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Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional
genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has
previously been associated with explicit memory performance in several independent cohorts, but the underlying neural
mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and
encoding of novel information. Here we investigated the relationship of 5-HTR2a His452Tyr and hippocampal novelty
processing in 41 young, healthy subjects using functional magnetic resonance imaging (fMRI). Participants performed a
novelty/familiarity task with complex scene stimuli, which was followed by a delayed recognition memory test 24 hours
later. Compared to His homozygotes, Tyr carriers exhibited a diminished hippocampal response to novel stimuli and a
higher tendency to judge novel stimuli as familiar during delayed recognition. Across the cohort, the false alarm rate during
delayed recognition correlated negatively with the hippocampal novelty response. Our results suggest that previously
reported effects of 5-HTR2a on explicit memory performance may, at least in part, be mediated by alterations of
hippocampal novelty processing.
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Introduction

Episodic memory [1], the ability to encode, store and recall single,

typically autobiographical, events in their spatial and temporal

context, is critically dependent on the hippocampus and adjacent

medial temporal lobe (MTL) structures [2,3], an observation

supported by functional neuroimaging experiments [1,4,5] that

have provided evidence for prefrontal-hippocampus interactions

during successful encoding of stimuli into episodic memory. One

important function of the hippocampus in episodic memory is the

detection and encoding of novel information [6,7,8,9].

Long-term encoding of novel stimuli in the hippocampus has

been linked to co-activation of glutamatergic and neuromodula-

tory monoaminergic receptors. Serotonergic projections from the

medial septal and median raphe nuclei to the hippocampus are

thought to modulate hippocampal memory processes [10,11], and,

genetic investigations have yielded a replicated association of

genetic variations of the serotonin receptor 5-HTR2a with human

memory. Particularly the 5-HTR2a His452Tyr polymorphism

(dbSNP: rs6314), which influences the intracellular signaling

cascade of the receptor [12,13], has been demonstrated to affect

episodic memory, with lower performance in carriers of the rare

Tyr variant [14,15,16]. The neural correlates of this effect at brain

systems level, however, are yet unclear. 5-HTR2a is expressed in

the human hippocampus and prefrontal cortex (PFC), and

expression in these brain structures decreases with age [17,18],

which is mirrored by a reduced influence of His452Tyr on

memory performance in the elderly [15].

Based on the well-established role of the hippocampus in

novelty processing and the replicated association of 5-HTR2a with

hippocampus-dependent memory, we hypothesized that the

polymorphism might affect hippocampal processing of novel

stimuli. This hypothesis was addressed using functional magnetic

resonance imaging (fMRI) in 5-HTR2a His homozygotes and Tyr

carriers. Participants performed a visual novelty/familiarity task

with photographs of complex scenes (see Bunzeck and Düzel,

2006, for a similar task) that was followed by a delayed recognition

test 24 hours later.

Materials and Methods

Ethics statement
All study participants gave written informed consent to

participate, in accordance with the Declaration of Helsinki, and
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the study was carried out in accordance with the guidelines of the

local ethics committee.

Participants
41 young (age range 19–28, including 17 Tyr carriers;

genotyping protocol available upon request), right-handed native

speakers of German (19 female) participated in the study. All had

no history of neurological or psychiatric illness and normal T1-

weighted MR images.

Paradigm
Figure 1 displays the experimental setup of the task. Before

entering the MR tomograph, participants performed a familiar-

ization phase, during which they viewed a total of seven

photographs of outdoor scenes on a computer screen. A standard

image was repeated 60 times, and six target images were repeated

10 times in a pseudo-random Latin square order (Figure 1A).

The actual experiment consisted of a single fMRI scanning

session. During the fMRI experiment, novel and familiar target

stimuli were presented, randomly intermixed with a standard

image. Photographs of outdoor scenes were presented in a

pseudo-randomized order (stimulus duration = 1.25 s), with an

interstimulus interval (ISI) jittered between 2.25 s and 6.25 s with

a near-exponential distribution, to optimize estimation of the

BOLD response [19]. A total of 240 photographs were presented,

including 120 repetitions of the standard image, 60 familiar

targets (the six target pictures from the familiarization phase, each

repeated 10 times), and 60 novel targets (see Figure 1B).

