawback, proposed independently by several authors in a short period of time

[149, 151, 152], is to “take one step back” in the direction of kinetic physics. The resulting picture that

arose from these efforts is called the Entropic lattice-Boltzmann method. Good introductory discussions

to this topic can be found in the book by Succi [35], in the review article by Succi, Karlin and Chen [150]

and in the paper by Boghosian et al. [149]. In what follows we will just sketch the main arguments

involved.

The idea behind the Entropic lattice-Boltzmann method (ELB) requires the definition of an H func-

tion, instead of the expression for the local equilibrium distribution as was the case in the previous LBE

approaches. The equilibrium distribution is then derived by extremizing the H function. Several differ-

ent proposals exist for the form of H, leading to slightly different numerical realisations. One of the first

proposals, by Karlin, Ferrante and Öttinger [151] was:

H ≡
Q∑
i=1

fi ln

(
fi
wi

)
, (3.26)

where wi are speed-dependent weights in the equilibrium distribution function. If we write the H func-

tion as a sum of discrete contributions:

H =

Q∑
i=1

hi, (3.27)

we see that definition (3.26) allows for weighted contributions to H , and that hi has the form of a

(relative) Boltzmann entropy. Another approach was suggested by Boghosian el al [149] where the

contributions hi are uniform, with no dependence on lattice weights, although they are not Boltzmann

entropies:

H =

Q∑
i=1

h(fi). (3.28)

Both models are valid in terms of restoring the H-theorem as well as leading to Galilean-invariant

hydrodynamics, as shown in [153] and [154] respectively. As mentioned by Succi et al. [150], this is

one of three very important properties that entropic LB models satisfy. The other two are non-negativity

of the distribution function (realizability) and ease of determining the equilibrium distribution function

at each site and at each time step (solvability). Regarding the former property, it is well known that

negative values for the LB distribution functions easily arise for low values of the viscosity or for high

velocities, close to the lattice sound speed. These non-physical values often signal the appearance of

serious numerical instabilities, which can propagate quite easily on the lattice, due to the action of the

streaming operator, and render the simulation meaningless, as witnessed by this author. This will be

discussed in Chapter 4, dealing with LB implementation.
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Going back to Eq. (3.28) we now extremize H with respect to the distribution functions, and impose

conservation of mass and momentum, using the definitions (3.13), which gives:

0 =
∂

∂fi
(H −A ρ−B. ρu), (3.29)

where A and B are Lagrange multipliers. From here we can compute an expression for the feqi distri-

bution functions by performing a Taylor expansion in Mach number. The details are somewhat involved

and can be found in [154]. The expression thus obtained will, by construction, always increase entropy

at each collision step.

Numerical tests have been performed, usually comparing the ELB with the LBGK approach. Among

the first such comparisons, Ansumali and Karlin [155] focused on shock tube tests. This work showed a

better numerical stability of ELB versus LBGK, but the authors also warned about potential implemen-

tation pitfalls for ELB, such as the extensive use of logarithmic functions, more vulnerable to round-off

errors. A similar comparison was performed by Chikatamarla and Karlin [153], with the H-function this

time constructed via Hermite polynomials. Again, ELB was found to be more resilient than LBGK, for

the test-case of a one-dimensional shock tube.

Both the ELB and the MRT-LBE show that most of the shortcomings that plague the lattice-Boltzmann

method can be overcome, putting the method on a par with more established CFD approaches. How-

ever, for a huge number of situations it is safe to say that the vast majority of researchers in the field

are content with the LBGK approach, which is also much more straightforward to implement and com-

putationally efficient. In the next section we will discuss the application of LB methods to turbulence

studies, before moving on to the details of the computational implementation performed in this work.

3.4 Simulation of turbulent flow using lattice-Boltzmann

methods

One common distinction of the numerical methods for the simulation of turbulent flow is that between

direct numerical simulation (DNS) and methods with implicit turbulence modelling. In the latter, only

the larger scales of the flow are explicitly accounted for, and a model is assumed to describe the lower

scales, as mentioned in Section 2.2.2. In the present section the label “DNS” refers to LB studies of

incompressible turbulent flow without any underlying turbulence modelling. As discussed below, the

LBM also allows for the inclusion of such models, with quite impressive results, and an overview of

work in this area is also included here.

3.4.1 Direct numerical simulation

In Section 3.2 we mentioned that one of the main advantages of lattice-Boltzmann over lattice gas

methods was the possibility to have lower viscosities and thus the possibility of studying flows at higher
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Reynolds numbers. This feature was explored early on in the development of the LB method. The

earliest such studies focused on 2D forced isotropic turbulence [156]. In this work, Benzi and Succi

compared the values obtained using the LBE (with enhanced collisions [138]) with previous numerical

studies using spectral methods. A 5122 lattice was used, with ν = 0.05, corresponding to Re ∼ 103.

Time averages for the enstrophy (defined in Eq. (2.17)) and energy and their fluctuations were compared

with the values obtained from the spectral method, with very good agreement found.

Martı́nez et al. [157] also studied 2D flows but for decaying turbulence of a shear layer, comparing

the results obtained with the LBGK and a pseudo-spectral method. In this work the initial Reynolds

number was 104 and the lattice had dimensions of 5122, with the simulation running for 80 large-eddy

turnover times. A comparison was performed between the spatial distribution, the vorticity fields and

the time evolution of stream functions obtained using both methods. It was found that LBGK provided

time histories of global quantities, wavenumber spectra and vorticity contour plots which were very

similar to those obtained from the spectral method. Also Qian et al. [158] reproduced the k−5/3 inertial

range scaling in forced 2D turbulence, where energy now flows from the smaller to the larger scales (as

opposed to what happens in 3D), as predicted theoretically by Kraichnan in 1967 [159].

Other workers in the field quickly moved on to the study of 3D turbulence. Chen et al. [160]

validated the LBM for the study of 3D isotropic turbulence, looking at Beltrami flows (of which more

will be said in Section 4.4), the decaying Taylor-Green vortex (see the book by Uriel Frisch [3] for

a discussion of this) and decaying 3D turbulence. Again, a very good agreement was found between

the spatial and time distributions of both the velocity and vorticity fields computed using the LBM and

spectral methods. This was also confirmed by Treviño and Higuera [161] who studied the nonlinear

stability of Kolmogorov flows [3] using both the LBM and the pseudo-spectral method at several values

of the Reynolds number.

One final note should be made regarding the comparison of results obtained using LBM and spectral

calculations. In lattice-Boltzamnn, space is normalised in units of length of the lattice, LLBM . The

relevant speed in homogeneous isotropic turbulence is

urms ≡
√
< u >2, (3.30)

where “RMS” stands for “root-mean-squared” and the average is taken over the entire lattice [35]. For

pseudo-spectral codes (PS) the most common normalisation is LPS = 2π, the size of the periodic box,

and uPS = 1. In this way, the ratio tPS = LPS

2πuPS
, which defines the typical large eddy turn-over time,

becomes one. The ratio between the LBM and PS clocks will then be given by LLBM/urms. Assuming

urms ∼ 0.2 (the value of the lattice sound speed in most LB models is typically ∼ 0.577, and urms

should not be greater, since we are working in a nearly-incompressible regime), for LLBM = 1024

(a typical value for the simulation of high Reynolds numbers) this gives a ratio of ∼ 5000, for the

simulation of the typical lifetime of a large-scale eddy. This must then be taken into account when
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comparing the results from the different methods [35].

3.4.2 Lattice-Boltzmann with turbulence modelling

As discussed in Section 2.2.2, it is usual in turbulence studies to consider a subgrid-scale model to deal

with the smaller length scales of the fluid, whereas the larger ones are still tracked explicitly. This has

also been applied to the LBM scheme with good results. One of the earliest such studies was performed

by Hou et al. [162], who applied the Smagorinsky model [51] directly to LB, by filtering the particle

distribution in Eq. (3.12) function through a standard box filter. The nonlinear term was accounted for

by using an effective relaxation time of the form

τef ≡ 3ν + C2
S∆2|S|2 +

1

2
(3.31)

in the LBGK model, Eq. (3.16). In Eq. (3.31), ν is the kinematic viscosity, given by Eq. (3.17), ∆ is the

filter width, |S| is the amplitude of the filtered large-scale strain-rate tensor and CS is the Smagorinsky

constant [51]. This subgrid model was used in the simulation of flows with Re up to 106, using a 2562

lattice.

Several other models have been proposed in this context. Using the LBM SGS model, Sommers et

al. [163] studied three-dimensional pipe flow, up to Re = 5 × 104. Succi et al. [164] applied the LB

relaxation scheme to the solution of the k − ε equations [3], where k stands for the kinetic energy and

ε for the dissipation. Eggels [165] included the turbulent stress tensor directly in the expression for the

equilibrium distribution, and used the resulting model to simulate turbulent flow in a baffled stirred tank

reactor, an industrial application of great practical relevance.

Lätt et al. [166], used the D3Q19 LBGK model for the simulation of weakly-turbulent flow, with

Reynolds numbers of the order of O(103). In this work the authors propose a framework for the mod-

elling of turbulence effects, by using the LB variables, and then testing their results against DNS data.

Their approach consisted of applying the k − ε model [68], with its filtering procedure, directly to the

LB distribution functions, and thus obtaining an effective viscosity.

Another recent development can be found in the work by Chen et al. [167]. These authors applied an

effective viscosity to the LBGK scheme computed through the use of renormalization group methods.

The resulting LB model was used to study the flow of air past a realistic car geometry, using the Pow-

erFLOW code [168]. For this case the values obtained for the drag were within 5% of the experimental

data. Turbulent flow in a planar channel was also studied with this model, and the results from the LB

simulations compared with experimental data, for Reynolds numbers in the range 104 < Re < 106,

with an excellent agreement found.

These examples are intended to show that the lattice-Boltzmann method is quite capable of tackling

some of the main challenges in turbulent research, including wall-turbulence interactions, as the last

example showed.
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3.4.3 Lattice-Boltzmann in the context of CFD

Some final comments are due, regarding the characterization of the lattice-Boltzmann method in the

wider context of computational fluid dynamics and numerical methods in general. Following Succi [35],

we can say that the LBM is an explicit, Lagrangian approximation of the Navier-Stokes equations in the

nearly-incompressible limit. An explicit numerical scheme (as opposed to an implicit scheme), is one

whereby the state of a given variable is computed by using the values of a number of neighbour states at

a preceding time step. In an implicit scheme, there is a further dependence on the simultaneous state of

the neighbourhood, which makes these methods more computationally demanding, on a per time step

basis.

Other important features of the LBM include the fact that it is fully local in space and time (causality)

and also second-order accurate in space and time. Besides this, it is unconditionally linearly stable,

provided that the (single) relaxation time parameter is greater than 1/2, (for which the viscosity would

assume an infinite magnitude, as can be seen in Eq. (3.17)).

The accuracy and performance of the lattice-Boltzmann method have been compared to several other

CFD methods. This has already been discussed on section 3.4.1 in the context of turbulence studies.

Here we shall refer to the main CFD methods discussed in section 2.2.2. Noble et al. [169] simulated

flow in an infinite periodic array of octagonal cylinders using both the LBM, with an LBGK collision

operator, and a finite-difference scheme. These authors found that the streamwise and transverse ve-

locity predictions generated by each method agreed to within 0.5% of the average streamwise velocity.

Sankaranarayanan et al. [170] also compared the LBM with a (front-tracking) finite-difference scheme,

but this time in the context of bubble rising on a 2D periodic box, and found quantitative agreement to

within just a few percent.

Comparisons between LBM and finite-volume methods have also been performed by several au-

thors. Bensdorf et al. [171] compared these two methods in the case of complex geometries and found

excellent agreement between the numerical values of the flow field, on lattices/grids with comparable

size. These authors also argue that as the complexity of the geometry increases the LBM eventually

becomes more computationally efficient. Breuer et al. [172] compared the two methods in the study

of laminar flow past a square cylinder, in 2D systems, with Re as high as 300 and found an excellent

agreement between velocity profiles and several integral parameters.

Geller et al. [173] compared the LBM with both finite-element and finite-volume methods, report-

ing an excellent agreement between these, and a higher efficiency of the LBM in the case of weakly

compressible flow. Khandai et al. [174] also compared LBM with FE in the simulation of a static mixer,

which consists of specially designed stationary obstacles inserted in a pipe in order to promote the

mixing of fluid streams flowing through it, and report an excellent agreement between the two methods.

Comparisons between LBM and spectral methods can be found in the work by Martı́nez et al. [157],
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in the context of decaying turbulence, and Chen et al. [175], who studied Beltrami flows and the decay-

ing Taylor-Green vortex, with very good agreement reported in both cases.

The results of these various studies have confirmed that the lattice-Boltzmann method is indeed

competitive with the other more established approaches. Indeed, it is actually faster in situations where

a given specific accuracy is required, particularly in the context of the time-dependent simulation of

large, complex systems by means of parallel implementations [176]. However, one should be aware

that comparisons between the efficiency of different fluid solvers are always prone to some ambiguity

since their accuracy, intrinsic speed and convergence behavior will be heavily dependent on the specific

details of each implementation.

In the next chapter we shall describe the details of the particular LB implementation used in this

work and its utilization in the simulation of weakly-turbulent flow.



61

CHAPTER 4

HYPO4D

THe implementation of a fully parallel lattice-Boltzmann solver, written in the C programming lan-

guage and using MPI for inter-processor communications, is described in this chapter. Its goal

is to simulate turbulent flow accurately and in a computationally efficient way and then locate unstable

periodic orbits for that flow. The code was written taking into account sound implementation tech-

niques suggested by previous groups and demonstrated excellent scalability, up to tens of thousands of

computational cores. The resulting software package was dubbed “HYPO4D”, which stands for “HY-

drodynamic Periodic Orbits in 4 Dimensions”. In the present chapter we are mainly concerned with

the (three-dimensional) fluid solver module of the code, which is at the core of the 4D module as well.

The 4D aspects of the work will be presented in Chapter 5. We also describe here the numerical tests

performed for validation of the fluid solver and its deployment on very many Grid resources. The results

obtained for weakly-turbulent flows are discussed in the last section.

We note that the whole software package was written and developed from scratch by the present

author of this thesis. The main achievements discussed in this Chapter are thus: the implementation

of a fully-parallel, highly-efficient lattice-Boltzmann software package; its numerical validation using

known analytical solutions of the Navier-Stokes equations, including a case with bounce-back boundary

conditions; the demonstration of its excellent scalability up to 65K computational cores; and, lastly, its

validation in describing weakly-turbulent flow, including a detailed analysis of an ABC flow in a periodic

domain and its transition from laminar to turbulent behaviour.

4.1 Software description

4.1.1 The D3Q19 lattice

As pointed out in section 3.2.2, several lattices are possible for the LBGK scheme, consisting of different

sets of discrete velocities. The guiding principle behind the various possible models is the requirement of

enough symmetry to recover the Navier-Stokes equations, as was first recognized by Frisch, Hasslacher

and Pomeau [130], in their lattice gas model. Formally this is equivalent to saying that the weights, ωi
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associated with each discrete velocity, ci, must obey the following symmetry requirements

Q∑
i=1

ωi = 1, (4.1)

Q∑
i=1

ωici = 0, (4.2)

Q∑
i=1

ωicici = AI, (4.3)

Q∑
i=1

ωicicici = 0, (4.4)

where I is the identity, and A a normalization constant. The constraints are trivially related to mass

and momentum conservation, already mentioned in section 3.2.2, as well as isotropy. However, these

constraints are still not enough to completely determine a lattice, since in general we will have many

more discrete velocities than the number of constraints. This freedom should thus be optimally exploited

for the construction of LBGK models [35].

Qian, d’Humiéres and Lallemand [143] described a whole family of such solutions, dubbedDnQm,

for m vectors in n dimensions. In this work we focus on 3D models only, for which n = 3. The number

of velocities chosen will have an impact on the numerical stability and robustness of the model, as

discussed in detail by Mei et al. [177]. A trade-off exists between numerical stability and amount

of memory required, as should be intuitively expected. Mei et al. showed that the D3Q19 model

represents an excellent compromise between the more instability-prone D3Q15 lattice and the more

memory-intensive D3Q27.

The easiest way to visualize these different models is to keep in mind that the discrete velocities

determine which directions of motion are allowed in the lattice, which is equivalent to think in terms

of which nearest neighbours are being considered. This information is summarized in Table 4.1 for

the three models, following Mei et al. [177], where the values for the lattice sound speed, cs, allowed

discrete velocities, their respective modulus and associated weights are shown.

In the streaming operation, the “rest” pseudo-particle, with discrete velocity (0, 0, 0), does not suffer

any change, although it will still contribute to the collision step, where its density value can vary. Each

one of the other pseudo-particles (probability distribution functions) will be streamed to the neighbor site

unequivocally defined by its corresponding discrete velocities. For this family of models the equilibrium

distribution function, which obeys the constraints given by Eqs. (4.1)-(4.4), will have the form [143]

feqi (ρ,u) = ωiρ[1 +
1

c2s
ci · u +

1

2c4s
(ci · u)2 − 1

2c2s
(u · u)], (4.5)

where the weights ωi have values 1/3, 1/18 and 1/36 for |~ci|2 = 0, 1, 2 respectively, for the D3Q19

lattice used in this work, and cs = 1/
√

3.
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Lattice c2s Discrete velocities Modulus Weights (ωi)

(0, 0, 0) 0 2/9

D3Q15 1/3 (±1, 0, 0),(0,±1, 0),(0, 0,±1) 1 1/9

(±1,±1,±1)
√

3 1/72

(0, 0, 0) 0 1/3

D3Q19 1/3 (±1, 0, 0),(0,±1, 0),(0, 0,±1) 1 1/18

(±1,±1, 0), (±1, 0,±1), (0,±1,±1)
√

2 1/36

(0, 0, 0) 0 8/27

D3Q27 1/3 (±1, 0, 0),(0,±1, 0),(0, 0,±1) 1 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1)
√

2 1/54

(±1,±1,±1)
√

3 1/216

Table 4.1: Three D3Qm LBGK lattices, with respective weights.

4.1.2 Parallelization strategies

The code implementation for the 3D lattice-Boltzmann solver was envisaged from the start as a fully

parallel algorithm. There are several reasons for this. The main one was our initial expectation for the

large size of even the smallest unstable periodic orbits. Even if, as we discuss later on, the 3D lattice

mainly used in the present work is actually quite small (643), the period of the UPOs will be of the order

of O(104). This will thus require the utilization of a supercomputer, or an equivalent aggregated set of

resources [20], in order to implement the spacetime approach advocated in this work. Moreover, even

disregarding the 4D module, thanks to this parallelization effort, HYPO4D can also be used to simulate

large lattices (that could never fit on a single processor) and thus reach high Reynolds numbers. Last but

not least, this project was carried out within the context of a research group with many years of expertise

in the area of scientific grid computing [20, 178–184] whose activity has played a major role in pushing

the boundaries of Grid computing in general.

In HYPO4D all communications between processors are handled using the MPI (Message Passing

Interface) library [185]. This library allows for the creation of a specific topology (i.e., a virtual grid that

can have a Cartesian or graph topology) of processes so that communications between these processes

can occur in an unambiguous fashion. In this framework, an MPI process will be the smallest computing

unit, and will be identified by a “rank”, for the purpose of sending or receiving a message. This process

can correspond to one core or to a multiple integer number of cores, since most currently operating

clusters allow for the possibility to aggregate the memory of several cores into one single MPI process.

