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Abstract

Protein-protein interactions are central to understanding how cells carry out
their wide array of functions and metabolic procedures. Conventional stud-
ies on specific protein interactions focus either on details of one-to-one bind-
ing interfaces, or on large networks that require a priori knowledge of bind-
ing strengths. Moreover, specific protein interactions, occurring within a
crowded macromolecular environment, which is precisely the case for in-
teractions in a real cell, are often under-investigated.

A macromolecular simulation package, called BioSimz, has been de-
veloped to perform Langevin dynamics simulations on multiple protein-
protein interactions at atomic resolution, aimed at bridging the gaps be-
tween structural, kinetic and crowding studies on protein-protein interac-
tions. Simulations on twenty-seven experimentally determined protein-
protein interactions, indicated that the use of contact frequency information
of proteins forming specific encounters can guide docking algorithms to-
wards the most likely binding regions. Further evidence from eleven bench-
marked protein interactions showed that the association rate constant of a
complex, kon, can be estimated, with good agreement to experimental val-
ues, based on the retention time of its specific encounter. Performing these
simulations with ten types of environmental protein crowders, it suggests,
from the change of kon, that macromolecular crowding improves the asso-
ciation kinetics of slower-binding proteins, while it damps the association
kinetics of fast, electrostatics-driven protein-protein interactions.

It is hypothesised, based on evidence from docking, kinetics and crowd-
ing, that the dynamics of specific protein-protein encounters is vitally im-
portant in determining their association affinity. There are multiple factors
by which encounter dynamics, and subsequently the kon, can be influenced,
such as anchor residues, long-range forces, and environmental steering via
crowders’ electrostatics and/or volume exclusion. The capacity of emulat-
ing these conditions on a common platform not only provides a holistic
view of interacting dynamics, but also offers the possibility of evaluating
and engineering protein-protein interactions from aspects that have never
been opened before.
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Chapter 1

Introduction

1.1 Life

1.1.1 What is life?

Life, a distinctive feature on planet Earth, may have existed for 3.7 billion
years (Maher and Stevenson, 1988). To date, some 1.75 million species of life
have been recorded (IUCN, 2010) . Yet the true bio-diversity may extend be-
yond recognition: the number of insect species alone has been estimated to
be between 4 and 6 million (Novotny et al., 2002). Each of these “living crea-
tures” adopts vastly different body shapes, self mobility and living habits;
however, the fundamental principles that make them “alive” remain largely
the same. In particular, the concept of life defines a process, rather than a
factual substance, that strikes the balance between the mutually exclusive
property pairs listed below:

Diffusion and organisation: any form of life, no matter large or small,
must contain enclosed space separating the “inside” from “outside”.
In many cases, the diffusivity inside an organism describes the per-
mittance of the internal exchange or transfer of its living content. On
the other hand, living organisms have developed highly organised in-
ternal structures at molecular, sub-cellular, tissue, organ and system
levels, influencing the stochastic flow of substance and information
within their enclosure.

13
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Positive and negative feedback loops: feedback controls, i.e., using the out-
come of some process to influence the process itself, are widely used
by organisms to regulate their biological activities. Positive feedback
loops act as amplifiers to an otherwise slow process; negative feedback
loops prevent wasting of energy and self-intoxication by throttling the
progression of the process by using the product(s).

Excitability and adaptability: both account for the ability to respond to
changes in an organism’s surrounding environment. Excitation is the
rapid physical or chemical changes made by an organism through the
use of the stored energy in the same individual. Adaptability is an
organism’s answer to a persistent, long-term environmental pressure;
the response modes, often in forms of bodily and physiological alter-
ation, are gradually expressed through generations of offspring.

Catabolism and anabolism: together they constitute metabolism, which
assigns the “dynamic” properties to life. Catabolism is the process of
“consuming” stored energies and, as a result, releasing them back to
the environment, while anabolism is the reverse course, absorbing en-
ergy from the environment to accomplish activities as small as chemi-
cal synthesis and as large as body growth.

Programmed growth and death: in higher organisms, cell growth and
death are both under strict regulation as a whole body. Uncontrolled
growth leads to tumourisation of cells, while with improper, or the
lack of, programmed cell deaths can lead to failures in tissue and or-
gan development.

Reproduction and mutation: the ability of an organism to replicate itself
at some stage is one of the key differences between life and non-life.
Moreover, the careful balance on the extent of replication accuracy
plays a vital role in supplying the necessary stochasticity that powers
the evolutionary selection process.

From a thermodynamic point of view (Schrodinger, 1944), life is about
progressing into and maintaining an ordered, low entropy molecular sys-
tem through the intake of free energy available from the environment, such
as light, chemical compounds or other organisms. While the origin of the
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apparent spontaneity of the entropy-decreasing process is still a debated
subject, it is generally known that, in living organisms, many biological
functions and procedures have been shown to be energetically favourable to
proceed, such as those in catabolism. In these cases, the Gibbs free energies,
∆G, representing the amount of work obtainable from the functioning ther-
modynamic system, are negative. This can be suitably described as a down-
hill process where the potential energy is transformed into kinetic energies.
For processes that go “uphill” on the energetic landscape, life has adapted
various forms of supplying the required energy from energy-rich small
molecules such as adenosine triphosphates (ATPs) and guanine triphos-
phates (GTPs), through to a flow of spontaneous, energetically favourable
processes involving enzymes, usually kinases.

1.1.2 Biochemistry

In the vast majority of its possible forms, life is organised into units called
cells. A cell is a membrane-enclosed dynamic system that is self-contained
for most, if not all, biological processes. Unless differentiated for a special
purpose, a cell usually adopts a spherical or ellipsoidal shape. Two major
cell types are commonly seen in different forms of life: those of eukary-
otes and prokaryotes. A eukaryotic cell encloses various types of highly-
organised sub-cellular structures called organelles, such as the endoplas-
mic reticulum (ER) system and the Golgi apparatus. Prokaryotic cells differ
from eukaryotes in that the former do not contain a nucleus to enclose their
genetic material; moreover, most prokaryotes cells are unicellular, with no
ability to aggregate and differentiate to form higher level living entities. A
comparative schematic illustration of the internal cellular structures from
two eukaryotic cell (animal and plant) and a prokaryotic cell (bacterium) is
shown in Figure 1.1.

Unlike many other forms of matter, a cell is mainly an aqueous solu-
tion of large macromolecules bounded by a membrane. The most abun-
dant molecules, in a typical cell, are proteins, deoxy- and ribonucleic acids
(DNAs and RNAs), polysaccharides and phospholipids.
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Figure 1.1: Structures of typical cells. A eukaryotic cell is an enclosure of various sub-
cellular organelles connected by endoplasmic reticula (ERs), while prokaryotic cells are
more simple in structure, containing only essential ribonucleic acids and proteins sur-
rounded by a phospholipid-made plasma membrane and a cell wall made of peptidogly-
cans. Illustration adapted from Figure 1.7, Bolsover et al. (2003).

1.1.2.1 Phospholipids

Phospholipid molecules are the constructing units of cellular membranes,
including the outer (plasma) membrane and various inner membranes such
as ERs, Golgi apparatus, lysosomes and ultimately, the nuclear envelope.
The unique hydrophilic-head, hydrophobic-tail character of phospholipids
ensures integrity of the membrane in aqueous conditions, while also re-
taining a measured membrane liquidity required for cellular functions. A
typical membrane chunk consists of two layers of phospholipid molecules,
whose tails are buried in the middle. As a result, the vertical polarity of cel-
lular membranes becomes amphipathic: the polar-apolar-polar layout thus
forms an ideal anchor field for some amphipathic macromolecules, such as
transmembrane proteins.
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1.1.2.2 Polysaccharides

Polysaccharides are by far the most common energy source used by liv-
ing organisms. Polymers are formed by the chaining together of monomer
saccharide molecules, via glycosidic bonds, and usually contain multiple
branching points. Depending on monomer types, the length and branch-
ing frequency of the polymer chain, polysaccharides can have distinctive
appearances and physical/chemical properties, such as those displayed by
starches, glycogen, cellulose, chitin as well as the coating polysaccharides in
bacterial capsules. The consumption of polysaccharides as a source of en-
ergy constitutes a series of chemical reactions. The process begins with the
hydrolysis of glycosidic bonds between saccharide monomers, and is fol-
lowed by the glycolytic pathway that splits a 6-carbon saccharide into two
3-carbon pyruvate molecules. In eukaryote cells, pyruvate is completely ox-
idated to 3 units of carbon dioxide (CO2) through the tricarboxylic acid cycle
(TCA); in bacteria and other prokaryotes, the lack of a TCA cycle forces the
organism to reduce pyruvate into other forms with relatively small amount
of energy released. Metabolic enzymes are critically important in catalysing
these often reversible reactions; for example, amalyse catalyses the hydroly-
sis of glycosidic bonds, while each of the 10 steps of the glycolytic pathway,
shown in Figure 1.2, require a unique enzyme to overcome the activation
energy barrier for each particular reaction. These 10 enzymes will be re-
introduced in later chapters as environmental crowding agents for investi-
gating specific interactions between other macromolecules.

1.1.2.3 DNA and RNA

Since the Nobel prize-winning work of Watson and Crick on modelling the
molecular structure of DNA (Watson and Crick, 1953), its three-dimensional
structure has been an overwhelming image featured in countless profes-
sional and popular publications. Essentially, DNA is a double-strand long-
chain polymer of nucleotides. The two strands of the nucleic acids are
tightly coupled by the binding between complementary base pairs through
two or three parallel hydrogen bonds. On the other hand, the structure of
RNA, due to lack of complementary strands, is much more flexible; many
specific RNA topologies are still unknown and therefore are of current sci-
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entific interest; which includes connecting the structure of RNA molecules,
in addition to their sequences, to their specific biological roles in the cell.

In the majority of living organisms, DNA is the primary medium for
storing genetic information through encoding the sequence of other macro-
molecules, such as proteins and RNAs. This role is matched with its highly-
conserved structure, as well as the ultra-conservative rules for purine-
pyrimidine base pairing.

1.1.3 Protein Structure and Interaction

1.1.3.1 Structure

Like DNA and RNA, proteins are also a class of polymer molecules. Also
named polypeptide, a protein is composed of amino acid (AA) monomers
chained together via the peptide bond. The peptide bond is formed between
the carboxyl and amine groups of neighbouring amino acids; due to reso-
nance caused by nearby charged groups, this bond exhibits partial single,
partial double-bond properties under soluble conditions (Berg et al., 2002).
This leads to two unique properties: firstly, peptide bonds are not rotat-
able, leading to the formation of the peptide plane that incorporates the
neighbouring four atoms, N – Cα – C – O; secondly, peptide bonds display
metastability, being less stable than pure single bonds but more stable than
most double bonds. Therefore, polypeptides in water will eventually be hy-
drolysed; however, this process is extremely slow and in living organisms,
it is accelerated by enzymes, specifically named proteases.

As opposed to only four common nucleotide types (A, G, C and T)
for DNA and RNA molecules, amino acids that make up a protein show
much more diversity in both number, 20 types, and in their diverse phys-
ical and chemical characteristics (see Figure 1.3). Therefore, proteins have
a much greater variability in sequence, size, structure and biological activ-
ities compared to nucleotide based polymers; in evolution this may have
helped them overtake RNA as the primary carrier of most biological func-
tions (Poole et al., 1998; Dworkin et al., 2003).

The structure of a protein, due to its complexity, is commonly under-
stood at four levels. The primary structure is a protein’s linear amino acid
sequence, counting from the amine end (termed the N-terminal) to the car-
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boxyl end (the C-terminal). Evolutionarily, a protein’s primary structure (se-
quence) is the least conserved among the four levels, as a result of point mu-
tations occurring to the host’s genome. However, a swap in one letter of the
protein’s amino acid sequence, namely one residue, does not always lead to
a marked change at a higher-level of protein structure, or its function, since
some residues have similar shape and/or electrostatic properties. There-
fore, single residue replacements, termed mutations, often survive and are
retained over the course of evolution. Multiple mutations, perhaps accumu-
lating over millions of years, can result in the diversity of protein sequences,
eventually leading to some diversity in protein function for essentially the
same protein fold shared among many different organisms. Exceptionally
but not surprisingly, there are small chunks of “core” sequences that are
highly conserved amongst species, which often make up the functioning site
of a particular protein type. During its lifetime, the primary structure of a
protein is very stable under natural conditions; however, post-translational
covalent decorations do occur to proteins of certain types and functions,
such as the palmitoylation and farnesylation of H-Ras (Dudler and Gelb,
1996; Rubio et al., 1999), a membrane-mounted small GTPase (see Figure
1.4) that plays a central role in the ras, and a number of other, signalling
pathways.

The term “secondary structure” describes the essential constructing el-
ements of a protein’s overall three-dimensional structure. Common sec-
ondary structure elements (SSEs) include α−helices, β−sheets, β−turns as
well as the random coils that cannot be recognised with an identifiable struc-
tural pattern (see Figure 1.5). Mainly formed by inter-residue non-covalent
interactions between backbone atoms, SSEs are generally constructed with-
out overriding preference for specific residue types (with the exception of
Proline, which usually terminates an α−helix). However, there are patterns
of consecutive residue types that predispose the formation of one secondary
type compared to another; the recognition of such patterns forms the ba-
sis of computer algorithms to predict protein secondary structure (Jones,
1999). Under natural conditions, SSEs are normally very stable and are of-
ten formed spontaneously after the peptide chain is initially synthesised;
the formation of multiple parallel H-bonds further reinstate the helical or
sheet structure from minor wiggles and twisting forces caused by nearby
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Figure 1.4: Structure of H-Ras (PDB:121P). The molecular surface of H-RAS is shown,
coloured by degree of conservation. Bright yellow indicated the most conserved region;
dark cyan represents the least conserved regions. An adenosine diphosphate (ADP)
molecule is located in the ATP binding site of H-Ras, shown in balls and sticks. The
ATP binding region is visibly the most highly conserved region on H-Ras.
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spatial constraints. However, in highly salted conditions, excessive number
of charged ions could systematically disrupt these proton bridges, resulting
in the deformation of H-bonds and consequently, the SSEs.

The majority of proteins consist of a single polymer chain; the folded
shape of a protein is called its tertiary structure, which describes the spatial
arrangement of SSEs of a protein. Tertiary structure is mainly established
by non-bonded inter-molecular interactions, or geometric complementar-
ity, between the side-chain atoms; many of these interactions are residue-
specific and are therefore prone to mutations. However, in many cases
this will only slightly affect the orientations of the SSEs involved; the over-
all structure, despite the relatively small deviation from the original, does
not change significantly. Sometimes, common structural patterns assem-
bled by several SSEs are seen in a number of structural or functionally re-
lated proteins; these patterns are sometimes named super-secondary struc-
tures, structural motifs or more recently, domains. Over the years, structural
domains have become increasingly important in protein classification and
evolutionary studies; databases such as CATH (Greene et al., 2007), SCOP
(Murzin et al., 1995) and Pfam (Finn et al., 2010) are primarily based on
analysis of structural domains or motifs.

Importantly, a protein’s tertiary structure is linked to its physiological
functions that depend on interaction dynamics of the protein with other
molecules. Moreover, the message conveyed by tertiary structure, i.e., atom
positions in three dimensions, is not limited to spatial information; physical
and chemical properties are also implied as long as residue and atom types
are known. A “tertiary structure” of these properties, such as the spatial
map of the protein’s electrostatic potential or its hydrophobic affinity, can
therefore be constructed uniquely for that protein, just like its unique layout
of atoms in three-dimensional space.

Similar to other macromolecules, the tertiary structure of a protein is not
a rigid-body. Both the temperature-induced random fluctuation between
side-chain conformations, and the backbone bending and twisting move-
ments that lead to rearrangement of the SSEs, constitute a protein’s struc-
tural flexibility. The resulting structure is therefore not some static spatial
occupancy, but a dynamic body that continuously changes its shape, al-
though in most cases such alterations have minimal impact on the stability
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Figure 1.5: SSEs of a transmembrane growth factor receptor. Various secondary struc-
ture elements, including random coils linking them, are displayed as ribbons. The blue
layer is a schematic representation of a lipid membrane, with the hydrophic α−helix of
the protein buried inside. Redrawn and altered based on the molecular model in Figure
9.15, Bolsover et al. (2003).
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of the overall structure. It is also worth noting that some proteins, such as
α−endosulphine, a phosphoprotein involved in oocyte meiotic maturation,
lack a stable tertiary structure at all (Boettcher et al., 2008). These extremely
flexible proteins, often called disordered proteins, may be presented as flex-
ible chains folded to SSE level, but subject to significant conformational
changes within the cytosol due to the lack of a discoverable lowest-energy
state (Papoian, 2008). Increasingly, such as for the case of endosulphine
(Heron et al., 1998), disordered proteins have been found to have a regu-
latory role for multiple receptor-ligand interactions, probably because the
relaxed structure leads to a higher level of domain or SSE-specific promis-
cuity.

The top level of protein structure, the quaternary structure, describes the
spatial arrangements of multiple peptide chains. Depending on the num-
ber of symmetrically packed monomers, a number of different topologies
can be formed, the most prevalent being dimeric, tetrameric and hexameric
forms. The quaternary structure of a protein can be equivalently seen as
a homogeneous protein-protein interaction that has very high affinity be-
tween monomers. From an evolutionary perspective, it is interesting to
note, that the homo-polymerisation of structural subunit occurs more of-
ten to enzymes that need to process/carry more than one substrate at once
to increase efficiency, such as haemoglobin (tetramer, Perutz et al., 1960)
and pyruvate kinase (dimer and tetramer, Weernink et al., 1992). The inter-
subunit interaction potentials that favourably keep the subunits together are
the same as those conducting heterogeneous protein-protein interactions.

1.1.3.2 Interaction

In vivo and in vitro, proteins naturally associate and dissociate with each
other, specifically and non-specifically, by non-bonded interacting forces.
Protein interactions are of high biological importance and, along with pro-
tein folding and assembly, our lack of ability to routinely predict and under-
stand such events was listed in the 100 unresolved scientific questions raise
by the journal Science (2005) – “how do proteins find their partners?”. In-
deed, cellular processes, such as signal transduction, rely on cascaded spe-
cific protein-protein interactions to pass molecular messages that regulate
activities within the cell, including cell growth and apoptosis, differentia-
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tion and motility, molecular intake and secretion, as well as meiosis and
mitosis. In essence, protein interactions are involved in almost all biologi-
cal functions; it is therefore important to understand them in terms of both
their dynamic and energetic characteristics.

Unlike the interactions between small molecules, protein interactions
take place on a much more variable time scale, of which specific interac-
tions may last between a few nanoseconds and, in extreme cases of specific
binding, a matter of days, such as the case for the ribonuclease barnase and
its inhibitor barstar (Hartley, 2001), as well as for the pancreatic trypsin and
its inhibitor BPTI (Favre et al., 2000). The strength of such bindings is pre-
dominantly determined by complementarity between energy surfaces of the
interacting proteins; due to the uniqueness of such a surface, a protein may
only have one or a few specific binding partners at a particular interface,
to which it shows higher affinity than those from random associations. The
wide range of durations for retention of interaction also makes biological
sense: some proteins are designed to inhibit others, thus a tight and lengthy
binding is expected; for others, such as those in signalling pathways, a lig-
and binds to its receptor to physically or chemically modify it, hence only a
small amount of time spent together would satisfy this need.

The mechanism of one protein binding to another is not intrinsically dif-
ferent from that of a protein folding itself up into its tertiary structure, or
that of a multi-chain protein assembling its subunits. Non-bonded interac-
tion potentials between atoms play a vital role in deciding the movement
of an atom, or groups of atoms, in folding, assembly or binding processes.
Among these potentials, the most common one arises from van der Waal’s
(VdW) forces. The VdW force describes the non-bonded, non-electrostatic
interactions between nearby atoms due to the attractive London dispersion
force (London, 1930) and the repulsive Pauli exclusion principle. In general,
the London dispersion force is so weak that, unless there is a strong com-
plementarity between surfaces of the proteins in question, protein-protein
binding cannot be stabilised by London forces alone. A second source of
attraction and repulsion is the Coulombic forces between partial charges on
protein surfaces. These electrostatic interactions play a stronger role than
VdW forces in forming specific protein binding (Nicholls et al., 1991; Shein-
erman, 2000), further evidence of which will be shown in later chapters. As
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a special case of dipole-dipole interaction, the electrostatic interaction be-
tween two strong electronegative atoms sandwiched by a hydrogen atom
has the strength and stability comparable to a weak chemical bond, and
is thus named the hydrogen bond (H-bond). H-bonds are widely seen in
many biological macromolecules, such as base pairing in DNA, formation
of protein SSEs and here in holding together protein binding partners. In
addition to the above pairwise interaction forces, there are other factors that
contribute, sometimes significantly, to established protein complexes. The
most notable among these is the hydrophobic effect, which results from the
entropy loss due to loss of fluctuating hydrogen bonds that would otherwise
have been formed between water molecules filling the space occupied by
the hydrophobic solutes. However, protein interactions dependent mainly
on hydrophobic “forces” are generally less stable than those based predom-
inantly on attractive electrostatic interactions, since it is more of an effect
driven by the distribution of water molecules and not a force between the in-
teracting partners. Whether molecular hydrophobicity can be transformed
into complex stability further depends on the shape complementarity be-
tween binding interfaces, i.e. the “water tightness” of the buried hydropho-
bic interface. A reduced non-polar surface area exposed to water molecules
would have the least cost in term of entropy for an aqueous environment.
Further factors that affect the stability of protein-protein interactions include
hydrodynamic effects (convection) and Brownian motion (diffusion). By its
nature, the flow of solvents or solute molecules in a convection current will
exert continuous forces on the binding partners in a particular direction; as
long as the direction is not exactly orthogonal to the interface “plane” be-
tween the binding partners, it would have a negative impact on complex
stability. Molecules undergoing Brownian motion, however, show diverse
behaviour: in one way the random movement of solvents and solutes may
cause instability in the established complex, alternatively such random ex-
ploration forces may assist the interacting proteins to correctly locate their
specific binding interface. Analysis of these two contrasting effects is one of
the main objectives of this thesis.
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1.2 Computing

This section briefly reviews recent progress made in computing and com-
putational approaches that are directed towards, or related to, the problems
of modelling proteins and their interactions at the atomic level.

1.2.1 Hardware and Software

1.2.1.1 Computing Platforms

The average size of bio-macromolecules poses a significant problem for their
computational modelling and simulation given even the current comput-
ing capability. However, attempts to represent a protein in its component
atomic positions through the use of a computer started as early as 1970s
using mainframes, which could provide not only relatively fast arithmetic
calculations but also the required precision (Hermans and Vacatello, 1980).
The 1980s, represented a “boom time” for all variants of molecular/pro-
tein modelling and simulating protocols; however, many have since dis-
appeared for being incapable of adapting to better hardware infrastructure
introduced through the later years. Given the computing characteristics of
macromolecular modelling and simulation, a competent hardware platform
would need to consider the following points:

Data precision for calculation and data storage. Historically, there are two
main ways of representing real numbers, which are double precision
(DP) and single precision (SP). The word “double” indicates the data
width for representing these numbers are twice as long as the nor-
mal data width, which implies 32-bit (single-precision, SP). It is widely
known that 32 bits are not sufficient in exactly representing many fi-
nite real numbers, such as 0.1; DP solves this problem by using 52 bits
rather than 23 bits in SP for representing the fraction. Moreover, er-
rors accumulated from SP calculations could lead to significant biases
in matrix operations; in rigid-body dynamics this creates shape distor-
tion in the moving object. The DP vs. SP argument would have been
long gone after the introduction of 64-bit architecture which provides
native (full-speed) support for computing double-precision numbers;
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however, it is still worth mentioning today because of the rapid devel-
opment of graphic processing unit (GPU) computing. SP numbers are
intrinsically used for in GPUs for higher speed and bandwidth. The
latest GPUs specially designed for scientific computing have added
some native support to DP numbers, however, this significantly con-
stricts their performance relative to SP calculations.

Parallelisation mechanism. Molecular systems are large in size; parallel
computing platforms provide a quicker way to process the state vari-
ables of hundreds of thousands of atoms. Two types of architecture are
commonly seen: shared-memory (SM) and distributed-memory (DM).
DM parallel computing was the main form of parallelism until the end
of 20th century, but had since been gradually overtaken by SM archi-
tecture with the introduction of multiple computing cores on a chip
in addition to the bulk memory space. Most commodity PCs have
about 4GB of random-access memory (RAM), which could theoreti-
cally store positional and other information for up to circa. 85 million
atoms with the assumption of 50 bytes per atom (24 bytes for Cartesian
coordinates, 8 bytes for atomic charge and 18 bytes for various type in-
dices). Therefore, most modelling and simulation work can be accom-
modated well within a single process in one system. The clear benefit
of doing this, rather than distributing the molecular system into mul-
tiple processes running on multiple computers, is the elimination of
often very complex and time-consuming algorithm for neighbour ex-
changes, i.e. detecting and moving a particular set of atom from the
memory of computer A to that of computer B. Even when a similar
grid is needed to be implemented for a shared-memory architecture,
to partition the simulated space/model into smaller blocks/chunks, it
is still far more efficient than having to do distance evaluation across
a network of computers. On the processor side, modern server farms
are normally equipped with 4- or 8-core CPUs per blade server which,
from the author’s point of view, is adequate for molecular systems
under 1 million atoms. For moderately-sized molecular systems, the
benefits of doing multi-threaded calculations on a SM machine will
offset the incapability of extending the task to more than one comput-
ers. The real potential of SM architecture, in the author’s view, will
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only be fully explored by a recent trend in shifting scientific compu-
tation from CPUs to GPUs. With the massively parallel but relatively
simple “stream” processors, the typical GPU architecture is deemed
more suitable for handling large number of pairwise distance evalu-
ating calculations which are a dominating factor in the total perfor-
mance of molecular modelling/simulation software. Notably, there
have also been rare attempts to design specialist parallel hardware
purely for the purpose of speeding up the molecular modelling/simu-
lations, such as FASTRUN Fine et al. (1991), MD Engine (Uehara et al.,
2002), MDGRAPE (Elmegreen et al., 2004; Kikugawa et al., 2009) and
more recently, the Anton platform designed and developed by D. E.
Shaw Research (Shaw et al., 2007). Under the hood, Anton is more
similar to a hardware-implemented partition-grid on a SM architec-
ture, than to the traditional cluster of computers communicating be-
tween each other (DM). Each computing node in Anton resembles a
stream processor in a GPU but partially specially-wired for pairwise
forcefield evaluations. However, the cost of a purpose-built chip for
conducting molecular modelling/simulation has prohibited most aca-
demic/commercial organisations from doing so, while the flexibility
of the Anton platform for more adaptive uses in the future, remains a
question.

Task distribution and deployment. Software parallelism is all about com-
pleting a task using multiple processor resources, usually through the
running of one application (process), on a specific computer or com-
puter cluster and within a finite time period. A greater level of par-
allelism can be envisaged at the tasking level, which is to divide a
large problem into a large number of smaller ones and to complete
them individually and asynchronously. For example, the search for
an energetically favourable structural conformation for a certain pro-
tein sequence, or a certain posture of two proteins interacting with
each other, can both be investigated using a large number of com-
modity computing resources asynchronously using this divide-and-
conquer strategy. With the presently popular concept of cloud com-
puting, such jobs can be distributed across a cloud of computing nodes
and performed when the resources are available. However, not be-
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ing able to communicate much between the distributed tasks mean
that they couldn’t be split at the grid level, but at the run level. This
consequently requires a good design in balancing the computing re-
quirement for a single task, and the total number of tasks to be dis-
tributed across the cloud. A promising example is the Folding@home
project (Pande et al., 2003), which currently employs circa 350,000 ac-
tive CPUs performing various projects related to protein folding. In
their recently published study (Kasson et al., 2010), this computing re-
source was used to investigate the transitional state in vesicle fusion
process at atomic scale. Similar cloud computing project could also be
set up for investigating protein-protein interactions; however due to
the larger problem size (more atoms involved than in a typical folding
simulation) and intrinsically less perfect forcefield, this may require
more development time. An early attempt, Docking@home by Taufer
et al. (2009), is still under active development and benchmarking. In
some way, cloud computing seems to have offered the ultimate hope
of simulating, atomically speaking, extremely large chunks of space
within a living cell. However, such enterprises are again limited by
the classical neighbour exchange problem faced by the DM architec-
ture – the inter-communication between the cloud nodes is unavoid-
able if the total simulation space is partitioned. In this case, home
PCs loosely connected to the internet may no longer be suitable for
being the cloud nodes; professional services, such as the Elastic Com-
pute Cloud (EC2) provided by Amazon, may play a significant role in
macromolecular modelling and simulation in the future.

