Bound on the Ratio of Decay Amplitudes for $\bar{B}^{0} \rightarrow J / \psi K^{* 0}$ and $B^{0} \rightarrow J / \psi K^{* 0}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C.T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R.W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ M.T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. E. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ A. T. Watson, ${ }^{6}$ M. Fritsch, ${ }^{7}$ K. Goetzen, ${ }^{7}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ M. Steinke, ${ }^{7}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ N. S. Knecht, ${ }^{9}$ T.S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ A. Khan, ${ }^{10}$ P. Kyberd, ${ }^{10}$ L. Teodorescu, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen,,11 E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Bruinsma, ${ }^{12}$ M. Chao, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ B. L. Hartfiel, ${ }^{13}$ J.W. Gary, ${ }^{14}$ B. C. Shen,,14 K. Wang, ${ }^{14}$ D. del Re, ${ }^{15}$ H. K. Hadavand, ${ }^{15}$ E. J. Hill, ${ }^{15}$ D. B. MacFarlane, ${ }^{15}$ H. P. Paar, ${ }^{15}$ Sh. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J.W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ B. Dahmes ${ }^{16}{ }^{16}$ S. L. Levy, ${ }^{16}$ O. Long, ${ }^{16}$ A. Luu ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ W. Verkerke, ${ }^{16}$ T.W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ R. E. Schmitz, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ P. Spradlin, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ J. Albert, ${ }^{18}$ E. Chen, ${ }^{18}$ G. P. Dubois-Felsmann, ${ }^{18}$ A. Dvoretskii, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ A. Ryd, ${ }^{18}$ A. Samuel, ${ }^{18}$ S. Yang, ${ }^{18}$ S. Jayatilleke, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ T. Abe, ${ }^{20}$ F. Blanc, ${ }^{20}$ P. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W.T. Ford, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ P. Rankin, ${ }^{20}$ J. G. Smith, ${ }^{20}$ J. Zhang, ${ }^{20}$ L. Zhang, ${ }^{20}$ A. Chen,,${ }^{21}$ J. L. Harton, ${ }^{21}$ A. Soffer, ${ }^{21}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ Q. L. Zeng, ${ }^{21}$ D. Altenburg, ${ }^{22}$ T. Brandt, ${ }^{22}$ J. Brose, ${ }^{22}$ T. Colberg, ${ }^{22}$ M. Dickopp, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. M. Lacker, ${ }^{22}$ E. Maly, ${ }^{22}$ R. Müller-Pfefferkorn, ${ }^{22}$ R. Nogowski, ${ }^{22}$ S. Otto, ${ }^{22}$ A. Petzold, ${ }^{22}$ J. Schubert, ${ }^{22}$ K. R. Schubert, ${ }^{22}$ R. Schwierz, ${ }^{22}$ B. Spaan, ${ }^{22}$ J. E. Sundermann, ${ }^{22}$ D. Bernard, ${ }^{23}$ G. R. Bonneaud, ${ }^{23}$ F. Brochard, ${ }^{23}$ P. Grenier, ${ }^{23}$ S. Schrenk, ${ }^{23}$ Ch. Thiebaux, ${ }^{23}$ G. Vasileiadis, ${ }^{23}$ M. Verderi, ${ }^{23}$ D. J. Bard, ${ }^{24}$ P. J. Clark,,${ }^{24}$ D. Lavin, ${ }^{24}$ F. Muheim,,${ }^{24}$ S. Playfer, ${ }^{24}$ Y. Xie, ${ }^{24}$ M. Andreotti, ${ }^{25}$ V. Azzolini, ${ }^{25}$ D. Bettoni, ${ }^{25}$ C. Bozzi, ${ }^{25}$ R. Calabrese, ${ }^{25}$ G. Cibinetto, ${ }^{25}$ E. Luppi, ${ }^{25}$ M. Negrini, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ M. Piccolo,,${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Capra, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere,,${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ G. Brandenburg, ${ }^{29}$ M. Morii, ${ }^{29}$ E. Won, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ U. Langenegger, ${ }^{30}$ W. Bhimji, ${ }^{31}$ D. A. Bowerman, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ U. Egede, ${ }^{31}$ J. R. Gaillard, ${ }^{31}$ G.W. Morton, ${ }^{31}$ J. A. Nash, ${ }^{31}$ G. P. Taylor, ${ }^{31}$ M. J. Charles, ${ }^{32}$ G. J. Grenier, ${ }^{32}$ U. Mallik, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ J. Lamsa, ${ }^{33}$ W.T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ J. Yi, ${ }^{33}$ M. Davier, ${ }^{34}$ G. Grosdidier, ${ }^{34}$ A. Höcker, ${ }^{34}$ S. Laplace,,${ }^{34}$ F. Le Diberder, ${ }^{34}$ V. Lepeltier, ${ }^{34}$ A. M. Lutz, ${ }^{34}$ T. C. Petersen, ${ }^{34}$ S. Plaszczynski, ${ }^{34}$ M. H. Schune, ${ }^{34}$ L. Tantot, ${ }^{34}$ G. Wormser, ${ }^{34}$ C. H. Cheng, ${ }^{35}$ D. J. Lange, ${ }^{35}$ M. C. Simani, ${ }^{35}$ D. M. Wright, ${ }^{35}$ A. J. Bevan, ${ }^{36}$ J. P. Coleman, ${ }^{36}$ J. R. Fry, ${ }^{36}$ E. Gabathuler, ${ }^{36}$ R. Gamet, ${ }^{36}$ R. J. Parry, ${ }^{36}$ D. J. Payne, ${ }^{36}$ R. J. Sloane, ${ }^{36}$ C. Touramanis, ${ }^{36}$ J. J. Back,,${ }^{37}$ C. M. Cormack, ${ }^{37}$ P. F. Harrison,,${ }^{37, *}$ G. B. Mohanty,,${ }^{37}$ C. L. Brown, ${ }^{38}$ G. Cowan, ${ }^{38}$ R. L. Flack, ${ }^{38}$ H. U. Flaecher,,${ }^{38}$ M. G. Green, ${ }^{38}$ C. E. Marker, ${ }^{38}$ T. R. McMahon, ${ }^{38}$ S. Ricciardi, ${ }^{38}$ F. Salvatore, ${ }^{38}$ G. Vaitsas, ${ }^{38}$ M. A. Winter,,38 D. Brown, ${ }^{39}$ C. L. Davis, ${ }^{39}$ J. Allison, ${ }^{40}$ N. R. Barlow, ${ }^{40}$ R. J. Barlow, ${ }^{40}$ P. A. Hart,,${ }^{40}$ M. C. Hodgkinson, ${ }^{40}$ G. D. Lafferty, ${ }^{40}$ A. J. Lyon, ${ }^{40}$ J. C. Williams, ${ }^{40}$ A. Farbin, ${ }^{41}$ W. D. Hulsbergen, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. Kovalskyi, ${ }^{41}$ C. K. Lae, ${ }^{41}$ V. Lillard, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ G. Blaylock, ${ }^{42}$ C. Dallapiccola, ${ }^{42}$ K. T. Flood, ${ }^{42}$ S. S. Hertzbach, ${ }^{42}$ R. Kofler, ${ }^{42}$ V. B. Koptchev, ${ }^{42}$ T. B. Moore, ${ }^{42}$ S. Saremi, ${ }^{42}$ H. Staengle, ${ }^{42}$ S. Willocq, ${ }^{42}$ R. Cowan, ${ }^{43}$ G. Sciolla, ${ }^{43}$ F. Taylor, ${ }^{43}$ R. K. Yamamoto, ${ }^{43}$ D. J. J. Mangeol, ${ }^{44}$ P. M. Patel, ${ }^{44}$ S. H. Robertson, ${ }^{44}$ A. Lazzaro, ${ }^{45}$ F. Palombo, ${ }^{45}$ J. M. Bauer, ${ }^{46}$ L. Cremaldi, ${ }^{46}$ V. Eschenburg, ${ }^{46}$ R. Godang, ${ }^{46}$ R. Kroeger, ${ }^{46}$ J. Reidy, ${ }^{46}$ D. A. Sanders, ${ }^{46}$ D. J. Summers, ${ }^{46}$ H.W. Zhao, ${ }^{46}$ S. Brunet, ${ }^{47}$ D. Côté, ${ }^{47}$ P. Taras, ${ }^{47}$ H. Nicholson, ${ }^{48}$ N. Cavallo, ${ }^{49}$ F. Fabozzi, ${ }^{49, \dagger}$ C. Gatto, ${ }^{49}$ L. Lista, ${ }^{49}$ D. Monorchio, ${ }^{49}$ P. Paolucci, ${ }^{49}$ D. Piccolo, ${ }^{49}$ C. Sciacca, ${ }^{49}$ M. Baak, ${ }^{50}$ H. Bulten, ${ }^{50}$ G. Raven, ${ }^{50}$ L. Wilden, ${ }^{50}$ C. P. Jessop, ${ }^{51}$ J. M. LoSecco, ${ }^{51}$ T. A. Gabriel, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ B. Brau, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel,,${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam, ${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan, ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina,,${ }^{54}$ C.T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom, ${ }^{54}$ E. Torrence, ${ }^{54}$ F. Colecchia, ${ }^{55}$ A. Dorigo, ${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ G. Tiozzo, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56}$
H. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ Ch. de la Vaissière, ${ }^{56}$ L. Del Buono, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malcles, ${ }^{56}$ J. Ocariz, ${ }^{56}$ M. Pivk, ${ }^{56}$ L. Roos, ${ }^{56}$ S. T'Jampens, ${ }^{56}$ G. Therin,,${ }^{56}$ P. F. Manfredi,,${ }^{57}$ V. Re, ${ }^{57}$ P. K. Behera, ${ }^{58}$ L. Gladney, ${ }^{58}$ Q. H. Guo, ${ }^{58}$ J. Panetta, ${ }^{58}$ F. Anulli, ${ }^{27,59}$ M. Biasini, ${ }^{59}$ I. M. Peruzzi, ${ }^{27,59}$ M. Pioppi, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Bondioli, ${ }^{60}$ F. Bucci, ${ }^{60}$ G. Calderini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ V. Del Gamba, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ F. Martinez-Vidal, ${ }^{60,{ }^{*}}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ M. Rama, ${ }^{60}$ G. Rizzo, ${ }^{60}$ F. Sandrelli, ${ }^{60}$ J. Walsh, ${ }^{60}$ M. Haire,,${ }^{61}$ D. Judd, ${ }^{61}$ K. Paick, ${ }^{61}$ D. E. Wagoner,,${ }^{61}$ N. Danielson, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ V. Miftakov, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{62,63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ M. Pierini, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Safai Tehrani, ${ }^{63}$ C. Voena, ${ }^{63}$ S. Christ, ${ }^{64}$ G. Wagner, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye,,${ }^{65}$ N. De Groot, ${ }^{65}$ B. Franek, ${ }^{65}$ N. I. Geddes, ${ }^{65}$ G. P. Gopal, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ P.-F. Giraud, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ M. Langer, ${ }^{66}$ M. Legendre, ${ }^{66}$ G.W. London, ${ }^{66}$ B. Mayer, ${ }^{66}$ G. Schott, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yêche, ${ }^{66}$ M. Zito, ${ }^{66}$ M.V. Purohit, ${ }^{67}$ A.W. Weidemann, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ F. X. Yumiceva, ${ }^{67}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ N. Berger, ${ }^{68}$ A. M. Boyarski, ${ }^{68}$ O. L. Buchmueller, ${ }^{68}$ M. R. Convery, ${ }^{68}$ M. Cristinziani, ${ }^{68}$ G. De Nardo, ${ }^{68}$ D. Dong, ${ }^{68}$ J. Dorfan, ${ }^{68}$ D. Dujmic, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ E. E. Elsen, ${ }^{68}$ S. Fan, ${ }^{68}$ R. C. Field,,${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ T. Hadig, ${ }^{68}$ V. Halyo, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D.W. G. S. Leith, ${ }^{68}$ J. Libby, ${ }^{68}$ S. Luitz,,${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O’Grady, ${ }^{68}$ V. E. Ozcan, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ S. Petrak, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ G. Simi, ${ }^{68}$ A. Snyder, ${ }^{68}$ A. Soha, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ J. Va'vra, ${ }^{68}$ S. R. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ A. J. R. Weinstein,,${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ T. I. Meyer, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ C. Roat, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$
J. A. Ernst ${ }^{70}$ M. A. Saeed, ${ }^{70}$ M. Saleem, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ H. Kim, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. Satpathy, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ I. Kitayama, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{74}$ M. Bona, ${ }^{74}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ C. Borean, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ S. Dittongo, ${ }^{75}$ S. Grancagnolo, ${ }^{75}$ L. Lanceri, ${ }^{75}$ P. Poropat, ${ }^{75,8}$ L. Vitale, ${ }^{75}$ G. Vuagnin, ${ }^{75}$ R. S. Panvini, ${ }^{76}$ Sw. Banerjee, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ P. D. Jackson, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ H. R. Band, ${ }^{78}$ S. Dasu, ${ }^{78}$ M. Datta, ${ }^{78}$ A. M. Eichenbaum, ${ }^{78}$ M. Graham, ${ }^{78}$ J. J. Hollar, ${ }^{78}$ J. R. Johnson, ${ }^{78}$ P. E. Kutter, ${ }^{78}$ H. Li, ${ }^{78}$ R. Liu, ${ }^{78}$ F. Di Lodovico, ${ }^{78}$ A. Mihalyi, ${ }^{78}$ A. K. Mohapatra, ${ }^{78}$ Y. Pan, ${ }^{78}$ R. Prepost, ${ }^{78}$ A. E. Rubin, ${ }^{78}$ S. J. Sekula, ${ }^{78}$ P. Tan, ${ }^{78}$ J. H. von Wimmersperg-Toeller, ${ }^{78}$ J. Wu, ${ }^{78}$ S. L. Wu, ${ }^{78}$ Z. Yu, ${ }^{78}$ M. G. Greene, ${ }^{79}$ and H. Neal ${ }^{79}$
(The Babar Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy ${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 ITL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia V6T IZI Canada
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{23}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{24}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{26}$ Florida A\&M University, Tallahassee, Florida 32307, USA
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{35}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{36}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{37}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{38}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{39}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{41}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{42}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{43}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{44}$ McGill University, Montréal, Quebec H3A $2 T 8$ Canada
${ }^{45}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{46}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{47}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec H3C 3J7, Canada
${ }^{48}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{49}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{50}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{51}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{52}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{53}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{57}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{61}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, British Columbia V8W 3P6, Canada
${ }^{78}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{79}$ Yale University, New Haven, Connecticut 06511, USA
(Received 3 April 2004; published 18 August 2004)