For the core module of HYPO4D, the LB fluid solver, a spatial domain decomposition was adopted,

with each MPI process receiving a portion of the whole lattice. This strategy is particularly attractive for
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the lattice-Boltzmann method due to the locality of the algorithm1. The only quantities that must be ex-

changed between different processors are the values of the distribution function of particles which cross

the border of the domain assigned to a particular processor, during the streaming step. Each process is

attributed exactly the same subdomain size, so that there is an equal load balancing between machines

(assuming they have the same characteristics). However, this can be easily altered if there is any need to

do so. This subdomain decomposition is performed using the MPI function MPI Cart create, which sets

up a Cartesian topology involving all the computing cores. This is created only once, at the beginning

of each simulation.

In HYPO4D a “block” spatial decomposition was considered, which means that the dimensions of

the subdomain are allowed to vary in all three directions. This ensures a lower surface to volume ratio.

Other possibilities for regular sublattices are “pencil” decompositions where the size of the sublattice in

one direction is held fixed and “slab” decompositions, where the size of of the sublattice is held fixed

in two directions. Another important feature of the decomposition algorithm is that, of all the possible

spatial decompositions, HYPO4D chooses the one in which the subdomain is most “cubelike”, again in

order to minimise the surface area to volume ratio. In practice this means choosing the magnitude of the

dimensions of the subdomain to be as similar as possible.

The subdomain assigned to each processor is padded with a one-site deep extra layer (“halo”) in

all directions, which will receive the values of the particles streaming to another subdomain, at each

time step. Thus there is no need to treat the boundary with any special care during the streaming

step; the values of the halo are simply communicated to the respective neighbour processors after the

streaming is over. This is carried out in a fixed order: each processor communicates first with its

left and right neighbours, then with its up and down neighbours and, finally, with its neighbours in

the z-axis. The particular order is arbitrary but, once it is chosen, must be followed strictly, for each

communication stage of the algorithm. Before the next communication stage can begin, the values

are reordered. Using this procedure, the corner values are transmitted indirectly, without need for any

additional communications. Fig. 4.1 illustrates this process in two dimensions. The generalization to

3D is trivial and has the huge benefit that each process only need communicate (assuming the block

decomposition implemented in HYPO4D) with eight nearest neighbours instead of twenty-six.

This particular halo-exchange algorithm incurs the penalty that all communications in a given direc-

tion must be fully completed before the next one can begin, otherwise the outcome would not be defined.

This is implemented by using the function MPI Waitall. However, it must be noted that this constraint is

a local one and so is not a source for deadlock. HYPO4D makes exclusive use of non-blocking commu-

nications at the halo-exchange step, namely through the use of MPI functions MPI Isend and MPI Irecv,

a factor which also contributes to prevent possible deadlock.

In order to solve the LBGK initial value problem, each processor stores two lattice arrays with the

1Lattice-Boltzmann can also accommodate non-local interactions, as is the case in amphiphilic fluids [118]
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Figure 4.1: A lattice-Boltzmann halo-exchange in two dimensions. The corners are indirectly commu-

nicated. In this figure, note that the lower right shaded corner of process 0 is sent to process 3 in two

communication steps.

same dimensions, latt old and latt new. The need for this can be seen from Eq. (3.16), since in the

streaming step we will need the values of the distribution function at all lattice sites in the previous time

step. HYPO4D makes extensive use of pointers, within the C programming syntax. In one iteration

of the fluid solver, after collision and streaming are concluded and all relevant macroscopic quantities

have been computed, the pointers for the two arrays are swapped, so that in the next time step the array

latt old will have the values determined previously for latt new. This is of particular interest when we

compare the evolution of quantities “on-the-fly”, such as looking at the time-dependence of the velocity

field, as we will discuss in section 4.4.

The parallel implementation of the LBGK collision and streaming constitute the core of HYPO4D.

The algorithm uses non-blocking MPI communications and involves only eight nearest neighbours in

its communication pattern. Our intention was to keep this computational core as simple as possible,

i.e., not pursuing any aggressive optimizations, so as to deploy it as seamlessly as possible over many

heterogeneous computational resources. Previous LB implementations were studied carefully, so as to

adopt good implementation practices. The main ones were “LB3D” [118, 129, 186], a binary immiscible

and ternary amphiphilic parallel fluid solver; “Vortonics” [37, 182] which locates and tracks vortex cores

in turbulent flow; and “HemeLB” [176], that simulates fluid flow in complex geometries, and is applied

to the study of human cerebral blood flow in the context of patient-specific diagnosis of aneurysms and

arterio-venous malformations [187, 188].

HYPO4D allows for the specification of several parameters through an input file, without need of

recompiling the code. These parameters include the dimensions of the lattice, the value of the LBGK

relaxation time, the number of time steps to be simulated and the frequency (in LB time step units) at

which macroscopic quantities, such as root-mean-squared (RMS) velocity are written to an output file.
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Some other options, dealing with I/O, are discussed in more detail in section 4.3.3.

4.2 Numerical tests

In this section we discuss some of the numerical tests performed to assess the accuracy of the HYPO4D

lattice-Boltzmann implementation. However, it must be pointed out that extensive testing of the code

was performed at all stages of development, from simple consistency checks to the conservation of mass

and momentum at the LB collision step. These checks can, nevertheless, be switched off by one of the

parameters read from the input file, at the start of a given simulation, if the user is already sure of the

numerical validity of a given parameter set. What follows are two widely used examples that provide a

numerical benchmark of the application.

4.2.1 Square duct flow

The first serious numerical test conducted with HYPO4D was the simulation of square duct flow. The

analytical velocity profile of fluid flow in a duct with rectangular cross section was reproduced, using

two different boundary conditions and different sets of Reynolds numbers and relaxation times. In both

cases the simulations were found to converge towards the known analytical profile.

For these tests, a uniform force was considered in order to drive the fluid flow. Another possible way

to drive the flow is by the implementation of a pressure gradient [189]. This method was discarded for

three main reasons:

i) a pressure gradient also implies a density gradient and it is our goal to study incompressible fluid flow;

ii) it has been observed that when using the pressure gradient method the maximum Reynolds number

at which the simulation is still stable is smaller than that with external forcing [189];

iii) the force method has a much more straightforward implementation [35], and is thus closer to the

simplicity which is such an appealing feature of the LBGK model.

The uniform force term can be introduced in the lattice-BGK equation in a simple way, by adding

an extra term to the main equation, which becomes:

fi(r + ci, t+ 1) = fi(r, t)−
1

τ
(fi(r, t)− feqi (ρ,u)) + ρFgi, (4.6)

with the expression for the force term [35, 190] being given by:

F =
8νu0

L2
y

, (4.7)

where ν represents viscosity, u0 the peak velocity and Ly the height of the square section perpendicular

to the direction of flow.

The external force term must obey several constraints, so as to preserve the fundamental conservation

laws obeyed, namely, it must inject zero mass into the fluid and ρF units of momentum per unit volume
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and time (assuming all particles have a mass value of m = 1). If we define the direction of the flow to

be in the x-axis direction, this is equivalent to enforcing the following constraints:∑
i

gi = 0,
∑
i

= giciy,z = 0,
∑
i

= gicix = 1, (4.8)

These in turn leave us with one free parameter [190], which can be used to fine-tune the intensity of the

force term to the boundary conditions, while still having the velocity field obeying the Navier-Stokes

equations. The second and third conditions state that we are imposing a unidirectional flow, in the x-axis

direction.

Periodic boundary conditions were assumed at the inlet and outlet of the system, i. e., the planes

x = 0 and x = Lx − 1 respectively. In the other remaining four planes which enclose the system,

tangential to the direction of the flow, “no-slip” conditions were implemented in order to supply the

system with the friction which characterizes simple Poiseuille flow. Two different methods were used to

implement the no-slip condition. The first one was proposed by Maier, Bernard and Grunau [191], and

implements the bounce-back condition [192] for particles with velocity components perpendicular to the

no-slip wall, as well as enforcing zero tangential velocity at the physical wall. The other method, much

simpler to implement, is mentioned by Zou and He, [189], and consists of imposing the equilibrium

distribution with zero velocity at the boundaries of the flow. Formally, this can be written as:

fi(rw, t) ≡ feqi (ρ0 = 1,u = 0) = ωi, (4.9)

where the subscript w indicates the wall lattice sites and Eq. (4.5) was used.

We considered a uniform initial state, with the values for the distribution function of each particle

given by Eq. (4.5), assuming initial zero velocity and constant density, ρ0 = 1. A 3D system with

a rectangular cross section was considered for the validation of the algorithm. The quasi-parabolic

velocity profile [30] is given by the series:

u(y, z) =
16a2

µπ3

(
−∂P
∂x

) ∞∑
i=1,3,5,...

(−1)
i−1
2

[
1−

cosh( iπz2a )

cosh( iπb2a )

]
cos( iπy2a )

i3
, (4.10)

where P stands for pressure, µ ≡ ρν is the dynamical viscosity, and −a ≤ y ≤ a and −b ≤ z ≤ b.

For the simulations performed we imposed a convergence criteria, following previous work in this

area [189, 191], in order to insure that the time iteration is carried on until a steady state in the velocity

field is reached that obeys the condition:∑
r

| u(r, t+ 1)− u(r, t) |∑
r

| u(r, t) |
≤ δ, (4.11)

where the sums are taken over all lattice sites. A value of δ = 10−10 was considered as the convergence

criterion. In order to obey this some thousands of LB time steps may be required, depending on the
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parameters considered. At each time step, the previous values of the velocity field are being compared

to the new ones, in every lattice site, and so two copies are kept in every iteration, with the respective

pointers being swapped at the end of each iteration as described in the previous section.

The maximum relative error in velocity, ε, is defined as:

ε ≡ max

√∑
j(u

a
j − uj)2

u0
, (4.12)

with uaj being the analytical values at a given site for each velocity component, given by Eq. (4.10),

uj the measured components of the velocity and u0 the peak velocity. The maximum is taken over the

whole lattice.

For these benchmarks we considered different sets of values for the Reynolds number Re and the

relaxation time τ . These are specified at the beginning of each simulation, being the only input param-

eters, along with the dimensions of the lattice. An analytical peak velocity is defined, by assuming it to

be the relevant velocity scale and using the definition of the Reynolds number:

u0 =
Re

Ly
ν. (4.13)

The system sizes and the values considered for the parameters Re and τ were the same ones that

were used by Zou and He [189]. Different system sizes were simulated, in order to determine the order

of convergence of the relative errors, using a least-squares fitting. The results obtained can be seen in Ta-

ble 4.2 for both the boundary conditions described previously, labeled as I (velocity boundary condition

from [191]) and II (Eq. (4.9)). For each set of values of Re and τ we indicate the corresponding ana-

lytical peak velocity, the maximum relative error obtained in the whole of the lattice and the coordinates

where it occurred, after the convergence criterion, Eq. (4.11), has been satisfied.

Both boundary conditions show similar trends, although II has lower maximum relative errors in all

the simulations reported here and slightly better convergence values. The level of optimization regarding

the free parameter of Eqs. (4.8) that regulates force intensity was the same in both cases. The values

obtained in these tests point to a first order convergence of the algorithm, for both boundary conditions.

It is hinted in Maier et al. [191] that the velocity boundary condition might be of second order accuracy,

although the tests reported there take into account the variation of the ratio Lz/Ly instead, and no

expression for the force is given. Also in Zou et al. [189] a similar boundary condition is reported to be

of second order accuracy, but for the case where pressure is specified at the inlet and outlet, instead of a

body force driving the flow.

It must be noted that in these tests we are mainly measuring the accuracy of the boundary conditions

implemented. The relative errors measured are quite small and decrease as we increase the lattice

size. In order to better assess the validity of our LBGK implementation we tested a shear wave with

fully-periodical boundary conditions, since these are also used for the case of isotropic homogeneous

turbulence.
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Lx 8 16 32 64 order of

Ly, Lz 4 8 16 32 convergence

Max. Relative Error I 3.372(-1) 1.760(-1) 1.057(-1) 7.531(-2) 7.224(-1)

Coordinates I 0 3 2 0 5 4 0 6 8 0 11 16

Re=5.0 Max. Relative Error II 2.810(-1) 1.345(-1) 7.650(-2) 5.380(-2) 7.969(-1)

τ= 0.8 Coordinates II 0 1 2 0 5 4 0 6 8 0 11 16

Analytical peak 1.250(-1) 6.250(-2) 3.125(-2) 1.563(-2)

velocity

Max. Relative Error I 1.256(-1) 7.687(-2) 4.260(-2) 2.228(-2) 8.337(-1)

Coordinates I 0 2 3 0 4 7 0 8 15 0 16 31

Re=0.2 Max. Relative Error II 9.296(-2) 5.566(-2) 2.994(-2) 1.651(-2) 8.374(-1)

τ = 1.1 Coordinates II 0 2 3 0 4 7 0 8 15 0 21 16

Analytical peak 1.000(-2) 5.000(-3) 2.500(-3) 1.250(-3)

velocity

Max. Relative Error I 4.870(-1) 2.600(-1) 1.461(-1) 9.618(-2) 7.852(-1)

Coordinates I 0 1 2 0 1 4 0 6 8 0 11 16

Re=10.0 Max. Relative Error II 4.472(-1) 2.345(-1) 1.229(-1) 7.779(-2) 8.502(-1)

τ = 0.6 Coordinates II 0 1 2 0 7 4 0 6 8 0 21 16

Analytical peak 8.333(-2) 4.167(-2) 2.083(-2) 1.042(-2)

velocity

Table 4.2: Maximum relative errors for 3D square duct flow. The symbol “I” identifies the velocity

boundary condition and “II” the simpler equilibrium condition, given by Eq. (4.9). Also shown is the

value of the coordinates where the maximum relative errors were detected, ranging from 0 to Li − 1,

with i = x, y, z. The last column shows the order of convergence for each boundary condition and

combination of the values Re, τ , obtained using a least-squares fitting. In all cases the magnitude of the

maximum relative error decreases as we increase the size of the lattice. The short-hand notation (−n)

is used for ×10−n.

4.2.2 Shear wave

A shear wave in a periodic domain can easily be shown to be a solution of the incompressible Navier-

Stokes equations. This allows us to directly compare the velocity field obtained using our lattice-

Boltzmann model with an exact analytical expression, without the need to worry about wall effects.

The expression for the velocity field, u, of the shear wave is

u(r, t) = A(t)cos

(
2πri
L

)
ej , (4.14)
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where r is the position, ej is a versor, L is the size of the domain in the direction defined by ej , and

A(t) the amplitude of the wave in that direction. The condition for the shear wave is that i 6= j.

Inserting Eq. (4.14) into the NSE, Eq. (2.4), without a force term, we obtain the following equation

dA(t)

dt
= −ν 4π2

L2
A(t), (4.15)

where ν is the viscosity of the fluid. Solving this straightforward differential equation, we find the

expression for the amplitude to be

A(t) = A0 exp

(
−4π2νt

L2

)
, (4.16)

with A0 being the value of the amplitude at time t = 0. The combination of Eqs. (4.14) and (4.16) tells

us that the wave is stationary in position and has an amplitude which decays exponentially with time.
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Figure 4.2: Percentage error of standard deviation for the shear wave, Eq. (4.19), in the first 60 LB time

steps. Velocity field is simulated using HYPO4D, with parameters A0 = 0.1, L = 64 (cubic lattice) and

ν = 0.01. Units in the x-axis are in LB time steps.

In order to simulate this in the lattice-Boltzmann framework all that is now required is to set up

an initial velocity field obeying Eqs. (4.14) and (4.16), choose the values for the initial parameters,

A0, ν and L, and observe the decay of the wave. For the assessment of the numerical accuracy of our

simulation we looked at the value for the standard deviation of the velocity field. We considered a wave

with direction ej = k̂ and varying in the ri = x coordinate. The expression for the standard deviation

will then be

σ =

√√√√ 1

N

N∑
i=1

(uzi − uz)2, (4.17)
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where uz represents the velocity field averaged over all N lattice sites. From Eq. (4.14) it is easily seen

that uz = 0. The expression for the standard deviation of the shear wave, σS , is then found to be

σS =
A0√

2
exp

(
−4π2νt

L2

)
. (4.18)
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Figure 4.3: Analytical and measured shear wave standard deviations in the first 100 LB time steps.

Velocity field is simulated using HYPO4D, with parameters A0 = 0.1, L = 64 (cubic lattice) and

ν = 0.01. Units in the x-axis are in LB time steps. The LB clock seems to be running ahead of the

analytical expression.

We compared the standard deviation in the velocity field obtained through HYPO4D, computed

using Eq. (4.17), with the theoretical value given by Eq. (4.18). The input parameters were A0 = 0.1,

L = 64 (cubic lattice) and ν = 0.01. A uniform mass density, with unit value, was considered over the

whole lattice. We verified that the kinetic energy decays exponentially with time, as expected. In Figure

4.2 the error in percentage of the standard deviation of the velocity is shown for the first 60 iterations.

The exact expression being plotted is
|σS − σm|

σS
× 100, (4.19)

where the subscript “m” stands for “measured”. The main feature to note is the transient kinetic exci-

tations present in the first 40 time steps, roughly speaking. After this transient the error, although quite

small, actually increases with time step. The reason for this can be seen in Figure 4.3, where both the

analytical and measured standard deviations are shown for the first 100 time steps. The values for both

of these evolve in much the same way, but are clearly seen to be out of phase, with the LB “clock”

running ahead. This discrepancy is almost certainly caused by the initial kinetic transient, visible in

both Fig. 4.2 and 4.3. We found that the LB clock seems to be off by about 9.2 time steps, as compared



4.2. Numerical tests 72

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0  20000  40000  60000  80000

P
er

ce
nt

ag
e 

er
ro

r

Time step (t)

Adjusted percentage error

Figure 4.4: Adjusted percentage error of standard deviation for the shear wave in the first 9 × 104 LB

time steps. All parameters as in the two previous figures, except that the analytical formula has been

corrected by factors t→ t+ 9.2 and ν = 1.0008× 10−2.

to the analytical expression. Besides this, the actual viscosity of the fluid being simulated is found to

be not exactly 0.01 but closer to 0.010008. Taking these two factors into account, and replacing them

in Eq. (4.16), the adjusted percentage error is now shown on Fig. 4.4, and is seen not only to be quite

negligible, but to decrease (on average) with the number of iterations.

The analysis outlined above was repeated in the simulation of a L = 128 cubic lattice, with the

same input parameters A0 = 0.1 and ν = 0.01. The errors now obtained, defined by Eq. (4.19), were

reduced by a factor of ∼ 10, in regard to the L = 64 simulation. Again we observed a strong initial

kinetic transient, and the LB clock was found to be off by a factor of ∼ 9.2 once more. Interestingly,

the actual viscosity of the fluid was now found to be 0.010002, a correction 4 times smaller than for

the L = 64 case. Fig. 4.5 shows the adjusted error after these two factors have been taken into account

in the analytical expression. Comparison with Fig. 4.4 shows that the overall error has decreased on

average by roughly one order of magnitude.