1.2.1.2 Development

With the development of hardware architecture there also came the cre-
ation and deprecation of developing tools and languages over the pass-
ing decades. At first glimpse, development tools and programming lan-
guages seem too technical to be related to the scientific problem of molecular
modelling. However, the evolution of programming languages has increas-
ingly enabled the modelling and simulation software to accommodate more
atoms, adopt mixed modelling resolutions and as always, to automate more
processes. Early packages, such as CHARMM (Brooks et al., 1983), AMBER
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(Pearlman et al., 1995), UHBD (Madura et al., 1995), HYDROPRO (Garcia
de la Torre et al., 2000), were often written in Fortran and procedural C,
which guaranteed an acceptable performance given the then-limited com-
puting resources. The limited capability in memory management and data
encapsulation of early FORTRAN and C resulted in these packages contain-
ing a large number of individually compiled binary executables. Conse-
quently, data exchanges between these programs were made via disk files,
leading to inefficiency and sometimes confusion. In addition, maintenance
of numerous binaries can be difficult, while adding new functionality as
new binaries into the package would only worsen the situation. Apart from
these operational problems, there has been a much larger hurdle right in
front of the macromolecular modelling community. It is clearly known to
the community that, yet more computing power will be needed for mod-
elling a reasonably sized biological system at the atomic or sub-atomic scale.
Therefore, compromises have to be made, for example, on how to retain
high resolution at necessary places while keeping everything else in coarse-
grain. Such a flexible scheme should be applied to both spatial and tem-
poral measures. However, without the advanced software engineering ap-
proaches in recent years, it would have been extremely clumsy to realise
this flexible modelling design – hence there is a general lack of multi-scale
modelling or simulation packages currently available in the field.

The philosophy of software design and coding style evolves in line
with computing power and the computing requirements of various research
communities at different times. At the very beginning (1960s), there was ul-
timate freedom in designing and writing software code; this model quickly
encountered increased occurrences of code clumsiness when the lines of
code (LOC) of a project grew exponentially to accommodate more needs.
Soon the adoption of procedures and functions made code re-usable on the
“block” scale. This was sufficient at the time when most CPUs executed
instructions at a speed around 1 MIPS (million instruction per second); in
2010 many quad-core CPUs are rated more than 60,000 MIPS.

In more software-oriented fields of study, structural design of code has
been elevated from procedural and functional level to object level, with the
introduction of objected-oriented (OO) languages such as C++ and Java in
the early 1990s. In molecular modelling, however, this replacement did
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not take place, as most packages had already grown too large to afford
a re-write. Meanwhile, the initial concept of the object-oriented software
model did not look appealing to the computational field as the overhead
cost of having “objects” in modelling software will cause a significant drop
in run-time performance. After the year 2000, new thoughts on designing
software gradually emerged to account for many drawbacks of canonical,
“everything-is-an-object”, philosophy of OO programming. Consequently,
objects have since then become more lightweight and function-oriented
rather than structure oriented. This change was picked up by some compu-
tational groups whose function-oriented modelling packages were proven
quite successful, such as the Poisson-Boltzmann solver program, APBS writ-
ten in Objective C (Baker et al., 2001).

The latest major addition to programming design, especially in C++, has
been the introduction of class and function templates, as well as the concept
for generic and functional programming. There are two key differences be-
tween templates and base classes in OO: first, it is much looser and more
lightweight than class inheritance; secondly, all conceptual checks are done
at compile-time, not run-time as with the dynamic binding mechanism used
in traditional OO. With templates, a specific function, for example, the cal-
culation of moment of inertia, does not have to bind to a certain class of
objects or, like in OO programming, to types from a common base class.
The function can bind any class that obeys the concepts you assumed it to
have, such as the position and mass properties of an object. This feature,
along with many other performance-related improvement associated with
template programming, can greatly help easing much of the complexity in-
curred in modelling and simulating molecules in a multi-resolution, multi-
timestep and even multi-dynamics fashion.

1.2.2 Macromolecular Modelling

In the context of most scientific thought, macromolecular modelling specif-
ically means modelling very large molecules at the atomic scale. However,
taking its literal meaning, any approach that models the structure, func-
tion or behaviour of one or more molecules shall be legitimately reviewed
under the concept of molecular modelling. And indeed there has been a
whole spectrum of modelling studies aiming at tackling the macromolecu-
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lar “structure, function or behaviour” problems on different size and time
scales. Below a brief, non-exhaustive, review of such computational models
is given.

1.2.2.1 Modelling at different resolutions

The primitive modelling of molecules starts with kinetics. Chemical reac-
tions, as well as the non-bonded binding between proteins and/or ligands,
occur at a certain rate,

r =
d[A]

dt
= −k[A]n, (1.1)

for a certain reactant A at concentration [A]. The number k is the rate
constant of the process, independent of the reactant concentration, while n is
the order of the reaction with typical values n = 0, 1, 2. For a system of reac-
tants, if the rate constants and reaction order between each pair of them are
known, we would then be able to simulate the reactive behaviour of these
reactants. This approach, taught in most chemistry courses, is adopted and
used in simulating protein-protein interaction networks. Essentially, the
“reactivity” of a system of proteins can be represented by a graph, in which
each connecting arc stands for a binding link between the two nodes (pro-
teins); each arc is mathematically written as some variant form of Eq. 1.1.
Given the initial values, the dynamic state of the network, i.e. the concen-
tration of protein species at each timestep, could be solved by numerically
integrating the system of differential equations over time.

This approach has been widely used in probing enzyme-inhibitor dy-
namics and regulation of biological processes such as protein synthesis and
signalling pathways. In many cases, such as the investigation of protein
phosphorylation dynamics in the TGF-β pathway (Schmierer et al., 2008),
experimental verifications were found to be in line with computational pre-
diction, proving the genuine usefulness of the ordinary differential equa-
tion (ODE) based models. One of the main appeals of such models is the
simulation speed – even for large systems consisting of many tens of dif-
ferential equations, it would require no more than a few seconds to per-
form a full run. Parameterisation, however, is key to success of these mod-
els. There might exist more than one set of parameters that would produce
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the desired behaviour; or there might not be any parameters satisfying the
boundary conditions. This quickly worsens as the dimension of parameter
space increases – even advanced optimisation techniques, such as support
vector machines (SVMs) or probabilistic models may not respond well to
high-dimensional continuous-parameter problems. The major drawback of
the ODE-based approach is the neglect of particle trajectories. As a result,
interaction rates are completely dependent on external input, often empir-
ical and inaccurate in terms of how the system should respond in a partic-
ular environment. Moreover, in biological systems, reacting agents, such
as proteins, usually have very limited copy numbers. It is therefore very
inaccurate to assign an otherwise, statistical, rate equation to a particular
interaction process.

The Gillespie algorithm (Doob, 1945; Gillespie, 1976) provides a swift
answer to the above problems. It works on the assumption that molecular
interactions are events that occur with certain probabilities, which are esti-
mated based on the fraction of molecular collisions with the proper energy
and orientation. Therefore, two random variables are needed to determine
the occurrence and time of the next reaction. When simulated, the Gillespie
algorithm gives results that satisfy the distribution of the chemical master
equation,

dPk
dt

= ∑
`

Tk`P`, (1.2)

where Pk is the system in state k and Tkl is the transition rate constant from
state l to state k. The algorithm has been used in a number of biochemical
network studies (Adalsteinsson et al., 2004; Meng et al., 2004; Bhattacharya,
2010) and have since been adapted to fulfill special conditions of interaction,
such as delays in reaction and non-Markovian properties in gene regulatory
networks (Bratsun et al., 2005). Gillespie-based algorithms are computa-
tionally more costly than ODE-based approaches; a number of studies have
focused on improving their performance on large networks (Slepoy et al.,
2008; Cao and Samuels, 2009).

In general, most Gillespie-based algorithms treat interacting agents ex-
plicitly but do not consider their spatial distribution. More advanced ap-
proaches do so by incorporating two or three translational degrees of free-
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dom – the positional coordinates in 2D or 3D. Smoluchowski (1917) outlined
the velocity-independent distribution of particles undergoing a diffusional
regime,

∂S(x, t)
∂t

=
1
ζ

[
− ∂

∂x
F(x, t) + kT

∂2

∂x2

]
S(x, t), (1.3)

where S(x, t) is the time-dependent distribution, F(x, t) is the external force-
field, ζ is the drag coefficient due to solvent viscosity, k is the Boltzmann
constant and T is the temperature. Andrews and Bray (2004) modified and
improved the above scheme, which was subsequently verified experimen-
tally (Tournier et al., 2006). Further improvements based on Green’s func-
tion were implemented, such as an event-driven, variable timestep particle
simulation regime that allows spatial and temporal “jumps” to reduce the
“idle” timesteps wasted on simulating diffusion (van Zon and ten Wolde,
2005). A similar scheme was also considered and implemented in this work,
although it is based on entirely different mechanisms (see Section 2.1.3).

One problem persists: particle descriptions may be suitable for de-
scribing small molecules which do not differ markedly in size; for bio-
logical macromolecules the above particle descriptors are largely inade-
quate. There are models that represent proteins as spheres of different radii.
However, these models are less frequently used directly for studying diffu-
sion/interactions, since spherical protein models would still be too coarse.
On the other hand, spherical models are more often used in theoretical mod-
elling studies, such as the derivation of association rate constants using di-
rectional constraints for diffusion by Schlosshauer and Baker (2004). Due
to its simplicity and relevance to protein sizes, spheres have been popu-
lar models for crowding agents. For example, in a recent protein folding
study performed to take account of the crowded macromolecular environ-
ment (Jefferys et al., 2010), spheres were used as volumetric representation
of environmental proteins whose surface specificity is not of primary inter-
ests.

All structural information for a protein needs to be utilised if specificity
of interaction between proteins is to be rigorously studied. A quick way of
doing this is to use lattice-based models to represent the backbone confor-
mation of a protein. A huge benefit of discretising the configuration space
into lattice points is the restraining of searching space; thus the method has
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been adopted by many models for protein structure prediction, such as the
TOUCHSTONE method (Kihara et al., 2001).

Desires to model more complex protein structures, coupled with the
development in computing power, has driven macromolecular modelling
technique into continuous space. In such models, protein backbones are
mostly modelled at the atomic resolution, while in some packages, side-
chain atoms are consolidated into a sphere, or other simple geometric bodies
that resemble the shape of that residue. The above treatment of side-chain
topology is also called the “united-atom” approach and was early explored
in structure prediction (Liwo et al., 1993) and, combined with Langevin dy-
namics, in protein folding (Liwo et al., 2005). Popular molecular dynam-
ics (MD) simulation packages AMBER (Case et al., 2005) and CHARMM
(Brooks et al., 2009) support a finer united-atom representation of residues.
Named “atom-groups”, they are a conglomerate of nearby atoms in a com-
mon functional group, often bearing integer charges (-1, 0 or 1).

Eventually, the so-called full-atom approaches have increased in pop-
ularity, particularly over the last 10 years. However, the word “full-atom”
can still be confusing with regard to the full extent to which macromolecules
are represented at atomic detail. In essence, a full-atom model requires the
dominating majority of the molecular structure to be explicitly modelled by
spherical atoms with different radii; in reality, the following extensions are
worth considering:

• Hydrogen atoms. A number of modelled topologies ignore H atoms
for simplicity, such as the CHARMM 22 united atom parameterisation.

• Partial atomic charges. An atomic model would become “fuller” if the
charges are distributed to each atom in a functional group, reflecting
the polarity of the charged body.

• Internal flexibility. Theoretically all full-atom models should have
bond-level internal flexibility as implemented in the classical MD
packages AMBER and CHARMM. However, in adaptation to various
needs, many have discarded backbone flexibility, or side-chain flexi-
bility, or both. Technically speaking, all such models may be termed
atomic models, as long as the energy function employed in the simu-
lation still evaluates the interaction potential per atom pair.
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• VdW approximation. Some models employ a simple hard-wall poten-
tial to bounce colliding particles off each other, while some others have
adopted the full Lennard-Jones potential form. The benefit of taking
the latter form is the reproduction of VdW attractive term (the London
dispersion, described in Section 1.1.3), while the main drawback is the
computational cost for doing many floating exponential calculations.

• Solvent modelling. MD packages tend to model water molecules ex-
plicitly to create a fully solvated environment. However, due to the
huge computational cost of computing uninteresting trajectories of in-
dividual water molecules, many adopted various implicit solvation
models, such as generalised Born (GB), Poisson-Boltzmann solvent ac-
cessibility (PBSA) and simpler, damped dielectric-constant models.

Full-atom models are typically driven by molecular mechanics (MM)
which uses analogues of classical mechanics for modelling atoms, bonds
and non-bonded interactions. In most cases this is already accurate, but for
cases involving chemical reactions, i.e. the breaking or creation of bonds,
quantum mechanics (QM) methods may be employed to derive the ex-
pected behaviour. QM methods rely on knowledge of sub-atomic enti-
ties such as electron configuration and atomic energy states, which would
mount huge computational burden for molecules as large as a protein.
Therefore, QM-based approaches are rarely used for investigating pro-
tein structures and protein-protein interactions except for a few examples
(Lameira et al., 2008; Liu et al., 2001).

1.2.2.2 Modelling on different time scales

The appropriate time scale for a molecular simulation package is the length
of biological time that can be simulated by that package using reasonable
computation time and importantly, before the accumulation of errors di-
minishes the signal-to-noise ratio. The latter point is vital in that, without
proper justification, no meaningful result can be achieved just by “brutally”
increasing the computational performance thereby, running longer simula-
tions.

Fully flexible atomic models are normally time-stepped on the femtosec-
ond (fs) scale and simulations run up to nanoseconds (ns), which effectively
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is an integration over 1 million to 10 million steps. Protein dynamics simu-
lations beyond these timesteps, although thermodynamically stable, cannot
accurately reproduce what happened in a real environment, for example in
a crowded environment with other proteins, and therefore cannot be fully
trusted biologically. It is already difficult to simulate the translational and
diffusional behaviour of macromolecules based solely on MM calculations
with explicit solvents – the reason why specially designed computational
models need to be constructed for modelling particular macromolecular
events, taking place over particular time periods.

Rigid-body atomic models are commonly seen in packages primar-
ily dealing with macromolecular interactions. Diffusional behaviours are
therefore an important aspect engraved into the dynamics, and there has
been an increasing number of algorithms available for probing protein dif-
fusion and interactions (Schreiber et al., 2009), indeed, this is a subject of the
work presented in this study. However, even with unlimited computing re-
sources, these simulations cannot be meaningfully stretched over a few tens
of microseconds (µs) due to the accumulation of integration errors. For ex-
ample, the assembly of larger biological complexes is expected to take place
on the ms scale, but most of the current models are unable to be reproduce
this behaviour.

One way to resolve this is to use coarse-grained models embedded with
specific knowledge on protein dynamics and/or its specific binding affin-
ity. A notable example of this is the series of studies on the assembly
of a nuclear-pore complex (NPC) (Devos et al., 2006; Alber et al., 2007;
Lezon et al., 2009). Typically, a priori knowledge can be acquired for overall
charge distributions, surface shape and complementarity, as well as modes
of molecular motion. Molecular assemblies can be stabilised using virtual
bonds, as employed in elastic network models (Lezon et al., 2009).

To date, longer time scales are generally not suitable for most full-atom
and coarse-grained molecular models, as both the energy function and the
integration scheme employed will almost certainly not produce a biologi-
cally sensible outcome. On the other hand, empirical knowledge on bind-
ing, or rate constants derived from higher-resolution models or experi-
ments, has to be used as direct input for coarser models, i.e. those using
spheres and particles. Given most biological events take place on a millisec-
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ond (ms) to second (s) time range and the importance of maintaining nu-
merical accuracy by carefully constructed dynamic integrators, a timestep
on the order of tens of nanoseconds may have to be used to reproduce
the macroscopic behaviour of these long-term events seen in a real envi-
ronment.

1.2.2.3 Modelling with different motion schemes

Each molecular model resorts to a certain motion regime, moving the mod-
elled molecules from one state to another, based on the potentials calcu-
lated from pairwise interactions. Generally speaking, motion schemes can
be summarised as follows:

• Physical schemes. The most commonly used is Newtonian dynamics,
employed in MD packages, based on the Newton’s second law of mo-
tion. Diffusion dynamics, including translational and rotational diffu-
sion, is modelled based on the Langevin equation or its non-inertial
equivalent, Brownian dynamics (BD), both of which are discussed in
detail in Chapter 2.

• Quasi-physical schemes. Most elastic network models belong to this
type, as well as schemes generating virtual forces to power the Newto-
nian dynamics integrator. A notable example is the use of swarm intel-
ligence to predict protein-protein interactions (Moal and Bates, 2010).

• Non-physical schemes. These includes a wider spectrum of algo-
rithms compared with their more physical counterparts. Various
Monte-Carlo conformation generation schemes are a main part, and
are accompanied by probabilistic models and normal mode based con-
formational selection schemes. Finally, evolutionary pressure can be
used as driving forces for model selection, such as the genetic algo-
rithm (GA) recently employed within our own laboratory to predict
protein structure (Offman et al., 2008).

To summarise the above, motion schemes, on a variety of time scales and
resolutions, constitute a three-dimensional parameter space that to varying
degrees of success are covered by a number of macromolecular modelling
and simulation packages. Interestingly, the correlation between any two of
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these three principal parameters – motion, time scale and resolution – is
high: if the parameter space was a cube with unit edges, then the packages
tend to approach the diagonal line between (0,0,0) and (1,1,1).

1.3 Thesis Overview

Following on from the brief introductions of both the biology and com-
puting sides, it is clear that the understanding, analysis and prediction
of protein-protein interactions has been one of the main problems in both
fields, attracting major interest from scientific communities across these
fields. These are also the central themes of the study presented in this
PhD thesis but with a particular emphasis on the time course of protein-
protein interactions. Clearly, it is not possible for a single researcher to pro-
duce an all-encompassing protein molecular dynamics package, that is con-
structed on the latest parallel computing architecture and simulates numer-
ous protein-protein interactions all on a variety of time scales. However, cer-
tain sub-problems in the macromolecular modelling field of protein-protein
interactions can be tackled that for a number of reasons those developing
the large MD packages have not addressed. These sub-topics are termed
“the gaps” in our collective knowledge and are outlined below. A number
of “hypotheses” are then presented as to how these gaps may be addressed.
Research supporting the arguments in this discussion form the base for each
of the subsequent chapters.

1.3.1 The Gaps

• There remains a gap in our understanding of how collective, com-
pared to pairwise, protein-protein interactions work, i.e. the discon-
tinuity from docking to binding kinetics. Although the well known
Gibbs free energy takes the form, ∆G0 = −RT ln Keq, which links the
equilibrium rate constant Keq and the binding free energy ∆G0, it is of-
ten difficult to compute the binding free energy with respect to an in-
dividual molecular environment in which the interaction takes place.

• The gap between in vitro and its in vivo protein kinetics. At least from
experimental assays, much is known for specific protein binding; how-
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ever, very little is known about how proteins actually find and and
bind with their potential partners in a heterogeneous macromolecu-
lar environment; of particular interest is how proteins locate partners
in crowded environments, i.e. environments with very high macro-
molecular concentration, typically found within cells.

• The discontinuity between time scales and resolutions of existing
modelling packages. Those doing docking analysis, those investigat-
ing binding kinetics and those simulating crowded macromolecular
environments don’t normally overlap. It is often difficult to inter-
pret the disparity between the results from different methodologies,
let alone building a consistent, multi-aspect image of the molecular
interactions of interest.

The methodological objective of this PhD thesis is to fill in these gaps
and unite the three areas of docking, kinetics and macromolecular crowding
under one roof.

1.3.2 Hypotheses

The proposed “under-one-roof” methodology is aimed at providing quali-
tative and quantitative insight on the following hypotheses, which consti-
tute the core chapters of this thesis:

1. Binding mechanisms.

(a) Inter-molecular movements (Chapter 3). For many protein-
protein interactions, a high binding affinity between the recep-
tor and the ligand is achieved through the so-called molecular
steering mechanism: firstly, proteins make initial contacts and
form a transient encounter with their binding partner(s); this is
is followed by subsequent rolling/spinning movements of both
molecules while in contact with each other. The extent to which
these motions affect specific protein-protein binding is evaluated.

(b) Intra-molecular movements (Chapter 4). For a long time it has
been argued whether proteins bind through an induced-fit or
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a simpler, conformational shifting (or its predecessor, lock-and-
key) mechanism. Molecular dynamics has revealed the possibil-
ity of induced-fit upon protein binding; however, a recent study
(Tsai et al., 2008) has reinstated the importance of conformational
shifting. In this study, the debate is expanded from the perspec-
tive of encounter complex formation and is examined from an
aspect that takes account of kinetics.

2. Association rate constants (Chapter 4). The Gibbs free energy equa-
tion, ∆G0 = −RT ln Keq, provides a link between docking and the
kinetics of protein-protein interactions. This link should be directly
reproducible through conducting atomic-level simulations on a multi-
molecular interaction system. If this is the case, association rate con-
stants (kon) can therefore be predicted for a set molecular environment.

3. The consequences of macromolecular crowding (Chapter 5). It has
been observed that environmental proteins, especially presented in a
crowded concentration, can influence the binding/unbinding dynam-
ics of many protein-protein interactions. The following questions are
probed:

(a) Whether the crowded association rate constants are predictable
through directly simulating such an environment.

(b) What are the driving mechanisms behind these changes. One fac-
tor, called the volume exclusion effects (VEEs), is shown to in-
crease the activity of target proteins by reducing the effective vol-
ume of the solution (Minton, 1981). In addition to verifying this
relationship, evidence is presented to show that environmental
electrostatics may also account for these changes.

A general conclusion of the methodology developed and research work
carried out in this thesis is provided in Chapter 6, and is complementary to
the individual discussion sections for each of the above three core chapters.
Chapter 6 also describes a number of avenues that can be taken for future
development of the new methodologies presented, along with potentially
interesting biological applications.



Chapter 2

Methodologies

A major part of the doctoral studies is devoted to the development of a
macromolecular simulation framework. As reviewed in Section 1.2, there
has been much progress in both the theoretical and application develop-
ments of the macromolecular simulation field. Given the increasingly read-
ily available resources for molecular modelling and simulation, the need for
developing yet another major simulation scheme has to be carefully justi-
fied. Based on the review in Section 1.2, the following gaps are identified
from, or significantly under-represented by, currently available packages.

• There are few packages that work at the atomic scale whose main aim
is to deal with multiple macromolecular interactions in a simulation
box. However, it is envisaged that expanding the studies of protein-
protein interactions onto a multi-molecule simulation platform may
open up new territories on which to probe and manipulate such inter-
actions; in particular, association kinetics and competitive binding.

• Specific protein-protein interactions are usually under-investigated in
a diffusive simulation system. Current packages dealing with spe-
cific interactions usually rely on a large number of one-to-one, fixed-
receptor trajectories to emulate “diffusion”; on the other hand, pack-
ages simulating multiple proteins tend to ignore specific interactions
due to complexity and probably, a lack of significant signal due to the
“noise” generated by a higher number of nonspecific interactions.

• Although there are some indications that traditional MD simulations
are beginning to expand into the µs territory, it is not anticipated that

44
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such systems will be capable of modelling a diffusive molecular sys-
tem for quite some time.

• Most existing modelling packages are developed primarily for one or
a very limited number of scientific applications. Many of them lack
properly-designed infrastructure, and are therefore inflexible and un-
reliable to be expanded for further use involving modelling a large
variety of molecular types and/or environments.

BioSimz, short for “Biological Simulations”, is developed to address as
many of the aspects associated with the above four problems as possible
and with proper consideration to the computing power currently available
in most academic environments.

2.1 Theories

2.1.1 Dynamics

2.1.1.1 Diffusion and Markov chains

In general, the phenomenon of diffusion describes the fluctuating motion of
diffusing particles in liquid and gas phases. The diffusional displacement
of a particle has its origin in the enthalpy of the particle, while its random
trajectory is the result of the molecule changing courses after frequent colli-
sions with other molecules undergoing the same thermal motion. In a sol-
vated environment, these trajectories of solute molecules or larger particles,
such as those of the pollen grains observed by British botanist Robert Brown
in 1827, are mainly determined by their collisions with solvent molecules,
such as water.

Solvent collisions occur so often that given any short period of time,
there are almost always more than one solvent molecule hitting a diffusing
particle. Under ideal diffusion conditions, where no two particles interact
with each other in the system, the displacement of any diffusing particle can
be expressed in terms of a first-order Markov chain if the duration time of
the diffusion is sliced into n discrete steps named “timesteps”,
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p(xn, tn|xn−1, tn−1; xn−2, tn−2; · · · ; x0, t0) = p(xn, tn|xn−1, tn−1), (2.1)

where x is the displacement vector of the diffusing particle, t is the time
line, and p(·|·) is the conditional probability. The elimination of terms
xn−2, tn−2; · · · ; x0, t0 marks the Markovian property, with which the dis-
placement vector is memory-less, only depending on the state of x at the last
timestep. To satisfy the Markovian property, individual collisions between
solvent molecules should have only minimal effects on the momentum of
the diffusing particle; for example, the collisions between solvent molecules
are not Markovian as their trajectories can be (almost) completely determin-
istic once the initial conditions are given.

2.1.1.2 Fokker-Planck and the Einstein diffusion equations

Let δt = tn − tn−1 in Eqn. 2.1, we can then write the conditional probabil-
ity of displacement vector x for two timesteps, resulting in the Chapman-
Kolmogorov equation,

p(xn, t + δt|xn−2, t− δt) =
∫

p(xn, t + δs|xn−1, t)p(xn−1, t|xn−2, t− δt)dx.
(2.2)

This is effectively an integral equation for the time evolution of the displace-
ment probability. Solving the integral equation gives the Kolmogorov for-
ward equation,

∂p(xn, t|x0, t0)
∂t

= − ∂

∂x
(A(x)p) +

1
2
· ∂2

∂x2 (B(x)p), (2.3)

which is also called the Fokker-Planck equation (Fokker, 1914; Planck, 1917).
The LHS is the rate of change in displacement probability with respect to
time, and the RHS shows that two factors contribute to the rate changes.
The first term containing A(x) is a first order derivative of the probability,
representing the drift, or convection, of the moving particles due to system-
atic forces. The second term, a second-order derivative of some position-
specific function B(x) with p, represents the diffusion, or fluctuation, of the
moving particles, corresponding to the residual average effect of the ran-
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dom displacements in all directions.
Let us consider a diffusion-only process, then Eqn. 2.3 can be simplified

to

∂p(x, t)
∂t

= D∇2p(x, t), (2.4)

where ∇ is the three-dimensional gradient operator and D is the diffusion
tensor. For simplicity, assume the diffusing particles are spherical. The ten-
sor is therefore constant in all orientations such that a diffusion coefficient,
D, can be used. Eqn. 2.4 thus becomes the Einstein diffusion equation. Solv-
ing this equation by multiplying x2 on both sides and applying Green’s the-
orem, we have

〈x2〉 = 6Dt, (2.5)

for the mean-squared displacement 〈x2〉 in translational diffusion.

2.1.1.3 Diffusion and friction

In an aqueous environment, the diffusion coefficient D is found to be pro-
portional to the solvent friction factor (Einstein, 1905; von Smoluchowski,
1906), as given by

D =
kBT

ζ
, (2.6)

for all diffusing particles irrespective of their shapes and hydrodynamic
properties, where ζ is the friction coefficient. Using Stokes’ law, we have
the Stokes-Einstein relationship

D =
kBT

6πηr
, (2.7)

where η is the solvent viscosity and r is the diffusing particle’s radius. For
rotational diffusion of spherical objects, a similar relationship stands,

Drot =
kBT
ζrot

=
kBT

8πηr3 . (2.8)



Methodologies 48

2.1.1.4 The Langevin equation

The diffusion process was also modelled by French physicist Langevin us-
ing a combination of deterministic and stochastic dynamics terms, which ef-
fectively linked the microscopic dynamics of Einstein’s work and the macro-
scopic statistical theory initiated by Smoluchowski. In Langevin’s theory,
diffusion dynamics of individual particles is expressed as a stochastic dif-
ferential equation (SDE) based on Newton’s second law of motion. Taking
the example of the translational diffusion of a sphere, the Langevin equation
states

m
dv
dt

= −ζv + B(t), (2.9)

where v is the instant velocity of the particle at time t, ζv represents the
solution drag at velocity v, and B(t) is a random fluctuation force that orig-
inates from the collision impacts with solvent molecules. Solving the SDE
using the equipartition theorem gives

〈x2〉 =
6kBT

ζ
· t +

6mkBT
ζ2

(
e−ζt/m − 1

)
. (2.10)

For large t� δt, the second term diminishes, leaving

〈x2〉 = 6 · kBT
ζ
· t = 6Dt, (2.11)

which agrees with the solution of the Einstein diffusion equation (2.5). Us-
ing the fluctuation-dissipation theorem (Kubo, 1966), this gives

〈B(t)〉 = 0, (2.12)

〈B(t1)B(t2)〉 = 2kBTζδ(t1 − t2), (2.13)

which define the stochastic force term of the Langevin equation (2.9).

