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dibert.

It was my good fortune to sit next to Zakria Hussain and Tom Diethe who have been my first port

of call for many questions and who have always been generous with their time in answering them.

Finally I have been fully supported throughout this PhD by an EPSRC grant without which none

of this would have been possible.



To my parents and dimension stories



Abstract

This thesis offers some new analyses and presents some new methods for learning in the context of

exploiting structure defined by data – for example, when a data distribution has a submanifold support,

exhibits cluster structure or exists as an object such as a graph.

1. We present a new PAC-Bayes analysis of learning in this context, which is sharp and in some

ways presents a better solution than uniform convergence methods. The PAC-Bayes prior over a

hypothesis class is defined in terms of the unknown true risk and smoothness of hypotheses w.r.t.

the unknown data-generating distribution. The analysis is “localized” in the sense that complexity

of the model enters not as the complexity of an entire hypothesis class, but focused on functions

of ultimate interest. Such bounds are derived for various algorithms including SVMs.

2. We consider an idea similar to the p-norm Perceptron for building classifiers on graphs. We define

p-norms on the space of functions over graph vertices and consider interpolation using the p-

norm as a smoothness measure. The method exploits cluster structure and attains a mistake bound

logarithmic in the diameter, compared to a linear lower bound for standard methods.

3. Rademacher complexity is related to cluster structure in data, quantifying the notion that when

data clusters we can learn well with fewer examples. In particular we relate transductive learning

to cluster structure in the empirical resistance metric.

4. Typical methods for learning over a graph do not scale well in the number of data points – often a

graph Laplacian must be inverted which becomes computationally intractable for large data sets.

We present online algorithms which, by simplifying the graph in principled way, are able to exploit

the structure while remaining computationally tractable for large datasets. We prove state-of-the-

art performance guarantees.
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Introduction and Motivation

This thesis is about understanding structure and geometry defined by data and its role in supervised

learning processes. It is a recent development, particularly in the domain of semi-supervised learning,

that the learning process should ideally exploit the structure defined by the learning problem that is

revealed in a data sample.

In a learning process data is typically represented in a (high dimensional) “ambient” metric space.

The structure of this space can be arbitrary and inappropriate; given a set of images each represented as

a vector of pixel values, for example, it is unlikely that the Euclidean metric on these vectors defines an

appropriate distance between two images. The data distribution might have support a low dimensional

submanifold or some other highly structured geometry such as a collection of clusters and a more ap-

propriate metric space for the data is often defined by the data distribution – the geodesic distance on a

submanifold support, for instance. This intrinsic structure defined by data is often very different to that

captured by the geometry of the ambient space.

A second (and, as we will see, sometimes related) example of the need to understand structure

defined by data arises wherever data naturally inhabit objects such as graphs, strings or networks, the

structure of which is perhaps poorly understood from a learning theory perspective. This situation is in-

creasingly common in practical applications of machine learning. For example, biological and chemical

data such as gene networks or drug molecules, web data or social network data are typically naturally

represented as a graph.

A working hypothesis of recent research, and this thesis, is that the ease with which a task can be

learnt is dependent on the intrinsic structure defined by the data, and learning methods should be tuned

to operate with and exploit this structure. This assumption appears to hold in reality as evidenced by

the practical success of semi-supervised machine learning methods in particular and, after all, biological

learners routinely demonstrate that it is possible to learn extremely effectively and efficiently (i.e. with

few examples) in a setting whose intrinsic structure is embedded in an ambient space of seemingly

intractable dimensionality.

This thesis offers some new analyses and presents some new methods for learning in this context

of exploiting structure defined by data. The aim is to improve upon classical analyses, enhance the

understanding of learning in this context and motivate improved learning methods. Specific contributions
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are outlined in Section 1.4.2.

The goal of learning theory is to describe the learning process, but there still exists a large gap

between the performance demonstrated by modern machine learning algorithms and the ability of a

mathematical theory to explain this performance. Understanding the role of data-defined structure per-

haps plays an important role in understanding the learning process and exploiting this structure is perhaps

part of the key to learning well.



Chapter 1

Preliminaries

1.1 Learning theory background

1.1.1 Typical settings and analytical frameworks

The problem of inferring a function from finite samples is fundamental to learning. Learning theory

is the mathematical theory which explains such a learning process. A common setting (and focus of

this thesis) is that of supervised learning: a learner is given access to a sample of labelled examples

S := {(x1, y1), (x2, y2), ...(xm, ym)} from a product spaceZ = X×Y , and must infer from this sample

a function f : X → Y which explains the data and can be used to make future predictions given new

unlabelled instances from X . The classical tasks of regression and classification fall within this setting,

and this thesis will be concerned mainly with the task of binary classification, whereY = {−1, 1}. Given

some class of hypotheses H ⊆ YX , if we view a learning algorithm as a function A : ∪m∈NZm → H
which takes a training sample (of size m) and outputs a hypothesis, then a goal of learning theory is

to explain properties of A. We are particularly interested in providing certain formal guarantees on the

performance of the hypothesis A(S) produced by A. Such analyses provide some explanation of the

learning process and such insights are used to motivate new learning methodologies, ultimately used to

build learning machines.

The statistical learning theory framework

An analytical framework that has reached substantial maturity is statistical learning theory, pioneered by

Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1971; Vapnik, 1982). Here, it is typically assumed

that data are drawn identically and independently according to a joint distribution D over the space

X × Y of labelled inputs. For a class of hypotheses H ⊆ DX , where the decision space D may or may

not correspond to Y , we consider a loss function ` : D × Y → R≥0, which, for any h ∈ H, captures

the degree of mismatch between h(x) and y on any labelled instance (x, y) ∈ Z . To any function

h : X → D we can then assign a measure of its performance on a randomly chosen labelled instance
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drawn from D, called the generalization ability or risk of h,

risk`(h) := E(X,Y )∼D [`(h(X), Y )] . (1.1)

In particular when ` is the 0− 1 loss of binary classification problem,

`0−1(y, y′) :=

 0 if y = y′

1 if y 6= y′
, (1.2)

then we denote the associated risk by risk, omitting the superscript `.

A problem is then to learn, from S, a function h : X → D with low risk. The function with least

possible risk is called the Bayes function f∗ ∈ argminf∈YX risk`(f), and the corresponding smallest

possible risk the Bayes risk. We say that an algorithm A is consistent1 if risk`(A(S)) → risk`(f∗) as

m→∞, with various modes of convergence determining various modes of consistency2.

In the statistical learning theory setting we seek often to provide a risk bound, which is an upper

bound on the risk which holds with high probability over the i.i.d. draw of the training sample S from

Dm,

PS
(

risk`(A(S)) ≤ F (A,H,S, δ)
)
≥ 1− δ. (1.3)

for some function F . We can define the empirical counterpart to (1.1) on a labelled sample S,

r̂isk`S(h) :=
1
|S|

∑
(X,Y )∈S

`(h(X), Y ), (1.4)

and a common example of a risk bound is a deviation inequality, bounding the deviation between the

true risk and the empirical risk observed on the sample such as,

PS
(

risk`(A(S)) ≤ r̂isk`S(A(S)) + F ′ (A,H,S, δ)
)
≥ 1− δ. (1.5)

A key questions is, for example, establishing the (optimal) rate at which the quantity F ′ (A,H,S, δ)
decays in |S|.

Since the hypothesis A(S) is a-priori unknown, one route to obtain a bound such as (1.5) is to

establish convergence uniformly for all functions in an a-priori fixed hypothesis class3 H (Vapnik and

Chervonenkis, 1971). In such settings certain measures of complexity, or the expressive power, of a

function class emerge as key quantities required to quantify the learning process, the most foundational of

which is the VC dimension4 leading to VC theory. In the uniform convergence approach much work has
1This word is also used to describe several related concepts.
2It is a surprising fact that universally consistent learning rules exist, that is, algorithms which are consistent for any distribution

D over X × Y (Devroye et al., 1996).
3A class F ⊂ RZ for which

sup
f∈F
|EZ∼Df(Z)−

1

m

m∑
i=1

f(zi)| → 0 (1.6)

Dm-almost surely and such that convergence is uniform over all probability measures D on Z is called uniformly Glivenko-

Cantelli.
4The VC dimension of a classH ⊂ {−1, 1}X is the cardinality of the largest set shattered byH, where a set {x1, , ...xn} of

size n is shattered byH if for each y ∈ {−1, 1}n there exists h ∈ H such that h(xi) = yi.
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been completed on establishing conditions under which the Dm-almost sure convergence of risk(A(S))

to minh∈H risk(h) asm→∞ is attained for certain learning rules in terms of general abstract properties

ofH leading to a simple and powerful theory.