One further comment is required to finalize this discussion. At the beginning of the present section

we mentioned that the shear wave considered here is a solution of the incompressible Navier-Stokes

equations. However, as seen easily from the definition of the velocity field for the shear wave, Eq. (4.14)

(where i 6= j), the convective term in the Navier-Stokes equations, (u · ∇)u, will be null for this

particular vector field. Thus, in the present numerical test it seems we are not explicitly simulating the

full NSE, since the nonlinear term is not accounted for. Nevertheless, He and Luo [135], in their a priori

derivation of the lattice Boltzmann equation, provide us with a strong argument to solve this apparent
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Figure 4.5: Adjusted percentage error of standard deviation for the shear wave in the first 9 × 104 LB

time steps on a L = 128 cubic lattice. The analytical formula for the standard deviation has been

corrected by factors t→ t+ 9.2 and ν = 1.0002× 10−2. Units in the x-axis are in LB time steps.

shortcome. In their derivation, the LBE is obtained from the continuum Boltzmann BGK equation using

the material derivative defined as

Dt ≡ ∂t + ξ ·∇, (4.20)

where ξ represents the microscopic velocity. In this way we see that the convective term is already taken

into account implicitly, from the very deduction from first principles of the lattice-Boltzmann equation.2

Thus we can safely say that the shear wave test, in a periodic domain, is an effective numerical validation

of our algorithm for solving the incompressible Navier-Stokes equations.

4.3 Grid deployment and benchmarks

4.3.1 Introduction

The next logical step, after testing our lattice-Boltzmann implementation against analytical velocity

profiles, was to see how its performance would scale by increasing the number of processors involved

in a given simulation. This is a very important feature of the implementation, since we are aiming to

simulate very large system sizes, due to the inclusion of the time component as well, in order to locate

unstable periodic orbits in turbulent flow.

Amdahl’s law [193] quantifies how much the gain in performance, S, can be when dividing a given

2We are indebted to Dr. Ian Halliday for calling our attention to this point.
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task throughout a number of P processors. Formally this can be written as

S(P ) =
1

f/P + (1− f)
, (4.21)

where f represents the fraction of the workload that can be parallelized. Succi [35] states that in large-

scale LB computations more than 99% of the workload resides within the collision step, which is per-

fectly parallel. This opens up good prospects for scalability up to very high core counts, as pertains to

modern petascale computers.

The timing tests performed to investigate this aspect followed a hierarchy of resource sizes, ranging

from a small local cluster to some of the largest currently operating supercomputers [121]. The code

was also tested on a vector-architecture machine, the Cray X2 (“Black Widow”) component of “HEC-

ToR” [194], part of the UK’s National Supercomputing Service. In all cases, excellent scalability was

found. In this section we describe only some of the main steps in this process, leading up to the deploy-

ment on Ranger at the Texas Advanced Computing Center (TACC) and Intrepid at Argonne National

Laboratory (ANL), two resources that proved invaluable to this project.

All of the tests discussed in this section include only the fluid solver component of HYPO4D, since

this lies at the core of the minimization algorithm discussed in Chapter 5. The architecture of each of

the (main) machines where HYPO4D was deployed and tested is also briefly described. Some further

aspects of this work are discussed in section B.3.

4.3.2 Timing benchmarks

The first stages of our (fully-parallel) code development were performed at our local cluster, dubbed

“mavrino”, which consists of a set of dual-core and quad-core AMD Opteron processors. After exten-

sive testing and debugging we started migrating it to other platforms, beginning with the UK’s NGS

(National Grid Services) core resources [195], and performing scalability tests in order to demonstrate

the efficiency of the code.

The first major milestone of this deployment procedure consisted of the timing tests performed on the

HPCx machine [196], located at Daresbury Laboratory and led by a consortium formed by the University

of Edinburgh, the Science and Technology Facilities Council and IBM. This service (no longer working

since January 2010) was formed of an IBM Power5 1.5GHz cluster, consisting of 2560 cores available

for scientific computation. These were coupled in logical partitions containing 16 processors each, with

a super-scalar architecture, which allowed users to run parallel simulations using up to a maximum

of 1024 cores. The system had a peak theoretical performance of 15.36 TeraFlops, a sustained 12.9

TeraFlops and is equipped with 5.12 TBytes of memory and 72 TBytes of disk. The operating system

used was IBM’s AIX.

The result of these benchmarks can be seen in Fig. 4.6 which shows the overall performance of

the code when the number of cores used in the parallel simulation is increased. We use as a measure
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Figure 4.6: Number of total site updates per second (SUPS), given as a function of the number of cores

used (ranging from 32 to 1024) for three cubic lattices with sides L = 256, 512, 1024, obtained on the

IBM Power5 1.5GHz HPCx supercomputer. Also shown is the ideal scaling of the algorithm, in each

case taking the value of SUPS obtained for the least number of processors considered as the base value.

of performance the number of site updates per second (SUPS), which, after a preliminary stage of

initialisation of the simulation, reports how many lattice sites were updated per second, on average.

Ideal parallel performance signifies the exact doubling of this value every time the number of cores used

is doubled.

Fig. 4.6 clearly shows a linear trend for the performance of HYPO4D. Along with the measured

SUPS values we also plot the ideal scaling SUPS values for the two smaller systems. This is not shown

for the larger one since for that case the ideal value and the measured one are almost indistinguishable.

When increasing the number of MPI ranks from 512 to 1024 we found a speed-up of 1.78 for the cubic

lattice of side L = 512, and a speed-up of 1.95 for the cubic lattice of side L = 1024. This allowed for

the code to be the recipient of a “Gold Star” award, the highest such award within the framework of the

HPCx Capability Incentives policy, encouraging the development of efficient, scalable code.

Ranger is a 2.3 GHz AMD Opteron cluster located at TACC [197]. It has a theoretical peak of

0.579 PetaFlops and it achieved a maximal LINPACK [198] performance of 0.433 PetaFlops [121]. Its

architecture consists of 82 racks, with each rack consisting of 4 chassis and each chassis consisting of

12 nodes. Each node is a Sun blade x6420 (four 16 bit AMD Opteron Quad-Core processors). The

machine thus consists of 3, 936 nodes, i.e, 62, 976 cores, with a Linux operating system. It has a total

aggregated memory of 126TB, which is of the utmost importance to us, since the relaxation procedure
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will be extremely memory intensive, as we will discuss in Chapter 5.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 0  2000  4000  6000  8000  10000  12000  14000  16000

S
U

P
S

Number of cores

Fixed total system size: Lx=Ly=2048; Lz=1020
Fixed system size per core: 323

Figure 4.7: Number of total site updates per second (SUPS), given as a function of the number of cores

used on Ranger. A comparison is made between “strong” (1024 to 16, 384 cores used) and “weak”

(ranging from 16 to 16, 384 cores) scaling. Several of the SUPS values show a supralinear trend.

We had access to an “early-user” allocation in order to test HYPO4D on this machine, which allowed

us to perform several benchmarks with very large system sizes and core counts. Fig. 4.7 shows a

comparison between two different types of benchmark. In these scalability tests, and afterwards on the

production runs, we used the mvapich-devel stack of the PGI 7.1 compiler suite, and the compilation

flags -fast -tp barcelona-64, which target the “Barcelona” type chips used on Ranger. All tests consist

of 200 lattice-Boltzmann time steps, with some of the values of several macroscopic variables and

consistency tests being written to a file at every 50 time steps 3.

The full line describes timing tests performed keeping the overall size of the system fixed, so-called

“strong scaling”; whereas the dotted line refers to timing tests performed keeping the portion of the

system on each core fixed, so-called “weak scaling”. In the latter the overall system size will increase

proportionally to the number of cores being used.

Both tests have their own merits, depending on the kind of problem being studied. We found that

for HYPO4D it is relatively easy to obtain linear scaling for the “strong” test scenario. This is partly

due to computer memory hierarchy. If the total system size is kept fixed, by increasing the number of

cores available a larger proportion of the system will be kept in cache memory, which is more readily

accessible 4. In HYPO4D this trend only starts to break down when the portion of lattice per core

3Unless otherwise stated all benchmarks presented will be assumed to follow this definition.
4This process can lead to supralinear values of performance being measured, as we observed in this work.
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becomes extremely small and most of the time is now being spent in inter-processor communication,

typically for values of the sub-lattice 163 or less, as we observed on Ranger.
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Figure 4.8: Number of total site updates per second (SUPS), given as a function of the number of cores

used (ranging from 16 to 65, 536 obtained on the Blue Gene/P Intrepid machine at ANL. Optimisation

level is −O3.

Even for the “weak scaling” case we also found very good scaling on Ranger, as shown in Fig. 4.7, up

to 16, 384. As a result of this performance, HYPO4D was the recipient of a “5K Capability Computing

Award” at the TeraGrid’08 conference in 2008 [199], conferred to codes scaling up to a number of at

least 5000 cores.

Fig. 4.8 shows similar timing tests performed on the “Intrepid” Blue Gene/P IBM cluster at ANL

[200]. This has a 0.557 PetaFlops theoretical peak and obtained a maximum LINPACK speed of 0.459

PetaFlops [121]. It consists of a total of 163, 840 PowerPC 450 type cores, each with a speed of 850

MHz (or 3.4 GigaFlops), having an aggregated memory of 80TB.

Fig. 4.8, where only weak scaling tests are shown, illustrates the scalability trend increasing with

the size of the fixed load per core. Of course this must breakdown as the memory limits of any given

architecture are reached. The best results can be seen to be for a 1283 sub-lattice per core, which has a

speed-up of 1.38 when going from 33K to 65K cores. Up to 33K the scaling is linear, with occasional

supralinear values. The performance of HYPO4D on Intrepid in terms of SUPS per individual core is

approximately two times less than on Ranger. This is consistent with the difference of processing speed

between cores on each machine. It should be noted that both architectures are vastly different. Although

Intrepid has more than the double of cores that Ranger has, its power consumption is only 1260K Watts

whereas Ranger’s has a value of 2000K Watts [121]. This is something that seems highly desirable, in



4.3. Grid deployment and benchmarks 78

an age where energy efficiency concerns play such a determinant role.
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Figure 4.9: Number of total SUPS, given as a function of the number of cores used (ranging from 1024

to 65, 536 obtained on the Cray XT5 Kraken machine located at NICS. Optimisation level is −O3 This

time a speed-up factor of ∼ 2.035 was measured, when going from 33K to 65K cores (see text for

discussion of supralinear values).

For this range of core count, an even better scaling was obtained on the Cray XT5 Kraken machine

located at the National Institute for Computational Sciences (NICS), in the USA. This machine is formed

of 98928 Cray XT5-HE Opteron cores with 2.6 GHz and has a peak performance of 1.03 PetaFlops, with

832 PetaFlops of maximum LINPACK speed. It is part of a new generation of US petascale machines,

which is pushing the boundaries of computational science. Fig. 4.9 shows the timing values obtained on

this machine, using an −O3 optimization level.

Finally we should mention another computing resource, this time in the UK. At the time these

benchmarks were performed HECToR [194] (short for High-End Computing Terascale Resource) was

a Cray XT4 2.8 GHz cluster, with a LINPACK value of 55.0 TeraFlops and a total of 11, 328 computing

cores (5664 AMD 2.8 GHz dual core Opteron). Fig. 4.10 shows the result of timing benchmarks per-

formed on this machine. Again a value of 1283 per core was used, since this gives the best performance

for HYPO4D, as seen in Fig. 4.8. The results measured on HECToR signal one of the best HYPO4D

performances, in terms of SUPS per core, along with the timings obtained on Kraken. If we focus on

the SUPS value for 8192 cores, this is 0.532M for HECToR and only 0.400M for Ranger. The timing

results obtained both on HECToR and on Kraken are indistinguishable from linear scaling, and in some

cases supralinear. Furthermore, on Kraken HYPO4D had a sustained average of ∼ 0.8M SUPS per
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core, ranging from 1K to 65K cores.
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Figure 4.10: Timing tests on HECToR, XT4 component, for “weak” scaling. Optimisation level is−O3.

All of the timings discussed so far, have been performed on scalar architecture machines [201]. This

seems to have been by far the most common architecture for the past years, in the field of supercom-

puting. However, for a long time, from the early 1970’s up to the 90’s, vector architectures had the

lead for large scale scientific and technical computing. Briefly stated, a vector architecture is a CPU

design wherein the instruction set includes operations that can perform mathematical manipulations on

multiple data elements simultaneously. This is in contrast to a scalar processor, which handles one data

element at a time, using multiple instructions [201].

The main reason for the loss of predominance of the vector design was the advance of CMOS (Com-

plementary Metal Oxide Semiconductor) technology, which allowed for much higher chip packaging

densities and thus a much lower cost for RISC (Reduced Instruction Set Computer) architectures. By

capitalizing on the architectural simplicity of RISC and taking advantage of concurrency at the instruc-

tion level (i.e., multiple instructions being executed simultaneously by independent functional units), the

label superscalar was coined, and this approach quickly achieved predominance over vector machines.

Recently, a vector processing component was added to HECToR, using a Cray X2 processor, de-

veloped under the code name “Black Widow”. This vector component consists of 112 Cray X2 vector

processing units split into 28 vector compute nodes with 4 processing units per node. We were given

early-user access to this component and thus the chance to perform timing benchmarks of HYPO4D

on it. Some changes had to be made to the code, in order to run efficiently on this new architecture.

These included the order in which arrays are declared and the handling of I/O which should not be
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Figure 4.11: Comparison of HYPO4D performance on HECToR, between the XT4 (scalar) component

and the X2 (vector) component.

inside loops in order not to break the vector architecture’s pipelining of instructions [6]. The overall

result of this effort consisted in a huge improvement in performance. Fig. 4.11 shows a comparison

between HYPO4D performance on XT4 and X2. For the runs using 16 and 32 cores we saw an update

in performance of 64%. This was possible due to the support given by NAG (Numerical Algorithms

Group) [202] which is a partner in the HECToR consortium. A more detailed analysis then showed that

the overall performance of HYPO4D running on a vector architecture could be ∼ 4 times faster than on

a scalar one. However, since HECToR’s vector component is still relatively small, this avenue was not

pursued further and we focused our efforts instead on much larger resources, namely Ranger and the

Blue Gene/P machine.

To finalise this section, we should state that the benchmarks discussed here allow us to draw two

main important conclusions. The first one is that HYPO4D is very well placed to efficiently make use of

the huge computing resources (with memory being the main culprit) the spacetime approach requires.

The second one is that the MPI programming paradigm still seems to be holding up to the order of

magnitude of core counts of the new petascale machines, such as Ranger, Intrepid and Kraken. This

is an important conclusion since several new machines, as well as upgrades to the existing ones, are

on the pipeline, with the goal of obtaining several PetaFlops of sustained computation in the very near

future, and there is every reason to believe that the MPI paradigm (as well as HYPO4D, as a specific

implementation) will still be able to perform efficiently at that scale.
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4.3.3 I/O and scalability

In HYPO4D all check-pointing is performed using the “XDR” (External Data Representation) proto-

col [203], a 1995 IETF (Internet Engineering Task Force) standard. This provides an architecture-

independent data representation, allowing data to be efficiently transferred between heterogeneous sys-

tems. The files thus created are much smaller than their ASCII counterparts. Besides the distribution

functions, the user can also chose to write only the velocity field. This implies reducing the storage

requirements by a factor of ∼ 6, since we have 19 distribution functions at each lattice site but only

3 velocity components. Several parameters on the input file control this aspect, again with no need to

recompile the code.

A set of functions in the HYPO4D software package allow the user to check-point a given state of

the system to disk and afterwards restart the simulation from that time step. This can be done in two

different modes. The simplest mode has all MPI ranks sending its portion of the lattice to the process

of rank 0 (in MPI parlance usually called “Master”) who then concatenates the data and writes it to a

single file. Then at the restart of the simulation, the “Master” process reads the data file and sends the

respective portion of this data to the various processes arranged in a given Cartesian topology (which,

by the way, may be different from the one that produced the checkpoint). This process is, however, not

possible for systems too large to be kept in a single core. Therefore, in the second check-pointing mode

each MPI rank will write a separate XDR file to disk, with the possibility to restart the simulation at a

further date, by having each process read its respective file (in this mode, the Cartesian topology must

be the same in both cases). Again, the choice between these two modes is made by the user at the start

of each simulation.

One further comment is in order, and that is the impact of I/O on scalability as well as performance.

For all of the benchmarks previously shown we did not keep check-points, i.e, no full configuration of

the system was written to disk. We should expect this, something of obvious necessity in production

runs, to somewhat degrade the performance of the code. Extensive tests on Ranger however, have shown

this effect not to be as significant as might be expected.

Table 4.3 shows the impact of I/O on HYPO4D performance, measured on Ranger. The first set

of timing data is the same one as was used for the soft scaling plot on Fig. 4.7. No check-pointing is

performed and macroscopic average quantities are written to the standard output at every 50 time steps.

In the second set of timing data, besides those macroscopic quantities still being written with the same

frequency, a complete state of the system (i.e., all the LB distribution functions) is written to disk at

every 50 time steps. Both these rates can be defined by a general user on an input file, at the beginning

of each simulation, with no need for recompiling. For consistency, we used the “one file per core” I/O

mode in all runs that performed check-pointing.

The speed-up values are defined as SUPS(N)/SUPS(N/2) in both cases. Some supralinear val-
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Without checkpoints With checkpoints

Number of cores SUPS Speed-up SUPS Speed-up Degradation

16 7.197876e+06 6.906664e+06 4.0%

32 1.403274e+07 1.9496 1.374042e+07 1.9894 2.0%

64 2.816367e+07 2.0070 2.734297e+07 1.9900 2.9%

128 5.441786e+07 1.9322 5.078074e+07 1.8572 6.7%

256 1.063874e+08 1.9550 1.035392e+08 2.0390 2.8%

512 2.100080e+08 1.9740 1.977605e+08 1.9100 5.8%

Table 4.3: HYPO4D timings with and without check-pointing. In all cases, a value of 323 lattice sites

per core is considered. Speed-ups are given by SUPS(N)/SUPS(N/2). The last column gives the

(percentage) degradation factor in performance when check-pointing is included. All timings were

measured on Ranger.

ues (i.e., larger than 2) can be seen, as discussed before. Analysis of the data displayed on Table 4.3

reveals that in all cases the SUPS value is lower when we include check-pointing, as should be expected.

However, the impact of the degradation in performance, whose values are shown on the last column, is

by no means large. Furthermore, the speed-up values for the runs that include check-pointing clearly

show that linear scaling is still maintained.

We now turn our attention to the results obtained in the simulation of weakly turbulent flow.

4.4 Simulation of turbulent flow

4.4.1 Arnold-Beltrami-Childress flows

This section focuses on the work carried out using HYPO4D to simulate turbulent flow. All of the

fluid flow simulations discussed here start from an initial state of constant (zero) velocity on all lattice

sites, with a force being applied everywhere on the lattice at every time step. After a transient state, it

is expected that the velocity field (in laminar flow) will closely follow the force field, since this is the

only term that is driving the fluid which would otherwise be at rest. We consider periodic boundary

conditions in all directions, thus excluding all wall effects. The force term can easily be included in the

LBGK, in a variety of ways, by including extra terms in the two main equations, (3.16) and/or (4.5) (see

Guo et al. [204] for a comprehensive discussion). In this work we followed the approach suggested by

Shan and Chen [205] of including all of the relevant physics within the equilibrium distribution. This

makes for very efficient code as well as high numerical accuracy. The exact expressions used can be

found in the work of Lätt et al. [206].