We have measured the time-dependent decay rate for the process $B \rightarrow J / \psi K^{* 0}(892)$ in a sample of about $88 \times 10^{6} \mathrm{Y}(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetricenergy B factory at SLAC. In this sample we study flavor-tagged events in which one neutral B meson is reconstructed in the $J / \psi K^{* 0}$ or $J / \psi \overline{K^{* 0}}$ final state. We measure the coefficients of the cosine and sine
terms in the time-dependent asymmetries for $J / \psi K^{* 0}$ and $J / \psi \bar{K}^{* 0}$, find them to be consistent with the standard model expectations, and set upper limits at 90% confidence level (C.L.) on the decay amplitude ratios $\left|A\left(\bar{B}^{0} \rightarrow J / \psi K^{* 0}\right)\right| /\left|A\left(B^{0} \rightarrow J / \psi K^{* 0}\right)\right|<0.26$ and $\left|A\left(B^{0} \rightarrow J / \psi \bar{K}^{* 0}\right)\right| /\left|A\left(\bar{B}^{0} \rightarrow J / \psi \bar{K}^{* 0}\right)\right|<0.32$. For a single ratio of wrong-flavor to favored amplitudes for B^{0} and \bar{B}^{0} combined, we obtain an upper limit of 0.25 at 90% C.L.