The related field of PAC (probably approximately correct) learning (Valiant, 1984) has similar

goals and is further concerned with the efficiency of the learning method (or algorithm). These theories

are a mature field of research and we refer to reader to Bousquet et al. (2003a); Vapnik (1998); Devroye

et al. (1996); Boucheron et al. (2005); Cucker and Smale (2002); Anthony and Bartlett (1999) for a

comprehensive overview of the subject and recent research.

The online learning framework

An alternative learning framework that receives significant attention is the adversarial online learning

setting, in which learning proceeds sequentially (Littlestone, 1988; Vovk, 1990; Cesa-Bianchi and Lu-

gosi, 2006). This setting provides a game-theoretical foundation for learning, with fewer assumptions

than is typical in statistical analyses, providing a different setting in which to compare learning methods.

In this setting the training sample S := {(x1, y1), (x2, y2), ...(xm, ym)} is revealed sequentially, and at

each trial t a learner is provided with xt and must make a prediction ht(xt) for the label yt, after which

the true label is revealed, and the learner modifies its hypothesis for the next trial. The goal is typically

to minimise the cumulative loss

M =
∑
t≤m

`(ht(xt), yt),

(which corresponds to the number of mistakes if ` is the 0− 1 loss of the binary classification problem).

Note that no assumptions are made on the distribution of examples and in particular nature can be viewed

as an adversary, so that any mistake bound performance guarantees hold for every conceivable realization

of trial sequence. We refer the reader to Cesa-Bianchi and Lugosi (2006) for an overview of this learning

model.

1.2 Methods

The no free lunch theorem of Wolpert (1996) establishes the fact that if all problems are equally likely

then the performance (measured by their true risk, given the problem and training set) of all learning

algorithms are equal in expectation. Thus given any learning algorithm there is a data distribution on

which it performs badly (attains high true risk in general) and there is no universally optimal learning

method. In order to learn well assumptions (or prior knowledge) about the nature of the data distribution

(bias) must be introduced, usually in the form of a preference for “simple” functions, e.g. such that there

exists a simple relation between inputs and outputs or such that the function has a “small description

length” for instance (simplicity is not a universal notion). This is usually realized by placing restrictions

on the class of functions to be learnt. We now discuss some key learning principles relevant to this thesis.
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1.2.1 Empirical risk minimization

A foundational strategy for obtaining a hypothesis from data is that of empirical risk minimisation

(ERM): find the hypothesis that minimizes (1.4) over the training sample. If we allow H to be the

set of all functions (or, e.g., all continuous functions) mapping X → Y then the ERM problem

argminh∈H r̂isk`S(h) is generally ill-posed5 since there is no unique solution. The ERM hypothesis

is unstable (in the sense that small changes in training sample can cause large changes in the learned

hypothesis) due to its tendency to significantly overfit the training data. Thus, following Tikhonov and

Arsenin (1977), the class H is generally restricted in some way and additional regularization terms are

added to the minimization problem in order to obtain a well-posed problem and improve the stability of

the ERM solution,

h∗ := argmin
{h∈H}

r̂isk`S(h) + reg(h),

where reg : H → R is a regularization term. Solving the ERM problem with the binary classification

risk is generally NP-hard even for simple hypothesis classes, so convex surrogates (along with convex

regularization) are often used in practice.

Both capacity control and regularization are generally realised by applying a smoothness assump-

tion, so that ||x−x′|| ≈ 0 =⇒ f(x) ≈ f(x′), for example. This is achieved by, for example, penalising

large derivatives of f . A principled way of controlling the capacity of function classes is that of structural

risk minimization (e.g. Vapnik, 1998).

1.2.2 Kernel methods and the RKHS formalism

A framework which is now ubiquitous in the machine learning community is that of kernel methods (e.g.

Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002). This refers to choosing as a hypothesis

class a reproducing kernel Hilbert space (RKHS) of functions, which possess some extremely desirable

qualities (Aronszajn, 1950).

Given any symmetric positive-definite kernel6 K on a set X , consider the pre-Hilbert space ĤK =

span{K(x, ·) : x ∈ X} of functions mapping X into R, consisting of all finite linear combinations of

the features {K(x, ·)}x∈X . The inner product in ĤK is defined by 〈K(x, ·),K(x′, ·)〉K := K(x,x′),

for all x, x′ ∈ X . The reproducing property h(x) = 〈h,K(x, ·)〉K is immediate from the definition,

and provides the means of evaluating hypotheses on sample points (the kernelK is called the representer

of evaluation). The RKHS HK is formed by completing ĤK with respect to the norm || · ||K , HK =

span{K(x, ·) : x ∈ X}. It can be easily seen that the topological operation of completion defines a

space of functions over X since, by virtue of the reproducing property, the limits of Cauchy sequences

5A problem is well-posed, in the sense of Hadamard, If a unique solution exists and it depends continuously on the data.
6A positive-definite kernel on X is a symmetric continuous function K : X × X → R such that, for any finite collection of

points {xi}ni=1 and any constants {ci}ni=1,
∑n
i,j=1 cicjK(xi,xj) > 0.
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in ĤK correspond to elements which are well-defined functions pointwise,

|hi(x)− hj(x)| = 〈hi − hj ,K(x, ·)〉K

≤ ||hi − hj ||KK(x, x), (1.7)

thus if {hi} is Cauchy in ĤK , the point evaluations are also Cauchy in R and have a well-defined limit.

The RKHS is so useful in machine learning because of the so-called kernel trick first realized

in Aizerman et al. (1964). The RKHS is typically of very high (often infinite) dimensionality whose

dimensions correspond to correlations between the dimensions of the original input space. Thus, by

first mapping inputs into “feature space”, x → K(x, ·), and learning a linear function in feature space,

f(x) := 〈h,K(x, ·)〉K for some h ∈ HK , the learned classifier generally corresponds to a highly non-

linear function in the original input space, vastly increasing the discriminative power of the functions

attainable by the linear algorithm. The key observation is the fact that to produce predictions on new

inputs many classical algorithms (such as the Support Vector Machine (e.g. Cristianini and Shawe-

Taylor, 2000) or Perceptron (Rosenblatt, 1958; Minsky and Papert, 1969; Novikoff, 1963)) require only

inner products between examples to be calculated and, since the RKHS inner product between two

features is equal to the kernel evaluation at the corresponding points, inner products can be evaluated

without paying the computational cost of operating directly in a potentially infinite-dimensional space.

Thus many linear algorithms are therefore “kernelizable” enabling the learning of highly non-linear

functions with the computation ease of linear methods. The various representer theorems (e.g. Wahba,

1990) imply that, given a set of points S = {x1, ...xm} drawn from X , the solution to many (kernelized)

classical algorithms (the SVM for example) is a hypothesis which has an expansion in the features of the

training sample h =
∑m
i=1 αiK(xi, ·), with α ∈ Rm.

The RKHS norm ||h||K often has an interpretation in terms of a measure of complexity such as of

how variable the function h is (in the case of the Gaussian kernel the RKHS norm captures the smooth-

ness of all derivatives of a function, for example). The following sheds some light on this relationship.

Kernels, regularization and smoothness

Consider the function space L2(X ,Σ, ν) of square integrable functions on the measure space (X ,Σ, ν)

equipped with the inner product 〈f, g〉L2 :=
∫
X f(x)g(x)ν(dx). Associated with a positive-definite

kernel K : X × X → R is the linear integral operator AK : L2(X ,Σ, ν)→ L2(X ,Σ, ν) defined by,

AKf(x) :=
∫
X
K(x′, x)f(x′)ν(dx′). (1.8)

The function AK is a compact self-adjoint operator on L2(X ,Σ, ν) and, by the spectral theorem for

compact self-adjoint operators on a separable Hilbert space, it provides a countable basis {φi} for

L2(X ,Σ, ν) consisting of the orthonormal eigenfunctions of AK , i.e. such that,

AKφi := λiφi,
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for corresponding eigenvalues {λi}. Mercer’s theorem (Mercer, 1909) then provides the expansion,

K(x, x′) =
∞∑
i=1

λiφi(x)φi(x′). (1.9)

Further, when (X ,Σ, ν) is a finite measure space, the operator AK is of trace class,
∑
i λi <∞, which

follows from the continuity of the kernel.

In Appendix A we briefly sketch a theory (presented in Smola et al. (1998)) which unifies many

key paradigms in learning theory, by showing that the apparently distinct approaches of kernel methods,

certain regularization paradigms and encouraging smoothness over data are all aspects of a single frame-

work: there is a natural correspondence between regularizing in L2(X ,Σ, ν) and controlling capacity by

using the RKHS norm – the kernel corresponding to the Green’s function of the L2 regularizer. It often

turns out that common kernels are the Green’s function of intuitively useful regularizers, and we will see

examples of this duality later.