Participants were instructed to respond via button press whether

the target images were familiar or novel, but ignore the standard

Figure 1. Experimental paradigm. A: During the initial familiarization phase, before the actual fMRI experiment, seven pictures were presented
repeatedly. A standard image was presented 60 times, and six familiar targets were repeated 10 times in a pseudo-random order. B: During the fMRI
experiment, novel and familiar target stimuli (photographs of outdoor scenes) were presented, randomly intermixed with a standard image. 240
photographs were presented, including 120 repetitions of the standard image, 60 familiar targets (each repeated 10 times), and 60 novel targets. C:
During delayed recognition (24 hours after scanning), the novel targets from the fMRI experiment were presented randomly intermixed with
previously unpresented images.
doi:10.1371/journal.pone.0015984.g001
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image. The order of images was newly randomized across

participants, as was the subset of novel targets, which consisted of

120 images, the other half being used as distractors in the delayed

recognition phase (see below).

24 hours after the novelty/familiarity task, participants per-

formed a delayed recognition test (Figure 1C). The 60 novel

targets from the fMRI experiment were presented again, randomly

intermixed with 60 previously unseen photographs. Participants

were instructed to respond via mouse button whether or not they

recognized the pictures from the previous day. False positive

responses were explicitly discouraged.

MRI acquisition
MR images were acquired on a GE 1.5T Signa MRI system

(General Electric) using a standard head coil. 450 T2*-weighted

echo-planar images [EPIs; TR = 2.0 s; TE = 35 ms; 23 axial

slices (64664); voxel size = 3.1363.1365 mm (4 mm slice

thickness+1 mm gap)] were acquired (odds first, from bottom

to top). Six volumes were acquired at the beginning of each run

to allow for magnetic field stabilization. A co-planar proton

density (PD)-weighted MR image was acquired before the

functional session and used for optimized normalization (see

below).

Data processing and analysis
Data was analyzed using Statistical Parametric Mapping

(SPM8b, Wellcome Trust Center for Neuroimaging, London,

UK). EPIs were corrected for acquisition delay, realigned,

normalized using the parameters determined from segmentation

of the co-planar PD image [voxel size: 36363 mm] and smoothed

[Gaussian kernel; FWHM = 86868 mm]. A high pass filter of

128 s was applied to the data.

Statistical analysis was performed in a two-stage Mixed

Effects model. In the first stage, neural activity was modeled by

a delta function at stimulus onset. The blood oxygen level-

dependent (BOLD) event-related responses were modeled by

convolving these delta functions with a canonical hemodynamic

response function (HRF). The resulting time courses were

downsampled for each scan to the regressors of interest (novel

and familiar target stimuli, standard picture) included in a

General Linear Model (GLM). Covariates were modeled for the

conditions of interest (novel and familiar target stimuli, standard

picture), the six rigid-body movement parameters determined

from realignment, and a single constant representing the mean

over scans. Parameters of the GLM for each covariate were

estimated by restricted maximum likelihood (ReML) fit. Second

level random effects analyses were computed over the single

subjects’ contrasts. To assess the interaction between novelty

and 5-HTR2a genotype, we first assessed genotype-specific

variation of the novelty responses by computing a genotype by

novelty (novel vs. familiar targets) interaction model, followed

by a planned between-group comparison of novel vs. familiar T-

contrasts. Because of our hypothesis regarding the well-

established role of the hippocampus in novelty processing,

which was replicated in the present study cohort (Figure 2), we

assumed that genotype-mediated differences in novelty process-

ing would likely be observed in the hippocampus and conducted

a region of interest (ROI) analysis, using an anatomically

defined ROI of the hippocampus (CA regions, subiculum; SPM

Anatomy Toolbox [20]). The significance threshold was set to

p,.05, small-volume-corrected for family-wise error (FWE).

Peak activations (fitted and adjusted responses) of clusters with

significant between-group differences were submitted to confi-

dence interval estimation using Bootstrap resampling and the

percentile-t method [21]. Only activation differences with non-

overlapping confidence intervals for His homozygotes and Tyr

carriers were considered reliable.

Results

5-HTR2a His452 genotype and recognition performance
The average percentages of correctly recognized familiar items

(hits) and novel items classified as familiar (false alarms) during

the novelty task and during delayed recognition are displayed in

Table 1, separated by 5-HTR2a genotype. [Note: Delayed

recognition results were not available from two participants

(one His/His, one Tyr carrier). Behavioral results from the

recognition phase are therefore based on 39 participants].