DOI: 10.1103/PhysRevLett.93.081801
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Hh}$

The standard model of electroweak interactions describes $C P$ violation in weak interactions of quarks by the presence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. In this framework, the $C P$ asymmetries in the proper-time distributions of neutral B decays to $J / \psi K_{S}^{0}$ and $J / \psi K_{L}^{0}$ are directly related to the $C P$-violation parameter $\sin 2 \beta$ [2]. The time-dependent $C P$ asymmetries for $J / \psi K_{S}^{0}$ and $J / \psi K_{L}^{0}$ are of opposite sign and, to a very good approximation, equal in magnitude [3]. The decay $B^{0} \rightarrow J / \psi K_{S}^{0}\left(B^{0} \rightarrow J / \psi K_{L}^{0}\right)$ proceeds through the CKMfavored, color-suppressed decay $B^{0} \rightarrow J / \psi K^{0}$ [4] followed by $K^{0} \rightarrow K_{S}^{0}\left(K^{0} \rightarrow K_{L}^{0}\right)$. The so-called wrongflavor B^{0} decay amplitude to the opposite strangeness final state $B^{0} \rightarrow J / \psi \bar{K}^{0}$ is expected to be negligible in the standard model [3]. Interference between a wrongflavor amplitude and the favored amplitude can alter the relation between the $C P$ asymmetries, $A_{C P}$, for the $J / \psi K_{S}^{0}$ and $J / \psi K_{L}^{0}$ final states. In general, a difference between $A_{C P}\left(J / \psi K_{S}^{0}\right)$ and $-A_{C P}\left(J / \psi K_{L}^{0}\right)$ of more than a few times 10^{-3} requires a wrong-flavor amplitude [3]. A limit on the $C P$-odd part of the phase difference between the wrong-flavor amplitude and the favored amplitude can be derived from the measured values of $\sin 2 \beta$ from B decays to the $J / \psi K_{S}^{0}$ and $J / \psi K_{L}^{0}$ final states. No test of the modulus of the wrong-flavor amplitude currently exists.

The decay mode $B^{0} \rightarrow J / \psi K^{* 0}$ proceeds via the same quark transition as $B^{0} \rightarrow J / \psi K^{0}$. The matrix elements, and therefore the ratio of wrong-flavor to favored amplitudes, are expected to be similar for $B^{0} \rightarrow J / \psi K^{* 0}$ and $B^{0} \rightarrow J / \psi K^{0}$ [3]. In this Letter we present a measurement of the ratio of wrong-flavor to favored amplitude for the decay $B^{0} \rightarrow J / \psi K^{* 0}$, from the time-dependent asymmetry, where we use $K^{* 0} \rightarrow K^{+} \pi^{-}$to identify the strangeness of the final state. The data sample consists of about $88 \times 10^{6} B \bar{B}$ pairs produced in $e^{+} e^{-}$interactions at the $\mathrm{Y}(4 S)$ resonance, corresponding to an integrated luminosity of $82 \mathrm{fb}^{-1}$, collected with the $B A B A R$ detector [5] at the PEP-II asymmetric-energy collider at SLAC.