The force field chosen to drive the flow is a vector field of ABC type, which is often used in dy-
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namical systems studies [207–210]. Its name was first coined by Dombre et al. [207], referring to the

mathematicians Arnold, Beltrami and Childress. The three-dimensional force field, F, can be written

as:

F = A(sin z + cos y)̂i+B(sinx+ cos z)ĵ + C(sin y + cosx)k̂, (4.22)

where î, ĵ, k̂ represent orthogonal unit vectors and A,B,C are constants. The force term is introduced

into the LBGK scheme in a way that does not artificially impart mass or momentum to the system [204].

Its overall effect thus consists of a stirring of the fluid.

The study of ABC flows actually touches on some fundamental issues in turbulence, and on the

differences between the Eulerian and Lagrangian picture of fluid flows. Very briefly, in the Lagrangian

picture of fluid flow the position of each fluid particle is tracked, being given by x(x0, t), where x0

may be taken as the position at some time t0. In the Euler picture of fluid flow it is the velocity field

instead that is the basic dynamic quantity being tracked. However, three-dimensional steady flows

with a simple Eulerian representation can nevertheless have chaotic Lagrangian structure. This means

that infinitesimally close fluid particles following the streamlines may separate exponentially in time,

while remaining in a bounded domain, and thus the positions of fluid particles may become practically

unpredictable for long periods of times. In 1984 Aref [211] showed that turbulent mixing of a passive

scalar (i.e., a scalar quantity that is transported by the fluid motion, without influencing that motion)

could occur in a simple, time-periodic, two-dimensional flow. This is also possible in three dimensions,

e.g., for steady ABC flows.

This class of flows, was first studied by Arnold [212] as being an exact 3D steady-state solution

to the Euler equations (Navier-Stokes without the viscous term). Moreover, for large values of the

viscosity, this is the only stable solution for the NSE [208, 213]. As the viscosity decreases bifurcations

arise which eventually lead to Eulerian turbulence. This process may be enhanced by the pre-existing

Lagrangian turbulence. This seems to have been Arnold’s original motivation for introducing these

flows, as discussed by Dombre et al. [207].

In this work we chose to consider an equal value for all constants, A = B = C ≡ N , for simplicity.

This regime was first studied by Childress, considering N = 1, who independently introduced it as a

model for the kinematic dynamo effect [214]. The vector field, defined by Eq. (4.22), can easily be seen

to obey the following equations:

∇ · F = 0, ∇× F = F. (4.23)

The second identity tells us that the force field obeys the property that characterizes Beltrami fields [86],

namely:

∇× F = αF, (4.24)

with α = 1.
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Lastly we should mention that, and as pointed out by Zimmerman and Hewakandamby [210], ABC

flows have several important properties which make it a mixing model with potential applications in

industrial and environmental flows. Among these properties, the ABC flows have minimum energy

dissipation, due to Eqs. (4.23) and (4.24). They also have maximum helicity, which is a quantity defined

as

H =

∫
u · ωd3r, (4.25)

whereω is the vorticity, defined in Eq. (2.2). Sinceω and u are parallel for an ABC velocity field it then

follows that H will assume higher values than for any other flows. This property, combined with mini-

mum dissipation, in turn implies that these flows will have long-lived helical coherent structures [210].

4.4.2 Transition to time-dependent flow

In the simulation of ABC flows we studied the regime at which transition from laminar flow to a time-

dependent velocity field occurs and sought to ascertain the value of the critical Reynolds number. Our

main motivation for this was establish the lowest possible Reynolds number at which the flow is already

in a turbulent (albeit weakly) regime. It is expected that flows at higher Reynolds number will have

larger and more unstable UPOs, more tightly packed together, thus making them harder to locate [9].

Besides this requirement, two other criteria are of the utmost importance. The first one is numerical

stability. Lattice-Boltzmann, as most numerical schemes at some point or another, is prone to numerical

instabilities, as discussed in Chapter 3. These can occur for low viscosity values or very high force mag-

nitudes and usually cause the distribution functions to assume negative (and thus nonphysical) values. In

HYPO4D, this positivity constraint is by default checked at every time step and at every lattice site. For

the sake of computational efficiency, this test can also be switched off, by one of the input parameters,

if the user is already sure of the numerical stability of a given parameter set or range of parameters.

The other crucial criterion is the need to maintain a low Mach number (Ma) at all times, since the

LBM approaches macroscopic nearly-incompressible flow with an accuracy that varies with Ma2. In

all the simulations discussed from now on Ma ≤ 0.2, for which the maximum velocity, observed at any

time step in the whole of the lattice, is used to check this criteria.

A suitable choice of input parameters (in particular the ABC force magnitude N and the relaxation

time τ , which is equivalent to the viscosity, via Eq. (3.17), was reached after a protracted search for

a set of values that would satisfy the above-mentioned conditions. Due to the memory requirements

of the spacetime relaxation procedure we also chose to use the smallest possible (3D) lattice size that

could still accurately describe weakly-turbulent behaviour. For this purpose a 643 lattice size was used

to which, throughout the remainder of this work, all results will be referred to.

Fig. 4.12 shows the time-dependence of the velocity field for various values of the LBGK relaxation

time τ and thus for various Reynolds numbers. Decreasing τ is equivalent to decreasing the kinematic
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viscosity ν and thus to increasing Re. In the limit of τ = 0.5 we would have, from Eq. (3.17), zero

viscosity and thus an infinite Reynolds number. The quantity being plotted (as a function of time in LB

units) is defined as: ∑
r

|u(r, t)− u(r, t− 1)|∑
r

|u(r, t− 1)|
, (4.26)

just as considered in Eq. (4.11) for the square-duct tests, and the coordinates r are summed over the

entire lattice. In these simulations, a fixed ABC-force magnitude N = 1/643 was considered for all

cases.
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Figure 4.12: The convergence test, defined in Eq. (4.26), for the velocity field, taken between two

consecutive LB time steps, up to time step 105, in LB units. We consider a cubic lattice with L = 64,

constant ABC-force magnitude and several values of relaxation time, τ , shown in the plot. Units in the

x-axis are in LB time steps. The sampling rate of the data has a value of 103.

For the values of τ = 0.59, 0.56 (corresponding to ν = 0.03, 0.02 respectively, by Eq. (3.17)) we

see that the velocity field converges steadily towards a time-independent steady state, corresponding

to laminar flow. (In Fig. 4.12 there is actually a cut-off at 10−9 for these two parameters, since the

convergence test eventually reaches a value of zero, up to double precision.) It must be noted that

since we start from an initial state of rest the velocities increase in the first tens of thousands of LBM

iterations, which constitute a transient state. However, this is not shown in the figure, where only the

rate of variation of the velocity field is plotted.

There is a marked transition in the behaviour of the convergence test when going from τ = 0.56 to

τ = 0.53, i.e. ν = 0.02, 0.01, respectively. For this last value, shortly after time step 5× 104, the value

of the convergence test stops decreasing and begins to increase. This marks the point at which the inertia



4.4. Simulation of turbulent flow 86

of the fluid overcomes the energy dissipation due to the collisions. For ν = 0.02, the maximum velocity

is equal to 4.8482×10−2 in lattice units, corresponding toRe = 155. For ν = 0.01 the flow settles into

a time-dependent steady state, with RMS velocity (found by computing the average maximum modulus

velocity in the lattice, where the averaging is over many thousands of time steps after transients have

died out) equal to 5.7963 × 10−2 in lattice units, corresponding to Re = 371. As we decrease the

viscosity this trend is maintained, as seen in Fig. 4.12, the main difference being that the transition to

the time-dependent steady-state occurs progressively earlier, as expected.

 1

 10

 100

 1000

 0  20000  40000  60000  80000  100000

K
in

et
ic

 e
ne

rg
y

Time step (t)

0.506
0.515
0.521
0.527

0.53
0.56
0.59

Figure 4.13: Total kinetic energy for the same values of τ as in Fig. 4.12. We consider in all cases a

cubic lattice with L = 64 and constant ABC-force magnitude. Units in the x-axis are in LB time steps.

The sampling rate has a value of 103.

The same behaviour can also be seen on Fig. 4.13 where the total kinetic energy is shown, for

the same set of parameters as in Fig. 4.12. After an initial transient, the systems corresponding to

τ = 0.56, 0.59 settle into absolutely constant values of the total kinetic energy, corresponding to the

behaviour exhibited in Fig. 4.12. As the relaxation time, and thus the kinematic viscosity, is decreased,

we observe, after an initial transient, a transition to time-dependent values for the kinetic energy, already

present for the case where τ = 0.53. This transition then occurs progressively earlier in the simulation,

as the value of τ is decreased.

Fig 4.14 exemplifies the cause of this behaviour somewhat better. The quantity being plotted, δ is

defined as:

δ ≡ max|∇× u− u|, (4.27)

and tells us how closely is the velocity field, u, computed from the LB distribution functions using

Eq. (3.13), following the ABC force driving the flow. We note that, from Eq. (4.24), after the usual
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initial transient, the difference between the velocity field and its curl should, in principle, be very small.

This is indeed the case, for laminar flow, as shown in Fig. 4.14 for τ = 0.59, but a different behaviour

occurs for lower values of τ .

Fig 4.14 shows that for τ = 0.53, around time step t = 50, 000 there is an abrupt transition, with

the value of δ increasing several order of magnitude in a relatively short time. It then settles into a time-

dependent behaviour, as was the case in Figs. 4.12 and 4.13. For τ = 0.506, the transition occurs even

earlier in the simulation, and the values of δ are larger, thus showing there is even less correspondence

between the driving ABC force and the measured velocity field. This demonstrates that as the inertia

of the fluid becomes more important the relation between the driving force and the configuration of the

flow is no longer linear [24].
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Figure 4.14: Maximum values for difference between ABC velocity field and its curl, defined in

Eq. (4.27). As in previous plots, we consider a cubic lattice with L = 64 and constant ABC-force

magnitude. The sampling rate has a value of 103. For the calculation of the first-order derivatives, a

central finite-difference scheme, defined in Eq. (4.28), was used. Units in the x-axis are in LB time

steps.

For the computation of the first derivatives involved in the curl (which was performed at a post-

processing stage) we considered a five-point stencil finite central difference scheme [215]. In this ap-

proximation, the first derivatives are given by:

∂ui
∂xk

' −ui(xk + 2h) + 8ui(xk + h)− 8ui(xk − h) + ui(xk − 2h)

2h
, (4.28)

where i, k = 1, 2, 3. We considered h = 1 which means that, as can be seen from Eq. (4.28), at each

point the derivative is computed, the information from the nearest four neighbours, in the direction of the

derivative, was also taken into account. The accuracy of this approximation was checked by computing δ
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for a “pure” ABC force term (without the lattice-Boltzmann fluid solver). This was performed on several

cubic lattices of size L3, with L ranging from 8 to 256, and δ was found to converge monotonically to

zero as L increased.

4.4.3 Route to chaos in the ABC flow

After identifying the transition from a laminar to a time-dependent regime we looked more closely at the

precise nature of this transition. As discussed in the previous section, the interval identified lies between

LB viscosity ν = 0.02, 0.01 (i.e., τ = 0.56, 0.53) or Reynolds number Re = 155, 371, respectively.

We note that these two factors do not scale in a trivial fashion, since the velocity field after the transition

becomes highly nonlinear. However, this interval is still quite large and can reasonably be expected to

show some interesting behaviour.

Figs. 4.15 and 4.16 show the total kinetic energy of the system in a section of the above-mentioned

range for the value of the viscosity. From left to right and from top to bottom, the value of the LB

viscosity decreases, between a maximum value of 0.0173 and a minimum of 0.0134, whereas the mag-

nitude of the force term is kept constant and equal to N = 1/643. The convergence test of the velocity

field also shows a similar trend, as would probably any other relevant global quantity. However this

behaviour is more clearly seen when plotting the total kinetic energy, E of the system against time. This

quantity is defined as

E(t) =
1

2

∑
r

(u(r, t))
2
, (4.29)

where the sum is taken over the whole lattice, and a unit mass is considered everywhere5. Since we

do not consider any further interaction between the particles, this is also equal to the total energy of

the system, representing the balance between the energy injected (through the continuous stirring of the

ABC force) and the energy dissipated (through collisions). This is thus clearly an example of a forced

dissipative system [7, 91]. The Reynolds numbers are computed by taking the average value of the

maximum (modulus) velocity after the transient has died out. As was the case in Figs. 4.12 and 4.13 we

observe that the duration of the transient becomes smaller as the Reynolds number increases.

Several interesting features can be seen in these energy plots. We begin with laminar behaviour, in

Fig. 4.15 a). In Fig. 4.15 b) the system and goes through two meta-stable phases, but eventually settles

once more into laminar flow, at constant energy, at t ∼ 1.7M . This is no longer the case in Fig. 4.15 c)

and from there on, the fluctuations in the total energy values become larger.

In Fig. 4.16 we have a quasi-periodic behaviour in the first plots, with very long values for the “quasi-

period”. However, in all instances we also see a clear departure from periodicity. As viscosity decreases

and the Reynolds number increases the value for this “quasi-period” decreases. Visual inspection shows

5As mentioned before, the Mach number was kept low, and the deviations found from perfect compressibility are of the order

of numerical round-off.
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(c) Re = 210

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0166

(d) Re = 212

Figure 4.15: Total kinetic energy for different LB viscosities, displaying emergence of time-dependent

behaviour. Viscosity, ν, decreases left to right and top to bottom whereas the force magnitude is kept

constant. The laminar flow, observed in the first plot, becomes increasingly more unstable as the viscos-

ity decreases. These instabilities also appear increasingly earlier in the simulation, as ν decreases. For

ν = 0.0170 the flow still converges to a constant kinetic energy (after a very long transient), but this is

no longer the case for subsequent lower values of ν. Reynolds numbers, ranging from 207 to 212, are

shown below each plot. Units in the x-axis are in LB time steps.

that the average total energy increases in all cases as ν decreases, as expected. The transitions between

two quasi-stable regions (i.e., where the energy is almost constant) show increasingly larger and more

unpredictable variations. The length of these quasi-stable regions decreases, converging to increasingly

sharper distributions, as seen in subfigure f). After this, the variations become more and more pro-

nounced and the behaviour increasingly chaotic. However, even in the last plot, for ν = 0.0134, there

are still some narrow quasi-stable regions, although they are difficult to see, at this scale of the picture.

Following the terminology adopted by Eckmann in his 1981 review article [91], we can safely claim that

the scenario described above signals a transition to turbulence through intermittency, with occasional

windows of stability still re-appearing long after the aperiodic behaviour has settled in.



4.4. Simulation of turbulent flow 90

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0165

(a) Re = 213

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0160

(b) Re = 219

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0155

(c) Re = 230

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0150

(d) Re = 234

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0146

(e) Re = 246

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500000  1e+06  1.5e+06  2e+06

E
ne

rg
y

Time step (t)

ν = 0.0142

(f) Re = 256
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Figure 4.16: Same as in Fig. 4.15, this time displaying route to chaos. Viscosity decreases left to right

and top to bottom whereas the force magnitude is kept constant. Near-periodicity, observed for the

first values of ν, has a steadily decreasing period and the variation in the average kinetic energy also

increases, until at ν = 0.0134 we have a seemingly chaotic behaviour. Reynolds numbers, ranging from

213 to 279, are shown below each plot. Units in the x-axis are in LB time steps.
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4.4.4 Energy cascade

A final test was made regarding the nature of our turbulent (ABC) flow simulations. We computed the

energy spectrum of the flow and plotted it as a function of the modulus of the wave number, k, obtained

by calculating the Fourier transform of the velocity field, u. For the NSE in a turbulent regime, a scaling

exponent of −5/3 in the inertial range was predicted by Kolmogorov [34] and has been observed in

many experimental and numerical studies [3]. This is actually one of the few mathematically rigorous

analytic results, derived from first principles, known for the Navier-Stokes equations and is widely used

as a test case. The exact range of application of the Kolmogorov power law has however been a subject

of debate for a long time [23, 216]. A good introduction to this discussion can be found in the book

by Frisch [3]. Very briefly put, Kolmogorov’s power law rests on the assumption of self-similarity of

the random velocity field at the the inertial-range scales. However, this assumption is easily broken in

very many physical situations by the phenomenon of intermittency, by which very intense activity is

displayed in very short scales of time [3].
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Figure 4.17: Energy as a function of the modulus of the wave number k, Eq. (4.30), for the ABC flow,

with a−5/3 Kolmogorov scaling also shown. The value of 5.0 (Kolmogorov constant) is arbitrary, since

we are only interested here in the exponent of k. The system is a cubic lattice with L = 64, ν = 0.001,

and ABC force magnitude N = 0.1/L3. The Reynolds number is 1204.

Fig. 4.17 shows the comparison between the Kolmogorov power law and data from one of our

lattice-Boltzmann simulations. The quantity being plotted is

E(k, t) =
1

2N

∑
|k|≡k

|ũ(k, t)|2, (4.30)
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where N is the number of lattice sites and ũ(k, t) is the Fourier transform of the velocity field:

ũ(k, t) =
1

N

∑
r

u(r, t)e−ik·r, (4.31)

where r is summed over all lattice sites.

The values ofE(k, t) are plotted for two time steps, both taken well beyond the transition from time-

independent to time-dependent flow, as illustrated in Fig. 4.12. For time steps before that transition the

inertial regime was nonexistent, the energy dropping abruptly from values of k ∼ 1 (the length scale

where energy is injected) to very low values of k, smaller than ∼ 10−6 (where energy dissipation takes

over, due to the viscosity of the fluid), as seen in Fig. 4.18. This interpretation stems directly from

Richardson’s energy cascade picture [5] (but see also [23] for a further discussion of these ideas and

their impact in modern turbulence research), summarized in his famous verse:

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity [5]

and which played a major historical role in the development of our understanding of turbulence 6.

Kolmogorov scaling is expected to occur for very large Reynolds numbers (fully developed tur-

bulence), so we expect the agreement between the numerical simulations and the −5/3 power law to

improve as we increase Re. Nevertheless, Fig. 4.17 is still a good indication that we are indeed in the

region of weakly-turbulent behaviour, with E(k) values on the intermediate k-values regions, which is

completely non-existent in Fig 4.18. Due to the excellent scalability of the code we can confidently

expect to reach much higher values of Re, possibly of the order of ∼ 105, by simulating larger systems

(without any sub-grid modelling). However, this falls somewhat beyond the scope of this work, since

the identification of UPOs in such large systems would certainly be beyond the memory limitations of

any current existing machine, as will be discussed in the next chapter.