Participants of both groups judged more previously seen items

as familiar relative to unseen items, but Tyr carriers made

significantly more false alarms during delayed recognition

[T39 = 22.564; p = .015, two-tailed] (Figure 3A). Reaction times

(RTs) during delayed recognition showed a significant condition

by genotype interaction, with Tyr carriers showing shorter RTs

only for items judged old (hits, and particularly false alarms),

confirming their tendency to judge stimuli as old [F1,37 = 3.959;

p = .022, one-way ANOVA for repeated measures with genotype

Figure 2. Neural correlates of novelty processing. A: The
presentation of novel versus familiar target stimuli was associated with
activation of a distributed network within the ventral visual stream,
including secondary visual, fusiform, and parahippocampal cortices. B:
There was a significant negative activation of the hippocampus during
presentation of novel relative to familiar target pictures (p,.05, small-
volume FWE-corrected).
doi:10.1371/journal.pone.0015984.g002
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as between-subjects factor, and Greenhouse-Geisser correction

for non-sphericity].

5-HTR2a His452 genotype influence on fMRI correlates of
novelty processing

Brain activity related to novelty processing. Irrespective

of genotype, novel target pictures elicited increased activation of

an extensive ventral visual network, including the fusiform and

parahippocampal gyrus when compared to familiar pictures

(Figure 2A). We also observed bilateral hippocampal activation

for novel versus familiar target pictures (p,.05, small-volume

FWE-corrected; Figure 2B), compatible with previous observations

[22].

Effects of 5-HTR2a His452Tyr on hippocampal novelty

processing. A ROI analysis using an anatomically defined ROI

of the hippocampal CA regions and subiculum (derived from the

SPM Anatomy Toolbox; Eickhoff et al., 2005) revealed a

significant genotype-dependent between-group difference in the

right anterior hippocampus. Carriers of the Tyr allele showed

significantly reduced right anterior hippocampal activation during

presentation of novel relative to familiar target images, as

compared to His homozygous participants (p,.05, FWE-

corrected for the ROI volume; see Figure 3B). To reduce the

risk of incidental between-group differences, peak activation

differences were submitted to Bootstrap-based confidence

interval estimation [21]. Confidence intervals for the fitted and

adjusted hemodynamic responses in the anterior hippocampus did

not overlap between His homozygotes and Tyr carriers (Figure 2,

top right).

To test whether the hippocampal novelty response was related

to behavioral novelty processing, we computed Pearson’s corre-

lation coefficients between the hippocampal hemodynamic

response to novel vs. familiar stimuli and the hit and false alarm

rates during delayed recognition. While the hit rate did not

correlate significantly with the hippocampal novelty response, we

observed a negative correlation between this response and the

delayed recognition false alarm rate [r = .278; p,.043, one-tailed],

suggesting an inverse relationship between hippocampal response

to novel stimuli and a tendency to mistakenly judge novel stimuli

as familiar (Figure 3C) [Note: the correlation was negative in both

genotype groups, but reached significance only across the entire

cohort].

Discussion

While behavioral studies using several different memory tasks

have provided converging evidence for an influence of 5-HTR2a

His452Tyr on human memory performance, the underlying

neural correlates have thus far been unclear. Here we show a

relationship between 5-HTR2a His452Tyr and hippocampal

novelty processing, suggesting that the polymorphism might affect

the hippocampus-dependent encoding of novel stimuli.

In young, healthy volunteers, the hippocampal neural response

to novel stimuli varied as a function of 5-HTR2a His452Tyr. This

observation is compatible with previously reported lower perfor-

mance of Tyr carriers in hippocampus-dependent memory tasks,

irrespective of performance in other cognitive tasks. Effects of 5-

HTR2a His452Tyr on novelty processing were observed almost

exclusively in the hippocampus, while no genotype-dependent

activation differences were found in the PFC, where the receptor is

also expressed at high levels [17,18]. This might reflect a

preferential effect of the polymorphism on hippocampal as

compared to neocortical function, which would be in line with

the previously described relatively specific effects of the polymor-

phism on explicit memory processes [14,15]. It should be noted,

though, that the task employed here was specifically designed to

elicit stable hippocampal novelty responses and was not associated

with prominent prefrontal activations in our entire cohort.