Charged particles are detected, and their momenta measured, by a combination of a vertex tracker consisting of five layers of double-sided silicon microstrip detectors, and a 40-layer central drift chamber, both operating in the $1.5-\mathrm{T}$ magnetic field of a superconducting solenoid. We identify photons and electrons using a $\operatorname{CsI}(\mathrm{Tl})$ electromagnetic calorimeter. Further charged particle identification is provided by the average energy loss $(d E / d x)$ in
the tracking devices and by an internally reflecting ring imaging Cherenkov detector covering the central region. Muons are identified by their penetration through the iron plates of a magnet flux return.

The analysis method is similar to that of other timedependent mixing measurements performed at $B A B A R$ [6]. We use a sample of events ($B_{J / \psi K \pi}$) in which one neutral B meson is reconstructed in the state $J / \psi K^{* 0}$ or $J / \psi \bar{K}^{* 0}$. The J / ψ meson is reconstructed through its decay to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$, and the $K^{* 0}\left(\bar{K}^{* 0}\right)$ meson through its decay to $K^{+} \pi^{-}\left(K^{-} \pi^{+}\right)$. We examine each event in this sample for evidence that the other B meson decayed either as a B^{0} or \bar{B}^{0} (flavor tag).

The pseudoscalar to vector-vector decay $B^{0} \rightarrow$ $J / \psi K^{* 0}(892)$ is described by three amplitudes, $A_{0}, A_{\|}$, and A_{\perp}, for the longitudinal, parallel, and perpendicular transverse polarization [7], respectively, of the vector mesons. In the selection of $B^{0} \rightarrow J / \psi K^{* 0}(892)$ there is a small contribution from $B^{0} \rightarrow J / \psi K_{0}^{*}(1430)$, whose decay amplitude is denoted with A_{s}. The favored decay amplitudes $A_{\lambda}\left(B^{0} \rightarrow J / \psi K^{+} \pi^{-}\right)=a_{\lambda} e^{i \delta_{\lambda}^{a}} e^{+i \phi^{a}}$ are described by the magnitudes a_{λ}, weak phase ϕ^{a}, and strong phases δ_{λ}^{a}, where $\lambda=0, \|, \perp, s$. The amplitudes for the wrong-flavor decays are given by $A_{\lambda}\left(\bar{B}^{0} \rightarrow J / \psi K^{+} \pi^{-}\right)=$ $b_{\lambda} e^{i \delta_{\lambda}^{b}} e^{+i \phi^{b}}$. The corresponding decay amplitudes for the charge-conjugate final state $J / \psi K^{-} \pi^{+}$are obtained by replacing ϕ^{a} with $-\bar{\phi}^{a}, b_{\lambda}$ with $\bar{b}_{\lambda}, \delta_{\lambda}^{b}$ with $\bar{\delta}_{\lambda}^{b}$, and ϕ^{b} with $-\bar{\phi}^{b}$. We assume $a_{\lambda}=\bar{a}_{\lambda}$.

The proper-time distributions of B meson decays to $J / \psi K^{+} \pi^{-}\left(J / \psi K^{-} \pi^{+}\right)$, having either a B^{0} or \bar{B}^{0} tag, can be expressed in terms of the $B^{0}-\bar{B}^{0}$ oscillation amplitude and the amplitudes describing \bar{B}^{0} and B^{0} decays to this final state [8]. The angular-integrated decay rate $\mathrm{f}_{+}\left(\mathrm{f}_{-}\right)$to the final state $J / \psi K^{+} \pi^{-}$when the tagging meson is a $B^{0}\left(\bar{B}^{0}\right)$ is given by

$$
\begin{align*}
\mathrm{f}_{ \pm}(\Delta t)= & \frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \mp C \cos \left(\Delta m_{d} \Delta t\right)\right. \\
& \left. \pm S \sin \left(\Delta m_{d} \Delta t\right)\right] \tag{1}
\end{align*}
$$

where $\Delta t \equiv t_{\text {rec }}-t_{\text {tag }}$ is the difference between the proper decay times of the reconstructed B meson ($B_{\text {rec }}$) and the tagging B meson ($B_{\text {tag }}$), $\tau_{B^{0}}$ is the B^{0} lifetime, and Δm_{d} is the $B^{0}-\bar{B}^{0}$ oscillation frequency. The corresponding decay rates $\overline{\mathrm{f}}_{+}$and $\overline{\mathrm{f}}_{-}$for the charge-conjugate final state $J / \psi K^{-} \pi^{+}$are obtained by replacing C with $-\bar{C}$ and S with $-\bar{S}$.