Wahba (1990) provides the following insightful further characterization of the RKHS norm:

Lemma 1.2.1. (Wahba, 1990, Lemma 1.1.1) For any h ∈ L2(X ,Σ, ν) with h =
∑∞
i=1 hiφi,

h ∈ HK ⇔
∞∑
i=1

1
λi
h2
i <∞,

(where we define 0
0 = 0). Whenever h ∈ HK ,

||h||2K =
∞∑
i=1

1
λi
h2
i .

1.3 Exploiting structure defined by data

As mentioned in the introduction the intrinsic geometry of data is often very different to that captured

by the geometry of the ambient space, and we now present an informal overview of these ideas. We

want to highlight the difference between two possible approaches to using geometry when learning from

data; the first uses an ambient geometry of the representation space, and the second attempts to learn

an intrinsic geometry defined by the data-generating distribution. If the ambient representation space is

equipped with, for example, a metric we highlight that it will not in general provide an accurate means

to measure similarity between data points. Figure 1.1 illustrates two possible data densities in ambient

space (R3 and R2 respectively, with the Euclidean inner product) highlighting the possible mismatch

between intrinsic and extrinsic geometry.

In Figure 1.1(a) data inhabits a submanifold of the ambient space, and the manifold geodesics are

clearly not captured by the ambient Euclidean metric in R3. In Figure 1.1(b) a useful analogy is to view

the data distribution as two dense blobs of some conductive medium (conducting, for example electricity

or heat) separated by a high resistance bridge. In this analogy, if we consider the ease with which heat

or electricity flows between points as a measure of similarity we see that the ambient geometry fails

to provide a satisfactory measure of similarity. In both cases, if we want an intrinsic metric dI(·, ·) to
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A

B

C

(a) Support on a submanifold

A B C

(b) Two clusters

Figure 1.1: Mismatch between intrinsic and extrinsic geometry

capture similarity between points then we intuitively want dI(A,B)� dI(B,C). However in both cases

a typical extrinsic metric dE(·, ·) would satisfy dE(A,B) > dE(B,C) and, in particular, a hyperplane

classifier which separates points B and C would have a narrow margin w.r.t. the extrinsic geometry.

It is reasonable to conjecture (and a working hypothesis of this research) that the intrinsic structure

of a task plays a key role in the learning process (simple structures are easier to learn and if we observe

simple structure, and can see that a good classifier respects that structure then we should be able to be

more confident in our analyses) and that therefore an accurate explanation of the learning process should

relate to that structure and learning methods should seek to exploit it. A way of achieving this is to

attempt to learn the intrinsic geometry of the data generating distribution from the sample and to exploit

that structure, using something like an assumption that good hypotheses will be smooth with respect

to the data-defined geometry, as has become standard in settings of semi-supervised and transductive

learning.

As mentioned in the introduction, a further setting in which the need to understand and exploit

data-defined structure is in the increasingly common applications of machine learning to domains where

data naturally inhabit a structure such as a graph, as is typical in bioinformatics (Sharan and Ideker,

2006), chemoinformatics (Bonchev and Rouvray, 1991), social network analysis (Kumar et al., 2006),

web data analysis (Washio and Motoda, 2003), as well as areas in which a graph is often used to model

data such as computer vision (Harchaoui, 2007) and natural language processing (Collins and Duffy,

2001). A survey of some results pertaining to the structure of such graphs arising from data of the

“information age” is presented in Chung and Lu (2006). Such objects are perhaps poorly understood

from a learning theory perspective, and it is clear that both methods and analyses of learning in such

domains should be tuned to the structure of such objects.
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1.3.1 The role of graph theoretical methods in capturing data geometry

Principal definitions

We first outline the graph-theoretic notions that will be fundamental throughout this thesis. An (undi-

rected) graph G = (V, E) consists of a set of vertices V = {v1, . . . , vn} and a set of edges E ⊆ V × V
consisting of unordered pairs of vertex indices, so that (i, j) ∈ E is viewed as connecting vertices vi and

vj . We denote i ∼ j whenever vi and vj are connected by an edge. Associated with each edge (i, j) ∈ E
is a weight Aij > 0 and Aij = 0 if (i, j) 6∈ E , so that A is the (weighted) symmetric adjacency matrix.

We say that G is unweighted if A ∈ {0, 1}n×n. Given any n-vertex graph G = (V, E), any function

f : V → R can be identified with a vector in f ∈ Rn whereby fi = f(vi), hence we can identify the

class of real-valued functions defined on V , F = RV , with Rn.

The (combinatorial) Laplacian L of a graph G = (V, E) is the n× n matrix L = D −A, where

D is the diagonal degree matrix such that Dii =
∑
j Aij . For any graph, L is positive semi-definite and

therefore we can define a semi-inner product on Rn; 〈f , g〉L := f>Lg. Note the following key identity,

f>Lg =
∑
ij

fi(Dij −Aij)gj

=
∑
i

fiDiigi −
∑
ij

fiAijgj

=
∑
ij

fiAij(gi − gj)

=
∑

(i,j)∈E
(fi − fj)(gi − gj)Aij .

Given any real-valued function f : V → R this semi-inner product defines a natural smoothness func-

tional SG(f) := 〈f ,f〉L (Zhu et al., 2003a; Belkin et al., 2004) and note that,

SG(f) = f>Lf (1.10)

=
∑

(i,j)∈E
(fi − fj)2Aij .

Since 〈f ,f〉L is large if many adjacent vertices are labelled differently the smoothness functional indeed

measures the smoothness of real-valued functions on V , and is therefore a basic measure how well a

function respects the geometry of the graph. When f ∈ {−1, 1}n, we say that a cut occurs on edge (i, j)

whenever fi 6= fj and (1.10) therefore measures the number of cuts.

A similar object, the normalised Laplacian is defined to be L̃ = D−
1
2LD−

1
2 = I−D− 1

2AD−
1
2

and has similar properties but this thesis will focus on use of the combinatorial Laplacian.

The graph Laplacian is essentially a discrete counterpart to the Laplace-Beltrami operator defined

on a Riemannian manifold. A formalisation of these ideas which provides insight is presented in Zhou

and Schölkopf (2005) which we here recall to provide clarity. Let H(V) denote the Hilbert space of

real-valued functions on V equipped with the inner product 〈f, g〉V :=
∑
vi∈V f(vi)g(vi) and H(E)

denote the Hilbert space of real-valued functions on E equipped with the inner product 〈f ′, g′〉E :=
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(i,j)∈E f

′(i, j)g′(i, j).

Definition The gradient operator on G is a map∇G : H(V)→ H(E) defined7 by,

(∇Gf) (i, j) :=
√
Aij(f(vi)− f(vj)).

We can further define the gradient at vi by ∇Gf(i) := {(∇Gf) (i, j) : j ∼ i}. These definitions are

consistent with the notion of a gradient as a vector field quantifying the rate of change of a function in

each possible direction.

Definition The divergence on G is the operator divG : H(E)→ H(V) adjoint to∇G i.e. such that

〈f ′,∇Gg〉E = 〈divGf ′, g〉V . (1.11)

In analogy to the definition of the Laplace-Beltrami operator on a Riemannian manifold, we can now

define a Laplace operator on G:

Definition The Laplace operator, LG : H(V)→ H(V), on G is defined,

LG := divG∇G .

The operator LG is linear, since divG and ∇G are, and we have,

〈f, LGg〉V = 〈∇Gf,∇Gg〉E

=
∑

(i,j)∈E
(f(vi)− f(vj))(g(vi)− g(vj))Aij , (1.12)

and so by identifying H(V) with Rn equipped with the Euclidean inner product we can identify LG

precisely with the combinatorial Laplacian matrix L defined above. In particular we see that f>Lf =

||∇Gf ||2E =
∑
vi∈V ||∇Gf(i)||2 (with the final norm denoting the standard Euclidean norm of Rd(i)

where d(i) is the degree of vertex vi) so that the smoothness functional SG(·) measures smoothness

on H(V) in a way analogous to the Dirichlet energy functional, a basic measure of the variability of a

function, which is defined on functions over Rn by,

E(f) :=
∫

Rn
||∇f(x)||2dx. (1.13)

This analogy will provide insights into the techniques used throughout this thesis.

We refer the reader to Diestel (2005); Bollobas (1998) for introductions to graph theory and to

Chung (1997) for a focus on the graph Laplacian and the properties of its spectrum in particular.