To sum up, we have in the present Chapter described the particular LBGK model used in this work

and our own parallel implementation. The bulk of this software package, entitled HYPO4D, is the

fluid solver, which has been described at some length. Several timing results, obtained on a large

variety of supercomputing platforms indicate that the code is well suited to efficiently utilize the kind

of resources required by the (memory intensive) spacetime approach, with linear scaling obtained up to

tens of thousands of cores. Numerical tests were reported, showing the accuracy of the fluid solver, with

particular emphasis to shear wave decay, for which periodic boundary conditions are considered. These

were also used for the simulation of the ABC flow, in which we analyzed the transition from laminar

6Uriel Frisch notes that Leonardo da Vinci in his celebrated notebooks seems to have already shown some understanding of

this mechanism. One passage, written in his usual cryptic and reflected style of writing, reads (English translation):

“where the turbulence of water is generated

where the turbulence of water maintains for long

where the turbulence of water comes to rest” [3].
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Figure 4.18: Same as in Fig. 4.17 but this time before transition to the weakly-turbulent regime occurs.

to weakly turbulent flow. In the next Chapter we shall describe the numerical implementation of the

relaxation procedure and the identification of UPOs in ABC flow using the novel spacetime variational

approach described in section 2.4.2.
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CHAPTER 5

Numerical relaxation

THE methodology used for numerical relaxation towards an unstable periodic orbit is the main topic

addressed in this chapter. We begin by describing the algorithm used for the identification of

suitable starting points on which to apply this algorithm and then go on to describe the main numerical

methods which were used for the minimization, or numerical relaxation, towards UPOs. Preliminary

tests performed on laminar flow are discussed as well as computational aspects associated with each

of the methods. This procedure requires vast amounts of memory and we discuss the strategies im-

plemented to optimize the procedure. This is a problem that can only be addressed using petascale

computing resources. The spacetime simulations thus performed are some of the largest ones ever at-

tempted in this field, with a single job sometimes requiring in excess of a million CPU hours.

The HYPO4D software package has two modules that specifically address this problem, one for the

identification of suitable candidate orbits and another for the spacetime numerical relaxation of these,

using several different routines. Both these modules are fully parallel and are presented and described

in detail. In the last sections we discuss the first results obtained with this methodology, for UPOs found

in a L = 64 cubic lattice, with Re = 371, within weakly-turbulent ABC flow

As was the case for the 3D fluid solver described in the previous Chapter, the two modules of

HYPO4D described in the present Chapter were also fully written and developed from scratch by the

present author of this thesis. The UPOs that we present in this work all have periods between 15, 000

and 30, 000 and are described by a L = 64 cubic lattice. Due to the particular 19−velocity LBGK

model adopted in this work, and the use of double precision, this in turn means that one single copy

of these orbits occupies in the order of one or more Terabytes of memory. The numerical relaxation

procedures needed to identify them thus required the utilization of several millions of CPU hours on

some of the largest existing computational resources in the world.
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5.1 Methodology

In order to apply the numerical relaxation algorithm, using the novel variational principle described

in Section 2.4.2, we begin by presenting the method used to identify suitable starting points and then

describe the implementation of the spacetime gradient descent and conjugate gradient algorithms.

5.1.1 Definition of ∆(t, T )

In this section we focus on the search for suitable minima on which to apply the numerical relaxation

procedure discussed in Section 2.4.2. One very effective method to locate nearly periodic orbits, sug-

gested by Auerbach et al. [8], consists in plotting the quantity

∆(t, T ) =‖ R(t+ T )−R(t) ‖≥ 0, (5.1)

for very many values of t versus T , where ∆(t, 0) = 0, and where ‖ · ‖ denotes a suitable choice of

norm. If we can find a value T > 0 for which ∆(t, T ) is at a local minimum and has very small mag-

nitude then the equivalent orbit, ranging from t to t + T , will be nearly periodic. For this work [217]

we used a simple Euclidean norm. Suitable generalizations of this can be implemented by consider-

ing a Sobolev norm (see [218], for a discussion of this approach, in the context of Ginsburg-Landau

minimization), defined for generic vectors P and Q as:

‖ P,Q‖S ≡‖ P,Q‖E + γ ‖∇P,∇Q‖E , (5.2)

where the indices E and S stand for Euclidean and Sobolev, respectively and γ is a non-negative con-

stant. It is assumed that P and Q have first-order derivatives and higher-order terms are ignored. With

this definition, the case of γ = 0 corresponds to the standard Euclidean, L2 norm. For the case γ 6= 0 the

value of γ would have to be optimized, through global searches in the phase space spanned by the first-

order derivatives of P and Q. Similarly, higher-order derivatives could also be considered in Eq. (5.2),

with more coefficients being introduced for each new term of higher-order.

For the case of the LB model, and considering an Euclidean norm, Eq. (5.1) becomes

∆(t, T ) ≡

√√√√∑
r

Q∑
i=1

(fi(r, t+ T )− fi(r, t))2, (5.3)

where the coordinates r are summed over the entire spatial lattice. Taking into account higher order

terms, in the definition of the norm, would in theory lead to more accurate minima, since we would be

comparing not only the magnitude of two vectors in phase space but also their variation rates. However,

the numerical difficulties involved in optimizing the extra parameters thus introduced would also be

large and very likely not worth the extra computational effort. Due to the extremely high number of

variables involved in our system (all the LB distribution functions) we believe that a simple Euclidean

norm is already sufficient to identify suitable minima.
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In order to find suitable starting points we plot the quantity defined in Eq. (5.3), with the lattice-

Boltzmann distribution functions, fi(r, t), being the relevant state variables. This bears some similarity

with the convergence test for the velocity field, discussed in Section 4.4. The main difference is that we

are no longer looking at a variation rate but rather measuring differences between states of the system

(relatively) far apart in time. If a significant similarity is found between such time frames it indicates

that we may be close to a spacetime (unstable) periodic orbit. More explicitly, Eq. (5.3) measures the

“distance” between two vectors in a phase space with dimensionality L3 ×Q, assuming a cubic lattice

of dimensions L3 and an LB model with Q discrete velocities.

5.1.2 Search for spacetime minima

Referring to our analysis of the transition to turbulent behaviour in Sections 4.4.2 and 4.4.3 we note that

this takes place between the values of relaxation time τ = 0.56 and τ = 0.53 or, equivalently, viscosity

values ν = 0.02 and ν = 0.01. This range of values was carefully examined, as shown in Figs. 4.15–

4.16. Even though the kinetic energy shown in subfigure 4.16 h), for ν = 0.0134, already shows a high

degree of variation, it was found that a good deal of periodicity still remains, as can be seen from the

∆(t, T ) plot shown in Fig. 5.1. For the purpose of identifying good candidate orbits for the relaxation

procedure we thus found ν = 0.01 (τ = 0.53), was the desired (maximum) value for the viscosity. For

higher values of ν, no deep minima could be found in ∆(t, T ), given by Eq. (5.3).

Fig. 5.2 shows values of ∆(t, T ) for such a system, with the ABC-force magnitude still being

N = 1/L3 and τ = 0.53 for which (non-periodic) time-dependent behaviour is clearly observed.

The horizontal axis in Fig. 5.2 shows the value of time, t, while the vertical axis shows the value of T ,

both in LB units. The colour code illustrates the magnitude of the “distance” in the phase space of the

LB distribution functions between time slice t+ T and time slice t, as given by Eq. (5.3).

The plot shown is only a small part of a much more extensive time step comparison for this system,

performed on Ranger, with values ranging from t = 1.5 × 105 to 2.3 × 106, and T = 5. × 102 to

1.5 × 105, in both cases separated by a sampling rate of 5 × 102, in LB time units. All the values

considered for t occur well after the transition to weakly turbulent behaviour has occurred, as shown in

Fig. 5.3, where we plot the rate of change of the velocity field. After transients have died out, this varies

around an average value, with no well-defined periodicity. This methodology is used for all the results

discussed from here on. The reason for focusing on this particular system is that the smallest UPOs of

fluid flows with smaller Re should have a lower period and be more sparsely distributed throughout the

state space, thus being easier to locate [9].

The search procedure illustrated by Fig. 5.2 is also fully parallel. The methodology followed consists

in writing checkpoints (time steps) of the system state at a given sampling rate and then computing

Eq. (5.3). Each MPI process reads a given number of time slices, and then compares each t time step

with a number of t + T time slices, up to a maximum value of T . The final values, ∆(t, T ), are then
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Figure 5.1: ∆(t, T ), defined by Eq. (5.3), for a system with L = 64, ν = 0.0134 (i.e., τ = 0.5402) and

ABC-force magnitude 1/L3. Darker regions indicate smaller values of ∆(t, T ), which appear for many

different values of T . Large periodic windows can be seen throughout. Units in both axis are in LB time

steps.

communicated to a Master process (in MPI parlance) and written to the standard output. This is the only

intra-processor communication required, thus making the algorithm embarrassingly parallel.

For the values shown in Fig. 5.2, a value of ' 1.2 × 106 frame comparisons were performed,

which required approximately half an hour on Ranger, using 4000 cores. We have followed the strategy

of storing the time steps (with a given sampling rate – 500 in this case) so that other more refined

algorithms may subsequently be applied, if such need arises.

The darker regions in Fig. 5.2, indicate greater similarity between different states of the time depen-

dent system. There is a dark stripe for the smaller values of T , which results from the trivial similarity

between time frames very close in time, as expected. The interesting thing to note is the appearance of

darker regions for very many values of T , distinctly separated from the T → 0 limit. These appear to be

distributed with some regularity. We are especially interested in potential UPOs of smaller period, since

these form the building blocks for larger UPOs (usually referred to as composite, or pseudo-orbits [9]).

Fig. 5.4 therefore highlights one such region of interest, which can be seen in the lower left corner of

Fig. 5.2. This shows two well defined minima, one centered at t slightly less than 1.8 × 105, and the

other one at t ' 2.1× 105. Of these two, the first is of greater interest to us due to a broader dark region

centered at a value of T smaller than that for the second minimum.

In order to evaluate how “deep” a given minimum is we compare its value of ∆(t, T ) with all other
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Figure 5.2: Detail of a larger ∆(t, T ) plot computed on Ranger. Darker regions indicate smaller values

of ∆(t, T ), which appear for many different values of T . The dark stripe located at the origin of the

vertical axis (very small values of T ) indicates the trivial similarity of states very close in time. The

system is a cubic lattice with L = 64, ν = 0.01 (i.e., τ = 0.53) and ABC-force magnitude 1/L3

corresponding to Re = 371. Units in both axis are in LB time steps.
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Figure 5.3: Velocity convergence test, Eq. (4.26), for the ν = 0.01 and Re = 371 system, for 106 LB

time steps.

such values for a given value of T . This can be seen in Fig. 5.5, for the value of T = 27000. For

this value of T we found that the average value for ∆(t, T ) was equal to 5.262909, with a standard

deviation, σ, equal to 1.178410. Since ∆(t = 177K,T = 27K) = 2.190431 (see Fig. 5.6) this is in
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Figure 5.4: Detail from Fig. 5.2 showing a magnification of the area t ∈ [1.5× 105, 2.5× 105] and

T ∈ [2.2× 104, 3.8× 104]. The values of ∆(t, T ) are given by the colour code, with darker regions

indicating greater similarity between different time steps. Units in both axis are in LB time steps.

fact 3 standard deviations away from the average for this value of T .

Another similar comparison can be found within Figs. 5.7 and 5.8 for a value of T = 24500, for

which we also found very good minima. For this case, the average value for ∆(t, T = 24500) is

5.251496, with a standard deviation of 1.160811. Since ∆(t = 637k, T = 24500) = 1.605092 it is

actually four standard deviations away from the average.

In Fig. 5.9, the process of zooming in on a minimum is extended and we find an optimal value of T

for the first minimum in Fig. 5.4 up to an accuracy of 1 LB time step. In this case we kept the value of

t = 1.77× 105 fixed and allowed only T to vary. The quantity being plotted in the vertical axis is again

given by Eq. (5.3). The minimum of that quantity for the fixed value of t was found for T = 26864.

Another such minimum is shown in Fig. 5.10, this time for fixed t = 6.37×105 where an optimal value

of T = 24594 was found. In both cases the values for fixed t were chosen after a rigorous global search

through all the values computed for ∆(t, T ).

The minima of ∆(t, T ) form the starting point for the application of the 4D relaxation procedure,

described in the next sections. Each one of these spacetime orbits must be loaded into the memory of a

supercomputer. In order to save computing time we have found that it is easier to run an LB simulation

starting from checkpoint t, with a number of time steps T , and write all time steps to disk. The relaxation

procedure then begins by reading those time slices, one per computing core, as discussed in the next

section. Using our D3Q19 LBGK model, and double precision arithmetic, each copy of an (643 spatial
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Figure 5.5: Plot of ∆(t, T = 27000) for the Re = 371 system. Notice the minimum near the origin of

the horizontal axis, amplified in Fig. 5.6. The average value of ∆(t, T = 27000) is 5.262909, with a

standard deviation equal to 1.178410. Units in the x-axis are in LB time steps and the sampling rate is

500.

lattice) orbit with period 30K time steps requires ' 1.2 TeraBytes of memory. It must be noted that

these are nevertheless some of the smallest candidate orbits we could find through the search procedure

outlined here. As we discuss in Section 5.1.3, there are challenging computational issues associated

with the numerical relaxation of such large (spacetime) orbits.

5.1.3 Computational issues

Following the procedure outlined in Section 2.4.2, the main mathematical object which we will refer to

throughout the remainder of this chapter is the functional F defined by:

F ≡ 1

2

T−1∑
t=0

∑
r

Q∑
i=1

|φi(r, t)|2, (5.4)

where φi(r, t) is given by:

φi(r, t) ≡ fi(r + ci, t+ 1)− fi(r, t)−
1

τ
(feqi (ρ,π)− fi(r, t)), (5.5)

following the LBGK model, defined in Eq. (3.16). The functional F , defined by Eq. (5.4), is thus the

LBGK equivalent of the functional defined in Eq. (2.25) for the continuum case. We immediately see
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Figure 5.6: Magnification of Fig. 5.5; ∆(t, T = 27000) for Re = 371. ∆(t = 177K,T = 27000) =

2.190431 and so lies 3σ away from average. Units in the x-axis are in LB time steps.

that F must, by definition, be 0 at all time steps where the LBGK equation is obeyed. However, the

definition (5.4) only makes sense if we impose time-periodic boundary conditions in our system, i.e.

T − 1 + 1→ 0. Then we see that for the two time slices at the ends of our spacetime orbit we have:

φi(r, T−1) ≡ fi(r+ci, 0)−fi(r, T−1)− 1

τ
(feqi (ρ(r, T−1),π(r, T−1))−fi(r, T−1)) 6= 0, (5.6)

where π ≡ ρu represents the momentum density. A value of F = 0 (i.e., with φi(r, t) = 0 for all

points on the spacetime orbit) will thus indicate a fully-periodic orbit, with period T . We shall often use

“numerical relaxation”, or “minimization”, interchangeably throughout the text, meaning the procedure

by which the value of F is minimized. A note should also be made regarding the time indices. From

now on we shall refer often to the “UPO time indices”, and label them from t = 0 to t = T − 1, as was

the case in Eq. (5.4). These are still measured in LB time units. However, we must bear in mind that

“t = 0” in “UPO time” has another (positive and usually high) value in terms of the LB clock, since we

must insure that all transients in the initial value problem have died away.

The two main equations for the numerical relaxation procedure implemented in this work are the

gradients of F with respect to the LBGK distribution functions and the inverse of the relaxation time.

These are given in Appendix A, namely Eqs. (A.14) and (A.15). We have, however, chosen not to use

Eq. (A.15) in this work, since it would raise difficult questions regarding the interpretation of the results,

seeing that we would be varying the relaxation time and thus the viscosity of the fluid, which is also
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Figure 5.7: Plot of ∆(t, T = 24500) for Re = 371. Notice the sharp minimum near t ∼ 600K,

amplified in Fig. 5.8. The average value of ∆(t, T = 24500) is 5.251496, with σ = 1.160811. Units in

the x-axis are in LB time steps and the sampling rate is 500.

used in the definition of the Reynolds number. Some numerical tests made with the numerical relaxation

using Eq. (A.15) as well, show that there is very little difference in the convergence of the algorithm or

the final results obtained.

There are two main difficulties associated with the numerical implementation of Eq (A.14). The first

one concerns the sheer number of variables involved, which can be found by multiplying the Q = 19

distribution function components, by the 643 spatial lattice sites required, by the T ∼ 30K time steps

mentioned in the previous section. From this we see that something on the order of 1011 variables

must be stored to represent the spacetime lattice, and thus the computational resources required are very

large indeed. The second difficulty concerns the time indices in Eqs. (5.5) and subsequently (A.14). To

compute the contribution to F at time step t, we require not only all the values of the spatial lattice at

that time step but also at time t + 1, as seen from the first term on the right-hand side of Eq. (5.5), and

at time t− 1, as seen from the first term on the right-hand side of Eq. (A.14).

Initially, this relaxation method was implemented by spatially decomposing the 4D lattice and keep-

ing time local to each processing core. This meant that each core would have all of the 19×T distribution

function components from at least one spatial lattice site. This was found to be not very effective com-

putationally, in terms of the corresponding communication pattern. In addition, it placed a limit on the

maximum possible value of T . This difficulty was circumvented by assigning instead all of the (643)
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Figure 5.8: Magnification of Fig. 5.7; ∆(t, T = 24500) for Re = 371. ∆(t = 637K,T = 24500) =

1.605092 and so lies 4σ away from average. Units in the x-axis are in LB time steps.

distribution function components fi(r, t) at time t to a single MPI process. Whereas the fluid solver

module of HYPO4D has a 3D Cartesian spatial topology, the resulting numerical relaxation module

instead employs a 1D “ring” topology, with periodic (time) boundary conditions. Within this topology,

each MPI process, corresponding to time step t, needs to exchange information with only its left (t− 1)

and right (t + 1) neighbours at each iteration. This makes for a much more efficient communication

pattern and led to a performance increase by a factor of ∼ 5. Another advantage of this scheme is that

no MPI communications are required to checkpoint the whole 4D orbit (as opposed to the case of the 3D

Cartesian topology used in the fluid solver), since each MPI process has all the information of a given

time slice t, and can thus write it to a file.

To clarify the previous discussion we now summarize the overall procedure. In schematic terms, the

full algorithm for this work can now be written in the following way:

(i) Simulate weakly-turbulent flow and store many time steps at a given sampling rate;

(ii) Compute ∆(t, T ), Eq. (5.3), in order to locate near-periodic orbits;

(iii) Apply a minimization procedure to the best candidate orbits found through (ii), using Eq. (A.14)

and a suitable numerical method to minimize F .

The software package dubbed “HYPO4D”, written to implement this program is thus formed from

three main modules, each one corresponding to the three steps outlined above. The first module was
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Figure 5.9: Amplification of the minima in Fig. 5.4 this time fixing t = 177K and allowing only T to

vary. The values of ∆(t, T ) appear on the vertical axis. The sampling rate for T is now one time step.

At T = 26864, ∆(t, T ) = 2.1876 is a minimum. The average ∆(t, T ) value in this region of values of

T is 5.2629. Units in the x-axis are in LB time steps, with the values indicating the UPO time indices.

described in great detail in Chapter 4 since it constitutes the core of the whole procedure, around which

the two other modules are constructed. We now turn to the description of the two main numerical

algorithms implemented to minimize F .