The C and S coefficients are related to the wrong-flavor and favored amplitudes by

$$
\begin{equation*}
C=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}, \quad \text { and } \quad S=\frac{2 \sum_{\lambda} \eta a_{\lambda} b_{\lambda} \sin \left(\phi+\delta_{\lambda}\right)}{a^{2}+b^{2}}, \tag{2}
\end{equation*}
$$

with $a^{2} \equiv a_{0}^{2}+a_{\|}^{2}+a_{\perp}^{2}+a_{s}^{2}, b^{2} \equiv b_{0}^{2}+b_{\|}^{2}+b_{\perp}^{2}+b_{s}^{2}$, and $\eta=+1(-1)$ for $\lambda=0, \|, s(\perp)$. The strong and weak phase differences are given by $\delta_{\lambda}=\delta_{\lambda}^{b}-\delta_{\lambda}^{a}$ and $\phi=$ $\arg (q / p)+\left(\phi_{b}-\phi_{a}\right)$, respectively, where (q / p) contains the weak phase of $B^{0}-\bar{B}^{0}$ oscillations. The \bar{C} and \bar{S} coefficients are given by the same expressions, replacing $b_{(\lambda)}$ with $\bar{b}_{(\lambda)}, \delta_{\lambda}$ with $\bar{\delta}_{\lambda}$, and ϕ with $-\bar{\phi}$.

In the $B \rightarrow J / \psi K^{* 0}$ selection, a J / ψ candidate must consist of two identified lepton tracks [5] that form a good vertex. The lepton-pair invariant mass must be in the range $3.06-3.14 \mathrm{GeV} / c^{2}$ for muons and $2.95-3.14 \mathrm{GeV} / c^{2}$ for electrons. This corresponds to a $\pm 3 \sigma$ interval for muons, and, for electrons, accommodates the remaining radiative tail after bremsstrahlung correction [6]. We form $K^{+} \pi^{-}$candidate pairs, where the track that is most consistent with being a kaon is assigned to be the kaon candidate. The $K^{+} \pi^{-}$pair must have an invariant mass within $100 \mathrm{MeV} / c^{2}$ of the nominal $K^{* 0}(892)$ mass [9]. In the selected mass window the $K_{0}^{*}(1430)$ contributes $(7.3 \pm 1.6) \%$ of the $K^{+} \pi^{-}$events.

The B-meson candidates are formed from J / ψ and $K^{+} \pi^{-}$candidates with the requirement that the difference $\Delta E=E_{B}^{\mathrm{cm}}-E_{\text {beam }}^{\mathrm{cm}}$ between their energy and the beam energy in the center-of-mass frame be less than 30 MeV from zero. The beam-energy-substituted mass $m_{\mathrm{ES}}=\sqrt{\left(E_{\text {beam }}^{\mathrm{cm}}\right)^{2}-\left(p_{B}^{\mathrm{cm}}\right)^{2}}$ must be greater than $5.2 \mathrm{GeV} / c^{2}$, where p_{B}^{cm} is the measured B momentum in the center-of-mass frame. We define a signal region with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ to determine event yields and purities, and a sideband region with $m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$ to study background properties. If several B candidates are found in an event, the one with the smallest $|\Delta E|$ is retained.

A measurement of the asymmetry coefficients C, S, \bar{C}, and \bar{S} requires a determination of the experimental Δt resolution and the fraction w of events in which the flavor tag assignment is incorrect. This mistag fraction reduces the amplitudes of the observed asymmetries by a factor $1-2 w$. Mistag fractions and Δt resolution functions are determined from a sample of neutral B mesons that decay to final states with one charmed meson ($B_{D h}$) and consists of the channels $D^{(*)-} h^{+}\left(h^{+}=\pi^{+}, \rho^{+}\right.$, and $\left.a_{1}^{+}\right)$.

The algorithm for B-flavor tagging is explained in Ref. [10]. The total efficiency for assigning a reconstructed B candidate to one of four hierarchical, mutually exclusive tagging categories is $(65.6 \pm 0.5) \%$. Untagged events are excluded from further consideration. The ef-

FIG. 1. Distributions of $m_{\text {ES }}$ (a) for $J / \psi K^{+} \pi^{-}$candidates and (b) for $J / \psi K^{-} \pi^{+}$candidates satisfying the tagging and vertexing requirements. The fit is described in the text.
fective tagging efficiency $Q \equiv \sum_{i} \varepsilon_{i}\left(1-2 w_{i}\right)^{2}$, where ε_{i} and w_{i} are the efficiencies and mistag probabilities, for events tagged in category i, is measured to be $(28.1 \pm 0.7) \%$.

The time interval Δt between the two B decays is calculated from the measured separation Δz between the decay vertices of the $B_{\text {rec }}$ and $B_{\text {tag }}$ along the collision (z) axis [6]. We determine the z position of the $B_{\text {rec }}$ vertex from its charged tracks. The $B_{\text {tag }}$ vertex is determined by fitting tracks not belonging to the $B_{\text {rec }}$ candidate to a common vertex, employing constraints from the beam spot location and the B_{rec} momentum [6]. We accept events with a Δt uncertainty of less than 2.5 ps and $|\Delta t|<20 \mathrm{ps}$. The fraction of events satisfying these requirements is 95%.