2.1.1.5 Distribution of velocities

For simplicity, assume the diffusion process is in one-dimension at velocity
v, the solution to Eqn. 2.9 has the form
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v = v0e−γt +
1
m

∫ T

t0

B(t)e−γ(T−t)dt, (2.14)

where γ = ζ/m is usually called the damping constant. It is apparent from
this solution that γ is the decay factor for the particle’s velocity, showing
that the solution friction is essentially the result of massive collisions be-
tween a diffusing particle with solvent molecules. For the same reason, γ is
sometimes referred to as the collision frequency. Consequently, the inverse
of γ, usually denoted as β = 1/γ, is often interpreted as the averaged parti-
cle “relaxation time”, the period of time between a particle colliding with a
solvent molecule to re-approaching its velocity equilibrium.

Solvent collisions with a diffusing particle may occur in any direction,
or in the case of one-dimensional diffusion, in either a positive or a negative
direction. Therefore, we have

〈B(t)〉 = 0. (2.15)

Hence for the particle’s average velocity, we have

〈v(t)〉 = v(0)e−γt, (2.16)

and for its mean-squared velocity

〈v2(t)〉 = v2(0)e−2γt + e−2γt
∫ T

t0

∫ T

t0

e(t1+t2)γB(t1)B(t2)dt1dt2, (2.17)

where the cross term is eliminated since 〈v(0)B(t)〉 = 0. Combining
Eqns. 2.16, 2.17 and using the equipartition theorem, the variance of v is
given by

σ2
v (t) = 〈〈v2(t)〉 − 〈v(t)〉2〉 =

kBT
M

(1− e−2γt). (2.18)

Independently we know that the particle velocity over a long period,
should the diffusing particles be molecules, conforms to the Maxwell-
Boltzmann distribution, of which we give the one-dimensional form here

p(ve) =
√

m
2πkBT

exp
(
−1

2
· mv2

e
kBT

)
. (2.19)
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where ve is the molecular velocity once the equilibrium of the energy distri-
bution is reached. Consider the following limits that hold at an equilibrium
state,

lim
t→∞

v0e−γt = 0, (2.20)

lim
t→∞

(
1− e−2γt

)
= 1, (2.21)

and insert them into the above Maxwell-Boltzmann distribution function
(Eqn. 2.19), gives the conditional form

p(v, t|v0, 0) =
√

m
2πkBT(1− e−2γt)

exp
(
− m(v− v0e−γt)

2kBT(1− e−2γt)

)
. (2.22)

This is the probability density function of a normal distribution of the fol-
lowing form,

N
(

v0e−γt,
kBT
m

(1− e−2γt)
)

. (2.23)

The variance σ2
v of the above distribution agrees with the result of Eqn. 2.18.

2.1.2 Forcefield

In a real macromolecular environment, pairwise and multi-body inter-
actions, can significantly influence the diffusive behaviour of individual
molecules. Therefore, the classical Fokker-Planck equation, that represents
the position of a particle as a probability density function, becomes unable
to represent microscopic events; the Langevin equation, however, can be
easily extended to include all interaction forces and efficiently account for
the translational diffusion of a particle:

m
dv
dt

= F(t)− ζv + B(t), (2.24)

where F(t) is the total inter-molecular force exerted on the molecule. In
essence, the interaction force can be written as
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F(t) = Fhydro + FVdW + Felecs + Fdesol, (2.25)

where Fhydro accounts for the hydrodynamic effect on the molecule, FVdW

is the van der Waal’s force, Felecs is the electrostatic attractive or repulsive
force and Fdesol accounts for the desolvation effect, as discussed in Section
1.1.3.2. In this study, for practical reasons, a modified force term is used,

Ftot = FL-J + FCoul + FH-bond + FACE, (2.26)

which includes the Lennard-Jones (LJ) VdW term, the Coulomb electrostatic
term, a hydrogen-bonding term and a desolvation term.

The FVdW term is expressed by taking the negative gradient of the
Lennard-Jones potential of the following form,

FL-J(r) = −∇VL-J(r) = −4ε

(
12σ12

r13 −
6σ6

r7

)
r̂, (2.27)

where r̂ is the normalised unit vector, while values of ε and σ are both taken
from the CHARMM27 (MacKerell et al., 1998b) topology profile. The LJ
parameters have been calibrated to reproduce energies in agreement with
CHARMM27 VdW energies. Due to the use of dynamic timesteps, atom
mass dependent ceiling functions are used to cap excessively large vdW
potentials.

The electrostatic term, FCoul, uses the Coulombic potential function with
variable dielectric constant ε, which is a linear function with respect to the
distance d between the two charges in the range, 4.0Å < d < 9.0Å. Cor-
respondingly, εmin = 6 and εmax = 78. A quartic function is applied
at each end of this linear function, to smooth out discontinuities, and an
empirically parameterised partial charge is assigned to each atom accord-
ing to CHARMM27. For PDB structures that have no hydrogen atoms
stored, H-atoms are generated using dihedral angle information from the
CHARMM27 topology profile.

The hydrogen bonding term, FH-bond, is a 6-4 potential that takes account
of the additional affinity between H-bonding atoms not fully modelled by
other forcefield components. To reflect the sensitive coupling between H-
bond strength and angle, a quartic cosine function is attached to the 6-4 po-
tential. In addition to the minimum and maximum distance cut-offs for fil-
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tering out unphysical or negligible potentials, a bond-angle cut-off is chosen
such that θ > arccos(−0.9). For qualifying atoms, the hydrogen-bonding
force term is calculated by

FH-bond(r) = −∇V6-4(r) = −εH

(
σ6

r7 −
σ4

r5

)
r̂ cos4 φbond, (2.28)

where εH and σ are scaling constants calibrated to produce energies in line
with experimental data, while φbond is the bond angle. The H-bonding term
is calibrated such that, combined with existing LJ and Coulomb terms, it
reproduces the potential values in agreement with those of experimentally
measured hydrogen bonds.

The desolvation term, FACE, is incorporated here to take account of the
solvation free energy incurred when atom-water contacts are replaced by
atom-atom contacts. The atomic energy (ACE) values, tabulated by Zhang
et al. (1997), classify protein atoms into 18 different types that generate 162
pairwise solvation potentials. The method was calibrated on 9 protein com-
plexes that have experimentally measured binding free energies; a corre-
lation coefficient of 0.7 was achieved between experimental and calculated
ACE-based, binding free energies. The ACE energies used in this study are
subject to a 3rd-order decay w.r.t the distance between probing atoms. By
considering ACE energies, VdW and electrostatic potentials could be con-
sidered to be double counted between atoms within contact distance. As
a counter balance, adjustments have been made to the Coulomb potential
functions so that they decay when probing distances fall below the atomic
contact threshold, at the same rate as the ACE energies are weighed in.

For rotational rigid-body dynamics, the total torque is calculated as fol-
lows

τ =
n

∑
i=1

τi =
n

∑
i=1

F i × ri (2.29)

where F i is the total force exerted on atom i of the molecule under consider-
ation, and ri is the distance from the atom to the molecule’s rotating centre,
i.e. centre of mass. The total torque is then plugged into the rotational
Langevin equation (see Eq. 4.5).
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2.1.3 Simulation

2.1.3.1 Rigid-body dynamics

Unlike conventional MD simulations, rigid-body dynamics is employed to
handle translational and rotational movements of proteins, which are, from
a rigid-body point of view, objects of irregular shapes and are composed
by point masses (atoms). The collective motion of these point masses can
therefore be investigated with respect to a representative point which, by
convention and convenience, is usually the centre of mass of the object,

xcm = ∑i mixi

∑i mi
, (2.30)

where xi and mi are the position and mass of the i-th atom, respectively. The
total mass and linear momentum of the molecule (protein) are therefore

mtotal = σimi, (2.31)

pcm = mtotal × vcm, (2.32)

where v is the linear velocity, i.e. speed of displacement of a molecule in
space with respect to its centre of mass. The change of linear momentum
with respect to time is

dpcm = mcm · dvcm = mcma · dt = fcmdt, (2.33)

where the total force with respect to the centre of mass, fcm, is simply the
summation of all forces exerted on each of the atoms

fcm = ∑
i

fi, (2.34)

which accounts for the molecule’s linear movement. The differential expres-
sion for updating linear velocity for rigid molecules is

dv
dt

=
fcm

mtotal
, (2.35)

following Newton’s second law of motion. The angular movement, on the
other hand, arises from the total torque applied to the molecule. The total
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torque with respect to a molecule’s centre of mass is the sum of all compo-
nent torques felt by the atoms,

τcm = ∑
i

ri × fi, (2.36)

where ri = xi − xcm. Analogous to the definition of linear momentum (see
Eqn. 2.33), a similar relationship exists between angular momentum of a
rigid molecule, L, and its rotational velocity, ω,

dL = d (Icm ·ω) = τdt, (2.37)

where I, the 3× 3 inertia tensor, changes with respect to the axis of rotation
and is therefore also a function of t. Differentiating L with respect to t, we
have

τ =
dL
dt

(2.38)

=
dI
dt

ω + I
dω

dt
(2.39)

= ω× I ·ω + I
dω

dt
. (2.40)

Therefore the angular acceleration, analogous to its linear counterpart a =
f/m, is written as

dω

dt
= I−1 · (τ −ω× I ·ω) , (2.41)

where the inertia tensor I is calculated by

I = A · I0 ·AT. (2.42)

Unlike I, I0 is a fixed property, like molecular weight, for each rigid
molecule. Tensor I0 is often chosen such that it has the form of a di-
agonalised matrix, i.e. containing three principal axes pointing from the
molecule’s centre of mass towards I00, I11, I22 respectively. Matrix A, in the
above equation, is the 3 × 3 rotation matrix that records the current rota-
tion with respect to the initial posture aligned to the principal axes. The
equivalent property of A in translational motion is the position vector xcm.
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Combining Eqns. 2.35 and 2.41, we have the full rigid-body dynamics (also
named the Newton-Euler dynamics) for the molecules in analytic forms.

2.1.3.2 Integration of paths

The full analytical form of a Langevin-based diffusion and interaction
scheme is presented above; this section describes discretisation and sub-
sequent numerical calculations to implement the scheme. The translational
Langevin equation (Eqn. 2.24 is a first-order SDE w.r.t. the translational ve-
locity v and takes the form

v′ = f (v, t), (2.43)

with initial value

v(t0) = v0. (2.44)

A number of numerical integration schemes are available on different
accuracy and complexity levels (Butcher, 2003), such as the Euler method
(error in first-order, unstable), Verlet-based methods (error in second-order,
stable, Verlet, 1967) as well as the class of Runge-Kutta schemes (locally
fourth-order, stable). In this study, the midpoint method is chosen for its
simplicity and relatively good approximation to exponential decay prob-
lems. Midpoint is one of the second-order Runge-Kutta integrating meth-
ods and has been shown to be superior to the classical 4th-order Runge-
Kutta method for Langevin SDE problems (Vercauteren, 2005). It takes the
form

v(t + ∆t) = v(t) + ∆t f
(

v
(

t +
∆t
2

f (v(t), t)
)

, t +
∆t
2

)
, (2.45)

where ∆t is the timestep duration. Numerical results, from simulations
based on this scheme, are shown and discussed in Section 2.3.2.

Due to discretisation error, individual interaction events will occasion-
ally incur excessively large VdW and electrostatic potentials, which would
transiently assign unrealistically huge amounts of momenta to the interact-
ing molecules, leading the simulation to “explode”. To deal with this, a
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collision inspector has been constructed to check the translational and ro-
tational velocities for each interaction event; should there be a velocity v
such that p(v) < 0.01 from the corresponding Maxwell-Boltzmann p.d.f., a
new velocity sampled from the p.d.f. will replace the erratic speed with a
probability of 1− p(v).

For crowded molecular environments with a large occupancy value (the
volume of proteins occupy more than 20% of the volume of the solution),
initial displacements of macromolecules in the simulation box, in a random
manner, is likely to incur considerable overlap between adjacent molecules.
To resolve this issue, a short, high-temperature, VdW-only simulation is
used as a “distribution” procedure. Once all the molecules are distributed,
in an unbiased fashion, throughout the simulation box, they are assigned
linear and angular velocities, generated from the corresponding Maxwell-
Boltzmann distribution at the designated simulation temperature. Before
the production run, to balance the kinetic energy of the system, a second
short equilibrium run is performed, with all components of the full force-
field employed. For each simulation experiment, results were accumulated
from each of three independent runs - starting from the same equilibrium
state - and averaged.

Typical values for the key parameters used in the simulations are sum-
marised in Table 2.1.

2.1.4 Readout

2.1.4.1 Structural assessment

To assess the quality of the modelled specific protein-protein interactions
from a structural perspective, BioSimz uses translational, orientational
and rotational thresholds, as well as all-atom root-mean-squared deviation
(RMSD) between the structure of the encounter complex in question and
the known structure of the crystal complex. The translational threshold is
the maximum linear distance permitted between the centres of mass (CM)
of the target and reference ligands when receptors are superimposed. The
orientational threshold is the maximum in square-root deviation between
the target and reference orientation vectors, which originate from the CM of
the receptor to that of its ligand. The rotational threshold is the maximum
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angle allowed for the ligand to rotate away from its reference rotation ma-
trix about an axis passing through the CM of the ligand. In simulation, the
above three values are set to 14Å, 0.9 and 2.3rads respectively. It should be
noted that the linear distance and self-rotation terms are relatively relaxed,
whereas the orientation requirement is stricter; this is to reflect the fact that
correct orientation is more important for the formation of encounter com-
plexes. Protein-protein interactions that satisfy the above criteria are subject
to a further RMSD check, to ensure they are structurally close to the exper-
imentally defined complex state, before being identified as an ’on’ event. It
is widely adopted, originally by the committee of the Critical Assessment
of PRedicted Interactions (CAPRI) (Janin, 2002), that a complex bearing an
RMSD equal or smaller than 10Å from the crystal complex should be treated
as having an “acceptable” quality; BioSimz employs this RMSD criterion to
define whether a molecular contact is specific or not.

2.1.4.2 Binding scores

For most protein-protein interactions, the half-life of an established protein-
protein complex is far longer than can be possibly simulated effectively at
the atomic level, even if computer capacity was unlimited; from millisec-
ond to a matter of days (barnase and barstar) or weeks (pancreatic trypsin
and BPTI). Therefore, while BioSimz is capable of modelling the dynam-
ics of both encounter complex formation and dissociation, it has to do so
through separate simulations. This study focuses primarily on kon, as the
exact molecular mechanism for unbinding remains largely unknown. In
simulation, an interaction is defined as the state and period for which two
molecules have one or more atoms in contact (< 5Å). The retention time of
an interaction event is therefore defined as the period from which the first
pair of contacts is established until the last pair of atomic contacts breaks.
A specific interaction event begins from the first moment (timestep) that the
molecule pair/group satisfies the docking criteria (described in the previ-
ous subsection) with a known reference complex and ends when the criteria
are no longer met. An interaction is defined nonspecific if the above criteria
are not met throughout its lifetime.

A scoring scheme has been developed, here referred to as the binding
score, to evaluate the quality of specific interactions. The scoring scheme
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awards higher marks to interaction events that have longer retention times
at specific binding sites. A simple four-section linear function is used, in
which retention times between 1ps and 760ps score linearly from 1 to 40,
those between 760ps and 2.08ns score linearly from 40 to 200, and those be-
tween 2.08ns and 4ns score 200 linearly from 200 to 400. To achieve a high
score under this scheme, proteins need either a large number of median
retention-time events, or a small number of long (stable) events. Mapping
the strategies to mechanisms, essentially means that molecules either form
more encounter candidates to compensate for the relatively low successful
rate of them acquiring the final specific complex conformational state, or
they have a smaller number of high-quality encounters that bear a larger
chance of survival with penultimate formation of the native complex con-
formation. Interestingly, these binding strategies are analogous to the repro-
duction strategies of fish and mammals, either replicating by quantity or by
quality (fitness) respectively. It is thereby reasonable to assume protein in-
teractions acquire these binding strategies through selection pressure in the
evolutionary process.

A detailed discussion of the binding scores is presented in Section 4.4.1
of this thesis.

2.2 Implementation

The models described in Section 2.1 are implemented in a standalone, fully-
functional multi-molecular simulation package, i.e. BioSimz. As stated at
the beginning of this chapter, until the work reported here, no simulation
software performing atomic multi-molecular simulations in a box while in-
vestigating specific protein-protein interactions has been developed. The
BioSimz project was initiated to fill this vacancy; at the time of writing this
thesis, the author is still not aware of any other package capable of simulat-
ing multiple specific protein interactions simultaneously at atomic resolu-
tion.

A number of design and implementing principles were maintained
throughout the development process, which ensured that BioSimz will pro-
vide unique molecular simulating capabilities that are currently beyond
other modelling and simulating software. These principles are as follows:
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• High-performance. The modelling design must be able to accommo-
date molecular systems containing not fewer than 1 million atoms.
The simulation design should be parallelised to make use of multi-
core CPUs and should deliver simulation results within a matter of
days when given a CPU-intensive task, such as the simulation of a
crowded macromolecular environment close to physiological concen-
tration.

• Accuracy. Computation should be made as accurate as possible. This
includes the choice of forcefield resolution (united atom or full atom,
unit charge or partial charges), the regime of numerical integration,
and the handling of rigid-body rotational dynamics.

• Ease of use. The number and types of simulating molecules, as well as
all adjustable parameters should be made available through configu-
ration profiles, and the constructed of such profiles should be further
automated for batch processing.

• Scalability. The package should cope equally well with both dilute
and crowded molecular simulations and should not waste CPU clock
cycles or memory storage in regions of low molecular density.

• Reliability. The simulations shall not produce thermodynamic ar-
tifacts under both normal and crowded molecular concentrations.
Molecules of irregular shapes should still be correctly handled. The
package should be able to accept non-standard PDB data entries. The
simulation software should not contain technical deficiency that may
impede the reliability of running long simulations in large numbers.

• Extensibility. The software library should make the necessary reserva-
tion for future expansion. The overall design should take into consid-
eration of the need for further algorithmic development, particularly
algorithms to enable internal flexibility of the macromolecules.
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Figure 2.1: Overview of three-layer structure of the Biosimz library.

2.2.1 Framework Design

2.2.1.1 Code structure

BioSimz is built as a multi-threaded C++ library. The library is broadly or-
ganised in three layers: the base, model and application layers. Figure 2.1
illustrates the main modules within each of the three layers.

The base layer was constructed as a language extension on top of exist-
ing C++ facilities. The current “C++98/03” standard (Iso14882, 1998) has
greatly expanded and standardised C++ from C, with support of classes,
dynamic typing, templates and the introduction of the Standard Template
Library (STL). However, it cannot yet deliver optimal performance for man-
aging and operating small objects in their millions, which are required for
large-scale macromolecular simulations. Therefore, polymorphic container
classes, coupled with flexible memory pools, have been designed and im-
plemented to supplement the lack of high-performance large-scale contain-
ers in C++ and its peripheral libraries (see Section 2.2.2). A number of de-
sign patterns were also implemented, such as singleton and factory (Gamma
et al., 1994), to provide a universal interface for accessing objects of different
types. The C++ Boost library (Abrahams and Gurtovoy, 2004) is also exten-
sively used in the base layer, providing support for vector/matrix arith-
metics, threading, file reading/writing and utility templates. Two external
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libraries, threadpool and sigc++, were used to deliver thread pooling and
event handling support. Both libraries are implemented as class templates,
which usually have minimum running overheads as they are interpreted at
compile-time.

The model layer was built on top of the base layer with no external de-
pendencies. All atomic and molecular models, forcefield models, numerical
integrators and grid models are located on this layer. The layer is designed
such that applications could be written based on models from this layer
without manipulating base-layer classes and objects, relieving application
writers from having to know the low-level details.

The application layer is composed of a few standalone applications and
some convenience library classes, such as trajectory management and sta-
tistical analysis. Currently, three applications are developed on top of the
library: two command-line applications for running simulations and per-
forming trajectory analysis, and a Qt-based graphical user-interface (GUI)
to manage and display, in three-dimensions along with some annotation,
molecular trajectories. As the application layer is well separated from the
model and the base layers, making changes to these two layers will not re-
quire the applications to be modified accordingly.

The library and application framework is further supported by stan-
dalone applications and shell scripts for the creation, submission and man-
agement of individual simulation runs. A brief summary of BioSimz code
statistics is shown in Table 2.2, which offers a glimpse of the size scale of the
package from a technical aspect. Also it is worth noting that many of the
BioSimz classes were implemented as class templates; all efforts have been
made to re-use existing code where available.

2.2.1.2 Functional structure

The three core components of the BioSimz library responsible for conduct-
ing macromolecular simulations are: molecular systems, the object grid and
forcefields. During each simulation timestep, information on the state vari-
ables of the simulated objects (proteins) is passed from systems to the grid,
from the grid to forcefields, and then from forcefields to systems, complet-
ing the circle. Various data recording modules can be attached to this cir-
cular information flow for trajectory recording, analysis and visualisation.
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Code Type BioSimz BioSimzApp BioSimzStats BioSimzLab Total
C++ Sources 21,356 132 1,853 33,984 102,564C++ Headers 42,947 3 83 2,206

Makefiles 17,737 20 20 978 18,755
Comments 35,857 102 631 3,695 40,285

Total 117,897 257 2,587 40,863 161,604
No. of Files 665 3 23 97 788

Table 2.2: BioSimz code statistics. Numbers quoted here are lines of code (LOC), ex-
cept for the last row. All blank lines in source files were removed from being counted
in. The statistics was harvested by code metrics tool cloc. BioSimzApp, BioSimzStats
and BioSimzLab are executable applications built on top of the BioSimz library for run-
ning simulations, performing statistical analysis and 3D visualisation of trajectories and
annotations, respectively.

Module Components Module Components
Algorithms 17 Mesh Operations 16
Concepts 11 Memory Management 10

Configurations 4 Molecular Models 31
Data Handling 50 Motion Schemes 6

Extended Datatypes 15 Software Patterns 42
Dynamics 11 Class Policy 1

Exception Handling 12 Simulations 13
Forcefields 13 Communities 6
Geometry 6 Solvent Models 1

Grid Operations 28 Class Traits 19
Interactions 9 Statistics 21

Class Interfaces 13 Visualisation 14
Total Modules 24 Total Components 369

Table 2.3: A list of BioSimz modules. “Components” are the number of C++ struct and
class structures in each of the 24 modules.

The main working loop inside the BioSimz simulating engine is shown in
Figure 2.2.

2.2.2 Module Designs

BioSimz has been constructed as a large-scale modelling and simulation li-
brary; therefore, the functional units of the library are organised in modules
(namespaces in C++), each of which contains a number of classes that are
functionally related to each other. A total number of 24 modules were con-
structed in the simulation package, as is listed in Table 2.3. This section
discusses a few key module and class designs that have been vital to the
library’s structure and performance, and that have not previously been in-
vented or applied in the field of molecular modelling and simulation.
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Figure 2.2: Overview of data and function flows in BioSimz.

2.2.2.1 Polymorphic containers

The container/iterator pattern (Gamma et al., 1994), widely used in C++
standard and Boost libraries, appears a natural choice for manipulating
molecules, i.e. container of atoms. However, container classes in the stan-
dard library (std::vector<T>, std::list<T>) do not suffice the represen-
tation of molecular models for BioSimz:

• Both vectors and lists use the operators, new,delete to dynamically
allocate and recycle memory resources as elements are added or re-
moved from the container. For a small container computational costs
for these operators is negligible, but its performance drops quickly
when containers expand to, for example, tens of thousands of atoms.
Vanilla C/C++ arrays are quick, but they are usually fixed in size and
prone to boundary errors.

• Standard containers do not support polymorphic copying. For exam-
ple, Molecule and Protein are two classes and the latter is derived
from the former. Now, let us assume a Molecular System class has
been created, that contains a molecule list, in which there may be both
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proteins and molecules. Had std::vector<Molecule> been used, all
instances of Protein would have been sliced to the size of Molecule
when the base type copy constructor is called. This is the expected be-
haviour of normal copy constructors, but it would not be the expected
behaviour of the modelling package.

• A common practice in C++ for handling polymorphism in containers
is to define a vector of pointers (std::vector<T*>). In this author’s
view, this has somehow defeated the purpose of a container class,
since it no longer encapsulates what it is supposed to own. Due to
the frequent uses of large containers in molecular modelling software,
memory leaks and corruption can be a major source of maintenance
problems as cross-reference of objects increases.

• Sometimes it can be confusing whether a container owns the elements,
or it just owns the references to the elements. A typical case for pro-
tein modelling is as follows: physically, the class Protein owns a list
of objects of the Atom class; therefore, if a Residue object is to link to
these Atom objects, they have to store the pointers. The calling conven-
tion for using an Atom from its Residue and Protein is then different
depending on whether it is a pointer or an object; this behaviour is
unwanted because it should not be relevant to the library developer.

• Standard containers lack some database-like operations such as index-
ing, searching, conditional filtering/manipulation, as well as multiple
filtering using logical operators.

Therefore, polymorphic container classes, along with self adjustable
memory pools, have been constructed, alleviating all of the above prob-
lems. Technically, polymorphic copying was realised through a placement
new operator in the base class. By doing this, the correct size of the memory
to copy is directly passed to the new operator even in the case of derived
(expanded) classes, while no run-time type information (RTTI) overhead is
incurred since it does not rely on virtual functions to infer the concrete type
of the class.

As was benchmarked with the g++ compiler (version 4.3), the in-house
containers achieved a 10 to 100-fold speed up compared to std::vector<T>
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when pushing back a large number of elements; the larger the size of class T,
the more pronounced the performance is for the in-house containers. Speed-
up is primarily due to memory pooling, which also guarantees continuous
memory access for objects in the container. There would also be a significant
benefit in efficiency if the container content were to be cloned to elsewhere,
for example, video RAM on a GPU card for further processing.

These in-house developed containers are partitioned into two types: one
storing the actual content and one storing the pointers. Member functions
of both content-storing and reference-storing classes have universal return
types so that a library user does not need to be concerned whether the stored
element is concrete or a reference. The following code snippet shows the
benefit of this design:

1
2 Atom ca , cb ;
3 Container< Atom > p r o t c o n t a i n e r ;
4 RefContainer< Atom > r e s c o n t a i n e r ;
5
6 p r o t c o n t a i n e r . push back ( ca ) ;
7 p r o t c o n t a i n e r . push back ( cb ) ;
8 r e s c o n t a i n e r . push back ( ca ) ;
9 r e s c o n t a i n e r . push back ( cb ) ;

10
11 std : : cout <<p r o t c o n t a i n e r [ 0 ] . g e t P o s i t i o n ( ) <<std : : endl ;
12 std : : cout <<r e s c o n t a i n e r [ 0 ] . g e t P o s i t i o n ( ) <<std : : endl ;

As is shown here, only the developer who sets up the container needs to
think about whether to store the actual objects or their references.

2.2.2.2 Atom and molecular models

In BioSimz modelling and simulation, the number of atoms may reach over
1 million. Therefore, the Atom class should be made as small in size as pos-
sible to save storage space. The BioSimz Atom class is a composition of a
three-dimensional vector with associated indices. Where possible, the in-
dices are joined and manipulated through bitwise operators (>> and <<) so
as not to waste the memory assigned to the full bit structure of an int type.
The actual memory layout of the Atom class, plotted in Figure 2.3, has a size
of 48 bytes per instance.
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Figure 2.3: Memory layout of the Atom class. The four aggregated indices occupying the
width of one int are chemical element index, atom name index, atom type index and
ACP index, respectively.