5.1.4 Gradient Descent

The first method we implemented to minimize F via Eq. (A.14) was gradient descent (GD) sometimes

also referred to as steepest descent [21, 219]. As the name implies, this is a simple minimization

procedure, in which we compute the gradient of a given function and then minimize the function by

taking a given step in the direction of that gradient, the direction in which the variation of the function

is largest. In order to determine the exact size of the step we must perform a line search in the phase

space determined by all the variables of our system.

In schematic terms, our overall algorithm can thus be written as:

(i) Fill 4D lattice with all the distribution functions, fi(~r, t), where t = 0, T−1, which constitutes

the candidate orbit;
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(ii) Implement LBGK stream and collide in this 4D lattice (with time-periodic boundary condi-

tions);

(iii) Compute φ(r, t), ∂F
∂fi(r,t)

and the initial value of F ;

(iv) Apply GD until the variation of F falls below a certain threshold, δ;

(iv) GD algorithm:

fi(~r, t) = fi(~r, t)− α ∗
∂F

∂fi(~r, t)
. (5.7)

In order to simplify the discussion we shall consider the definitions:

x := fi(~r, t) and f ′ :=
∂F

∂fi(~r, t)
, (5.8)

For the determination of α, which gives the size of the step taken in the gradient direction, we

used the golden-section line search procedure [21]. This requires that we first execute an appropriate

bracketing of the minimum, i.e., we find three values αa > αb > αc such that:

F(x− αaf ′) > F(x− αbf ′) < F(x− αcf ′). (5.9)
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After this initial step, the golden mean, the optimal quantity to perform a line search [21], is used to

bisect the interval [αa, αc] in order to find an optimal value for α.

In order to implement this minimization procedure three more arrays are required, one to store the

values of φi(r, t), another for the gradients f ′i and a further one to perform intermediate calculations.

Since we already have an extra array associated with the LB streaming operation, this raises the number

of arrays required to five. In the MPI “ring” topology discussed above, this is the number of (3D) arrays

an MPI process stores in its memory. We note that, although the computations involved in computing

the gradients given by Eqs. (A.14) are quite expensive, the line search procedure happens to be the

part of the algorithm more computationally demanding. This is because, after the gradient has been

computed, for each given value of α being tested in every iteration the functional F must be computed,

a step which involves global communication.

5.1.5 Conjugate Gradient

The other minimization method implemented in the HYPO4D software package is conjugate gradi-

ent [21, 219]. This is a very well known routine, widely used in many types of optimization problems,

which makes use of conjugate directions [219] to accelerate the procedure of locating a minimum or

maximum of a given function. We used the nonlinear version of the conjugate gradient method, since

the function we wish to minimize is quite complex and has a very large number of variables. Schemati-

cally, the algorithm implemented can be described in the following way, where (as defined in Eq. (5.8))

x represents all the variables in the system and we use the notation f ′ to denote the gradient of the

functional F :

(i) d0 = r0 = −f ′(x0);

(ii) Find αi, through golden-section search, that minimizes F(xi + αidi)

(iii) xi+1 = xi + αidi

(iv) ri+1 = −f ′(xi+1)

(v) di+1 = ri+1 + βi+1di, where βi+1 will be given by one of the following formulas:

βi+1 =
rTi+1ri+1

rTi ri
(Fletcher-Reeves) and βi+1 = max{

rTi+1 (ri+1 − ri)
rTi ri

, 0} (Polak-Ribière),

(5.10)

with rT signifying the transpose of vector r.

From the previous definitions we see that not only are we now using the gradient information at each

step, as in the gradient descent method, but also information from the conjugate directions, introduced

in step (v) of the previous algorithm. The Polak-Ribière formula implies a restart if β attains a negative
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value. This restart means in practice that for that specific iteration β = 0 and the algorithm will only be

performing gradient descent.

Both gradient descent and conjugate gradient have been implemented in a fully parallel fashion.

Since the 4D lattice is spread out through a computational domain, all computations involve communi-

cation at some point, every time the values of F or its derivatives have to be computed. Furthermore, for

the case of the conjugate gradient, a further three arrays are now required, in order to store information

from the extra gradients being computed, as outlined above. This raises even more the already quite

daunting memory requirements of the approach.

5.2 Laminar flow tests

Both the gradient descent and the conjugate gradient have been the subject of very extensive testing

and optimization in a large variety of systems, before their application to the candidate orbits described

in Section 5.1.2. Several strategies were used for this purpose. One of these included finding artificial

minima (too small to be true UPOs) in systems with very few time steps and then attempting to minimize

F in these systems. Another very useful testing methodology was the following: since the LB time

evolution is relatively slow, if we use for our starting guess a 4D orbit with very few time steps this will

automatically have a low value of F . For this purpose it is even better to evaluate the algorithm before

the transition to turbulent behaviour occurs, since the orbits are then more stable.

One such test can be seen in Fig. 5.11, for a system with only T = 32 time slices, using gradient

descent. The system is again a 643 lattice, with τ = 0.53 and ABC-force N = 1/643, but this time the

time slices are chosen before the transition to turbulence, very close to the beginning of the initial value

problem, with t0 = 185. Fig. 5.11 illustrates well the typical behaviour of the minimization in these

systems. We see that before we start the numerical relaxation procedure all of the discrepancy measured

by F exists only between the first and the last time slice of the system. The quantity being plotted can

be written as:

F(t, t− 1) ≡ 1

2

∑
r

Q∑
i=1

|φi(r, t)|2. (5.11)

This quantity differs from the one defined in Eq. (5.4) in that we have dropped the sum in the temporal

index. As the minimization procedure occurs, this initial sharp discrepancy is gradually spread through-

out the whole 4D lattice, with the total value of F also diminishing at each iteration. The latter property

can be seen in Table 5.1. Another property of this minimization procedure which can be inferred from

the values presented in Table 5.1 is that the convergence rate quickly decreases, after a good initial start.

In the first 20 GD iterations F decreases by more than an order of magnitude whereas between itera-

tions 100 and 200 F decreases only by a factor of ∼ 1.3. This, however, is a well-established property

regarding the gradient descent algorithm in general [219].
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Figure 5.11: Distribution of total F values between two consecutive time slices, Eq. (5.11), in a test

scenario with T = 32 (643 lattice with N = 1/643 and τ = 0.53). As the number of gradient descent

iterations increases, the initial discontinuity is spread out through the whole orbit and the total value of

F (the integral of each curve) also decreases. The horizontal axis is centered around t = 0, in UPO time

indices, with 0 corresponding to F(0, T − 1). Total values of F are given in Table 5.1.

GD iteration F

0 6.256839e-04

20 5.661607e-05

40 4.077552e-05

100 2.615137e-05

200 1.966296e-05

Table 5.1: Values of F under GD minimization for the T = 32 test case shown in Fig. 5.11.

We tried to suppress this deficiency of the algorithm by using GD as a pre-conditioner and then

reverting to conjugate gradient after a certain number of iterations. However, in spite of a major effort

made in this aspect of the work, the conjugate gradient was always found to be prone to instability

and never produced better results than gradient descent alone. Many strategies were attempted in order

to produce a better performance of CG, which included using both the Fletcher-Reeves (FR) and the

Polak-Ribière (PR) formulas, restarting CG periodically, using different techniques for bracketing the

values of α, and a variety of other numerical tricks, but nothing quite produced the desired result. We
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did however see quite clearly that, for the problem described in this work, FR is substantially more

stable than PR, with the latter quickly diverging in most instances.

An example of the performance of GD versus CG can be seen in Fig. 5.12, for the same test case

discussed above. In the first minimization run only GD is used. In the second one, we perform 32

GD iterations as pre-conditioning (the number of time slices), in order to give time for the initial sharp

discrepancy to propagate, and then revert to conjugate gradient. However, the values of F for the latter

case vary quite abruptly, and do not converge to lower values than for “pure” GD.
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Figure 5.12: Gradient descent versus conjugate gradient minimization. The system is the same as in

Fig. 5.11. The CG variant is the Fletcher-Reeves one. After 32 GD iterations, the number of time slices,

in the second set of values, we revert to CG which is seen to be highly unstable. The vertical axis

displays the total value of F and the horizontal one the number of minimization iterations.

Another interesting validation from the procedure came in a rather unexpected way. Although this

was caused by a mistake, we believe that describing the workflow involved will throw some light on the

procedures involved in these minimization runs. The system in question is the T = 26864 spacetime

orbit, identified in Figs. 5.4, 5.5, 5.6 and 5.9. We have two possible ways of starting the numerical

relaxation runs. One is to migrate a checkpoint, with all the values of t0, i.e., all the LB distribution

functions at that time step, the first one of the spacetime minima, and then propagate the LB values in

time, by doing the LBGK stream and collide on the MPI “ring” decomposition. This is, however, highly

inefficient in terms of wall clock time, since it would require that T MPI processes, each corresponding

to a computing core, be involved in the computation, but with only one active at every single time step.

In short, the process with MPI rank t − t0 would receive the LB values from process t − t0 − 1, apply

LB time evolution, store the results in its memory, but also send them to its “right neighbour” in the MPI
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topology, process t− t0 + 1.

Although this possibility is indeed implemented in HYPO4D, a much more efficient way to address

the issue is to perform the whole initial value problem computation in a previous stage and temporarily

store on disk the resulting set of T lattices, each with L3 ×Q distribution functions. We note that in the

computation of the ∆(t, T ) quantities in Section 5.1.2 we used a sampling rate of 500. If, instead we

had written all the 2× 106 time steps, this would in turn require 643 × 19× 2× 106 × 8 ∼ 78× 1012

bytes of memory, an exceedingly high value, even by current petascale computing standards. This in

turn means that, as is often the case in high-performance computing, a trade-off must be negotiated

between memory resources and computing time.

Returning to our main argument, we then launched a set of simulations to progressively compute

all of the T = 26864 time steps of the spacetime orbit and store them in memory. However, due to an

unfortunate “bug”, the magnitude of the ABC force term was 10 times smaller than it should have been.

The result of this can be seen on Fig. 5.13, where the energy values are plotted. The red curve represents

the correct values of the energy, in a weakly-turbulent regime. The green line, obscured by the thicker

blue one, represents the energy values obtained with a force-magnitude ten times smaller. Although the

first initial checkpoint, t0 = 177K, is in a turbulent regime, the subsequent ones converge to laminar

flow, since the force term is not strong enough to maintain turbulent activity and oppose the inertia of

the system.

However, the most interesting part of Fig. 5.13 is the blue line, which shows the total energy values

after 200 GD iterations have been applied to the whole system. We see that at both ends of the spacetime

orbit, the relaxation procedure is indeed trying to locate a periodic orbit, albeit in an (inadvertently)

artificial scenario. The high values of the energy at the beginning of time (in UPO time units) are being

lowered, whereas the low values, at the end of the orbit are being increased. This provided a further

satisfactory, although accidental, confirmation that the gradient descent-based algorithm was indeed

performing well, even on systems with such a large number of variables.

5.3 Large-scale simulations

After the bug just referred to above was corrected, we again tried to numerically relax the T = 26864

minimum, corresponding to a 643 system with τ = 0.53 and Re = 371, this time using the correct

value for the ABC-force magnitude, N = 1/643. The results can be seen in Fig. 5.14, which shows the

root-mean-squared (RMS) value of F per lattice site, over 340 GD numerical relaxation iterations.

Owing to the procedure described in Section 5.1.2, we already start with quite a good initial estimate.

For the system in Fig. 5.14, we have an initial value of F = 2.3927 before numerical relaxation is

applied. After 340 GD iterations this value is F = 5.4697× 10−2. The relevant quantity in this context
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Figure 5.13: Comparison of total energy values before and after GD. The time scale is in units of the

“UPO time”, where t0 corresponds to t = 177K in the initial value problem. The orbit numerically

minimized was (due to a bug, subsequently fixed) the one with ABC-force magnitude N = 0.1/L3.

Nevertheless, the numerical relaxation still tries to minimize the whole system towards a periodic orbit.

The system is a 643 lattice, with τ = 0.53 and Re = 371. Units in the x-axis are in LB time steps, with

the values indicating the UPO time indices.

is FRMS (per lattice site), which can be defined as:

FRMS :=

√
F

L3 × (2N + 1)
, (5.12)

where N is the number of GD iterations. We note that the factor 2N + 1 is due to how the minimization

algorithm propagates the initial sharp discrepancy throughout the lattice, as shown in Fig. 5.11.

Using the definition (5.12) we find that after 340 GD iterations, the T = 26864 orbit has a FRMS =

1.7504 × 10−5. Using these same definitions we obtained, after 300 GD iterations, an RMS value per

lattice site of 1.4076 × 10−5, for the minimum shown in Fig. 5.10, with T = 24594. The rate of

convergence was very similar to the values presented in Fig. 5.14. Since this spacetime minimum is

much steeper than the one shown in Fig. 5.9 it is quite reasonable that an even lower value of (RMS

per lattice site) F was reached with even fewer iterations. The bulk of this work was carried out on the

“Intrepid” machine at ANL, although Ranger was also heavily used for preliminary work, such as the

computation of the initial value problem.

We note that one of the most extensive works in this area, by Kawahara and Kida [17] imposed

a convergence criterion of only 1% (although the authors pointed out that this would probably not be

sufficient for the stability analysis of the periodic orbit). Although the procedure described here could
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Figure 5.14: Value of FRMS per lattice site (defined in Eq. (5.12)) with number of GD iterations. The

system is the same as Fig. 5.9, with Re = 371. The simulation ran on 26864 computing cores of the

IBM Blue Gene/P at ANL and took ∼ 24 hours of wall clock time, including I/O and initialisation.

still ideally be extended, this is already an extremely low value for the error function over the whole 4D

orbit.

Fig. 5.15 shows the total energy of each time slice for the full T = 26864 orbit, after 340 GD

iterations. We note that this is not constant (which would indicate the trivial case of laminar flow), that

it is periodic and reasonably smooth, and that the variations shown (for example the large depression

around time slice 15K) are much larger than the discrepancy between the two end points of the orbit.

Indeed, it follows quite closely the values displayed in Fig 5.13 for the (correct) initial value problem,

before any minimization was applied.

Since the values for the total energy, as well as for other relevant quantities are indeed varying in a

non-trivial way, we can safely conclude that this indeed an unstable periodic orbit. The same is valid for

the t = 637K,T = 24594 system previously discussed, for which similar findings were found. In the

next section we will discuss the several UPOs computed in this work, using gradient descent numerical

relaxation.
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Figure 5.15: Total kinetic energy in each time slice of the orbit corresponding to the t = 177K, T =

26864 UPO obtained after 340 GD iterations. Units in the x-axis are in LB time steps, with the values

indicating the UPO time indices.

5.4 UPOs in the ABC flow

In Table 5.2 we have summarized the four UPOs which have so far been identified using the numerical

relaxation algorithm, with a gradient descent search. All of these have been obtained on the Intrepid

Blue Gene/P petascale computer at Argonne.

The method for identifying each of the starting points has been described at length in Section 5.1.2.

In all cases, the starting points for the numerical relaxation procedure were chosen by taking the lowest

values of ∆(t, T ) for a given value of T . However, as seen by the values of FRMS in Table 5.2, the

first two UPOs we identified (with T = 26, 864 and T = 24, 594), although significantly larger than the

following two, represent deeper minima on the phase space.

All of these orbits have been conveniently stored, and post-processing work and analysis is still

ongoing at the time of writing. Due to their very large size, the visualization of all of the time slices is

not a trivial matter, but work on this is also ongoing.

Since the orbits are conveniently stored, it is a trivial matter to restart the numerical relaxation

procedure from where it stopped (given in each case by the value of n in Table 5.2) and continue the

minimization. However, as can be seen in Figs. 5.12 and 5.14, the decrease of the error function, F ,

becomes increasingly smaller, whereas the amount of wall clock time required for these runs is indeed
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t T n FRMS

177,000 26,864 340 1.7504× 10−5

637,000 24,594 300 1.4076× 10−5

1,240,000 15,790 300 1.9070× 10−5

1,631,500 21,592 252 2.8281× 10−5

Table 5.2: List of UPOs located forRe = 371 in ABC flow. In all cases, a cubic lattice with L = 64 was

considered with LB viscosity ν = 0.01 (τ = 0.53), and an ABC-force magnitude N = 1/643. The first

column gives the value of t in terms of the initial value problem. The second and third columns show

the values for the period, T , of the UPOs and the number, n, of GD iterations performed, respectively.

FRMS is defined in Eq. (5.12).

large. For all of the UPOs referred to in Table 5.2 a convergence criterion of 0.01% was considered. In

other words, the minimization procedure was interrupted once the tolerance δ, defined as:

δ ≡ | F(n)−F(n− 1) |
F(n− 1)

(5.13)

reached a threshold of δ ≤ 1. × 10−04. As mentioned before, Kawahara and Kida, in their pioneering

work in this area [17], considered a similar criterion which was roughly a hundred times larger, in the

sense of being less strict.

As the plots of ∆(t, T ), particularly Fig 5.2, indicate, there appears to be a periodicity in the dis-

tribution of the spacetime minima, which is then carried to the UPOs of the system. Heteroclinic con-

nections between the unstable periodic orbits have been recently found in planar Couette flow [102] and

we believe this may also be the case in fully-periodic flow stirred by an ABC force. Further research is

however required to throw further light on this aspect.

To sum up, we have in the present Chapter described the methodology used for the identification of

spacetime minima in weakly-turbulent flow and the implementation of the spacetime numerical relax-

ation method, based on the variational principle outlined in section 2.4.2. The computational difficulties

associated with this methodology and the strategies used to overcome them were presented and dis-

cussed. We then showed the first results of our very large numerical spacetime relaxation simulations,

performed on the Blue Gene/P machine at Argonne, and the UPOs thus identified in weakly-turbulent

flow governed by an ABC force field. In the next Chapter we shall summarize the main achievements

and future prospects of this project.
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CHAPTER 6

Concluding remarks

IN this work, we have presented a novel variational spacetime principle, based on the previous work

of Lan and Cvitanović [19]. This was applied to the lattice-BGK equation, a variant of the lattice-

Boltzmann method, which we used to simulate hydrodynamic flow, in the limit of near-incompressibility.

The resulting algorithm was then applied for the numerical relaxation of spacetime candidate orbits to-

wards UPOs, using petascale computational resources. In the remainder of this Chapter we will now

discuss the main insights obtained from this work and future directions.

6.1 Discussion

The main goal of this work was the identification of unstable periodic orbits for weakly turbulent fluid

flow by means of the novel spacetime variational principle described in Section 2.4.2. This algorithm is

fully 4D and its application to the Navier-Stokes equations required the utilization of petascale compu-

tational resources [184], due to the vast memory requirements. To the best of our knowledge, this is the

first time that such a spacetime approach has been deployed in hydrodynamics [217]. We also note that

this is surely one of the largest minimization problems ever deployed on a computer, due to the huge

number of variables each spacetime orbit has, as specified in Chapter 5 of this thesis.

In order for the algorithm to be successfully implemented at a scale of tens of thousands of comput-

ing cores, several difficulties had to be overcome in terms of memory load balancing and MPI communi-

cation patterns. We found that the most efficient communication pattern for this problem was obtained

by a parallelization strategy that allocated one (full) time slice per core, which in turn requires a do-

main decomposition based on an MPI “ring” topology. Another 4D domain decomposition was also

implemented, previous to this, which is based on the (spatial) locality of the lattice sites instead.