Capturing the geometry defined by data with a graph

A graph is used to model data by representing objects as vertices and capturing similarity between objects

with edges between vertices (and their associated weights). As mentioned above, in the contexts of
7The ordering (or orientation) which must be imposed on the edges in order to make this well-defined is any arbitrary ordering.
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bioinformatics, chemoinformatics, social networks, web data-mining and many more application areas

data are naturally represented as a graph. We now detail how a graph can be used to estimate, from

a random sample a data distribution D with support in an arbitrary metric space X . Given a sample

S := {(x1, y1), (x2, y2), ...(xn, yn)} drawn from Dn we can form an n-vertex graph G = (V, E)

in which we associate each point xi with a vertex vi. We form an edge (i, j) whenever vi and vj

satisfy some criterion of closeness with respect to a metric dX (·, ·) on the ambient space X . A typical

criterion would be that vi, vj are a pair of k-nearest neighbours or are both located in an ε ball w.r.t.

dX (·, ·). Such a graph might be unweighted or we might set edge weights according to the distance

in ambient space, such as Aij = e−d
2
X (xi,xj). This method is closely related to the field of kernel

density estimation. The structure of such a graph will, in certain ways, be a discrete approximation to

the structure of the underlying data distribution. For example, if the data has support on a submanifold of

X a series of results (Hein et al., 2007; Hein, 2006) demonstrate that certain graph Laplacians converge

to a generalized (distribution dependent) Laplace-Beltrami operator on the manifold support, and that the

smoothness functional converges to a very natural and desirable measure of the smoothness of functions

with respect to the data-generating distribution.

49

51

Figure 1.2: Vertices on the graph represent points sampled from the data distribution. Informally, dis-

tances between vertices capture the structure of the manifold support.

Semi-supervised learning

Semi-supervised learning refers to the setting in which the training sample consists of labelled and

unlabelled data, S = Slabelled ∪ Sunlabelled, where Slabelled = {(Xs1 , Ys1), ...(Xsm , Ysm)} and

Sunlabelled = {Xsm+1 , ...Xsm+u}, so that n = m + u is the total amount of labelled and unlabelled

points. The setting is common in practice since the labelling of data (labelling a scan of a patients liver



1.3. Exploiting structure defined by data 24

as ‘healthy’ or ‘unhealthy’, or the contents of an email as ‘malicious’ or ‘harmless’, for example) can

be expensive and time consuming and require expert input whereas unlabelled data (the scans or emails)

might be readily available in great number or essentially almost “free”. Semi-supervised techniques at-

tempt to exploit the additional information provided in this setting by the unlabelled data. Because of

the potential of such approaches the setting has received significant attention for some time (Ratsaby and

Venkatesh, 1995; Castelli and Cover, 1995, 1996; Blum and Mitchell, 1998; Nigam et al., 1998; Zhang

and Oles, 2000; Chapelle et al., 2006).

Transductive learning

Transduction refers to the learning setting in which the unlabeled instances from the test set are available

at the start of the learning process, and it is assumed that they are drawn from the same underlying

distribution, so that there is no bias in the labeling8. For analytical purposes the setting is equivalently

posed as follows: denote by X a finite input space and Y the corresponding label space so that Z =

X ×Y = {(x1, y1), ...(xn, yn)} is the joint space of labeled inputs. From Z is drawn uniformly without

replacement a training sample of labeled examples S = {(Xs1 , Ys1), ...(Xsm , Ysm)} ⊆ Z , leaving

the remaining test set T = {(Xt1 , Yt1), ...(Xtu , Ytu)} = Z\S . The training sample together with all

unlabeled instances from the test set {Xt1 , ...Xtu} is available to the learner and each unlabeled data

point must be labeled. For a given loss function ` : D × Y → R≥0 a notion of risk suitable for a binary

classifier h : X → D in this transductive setting is the average loss incurred on the test set,

risk`T (h) :=
1
u

u∑
i=1

`(h(xti), yti), (1.14)

which is sometimes called the transductive risk.

Analysis of transduction is often slightly different to that of inductive settings, the difference being

that the labelled sample is picked uniformly without replacement from a finite set and so the empirical

risk of a hypothesis follows the hypergeometric, rather than the binomial distribution, the former having

shallower tails. Vapnik (1998) provides bounds as do Blum and Langford (2003). For example we have

the following simple bound,

Theorem 1.3.1. Derbeko et al. (2004) Let P be any (prior) probability distribution over a class H of

functions on the finite input space X , and ` any bounded loss function, `(h(x), y) ∈ [0, β], then for any

δ ∈ (0, 1],

PS

∀h ∈ H : riskT (h) ≤ riskS(h) + β

√
m+ u

u

u+ 1
u

ln 1
P (h) + ln 1

δ

2m

 ≥ 1− δ. (1.15)

Analyses of semi-supervised learning and transduction

As discussed in Ben-David et al. (2008), there are two approaches to the analysis of semi-supervised

learning and transduction. The first simply attempts to prove better sample complexity bounds for the
8This is termed ”Setting 1” of the transductive framework in (Vapnik, 1998, Chapter 8) (see also Derbeko et al. (2004) for a

discussion of the various alternatives.)
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settings using additional information provided by the unlabelled data. For example, in Benedek and

Itai (1988) the knowledge of the marginal probability distribution DX over X is used to construct an

ε-cover (with respect to the L1(DX ) metric) of the hypothesis class thus reducing the size of the search

space by discarding many functions that differ only on regions of low density so that better sample

complexity bounds can be obtained. Similarly in El-Yaniv and Pechyony (2007) it is observed that in

transduction the hypothesis class can be chosen to depend upon all instances {x1, , ...xn} ⊂ X in the

labelled and unlabelled sample so that, again, the hypothesis class can be reduced in a similar way. The

second (more common) use of knowledge (provided by unlabelled data) of the distribution DX over

instances is closer to the aims of this thesis, where it it is used in conjunction with an assumption on the

conditional distribution DY|X so that further assumptions are made about how good classifiers are likely

to interact with the instances. We next review some common semi-supervised methods of realising such

an assumption using unlabelled data.

Foundational semi-supervised methods

A range of methods for semi-supervised learning and transduction exist which encode assumptions about

how good classifiers are likely to interact with the (marginal) distribution of instances from X . Since this

objective forms a large part of the motivation for this thesis, we give a brief overview of key methods.

Because of the fundamental role of the graph in representing data in these settings many semi-supervised

and, in particular, transductive techniques, utilise a graph to capture data geometry and often reduce, in

essence, to the problem labelling the vertices of a partially labelled graph.

(i) Harmonic energy minimization (Zhu et al., 2003a): with reference to Section 1.3.1 the fun-

damental assumption that a good classifier is likely to respect the geometry defined by the data

translates into the foundational transductive technique of minimising, over real-valued labellings,

the smoothness functional (1.10), derived from a graph defined on the data, subject to constraints

imposed by the labelled data,

h∗ := argmin
h∈Rn

{h>Lh : h1 = y1, ...hm = ym} ,

which provides a binary classifier by thresholding. Functions minimising a Dirichlet energy

functional (1.13), subject to constraints, are harmonic (which means in particular, in this case,

Lh∗ = 0) leading to their many pleasant properties (e.g. Doyle and Snell, 2000). Such functions

arise as the solution to many constrained physical systems and the process, called harmonic energy

minimisation occurs in nature (for example, as we will see in Chapter 5, the voltage induced in an

electric circuit with potential constraints is a harmonic function): in some situations, the harmonic

energy minimization principle is that which nature prefers to “label” (i.e. extrapolate values from

those imposed upon a constraint set to a medium) points given certain constraints..

(ii) Graph mincuts (Blum and Chawla, 2001; Blum et al., 2004): here again the idea is to minimise

the smoothness functional but over binary-valued labellings, subject to constraints imposed by the
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labelled data,

h∗ := argmin
h∈{−1,1}n

{h>Lh : h1 = y1, ...hm = ym} .

which can be solved efficiently with a max-flow algorithm, since the smoothness functional equates

to the graph cut over binary labellings. Minimising the graph cut cost was first proposed for clus-

tering and image segmentation (Wu and Leahy, 1993). The solution has been criticised because

it leads to unbalanced cuts: for example, if only few data points are labelled the optimal solution

may just disconnect a few labelled points from the rest of the graph (e.g. Joachims, 2003) leading

to degenerate solutions – see point (vii) below for a potential solution to this problem.

(iii) Graph Regularization (Belkin et al., 2004) : the harmonic energy minimisation principle is ex-

tended to allow for noise, by generalising to a regularization scheme,

h∗ := argmin
h∈Rn,h>1=0

1
m

m∑
i=1

(hi − yi)2 + γh>Lh. (1.16)

Risk bounds relative to the Fiedler vector – the smallest non-trivial eigenvalue of the Laplacian

and a basic measure of ‘algebraic connectivity’ of the graph (Fiedler, 1973; Chung, 1997) – are

provided via a stability analysis.