In reality, all molecules are entities of bonded atoms. In modelling, how-
ever, there is no universal method to parameterise all types of molecules
from small molecules to proteins and DNA, at least on the scale of molecular
mechanics. Therefore, multiple “types” of molecules have to be modelled
as derived classes from the Molecule parent. Hence, a further concept was
introduced, that of a Measure concept, which includes a container of atoms
plus the collective rigid-body properties of these atoms. The Molecule class
derives from Measure, as well as many sub-molecular atom groups such
as residues (see below). Figure 2.4 illustrates the hierarchical structure of
molecular classes derived from Measure and Molecule. Hence, if we define

1 Molecule mol ( ”mol . pdb” ) ;
2 Prote in prot ( ” prot . pdb” ) ;

we can conveniently make a container of molecules to include both objects

1 Container< Molecule > mols ;
2 mols . push back ( mol ) ;
3 mols . push back ( prot ) ;
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Subsequent manipulations can then be performed, container-wise, regard-
less of the molecule type

1 mols . a c t ( f o r c e e v a l ( my ff ) ) ; / / e v a l u a t e t h e f o r c e f o r e a c h
mol

2 mols . a c t ( movement eval ( ) ) ; / / e v a l u a t e t h e movement

It is therefore possible in BioSimz that a molecular system may consist of
many different types of molecular models, as was shown in Figure 2.4.
These seemingly complex relationships ensure the operating interface for
rigid-body objects is kept consistent between different types of molecules,
for example, between a prosthetic group and a multi-chain protein com-
plex. At the same time, these code modifications yield the maximum level
of code reuse and thereby improves reliability. Using a similar pattern, the
composition of different types of forcefield, or even the inclusion of coarse-
grained forcefields, becomes manageable. The above code snippets are for
illustrative purposes only; the actual code appears more complex as it deals
with multiple issues, some of which have not been discussed here, for exam-
ple, the encoded facility for treating some molecules as semi-flexible while
others remain as rigid-body, nevertheless, the computer coding principles
described above remain the same.

2.2.2.3 Communities

Another distinctive feature in BioSimz is the introduction of a social com-
munity system for housekeeping of molecular interactions occurred during
the simulations. As is discussed in Section 2.1.4.2, time course information
of retention of molecular interactions is used to evaluate the strength of spe-
cific protein binding. Therefore, it is necessary that the package should have
this information recorded during the simulation, so that the time course
analysis can be performed and relevant interaction trajectories can be re-
viewed specifically.

One needs to bear in mind that, unlike the investigation of pairwise in-
teractions, simulation of multiple proteins interacting may encounter situa-
tions where multiple complexes can form simultaneously. Traditional ways
of detecting complex formation cannot cope well with this; an intuitive reso-
lution may be to use a three-dimensional matrix N×N× T for N molecules
simulated in T timesteps to describe the pairwise interaction courses. How-
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Measure< T >

Molecule:
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Residue:
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Chain:
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Protein:
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Complex:
Measure<Molecule>

Container< Measure<Atom> >

Protein:
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NucleicAcid:
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Measure<Atom> ...
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Figure 2.4: Relationship between Measure and its derived classes. There are three dif-
ferent types of relationships described in the key to this diagram: inheritance means the
arrow-marked class is derived from the connecting class, parameter means the connect-
ing class is a template argument of the solid circle-marked class, composition means the
diamond-marked class contains the connecting class as its data member(s). The relation-
ship needs not to be unique; for example, the Protein class has its great parent class
Measure<Atom>, while it also owns several data members who themselves are children
classes of Measure<Atom>. The bottom box shows a schematic view of a polymorphic
container storing three different types of objects, all derived from Measure<Atom>.
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ever, for large N and T the matrix is beyond normal size limit; yet most of
the elements are zeros.

In BioSimz, the problem is solved by the introduction of a social commu-
nity system with an interaction registry. The World concept, shown in Fig-
ure 2.2, corresponds to the Borough class which owns and manages a num-
ber of Community objects. A Community is the logical projection of a System

of molecular models, which keeps a registry of all molecules that belong
to the system. Interactions occur within Members of the same Community, at
which time Neighborhoods are formed and immediately registered to the
Community. Once an interaction no long exists, the Community will be noti-
fied about the departure of the neighbours and subsequently, de-register the
Neighborhood. While this is a dynamic process during a simulation run, the
history of formation and departure of neighbourhoods is always recorded
like an event book of a chronicle order.

To efficiently model the above community actions, the C++ template li-
brary sigc++ was used to create an event dispatching/handling mechanism
within the simulation library. The novel use of template static variable fur-
ther eliminated the need for defining a specific signal for every class type,
i.e. no penetration into signal-emitting classes. This can be extremely suit-
able for some cases in BioSimz; for example, a collision solver need not be
concerned about which molecular types it currently deals with, and only
needs to process all events that are deemed too close.

The social community system is complementary to the Newtonian dy-
namics simulator: the latter produces a time-series of molecular trajectories
in three translational and three rotational degrees of freedom, while the for-
mer, as described above, is an event-based registry of association and disso-
ciation of interaction partners. BioSimz is therefore able to take the benefits
from both time and event-based modelling of molecular interactions.

2.2.3 Peripherals

As is briefly mentioned in Table 2.2, three standalone applications were de-
veloped, on top of the library, to perform simulations, analyse trajectories
and visualise results. The types of statistical analysis that BioSimz is capa-
ble of performing on simulated trajectories are summarised in Table 2.4. A
snapshot of the Qt-based GUI application, biosimzlab, is shown in Figure
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2.2.3.

2.2.4 Performance

The library is written with multi-threading support. Its computational per-
formance is greatly dependent on the frequency of pairwise interactions oc-
curred in a simulated molecular system. For an in vitro style simulation at
less than 80g/L, typically 3− 30µs trajectories can be generated per day on
a quad-core processor. For crowded simulations, such as a 3× 106 Da sys-
tem at 330g/L, the performance decreases to approximately 0.5µs per day.
To massively reduce computation time, typically 20 to 30 dual quad-core
processors are employed to run multiple simulations in parallel.

Additional attempts have been made to further reduce the simulating
time whenever possible. It is observed that under dilute conditions, many
simulation circles are wasted in simulating the simple diffusion of target
molecules which are still far from even the closest partner. Two improve-
ments are therefore made to consolidate the “wasteful” timesteps, mak-
ing the simulation scheme effectively operating under a variable-timestep
mode:

Prolonging the interval before updating the neighbour list. The molecules
are no longer subject to an update of all neighbouring molecules in
adjacent grid blocks after every timestep. Instead a heuristic algo-
rithm is used to gradually increase the time interval for the update to a
molecule’s intermolecular contacts until a ceiling time limit is reached.
The resulting reduced updating frequency is reset to its original value
when a molecule appears in the neighbour list of the target molecule.

Directly increasing the timestep size. This physically reduces the total
number of timesteps simulated, albeit with the total amount of bio-
logically time set for each simulation remaining the same. Since this
approach affects every molecules in the simulation, it can only be trig-
gered when none of the simulated molecules are interacting. Should
any two of the molecules fall within a distance threshold, the timestep
size immediately reverts to the original setting, in order to prevent
collisions that result in molecules overlapping with each other.
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2.3 Discussion

2.3.1 Justification

Most simulation schemes based on the Langevin equation have to ensure
that the systematic force F(t) remains constant within each timestep ∆t.
Key questions arise as to how long the timestep should be set at, and sub-
sequently, which analytical scheme for integrating the Langevin equation
should be chosen. For the first question, most biomolecular simulations
schemes for diffusion dynamics have a timestep size ranged from ps (for
proteins) to ns (DNAs/nucleosomes), to coincide with the orders of magni-
tude of the momentum (or velocity) relaxation time, β, which is the inverse
of the damping constant γ (see Section 2.1.1.4). The second question is in
fact asking for a justification of the choice between using the full Langevin
dynamics (LD) or its simplified, displacement-oriented form, the Brownian
dynamics (BD).

Ermak (1975) provided the first BD algorithm for large molecules, with
a precondition that ∆t � β. This effectively means that the momentum re-
laxes to equilibrium much more rapidly than the average timestep, hence
the inertia effects of the solutes are negligible. Weiner and Forman (1974)
derived another solution suitable for ∆t � β, while a more generic Monte-
Carlo based algorithm for solving the Langevin equation regardless of the
values of β was later introduced (Ermak and Buckholz, 1980). Currently,
most BD simulations for biomolecules (Elcock, 2003; McGuffee and Elcock,
2006; Gabdoulline and Wade, 1997; Cerutti et al., 2003) are adapted from
the Ermak-McCammon algorithm (Ermak and McCammon, 1978), which
also bears the precondition ∆t � β. The reason for the latter to be widely
adopted, compared to the Monte-Carlo solution (Ermak and Buckholz,
1980), is the simplicity of the random displacement term,

〈R〉 = 0, (2.46)

〈R2〉 = 2D∆t, (2.47)

where its auto-correlation function is solely a function of the correspond-
ing diffusion coefficient. In reality, this is largely true for the diffusive be-
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haviour of macromolecules in a dilute solution. However, when molecules

approach each other for interactions, the BD precondition 〈mdv
dt

= 0〉 no
longer holds; moreover, the extent of inertia effect can be large such that the
Ermak-McCammon precondition, ∆t � β may not hold, either. Neverthe-
less, this is not be a problem for BD simulations which aim at “arriving and
terminating at” the binding interface of two diffusing proteins, as the deter-
ministic dynamics does not kick in, perhaps, until the very end of the these
simulations.

In this study, protein-protein binding dynamics is treated as being equally
important as protein-protein binding kinetics. Therefore, the full LD de-
scribed in Section 2.1.1 is implemented, with which the force term, i.e. ac-
celeration dv/dt, is explicitly calculated at each time step. This treatment
effectively fuses the stochastic LD with rigid-body molecular mechanics, so
that the molecular steering dynamics (Blundell and Fernandez-Recio, 2006)
is more likely to be observed.

A crowded molecular environment, such as observed under in vivo con-
dition, resembles a low Reynolds-number fluid, in which the inertia effect is
often negligible. From first appearance it looks like as though a BD model
suffices the need for crowded protein dynamics; however, the high viscos-
ity comes from the collisions and interactions among the explicitly mod-
elled macromolecules rather than the implicitly modelled solvent collisions,
to which the damping constant in simulation applies. The low Reynolds-
number is therefore the outcome, rather than an input in both simulation
and reality. Therefore, the full LD can be justifiably used under crowded
simulations of protein-protein interactions, where the viscosity of water
η = 6.95× 10−4Pa · s at T = 310K; the solvent viscosity (not the apparent
viscosity of cytosol). Results show that the reproduced diffusion dynamics
agrees with experimental observations for both dilute and crowded solu-
tions (see Section 2.3.2.2).

2.3.2 Model Validation

The canonical (NVT) ensemble is implemented: the number of particles (N),
along with the volume (V), of each system in the ensemble are the same, and
the ensemble has a well defined temperature (T), given by the temperature
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Figure 2.6: Thermal profiles of two simulation runs. The green trace shows a dilute bar-
nase and barstar trajectory at 19.05g/L, whereas the pink trace shows the same proteins at
76.20g/L. In both runs, the heat-bath temperature was maintained at 310K. On-the-spot
temperatures are calculated from the total kinetic energy of all molecules in the system.

of the heat bath with which it would be in equilibrium (see Figure 2.6 for
a typical kinetic energy profile during a simulation). Importantly, over all
the numerous test and production runs, and for all the various molecular
systems simulated, energy profiles show stability over the complete time
course of each simulation. However, fluctuations in kinetic energy do oc-
cur over time with respect to the protein concentration: a more crowded
environment has less perturbation, which suggests that the movements of
the molecules are subject to more restraints from neighbours. To ensure
that molecules are physically well behaved for rigid-body interactions, both
energy and kinetic momentum conservation is checked during each simu-
lation: the total binding energy of an interacting pair of molecules should
be no more than the loss of their kinetic energies upon interacting.

The energetic aspect of the specificity-sensitive LD scheme is examined
through comparison between ligand-receptor RMSDs and the correspond-
ing binding energies. A negative binding energy state means the partners
are attracted towards each other, while a positive term means they are mov-
ing away. Similarly, a rising wave of binding energies in successive simula-
tion timesteps means the interaction is becoming destabilised, and vice versa.
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Figure 2.7 shows four examples of RMSD-binding energy comparisons for
different protein interactions. The example trajectory of complex 1TMQ
(alpha-amylase and ragi inhibitor) shows a very stable contact with which
the RMSD keeps within 0.2-0.4Å of the native binding site throughout the
30,000 timesteps (30ns) of simulation. Correspondingly, the binding energy
remains almost constant during the interaction time. In the second exam-
ple, binding partners of complex 1E6E (Adrenodoxin-Reductase) displays
a high correlation between RMSD and binding energy changes. Moreover,
the peaks and valleys on the energy curve usually occur ahead of the highs
and lows of the RMSD, showing the change in complex conformation is of-
ten led by changes in potential energy over a small period of time. The same
RMSD-binding energy correlation can also be found in the example trajec-
tory of complex 1WQ1 (Ras-GAP), where more dramatic change in RMSD
(from approx. 14Å to 4Å) is also coupled tightly with variation in binding
energies. The 1KTZ (TGFβ3-TβRII) example, however, displays weak bind-
ing energy terms throughout the trajectory; hence a gradual and stable drift
from the binding site is observed. The above four examples suggest that
the potential energy functions employed by BioSimz provide a reasonable
approximation of the energetics associated with specific protein-protein in-
teractions; therefore, the developed forcefield appears to be justified for con-
ducting macromolecular simulations in normal and crowded conditions.

To further examine the effects on solvent electrostatics to macromolecu-
lar interactions, salt ions were explicitly added to the simulations and the
differences in variations to the ionic strengths examined. In this test, Na+

and Cl− ions are explicitly modelled at three concentrations, i.e. 10mM,
50mM and 150mM. The result shows the ionic effect on binding scores is
negligible if ionic strength is weak (10mM). At 50mM and 150mM, most
interaction pairs display a slight decrease (10∼ 20%) in binding scores.
However, the relative affinities among a test set of eleven complexes (see
Section 4.2.2) remain unchanged, except for highly electrostatic interactions
such as displayed between barnase-barstar (PDB:1B27) and adrenodoxin-
adrenodoxin reductase (PDB:1E6E), which appear to be damped more than
others. These simulated results qualitatively agree with experimental ob-
servation, which suggests protein complex stability is negatively correlated
to the solution’s ionic strength.



Methodologies 78

-35

-30

-25

-20

-15

-10

-5

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5000 10000 15000 20000 25000 30000

Binding Energy 
(kcal/mol) RMSD (Å) 

Timesteps (ps) 

1TMQ 

RMSD

Energy

-10

-8

-6

-4

-2

0

2

4

6

8

10

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000

Binding Energy 
(kcal/mol) RMSD (Å) 

Timesteps (ps) 

1WQ1 
RMSD

Energy

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000 30000

Binding Energy 
(kcal/mol) RMSD (Å) 

Timesteps (ps) 

1E6E 

RMSD

Energy

-20

-15

-10

-5

0

5

10

15

0

1

2

3

4

5

6

7

0 5000 10000 15000 20000 25000 30000

Binding Energy 
(kcal/mol) 

RMSD (Å) 

Timestep (ps) 

1KTZ 

RMSD

Energy

Figure 2.7: RMSD and energy profiles of protein-protein interactions at or near their
respective binding sites. Blue curves show the trajectory of RMSD deviation of complex
conformation from the native (crystallographic) state; red curves are the corresponding
binding energies, calculated as the summation of all potential terms of the forcefield.

2.3.3 Approximations and Stability

Developers of molecular modelling software often face the following
dilemma: given the size of the system, to what level of resolution can the
system be modelled if the simulation is to cover time periods relevant to
the biology of the system. Therefore, while a high resolution model would
naturally include molecular flexibility this option has not as yet been im-
plemented fully in BioSimz, rather, the focus has been more on simulating
macromolecular interactions for as long a time period as possible, hence, the
compromise made is that all molecules are treated as rigid-bodies. More-
over, for achieving reasonable translational and rotational dynamics, the
Langevin timestep is set at the picosecond level. This effectively elimi-
nates the possibility of doing side-chain level molecular mechanics, as 1ps
would be too coarse for the side chain atoms to be sampled with a con-
tinuous trajectory. In this case, a Monte-Carlo conformational sampling
method may be needed should internal dynamics be incorporated into
the LD scheme. Despite the rigid-body treatment not being an appropri-
ate method for highly-flexible macromolecules (DNA, RNA and disordered
proteins), it is shown to be a sufficient description of molecules for which
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relatively small conformational changes occur during diffusion and interac-
tion. This is the case for the test examples described here.

The model employs a relatively simple treatment of electrostatics, al-
though special rules (describe in the Forcefields section) have been applied
to the dielectric constant. Alternative electrostatic modelling techniques in-
clude generalized Born (GB) models (Bashford and Case, 2000) and solu-
tions to a Poisson-Boltzmann (PB) equation of the molecule (Baker et al.,
2001). While they both provide a better approximation to simple Coulomb
equations, the GB approach needs very careful parameterisation of the Born
radii in highly electrostatic conditions (Bashford and Case, 2000), which are
often the case in a crowded environment.

On the other hand, solving either the linearised or non-linear PB at
each timestep under the influence of a changing number of neighbour-
ing molecules is currently infeasible given the available computing power.
Molecular simulation studies using PB have to pre-compute and store the
electrostatic potentials in discrete meshes, which leads to significant errors
on neglecting the low-dielectric region near the interaction interface. As
was written in one review (Schreiber et al., 2009), these approximations “are
worst when proteins are in close proximity, precisely where electrostatic in-
teractions are expected to have the strongest influence” on the association
rate constant, kon. The comparison between electrostatic energies produced
by PB and Coulombic methods shows that the major difference only kicks in
when distance between molecular surfaces is less than 3Å(Camacho et al.,
1999). The Coulomb-based treatment for electrostatics implemented in this
work addresses this problem by re-parameterisation of the dielectric con-
stant near the molecular surfaces (see Section 2.1.2), which is sufficiently
accurate for the investigation of encounter complex formation.



Chapter 3

Macromolecular Docking

As was described in Section 1.1.3, macromolecular interactions, especially
protein-protein interactions, are the cornerstone of biological processes and
functions. The first step to understanding these interactions is usually to
locate the binding interface region on each binding partner, and and then
ascertain why these particular interfaces have been utilised.A second, per-
haps alternative approach to the above, is to work out how interactions oc-
cur naturally, i.e. the binding mechanism from a dynamic point of view.
This chapter applies the BioSimz simulation method to refine and improve
molecular docking approaches, and attempts to reveal the macromolecular
binding mechanisms through the analyses of simulation trajectories.

The majority of the content in this Chapter has been published as a pre-
diction report for the Critical Assessment of PRotein Interactions (CAPRI)
in Proteins: Structure, Function, Bioinformatics (Li et al., 2010). The work men-
tioned in this study was performed in collaboration with a fellow graduate
student and colleague of mine, Mr Iain Moal.

3.1 Introduction

3.1.1 Theories

Theories of docking are split into two main categories, those of the lock-
and-key model and those from the induced-fit hypothesis. The former the-
ory postulates that protein shapes and surfaces are highly specific to their
corresponding partners, emulating a key in a lock, such that they naturally
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R1

R2

L

RL1

RL2

a b

Figure 3.1: A schematic view of the two binding mechanisms. The induced-fit hypoth-
esis follows the red path: R1 + L ⇒ RL1 ⇔ RL2. The conformational shift hypothesis
follows the green path, i.e. R1 ⇔ R2 + L ⇒ RL2. Reversible process a is termed the pre-
equilibrium process, while the corresponding reversible process b represents the confor-
mational changes of the receptor upon association and dissociation.

bind upon meeting each other; the latter is characterised by initial binding
in an open state, followed by structural rearrangements due to changes in
potential energy caused by the binding partner. Over time, the lock-and-key
model has evolved from proteins being rigid bodies to that of each protein
binding partner being able to sample an ensemble of conformations, which
are in constant flux due to the thermal energy of the system; therefore, com-
plexes form when binding partners collide, with each partner being in the
appropriate conformation for stable binding to occur. Perhaps to coincide
with the phenomenon of state switching, the model has also been assigned
with a number of names, such as “population shifting”, “conformational
selection” and “conformational shift”; the latter phrase is adopted in this
study. To date, most protein binding studies have followed one of these two
alternative binding hypotheses, as are illustrated in Figure 3.1.

The lock-and-key model is a century-old concept, first coined by Fischer
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(1894), well before that highly specific three-dimensional structures could
be experimentally elucidated. The model well explained that most enzymes
are specifically “designed” to accelerate biochemical reactions of a single
type. Indeed, from a modern perspective, many of the enzymes facilitating
reactions between small molecules have identifiable “binding pockets” to
accommodate substrates of certain shapes. In many cases, such as for serine
proteases and aspartic proteases, the catalysing function is delivered by one
or two key residues in the active site of the enzyme, acting exactly like the
locking/unlocking mechanisms of a key and lock. For protein-protein in-
teractions, many enzyme-inhibitor bindings are established by strong elec-
trostatic interactions between key charged residues, such as in the case of
bacterial ribonuclease barnase and its high-affinity inhibitor, barstar (Hart-
ley, 2001).

The first mention of the induced-fit theory was made by Koshland
(1958). Koshland stated that proteins change conformation favourably to-
wards accepting their binding partner, within the final stage of complex for-
mation, i.e. the fit occurs “only after the changes induced by the substrate
itself”. This theory became popular very quickly as it seemed to have ex-
plained all observations that did not fit the static lock-and-key model; per-
haps more often than it ought to be, “conformational changes upon bind-
ing” was used as a get out clause when computational packages fail to dock
proteins known to form complexes in a crystallised form. Nevertheless,
evidence of induced-fit has been observed for many protein-protein inter-
actions, such as within flexible SH2 and SH3 domains upon binding their
peptide substrates (Hofmann et al., 2005).

Just as the induced-fit model seems a “one-size-fits-all” type of solution,
there have been increasing voices suggesting otherwise (Bosshard, 2001).
Additional binding mechanisms were suggested (Boehr and Wright, 2008),
based on the conformational shift observed from studies of nuclear mag-
netic resonance (NMR) dynamics of ubiquitin; a highly-conserved small
protein involved in many eukaryotic regulatory processes. Similar cases of
conformational shifts influencing binding activities were also observed for
enzymes and antibodies (James et al., 2003; Tang et al., 2007; Eisenmesser
et al., 2005). Conformational shift, argued at least by one group (Tsai et al.,
1999; Ma et al., 2002), may be a key factor for specific binding between pro-
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teins, and even for those with highly flexible interfaces,or indeed disordered
interfaces (Tsai et al., 2001).

With NMR providing the eye-opener for in-solution protein flexibility,
the natural docking between proteins and their binding partners now ap-
pears to be less magical in terms of the induced fit model. Indeed, short
high-frequency fluctuations in protein structure conformation only seems
to have a small effect on binding dynamics; but longer term, low-frequency,
dynamic fluctuations in conformation, as easily traced by NMR, may sug-
gest proteins vary their shapes significantly and relatively frequently; there-
fore, the chance of binding partners meeting each other at the right time
with the right pose, is not that slim.

The same group that argued for conformational shift also suggested that,
the long-held view of protein binding at the energy minimum, represented
by one bound/docked complex, may not be true either (Tsai et al., 2008).
This view is shared and extended here. This implies bound, crystallographic
complexes deposited in the PDB may represent only one of possibly a few
closely-related conformations at which two proteins may bind and function.

Thoughts on multiple bound conformations has led to greater interest
in investigating the less specific, more transient interactions between pro-
teins and their binding partners. Encounter complexes are thereby loosely
defined as proteins that make surface contacts near to the “correct” binding
location. The study of encounter complexes falls between protein docking
and protein diffusion studies – and traditionally more frequently investi-
gated with the latter (Gabdoulline and Wade, 1997). One purpose of the
work described in this thesis is to use computer simulations of encounter
complex formation as a bridge between between docking and kinetic bind-
ing studies (see Section 3.3, 4.3 and 5.3).

3.1.2 Practices

To computationally solve the molecular docking problem, one has to bal-
ance the limitations of computer size, speed and accuracy. Therefore, a uni-
versal algorithm has not been developed and optimal solutions to any one
particular macromolecular docking problem can be reached by a large num-
ber of algorithms; physical or non-physical, deterministic or random, do-
main specific or statistically modelled, supervised and unsupervised, stan-
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dalone and collateral. Ways to approach a docked solution for two (occa-
sionally, three or more) proteins are so numerous and diverse that even an
incomplete examination of them will result in this section being excessively
bloated – for a more detailed description of docking algorithms than can
be given here, see for example, the comprehensive review of Halperin et al.
(2002).

An even more concise review of the field would be to examine ap-
proaches that are currently under development in the molecular docking
field, especially by those participating in the Critical Assessment of PRe-
dictions of Interactions (CAPRI), an ongoing blind trial of macromolecular
binding site predictions. In each round, one or a few protein complexes
whose structures have recently been solved are put to test with registered
entrants, which can be either human or non-intervention server predictors.
Currently there are more than 30 participating groups, of which many have
their named approaches. A tabularised brief review of the popular methods
from CAPRI participants, as well as some classical methods, can be found
in Table 3.1.

As was rightly noted in the latest report for CAPRI entries of 2009
(Lensink and Wodak, 2010), over the years there has been noticeable im-
provement in the correct scoring of known complexes, as opposed to the
actual ranking of potential docking solutions. The ranking problem can fur-
ther be divided into two sub-problems: a) whether an acceptable docking
pose has been contained in the ranking set, and b) whether the pose can
be highly rated by the algorithm. Evidence shown in the latest CAPRI re-
port (Lensink and Wodak, 2010, Figure 2) suggests that problem a) has been
more consistently encountered by the protein docking community. If the
correct or near-correct ensemble of conformations is contained within a set
of predictions, it is likely to be picked up by a number of scoring schemes.
Therefore, it seems the larger hurdle to solving the macromolecular docking
problem, is that current approaches cannot effectively generate a set of con-
formations, which regularly contain a correct, or near correct, answer. The
situation is exacerbated by the knowledge that due to the large number of
degrees of freedom that may need to be considered to dock two proteins,
consisting of rotational,translational and a multitude of conformational de-
grees of freedom, many millions of potential solutions may need to be gen-
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erated - this is especially true if there are no experimental or evolutionary
pointers to the potential binding sites on each protein. It is for this reason
that the work reported in this thesis focuses on the efficient simulation of
encounter complex formation for protein-protein interactions, thereby pro-
viding a much smaller, and more appropriate, set of potential docking solu-
tions that can be subsequently refined.

3.2 Materials and Methods

3.2.1 BioSimz

Rigid-body dynamic simulations of proteins at atomic resolution were run
to provide information on potential binding regions, based on the frequency
heatmap of surface contact in different regions of the interacting molecules.
See Section 2.1.4.1 for more detail on the structural assessment of association
dynamics in BioSimz, and for a detailed description and evaluation of the
BioSimz package see Section 2.2.

The simulation starts with distributing all macromolecules randomly
in a cubed box, sized 240 × 240 × 240Å3, where periodic conditions are
applied. A 10ns high-temperature run is carried out before each produc-
tion run, allowing the kinetic energy of individual molecules to equilibrate.
Throughout the production runs, the temperature is maintained at 298K.
All simulations are run for 200ns at 1ps per timestep, resulting in a mean-
squared displacement of 600 Å2 in dilute solution. To even out statistical
variance between individual runs, 10 runs are performed for each configu-
ration.

In each simulation run, eight receptor and eight ligand molecules are put
into the box, making up a total concentration of 1.92mM, which corresponds
to between 18.5gL−1 and 102.9gL−1 depending on protein sizes. Crowded
molecular simulations are also carried out to emulate in vivo binding condi-
tions. Sixteen proteins, from ten types of bacterial enzymes of the glycolytic
pathway (see Section 1.1.2.2 and Section 5.2), are modelled as macromolec-
ular crowders, also at full-atom resolution. These molecules are ubiquitous
throughout almost all life forms and often present in high abundance (Ishi-
hama et al., 2008), hence they are thought to be representative of a typical
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crowded macromolecular environment. The crowded simulations have a
total protein concentration of 3.96mM, corresponding to between 168gL−1

and 252gL−1, of which 149gL−1 are crowders. This is comparable to the
estimated in vivo macromolecular concentration 300gL−1 (Zimmerman and
Trach, 1991).