Both these two decompositions are special cases of a more general one in which both time and

space indices are allowed to vary within each MPI process. This general case can also be implemented

quite easily. This will in turn allow for the numerical relaxation of larger lattices, and thus much higher

Reynolds numbers than the ones reported here.
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However, we believe that a very important aim for this project, and one in which work is ongoing,

should be to better address the transition to turbulence and specifically the role played by UPOs in this

transition. This view is also reflected in the work of other researchers [17, 101, 104] who have identified

UPOs in plane Couette flow in the weakly-turbulent regime, at values of the Reynolds number similar

to the ones reported in the present work.

We have demonstrated in this work that the spacetime variational approach, with a gradient descent

search, is indeed a valid method for the identification of UPOs. Nevertheless, it is well known that the

gradient descent can very easily get “stuck” in a minima search, which is what we have observed. It

would be desirable to use GD only as a pre-conditioner [219] and then revert to other more sophisticated

methods, such as conjugate gradient. However, we found that CG is highly unstable for this problem,

almost certainly due to the convoluted nature of the minima distribution in phase space, and thus it might

be desirable to investigate the usage of other minimization algorithms in this respect.

Regarding computational deployment, we are aware that the memory requirements of this approach

could be reduced by increasing computation time. One way to achieve this would be to break the

spacetime orbit into “orbit segments” and use the sum of the norms of the mismatches between the

end of each segment and the beginning of the next as the object function to be minimized. However,

every time we needed to compute this quantity, we would still be obliged to run the time evolution

along the orbit segments. If the orbit segments all have length one, the above reduces to the strategy

followed in this work. Briefly stated, reducing the memory requirements by increasing computation

time would cut down on our current spacetime parallelism. Currently existing computers provide us

with sufficient memory to perform this computation, so we have availed ourselves of that in order to

perform the numerical relaxation in as short a wall clock time as possible.

6.2 Future work

Following the example of what has recently been achieved in plane Couette flow [73, 102], it is highly

desirable that the UPOs we have identified are better characterized in terms of their energy input and en-

ergy dissipation rates, connecting this to the transition to turbulence in the ABC flow. Another important

issue will be to understand the role played by the UPOs of the system in this transition. In this respect,

heteroclinic connections between UPOs, already hypothesized by Kawahara and Kida [17], have been

found in plane Couette flow, by Gibson and co-workers [73, 102]. It is highly likely that these may also

be found in homogeneous isotropic turbulence, such as we studied in this work.

In this area, visualization has proven to be a crucial tool. However, and due to the very high dimen-

sionality involved in hydrodynamics, even of the weakly-turbulent variety, it is of the utmost importance

to carefully chose the lower-dimensional representation, so that the main dynamical aspects of the sys-

tem are indeed highlighted. One suitable choice, as shown by Gibson et al. [73] is to select orthonormal
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basis functions defined in terms of the equilibria of the system and its linear stability eigenfunctions.

The application of this methodology to the UPOs in the ABC-driven flow we have computed in this

work could provide us with some insights on the dynamical role played by these orbits.

One next logical step in this project will be the development and curation of a digital library of UPOs

for several dynamical systems, with emphasis on the three-dimensional Navier-Stokes equations. Due to

the sheer size of these UPOs, new computational methods will be required to effectively label and store

them. This could in turn benefit greatly by the development of a symbolic dynamics for the system [9],

which could then facilitate the application of the DZF formalism, mentioned in Section 2.3.2. We note

that although several results have been published recently in the field of describing weakly-turbulent

behaviour through the study of UPOs, nobody has yet, to the best of our knowledge, built a dynamical

zeta function based on the UPOs of these systems. However, with the current ongoing work being

carried out using the Blue Gene/P machine at ANL, we believe this could become a possibility in the

very near future, for the ABC flow described in this work.

The main advantage of storing UPOs to represent a turbulent flow is that it needs to be done only

once. After that, the turbulent average of any given quantity can be computed directly from the UPO

library with high accuracy and without the need to solve an initial value problem again. We believe

this methodology has the potential to become a new paradigm in the study of large driven dissipative

dynamical systems, and not only for the Navier-Stokes equations.

The dynamical zeta function approach to the analysis of turbulence has evolved through three histor-

ical stages. After the discovery of DZFs in the 1970s it was later recognized, in the late 1980s and 1990s,

that this could be used as a practical numerical tool once the numerical difficulties involved in the com-

putation of UPOs were overcome. For high-dimensional dynamical systems, such as the Navier-Stokes

equations, the computation of its UPOs requires the utilization of petascale resources. Since those have

become available to academic researchers only recently, we believe that this methodology is about to

enter a third stage of research activity. By computing and classifying some of the smallest UPOs in

the driven NSE we expect to be able to make very accurate predictions from first principles for sev-

eral important quantities, in a systematic fashion, in the near future. This can in turn have far-reaching

consequences for the age-old problem of understanding turbulence.
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APPENDIX A

The variational principle applied to the lattice-BGK

equation

In what follows we shall derive the main equations used in this work for the spacetime relaxation

algorithm. The variational principle, described in section 2.4.2 is here applied to the LBGK equation.

We begin by rewriting the expression for the equilibrium distribution functions, Eq. (4.5), in a slightly

different form:

feqi (ρ,π) = ωi

[
ρ+

1

c2s
π · ci +

1

2c4sρ
π · (cici · −c2sI)π

]
, (A.1)

where π ≡ ρu represents the momentum density and I is the identity operator. As defined in section

4.1.1, ρ represents the density at a given lattice point, r and instant t, where those indices are omitted,

to simplify the expressions. The exact values for the discrete velocities, ci, and the weights, wi, for the

D3Q19 model used in this work can be found in Table 4.1.

Following the procedure of section 2.4.2 we now define the functional:

F ≡ 1

2

T−1∑
t=0

∑
r

Q∑
i=1

|φi(r, t)|2. (A.2)

The quantity φi(r, t) is introduced in order to simplify the subsequent expressions, and is a local resid-

ual, which is null at the space-time coordinates (r, t) where the LBGK is satisfied:

φi(r, t) ≡ fi(r + ci, t+ 1)− fi(r, t)− Ωi(r, t). (A.3)

The collision operator, Ωi(r, t) has been defined in Eq. (3.16) and is:

Ωi(r, t) =
1

τ
(feqi (ρ,π)− fi(r, t)) (A.4)

The partial derivative of F with respect to the distribution function is:

∂F
∂fk(s, q)

=

T−1∑
t=0

∑
r

Q∑
i=1

φ(r, t)

[
δi,kδq,t+1δs,r+ci

− δi,kδq,tδs,r −
∂Ωi(r, t)

∂fk(s, q)

]
, (A.5)

where δi,j represents the standard Kronecker delta function, defined as:

δi,j =

 0 if i 6= j

1 if i = j
(A.6)
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with i, j ∈ N.

By using the expression for the collision operator as given by the right-hand side of Eq. (3.16) and

making extensive use of the chain rule, we can derive an equation equivalent to Eq. (2.29), for fluid

described by the LBGK. We begin by writing down the exact composition of the last term in Eq. (A.5),

using the chain rule of derivation:

∂Ωi(r, t)

∂fk(s, q)
= ω

[
∂feqi (ρ,π)

∂ρ

∂ρ

∂fk(s, q)
+
∂feqi (ρ,π)

∂π

∂π

∂fk(s, q)
− δi,kδq,tδs,r

]
, (A.7)

where ω ≡ 1
τ , with τ being the LBGK relaxation time. We now compute each one of the terms of Eq.

(A.7) individually, using Eq. (A.1), and the definitions of mass and momentum density, Eq. (3.13).

Thus:
∂feqi (ρ,π)

∂ρ
= ωi − ωi

1

2c4sρ
2
π · (cici · −c2sI)π, (A.8)

∂ρ

∂fk(s, q)
= I, (A.9)

∂feqi (ρ,π)

∂π
= ωi

ci
c2s

+ ωi
1

c4sρ
π · (cici − c2sI), (A.10)

∂π

∂fk(s, q)
= ck. (A.11)

If we now put together Eqs. (A.5)-(A.11), the result is given by:

∂F
∂fk(s, q)

=

T−1∑
t=0

∑
r

Q∑
i=1

φi(r, t)
(
δi,kδq,t+1δs,r+ci

− δi,kδq,tδs,r + ωδi,kδq,tδs,r

− ω
[
ωi − ωi

1

2c4sρ
2
π ·
(
cici · −c2sI

)
π

]
δq,tδs,r

− ω
[
ωi

ci · ck
c2s

+ ωi
1

c4sρ
π · (cici · −c2sI)ck

]
δq,tδs,r

)
. (A.12)

It must be noted that we have not shown explicitly the r and t dependence of both ρ and π, in order

not to clutter the expressions even more. However, it is this dependence that leads to the ocurrence of

δq,t and δs,r in the last terms of the previous expression. After a little algebra, and swapping the i, k

indices, as well as renaming the independent variables s→ r and q → t, we get the equation:

∂F
∂fi(r, t)

= φi(r− ci, t− 1) + (ω − 1)φi(r, t)

− ω
Q∑
k=1

ωk

(
1− 1

2c4sρ
2
π ·
(
ckck · −c2sI

)
π

+
ck.ci
c2s

+
1

c4sρ
π · (ckck · −c2sI)ci

)
φk(r, t). (A.13)
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This expression can be further simplified, to make it more amenable to direct numerical implemen-

tation, in the following way:

∂F
∂fi(r, t)

= φi(r− ci, t− 1) + (ω − 1)φi(r, t)

− ω
Q∑
k=1

ωk

(
1− 1

2c4sρ
2

(π · ck)
2

+
1

2c2sρ
2

(π · π)

+
ck.ci
c2s

+
1

c4sρ
(π · ck) (ck · ci)−

1

c2s
(π · ci)

)
φk(r, t). (A.14)

Equation (A.14) provides the backbone of the numerical relaxation approach implemented in this

work. The main aspect, in terms of numerical implementation, that should be mentioned is the explicit

dependence on t − 1 of the first term on the right-hand side. In the same way, the next two terms,

involving φi(r, t) and φk(r, t), depend on values of t = t + 1, by the definition (A.3). The difficulties

this raises for numerical (parallel) implementation, and how they were dealt with in this work, are

discussed at length in Section 5.1.3.

In a similar fashion, we can derive an equation based on the inverse of the relaxation time, ω:

∂F
∂ω

= −
T−1∑
t=0

∑
r

Q∑
i=1

φ(r, t) [feqi (ρ,π)− fi(r, t)] , (A.15)

where the relaxation time will now be allowed to vary, instead of being constant. This is equivalent

to Eq. (2.31) in the continuum case. The fact that we are now using a discrete-time model, LBGK,

makes the interpretation of this procedure slightly less straightforward, since the viscosity in the UPO

will be different from the one in the initial value problem. For this reason we decided not to use this in

the present work. Furthermore, numerical tests showed that including Eq. (A.15) in the minimization

procedure did not alter the results significantly, besides making it marginally more stable.
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APPENDIX B

Computational aspects

In this appendix we discuss several aspects regarding the computational resources on which the

HYPO4D software package was deployed, and the current status of Grid technologies in terms of us-

ability and security issues. It is argued that middleware (computer software that connects software

components or applications) is a key requirement for the success of Grid computing in particular and

e-Science in general. In this context we discuss three new technologies: the Application Hosting Envi-

ronment (AHE), which hosts scientific applications on computational Grids [183]; the Highly-Available

Robust Co-scheduler (HARC), a co-scheduling framework suitable for any resource under the control

of a scheduler supporting reservations [220]; and MPIg [221], a Grid-enabled implementation of MPI.

The latter two middleware technologies were used extensively, in our work through cross-site runs, de-

scribed in section B.3. The last section in this appendix addresses several issues related to authentication

and authorization in Grid environments, with particular emphasis on usability requirements [222, 223].

We note that the HYPO4D cross-site runs described in section B.3 constitute original work and are one

of the main results of the present thesis.

B.1 Grid Computing

Grid computing can be broadly defined as “distributed computing performed transparently across mul-

tiple administrative domains” [20]. “Computing” in this context refers for any form of digital activity,

such as numerical and symbolic computation, visualization, data-base access or a combination of any of

these. In this context, the importance of the “transparency” requirement can not be overlooked. With the

onset of larger computational Grids such as the UK’s National Grid Service (NGS) [195], Europe’s Dis-

tributed European Infrastructure for Supercomputing Applications (DEISA) [224] and the US TeraGrid

[225], there is an ever-growing demand for usability. The process of accessing and effectively making

use of the resources available at a given computing centre or site, or a set of these, across several admin-

istrative domains, should be as easy as possible, in terms of the user experience. The protocols involved,

which can sometimes be quite complex, should ideally be hidden from the general user whenever that is
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feasible, if the use of computational Grids is to gain progressively more acceptance within the scientific

community at large. This is therefore a strong argument for the development of usable middleware, as

has already been addressed by several authors, such as Chin and Coveney [178], Beckles, Welch, and

Basney [226] and Chin et al. [181].

Recent collaborations between research groups on both sides of the Atlantic [179, 182, 221, 227]

have shown the immense benefits to be gained by the use of geographically distributed computing re-

sources. Using VORTONICS as a test case, a software package that simulates and tracks vortex cores

in viscous hydrodynamics, Boghosian et al., [227], demonstrated that problems too big to fit on any

single supercomputer can be distributed over several computing sites without significant degradation in

the performance of the code. More generally, Chin et al. [181] discussed some of the possibilities that

Grids can provide, in terms of visualization and steering. In this context, the RealityGrid Steering API

(Application Programming Interface) [228, 229], allows for a general user to interact in real-time with

a running simulation code. This can have many advantages, such as speeding up the exploration of pa-

rameter spaces or finding logical breakpoints in the code where the application reaches a given coherent

state [181]. The steering library then allows for the use of Grid services in the construction of a generic,

dynamic architecture for steering and connecting visualization software to running simulations.

One fairly recent development in this field that is of the utmost importance is the emergence of the

“urgent computing” paradigm. This refers to situations where a decision must be made in real-time,

where the time frame may vary between a few days to a couple of hours, but the urgency is real and

potentially life-saving. In such cases, very large simulations can be submitted to a computational Grid

with the highest priority, with the scheduler effectively pre-empting all other jobs running at the time,

so that the urgent calculation can proceed immediately.

This is already a well established practice for U.S. resource providers, with several TeraGrid sites

hosting such policies, including the University of Chicago/Argonne National Laboratoy (UC/ANL)

[200], the National Center for Supercomputing Applications (NCSA) [230], located at the University of

Illinois at Urbana-Champaign, the San Diego Super Computer Center (SDSC) [231] and the Texas Ad-

vanced Computing Center (TACC) [197]. The middleware that mediates the urgent computing scenario

is called SPRUCE: “Special PRiority and Urgent Computing Environment” [232] and has been de-

ployed on the previously-referred sites, along with several others [225]. SPRUCE provides on-demand

resource allocation, authorization, and selection capabilities for urgent computing applications that ac-

cess shared Grid computing or high-performance computing resources. It allows for data centers and

virtual organizations1 [223] to use existing computing infrastructure for time-critical computations.

Patient-specific simulation [187, 233] is another area where the urgent computing paradigm is of

growing relevance. In the article, “Life or Death Decision-making: The Medical Case for Large-scale,

1These offer a end user access to and use of high performance computing resources shared across a number of different

institutions with different administrative security domains.
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On-demand Grid Computing” [233], Manos et al. argue that “supercomputing site policies, which

institute fair share system usage, are not suitable for medical applications as they stand. To support

patient-specific medical simulations, where life and death decisions may be made, computational re-

source providers must give urgent priority to such jobs, and/or facilitate the advance reservation of

such resources,”. The authors then go on to discuss three patient-specific scenarios: modelling of

HIV/AIDS therapies, cancer therapies, and addressing neuro-pathologies in the intracranial vasculature.

The latter project, generically called GENIUS (Grid Enabled Neurosurgical Imaging Using Simula-

tion) [234] is particularly note-worthy, as it involves collaboration between computational scientists and

clinicians, based at the National Hospital for Neurology and Neurosurgery (NHNN). Combining real

patient data with fluid real-time simulations, performed using a lattice-Boltzmann fluid solver called

HemeLB [176], this methodology facilitates the planning of embolisation of arterio-venous malforma-

tions and aneurysms, amongst other neuro-pathologies. Taking the patient data obtained through X-ray

or magnetic resonance imaging angiography, the clinician can thus perform “non-invasive virtual exper-

iments in order to plan and study the effects of certain courses of (surgical) treatment with no danger

to the patient” [233]. This, however, requires a close coordination between different computational

resources, including the possibility of reserving in advance large computational resources and using

urgent-computing techniques, in a life or death scenario. Some of the middleware required to facilitate

this will be discussed in the next section. The issue of using real patient-specific data as the basis for

Grid simulation, which can potentially span several countries and even continents, immediately raises

questions of privacy and data integrity. These are addressed in section B.4.

B.2 Middleware

Going back to the definition of Grid computing, mentioned at the beginning of this chapter, the part

related to “transparency across multiple administrative domains” also raises many pertinent questions,

ranging from administrative issues to software compability. A parallel has been made between the

evolution of the internet and of Grid computing [20]. It was the advent of new protocols, such as htpp

and html, and the related development in browser technology, that made possible the leap between

resources used mainly in academic and high tech facilities to a popular world wide medium, which

revolutionized communication and many aspects of contemporary life in the space of a few years only,

with strong evidence suggesting it will continue to do so for some years to come [46].

However, as can be seen from reports describing some of the pioneering efforts in the field of Grid

computing [178, 181], there is still some way to go in order to fulfil the vision of a heterogeneous,

on-demand computational Grid, as ubiquitous as the electrical power grid. The difficulties involved

range from differences in the location and invocation of compilers and libraries, to non-intuitive mid-

dleware, including forms of access to the resources and monitorization of workflows. These can increase
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enormously the amount of work needed to successfully deploy a particular application within a Grid en-

vironment as well as managing the data it produces. Most of the middleware that has been implemented

so far to address this issue can be considered “heavyweight” [235], in the sense that it is: i) complex

to understand, configure or use; ii) makes use of resources disproportionately large when compared

to the frequency and extent to which they are used; iii) has extensive dependencies; iv) is difficult or

resource-intensive to install, deploy or administer (requiring the involvement of one or more system

administrators); v) does not scale well. The term “lightweight”, put in a simplified manner, therefore

refers in this context to software which has none of the above characteristics or only a small number of

them to a very limited extent.

Following on the parallel between Grid computing and the World Wide Web, it does not seem rea-

sonable or even desirable to expect that every scientist using Grid resources should also be an accom-

plished “expert user”, with a deep knowledge and understanding of the inner workings of these systems,

qualities more usually expected to pertain to a systems administrator. In other words, the process of

deploying a scientific Grid application should aim to be as user-friendly as possible and, fortunately,

some good examples are starting to appear of middleware which tries to address these concerns. In

what follows we present three middleware implementations, chosen because they have, each in different

ways, been of great relevance to this project.