Figure 1 shows the m_{ES} distributions of the $J / \psi K^{+} \pi^{-}$ and $J / \psi K^{-} \pi^{+}$candidates that satisfy the tagging and vertexing requirements. The m_{ES} distributions are fit with the sum of a threshold function [11], which accounts for the background from random combinations of tracks in the event, and a Gaussian distribution describing the signal. In Table I we list the event yields and signal purities for the tagged $B \rightarrow J / \psi K^{+} \pi^{-}$and $B \rightarrow$ $J / \psi K^{-} \pi^{+}$candidates. The fraction of events in the Gaussian component of the m_{ES} fits due to other B decay modes is estimated to be $(1.6 \pm 0.4) \%$ based on simulated events.

TABLE I. Number of events, $N_{\text {tag }}$, and signal purity, P, in the signal region for the $J / \psi K^{+} \pi^{-}$and $J / \psi K^{-} \pi^{+}$samples and for the $B_{D h}$ sample. Errors are statistical only.

Sample	$N_{\text {tag }}$	$P(\%)$
$J / \psi K^{+} \pi^{-}$sample	860	95.5 ± 0.7
$J / \psi K^{-} \pi^{+}$sample	856	96.5 ± 0.6
$B_{D h}$ sample	25375	84.9 ± 0.2

We determine the C, S, \bar{C}, and \bar{S} coefficients with a simultaneous unbinned maximum likelihood fit to the Δt distributions of the tagged $B_{J / \psi K \pi}$ and $B_{D h}$ samples. In this fit the Δt distributions of the $J / \psi K^{+} \pi^{-}$and $J / \psi K^{-} \pi^{+}$samples are described by Eq. (1). The Δt distributions of the $B_{D h}$ sample are described by the same equation with $C=1$ and $S=0$. The observed amplitudes for the time-dependent asymmetries in the $B_{J / \psi K \pi}$ sample and for flavor oscillation in the $B_{D h}$ sample are reduced by the same factor, $1-2 w$, due to flavor mistags. Events are assigned signal and background probabilities based on the m_{ES} distributions. The Δt distributions for the signal are convolved with a common resolution function, modeled by the sum of three Gaussians [6]. Backgrounds are incorporated by means of an empirical description of their Δt spectra, obtained from the m_{ES}-sideband region, containing prompt and nonprompt components convolved with a resolution function [6] distinct from that of the signal.

There are 48 free parameters in the fit. The fit parameters that describe the signal Δt distributions are C, S, \bar{C}, and \bar{S} (4), the average mistag fraction w, the difference Δw between B^{0} and \bar{B}^{0} mistag fractions, and the linear dependence of the mistag fraction on the Δt error for each tagging category (12), parameters for the signal Δt resolution (8), and parameters to account for differences in reconstruction and tagging efficiencies for B^{0} and \bar{B}^{0} mesons (5). The $B_{J / \psi K \pi}$ and $B_{D h}$ background Δt distributions are described by parameters for the background time dependence (8), Δt resolution (3), and mistag fractions (8). We fix $\tau_{B^{0}}$ at 1.542 ps and Δm_{d} at $0.489 \mathrm{ps}^{-1}$ [9]. The determination of the mistag fractions and Δt resolution function parameters for the signal is dominated by the large $B_{D h}$ sample. Background parameters are determined from events with $m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$.

The fit to the $B_{J / / K \pi}$ and $B_{D h}$ samples yields $C=$ $1.045 \pm 0.058 \pm 0.035, \quad S=-0.024 \pm 0.095 \pm 0.041$, $\bar{C}=0.966 \pm 0.051 \pm 0.035$, and $\bar{S}=0.004 \pm 0.090 \pm$ 0.041 , where the first error is statistical and the second error is systematic. Figure 2 shows the Δt distributions and the asymmetries in yields between B^{0} tags and \bar{B}^{0} tags as a function of Δt for the $J / \psi K^{+} \pi^{-}$and $J / \psi K^{-} \pi^{+}$ samples, overlaid with the projection of the likelihood fit result.

We estimate common systematic errors for $C(S)$ and \bar{C} (\bar{S}). The dominant sources of systematic error are the uncertainties in the level, composition, and timedependent asymmetry of the background in the selected $B_{J / \psi K \pi}$ sample (0.016 for $C, 0.017$ for S), uncertainties in the beam spot location and the internal alignment of the vertex detector (0.016 for $C, 0.021$ for S), and the statistics of the simulated event sample (0.016 for $C, 0.015$ for S). Another significant contribution to the systematic uncertainty in the cosine coefficients comes from possible differences between the $B_{D h}$ and $B_{J / \psi K \pi}$ mistag fractions