(iv) Local and global consistency (Zhou et al., 2003): this presents a regularization method similar to

(1.16), using the normalized Laplacian and extending the method to the multi class problem.

(v) Laplacian support vector machines (LapSVM) (Belkin et al., 2006): the above methods can be

extended to define semi-supervised algorithms providing classifiers valid out of sample on new

unseen instances. For an arbitrary kernel K defining an RKHS HK the generic regularization

problem,

h∗ := argmin
h∈HK

1
m

m∑
i=1

`(h(xi), yi) + γA||h||2K +
1

m+ u
γIh

>Lh, (1.17)

is solved, where h ∈ Rn is the vector of point evaluations of h on the labelled and unlabelled data,

h := (h(xi)), and γA, γI control the relative weight attached to (“ambient”) regualrization in the

RKHS and with respect to the intrinsic geometry respectively. By specializing to the hinge loss

(1.17) defines the LapSVM solution.

(vi) Transductive and semi-supervised support vector machines: It is possible to apply the large

margin principle to the transductive and semi-supervised settings; the classifier chosen is essen-

tially that which maximises the margin over the full set of labelled (training) and unlabelled (test)

data, rather than over the training data alone, as in the inductive case. This idea was first pro-

posed in Vapnik (1998) and implemented as the “S3VM” (Bennett and Demiriz, 1998) and “trans-

ductive SVM” (TSVM) (Joachims, 1999). Given a sample S = {(Xs1 , Ys1), ...(Xsm , Ysm)} ∪
{Xsm+1 , ...Xsm+u} let {ξ(xi)}ni=1 be the data inputs mapped into some feature space, and write
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for brevity ξi = ξ(xi). The approach is to maximise (over hyperplane classifiers (w, b), and

inferred labellings y∗ ∈ {−1, 1}u) the margin

min
i=1,...n

ŷi(w>ξi + b)
||w|| , (1.18)

where ŷi

 yi if i ≤ m
y∗i if i > m

denotes the (true or inferred, as appropriate) label of xi. The optimisa-

tion is thus, for the linearly separable case9,

argmin
y∗∈{−1,1}u,w,b

1
2
||w||2

such that : yi(w>ξi + b) ≥ 1 i = 1, ...m

y∗i (w>ξm+i + b) ≥ 1 i = 1, ...u (1.19)

This combinatorial optimisation problem is more difficult than the inductive SVM due to the pos-

sible assignment of y∗ to any combination of two classes. It is in fact intractable for even modest

test sets. The optimisation is solvable approximately, but unfortunately this tends to require a com-

plicated suite of heuristics which can give bad results and have often been criticised (Chapelle and

Zien, 2005; Belkin et al., 2006). The inner optimisation in (1.19) over (w, b) is simply that of an

inductive SVM and can be readily performed in the dual form. The key idea of the TSVM, there-

fore, is to calculate a labelling of the test data with an inductive SVM, and then swap labels of the

test examples so that the objective function decreases.

Alternatively the problem (1.19) can be reformulated as,

argmin
w,b

1
2
||w||2

such that : yi(w>ξi + b) ≥ 1 i = 1, ...m

|w>ξm+i + b| ≥ 1 i = 1, ...u,

but the final (transductive) set of constraints are not convex, which gives another insight into the

difficulty of solving the problem. An approach to solving this non-convex problem via a gradient

descent method is presented in Chapelle and Zien (2005).

(vii) The spectral graph transducer and normalized complexities : as discussed above, minimis-

ing the graph cut of a binary labelling of a graph tends to induce unbalanced, degenerate cuts.

Following Shi and Malik (2000) a potential solution to this problem is to modify the objective to

capture the ratio of the cut to the size of the partitions produced resulting in normalized measures

of complexity: suppose a binary labelling h ∈ {−1, 1}n of G = (V, E) partitions V into subsets

V+ = {vi : hi = 1} and V− = {vi : hi = −1}. Let d(vi) = |{j : (i, j) ∈ E}| denote the

degree of vertex vi, and d(U) =
∑
vi∈U d(vi).

9In the paper Joachims (1999) the theory is developed for the SVM with soft constraints, thus accommodating misclassifica-

tions, but for simplicity of presentation of the principle the simpler case of hard constraints is given.
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Definition The sparsity of h is

s(h) =
h>Lh

min(|V+|, |V−|) (1.20)

Definition The ratio cut of h is

r(h) =
h>Lh

|V+||V−| (1.21)

Definition The conductance of h is

γ(h) =
h>Lh

d(V+)d(V−)
(1.22)

The conductance of G is Γ(G) = minh∈{−1,1}n γ(h). These normalised measures of complexity

have been considered as measures of the complexity of a function defined over the vertices of a

graph, and are a particular focus in the computer vision and spectral clustering communities but

minimizing such measures subject to constraints exactly is generally NP-hard.

In Joachims (2003) the unsupervised problem of finding the minimum ratio cut in a graph is ex-

tended to include vertex label constraints via a regularisation as follows.

min
h∈{−1,1}n

r(h) = min
h∈{−1,1}n

h>Lh

nh>h− (h>1)2

= min
h∈{γ−,γ+}n

h>Lh

nh>h

= min
h∈{γ−,γ+}n

h>Lh

n2

where γ− = − |V
+|

|V−| and γ+ = |V−|
|V+| , and V+, V− are the positive and negative vertex sets. Noting

that the constraints h ∈ {γ−, γ+}n imply that h>1 = 0 and h>h = n, so this is relaxed to the

minimisation problem

argmin
h∈Rn,h>1=0,h>h=n

h>Lh,

and constraints are included by formulating the problem as a regularisation,

argmin
h∈Rn,h>1=0,h>h=n

h>Lh+ c(h− γ)>C(h− γ), (1.23)

where γi = γ+ (γi = γ−) if vi has a positive (negative) constraint and is zero otherwise. Since γ+

is unknown it is estimated from the proportion of positive and negative examples in the training set

(which is valid if the training sample is not biased toward including examples from either class). A

closed form for the solution to (1.23) is presented.

Similar methodologies derived from various optimisations involving such normalised complexity

measures are considered in Bie et al. (2004); Eriksson et al. (2007); Bie and Cristianini (2003). The

combinatorial problems are NP-hard, and each approach tends to present a particular relaxation.

Simple relaxations do not reduce the problem to a convex optimisation (the constraints are generally

non-convex), but the non-convex problems can be solvable. Solutions typically involve a lot of

heuristics.
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(viii) Kernels derived from the graph Laplacian: recalling Section 1.2.2 the discrete Green’s function

corresponding to the graph LaplacianL (of a connected graph) operating on the spaceH⊥ := {h ∈
Rn : h⊥1} is precisely the kernel defined by the pseudoinverse of the graph Laplacian, L+. Thus

the regularization operator reg(h) :=
√

1
2h
>Lh over h ∈ H⊥ is the natural RKHS norm for

the RKHS generated by the kernel L+, as pointed out in Smola and Kondor (2003); Herbster and

Pontil (2007). Thus L+ is a kernel whose RKHS norm measures the smoothness of functions on

the graph formed on data. Developing upon this fact in Chapelle et al. (2002); Smola and Kondor

(2003); Zhu et al. (2004) a variety of kernels derived from the graph Laplacian, essentially by

transforming the spectrum in some way, are presented which can be used as empirically-defined

kernels in any kernelizable learning algorithm in the transductive setting. In particular Herbster

and Pontil (2007) consider learning using the kernel Perceptron with the kernel L+.

(ix) Gaussian processes over functions defined on a graph (Zhu et al., 2003b): The method of har-

monic energy minimisation and can essentially be seen as choosing the MAP hypothesis from the

corresponding Markov random field, over the space Rn of real-valued graph labellings, defined by

the density,

p(h) :=
1
Z
e−

1
2h
>Lh, (1.24)

condition on observed data (which is just a finite dimensional Gaussian distribution). Likewise

graph mincut method can be seen as the corresponding discrete Markov random field. A Bayesian

approach is to use the density (1.24) to define a prior for a Gaussian process and perform Bayesian

inference given the observed labels.

Other applications of graph theoretical methods - clustering and dimensionality reduc-

tion

Because of its ability to capture the geometry defined by data the graph has become a fundamental object

in areas of machine learning in which understanding the structure of the data-generating distribution is a

particular focus or where exploiting the geometry should be particularly effective. In particular the field

of spectral clustering in which, typically, the Laplacian spectrum is used to determine appropriate parti-

tions of data is an active one; in essence lower eigenvectors of the Laplacian are smoother functions over

the vertices. Likewise, applications of graph-theoretical methods to non-linear dimensionality reduction

are celebrated (Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Weinberger

and Saul, 2004); a methodology, for example, is to find a low dimensional representation of data using

the lowest elements of (some modification of) the Laplacian eigensystem.