Time-course data, i.e. the retention time of protein-protein encounters
formed during the simulations, are collected to produce a contact frequency
map for the protein interaction of interest. A contact heatmap map, for the
receptor of a receptor-ligand pair, is constructed as follows:

For all interaction poses found in the simulations, the receptors are su-
perimposed, carrying over ligand centres of mass positions for all receptor-
ligand interactions during the complete simulation time course. This pro-
duces a ”point cloud” over the representative receptor surface. Since each
point represents the location of a ligand relative to its closest receptor at the
time it was recorded, positions recorded each timestep (1 ps), both the num-
ber and the retention time (relative hovering) of ligands as they make con-
tact with the receptor can be visualised, see Figure 3.2. From this cloud, and
the recorded full atom positions, the total number of receptor-ligand con-
tacts, across the complete surface of the receptor, can be easily represented
as a heat map, see Figure 3.3. To construct the equivalent heatmap for the
ligand, the above process is repeated, but with the ligands superimposed
carrying over the receptor centres of mass.

For the unusual case of CAPRI Target 43, described in detail below, dis-
sociation simulations were also carried out for its 21 designed complexes to
investigate their retention under in vitro conditions; see Section 4.2.3 for a
detailed description of the simulation protocol for complex dissociation.

3.2.2 SwarmDock

A new flexible docking method developed within our laboratory called,
SwarmDock (developed by Mr Iain Moal), was used to perform docking
studies, guided by the contact frequency heatmaps generated from BioSimz.
The method is named after the particle swarm optimisation (PSO) algo-
rithms (Kennedy and Eberhart, 2002), from which the docking method is
derived. For any optimisation problem, PSO employs a “swarm” of agents,
each of which discovers and shares the local optimal solution of the poten-
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Figure 3.2: A ligand cloud density map. The centre of mass of the ligand at each timestep
is plotted as a cyan dot; a non-homogeneous cloud is formed by the aggregation of large
numbers of dots in certain regions. Spheres hovering above the receptor molecule are
equally distributed around the receptor surface at a given distance. The spheres are
coloured by the density of cyan cloud in its vicinity: the more red its colour is, the higher
the density of the ligand cloud in that region; for blue spheres, it’s the opposite. White
spheres have a moderate density of ligand centre of mass cloud in its vicinity.

Figure 3.3: A heatmap for simulation surface contacts. CAPRI Target 37 is used as an ex-
ample here: the long double-stranded α helices are selected as the receptor (displayed as a
solid molecular surface), the ligand, a globulin protein, with its backbone represented by
a cyan tube, is positioned at the experimentally determined binding site. The receptor’s
surface is coloured with the frequency of contacts made by the ligand in the simulations.
A strong anchoring spot and a weaker contacting region are visible in the correct binding
region.
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tial surface it is travelling through. The movement of each agent through
multi-parameter space, on each iteration of the algorithm, is determined by
a combination of its own potential, as well as the potentials passed from
other swarm members. Therefore, a team of local minima searching agents
will ideally bear the power of searching for the global minimum, which rep-
resents the optimal solution to the given problem. SwarmDock uses a vari-
ant of the local best PSO, in which the search space consists of a Cartesian
coordinate space, a quaternion space for orientations and a set of confor-
mational space parameters for both interacting macromolecules. Currently,
the conformation space parameters are constructed from the first five nor-
mal modes (lowest frequencies) for each unbound protein, calculated using
the computer package ElNemo (Suhre and Sanejouand, 2004). A swarm of
”docking particles” then navigate through the above described parameter
space, searching for the global energy minimum between two interacting
proteins. The potential energy function used to guide the search consists of
VdW and electrostatic terms, with L-J parameters and partial charges taken
from the CHARMM19 forcefield (MacKerell et al., 1998a). A complete de-
scription of the algorithm, along with extensive benchmarking, has been
published elsewhere (Moal and Bates, 2010).

3.2.3 Filtering with Contact Frequency Maps

The ligand contact cloud maps (see Figure 3.2) from BioSimz simulations
indicate the probabilities of the likely binding interface over the complete
surfaces of each interacting protein. This information can then be used to
directly dock the two proteins. However, it is often the case that one protein
surface shows a more definitive heatmap than the other. To test whether the
information from just one heatmap can help enhance our docking algorithm
(SwarmDock), one contact frequency cloud for a protein of a complex pair,
usually the larger termed the “receptor”, is used to guide the docking of
the other protein, the “ligand”. A point in the cloud around the receptor is
one position of a ligand molecule at one timestep; as described above, the
density of the point cloud in any one particular region of space, is a product
of both the number of receptor-ligand interactions and their retention times.
For specificity and convenience, only points within certain cut-off distances
from the receptor surface are included. The minimum cut off is set to 3Å



Macromolecular Docking 90

and the maximum to the sum of the longest axis of the ligand plus 7Å.
Equally distributed points around the receptor, that are used as the start-

ing locations for the ensemble of ligands in each SwarmDock run, are then
superimposed onto the contact frequency point cloud. The equally dis-
tributed Swarmdock points are then scored to reflect the density of the sur-
rounding BioSimz trajectory points. A number of scoring schemes, similar
but varying on how the neighbouring points are weighed, were evaluated
and described in full in a recent publication (Li et al., 2010, Supporting In-
formation). The scoring scheme used here is that for each trajectory point in
the ligand cloud (a blue dot in Figure 3.2), the scores of the nearest 5 Swar-
mDock starting positions (coloured spheres in Figure 3.2) are incremented
by 1. For the BioSimz guided docking runs, only the top half of all starting
poses (half of the equally distributed SwarmDock starting points), accord-
ing to the respective scoring scheme, are selected for PSO and subsequent
docking steps; the remaining half are discarded as being unlikely to initi-
ate the formation of the specific complex. The effectiveness of the above
filtering approach is discussed below.

As an additional quality control for the effectiveness of filtering, the abil-
ity of BioSimz to locate the experimentally determined binding region, and
to ascertain whether more frequent and prolonged ligand interactions oc-
cur within the known binding region compared to non-binding regions. The
scores of the ten SwarmDock starting positions near the centre of mass of the
experimentally determined bound ligand pose were tested against the null
hypothesis that they are drawn from the same distribution as the other start-
ing positions, with an alternative hypothesis that the scores of the binding
region points are greater than the scores of the non-binding regions. Similar
tests were also used to test whether the scores of the binding region are sig-
nificantly lower than those of the non-binding region, an indicator that the
true interface is disfavoured during simulation.

3.2.4 Test Cases

For benchmark studies, a total of 26 X-ray crystal complexes, along with
the structures of their unbound components, were taken from the Protein-
protein Docking Benchmark 2.0 (Mintseris et al., 2005). These include
enzyme-inhibitor (1AVX, 1AY7, 1PPE, 7CEI, 1TMQ, 1EAW and 1HIA),
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enzyme-substrate (1EWY and 1E6E), antibody-antigen (1QFW, 1JPS, 1NCA,
1VFB, 1AHW, 1NSN, 1I9R and 1FSK), and signal-effector/receptor (1KTZ,
1GCQ, 1GRN, 1FQJ, 1BUH, 1KAC, 1ML0, 1QA9, and 1HE8) complexes. For
each complex, the larger of the binding partners is referred to as the recep-
tor and the smaller as the ligand. Only the unbound structures are used in
BioSimz for simulations and SwarmDock for docking.

3.3 Results

3.3.1 Signals at Binding Sites

Rigid-body LD simulations were run on all 26 test complexes. These trajec-
tories were used to score the SwarmDock starting positions. To test whether
the experimentally determined binding site region formed more frequent
and tenacious interactions than the other regions surrounding the receptor
during the time course of each simulation, one-tailed Wilcoxon rank-sum
tests were performed at the 5% significance level. For 12 of the complexes
(1KAC, 1KTZ, 1FQJ, 1E6E, 1EWY, 1AHW, 1GRN, 1BUH, 1VFB, 1FSK, 7CEI
and 1AY7), the 10 starting points nearest to the ligand centre of mass had
a significantly higher score than the remaining starting points further away
from the binding site. Further Wilcoxon rank-sum tests showed that, for
three of the complexes, the starting points near the binding site scored sig-
nificantly lower (P-values: 1I9R 0.002, 1EAW 0.003, and 1TMQ 0.036). Inter-
estingly, two of these, 1EAW and 1TMQ, involve a protrusion of one bind-
ing partner into a deep groove in the other, the formation of which cannot be
predicted by the current version of BioSimz since only rigid-body dynamics
can be performed; subsequent versions will include side-chain and limited
backbone flexibility. See also a general introduction of Wilcoxon rank-sum
test in the Appendix.

3.3.2 Filtered Docking

Two sets of SwarmDock runs were set up, one global, where the algorithm
was run twice from each starting position (a set of equally distributed points
around the receptor), and one filtered, also run twice, from half the starting
positions where the lowest scoring half were discarded (points scored as



Macromolecular Docking 92

0

20

40

60

80

100

120

140

160
1N

CA
1K

AC
1F

SK
1Q

FW
1A

Y7
7C

EI
1F

Q
J

1A
HW

1N
SN

1E
W

Y
1P

PE
1J

PS
1G

RN
1A

VX
1Q

A9
1H

E8
1B

U
H

1T
M

Q
1E

6E
1K

TZ T3
9

1V
FB

1G
CQ T4

0
1E

AW 1I
9R

1M
L0

1H
IA

T3
7

Filtered Ranks

Original Ranks

Figure 3.4: Rank improvement by filtering the docking (SwarmDock) starting points
using the ligand hotspots. Among the 26 test complexes, ranks of 22 were improved,
while 4 complexes failed to dock after filtering the starting points.

described above in section 3.2.3). The resulting structures were clustered
and ranked. The difference in rank between the global and filtered runs is
shown in Figure 3.4. The unfiltered runs successfully found the binding site
for all complexes. Upon filtering, the rank was improved for 17 of the struc-
tures and remained the same for five structures (four of which were already
in the top two), whereas four of the structures (PDB:1EAW, 1I9R, 1ML0, and
1HIA) did not find a successful docking hit after filtering. Of these, three
did not form specific encounter complexes (PDB:1EAW, 1I9R and 1HIA),
whereas the other was not detected by SwarmDock (PDB:1ML0).

To further test the validity of pre-filtering SwarmDock calculations, two
additional SwarmDock runs were set up, one global and the other filtered.
For the global docking, the algorithm was run twice from each starting
point. For the filtered docking, the algorithm was run four times from the
upper half of the points. The difference in number of successful docking hits
between the global and filtered runs, plotted against the Wilcoxon rank-sum
test P-values, is shown in Figure 3.5. The 12 complexes which have a sig-
nificantly more populated binding region all found the binding site more
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frequently by restricting the search space based on the BioSimz simulations.
Of the 11 complexes for which the binding site scored neither significantly
higher nor lower than the nonbinding region, five correctly docked more
frequently, five less frequently, and one found the binding site an equal
number of times. Of the complexes for which the binding site scores sig-
nificantly lower, 1TMQ docked less frequently after restricting the search
space, whereas the other two complexes (1I9R and 1EAW) failed to dock.
Therefore, filtering out half of the less encountered regions for the recep-
tor has yielded an overall positive outcome as long as a significant signal
is found in the initial BioSimz simulation. Even if a significant signal is not
present, our filtering process does not have a negative influence on the over-
all outcome by trimming off half of the initial docking starting positions.

3.3.3 CAPRI Targets

3.3.3.1 Targets 32 and 38

During the blind trial prediction period for these two targets, crowded sim-
ulations were performed on their unbound components, in addition to the
dilute setting. For both settings, the correct binding site was found, How-
ever, without the overcrowding proteins, three false positive sites were also
found, one of which was more prominent than the true binding region.
Simulation with external crowding molecules, however, removed one false
binding site altogether and significantly diminishes the strength of the two
other false sites, leaving the true binding region. Correspondingly, the p-
values for the non-crowded and crowded simulations are 0.354 and 0.025,
respectively, demonstrating a significant improvement in the enhancement
of the binding site by the inclusion of external crowding proteins. Similar
results were found for Target 38, the signal-effector complex of centaurin-α1
and KIF13B (PDB:3FM8), for which a homology model was built for KIF13B
FHA domain using the POPULUS server (Offman et al., 2008). In this tar-
get, the p-values for the crowded simulation was 0.057, again significantly
improved over p = 0.388 for the non-crowded simulation. Analysis and
discussion of the macromolecular crowding effect in general, are detailed in
Chapter 5.
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Figure 3.5: Significance test of the rank improvement. The x axis shows increasing
Wilcoxon p-values, indicating a decreasing trend of significance of data, while the y axis
records the difference in number of docked hits after filtering, as an indicative measure of
the contribution from filtering out the non-hotspot regions. All 12 complexes (red marks)
with significantly higher scoring binding regions correctly docked more frequently after
imposing a restricted search space. The three complexes (blue marks) with a significantly
lower scoring binding region performed better without restricting search space. For the
remaining insignificant (p > 0.05) cases, five found the binding site more frequently, five
less frequently and one equally frequently.
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Figure 3.6: Elimination of false positive sites upon macromolecular crowding. Swar-
mDock starting positions are plotted in spheres surrounding the receptor, coloured with
BioSimz contact cloud density. The red spheres corresponds to high contact density re-
gions. (A) shows the density map from simulation without environmental crowders,
where three false positive binding sites, b, c, d, are prominently visible. (B) is the same
density map from simulation with environmental crowders, where the false positive
binding site c was completely removed, while strengths of b, d were greatly reduced.
Meanwhile, the strength of the true positive site, a, is retained.

3.3.3.2 Targets 39 and 40

CAPRI Target 40 (PDB:3E8L) is a complex of the double-headed arrow-
head protease inhibitor and trysins. The protease inhibitor has two trypsin-
bound binding sites, one of which contains a characteristic cysteine-lysine-
isoleucine (CLI) protease inhibitor motif. This binding site is found in both
uncrowded and crowded simulations, with p-values of 0.016 and 0.003 re-
spectively. The other binding site is also found (with p-values of 0.159 and
0.169 for the uncrowded and crowded simulations), as shown in Figure 3.7,
however, the high scoring region is not directly above the binding region,
but to the side of it. A similar effect is seen for Target 39, the same binding
partners as Target 38, but with the KIF13B FHA domain in the bound con-
formation. The unbound binding partners, superimposed upon the bound
structure, are shown in Figure 3.8. Residues are coloured by the log of the
number of contact events collected during the simulations. Although the in-
terface residues do not make a significant number of contacts, the residues,
which make the most contacts, appear near to the interface, opposing each
other on both the receptor and the ligand. It would seem likely that the
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Figure 3.7: Dual binding sites found with BioSimz ligand binding cloud. The pri-
mary binding site of CAPRI Target 40, a, was found with the highest density of ligand
presence, calculated from a number of BioSimz simulations, shown here mapped to the
SwarmDock starting positions. The secondary binding site, b, also exhibited a moderate
increase in cloud density near the binding sites. Bound conformations for the two exper-
imentally determined binding sites are represented in ligand molecules shown in blue
cartoon display.

initial encounter complex is formed here, followed by rolling of the pro-
teins into the biological interface. This pattern, consistent with off-centre
encounter complex formation, followed by a short 2D diffusional search, is
also seen in the benchmark simulations for complexes 1BUH and 1QA9.

3.3.3.3 Targets 43 and 44

T43 and T44 are two rather unusual trials compared to most, if not all, previ-
ous CAPRI rounds. T43 contains 21 complex structures in which only one is
the real structure solved from crystallographic studies; all remaining com-
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Figure 3.8: The anchoring residues. Surface contact heatmaps, viewed from front and
back of the experimentally determined interface, for CAPRI Target 39, are displayed. The
true binding interface is represented by the black line drawn between the ligand and
the receptor. Region a is visibly the hottest spot for both ligand and receptor molecules,
which is proximal to the specific binding interface.

plexes are designed. For T44, all of the 21 complex structures given were
designed. The participating groups were asked to discriminate the crystal
(native) structure from the designed complexes in T43 and to rank the de-
signed targets in T44. All designed complexes were made available through
the Baker group from University of Washington, St Louis. The trials might
be part of the group’s de novo interface design efforts for proteins that do not
naturally bind.

By definition, T43 and T44 are two scoring-only targets, as the partici-
pants were not asked to alter the given structures. However, the difficulty
came with the diversity of the modelled structures – each target contains
several entirely different complex “families” rather than a set of different
poses or conformations of the same receptor and ligand. By visual classifi-
cation, T43 includes 5 receptors families and 21 different ligands, while T44
includes 4 receptor families with various ligands. In order to make the right
judgement not only within a complex family but also in between different
families, potential energy based scoring functions have to be used.

BioSimz simulations and SwarmDock docking/scoring methods were
performed on all of the given structures. Table 3.2 and 3.3 present the scor-
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Rank Model SDrank Lrmsd Csize Bclus Arrank Alrank Drank

1) 10 1 1.046 58 Yes 3 1 17.0888
2) 4 1 1.083 19 No 0 0 18.0174
3) 6 1 0.354 74 Yes 3 1 15.632
4) 8 3 1.061 93 Yes 0 0 17.2262
5) 9 2 1.267 45 Yes 0 0 17.6508
6) 5 20 0.854 37 Yes 3 1 17.9287
7) 1 5 0.410 15 Yes 0 1 16.9812
8) 3 8 0.504 17 Yes 0 1 16.0287
9) 11 5 1.185 31 Yes 0 2 17.4597
10) 2 5 0.560 16 No 0 0 16.9510
11) 19 79 0.308 17 No 3 3 17.1189
12) 14 27 0.708 14 No 0 0 17.7264
13) 15 112 0.787 12 No 3 0 18.9913
14) 7 21 0.614 20 No 0 2 15.4912
15) 21 84 1.894 20 No 3 3 17.1113
16) 16 N/A N/A N/A N/A 3 0 19.5187
17) 17 204 1.130 9 No 3 0 18.2994
18) 12 12 6.938 16 No 0 0 18.2452
19) 18 107 2.695 12 No 0 0 19.7383
20) 13 171 2.532 3 No 0 1 17.7149
21) 20 N/A N/A N/A N/A 0 1 16.5006

Table 3.2: Target 43 scoring sheet. Two in-house algorithms were used to rank these
models: (1) the SwarmDock flexible docking program using normal modes with particle
swarm optimisation; (2) the BioSimz package, using rigid-body Langevin dynamics for
simulating crowded macromolecular environments. The criteria shown are for Swarm-
Dock rank (SDrank), ligand RMSD in Å(Lrmsd), cluster size (Csize, with Bclus indicating if
the cluster containing the model is the largest cluster). Arrank and Alrank are ranks for
chains A and B respectively, determined using BioSimz. Drank is a score based on model
dissociation studies using the BioSimz algorithm.

ing details for the two targets.
A full description of the approach used to rank structures for Target 43

is given here as it further exemplifies the utility of combining the BioSimz
and SwarmDock algorithms. Firstly, all the models were separated and re-
docked globally using SwarmDock. SwarmDock was run multiple times,
searching overlapping patches on the surface of the receptor, from a set of
equally distributed points around the receptor, which collectively gave an
unbiased coverage of potential solutions. The structures found in these runs
were minimised, clustered and ranked. All but five of the complexes (No. 4,
6, 8, 9 and 10) were discarded on the basis that they either did not dock



Macromolecular Docking 99

Rank Model SDrank Lrmsd Csize Bclus Arrank Alrank Drank

1) 1 1 1.167 69 Yes 0 0 16.3744
2) 6 32 1.104 36 Yes 3 2 19.7654
3) 8 15 0.394 15 Yes 0 0 19.1811
4) 4 25 0.797 22 No 0 0 16.9905
5) 5 23 1.230 22 Yes 0 0 18.5996
6) 7 86 1.335 14 No 0 0 16.7699
7) 3 150 0.655 20 No 0 2 17.1649
8) 18 121 0.475 12 No 2 1 17.6775
9) 2 115 4.856 12 No 3 0 18.5311
10) 13 55 0.974 6 No 1 0 17.2667
11) 15 107 1.663 7 No 1 3 18.3724
12) 20 165 0.762 9 Yes 1 0 17.382
13) 11 152 0.666 2 No 3 0 18.4147
14) 21 146 1.936 7 No 0 0 18.2067
15) 16 239 1.277 5 No 0 0 16.7891
16) 19 184 1.063 7 No 0 2 19.0746
17) 9 220 9.044 2 No 2 2 18.829
18) 14 107 5.653 4 No 0 0 19.3307
19) 10 90 7.630 1 No 0 0 18.2486
20) 12 N/A N/A N/A N/A 1 0 19.2216
21) 17 N/A N/A N/A N/A 0 0 17.5926

Table 3.3: Target 44 scoring sheet. Two in-house algorithms were used to rank these
models: (1) the SwarmDock flexible docking program using normal modes with particle
swarm optimisation; (2) the BioSimz package, using rigid-body Langevin dynamics for
simulating crowded macromolecular environments. The criteria shown are for Swarm-
Dock rank (SDrank), ligand RMSD in Å(Lrmsd), cluster size (Csize, with Bclus indicating if
the cluster containing the model is the largest cluster). Arrank and Alrank are ranks for
chains A and B respectively, determined using BioSimz. Drank is a score based on model
dissociation studies using the BioSimz algorithm.
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or had an anomalous ligand RMSD (RMSDs calculated between potential
ligand pose solutions and the the experimentally determined ligand dock-
ing pose), rank or cluster size. At this stage, models 4, 6 and 10 remained
the most promising candidates, since as for over 70% of the docking bench-
mark 2.0, they docked with a rank of 1. A single large cluster was obtained
for each of models 6,8,9 and 10, and this too, from extensive SwarmDock
benchmarks, is a good indicator of a native bound complex conformation.

To distinguish between these models, association and dissociation dy-
namics were studied using the BioSimz package. The 21 receptor and lig-
and proteins were separated from their respective complexes and put into
BioSimz simulations performing rigid-body LD for association. Frequen-
cies at which encounter complexes formed were then monitored against the
given complex conformation. Of the five promising models, two of them
(No. 10 and 6) formed frequent encounter complexes in keeping with the
bound structure; as the benchmark studies showed, this is usually indica-
tive of a genuine, stable, protein-protein interaction.

All model complexes were then put into BioSimz, once again perform-
ing LD, but this time starting from a complex state. Multiple runs were per-
formed to investigate their stability in retaining the conformation through-
out a certain time period. In this test, Model 10 of T43 performed reasonably
– there were a number of trajectories where the complex remained together
with a low RMSD to the initial starting complex conformation, and for a
relatively long period of time (see Figure 3.9). Model 6, however, dissoci-
ated rapidly compared to the other models and known bound structures,
see Figure 3.9, trajectory coloured red. Meanwhile, the average RMSD path
of Structure No. 6 displays larger deviation in step sizes, as the curve is
more “wiggly” than that of Structure No. 10. This demonstrates that the lat-
ter complex may have a “rougher” binding free energy landscape, making
it less of a natural binding pair. On the contrary, the curve of No. 10 ap-
pears relatively flat, implying a much smoother process of dissociation (and
therefore, association).

Hence, T43 Model 10 was selected as the top choice since, out of the
21 models, it was the only one for which the rank, ligand RMSD, cluster
size, association dynamics and dissociation dynamics, were typical of a low
energy, and in terms of association/dissociation kinetics, robust, protein-
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Figure 3.9: Average RMSD plotted for two CAPRI T43 models, over the time course of
a BioSimz dissociation simulation. Two structures, No. 10 and 6 are plotted here. Struc-
ture No. 10 (blue line) has a greater tendency to retain its native binding conformation
through the simulation course, compared to Structure No. 6 (red line).

protein complex. Later, the selection of Model 10 was verified by the Baker
group to be indeed the crystal complex. For T44, however, many of the de-
signed complexes (1, 6, 7, 9-11, 13) failed to express in the bacterial system;
the only one that showed weak binding signs was Complex No. 2, which
according to BioSimz scores (Arrank and Drank in Table 3.3) also displayed
signs of a moderate binding affinity. Overall, the BioSimz+SwarmDock ap-
proach has demonstrated that throughout the blind trials of CAPRI T43 and
T44 that, at least for crystal complexes, a signal could be found between
genuine and false-positive (or currently, the designed) interfaces between
proteins binding partners.

3.4 Discussion

Macromolecular docking is an important problem that has perhaps been
perceived, by molecular biologists, to be simpler than it actual is, especially
considering the geometric and physicochemical complexity of molecular
surfaces, as well as the complexity associated with the crowded and hetero-
geneous environments the interactions under study are embedded in. Tra-
ditional docking methods have focused on finding the exact pose two bind-
ing partners exhibit in crystal complexes; under crystal packing conditions,
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protein interactions more often than not have one universal conformation,
however, this does not mean that all the bound interacting pairs reached the
optimal lowest-energy conformation before becoming super-saturated and
upon crystallisation. Therefore, as indicated in a number of recent studies,
such as the one conducted by Nussinov group (Tsai et al., 2008), an energet-
ically optimal binding plane may exist for natural interactions rather than a
single lowest energy binding conformation. This way, the imperfections of
protein-protein binding is introduced; therefore, when considering the ener-
getics of protein-protein interactions, it will be important to investigate how
protein interactions settle onto this plane, and which paths through confor-
mational space they took to achieve this. The solution of these problems is
related to, but far more meaningful than, a one-off pursuit of working out
the crystal complex conformation.

In this study, both BioSimz and SwarmDock packages have resorted to
dynamics-based motion schemes mimicking the binding process. While
a SwarmDock ligand agent tries to benefit the interface searching process
from collective intelligence gathered from its neighbours, the total flock of
them, when arriving at the receptor surface, resemble such a binding plane,
on which each ligand agent occupies a locally energetically optimised pose.
Although for the sake of classical docking experiments, the PSO algorithm
still needs to settle at one lowest-energy point; it is this author’s view, that
more information could be retrieved, with respect to the possible binding
plane, through the PSO simulations.

Currently, BioSimz emulates this optimal energetic binding plane
through simulation of macromolecular interactions until the stage of en-
counter complex formation. Figure 3.5 implies that a preferential binding
region can be observed, with statistical significance, in many of the interac-
tion pairs in our benchmark set; this may be further improved by optimis-
ing the scoring scheme. As the diffusion and encountering dynamics for the
described test set emulate real in vitro environments, preferential regions
(”hotspots”) may resemble the real contact regions for the binding partners.
For many protein-protein interactions, it is intuitive that these regions will
fully enclose the crystal-complex binding interface; again this is in agree-
ment with Figure 3.5, in which 20 out of 27 complexes displayed some level
of hot-spot/binding site correlation. For CAPRI T40, we even have found
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both of the reported binding sites on the receptor in the right affinity or-
der. However, sometimes BioSimz does not provide a positive correlation
between hotspot generation and the native binding site. Nevertheless, a
careful inspection of hotspots can potentially identify proximal association
interfaces to the native, interfaces that initially form before conformational
rearrangements occur to form the final complex. For example, the result for
CAPRI T39 (Section 3.3.3.2 and Figure 3.8) from a set of BioSimz simulations
indicated a neighbouring region, as opposed to the area directly overlap-
ping the binding interface, as the hottest spot for encounter complex forma-
tion. Indeed, visual inspection of residues in the hottest regions of both the
receptor and ligand, revealed complementary charged residue pairs, that
may act as the first contact points. Interestingly, this observation supports
a previously proposed binding mechanism (Blundell and Fernandez-Recio,
2006), see Figure 3.10, where the interacting proteins spin and roll over each
other’s surfaces before locating the native binding site. In the study report-
ing the data from which this mechanism was proposed (Tang et al., 2006),
the authors suggested that these brief encounters, not necessarily bound
near the final, established interface, might control not only the kinetics of
the assembly process, but also the way the complex is put together. In our
view, CAPRI T39 may be a sound example of such a binding process.

3.5 Conclusion

A combined simulation/docking approach to understanding and predict-
ing protein-protein interactions has been employed. For approximately
half of the complexes tested, rigid-body Langevin dynamics is sufficient
to demonstrate significantly enhanced encounter complex formation at or
near the biological interface. We have also successfully located the correct
binding region for a number of CAPRI targets and particularly, we have
correctly identified the native complex from a cluster of false positives and
won the challenge. The protein-protein interaction simulations may also
give mechanistic insights into the docking process. Moreover, this infor-
mation can be used to restrict search space for computational docking and
enhance docking results. For the other half, most complexes did not display
a significantly diminished docking performance. Based on our predictions
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Figure 3.10: The possible binding path through a transient complex. Equilibrium a is
the formation of transient encounter complexes by nonspecific collisions, guided mostly
by electrostatic interactions; b indicates that many encounter complexes separate rapidly;
in c, some productive encounter complexes reorientate and come closer to the final, spe-
cific orientation, guided mostly by desolvation, as water molecules move away from the
protein surfaces. Equilibrium d leads to the formation of the specific complex, with fi-
nal fitting of interacting surfaces. Illustration taken from Blundell and Fernandez-Recio
(2006, Figure 1).

for several blind trial CAPRI targets, we have been able to observe a mode
of complex formation that previously could only be hypothesised: initial
encounter complex conformations may form that are proximal to the native
binding region, then, through a process of two-dimensional searching, the
binding partners roll and spin across each other’s surfaces to locate the true,
lower energy, native binding conformation.