FIG. 2. Number of $J / \psi K^{+} \pi^{-}$and $J / \psi K^{-} \pi^{+}$candidates in the signal region (a) with an opposite-flavor B tag, N_{OF}, (b) with a same-flavor B tag, N_{SF}, and (c) the observed asymmetry $\left(N_{\mathrm{OF}}-N_{\mathrm{SF}}\right) /\left(N_{\mathrm{OF}}+N_{\mathrm{SF}}\right)$ as functions of Δt. In each figure the solid (dashed) curve represents the fit projection in Δt for $J / \psi K^{+} \pi^{-}\left(J / \psi K^{-} \pi^{+}\right)$candidates. The shaded regions in (a) and (b) represent the background contributions.
(0.012). The uncertainty in the interference between the suppressed $\bar{b} \rightarrow \bar{u} c \bar{d}$ amplitude with the favored $b \rightarrow c \bar{u} d$ amplitude for the decay modes in the $B_{D h}$ sample and for certain tagside B decays to hadronic final states [12] contributes to the systematic uncertainty in the sine coefficients (0.019). Finally, there are differences in the angular-integrated efficiency for the $B \rightarrow J / \psi K^{* 0}(892)$ helicity amplitudes and the $B \rightarrow J / \psi K_{0}^{*}(1430)$ amplitude (0.007 for $C, 0.016$ for S). The total systematic errors for the cosine coefficients and sine coefficients are 0.035 and 0.041 , respectively. Most systematic errors are determined with data and are expected to decrease with larger sample size.
The large $J / \psi K^{+} \pi^{-}$and $J / \psi K^{-} \pi^{+}$samples allow a number of consistency checks, including separation by data-taking period and tagging category. The results of fits to these subsamples are found to be statistically consistent.

The measured values of the cosine and sine coefficients are consistent with $C=\bar{C}=1$ and $S=\bar{S}=0$, as expected for no contributions from the wrong-flavor decays $B^{0} \rightarrow J / \psi K^{-} \pi^{+}$and $\bar{B}^{0} \rightarrow J / \psi K^{+} \pi^{-}$. We use the measured cosine coefficients C and \bar{C} and assume $|q / p|=1$ [13] to calculate the wrong-flavor to favored decay rate ratios $\Gamma\left(\bar{B}^{0} \rightarrow J / \psi K^{+} \pi^{-}\right) / \Gamma\left(B^{0} \rightarrow J / \psi K^{+} \pi^{-}\right)=$ $|b / a|^{2}=-0.022 \pm 0.028$ (stat.) ± 0.016 (syst.) and $\Gamma\left(B^{0} \rightarrow J / \psi K^{-} \pi^{+}\right) / \Gamma\left(\bar{B}^{0} \rightarrow J / \psi K^{-} \pi^{+}\right)=|\bar{b} / a|^{2}=$ 0.017 ± 0.026 (stat.) ± 0.016 (syst.), where the negative
central value occurs because $C>1$. From these measurements the wrong-flavor to favored amplitude ratios for $B \rightarrow J / \psi K^{* 0}(892)$ and $B \rightarrow J / \psi \bar{K}^{* 0}(892)$ can be calculated. Using the measured fraction of $B \rightarrow J / \psi K_{0}^{*}(1430)$ events contributing in the $B \rightarrow J / \psi K^{+} \pi^{-}$selection, the upper limits for the decay amplitude ratios at 90% confidence level (C.L.) are found to be $\mid A\left(\bar{B}^{0} \rightarrow\right.$ $\left.J / \psi K^{* 0}\right)\left|/\left|A\left(B^{0} \rightarrow J / \psi K^{* 0}\right)\right|<0.26 \quad\right.$ and $\left.\quad\right| A\left(B^{0} \rightarrow\right.$ $\left.J / \psi \bar{K}^{* 0}\right)\left|/\left|A\left(\bar{B}^{0} \rightarrow J / \psi \bar{K}^{* 0}\right)\right|<0.32\right.$. For the single ratio of wrong-flavor to favored amplitude for B^{0} and \bar{B}^{0} combined, we determine an upper limit of 0.25 at 90% C.L.

In conclusion, we observe no evidence for the wrongflavor decays $\bar{B}^{0} \rightarrow J / \psi K^{* 0}(892)$ and $B^{0} \rightarrow J / \psi \bar{K}^{* 0}(892)$. Together with theoretical information on the relation between the matrix elements for $B^{0} \rightarrow J / \psi K^{0}$ and $B^{0} \rightarrow$ $J / \psi K^{* 0}$ [3], the results presented here can be used to set a limit on the difference between $A_{C P}\left(J / \psi K_{S}^{0}\right)$ and $-A_{C P}\left(J / \psi K_{L}^{0}\right)$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
*Now at Department of Physics, University of Warwick, Coventry, United Kingdom.
${ }^{\dagger}$ Also at Università della Basilicata, Potenza, Italy.
${ }^{*}$ Also at IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain.
${ }^{\S}$ Deceased.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981).
[3] Y. Grossman, A. L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).
[4] Charge conjugation is implied throughout this Letter, unless explicitly stated otherwise.
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[7] A. S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner, Phys. Lett. B 369, 144 (1996).
[8] See, for example, L. Wolfenstein, Phys. Rev. D 66, 010001 (2002).
[9] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[10] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).
[11] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[12] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 88, 231801 (2002).