Some theoretical limitations of semi-supervised methods

The above methods have all demonstrated practical success on real and artificial data and in practical

applications (see for example Chapelle et al. (2006) for a comparison of many methods). However it is

also worth pointing out some theoretical limitations of the semi-supervised methods as discussed above.
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Even when assumptions about the data-generating distribution are ideally met – for example when the

cluster assumption holds strongly and data is generated by 2 unimodal distributions (Gaussians) labelled

homogeneously – standard methods such as “low density separation” methods will hinder the learning

process while ERM which ignores the unlabelled data will learn the optimal classifier quickly (Ben-

David et al., 2008).

1.4 Some limitations of current analyses and the contribution of

this thesis

1.4.1 Limitations of classical analyses of statistical learning theory

Let us briefly mention some limitations of the statistical analyses introduced in Section 1.1.1. One

foundational example of a risk bound as suggested in (1.5) is the VC bound on generalization (e.g.

Bousquet et al., 2003a),

PS

sup
h∈H

(risk(h)− r̂iskS(h)) ≤ 2

√
2VC(H) ln 2me

VC(H) + ln
(

2
δ

)
m

 ≥ 1− δ,

relating uniform convergence of empirical risk to true risk to the VC dimension of the hypothesis class.

The VC dimension is independent of the data-generating distribution and so the complexity term is

identical for all possible distributions and all samples, and since it holds for the worst possible distri-

bution the bound is substantially pessimistic in general. Data-dependent measures of complexity such

as Rademacher complexity (Koltchinskii and Panchenko, 2000; Bartlett and Mendelson, 2002) attempt

to offer a more refined analysis, but such terms are often upper bounded by quantities only weakly de-

pendent on the data sample, such as the trace of a kernel gram matrix on the data. It will be the focus

of Chapter 3 to offer a more detailed understanding of the relationship between such data-dependent

complexity measures and structure (observed) in data.

A drawback of uniform convergence analyses in general is the problem that bounding the supre-

mum of the deviation between true and empirical risk over a hypothesis class lacks what is called “local-

ization”. This refers to the fact that the deviation which is bounded may be much smaller at the elements

of the hypothesis class which are ultimately the objects of interest (our chosen hypotheses), for exam-

ple the variance of the empirical risk of a regularized empirical risk minimizer might be expected to be

significantly smaller than the largest variance in the class, thus uniform convergence bounds tend to be

overly pessimistic and in fact many of the performance guarantees so derived are vacuous. Attempts to

refine this type of analysis include the “local Rademacher complexities” (Bartlett et al., 2002) and (less

explicitly) other frameworks such a some PAC-Bayes analyses which will be introduced in Chapter 2.

Another problem and a main focus of this research is that classical analyses are not suited to

exploit the role of geometry defined by data in the learning process. This is intimately related to the

fact that central to the uniform convergence framework is the notion of a sample-independent hypothesis

class; the VC and Rademacher bounds are not valid whenever the hypothesis classH is informed by the
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data sample. This is a significant restriction on the ability to capture how we expect a good hypothesis

to interact with the structure defined by the data-generating distribution, if what we know about that

structure is learned from the data sample as outlined in Section 1.3. For example, if our chosen hypothesis

class is an RKHS HK the kernel K must not be informed by the data sample, and therefore cannot in

general be a kernel tuned to the specific geometry defined by the problem, such as those derived from a

graph Laplacian discussed in Section 1.3.1 (viii).

One way of achieving something along these lines within the structural risk minimization frame-

work (e.g. Vapnik, 1998) is the so-called “luckiness framework” (Shawe-Taylor et al., 1998) in which

the hypothesis class is structured by its (Hilbert space) norm which, together with the restriction that

|h(x)| ≥ 1 on labelled data, is tantamount to preferring hypotheses which achieve large margin on the

data sample. Thus, though structured according to data-independent quantities (the data-independent

RKHS norm for instance) the hypothesis class is implicitly structured according to the margin achieved

on data. Nonetheless such an analysis does not immediately extend to more sophisticated notions of

how classifiers interact with the data-distribution (such as smoothness or Dirichlet energy functionals

discussed above) and, for example, the distance to a separating hyperplane must be measured with re-

spect to a metric of the ambient space rather than a more appropriate metric informed by the data, such

as geodesic distance on a manifold defined by the data distribution or empirical “resistance” distances

which take account of the density of the data-generating distribution and will be introduced in Chapter 5.

One means of overcoming these restrictions is to work with an unknown hypothesis classH defined

by the unknown data-generating distribution. This would generally present a problem for an algorithm

which must pick a function from H as its chosen hypothesis, but during learning it is likely possible to

find a hypothesis that is with high probability in the unknown H and so attain a valid risk bound. This

is essentially the idea underlying the semi-supervised analysis of Balcan and Blum (2005) which uses a

notion of function compatibility10 with the unknown data-generating distribution to define an unknown

hypothesis class. However, this adds an additional layer of convergence to the risk analysis – that of the

hypotheses’ compatibility with the data sample to their compatibility with the underlying distribution.

Therefore, in order to quantify this convergence and pick a hypothesis that is with high probability in the

unknown H one must work in an a-priori known hypothesis class; again, one must ultimately rely upon

an a-priori known hypothesis class not informed by the data-generating distribution or a sample from it

(we will encounter such a problem in Section 3.5 and so refer the reader to that section for a concrete

example). So the problem of analysing methods using using only data-defined hypothesis classes is

not satisfactorily solved at all. Further if the compatibility between classifier and data is sophisticated

then the required convergence can be quite difficult to establish resulting in a significant deterioration

in the bound. Indeed, the compatibilities considered in Balcan and Blum (2005) are simple first order

interactions so that standard results for the concentration sums of i.i.d. random variables can be used to

establish the required convergence. This is restrictive since, for example, the smoothness of a hypothesis

10Compatible functions are typically those satisfying a certain level of “smoothness” over the unknown data-generating distri-

bution for instance.
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on a graph formed on data (1.10) is a second order compatibility and convergence of the smoothness

functional to its expectation uniformly over all hypotheses in a class requires convergence of a second-

order U-process and is so not immediately captured by the framework.

Only in the transductive setting is learning with an empirically defined hypothesis class currently

possible without a degradation in convergence analysis of empirical to true risk, since in the transductive

setting the geometry of the input distribution is entirely known at the start of the learning process, and

we can build an empirically-defined hypothesis class, or, similarly, work in empirically-defined distance

metrics. This means that the transductive setting is an interesting playground for ideas on how to exploit

data-defined structure.

1.4.2 Contributions of this thesis

Now equipped with these preliminaries we outline the contributions of this thesis.

Contributions of Chapter 2

We present a new statistical analysis of learning in the context of exploiting structure defined by data. The

analysis uses PAC-Bayes theory which provides some of the sharpest risk analyses available. By defining

the PAC-Bayes prior over a hypothesis class in terms of the unknown true risk and a notion of “smooth-

ness” of hypotheses, the analysis is “localized” in the sense discussed in Section 1.4.1, so that complexity

of the model enters not as the complexity of an entire hypothesis class, but around the functions of ulti-

mate interest. As well as providing a sharp risk analysis for several learning methods including SVMs

the framework developed is flexible enough to permit defining the unknown hypothesis class in terms of

quite sophisticated interactions between the hypotheses and the unknown data-generating distribution –

and with apparently little degradation compared to classical attempts in the uniform convergence frame-

work. The research opens potentially interesting new notion of hypothesis class complexity. Part of this

chapter was published as Lever et al. (2010) which was joint work with John Shawe-Taylor and Francois

Laviolette.

Contributions of Chapter 3

We relate the Rademacher complexity of a function class to cluster structure in data. In particular this

quantifies the intuitive notion that when data clusters we can learn well with fewer examples, under

typical smoothness assumptions, and be more confident in our analysis. In particular we relate learning

to cluster structure in the empirical resistance metric considered in Chapter 5 and derive a bound on

the complexity of functions defined over the vertices of a graph. This potentially facilitates algorithms

whose use of regularization is determined by the observed cluster structure in data. Part of this chapter

was published as Lever (2010).
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Contributions of Chapter 4

Typical methods for learning over a graph do not scale well in the number of data points – often a

graph Laplacian must be inverted which becomes computationally intractable for large data sets. Here

we present some online algorithms which, by simplifying the structure of the data in principled way,

are able to exploit the structure while remaining computationally tractable for large datasets. We prove

close to state-of-the-art performance guarantees for these methods. Part of this chapter was published as

Herbster et al. (2008) which was joint work with Mark Herbster and Massimiliano Pontil.