The protein-protein docking studies described here point to the impor-
tance of detailed investigations into encounter complex formation, and their
associated kinetics, if we are to fully understand macromolecular associa-
tion/dissociation processes. The research tool developed for this purpose,
BioSimz, after extensive benchmarking, appears to perform well. The next
chapter explores further the dynamics and kinetics of protein-protein inter-
actions, made possible by the use of this tool.



Chapter 4

Interaction Dynamics and Kinetics

In the context of macromolecular docking, protein-protein interactions are
often described as simple ”binary switches”, either forming stable com-
plexes or nonspecific contacts. This rather static and “frozen” (Schreiber
et al., 2009) view of macromolecular complexes probably has its origins in
the more deterministic studies of macromolecular structure, such as X-ray
crystallography, rather than from the wider molecular biology community:
illustrations of signalling transduction pathways tend to connect cascading
proteins with either a “facilitating” or an “inhibiting” arch, while in crystal-
lography the protein complex in question is either successfully obtained, or
failed to crystallise.

The studies of interaction dynamics and kinetics, particularly those of
macromolecular association and dissociation processes, added new dimen-
sions in dealing with the problems of protein recognition and interaction.

4.1 Introduction

Protein interactions have a large diversity with respect to the biological
functions they facilitate; therefore, it is naturally expected that these interac-
tions bear the same diversity in their association and dissociation processes.
For example, enzyme inhibitors usually bind with their receptors with very
high affinity and stability, such as BPTI (bovine pancreatic trypsin inhibitor)
and barstar (inhibits ribonuclease, barnase). The fast and stable binding
of specific inhibitors to their enzyme receptors ensures these enzymes will
not function at unnecessary places and thereby cause unwanted damage,

105
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such as degradation of essential proteins or RNAs. In birds and mammals,
antibodies also bear high binding affinities with their respective antigens;
the loop regions on the variable (V) chains of an antibody are accounted
for the specificity in binding. However, although antibody-antigen (Ab-
Ag) binding is highly specific, a particularly fast binding response is not
required. Therefore, the association speed of an Ab-Ag interaction is usu-
ally several orders of magnitude less than that of enzyme-inhibitor asso-
ciations, while its dissociation rate is usually slow, comparable to that of
enzyme-inhibitors. There is a further class of protein-protein interactions,
namely signalling-pathway interactions, that have quite the opposite bind-
ing/unbinding characteristics to Ab-Ag binding, for example, the interac-
tions between Ras and its effectors. Ras is a small GTPase that controls a
number of intracellular signalling processes, and is a central binding part-
ner of upstream and downstream regulatory proteins such as Grb2, Raf
and G-proteins. The binding of Ras to PI3K, a kinase associated with cell
growth, has a relatively high association rate constant as well as a high dis-
sociation rate constant. This means that both members of the protein pair
recognise each other rapidly, however, compared to enzyme-inhibitor and
Ab-Ag complexes, the resulting complex also dissociates rapidly. It par-
tially explains the rather promiscuous binding characteristics of signalling
pathway proteins; their need to frequently bind and unbind with different
partners to regulate cellular processes.

4.1.1 Diffusion

4.1.1.1 Translational diffusion

In a dilute solution, proteins undergo both translational and rotational dif-
fusion before reaching at each other’s binding interface and forming a com-
plex. Translational diffusion coefficients for typical proteins span a spec-
trum of one order of magnitude, from 11.8 × 10−11m2s−1 for a 14.4 kDa
lysozyme, to 1.20 × 10−11m2s−1 for pyruvate dehydrogenase (3.78 MDa).
Compared to macromolecular association, in vitro diffusion of proteins and
other macromolecules attracts relatively little attention, as it is not yet per-
ceived to be of major biological interests. However, the capability to repro-
duce diffusion in vitro is a precondition for any macromolecular simulation
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software designed to study binding kinetics. It is therefore important to be
able to reproduce the quoted spectrum of diffusion coefficients for proteins,
taking account of their wide variety in both shape and weight.

The fundamental mechanism of diffusion, or Brownian motion, was es-
tablished a century ago (Einstein, 1905; Smoluchowski, 1917); the transla-
tional diffusion coefficient Dtr, can be described using the Stokes – Einstein
relationship

Dtr =
kBT

6πηRS
, (4.1)

where RS is the Stokes radius of the diffusing particle (solute) and η is the
solvent viscosity, determined by the type of solvent molecules and temper-
ature of the system. However, Eqn. 4.1 only produces realistic results when
the diffusing particle is a perfectly smooth sphere; for rod-shaped objects or
those with rough surfaces, this relatively simplistic treatment may have a
significant bias.

Cytoplasmic proteins are mostly spherical molecules; those that are not
spherical tend to be at least ellipsoidal. Therefore, the radius of gyration is
often used as an approximation of a protein’s Stokes radius. For a protein
consisting of N atoms, its radius of gyration is expressed as

R2
g

def=
1
N

N

∑
i=1

(ri − rcm)2 , (4.2)

where rcm is the position vector of the centre of mass of the protein, and ri

is the position vector of atom i. Tyn and Gusek (1990) calibrated Dtr predic-
tions on a dataset of 198 proteins (from 86 different types) with experimen-
tally measured diffusion coefficients, and proposed the following empirical
equation,

Dtr =
5.78× 10−15T

ηRg
, (4.3)

which yielded a accuracy of 87.4% at ±20% accuracy. However, some rod-
like proteins need to have their calculated Dtr adjusted in order to achieve
the claimed correction rate. The work of He and Niemeyer (2003) eliminated
this requirement by introducing the correlation with molecular weight, re-
sulting in
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Dtr =
6.85× 10−15T

η
√

M1/3Rg

, (4.4)

where the square-root term accounts for the compensation of drift from the
Stokes radii for molecules that have an irregular shape, such as ellipsoidal
or cylindrical. The authors fitted and benchmarked Eqn. 4.4 with 203 ex-
perimentally measured diffusion coefficients, and achieved a rate of 86.7%
in correct predictions within a ±15% deviation error limit, and without the
need of special adjustment for irregular-shaped proteins.

4.1.1.2 Rotational diffusion

Compared to translational diffusion, rotational diffusion has been reported
less in studies of protein dynamics. Molecular dynamics packages need not
deal with rotational diffusion, as the objects in motion are spherical atoms;
diffusion models that treat proteins as spheres require no rotational diffu-
sion either. However, the accurate reproduction of rotational diffusion dy-
namics is a key pre-condition to the investigation of the orientational adjust-
ments made by two proteins upon forming an encounter complex. Anal-
ogous to translational Brownian motion (see Section 2.1.1), the rotational
diffusion coefficient can be expressed in the following Langevin equation

I
dω

dt
= −ζrotω(t) +

N

∑
i=1

Pi(t) + Brot(t), (4.5)

where I is the moment of inertia with respect to the rotating centre, w is the
angular velocity, Pi is the torque exerted on the i-th particle with respect to
the rotating centre, and Brot(t) is a three-dimensional Wiener process, the
one-dimensional form of which is written as

< Brot(t) > = 0, (4.6)

< Brot(t)Brot(t0) > = 2kBTζrotδ(t− t0). (4.7)

Note that the rotational Langevin equation has the exact same form as
the translational, only with changes of notation to their angular equivalent.
The average thermal angular velocity is
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< |ω(t)| >=

√
3kBT

I
. (4.8)

However, the rotational diffusion coefficient, Drot, is less used in evalu-
ation of the random angular deviation of a molecule compared to Dtr. This
is because Drot, measured in unit of rad2s−1, has periodical boundaries at
±2π. It is apparently difficult to measure Drot by angular displacements
(−2π < θ < 2π) over unit time periods, since such displacements are peri-
odical. A rotational relaxation time τ, defined as the average time required
for the molecule to be displaced from its original orientation by a mean an-
gle θ0, is more frequently used for benchmarking rotational diffusion. For
typical fluorescence polarisation measurements,

θ0 = arccos
(

e−1
)

. (4.9)

Without loss of generality, assume the rotating object (molecule) repre-
sented in Eqn. 4.5 contains a dipole, on which the external torques P are
exerted, from a single field that has strength E, we have

P = µn× E, (4.10)
dn
dt

= ω× n, (4.11)

where n is a unitless directional vector and µ is the dipole moment. The
rotational friction coefficient ζrot for a sphere is

ζrot = 8πηr3, (4.12)

which suggests the rotational friction is generally much larger than its trans-
lational equivalent for molecules of large radii, such as proteins. Therefore,
it can be assumed that the rotational Brownian motion is non-inertial and
Eqn. 4.5 can then be re-written as,

dn
dt

=
Brot(t)× n

ζrot
+ µE · (1− n× n). (4.13)

The general Smoluchowski diffusion equation is expressed as
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∂p
∂t

+∇ · (jd + j f ) = 0, (4.14)

where p is the distribution function in rotational coordinate space, jd is the
current density due to diffusion and j f is the current density due to the field
E. Combining this equation with the re-organised Eqn. 4.13 gives

jd = −Drot∇f, (4.15)

j f = f (dn/dt) = µ
ζrot

E · (1− n× n) f . (4.16)

The solution of Eqn. 4.16 (Margenau and Murphy 1943, Section 5.2-5.4,
Mazo 2009, Section 15.1) introduces a function g(t) of the form

dg
dt

= −2kBT
ζrot

g, (4.17)

which in turn has the solution

g = e−t/τD , (4.18)

where

τD =
ζrot

2kBT
=

1
2Drot

. (4.19)

is the Debye relaxation time. The second equality is derived from the Stokes-
Einstein relationship.

Other forms of relaxation times are also quoted, such as the orientational
relaxation time (τ2) measured through fluorescence anisotropy and nuclear
magnetic resonance (NMR) experiments. It has also been shown and veri-
fied that

τ2 '
τD

3
=

1
6Drot

(4.20)

in which the equalisation applies to spheres (Ixx = Iyy = Izz), and the ap-
proximation applies to asymmetric tops (Ixx 6= Iyy and/or Iyy 6= Izz) (Sack,
1957; Ford et al., 1979; Coffey et al., 2002).

Actual measurements of Drot and τ2 for molecules of various sizes are
regularly reported from experimental studies using fluorescence polarisa-
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tion and NMR, although for proteins, the relevant measurement data are
not frequently reported. Typical values of τ2 vary greatly depending on the
size and shape of the diffusing molecules. For example, τD of liquid chlo-
roform (CHCl3, 119Da) is 6.4ps (τ2 = 2.13ps) (Coffey et al., 2002), while
a mid-sized protein, concanavalin A (51.3kDa), has τ2 measured at 58ns
(Inbar et al., 1973). A larger protein, aspartate aminotransferase (89.5kDa,
sedimentation coefficient s = 5.5S) was determined to have a τ2 of 130ns
(Churchich, 1967), which is approximately 20,000 times longer than that
of chloroform molecules. The same study also suggested that for a 5kDa
protein segment, τ2 ≈ 9.0ns. More interestingly, the study of Schuldiner
et al. (1975) showed the significant changes in τ2 that can occur for a
small-molecule substrate before and after binding to its specific enzyme.
Free (unbound) 2-(N-dansyl)aminoethyl β-D-thiogalactoside (dansylgalac-
toside, DG2, 533Da) molecules were measured with τ2 = 660ps, while the
same relaxation times for nonspecifically and specifically bound molecules
were measured at 21.6ns and 150.0ns, respectively. The receptor enzyme
in the above study, lactose permease (LacY), is a globular protein sized of
93.0kDa. It becomes apparent from the authors’ data that rotational diffu-
sion of DG2 was partially restricted, allowing for a loose, nonspecific, en-
counter with LacY. The final complex of the enzyme and substrate DG2,
however, does not allow relative rotational movement between them, as the
relaxation time for bound DG2 is comparable to a protein of similar size,
such as the τ2 of the separately studied aspartate aminotransferase. This
implies that the final binding is as tight as a single covalently bonded struc-
ture; a much later structural study verified and revealed that lactose binding
occurs within a deep cavity of LacY, resulting in the substrate molecule be-
ing highly restricted it its ability to translate or rotate in its bound position
(Abramson et al., 2003).

A later study to those discussed above, based on the hydrodynamic
properties of proteins, reviewed and computationally predicted Dtr and Drot

for 13 proteins from 6kDa to 230kDa, using their own computer program,
HYDROPRO, on atomic-resolution models (Garcia de la Torre et al., 2000);
this was the successor to their earlier attempt to calculate rotational diffu-
sion coefficients using a bead model (Garcia de la Torre et al., 1987).
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4.1.2 Association

The association and dissociation of biomacromolecules are dynamic pro-
cesses resembling the chemical combination and decomposition reactions,
albeit without the formation and deformation of chemical bonds. Therefore,
representation and theories for macromolecular complex formation can also
be borrowed from chemical reactions that describe small molecules. One of
the more accepted representation of macromolecular interaction is as fol-
lows

A + B
k1←−−→

k−1
A : B

k2←−−→
k−2

AB, (4.21)

where A : B denotes the “intermediate state” of the binding partners and
AB is the final complex. This equation represents a two-stage process, in
which the first stage involves diffusion and collision of molecules A and B,
and the second stage covers the transition of the encounter complex A : B
into the established complex AB by overcoming a high-energy transition
state (Eyring, 1935). The observable rate constants are accordingly calcu-
lated as

kd =
koff

kon
,

kon =
k1k2

k−1 + k2
≈ k1,

koff =
k−2

k1
,

where kd is the equilibrium binding constant, kon is the association rate con-
stant, and koff is the dissociation rate constant. The association rate con-
stants (kon) for protein-protein interactions normally vary between 102 and
109M−1s−1, while the dissociation rate constants (koff) vary between 10−6

and 102s−1. As was explained in Section 2.1.1, the physical nature of dif-
fusion can be described by the Langevin equation. A basal collision rate
constant,

k0
on = 105 ∼ 106M−1s−1, (4.22)
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Figure 4.1: Wide spectrum of association rate constants. The red vertical line marks the
start of the diffusion-controlled regime. The shaded range marks the absence of long-
range forces. Illustration taken from Schreiber et al. (2009, Figure 1).

can therefore be computed based on Langevin diffusion for spheres at the
size of a normal protein (r = 20 ∼ 30Å) (Zhou, 1997; Schlosshauer and
Baker, 2004). For proteins that have kon < k0

on, the reaction rates are said to
be limited by conformational changes; for proteins that have kon > k0

on, the
rates are diffusion controlled. An illustration of the wide spectrum of kon

values is shown in Figure 4.1.
A noticeable approximation in Eqn 4.22 needs to be taken into account

when calculating kon; the assumption that k2 � k−1 under normal condi-
tions, implying the probability of the state transition from A : B to AB is
far larger than the probability that the encounter complex will revert back
to the standalone binding partners. Clearly, this condition is only met when
kon is diffusion-limited. Accordingly, all of the proteins that have been re-
ferred to or investigated in this study do have an experimental kon above the
basal rate k0

on. Proteins that have slower binding processes (kon < k0
on) are

most often limited by their need to undergo large internal conformational
changes, and are thereby out of scope for the kinetic studies carried out for
this chapter.

The first attempt into deriving the theoretical association rate constant
was to follow Smoluchowski’s theory on reaction kinetics of two spheres
(Smoluchowski, 1917),
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k0∗
on = 4πDr, (4.23)

where r is the Stoke’s radius of the solute and D is the (translational) dif-
fusion coefficient. When considering the interaction potential between the
two spheres, the above equation leads to an increased rate constant, as was
initially described by Debye (1942),

k0∗
on(a) = 4πD

(∫ ∞

a
exp

(
U(r)
kBT

)
r−2dr

)−1

, (4.24)

where U(r) is the interaction potential energy, kB is the Boltzmann con-
stant and T is the temperature. Evaluation of this integral with a = 20Å and
D = 2× 10−7Å2ns−1 gives a basal rate k0∗

on = 6× 109M−1s−1, which is ap-
proximately three to four orders of magnitudes larger than the previously
cited basal rate k0

on (Schreiber et al., 2009). It is apparent that the difference
is due to the specific directional requirement for proteins to form a complex.
However, by counting only protein-protein interactions in the correct bind-
ing direction, which approximately covers an area spanning 5◦ on the arc of
each protein’s sphere representation, one obtains a 106-fold reduction of the
theoretical basal rate. The disparity between the corrected k0∗

on and the sug-
gested k0

on attracted an early investigation using Brownian dynamics simu-
lations, in which the authors suggested there might be multiple hits per col-
lision with slightly twisted (rotated) orientations each time, which leads to
quick resampling of the collision directions thereby increases k0

on (Northrup
and Erickson, 1992). However, these estimations, based on Smoluchowski’s
and Debye’s approximated diffusion and reaction models, neglected all de-
tail concerning molecular surfaces; the subsequent explanation of compen-
sation by multiple hits per collision was also based on a spherical approxi-
mation for each interacting protein. In this simplified case, the roughness of
molecular surfaces, the short-range interaction forces, as well as desolvation
effects, are neglected all together. Hence, the speculation on rate compensa-
tion by rotational movements was still subject to a thorough investigation
employing more comprehensive simulation methodologies.

To date, there have been two classes of algorithms proposed for di-
rectly estimating the diffusion-controlled association constants between two
molecules, taking into account external potential functions. The first is a
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absorbing
boundary

b surface

q surface

VRR
reaction
region

Figure 4.2: Boundary conditions of the Northrup and Zhou algorithms for calculation
of kon. The boundary conditions used in the algorithm of Northrup et al. (1984) was
illustrated in green text, while the boundary condition used by Zhou (1990) is presented
in red text. See main text for detail description of both algorithms.

distance-based scheme, proposed by McCammon and coworkers (Northrup
et al., 1984), which expresses

kon = 4πDbS∞, (4.25)

given

S∞ =
S

1− (1− S)kon(b)/kon(q)
(4.26)

where kon(b) and kon(q) are calculated by Eqn 4.24. The factor S is the frac-
tion of encounters that satisfy the boundary conditions for formation of a
native complex. In order to correctly parameterise the equation, initiation
and termination boundaries b, q (q > b), should be set as far from the re-
ceptor centre as possible, thereby eliminating the influence from long-range
potentials from being counted into the basal rate (see Figure 4.2).

The second method, based on reaction region volume VRR (see Figure
4.2), was proposed by Zhou (Zhou, 1990). In his treatment, the association
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rate constant for diffusion-controlled binding is given by,

kdiff
on = γVRR exp

(
−〈U〉∗

kBT

)
S

1− S
, (4.27)

and for transition-state controlled binding by

kreact
on = γVRR exp

(
−〈U〉∗

kBT

)
. (4.28)

In both expressions, < U >∗ is the average interaction energy through-
out the encounter complex stage. Given the assumption that all encounters
within S will settle into final complexes according to the second equilibrium
reaction of Eqn. 4.21, kdiff

on can be written as a function of the basal rate

kdiff
on = k0

on exp
(
−〈U〉∗

kBT

)
, (4.29)

where

k0
on =

γVRRS
1− S

. (4.30)

4.2 Methods

4.2.1 Diffusion

BioSimz simulation protocol for protein diffusion follows the Langevin
equations for translational and rotational Brownian motion (Eqns. 4.5 and
2.24). For each of the simulated proteins, their translational friction coeffi-
cient ζtr is calculated from the protein’s diffusion coefficient, which is in turn
predicted based on the protein’s radius of gyration and molecular weight
(He and Niemeyer, 2003). Therefore,

ζtr =
kBT

Dpred
, (4.31)

given by the Einstein relationship. The rotational friction coefficient, ζrot, is
computed using the following procedures. Given the Stokes’ law for rota-
tional motion of a sphere (Brilliantov and Krapivsky, 1991),

ζrot = 8πηr3, (4.32)
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and the Einstein relationship (exists also for rotational Brownian motion)
for spheres,

Drot =
kBT
ζrot

, (4.33)

we have

Drot =
kBT

8πηr3 =
kBT
6ηV

=
kBρ

6
· T

Mη
, (4.34)

where V is the volume of the diffusing body (spherical) and ρ, M are the
density and mass of the diffusing body respectively. Clearly, the result of
Eqn. 4.34 reduces to a constant value for objects of a similar density, such as
proteins. Therefore, it is possible to obtain a linear regression of Drot with
respect to T/Mη using known Drot and τ2 from molecules of varying sizes.
Eqn. 4.34 was fitted to the experimental Drot reported in (Garcia de la Torre
et al., 2000), yielding the linear relationship,

Drot,pred = 0.0856 · T
Mη

. (4.35)

Predicted rotational diffusion coefficients can then be used to work out
friction coefficients, ζrot, using the Einstein relationship.

Simulations are thereby performed with both ζtr and ζrot, predicted from
regression data of experimentally verified diffusion coefficients, for each
particular protein under study. Trajectory data are then collected to com-
putationally measure the actual translational and rotational D. The Dtr is
measured by taking the mean-squared displacements over a set time pe-
riod, while rotational diffusion is evaluated by measuring τ2, i.e. the aver-
age time taken for protein molecules to rotate arccos(1/e) = 68.1◦ about an
arbitrary axis. Eqn. 4.20 is used to convert τ2 back to Drot for comparing
with experimental Drot data for each of the proteins studied.

A test set of 10 proteins was used to benchmark the diffusion simulations
(Garcia de la Torre et al., 2000). All calculations were based on displace-
ments averaged over 20 trajectories for each simulated protein. Diffusion
simulations were run over 500ns (biological time). For translational diffu-
sion coefficients, experimental Dtr were benchmarked; for proteins without
experimentally-measured Drot, predicted values are used from the literature
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(Garcia de la Torre et al., 2000).

4.2.2 Association

Association of diffusing proteins is assessed by monitoring the structural
similarity between their interactions and the reference, experimentally de-
termined, complex. In addition, the frequency of protein-protein interac-
tions near the reference structure’s conformation, and the length of time
these interacting pairs spent in the proximity of the reference conformation,
are recorded. Quantitative measures used for investigating these aspects are
full-atom RMSDs and BioSimz binding scores, introduced in Section 2.1.4.

The benchmarking protein set for studying association is differ-
ent to the benchmarking set used for demonstrating and reproduc-
ing in vitro diffusion parameters. This is due to the fact that the
protein/protein pairs used in experimental studies for measuring dif-
fusion and association did not overlap. For association, eleven
known complexes were used. This included enzyme-inhibitor com-
plexes barnase-barstar (PDB:1B27), DNase E7-Im7 (PDB:7CEI); enzyme-
substrate complexes adrenodoxin-adrenodoxin reductase (PDB:1E6E),
ferredoxin-ferredoxin reductase (PDB:1EWY); signal-effector complexes
Ras-GAP (PDB:1WQ1), Ras-PI3K (PDB:1HE8), TGFβ3-TβRII (PDB:1KTZ),
Cdc42-Cdc42GAP (PDB:1GRN), CDK2-CksHs1 (PDB:1BUH); immuno-
protein complexes CD2-CD58 (PDB:1QA9) and Adenovirus Knob 35-CAR
(PDB:1KAC).

Simulations were run in a box sized at 240× 240× 240Å. Eight receptors
and eight ligands were put into the box for each run, making up a total
protein concentration of 1.92mM. Each simulation run was performed for
a biological time of 0.5µs, and for each interaction pair, such simulations
were repeated 20 times – to provide better sampling introduced by the initial
placement of proteins within the simulation box. The total simulation time
for each interacting pair therefore sums to 10µs; a significant time period
for the simulation of biological events. The simulation temperature was
maintained at 310K (37◦C), and the viscosity constant was set to 6.915 ×
10−4Pa·s, which is the viscosity of fluid water at 310K (Wangemann and
Liu, 1996). The simulations were first performed using bound receptors and
ligands separated from the complex structure; a second batch of simulations
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were performed with unbound structures taken from their individual PDB
entries. To inspect their possible influence on protein binding dynamics,
artificially increased translational and rotational diffusion coefficients were
used in some of the benchmark simulations.

4.2.3 Dissociation

To further study the macromolecular interaction process, simulations of un-
binding were also performed. In each of these simulations, one receptor and
one ligand are put into the same simulation box used in association simu-
lations, with the same parameters and components of the forcefield, except
for the generation of random forces and torques (see next paragraph). The
receptor and ligand are set to the bound conformation initially, and start to
gradually dissociate as the perturbations of Brownian motion accumulate
and consequently disrupt the established interface contacts. For a detailed
discussion of the validity on simulating complex dissociation, and the im-
plication of the outcome, please refer to the relevant paragraphs in Section
4.4.

For the purpose of enhancing dynamic movements during the dissocia-
tion process, necessary to restrict the time course of the simulations, friction
coefficients are artificially increased. This can be easily justified, as under
normal diffusive conditions, the dissociation rate constants, koff, are usu-
ally quite small – even for the fastest-dissociating complexes, it is true that
koff � 1× 106s−1. The average lifetime of these complexes is therefore much
longer than a few µs, exceeding the maximum magnitude of length of a
single simulation. At any rate, given the current lack of precision in the
model with respect to the accuracy of modelling H-bonds, desolvation and
direction-preferential Brownian motion (no significant solvent collisions be-
tween interfaces), to obtain real-term dissociation rate constants isn’t feasi-
ble. Moreover, even a short average lifetime for a complex can last hun-
dreds of thousands of timesteps, making the measurement of dissociation
difficult, especially when different complexes have koff values that differ by
several orders of magnitude. Given the above, a naive multiplier of 10 is
therefore applied to the translational friction coefficient ζtr and a multiplier
of 3
√

10 is applied to the rotational friction coefficient. There have been few
studies on simulating complex dissociation (Nesatyy, 2002; Swegat et al.,
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2003), and even for these no comparisons between dissociations of differ-
ent protein complexes were made. Consequently, it has not been possible
to compare parameters used in this dissociation study with any other; the
two multipliers are thereby deemed to be a necessary compromise for the
simulation of dissociation events explored here.

The benchmark complex set used for the dissociation studies is the same
26-complex data set used for the docking studies (see Chapter 3 and par-
ticularly, Section 3.2.4), which is also a super set of the 11-complex data set
used for the association studies. Each dissociation simulation was run for
30,000 timesteps; since the solution drag coefficient, ζ, was artificially in-
creased to speed up the dissociation simulations, this timestep cannot be
directly compared to real time.

A scoring scheme is developed to evaluate the stability of target com-
plexes during dissociation. The mathematical form of the raw scoring func-
tion is expressed as

S∗tot =
∫ T

0
w(t) · c1s1(t) · c2s2(t) · c3s3(t) · (d4 − drmsd(t))dt, (4.36)

where

cisi = b(di − drmsd,n)ci

N

∑
n=1

H(di − drmsd,n), i = 1, 2, 3 (4.37)

in which H(·) is the Heaviside step function used as a binary signal
delivery function. The three RMSD thresholds, d1 = 6.0Å, d2 = 12.0Å,
d3 = 25.0Å are set as the borderlines of bound, transient and distant en-
counter complexes, and are thereby given different weights, c. In this study,
c1 = 50.0, c2 = 5.0 and c3 = 1.0. Parameter drmsd(t) is the averaged RMSD
over all trajectories at the designated timestep t. The maximum RMSD al-
lowed to contribute to the score, d4, is set to 26.0Å as is used in Eqn. 4.36.
Snapshot conformations bearing higher RMSDs than d4 are dropped, since
they are no longer thought to represent interacting proteins, or protein in-
teractions located in the right hemisphere, the centre for which is located
at the centre of mass of the experimentally determined binding interface.
Since in Eqn. 4.36 the use of multiplication naturally amplifies the differ-
ences in sub-scores, an inverted sigmoid function is assigned as the overall
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weighting and smoothing function, w(t), which has the form

w(t) =



1

1 + exp
(
−20t

T

) − 0.5, t < T/2,

1

1 + exp
(

20(1− t)
T

) + 0.5, t ≥ T/2.
(4.38)

To compensate for the non-linearity resulting from the above multiplica-
tion of parameters, the log of the total score S∗ is taken, the maximum value
for which is scaled to 100,

S =
log S∗

log Smax − log Smin
· 100. (4.39)

The final score, S, is the dissociation score used in this study for complex
dissociation processes.