Previous studies investigating neuromodulatory influence on

novelty processing have mostly focused on dopamine [7,9].

Hippocampal activation, possibly in response to novelty, can lead

to dopamine release in the hippocampus via a positive feedback

loop with the substantia nigra / ventral tegmental area [7], and

dopamine, in turn, is necessary to maintain and stabilize

hippocampal long-term potentiation (LTP), a putative synaptic

correlate of long-term memory formation. A comparable role for

serotonin has been described [23], and pharmacological studies

have linked serotonergic neurotransmission to memory perfor-

mance [24]. Ca2+ influx is critical for the expression of hippocampal

LTP, and the Tyr allele exerts a destabilizing effect on the

Phospholipase C (PLC) signaling cascade downstream of the 5-

Table 1. Behavioral results.

Novelty detection task His/His Tyr carrier

% hits .992+/2.013 .985+/2.029 n.s.

% false alarms .003+/2.008 .038+/2.120 n.s.

RT hits 775+/286 787+/2125 n.s.

RT correct rejections 813+/296 838+/2124 n.s.

Delayed recognition His/His Tyr carrier

% hits .454+/2.148 .516+/2.164 n.s.

% false alarms .199+/2.074 .277+/2.118 T = 22.564; p = .015*

RT hits 945+/2170 913+/2105 n.s.

RT misses 955+/2214 956+/2133 n.s.

RT correct rejections 934+/2199 948+/2130 n.s.

RT false alarms 964+/2197 893+/2127 n.s.

Relative proportions of hits (correctly recognized pictures) are given. [Note: Delayed recognition results were not available from two participants (one His/His, one Tyr
carrier)]. Behavioral results from the recognition phase are therefore based on 39 participants]. RT: reaction time (msec); n.s.: not significant. All data are means +/2
standard deviations.
doi:10.1371/journal.pone.0015984.t001
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HTR2a receptor, leading to a decreased calcium response [12,13].

It should be noted that serotonergic projections in the hippocampus

terminate, to a large extent, on GABAergic interneurons [25] and

therefore, serotonin may also modulate novelty processing at the

level of hippocampal network dynamics [26].

An alternative – or additional – explanation our observations

would be that modulation of memory function by 5-HTR2a

His452Tyr might result from developmental effects. Indeed,

morphometric analyses have shown altered MTL white matter

microstructure and reduced hippocampal volume in Tyr carriers

[27], suggesting a possible effect of His452Tyr on MTL plasticity

or development.

Conclusions
Taken together, the results of the present study show that

previously reported effects of the His452Tyr functional variation

of the 5-HT receptor 2a on human memory performance might,

at least in part, be mediated by decreased recruitment of the

hippocampus during novelty processing. Our results suggest that,

in addition to dopamine, serotonin warrants further investigation

as a putative neuromodulator of hippocampus-dependent pro-

cessing of novel information. Given the widely replicated studies

linking hippocampal dysfunction and schizophrenia and suspected

role of 5-HTR2a polymorphisms, including His452Tyr, in risk for

schizophrenia and response to atypical antipsychotics [28], we

Figure 3. The hippocampal novelty response and its modulation by the 5-HTR2a His452Tyr genotype. A: While there was no significant
genotype-related difference in hit rate (correctly recognized old pictures) during delayed recognition, Tyr carriers made significantly more false
alarms, i.e. ‘‘old’’-like responses to new stimuli (T = 22.564; p = .015). B: His homozygotes showed relatively increased activation of the right anterior
hippocampus when compared to Tyr carriers. Plots depict mean activations (fitted and adjusted response), separated by genotype, +/2 confidence
intervals obtained from Bootstrap resampling; p,.05, FWE-corrected for the ROI volume. C: There was a significant negative correlation of the
hippocampal novelty response and the false alarm rate during delayed recognition across the study cohort. *r = .278; p,.043, one-tailed.
doi:10.1371/journal.pone.0015984.g003
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further suggest that the differential roles of serotonin and

dopamine in psychosis-related memory dysfunction should be

subject to future research.

Acknowledgments

We thank Gusalija Behnisch and Maria Michelmann for help with

genotyping and Connie Draxler, Kerstin Möhring, Ilona Wiedenhöft and
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