Contributions of Chapter 5

We present a new class of methods for learning over a graph which we study in the online framework.

Inspired by the p-norm Perceptron’s ability to learn sparse concepts in Rn, with a mistake bound log-

arithmic in n, we consider a similar idea for building classifiers on graphs. We introduce a family of

p-seminorms defined on the labellings of a graph which include the smoothness functional of Belkin

et al. (2004); Zhu et al. (2003a) and the label-consistent graph cut (Blum and Chawla, 2001) as limiting

cases. We present an online algorithm for learning concepts defined on graphs based upon minimum p-

seminorm interpolation and derive a mistake bound in which the graph cut of a labelling is the measure

of the complexity of the learning task. The dual seminorm gives rise to a generalisation of the notion

of electrical resistance between graph vertices which we term p-resistance and show that it is a natu-

ral measure of similarity between graph vertices. We give a brief survey of its fundamental properties

by extending a well-known analogy with resistive networks. Cluster structure in the graph w.r.t. the

p-resistance distance (captured via covering number of the vertex set) features as the “structural” term

in our mistake bound. Expressing the bound in this way helps to demonstrate that our algorithm exploits

connectivity and cluster structure in data and we show that a learner can choose the parameter p (using

only information available a-priori to the learner) to ensure a performance guarantee which is logarith-

mic with regard to graph diameter, whereas some foundational methods have a linear lower bound. Part

of this chapter was published as Herbster and Lever (2009) which was joint work with Mark Herbster.



Chapter 2

Distribution-dependent PAC-Bayes priors

Abstract

We further develop the idea that the PAC-Bayes prior can be informed by the data-generating distribu-

tion. We prove sharp bounds for an existing framework of Gibbs algorithms, and develop insights into

function class complexity in this model. In particular we consider controlling capacity with respect to

the unknown geometry of the data-generating distribution. We finally extend the localized PAC-Bayes

analysis to more practical learning methods, in particular RKHS regularization schemes such as SVMs.

2.1 Introduction

This research takes its inspiration from Catoni (2007), who developed localised PAC-Bayes analysis by

using a prior defined in terms of the data generating distribution. At first sight this might appear to

be ‘cheating’, since we must define the prior before seeing the data. However, by defining in terms of

the distribution we avoid this difficulty since the distribution itself can be considered as fixed before

the sample is generated. PAC-Bayes bounds are one of the sharpest analyses of the learning process.

A weakness in the standard PAC-Bayes approach is that analysis is constrained by the choice of prior

distribution, since the divergence between prior and posterior forms part of the bound. This choice of

prior tends to be rather generic; typically not tailored to the particular problem, so that, in particular,

good classifiers do not generally receive large prior weight. Thus the divergence term in the PAC-Bayes

analysis can typically be large. By tuning the prior to the distribution Catoni is able to remove the

Kullback-Leibler (KL) term from the bound hence significantly reducing the complexity penalty.

We begin by investigating the ‘Gibbs algorithms’ in which the predictive posterior is a Boltzman

distribution over hypotheses. We use Catoni’s definition of the prior involving a Boltzmann distribution,

but prove a new sharp bound (Theorem 2.3.2) using a new lemma (Lemma 2.2.4) and the re-use of

the PAC-Bayes bound to remove the KL term (Lemma 2.3.1). The resulting bound suggests a new

complexity parameter γ that enters as a γ/m3/2 term (wherem is the sample size). This opens a potential

new direction in the generalization analysis of learning machines.
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In our context this suggests the need to regularize in this learning method. The flexibility of the

framework we develop is that it allows us to encode our prior meta-assumptions about how we anticipate

a good classifier will interact with the data; we can control capacity, for example, with respect to the

smoothness of a classifier over the unknown data generating distribution thus giving high weight to

classifiers that are, for example, smooth over a manifold defined by the support of the data distribution.

The analysis is achieved with a novel PAC-Bayes bound on U-statistics estimation.

Finally we cover a third main theme, which is the extension of the data distribution dependent

priors to the Gaussian prior and posterior PAC-Bayes bounds for RKHS regularization algorithms, for

example, SVMs (Langford and Shawe-taylor, 2002). In Theorem 2.4.5 we present a new localised PAC-

Bayes bound for this setting. Here we are able to remove the KL term again leaving a term that only

involves a similar complexity parameter γ appearing as O(γ/(η2m2)), where η is the regularization

parameter, in contrast to the usual O(‖w‖2/m). This again suggests a new measure of complexity for

SVM classifiers with the possibility of using the bound to optimise the regularization parameter. We go

on to extend this method to the case where the data is used to define the kernel in an SVM, deriving in

Theorem 2.4.10 a localized PAC-Bayes bound for algorithms such as LapSVM.

We now review the relation of our approach to earlier work. The luckiness framework explored the

possibility that we could learn the hierarchy of classes of hypotheses from the data as part of the learning

process giving rise to so-called data-dependent structural risk minimization (Shawe-Taylor et al., 1998).

The most successful example of this approach was large margin classification such as support vector

machines. However, although we cannot measure a margin without seeing the data, by moving to real-

valued functions, we can equate large margin with small norm when we constrain yif(xi) ≥ 1 on the

training data, i = 1, . . . ,m, resulting in a fixed prior. Nonetheless this is equivalent to placing a prior

over the classifiers in terms of the data generating distribution, that is we favour hyperplanes that have

low input density in the slab defined by shifting the decision boundary parallel to itself by ±γ.

Further research in this direction has been developed by Balcan and Blum (2010) with their no-

tion of compatibility, which is used to restrict the hypotheses considered in the learning process to those

satisfying a given level of compatibility estimated from the training data, hence reducing the effective

complexity of the class. Perhaps less well-known is work by Catoni (2007) where he introduces ‘lo-

calised’ PAC-Bayes analysis effectively defining the prior in terms of the data-generating distribution in

a PAC-Bayes bound on generalization.

We should finally distinguish between distribution defined priors and using part of the data to learn

a prior and the rest to learn the function (Ambroladze et al., 2006).

2.2 Preliminaries

We consider the general setting in which we are given a sample of labelled and unlabelled points

S = {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn} = Slabelled ∪ Sunlabelled drawn i.i.d. according to a



2.2. Preliminaries 36

probability measure ν over Z := X × Y , the product space of labelled inputs (or its marginalization to

X ). We suppose throughout that (Z,Σ, ν) is a probability measure space. We initially consider super-

vised learning setting in which Sunlabelled = ∅ but our analysis will later include the semi-supervised

learning setting in which Sunlabelled 6= ∅.

We are interested in the case where Y = {−1,+1}, and study binary classification. We are

interested in the notion of risk of a hypothesis h ∈ H,

risk`(h) := E(X,Y )∼D`(h(X), Y ),

and its empirical counterpart on a labelled sample S,

r̂isk`S(h) :=
1
|S|

∑
(X,Y )∈S

`(h(X), Y ),

where ` : Y × Y → R is some loss function. When `(·, ·) is the 0 − 1 loss of binary classification,

`0−1(y, y′) :=

 0 if y = y′

1 if y 6= y′
, then for simplicity we denote the corresponding binary classification

risk and its empirical counterpart by risk(·) and r̂iskS(·) respectively. Our objective is to obtain a prob-

abilistic guarantee on the true binary classification risk of a classifier by relating it to its empirical coun-

terpart.

The following quantities feature in the PAC-Bayes analysis: the Kullback-Leibler divergence be-

tween distributions Q and P , and its specialization to Bernouilli distributions,

KL(Q||P ) := Eh∼Q ln
dQ

dP
(h), kl(q, p) := q ln

q

p
+ (1− q) ln

1− q
1− p q, p ∈ (0, 1),

and we define

ξ(m) :=
m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k
∈ [
√
m, 2
√
m],

where the inequalities follow from (Maurer, 2004, Equations (1) and (2)), after noticing that ξ(m) =

E[emkl( 1
m

∑m
i=1 Wi,ζ)], where Wi are i.i.d. random variables with mean ζ (see, e.g. Germain et al.,

2009, for a derivation). The PAC-Bayes bounds apply to a stochastic Gibbs classifier GQ drawn from

a posterior distribution Q over a hypothesis class H, this distribution will typically depend upon the

data sample. This is in contrast to the prior distribution, denoted throughout by P , which is used for

analysis and must not be defined in terms of the sample. We denote risk(GQ) := Eh∼Qrisk(h) and

r̂isk`S(GQ) := Eh∼Qr̂isk`S(h).

The following is a generalization of (Germain et al., 2009, Th 2.1) and is proved using the same

sequence of arguments.