4.3 Results

4.3.1 Diffusion

For both translational and rotational benchmark simulations a good corre-
lation was ultimately achieved between experimental and theoretical dif-
fusion coefficients. The calibrated translational diffusion coefficients, mea-
sured by taking the mean-squared displacement over a set time period, have
a correlation coefficient σ = 0.985 against experimentally verified trans-
lational diffusion coefficients (see Figure 4.3). Deviation between simula-
tions and experiments tend to occur for smaller proteins, such as trypsin
(6.52kDa, PDB: 4PTI) and hen egg-white lysozyme (HEWL, 14.3kDa, PDB:
6LYZ). This may reasonably be expected, since the method employed to
theoretically generate Dtr, although corrected, still biases towards irregular
shaped objects. Smaller proteins have relatively larger surface irregular-
ity; the roughness of the surface, relative to the protein’s radius, thereby
facilitating rapidly altering frictional forces between interacting surfaces.
In comparison, larger proteins, such as fructose 1,6-biphosphate aldolase
(157kDa, PDB:1ADO), normally have very stable and predictable diffusion
behaviour.
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Figure 4.3: Simulated vs experimental/theoretical diffusion coefficients. For transla-
tional diffusion, the simulated Dtr are plotted against experimentally verified values. For
rotational diffusion, the simulated Drot are plotted against experimentally verified and
theoretically predicted values. All data for verification purposes were taken from Garcia
de la Torre et al. (2000).
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Rotational diffusion is also replicated well in the simulations. There is an
overall high correlation, σ = 0.993, between the theoretical Drot values cal-
culated in this study and the theoretical values determined by Garcia de la
Torre et al. (2000). Moreover, there is also a high correlation, σ = 0.963, with
experimentally determined Drot vales, see Figure 4.3. It is interesting that
rotational diffusion has exhibited greater conformity to experiments and
theoretical calculations, compared to translational diffusion. This could be
partly due to the fact that the rotational friction coefficient, ζrot, changes on
the same order as the scale of molecular weight (see Eqns. 4.33 and 4.35),
rather than the molecule’s radius, which is one third of an order of the
molecular weight as in the case of translational diffusion. This means that
rotational Brownian motion is more sensitive to the change of molecular
size than its translational counterpart, which implies the “hills and valleys”
on the molecular surface may not have a significant biasing effect on Drot.

Of course, one has to bear in mind that Drot would be significantly di-
rectionally biased if the overall shape of the molecule is not spherical. Al-
though the solvent collisions are essentially uniformly distributed across
the macromolecular surface, the moment of inertia can be significantly dif-
ferent with respect to the axis about which the molecule rotates. A more
precise way of representing Drot for non-globular macromolecules would
be to use a 3 × 3 rotational diffusion tensor, corresponding to the inertia
tensor of the underlying macromolecule. However, as the proteins used
for diffusional and association studies here are mostly highly globular, full
three-dimensional diffusion tensors are deemed an unnecessary addition to
the model at present. Similarly, when hydrodynamic forces are to be con-
sidered, a 3× 3 translational diffusion tensor is required instead of a simple
Dtr; for the same reason (globular proteins) translational diffusion tensors
and any possible hydrodynamic effects except for rotational Brownian mo-
tion, are also omitted from this study.

4.3.2 Association

4.3.2.1 Correlation with kon

The same diffusional environment, as used in the previous section, is ap-
plied to investigate the association dynamics of specific macromolecular in-
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Figure 4.4: Binding scores vs. kon in log space. Experimental measurements of kon,
plotted on the y-axis, are sourced from different studies (see Table 5.2). The line in red
is a linear regression of the log(kon) and binding score value pairs; the corresponding
correlation coefficient is 0.84.

teractions and, in particular, encounter complex formation. Binding scores
(Sections 2.1.4.2) are calculated from the simulations of eleven complexes
and are compared to their experimentally measured association rate con-
stants. Results show that the binding scores correlate reasonably well with
experimental log kon, of which the correlation coefficient ρ is 0.84 (see Figure
4.4).

4.3.2.2 Hotspots and binding dynamics

Trajectories of interaction events were analysed; the encounter complexes
were superimposed with respect to the receptor (arbitrarily chosen be-
tween the two binding partners). Regions of the receptor surface that are
more frequently accessed by ligands during the simulations are designated
“hotspot” areas (see Figure 4.5). It is intuitive to infer that hotspots should
overlap or be close to a protein’s binding region; after examination of test
cases we found this to be true for all of the eleven test set cases except for
Cdc42/Cdc42-GAP (PDB:1GRN). Figure 4.5 shows the contact frequencies
during the simulation for association of CDK2-CksHs1 (PDB:1BUH). It is
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Figure 4.5: Hotspots (high-frequency contacting regions on complex CDK2-CksHs1
(PDB:1BUH). The molecular surface is coloured as a blue-white-red gradient heatmap
showing the different contact frequencies the binding partners encountered during a total
simulation period of 1µs. Blue means the number of contacts in this region is lower than
average; white means the number of contacts is about average. Red means there are
more contacts in this region than the average frequency. The binding interface is formed
between the two arrows.

clear from the illustration that the hottest regions on both the ligand and re-
ceptor are the correct binding interfaces. In a second example (PDB:1KAC),
the coxsackie and adenovirus receptor has the hottest spot directly over
its binding interface; the ligand, Adenovirus Knob 35, has the most fre-
quently visited region adjacent to the correct binding interface. This, and
many other cases from our simulation test set, again, support the much
discussed the spinning-rolling mechanism for protein-protein association
(Blundell and Fernandez-Recio, 2006; Tang et al., 2006), which has been dis-
cussed in detail in Section 3.4 and in an accompanying paper recent pub-
lished (Li et al., 2010).

With relevance to the kinetics, this mechanism may have accounted for
the higher kon (107 to 108M−1s−1) of many specific protein-protein interac-
tions. As was described in Section 4.1.2, geometric encounter rates, under
position and orientation constraints, are approximately 105 ≈ 106M−1s−1

(Schlosshauer and Baker, 2004). Any kon higher than this basal rate would
have to rely on some forms of “encounter dynamics” after the initial colli-
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sion occurs.

4.3.2.3 Native and designed interfaces

Further predictive tests were performed on two relatively large data sets.
The first set is the Docking Benchmark V2.0 (Mintseris et al., 2005), in which
all of the 120 member complexes have their structures determined by pro-
tein X-ray crystallography; the second is a 80-strong list of computationally
designed complexes offered as CAPRI Target 35 by David Baker (personal
communication via the CAPRI committee). The objective here was to distin-
guish the designed complexes from native, and classify the designed com-
plexes into potentially binding or non-binding (work performed in conjunc-
tion with Mr Iain Moal); the Baker group had a list of designed complexes
that actually bound, although we were informed (CAPRI Committee) that
most, if not all, designed complexes didn’t form native complexes. Results
from BioSimz simulations of complex association indicated a clear division
in binding score distributions for the two sets (see Figure 4.6); the average
score for native complexes is approximately 1.5 times larger than for the de-
signed set. Approximately 75% of the false positives (designed complexes)
during BioSimz simulation runs displayed a normalised binding score less
than 36, while the fraction of the native complexes that scored below 36
was approximately 38%. When used as the sole input dimension of a sup-
port vector machine (SVM) classifier, these binding scores achieved a total
accuracy of 71% (142 correct and 58 incorrect). The accuracy at this level
was thought to be reasonable, because a) binding scores are linked to asso-
ciation rate constants, and many genuine complexes do have very low kon

values, and b) the false positive set is made up of designed interfaces that
are supposed to reproduce as many stabilising properties as a real interface
possesses, and it is rational to think that some of the designed complexes
have achieved the objectives set and, therefore, scored reasonably well for
rates of association during simulation.

4.3.3 Dissociation

Motivated by the need to further distinguish native bound complexes from
designed complexes that are unlikely to form native complexes, attempts to
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Figure 4.6: Difference in binding score distributions of native and designed com-
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designed complex set are plotted in red square markers.
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fit the dissociation scores with koff were also made. From the derivation of
the association score(see Section 4.2.3), it can be easily seen that the scores
ideally should correlate with koff and on a negative basis, i.e. the more stable
the complex is, the higher dissociation scores but koff for the complex will
be lower. Our results did show this negative correlation with koff; however,
the signal, ρ = −0.24, was too weak to be considered consistent.

This suggests that our scoring scheme, or indeed the dissociation simu-
lation, must be missing some factors that are important (see Section 4.4.3 for
discussion). One of these more important factors may be the internal flexi-
bility of the binding partners. By not allowing internal movements within
the molecules, impacts from anywhere on their molecular surface will pass
through their rigid-bodies, disrupt the fine and tight binding between the
interaction partners. Therefore, unlike the positive signal for the loose en-
counter complexes, the bound complexes were shown to be too prone to
external impacts during the simulations of dissociation, thereby significant
correlation to real koff was lost. Nevertheless, it was noticed that the di-
rection of correlation was still correct, which could potentially be used as a
binary classifier at the very least.

Therefore, we performed further tests for the purpose of creating a na-
tive vs. false positive complex classifier based on dissociation scores. The
27 test complexes used for the docking analysis (see Chapter 3) were bor-
rowed here to derive a distribution of dissociation scores for native com-
plexes, and two data sets from CAPRI Target 43 and 44 were used as false-
positive benchmarks since all of these complexes, except for one in T43,
have their binding interface computationally designed. The results demon-
strated, to some extent, the recognition capability of this dissociation classi-
fier: it is possible to distinguish the distributions of scores between true and
false positive sets, such that a cut-off score of 60 retains 82% of the native
complexes above the threshold but only 45% of the false positives. The dis-
sociation scores we developed here also helped the selection of the crystal
complex from false positives for CAPRI Target 33. While the correct com-
plex (ranked No. 2 otherwise) did not have a particularly high dissociation
score (50.0), the candidate scoring higher in all other criteria (ranked No. 1)
had a particularly low dissociation score (24.3). The dissociation score mea-
surement thus helped us in removing this excessively unstable complex and
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the winner was successfully identified.
When tested with the CAPRI T35 data set discussed in Section 4.3.2.3,

the addition of dissociation scores to the SVM parameter space slightly in-
creased the native/non-native classifying accuracy from 71% to 73%, mean-
ing 146 correct and 54 incorrect predictions.

4.4 Discussion

4.4.1 Time Course

There have been numerous attempts to computationally predict kon from in-
terface energetics or macromolecular simulations, as discussed comprehen-
sively in a recent review (Schreiber et al., 2009). To date, most researchers in
the field have used either direct computation or simplified molecular simu-
lation to achieve their goals. In direct computation, much effort has been di-
rected into accurately calculating the binding free energy, ∆G, or its related
values, such as binding energy of the molecular interface or free energy dif-
ference, ∆∆G, upon mutation of key interface residues. On the other hand,
simulation methods, mostly based on Brownian dynamics (Ermak and Mc-
Cammon, 1978), derive kon from the number of trajectories falling within a
structural/directional threshold of the binding pose. Although the validity
of both approaches has been verified theoretically or through simulations
(Section 4.1.2), there is still a crucial link that is missing between the energet-
ics of macromolecular interaction and rates of association: the time course
of interactions.

Observing time courses for macromolecular interactions is a major com-
ponent of this work. The author attempts to reproduce this “real” link be-
tween energy and kinetics for protein interactions in simulation, even if the
relevant theory, characterised by ∆G◦ = −RT(ln Keq), was established cen-
turies ago. By performing Langevin simulation of molecular diffusion/in-
teraction and not terminating the trajectories in which the proteins are found
to be at a binding pose, time courses of such interactions can be harvested
and statistically analysed.

A valid concern over our seemingly simplistic binding scores (see Sec-
tion 2.1.4.2) is where it stands from a theoretical perspective, and why the
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scores are, as described in the Results, correlated with the logarithm of kon:
is this correlation simply fortuitous given the data set we parameterised on?
Recall that Eqn. 4.29, proposed for calculating kon, is based upon interaction
potential and interface volume VRR (Zhou, 1990). The variable VRR and S
can hereby be assumed to be constant, provided the ensemble of protein in-
terface areas under study are broadly similar to each other. We will come
to the issues of VRR and S later on. With these simplifications, the Zhou
equation can be re-written as

k∗on = k0 exp
(
−〈U〉∗

kBT

)
, (4.40)

where k0 is effectively a scaling constant. The interaction potential 〈U〉∗ is
therefore

〈U〉∗ = −kBT ln kon. (4.41)

Taking the negative gradient on both sides, this transforms to

〈F〉∗ = ∇ · (kBT ln kon) . (4.42)

Here, the average force term, 〈F〉∗, is an indicative term suggesting how
large on average a force needs to be in order to “pull away” the two binding
partners in an established complex. Based on the Langevin equation, the
total force exerted on a molecule is

F∗ = Ffriction + FU + Frandom, (4.43)

where FU is the force due to the interaction potential, and where the other
two forces are labelled after their respective causes. In a binding pose, both
binding partners are in a static state; therefore we have

Ffriction = −ζv = 0, (4.44)

and importantly,

FU,total = −Frandom. (4.45)

The above equality must hold in order for the complex to be in a stable state.
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Given the fact that the VdW component in FU,total can provide as much re-
pelling force as required, this equality is necessarily reduced to the follow-
ing requirement,

〈|Frandom|〉 < |FU, attract| (4.46)

where FU, attract is the total attractive force that holds the complex together.
Experimental evidence shows that deterministic forces are on the scale of
10−2 to 10 piconewton (pN), while stochastic forces can amount to 10−3

to 10−2pN (Finer et al., 1994; Ishijima et al., 1996; Evans et al., 1995). It
is already known that Frandom conforms to a normal distribution of mean
0 and variance 2kBTζ, and the probability of Frandom being larger than
some certain FU, attract is increasingly small when the negative potential
−U is large. Therefore, the average time needed for a random force large
enough to appear and successfully counter the attractive forces is increas-
ingly large. Hence, there is general stability, with occasional instability,
when the strengths of two forces overlap. For molecular displacements, the
same principle also holds: the larger−U, the more time on average it would
take for a random displacement, or a combination of random displacements,
to be large enough to jump out of the energy funnel. The source of random
force and torques do not just come from solvent collisions; internal (heat)
movements of the interacting molecules contribute even more to instability.
In summary, we have the following relation

〈tretention〉 ∼ 〈Frandom〉 ∝ −U ∝ ln kon (4.47)

established for molecular interactions, where tretention specifically means the
retention time of the binding partners staying within the encounter zone.
The functional form of the first monotonic relationships shown in Eqn. 4.47
was not analytically determined in this study due to the model lacking in-
ternal molecular movements. However, a section-based scoring function
(Section 2.1.4.2) was put in place to reflect the link between tretention and in-
teraction potential U. As our results have shown in the previous section,
this works rather well with a high correlation, ρ = 0.84, between calculated
and experimentally measured kon.

To test the validity of our theory, and its compliance with Eqn. 4.29, we
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further tested the inclusion of interaction volume VRR and survival frac-
tion S to examine whether it improves our binding scores. The VRR was
estimated by exponentiating the interface area by the exponent factor, 3/2,
which effectively rescaled the values from area to volumetric measurement;
the interface areas were estimated using the InterProSurf server (Negi et al.,
2007). Survival fraction S was calculated from our simulations as the ratio
of long-term specific encounters among all encounters that had once ap-
proached within the threshold of being a specific encounter complex.

We found that both VRR and S terms further improved the correlation of
computed binding scores with experimental kon. The inclusion of S raised
the correlation from 0.84 to 0.88; while the inclusion of VRR further pushed
the correlation up to 0.90. These results clearly demonstrated that the time
course measurement of retention for specific encounter complex formation
fits well to the existing theories and models of macromolecular association
kinetics, and indeed extended them.

Nevertheless, with this relatively high correlation, ρ = 0.90, the accu-
racy of kon calculated from simulations has ample room for improvement.
More accurate kon calculations have indeed been published, such as from
the binding-site energetics based approaches (Song et al., 2004). Other at-
tempts include fitting association rate constants, based on interface-areas
(Schlosshauer and Baker, 2004) and RMSD thresholds for specific/nonspe-
cific encounters (Gabdoulline and Wade, 1997). However, we stress that
none of these studies has achieved accurate calculations for kon using uni-
versal and consistent parameters for a cluster of randomly selected proteins,
whose association rate constants span across several orders of magnitude.
Moreover, the kon derived from this study were obtained from dynamic sim-
ulations; this implies that different kon values could be predicted from run-
ning the simulation with different parameters and environmental settings.
It was this degree of freedom that inspired and enabled our further inves-
tigation of protein-protein interactions in a crowded macromolecular envi-
ronment (Chapter 5).

4.4.2 Kinetics and Binding

From a docking point of view, some proteins will only bind with their part-
ner after undergoing significant conformational change, while for others,
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this may be achieved by passive internal movement within the limit of ther-
mal energy. From a kinetic point of view, all specific protein interactions
maintain a certain, often characteristic, rate of association under the same
physical and chemical conditions. The association rate constants of protein
interactions may therefore have links to their underlying binding mecha-
nisms; as was pointed out in Figure 4.1, kon = 1× 105M−1s−1 is the bound-
ary dividing interaction speed controls between “limited by conformational
changes” and “limited by diffusion”.

However, there could still be questions over this simplistic relationship.
Recall the theories of induced-fit and conformational shifting for binding
mechanisms, and the arguments on which one is the dominating party (see
Section 3.1.1). The same hypotheses might well be reflected by the inter-
action kinetics and thus could be tested by simulation, with proteins in
different conformational states. According to the induced-fit theory, un-
der free diffusion, proteins remain in the unbound conformation (or one of
their unbound conformations) until after making contact with their binding
partner, preferably at a specific orientation favouring the formation of the
final complex. This is equivalent to using unbound proteins in our simu-
lations. On the other hand, the conformational shift theory states that pro-
teins constantly switch into different states that can either be bound or un-
bound while undergoing free diffusion, and only interact with their binding
partner when they are in or near to the correct (bound) conformation. This
is equivalent to simulating protein interactions using all bound conforma-
tions, since the time spent in a certain state is proportional to the entire pe-
riod of simulation, therefore, the overall kinetics will not change as long as
our measurement, the binding scores, remains a quantity to be fitted rather
than based on the actual kon. Now in the context of our simulation envi-
ronment, the problem of induced-fit vs. conformational shift boils down to
comparing the binding scores of “unbound” and “bound” simulations, at
least for the diffusion-governed protein interactions. It is worth restating
that the binding scores, as proven in the last subsection, are measurements
for the encounter complex formation and do not cover the period for the
formation of the final complex conformation from an encounter complex
ensemble. It is exactly at this encounter stage where conformational shift-
ing and induced-fit are differentiated.
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The simulated results were revealing: the “bound” simulations showed
a correlation of 0.84 (0.90 with interface volume adjustment) with the exper-
imentally measured kon, while the “unbound” simulations returned a cor-
relation of only 0.28 – still positive, but very weak. One may think that this
would have been obvious, since with unbound conformation there would
be less affinity – reduced true binding interface complementarity. The ar-
gument is apparently valid, but the individual difference in binding affin-
ity, between unbound and bound, does not warrant the loss of correlation
with experimental kon across a wide diversity of protein interaction pairs.
In other words, the scores from the “unbound” simulations were expected
to be smaller than those of “bound” simulations, but as most of the proteins
in the test set do not undergo major conformational change upon binding, it
was expected that the calculated kon values for the “unbound” simulations
would be almost as similar to the experimentally determined kon values as
for the “bound” simulations (correlation coefficient, ρ = 0.84). However,
this is not observed in our simulations, as ρ = 0.28 is hardly a noticeable
correlation. Therefore, for proteins that have kon limited by diffusion, it ap-
pears that the conformational shift mechanism dominates; it is more likely
that when specific protein partners meet each other, they are already in a
conformation at or close to the bound state. On reflection, it is perhaps un-
likely that proteins can adjust their conformational state notably during the
initial encounter stage, as proteins would still be too far apart for any strong
forces to be generated. Further more, large adjustments upon binding (typ-
ical case of induced-fit) often slows down the rate of association, and are
thereby more likely to be attached to interactions having particularly low
kon – a subject not studied here.

However, it should be noted that the “unbound” simulations did not
lose the signal for specific binding; they just did not correlate with kon.
This was shown in Chapter 3 where all binding predictions were made us-
ing unbound-unbound conformations, and binding “hot spots” were still
found. The unbound binding scores do have a moderate correlation with
molecular weights Mw (0.46) and particularly, the cubic root of Mw (0.56),
which implies the protein radii. The corresponding correlation coefficient
for binding scores in “bound” simulations with molecular weights Mw is
0.16 – almost no correlation. This shows, even the specific collisions be-
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tween unbound binding partners are influenced strongly by their geometric,
thereby diffusional, properties (Section 4.3.1), rather than from individual
interaction potential surfaces. In terms of the binding mechanism, perhaps
the unbound conformations will first give a preferential coverage for the lo-
cation of the binding site; the binding partners may hover over the specific
binding area with a higher frequency compared to elsewhere (demonstrated
in Chapter 3). Meanwhile, the bound state of the protein, shifted from the
ensemble of its conformations during the hovering process, enables the cor-
rect binding energy funnel to be created, so that specific encounters can form
with the right association kinetics, in line with the experimental kon values.
These conformational changes (shifts), although occurring near or on the
binding site, need not to be “induced”.

To summarise, for protein interactions that have kon below the diffusion
threshold (1 × 105M−1s−1), unbound protein conformations can offer an-
choring points for the subsequent conformational changes to occur before
binding (Section 3.3.3.2); for the diffusion-limited cases, as discussed above,
the required conformations for specific binding may be directly supplied
through conformation shifting, resulting in the equilibrium between associ-
ated and unassociated partners that corresponds well to the kon value.

We recognise that the rigid-body nature of our simulations can limit
further quantitative investigation into binding-mechanism preferences be-
tween induced-fit and conformational shift. Nevertheless, the simulation
approach taken here offered a different aspect from which to study the dy-
namics of protein association with binding kinetics in mind, and the domi-
nance of the conformational shift mechanism was indeed observed.

4.5 Conclusion

With the careful measurement of retention times for specific encounter com-
plexes, the link between specific protein docking and interaction kinetics
has been quantitatively verified. We found that the duration and, thereby,
the stability of complex formation, correlates linearly with the logarithm of
the association rate constant, kon. This correlation was tested true for 11
protein-protein interactions whose kon values span several orders of magni-
tude, and further verified on 120 native and 80 designed complexes, which
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display significant difference in binding affinity between native and non-
native complexes. A dissociation scoring scheme was also implemented and
tested positive for distinguishing native/non-native interfaces, although
the scores are not correlated with dissociation rate constants, koff, mainly
due to the fact that the internal motion of each protein is not currently mod-
elled. Based on the comparative analysis of results from the simulations of
complex association using bound and unbound binding partners, we exam-
ined alternative binding mechanisms. We postulated that for protein inter-
actions whose kon is limited by diffusion (> 105M−1s−1), the dominating
binding mechanism is conformational shift, rather than induced-fit, which
should be more commonly observed for slow-associating proteins.



Chapter 5

Macromolecular Crowding

5.1 Introduction

In a living cell, nearly all functional behaviours have their roots in vari-
ous type of macromolecular interactions, such as the formation of a well
structured cytoskeleton framework, the cascaded cellular signals for growth
control and the immune response to antigens. The intracellular environ-
ment is therefore crowded with structural and functional macromolecules
at 300 ∼ 400g/L (Zimmerman and Trach, 1991), a concentration at which
the condensed matter takes up 30% ∼ 40% of the cellular volume (Fulton,
1982). This far exceeds the normal soluble conditions of in vitro experiments
and, from a chemical point of view, can be considered as too condensed to
conduct efficient reactions. Worse still, the copy number of some molecule
species may be so low that the collision-reaction theory becomes incapable
of explaining why interactions between them would still be possible, of-
ten at a rate comparable to, if not better than, its in vitro equivalent (Ellis,
2001b,a).

The distinctive characteristics of volume-exclusion effects from aggrega-
tion of macromolecules was observed as early as in the 60s (Laurent and
Ogston, 1963). Its influence in cellular interaction dynamics was first re-
viewed by Fulton (Fulton, 1982) and was later assigned the name “molec-
ular crowding effects”, a broad term that summarizes all unexplained phe-
nomenon that may be related to the abundant molecular presence in the cell.
Individual reports of how MCEs affect a particular macromolecular process
are regularly published with observations of improved protein binding/-

137
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folding dynamics, most of which have been recently reviewed (Zhou et al.,
2008). However, many of these experimental approaches suffer from the
drawback that the commonly used crowding agents, usually polyethylene
glycol (PEG) or ficoll (Roque et al., 2007) of varying sizes. Disappointingly,
are neither charged nor globular, and hence very different from the local
environment in which proteins interact in a cell. Nevertheless these studies
have inspired the theoretical work by Minton and coworkers, who made
the first important breakthrough in understanding MCEs (Minton, 1981). In
this and their subsequent work (Minton, 2000, 2001; Hall, 2003), the term
“excluded volume effect” was widely used to describe the small chunks
of inaccessible space voided by surrounding macromolecules; usually, they
are too small for a macromolecule to diffuse into and are rendered useless.
The result is that the effective diffusional volume of the solution is reduced,
raising the reactant’s effective concentration, i.e. chemical activity. Zhou
et al (Zhou et al., 2008) further formulated a number of types of pairwise
macromolecular interactions based on the excluded volume framework.
However, due to the limitations of their model, which represents molecules
as hard spheres, little could be speculated beyond the phenomena of vol-
ume exclusion and, consequently, the nonspecific interactions between the
spheres. Later, a number of ambitious atomic-based Brownian dynamics
(BD) simulations within a crowded environment were published by Elcock
and coworkers (Elcock, 2002, 2003; McGuffee and Elcock, 2006). They found
that the 2nd virial constant B2, an indication of the level of nonspecific pair-
wise interactions, increased as the concentration gradient increases, in line
with the experimental data. Due to lack of accurate forcefield modelling,
the model was unable to capture the dynamics of specific interactions un-
der crowded conditions. There have also been a few simulation studies
targeted at molecular crowding using coarse-grained models (Sieber et al.,
2007; Homouz et al., 2008), most of which used spheres with various radii
to represent proteins of different sizes. By eliminating the need for calculat-
ing atomic pairwise potentials these models are capable of running with a
much larger timestep than is possible using atomic models; however, lack
of molecular details made it impossible to distinguish between specific and
nonspecific interactions. Recently, Elcock et al. (McGuffee and Elcock, 2010)
performed an atomic simulation on a proportion of the E. coli cytosol to re-



Macromolecular Crowding 139

produce the in vivo translational diffusion coefficients for molecules such as
the green fluorescent protein (GFP). However, once again, specific molecu-
lar binding processes were not directly simulated.

Our understanding of the macromolecular crowding effects (MCEs) is
that, in a real cell, crowding has far more implications than just, simply,
the volume exclusion effects. Many macromolecular interactions display
a long, relatively unstable encounter complex state before a bound con-
formation is formed (Ubbink, 2009; Blundell and Fernandez-Recio, 2006;
Tang et al., 2006). Intuitively, the spatial constraints imposed by crowded
molecules could help the formation of an encounter complex and prolong
its existence; whether such constraints do indeed help molecular binding,
i.e. forming specifically oriented encounter complexes, remains to be inves-
tigated. Moreover, MCEs are likely to play an important role in sophisti-
cated cellular processes, such as macromolecular assembly, transport and
signalling, as these phenomena are almost impossible to be replicated in
vitro. Effective study of all the above requires the specific interactions be-
tween target molecules to be probed, while taking into account the charac-
teristics of the crowded molecular environment in which they are immersed.
However, there is a lack of both theory and tools with which to understand
MCEs in the context of their contributions to complex cellular functions.

Here we investigate, by the implementation of a novel computational
model, the synergy between molecules in an overcrowded environment to
illuminate the MCEs that have been previously unobserved, as well as their
underlying molecular mechanisms. The model is implemented in our in-
house simulation software package, BioSimz, from which a crowded molec-
ular simulation is demonstrated in Figure 5.1.

5.2 Methods

A wide range of known protein-protein interactions were investigated
in a molecular crowding context. This included enzyme-inhibitor com-
plexes barnase-barstar (PDB:1B27), DNase E7-Im7 (PDB:7CEI); enzyme-
substrate complexes adrenodoxin-adrenodoxin reductase (PDB:1E6E),
ferredoxin-ferredoxin reductase (PDB:1EWY); signal-effector complexes
Ras-GAP (PDB:1WQ1), Ras-PI3K (PDB:1HE8), TGFβ3-TβR-II (PDB:1KTZ),
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Figure 5.1: Snapshot of a simulation of crowded proteins, including TGF-β3, its re-
ceptor TβR-II and 10 different types of bacterial glycolytic enzymes as macromolecular
crowders. Each molecule type is coloured differently, while the 2 target molecules ap-
proaching each other’s binding site are shown in foreground with surfaces coloured by
their surface electrostatic potentials (red: negatively charged; blue: positively charged).
Total concentration of this system is approximately 240g/L.