B.2.1 Application Hosting Environment

The Application Hosting Environment (AHE), [183], is a lightweight web-services based environment,

WSRF (Web Services Resource Framework) [236] compliant, which hosts scientific applications on the

Grid. Its development stemmed from the assumption that very often in a research group several people

will utilize the same application, or set of applications, although they should not all be required to be

expert users. Using the AHE it is sufficient that one user installs the application, or set of applications,

in the desired Grid resources which then allows the other users in the group to submit jobs to a queue,

monitor them and retrieve the resulting data files, using either a command line or a GUI (Graphical User

Interface) client, or even a combination of both.

As we can see from this brief description, and as its name itself implies, the emphasis of the AHE

is on applications, defined as “an entity that can be composed of multiple computational jobs, for ex-

ample a simulation that consists of two coupled models which requires two jobs to instantiate it” [183].

By allowing a general user to launch and monitor jobs and retrieve any files that have been created

in the process, whether the resources consist of a local workstation or a super computing resource lo-

cated thousands of miles away, the whole process of Grid computing is made much more uniform and

transparent.

This framework becomes even more relevant if we consider that nowadays several research groups,

based at different institutions and countries, may be using the same application on a given set of com-
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putational resources. For this reason, the AHE is now part of the Virtual Physiological Human (VPH)

toolkit. The VPH initiative [237] is a European project which aims to support and stimulate the progress

of research in biomedical modelling and simulation of the human body. Its ultimate goal consists of

enabling collaborative investigation of the human body as a single complex system, by integrating dis-

parate structural and functional models of the living human body.

The latest version of AHE (2.0) [238], which can be downloaded from the RealityGrid project

webpage2, includes the ability to co-reserve time on resources in advance as well as launch both cross-

site and steered applications. The first two of these aspects will be discussed in greater detail in the next

sections. As for computational steering, although we already discussed that it is an essential component

of Grid computing, we did not make use of its possibilities in this project, due to the memory-intensive

nature of the HYPO4D application, as discussed in Chapter 5, which requires the use of petascale

resources.

A previous version of the middleware, AHE 1.0.2, is included in the UK’s OMII (Open Middleware

Infrastructure Institute) [239] software release3. The AHE is designed to be sufficiently lightweight as

to be deployed in Personal Digital Assistant (PDA) mobile devices, an avenue that has been actively

pursued, with very encouraging results [240], which we experienced first-hand.

A final note should be made concerning the impact of the AHE in the main work discussed in this

thesis. This was more relevant in the earlier stages of the project, and was an excellent way to gain

first-hand experience of Grid computing, due to the usability of this middleware. However, it should be

mentioned that the primary target applications for the AHE are legacy codes, and applications which are

reasonably stable. In the case of a software package that is not only being developed as well as having

a very small user base, as was the case of HYPO4D, the benefits of using the Application Hosting

Environment become much smaller.

B.2.2 Highly-Available Robust Co-scheduler

The Highly-Available Robust Co-scheduler (HARC) [220, 241] middleware addresses the issue of

ensuring several resources will be simultaneously available at a given time, a process known as co-

scheduling which is of the utmost importance for the progress of Grid computing.

In some earlier Grid computing projects that made heavy simultaneous use of different resources,

[179, 182], this question was addressed by means of ad hoc procedures. These could be as informal as

simply having the phone numbers of several relevant system administrators and reserving the various

resources independently for the same time, aiming for a reservation sufficiently far away in the future in

order to facilitate this4. This procedure obviously does not scale well at all, and is neither efficient nor

2http://www.realitygrid.org/AHE/
3http://omii.ac.uk/wiki/Downloads
4Bruce M. Boghosian, private communication.
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resilient. Among the many problems that crop up, we must mention the time-shifts between different

resources, sometimes located in different continents.

The HARC middleware implements an automation of this procedure, in a way which is resilient

and has been shown to be well suited for the scheduling of large scientific workflows. Co-scheduling is

essentially a distributed transaction, by which we mean that a coordinator must ensure that a number

of independent resource managers arrive at a consistent state. This procedure has only two possible

outcomes: either all scheduling requests are enacted or no requests are enacted, in which case any

tentative partial requests (each pertaining to a single site) must be cancelled. In order to accomplish

this HARC makes use of Gray and Lamport’s Paxos Commit Protocol [242], in which the coordinator

process is replaced with a set of replicated processes, called Acceptors. The system is fault-tolerant,

using a consensus algorithm that proscribes how the Acceptors will behave and eventually reach a

decision regarding the booking procedure.

The code has a highly modular nature and can run on any generic resource, with only minor addi-

tions. A resource manager component exists in HARC that interacts with the reservation, or queuing,

management system of the particular resource. These are usually built into existing batch processing

systems, such as IBM’s LoadLeveler [243] or the PBS (Portable Batch System) Pro [244]. The resource

manager in HARC then exposes a similar interface to the HARC client, which the users interact with.

The user can request not only advance reservations in computing resources but also the use of special,

dedicated (and reservable) networks, such as the UKLight lightpath, [245], that connects the Manchester

and Leeds NGS sites.

HARC has been deployed on the main NGS sites [195] as well as on most of the TeraGrid sites5. In

section B.3 we describe a typical workflow for cross-site runs, including co-scheduling through HARC,

using the HYPO4D application.

As is often the case in computer science, other implementations of the co-scheduling facility exists.

One such implementation is the Grid Universal Remote (GUR) [246] which is deployed on several

TeraGrid sites, including the NCSA, SDSC and UC/ANL. GUR is a python script that makes use of

typical Unix ssh and scp commands in order to help users make reservations, compile programs, and

co-schedule jobs [247], thus covering most of the capabilities of HARC. However, at the time of writing,

it does not seem to have the same levels of flexibility and reliability as well as acceptance from resource

providers that HARC has achieved. In particular, it does not allow for the reservation of netwroks as

HARC does.
5See the GENIUS project, on the section relating to HARC, for the full (updated) list of sites where the middleware has been deployed. URL:

http://wiki.realitygrid.org/wiki/GENIUS HARC
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B.2.3 MPIg

MPIg [221] is a Grid-enabled implementation of MPI, that allows to couple machines pertaining to

different computing sites, with potentially heterogeneous architectures, in order to seamlessly run MPI-

based applications. It is a new version of MPICH-G2 [248], both having been developed by Brian

Toonen and Nick Karonis at Argonne National Laboratory. Like its predecessor, MPIg converts data

in messages sent between machines of different architectures (e.g. big endian versus little endian or

64-bit versus 32-bit) and takes care of the whole communication process, selecting automatically MPI

(for message passing between processors on the same cluster) or a protocol for intermachine message

passing, such as TCP or UDP, if the processors communicating are located on different sites.

The two main features that affect the performance of a code running over a set of distributed re-

sources are bandwidth (rate at which data can be transfered) and latency (the time it takes for a signal

to travel between sites). Whereas the restraints on the former are mainly economical, the speed of light

places a limit on the latter. The main new feature of MPIg is that it efficiently implements non-blocking

communications, meaning that while the processors in a given cluster are waiting to receive data from

another site they can still perform other computations, therefore helping to hide inter-site communica-

tion delay. This therefore allows for a significant improvement in the performance of Grid applications

as preliminary timing results for several different scientific applications show [221].

MPIg has been deployed on the Oxford, Leeds and Manchester NGS sites, as well as on several

TeraGrid sites, including NCSA, SDSC and the Louisiana Optical Network Initiative (LONI) [249]. In

the next section we discuss our work with HYPO4D in the testing of cross-site runs facilitated through

the usage of MPIg, in both the NGS and the TeraGrid.

B.3 HYPO4D Cross-site runs

B.3.1 Introduction

In this section we discuss the performance of the fluid solver component (described at length in Chapter

4) of HYPO4D in cross-site simulations, using MPIg and HARC middleware. The main reasons for

this work are two-fold. In the first instance there was the curiosity of trying new technologies and of

reporting our results to the resource providers and interested parties, in order to help push the adoption

of these new paradigms. This was performed in close collaboration with the GENIUS project, including

resource providers and computer scientists in both the UK and the US, and preliminary results of this

work were presented at the UK e-Science All-Hands Meeting that took place in Edinburgh University

on September 2008. The second main reason was that we initially believed that the only way to gather

sufficient computational resources required for the memory-intensive (4D) relaxation procedure (see

Chapter 5 for details) would be to aggregate several different sites. With the advent of access to petascale
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resources in the US, namely Ranger and Intrepid, this possibility was temporarily dropped. However, it

would be highly desirable that resource providers paid closer attention to this subject.

It is our firm belief that the advantages reaped by aggregating resources would benefit all agents in-

volved. Ideally, each time a new supercomputing resource would come online, this could be a new node

on a supercomputing Grid of planetary scale, thus facilitating the simulation of cutting-edge problems

on a scale never before attempted. Unfortunately the current scenario seems to be tilted towards the su-

percomputing sites fiercely competing amongst themselves for the glory of hosting the largest machine

in the world for a brief period of time, only to be quickly succeded by a rival centre6. It seems that in

this field some lessons might be learned from strategies adopted for commercial distributed computing

that are already becoming commonplace among companies [46], although there is a need for caution

and extensive testing of these new Grid technologies, with questions such as confidentiality and data

integrity being of the utmost relevance [187].

B.3.2 Timing results

In order to perform cross-site runs, several intermediate steps are required, from convencing the resource

providers to host the new Grid middleware such as HARC and MPIg, to recompiling the code and

requesting reservations. In the following exposition we shall skip some of the details and try instead to

give an overview of the process.

The first step was to recompile HYPO4D with MPIg, on a given set of resources that hosted these

compilers. No major changes were made to the basic fluid solver code structure. The first timing tests

were made on the NGS, using all possible (two site) combinations of the Oxford, Manchester and Leeds

sites. Initially, the methodology followed was to regularly monitor these resources and look for a time

when some cores on two of them might be free, in order to perform the cross-site timing experiments.

As soon as HARC reservations became available on these resources we reverted to using co-scheduling

instead, which has obvious advantages in terms of work planning and time efficiency. Once a co-

scheduling reservation has been confirmed, the ID of that reservation can be used in a submission script,

and the job, after being submitted, will start at the appointed time.

One important issue of these coordinated runs is the need to regularly test all components. It is easily

seen that the more computing resources are involved, the greater the chances for failure become. If one

of the components, e.g., the co-scheduling mechanism, is temporarily unavailable even on just one site,

then any cross-site run involving that site will fail. On the TeraGrid, such a monitoring framework, called

INCA [250], has been implemented which regularly checks the status of several key Grid components.7

More recently, automatic INCA monitoring has also been adopted by the NGS.

6For an illustration of this, even a cursory look at a few editions of the bi-annual Top500 list (URL: http://www.top500.org/) is more than

enough.
7A good example of this can be found in the following URL: http://inca.teragrid.org/inca/html/ctssv3-expanded.html where the availability

of cross-site runs between two given TeraGrid resources is regularly monitored.
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On the NGS the most comprehensive HYPO4D timing results were obtained between Leeds and

Manchester. The reason for this was simply that the monitoring, before the adoption of INCA, of the

required middleware components seemed to be more systematic on these resources. Fig. B.1 shows

the value of site updates per second (SUPS), comparing the performance of HYPO4D on a single site

(Manchester) with two sites (Manchester and Leeds), using MPIg in both cases. In the latter case,

each site had exactly half of the total number of cores (MPI processes) requested. The results obtained

are, unfortunately, not impressive, with the cross-site timings lagging very much behind the single site

values as well as showing poor scaling, and must be taken more as a proof of principle. Due to the lack

of regular testing on the NGS at the time this work was performed, as well as time constraints on the

project, we decided to concentrate our efforts on the TeraGrid instead, which also possessed larger core

counts.
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Figure B.1: Comparison between HYPO4D single-site runs (Manchester) and cross-site runs

(Manchester-Leeds), using the same MPIg compiler in both cases. Number of SUPS, given as a function

of the number of cores used (ranging from 8 to 128) for a 1283 lattice of fixed size. For the cross-site

timings, each site had the same number of cores in all instances.

Fig. B.2 shows a similar comparison, this time performed on the TeraGrid, between the NCSA and

SDSC sites. For these tests we considered a fixed sublattice (643) per core (soft scaling), increasing the

size of the total lattice proportionally to the number of cores. HARC reservations were used in all runs.

Although there is still a clear degradation factor between the single-site and two-site performances, there

is now a visible scalability trend on the cross-site timings.

Several extensions can be made to this work. We initially chose the NCSA and SDSC sites because

they both possessed machines with the same architecture, namely IBM Itanium2 clusters. However,
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MPIg is not restricted to homogeneous resources, which opens up many possibilities. The reason why

this was not pursued, as we have already mentioned, was that in the meantime acess was gained to

new petascale machines, which drastically changed the emphasis of the project, in terms of resource

deployment. The two main such resources were Ranger [197], to which we gained early-user access

on December 2007 and Intrepid [200], on July 2008. It is however worth noticing that NCSA, based

at Urbana-Champaign in Illinois, and SDSC, located in San Diego, on the West Coast are physically

separated by more than 3000 kilometers. Even so, as Fig. B.2 illustrates, we were able to harness the

capabilities of these two centres and use them as one single virtual machine, without any drastic loss

efficiency.

In the next section we will discuss some issues related to security in Grid environments, which play

an instrumental part in the gradual wider adoption of the distributed computing paradigm.
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Figure B.2: Comparison between HYPO4D single-site runs (NCSA) and cross-site runs (NCSA-SDSC)

on the US TeraGrid, using the same MPIg compiler in both cases. Number of SUPS, given as a function

of the number of cores used (ranging from 4 to 256) for a fixed L = 64 cubic sublattice per core. For

the cross-site timings, each site had the same number of cores in all instances.

B.4 Security in Grid environments

B.4.1 Discussion

The HYPO4D project, described in this thesis, was conducted in close collaboration with computer

scientists involved in designing and implementing lightweight, user-friendly, Grid security tools and

paradigms [251]. As we argued previously, midlleware is one of the key components to the progressive



B.4. Security in Grid environments 131

acceptance and popularization of Grid computing amongst the scientific community. In this context,

security issues play a determinant role. A tradeoff exists between solutions which are heavy-handed

and gravely hamper the learning curve of a new user, although being robust security-wise, and solutions

which are extremely easy to use but may compromise the integrity of the resources provided. Ideally we

would want to have the best of both options. This is what will be discussed throughout the remainder of

this Appendix.

In order to systematize this discussion we consider the “security process”, [252], as being composed

of three main operations: authentication, authorization and auditing (see Scheneier [252] for a light

introduction to the main concepts, and Gollman [253] for a more technical one). Authentication is the

process of determining if the user intending to access some Grid resource really is who he or she claims

to be. (The converse is also an important issue, in order that the user does not fall prey to “spoofing”

attacks [253], whereby one person or a programme can impersonate a given institution. However we

will not delve into this issue here.) Most current computational Grid environments use the Grid Security

Infrastructure (GSI) architecture [254], as an authentication mechanism. This framework in turn makes

use of the Public Key Infrastructure (PKI) paradigm, which is a security protocol involving digitalX.509

certificates [255].

Many end-users have complained that these certificates are “cognitively difficult objects” [226],

meaning that they are difficult to use as well as understand. As is often pointed out in the larger field

of computer security, complexity is one of the main enemies of good security systems, if not the worst

[252]. If the end-users find a certain procedure or protocol hard to use, they will, more likely than

not, try to circumvent it, thus endangering the whole system. As an example, regarding the process of

obtaining Grid credentials, it is widely believed, if not common practice, that many users in the UK

share these individual certificates within peer groups, in spite of frequent admonitions by the resource

providers against that practice. It is claimed as a justification for this that the procedure of obtaining

individual credentials can be too difficult or lengthy. If the digital certificate is not properly managed

and secured by the general user than its credibility can be compromised, thus eventually allowing for

Grid resources to be accessed and explored by unauthorized parties.

In this context, it has been proposed [226, 235, 256, 257] that the user be separated from any in-

teraction at all with the digital certificates. One alternative for implementing this would be to use a

“plug-and-play” philosophy for managing PKI [226], similar to what exists for the processing of con-

necting an individual computer to the internet. This requires the development of lightweight, scalable

middleware which must take into account input from user expectations, from its initial stages of design

and planning, as opposed to the what has been the general practice so far in Grid implementations.

Regarding the authorization and auditing steps of the security process currently implemented on

most Grids, they suffer from much the same faults as mentioned before. Authorization (which de-

termines which resources or data a certain user is allowed access to) often relies on manually main-
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tained lists [235], a procedure which scales poorly, or on heavyweight solutions, some also based on the

GSI. This is a very important question in several areas, a particularly relevant one being computational

projects for medical purposes, involving patient data and confidentiality, where the levels of authoriza-

tion for different users accessing different fields of the data must be allowed to vary in a non-trivial

fashion. Two examples of such projects, which have already been mentioned here, are GENIUS [234]

and the VPH Initiative [237].

As regards auditing, once again GSI is still the principal mechanism, relying entirely on the integrity

of the users’ credentials, with all the possible vulnerabilities that implies. Besides the Distinguished

Name (DN) of the user, a component of the digital certificate, the other information provided in the

auditing mechanism is the IP address from which the authentication request appears to come. Once

again this is not entirely reassuring due to the generalized practice of IP spoofing.

In a recent paper [222], Abdallah and Haidar compare three identity management schemes used in

Virtual Organizations (VO) architectures. The first of these reflects ad hoc connections among several

organizations, in the second scheme a centrally maintained database exists, whereas the third is based

on PKI. The authors conclude that although the the PKI model appears to be much more reliable, the

first two models are “simpler, cheaper and easier to implement”. They also point out that formal meth-

ods [258] can be an important tool in modelling and understanding such complex systems, as well as

clarifying the sometimes implicit assumptions about the parties involved.

It seems inevitable that as scientific computing continues to play an increasingly larger part in overall

research and wider collaborations between institutions are forged, the problems briefly outlined here will

likely become even more pressing.

B.4.2 User-Friendly Security Solutions

Several of the concepts, which have only been briefly sketched here, were actively addressed in an

EPSRC-funded project with the title “User-Friendly Security Solutions for Grid Environments” [251].

The aim of this project was to develop usable middleware that addressed some of the authentication and

authorisation concerns in the field of Grid Computing.

Some of the good practices that deserve mention in this area include the use of formal methods [258]

for assistance in modelling and validation and the fact that user input should be taken into account from

the earlier stages of software development [223]. In order to circumvent the practice of rogue certificate

sharing, this project proposed instead a model of “group certificates”, whereby one unique certificate can

be shared by several members of a research project, with authorization being managed and fine-grained

by an expert user or system administrator.

This solution thus removes digital certificates from the experience of the common user. Instead he

or she will now log on to a local Gateway service, that authenticates the user, and serves as a launching

point to a set of Grid resources. Since this work shared several of the concerns that guided the design of
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the AHE, discussed in section B.2.1, in particular the strong emphasis on usability, the two midlleware

projects evolved in a highly coordinated fashion. At the time of writing, a prototype for this project is

in its final stages of development and will be incorporated within the AHE.

We conclude this brief overview of existing Grid technologies and the challenges they address by

stating that middleware is indeed a central component to the long-term success of this new computing

paradigm, whose aim is to make computing resources as ubiquitous and unobtrusive as the electrical

power grid. New paradigms of organization within Grid domains, such as the concept of virtual organi-

zations [223], are now emerging which make the need for usable, scalable, lightweight middleware an

even more pressing issue.
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