Macromolecular Crowding 141

Table 5.1: List of metabolic enzyme crowders

Index Name Weight (Da) PDB Code
1 Hexokinase 52,209.9 1IG8
2 Phosphoglucose Isomerase 125,225.0 1HOX
3 Phosphofructokinase 35,263.2 4PFK
4 Fructose 1,6-bisphosphate Adolase 37,046.1 1ZEN
5 Triose Phosphate Isomerase 53,326.5 2YPI
6 Glyceraldehyde-3-phosphate Dehydrogenase 73,379.5 3GPD
7 Phosphoglycerate Kinase 45,315.5 3PGK
8 Phosphoglycerate Mutase 56,864.5 1EQJ
9 Endolase 93,739.4 2ONE

10 Pyruvate Kinase 198,428.0 1E0U

Cdc42-Cdc42GAP (PDB:1GRN), CDK2-CksHs1 (PDB:1BUH); immuno-
protein complexes CD2-CD58 (PDB:1QA9) and Adenovirus Knob 35-CAR
(PDB:1KAC). Various binding mechanisms may be present during the for-
mation of the above complexes in a cellular environment (Ben-Shimon and
Eisenstein, 2005). It is, therefore, of much interest and importance that the
consistencies and differences of their behaviour, under varying molecular
crowding conditions, are thoroughly examined and compared.

Ten types of bacterial enzymes involved in the glycolytic pathway were
used as crowder molecules (see Table 5.1, hereafter termed as “environmen-
tal crowders”). These enzymes usually have an abundant presence in cells,
as they are vital in metabolic pathways (Zimmerman and Trach, 1991); it
is also natural to assume that in a local environment, the enzymes may
aggregate and hover close by each other because they work in a cascade.
These enzymes catalyse the glycolysis of a glucose/fructose molecule into
two pyruvate molecules; therefore, it is safe to assume that they do not form
specific complexes with the target proteins selected above.

All simulations were run in a cubic box sized at 240×240×240Å, with
periodic boundary conditions applied on all sides. This size of the box
is large enough to eliminate boundary effects for long-range interactions
that are normally below 40Å, and are no more than 100Å in the extreme
case of protein-RNA binding (Tworowski and Safro, 2003). Typically, 2
to 29 copies of each target protein were distributed in the box at a recep-
tor/ligand ratio of 1:1, plus 10-20 environmental crowders. Therefore, the
simulated molecular systems had a target concentration between 0.12mM
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and 3.36mM, which is 18.5g/L to 102.9g/L depending on molecular types;
depending on the simulation runs, the environmental crowders make up
from 92.6g/L to 185.2g/L of solutes in the box. Total protein concentra-
tions thereby varied between 18.5g/L and 288.1g/L, the latter of which ap-
proaches the approximated cytosolic protein concentration of 300g/L (Zim-
merman and Trach, 1991). The total protein occupancies of the molecules
with respect to the simulation box varied between 6.89% and 38.71%. In all
simulations the copy ratio among the environmental crowder types were
kept at or around 1:1 – this may not be the physiological ratio in regard to
a whole cell, but in a small catalytic compartment where the presence of all
enzymes should be guaranteed, i.e. at least 1 copy, a 1:1 ratio is a reasonable
assumption. The actual number of crowder copies placed in a simulation
box was 1 or 2 per protein type, thus making the total number of crowders
in any simulation to be between 10 and 20. The total occupancies of the
crowders varied from 6.57% to 13.14%.

Both structural and kinetic investigations were carried out on molec-
ular trajectories obtained from simulations, using root-mean-squared dis-
tances (RMSD) and a deviation threshold to identify whether each interac-
tion event occurred at the correct, specific, binding interface. The deviation
threshold (δxt, δRt) was defined by the relative position and orientation of
a target ligand molecule with respect to its receptor at time t (see Section
2.1.4.1 for details). A retention time threshold (40ps) was set up to distin-
guish the events that stayed within all structural specificity measures, with
such events labelled, “specific interaction events”. This by no means implies
the two binding partners are guaranteed to go on to form a bound complex;
it is merely a threshold indicating a specific encounter complex is formed,
given the average retention time of encounters being roughly 10 times this
length (Bui and McCammon, 2006). The stability of this specific encounter
complex was evaluated in the form of a binding score, described in detail
in Section 2.1.4.2, and as justified by the previous theoretical discussion, see
Section 4.4.1.
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5.3 Results

5.3.1 Association Rate Constants

In Chapter 4, a significant correlation between the predicted binding scores
and experimental kon values was reported for the eleven test set protein-
protein interactions, studied under dilute conditions. To ascertain if a simi-
lar correlation holds for target proteins in a crowded environment, the same
target data set was simulated with molecular crowders. As pointed out by
a recent review on molecular crowding (Elcock, 2010), there has been a lack
of consistent and rigorously built test sets for computational modellers to
benchmark protein-protein interaction models against experimentally vali-
dated data involving crowded environments, be they simple polymers such
as Ficoll, PEG, Dextran or more sophisticated colloid molecules, such as pro-
teins. This is more problematic for the likes of this study, as protein crow-
ders are rarely used, let alone validated and benchmarked, in experimental
crowding studies as they tend to hinder the experimental read-out. Indeed,
among all eleven test set complexes, quantitatively assessed crowding ki-
netics can only be found for barnase and barstar (Phillip et al., 2009); even
in this case, barnase and barstar were crowded with PEG molecules rather
than protein crowders.

Nevertheless, our predicted, crowded kon values, in the form of bind-
ing scores, match well with the experimentally verified kon changes for the
barnase/barstar interaction with and without environmental crowders (cor-
relation coefficient=0.97). Moreover, it is worth noting that we success-
fully predicted the immediate damping effect on barnase-barstar kon with
median-level of crowding, as well as the partial recovery of the association
rate constant when the crowding level increases (see Figure 5.2).

Having achieved the above correlation for crowded barnase/barstar and
the previous correlation on eleven non-crowded protein-protein interac-
tions (Section 4.3.2), we were reasonably confident in predicting the kon

changes for the remainder of the complexes in the test set. We found that
seven out of the eleven complexes (PDB:1WQ1; 1KTZ; 1GRN; 1BUH; 1EWY;
1KAC; 7CEI) showed an increased kon with environmental crowding, five
of which increased by more than two-fold; the remaining four complexes
(PDB:1B27; 1HE8; 1E6E; 1QA9) have their association kinetics slowed down
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Figure 5.2: Comparison of experimentally measured kon and simulated binding scores
in various crowding conditions for barnase-barstar. Two crowding setups at approx-
imately 10% and 30% mass concentration ratios are shown. Mass concentration is ex-
pressed as weight-percent of the viscogenic agent from the total weight of the solution.
The non-crowded association rate constants from experiments and non-crowded binding
scores from simulations are scaled to 1, as only relative kon are available from experimen-
tal data (Phillip et al., 2009).

by crowding (see Figure 5.3 and Table 5.2). An immediately observable pat-
tern from the test set results shows that environmental crowding has greater
positive effects on protein interactions with a relatively low kon, whereas for
highly affinity protein binding cases, crowding is likely to act as a damping
factor for their association dynamics. This is in line with the intuition that
in vivo molecular crowding acts as a selective force, which helps the slower
members to bind faster while penalising fast-binding proteins (see the Sec-
tion 5.4 for more discussion). It is worth noting, however, that kon is not the
only measure of quality assessment for molecular interactions, especially in
vivo. A reduced association for particular types of proteins is often compen-
sated by a decreased dissociation rate, which keeps the reaction dynamics
(Kd) little affected in a crowded environment (Phillip et al., 2009).

The characteristic dynamics of specific interaction events, under the in-
fluence of environmental crowders, stimulated the subsequent investigation
of the underlying principles that govern them. A particular interest is to un-
derstand why low association-rate interactions are likely to be boosted by
crowding.
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of the test complexes. Green bars indicate a positive fold change (increase), and red
bars a negative change (decrease). The numbers labelled on each bar are the original,
experimental non-crowded kon values for these protein-protein interactions.
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5.3.2 Interaction Dynamics

The above demonstrates that molecular steering may have an effect on as-
sociation kinetics at typical in vivo concentrations. How, in a crowded envi-
ronment, molecular steering may enhance or reduce the association activity
of the target proteins, is an important question to address in a biological
context; do there exist generic nonspecific or specific steering effects for all
protein-protein interaction events within the cell?

Average linear and angular velocities of the target molecules were calcu-
lated from the (environmentally) non-crowded and crowded simulations,
respectively. The ratios of change in angular velocities (rotational speeds)
between crowded and non-crowded conditions, as well as those between
specific and nonspecific interactions are plotted in Figure 5.4.

At all times, angular velocities for specific interactions are higher than
those of nonspecific interactions (Figure 5.4(b); this implies that proteins un-
dergo more rotational movement when they approach their binding sites,
further adding to the proof of the “spinning-and-rolling” binding mecha-
nism for specific binding that has been demonstrated in other sections of
this study (Section 3.4 and 4.3.2.2). With the crowders are added (∼20% oc-
cupancy), a very interesting disproportionation of ratios is observed: the an-
gular velocities of proteins, during specific interactions, have increased sig-
nificantly (24.5% averaged over test set complexes, Figure 5.4(a)), whereas
their angular velocities during nonspecific interactions have undergone a
mild decrease (-6.93%). As a result, with molecular crowding, the averaged
angular velocities during specific interactions have increased by 50.3% (Fig-
ure 5.4(b)), compared to velocities during the nonspecific interactions. The
same velocity comparison for a non-crowded environment results in only
an increase of 11.3%. The linear (translational) velocities are also increased
for specific encounters; however, no change was found for linear velocities
for nonspecific encounters between crowded and non-crowded conditions.

This distinctive differences between crowded and non-crowded con-
ditions, particularly when crossing over the differences between specific
to nonspecific interactions, have revealed that macromolecular crowding
seems to provide extra momenta, particularly angular momentum, for pro-
teins that are near or at their binding sites. For at least a majority (nine out
of eleven) of the test complexes, molecular crowding appears to have “gone
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Figure 5.4: Ratios of change in angular velocities for protein-protein interactions un-
der different crowding conditions. (a) This plot shows the disproportionate magnitude
between the angular velocities of protein pairs undergoing specific and nonspecific in-
teractions when the reaction environment becomes crowded. The blue bars are the ratios
of change between crowded specific and non-crowded specific interactions. The red bars are
the same ratios between crowded nonspecific and non-crowded nonspecific interactions. (b)
This plot shows the elevated specific/nonspecific ratio under crowded conditions. The
green bars are the ratios of change between crowded specific and crowded nonspecific interac-
tions, and the orange bars are the same ratios between non-crowded specific and non-crowded
nonspecific interactions.
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for the extra mile” to further reduce momenta of nonspecific encounters.
Hence, the simulation results presented seem to suggest that, with the con-
finement of crowders, the dynamics of specific encounters is accelerated,
while encounters that are not at an energetically favourable conformation
tend to be stuck there (with lowered velocities); they will eventually dissoci-
ate, even under relatively mild random forces induced by their environment
(Section 4.3.1).

5.3.3 Crowded steering effects

Immediately one wonders about the source of the extra momenta discussed
above, preferentially assigned to specific interaction events thereby facilitat-
ing molecular steering. We suspected the driving force behind this is the en-
vironmental potential between target molecules and crowders, where long-
range, ambient electrostatics may have a significant contribution. Com-
paring the interaction dynamics data from three crowding conditions tests
this hypothesis: non-crowded, crowded with crowder electrostatics turned
off, and crowded with normal, charged environmental crowders. Atoms
on target molecules remained normally charged in all three cases. Re-
sults, in general, showed that kon-enhancing protein-protein interactions
support the above hypothesis: for example, there is a 5.4-fold increase in kon

if normal crowders are used for complex Cdc42-Cdc42GAP (PDB:1GRN);
with uncharged crowders, there is a moderate 2.1-fold increase from the
corresponding dilute kon value. For electrostatics-dominated interactions,
which have displayed reduced kon values in crowded conditions, elimi-
nating crowder charges leads to partial recovery of the rate. Hence, en-
vironmental electrostatic interactions may act as an amplifier to the exist-
ing upward trends of interaction dynamics of the target protein pairs. In
fact, for all test set complexes, the existence of charged crowders leads to
an increased proportion of interaction events converting from nonspecific
to specific. This enhancement is notably pronounced for encounters that
are neither too short (> 0.5ns) nor too long (< 1.5ns), which is in line with
average life time (∼ 1ns) for encounter complexes (Bui and McCammon,
2006) (see Figure 5.5). After removing all charges from crowders, the level
of specific to nonspecific enhancement is approximately halved. The extra
number of mid-retention interaction events, boosted by environmental elec-
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trostatics (as well as other crowding factors), may come from two sources.
One is from the pool of nonspecific interactions converting to specific in-
teractions and this accounts for the additional increase of association rate
for some protein pairs. The other source is from longer-retention events, af-
fecting the stability of established complexes. Because environmental elec-
trostatics accounts for a large portion of the overall influences from crow-
ders, the simulations have shown that crowding may have more negative
impact on the more electrostatics-driven interactions, such as the case for
barnase-barstar. This also explains why our simulation shows a deeper dip
for the crowded kon for barnase-barstar compared to the dip found for ex-
perimental data (Phillip et al., 2009): the interplay of electrostatics between
barnase/barstar molecules and the charged protein crowders, used in this
study, may have interfered with the highly-electrostatic specific binding be-
tween barnase and barstar molecules. In the corresponding experimental
study, the crowding agents, non-charged PEG molecules, would not have
had this electrostatic interference to barnase/barstar interactions.

We then ask whether certain interactions are preferentially biased by
molecular steering aided by environmental crowders. To systematically in-
vestigate this, a measure of successful steering ratio is introduced, which
is the ratio of the specific interaction events that have longer retention
time than the threshold (40ps), indicating a successful steering, among
all interaction events that spend any time within the specific binding re-
gion. Although this ratio varies among different complexes, all but one
(adrenodoxin-reductase, PDB:1E6E) receive an increase in their respective
ratio of successful steering in the presence of environmental crowders (see
Table 5.2). Some complexes, particularly those of a low kon, have a no-
tably enhanced increase in this ratio; even those with high kon interactions
mostly show a gentle upward trend with the help of crowder molecules.
The correlation coefficient between kon and the increase in successful steer-
ing rate is -0.67, a significantly negative correlation; the lower the kon value,
the more likely the interaction will get a boost in successful steering rate
from macromolecular crowding. For example, the Cdc42-Cdc42GAP com-
plex (PDB:1GRN) has a kon of 8× 105M−1s−1. This complex reports a 51.2%
increase in successful steering ratio in a crowded environment as opposed to
non-crowded. Correspondingly, complex 1GRN also has a 5.4-fold increase
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Figure 5.5: Influence of crowder electrostatics on the ratio of specific and nonspecific
encounters over different retention times. The blue data points (◦) show the ratios
changes without environmental crowders. The red data points (♦) show the same ra-
tios with the presence of normal electrostatically active crowders. The green data points
(�) show the ratios with the presence of the same environmental crowders as for the red
profile, however with their charges disabled.
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in predicted kon, the largest among the test set complexes.

5.4 Discussion

Using BioSimz, we have constructed a computational model capable of con-
ducting rigid-body protein-protein interaction simulations in a crowded
macromolecular environment. It is for the first time that the dynamics and
kinetics of specific protein-protein interactions can be directly investigated
in a multi-macromolecular environment where all simulated bodies and
forcefield parameterisation are at the atomic scale. Calibrated on the lim-
ited available, experimentally determined kon values in crowded (Section
5.3.1) and non-crowded (Section 4.3.2) conditions, we revealed the changes
of binding dynamics with the existence of environmental crowders, and pre-
dicted the possible mechanisms that generated the changes, of which ambi-
ent electrostatic interactions were shown to play an important part.

Conventionally, the molecular crowding effects have been considered
to be almost synonymous to volume exclusion effects; extensive theoreti-
cal, simulational and experimental studies have focused on how volumetric
difference plays a part in limiting the free diffusion of the target macro-
molecules (Minton, 1981; Zhou et al., 2008). Until very recently, most ex-
isting studies have tried to make a generic, binary assertion that crowding
either helps or hinders the macromolecular binding process. By the work
reported in this thesis, it is shown that crowding, either by the reactants
themselves or by environmental protein crowders, has a diverse spectrum
of effects on protein-protein association dynamics under a central scheme:
crowding always tends to increase the chances of specific encounter com-
plex formation through facilitating predominately angular movements of
target proteins. Whether the molecular steering effect converts more non-
specific encounter to specific ones, or destabilises (thus shortens the life-
times of) existing specific encounters, remains dependent on the nature of
the molecular interaction itself. One major contributor of this extra momen-
tum is through ambient, nonspecific electrostatic interactions with environ-
mental crowders.

An important factor of molecular crowding is the volume exclusion ef-
fect placed onto the system of interacting molecules. As pointed by Minton
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(2001), diffusion tends to be less limited for smaller molecules; it would be
more difficult for the large target molecules to diffuse (thus interact) through
the crowded solution. By examining the data from the simulations, this
statement holds for nonspecific interactions, as the correlation coefficient
between molecular weights and the numbers of nonspecific interactions is
-0.62. This is a stark contrast to the same correlation coefficient calculated
for specific interactions, which yielded ρ = −0.11. This, in addition to the
results shown in Section 5.3.1, further verifies that the formation of specific
encounters, unlike that of nonspecific encounters, is not affected by diffu-
sion conditions, be it non-crowded or heavily crowded.

Molecular simulations performed here point to enhanced molecular
steering, leading to changes in kon for target molecules. Indeed, the cor-
relation is strong and positive (0.72) between changes in molecular steering,
i.e. rotational movements, and changes to kon when the interaction environ-
ment becomes crowded. For example, Ras-GAP (PDB:1WQ1) shows a 2.1-
fold kon increase under crowded conditions, and this projects to a 16.7%
increase in the successful steering ratio. However, counter-examples do ex-
ist, as for ferredoxin and its reductase (PDB:1EWY) – here a marginal 5.68%
increase in the successful steering ratio is recorded, but a 2.2-fold increase
in kon is observed in crowded simulations. This indeed may be a case where
the volume exclusion effect kicks in, enforcing longer retention of the al-
ready formed encounter complexes.

Finally, it is interesting to note, that many of the low kon protein interac-
tions are involved in signalling pathways (five in the test set); therefore, the
rate enhancement for their association under crowded conditions (four out
of five cases) may have particularly meaningful implications. It is extremely
difficult to replicate the biological behaviour of a signalling transduction
pathway through in vitro experiments; hence, the intracellular content that
crowds these proteins, albeit different from the example crowders used in
this study, may play an important role in governing the correct binding cas-
cade being formed. Through atomic detailed simulation algorithms, such as
the model described here, investigation into specific protein-protein binding
and/or competition in a specific crowding context, i.e. crowders that may
exert specific influence towards certain targets, has perhaps for the first time
become within reach.
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5.5 Conclusion

In conclusion, we have demonstrated that MCEs influence the outcome
of macromolecular interactions in multiple ways across frequential, spatial
and temporal measures. We showed that when molecules approach each
other, they are more likely to spin and roll towards their specific binding
sites under the influence of neighbouring crowders. We also revealed that,
in addition to the commonly perceived volume exclusion effect, the electro-
static steering effect by crowder molecules contributes to the rate enhance-
ment and persistence of specific binding between target molecules. At a
stage where no previous experimental or computational efforts have been
able to investigate the physical nature of in vivo macromolecular crowd-
ing, our approach offers the first glimpse into the molecular mechanisms of
MCEs in atomic detail, responding to the “quantitative challenges” (Hall,
2003) on the subject of “specific molecular interactions” (Elcock, 2010) for
the macromolecular crowding problem.



Chapter 6

Concluding Remarks

6.1 General Conclusion

Cellular structures and functions rely on a complex network of regulated
protein interactions, which are further based on complex molecular bind-
ing mechanisms. In this study, further resolution to three key, progressive,
questions (Figure 6.1) was attempted: a) how does a protein find its part-
ner, b) at what rate do they interact and c) how are interactions affected
by their crowded, in vivo, environments. While these questions are usually
studied in isolation, we believe that unique observations have been made
by carrying out holistic investigation of the three problems under one roof,
bringing together molecular docking, interaction kinetics and macromolec-
ular crowding.

The construction of the macromolecular simulation package, BioSimz,
enables us to create a simulation environment that accommodates multiple
macromolecules conducting pairwise and multiple interactions (Chapter 2).
Performing simulations under the general Langevin dynamics scheme, en-
abled the mapping of potential, low energy, protein-protein interaction sites
to trajectory density profiles; the resulting heatmaps were demonstrated
to have guided our in-house docking protocol, SwarmDock, to better fo-
cus on the potential binding sites (Chapter 3). Under dilute conditions, the
distributions of duration of the specific encounter complexes, formed dur-
ing simulations, were found to strongly correlate with their association rate
constants, kon (Chapter 4). After adding different types of proteins, such
as the ten glycolytic enzymes, as environmental crowders into the simula-
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Figure 6.1: Three steps to tackle the molecular interaction problem. Step one, the pair-
wise binding problem. Step two, association and dissociation kinetics of a system of
macromolecules . Step three, partial emulation of a dynamic cellular environment. The
simulation box with proteins, ions and a membrane on one of its faces is modelled and
rendered with BioSimz. The artistic illustration of an E. coli cell (right most) was copy-
righted by David Goodsell.

tion box, target protein-protein interactions with highly electrostatic bind-
ing surfaces, and generally with a high kon, tend to have their interaction
kinetics damped, while the slower interactions seem to have their kon ele-
vated (Chapter 5).

Throughout this whole study, the quest for a more thorough under-
standing of the underlying mechanisms for macromolecular interactions
has been maintained. On the intermolecular side, the binding mechanism of
molecules spinning and rolling, that describes how molecules search each
other’s surfaces to locate stable contacting areas, has been demonstrated,
with direct evidence from neighbouring contacts (Section 3.4) and angu-
lar velocities (Section 5.3.2). With respect to intramolecular movements,
the debate on induced-fit versus conformational shift, as the main source
of bound-form conformations, has been investigated, with the conclusion
that, due to the better agreement between binding scores from simulations
of bound targets and the experimental kon, conformational shift may be
the predominant factor for fast, diffusion-controlled molecular interactions
(Section 4.4.2). Finally, the spinning and rolling mechanism has been shown
to apply to not only protein binding in vitro, but also in a crowded macro-
molecular environment, in which the steering force/torque can be further
enhanced by ambient electrostatics of the surrounding crowder molecules
(Section 5.3.3).

This thesis has now come to conclusion with the above theories and ob-
servations, which have formed a self-contained set where each of its element
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explains each other.

6.2 Future Directions

A brief overview of how the current work may be continued is summarised
below.

6.2.1 Models

The BioSimz library is currently equipped with only one motion scheme,
which is rigid-body Langevin dynamics. Improvements can be made
through adding internal flexibility to the system. This requires work on
the following two fronts:

Backbone flexibility. A suitable movement model is required to repre-
sent and store the motion of protein backbones. It seems apparent
that, given the picosecond time frame, a full-atom MD movement
model is inadequate to model the large, deterministic movement in-
curred during molecular collisions. The fixed-ends movement (FEM)
method, allowing extensive backbone flexibility, providing consider-
able promises in being able to deliver a high-performance backbone
movement whilst in agreement with polymer physics. The FEM algo-
rithm has already been implemented and tested in the BioSimz library;
the next step is to design and benchmark a set of force propagation
rules so that the movement engine can be attached to the full-atom
forcefield without incurring internal atom conflicts.

Sidechain flexibility. Conformational changes of sidechains are too “deli-
cate” at the picosecond scale, such that a Newtonian motion scheme
is deemed not applicable. Therefore, Monte-Carlo sampling from
sidechain conformers should be used to generate acceptable sidechain
conformations.

The introduction of molecular internal flexibility, no matter how well it
would be implemented, will inevitably hinder the current computational
performance of BioSimz simulations. This negative influence can be min-
imised by implementing the new algorithms, especially the Monte-Carlo
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conformational sampling, on a massively parallel GPU computing platform,
such as CUDA (Section 1.2.1.1).

6.2.2 Applications

Much of the effort in this thesis project involved the development of the sim-
ulation package itself. Upon completion and further improvements, many
more questions of scientific interest to the molecular and systems biology
communities can be explored using, or with the help of, the BioSimz pack-
age. Here I list two problems, which are deemed to be mostly interesting
from the author’s point of view:

The macromolecular aggregation problem. It is commonly known that
certain proteins, such as DNA polymerases, can aggregate to a con-
fined space, e.g. around DNA, when carrying out functions that re-
quire them to be present in large numbers. Lysozymes are reported to
have a similar tendency and a very transient homogeneous cluster can
be formed when protein concentration is high (Porcar et al., 2010). This
problem is indeed related to the macromolecular crowding problem,
only differentiated by the specificity of the interactions: in this case,
proteins in a transient cluster seem to have a very weak, but definitely
specific binding with each other. These bindings may have extremely
high koff values such that they dissociate quickly after being associ-
ated; nevertheless, aggregations may act like a “glue”, keeping the
homogeneous proteins within a small vicinity of each other, as a con-
sequence of rapid cluster member association/dissociation dynamics.
This problem could be an ideal target for BioSimz simulations to in-
vestigate: by fixing a number of lysozymes at certain places, the dif-
fusion distribution of other lysozymes can be examined throughout a
number of simulations. If they are found to have a higher occurrence
near the restricted lysozymes, while other protein types don’t, then the
specific aggregation/clustering effects would indeed be demonstrated
through simulation.

The ligand competition problem. Competition for the same receptor bind-
ing site, by different ligand types, or even simply different mutants of
the same ligand type, is of great interest in both academic and drug
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discovery fields. Conventional MD is far too slow for screening and
evaluating the affinity of different ligand molecules towards a medi-
cally interested binding site; on the other hand, most docking pack-
ages only perform relatively static geometric and energetic fitting tri-
als between ligands and the receptor. This package not only dynami-
cally explores the curvature of binding energy funnels, but also simu-
lates multiple ligand/receptor types at the same time in one box; this
naturally leads to the consideration of target ligand filtering, perhaps
on an ensemble of ligand mutants, to obtain the receptor-ligand pair
displaying the required kinetics.

Indeed, with the opening up of new dimensions in molecular quantities
and interaction time-courses for macromolecular simulations performed at
atomic resolution, the problem and solution space in which researchers
explore and gain understanding in the field of molecular interaction and
recognition, has never become so wide.



Appendix A

The Wilcoxon Rank-Sum Test

The Wilcoxon rank sum test is a non-parametric method of testing statistical
significance that two populations have the same distribution. Like the Stu-
dent’s t-test, the Wilcoxon rank sum is usually used for testing whether two
populations are different from each other. However, a rank sum test differs
from the t-test in that the former is solely based on the order in which the
observations fall, and that it does not assume the prior distribution of the
two samples to be tested.

Generally, suppose there are nA and nB sampled observations from pop-
ulations A and B respectively. We wish to test the hypothesis that the distri-
bution of samples in A is the same as that in B, which is written as

H0 : A = B. (A.1)

A departure from H0, to be revealed in H1 by the Wilcoxon rank sum
test, is termed a location shift. Possible scenarios for location shifts can take
the form

H1 : A > B, (A.2)

H1 : A < B, or, more relaxed, (A.3)

H1 : A 6= B. (A.4)

Where the first two of the above conditions are mutually exclusive, the test
of either condition is termed a one-side rank sum test. If the direction (up
or down) of the shift in ranks is not of interest, or the two conditions are not
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mutually exclusive, the rank sum test is then conducted in a two-sided way,
i.e., satisfying the third condition.

The actual ranks are generated by mixing and sorting samples from pop-
ulation A and B, using a certain scoring function. The Wilcoxon rank sum
test statistics is the sum of the ranks for observations from either one of the
two sample populations. If population A and B are from the same distribu-
tion, we expect their sums of ranks to be of the form

E(T) =
nA(nA + nB + 1)

2
. (A.5)

The distribution of sum of ranks has its variance given by

σ2
T =

nAnB

12
(nA + nB + 1). (A.6)

Provided nA and nB represent large enough samples (> 10), T can be
approximated as normally distributed. P-values for one-sided tests can then
be determined using the standard normal P-value table. For two sided tests,
both tails need to be considered, resulting a doubled P-value.
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Einstein, A. (1905). Über die von der molekularkinetischen Theorie
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