Theorem 2.2.1. For any functions A(h), B(h) over H, either of which may be a statistic of the sample

S, any distributions P over H, any δ ∈ (0, 1], any t > 0, and a convex function D : R × R → R we

have with probability at least 1− δ over the draw of S,

∀Q onH : D(Eh∼QA(h),Eh∼QB(h)) ≤ 1
t

(
KL(Q||P ) + ln

[LP
δ

])
,
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where LP := ESEh∼P
[
etD(A(h),B(h))

]
.

Note that LP is the moment generating function of D(A(h), B(h)).

Proof. Since Eh∼P etD(A(h),B(h)) is a non-negative random variable, Markov’s inequality gives

PS
(
∀Q onH : Eh∼P etD(A(h),B(h)) ≤ LP

δ

)
≥ 1− δ .

Hence, by taking the logarithm on each side of the innermost inequality and by transforming the expec-

tation over P into an expectation over Q, we obtain

PS
(
∀Q : ln

[
Eh∼Q

dP
dQ

(h)etD(A(h),B(h))

]
≤ ln

[LP
δ

])
≥ 1− δ .

Since ln(x) is concave, Jensen’s inequality then gives

ln
[
Eh∼Q

dP
dQ

(h)etD(A(h),B(h))

]
≥ −KL(Q‖P ) + tEh∼QD(A(h), B(h)) ,

and the theorem follows from another application of Jensen’s inequality to the convex function D(·, ·),

i.e.,

Eh∼QD(A(h), B(h)) ≥ D(Eh∼QA(h), Eh∼QB(h)).

Theorem 2.2.1 is a recipe for generating a variety of PAC-Bayes bounds, by specializing to a

choice for D(·, ·), t, A(·) and B(·), and choosing P to be a “prior” (i.e. not sample-dependent) so that

the order of expectation in the r.h.s. can be exchanged and evaluated. For example, by choosing t = m,

A(h) = r̂iskS(h), B(h) = risk(h), and D(q, p) = kl(q, p), one can derive Seeger’s bound (Seeger,

2002; Langford, 2005). By choosing D(q, p) = F(p) − C · q for some positive constant C and where

F(p) = ln 1
(1− p [1−e−C ])

= − 1
m ln(MX(−C)) where MX(t) = 1− p+ pet is the moment-generating

function of a binomial random variable with parameters (m, p), one will obtain Catoni’s PAC-Bayes

bound (Catoni, 2007). To derive these bounds from Theorem 2.2.1, in the first case, one simply has

to show that LP = ξ(m), and in the second case that LP = 1. These equalities are obtained by

straightforward calculations. The following theorem gives Seeger’s bound, and a slightly relaxed version

of Catoni’s bound; these results will be needed later on.

Theorem 2.2.2. Seeger (2002); Langford (2005); Catoni (2007) For any (unknown) distribution D, any

set H of classifiers, any distribution P of support H, any δ ∈ (0, 1], and any positive constant C, we

have, where C? := C
1−e−C ,

PS
(
∀Q onH : kl(r̂iskS(GQ), risk(GQ)) ≤ 1

m

(
KL(Q||P ) + ln ξ(m)

δ

))
≥ 1− δ (Seeger’s bound)

PS
(
∀Q onH : risk(GQ) ≤ C?

(
r̂iskS(GQ) + 1

C·m
(
KL(Q||P ) + ln 1

δ

)))
≥ 1− δ (Catoni’s bound).
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Note that the PAC-Bayes bound proposed by McAllester in his pioneer work on the sub-

ject (McAllester, 1999) can be retrieved from Seeger’s bound using the inequality

2(q − p)2 ≤ kl(q, p). (2.1)

Hence, the rate of convergence given by Seeger’s bound for fixed Q and P is at least inO( ln
√
m√
m

).

On another hand, the Catoni’s bound guarantees a rate of convergence ofO( 1
m ) “up to” some predefined

multiplicative factor. Of course, because C? → 1 only when C → 0, the constants involved in this

O( 1
m ) rate degrade as the multiplicative factor approaches 1.

PAC-Bayes bounds are among the sharpest in learning theory (Langford, 2005). Typically the KL

term is the dominant quantity in the bound and analysis is constrained by the need to choose Q such that

KL(Q||P ) is not large. Note then that the KL(Q||P ) term can significantly deteriorate these bounds if

classifiers with small empirical risk receive low probability from the prior P , i.e. if the prior has been

“badly” chosen. The data distribution-defined priors we investigate are specifically constructed to give

large weight to classifiers with low true risk, and the KL-divergence between Q and P decays with the

sample size.

2.2.1 Choosing a distribution-dependent prior

Suppose an algorithm takes as input a training sample S from the distribution νm over Zm and outputs

a posterior distribution QS overH. We consider the problem of choosing a prior for QS which attains a

sharp PAC-Bayes bound. In this section, we assume that there exists a reference measure µ onH (when

H is of finite dimensionality this would typically be a uniform measure such as Lebesgue measure) and

denote in lower case the density of a measure w.r.t. µ, e.g. qS(h) = dQS
dµ (h).

Let PH be the set of probability distributions over H, and in the interest of obtaining a good

PAC-Bayes bound for QS , consider the minimizer of KL(QS ||P ) in expectation:

Lemma 2.2.3.

argmin
P∈PH

ES [KL(QS ||P )] = ES [QS ]. (2.2)

Proof.

ES [KL(QS ||P )] = ESEh∼QS
[
ln
qS(h)
p(h)

]
= ESEh∼QS

[
ln qS(h) + ln

1
p(h)

]
= ESEh∼QS [ln qS(h)] + ES

[∫
H
qS(h) ln

1
p(h)

dµ
]

= ESEh∼QS [ln qS(h)] +
∫
H

ES [qS(h)] ln
1

p(h)
dµ.

The quantity
∫
H ES [qS(h)] ln 1

p(h)dµ is the cross entropy between ES [QS ] and P and is minimized

when P = ES [QS ] (Cover and Thomas, 1991).
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This result is noted in this context in Catoni (2007) as is the immediate fact that the resulting

expected divergence is equal to the mutual information, I(h;S), between sample and classifier, where

a pair (h,S) is viewed as drawn from the joint distribution Q̂ over H × Zm defined by its density with

respect to the product measure µ × νm, q̂(h,S) := dQ̂
d(µ×νm) (h,S) := qS(h) so that marginalization of

Q̂ to Zm is simply νm,

ES [KL(QS ||ES [QS ])] =
∫
Zm

∫
H
qS(h) ln

(
qS(h)

ES [qS(h)]

)
dµdνm

=
∫
H×Zm

q̂(h,S) ln
(

q̂(h,S)
ES [qS(h)]

)
d(µ× νm)

= I(h;S),

where the fact that this is a mutual information follows because ES [qS(h)] is simply the marginal densitiy

of Q̂ (w.r.t µ) after marginalizing to H and the constant 1 is the marginal density of Q̂ (w.r.t νm) after

marginalizing to Zm. In a sense, implicitly, we want to learn the marginal density
∫
Zm q̂(h,S)dνm =

ES [qS(h)] and approximate it with the random quantity qS(h), the sample-based estimate.

In the following for notational convenience we refer to the posterior distribution as Q ommitting

the dependence upon S, but it should always be understood to be implicit that Q is a random vari-

able dependent on S. Given the above we could define, for a given posterior Q, the ‘optimal’ prior,

Popt(h) := ES [Q]. We note that PAC-Bayes analysis using this prior appears to be quite difficult since

the prior can be difficult to manipulate. As suggested by Catoni we study other more flexible choices of

prior which enable us to obtain very sharp PAC-Bayes bounds. We consider the case when the posterior

and prior are of the following form,

q(h) :=
dQ

dµ
(h) :=

1
Z
e−FQ(h) p(h) :=

dP

dµ
(h) :=

1
Z ′
e−FP (h), (2.3)

where FQ, FP are “energy functions”, to be chosen, and Z =
∫
H e
−FQ(h)dµ, Z ′ =

∫
H e
−FP (h)dµ.

We note the following upper bound on the KL divergence, which reduces obtaining a bound on the KL

divergence to establishing a PAC-Bayesian concentration result for the energy functions.

Lemma 2.2.4. For Q and P as defined by (2.3),

KL(Q||P ) ≤ (Eh∼Q − Eh∼P ) [FP (h)− FQ(h)] . (2.4)

Proof.

KL(Q||P ) = Eh∼Q ln
Z ′e−FQ(h)

Ze−FP (h)

= Eh∼Q [FP (h)− FQ(h)]− ln
∫
e−FQ(h)dµ

Z ′

= Eh∼Q [FP (h)− FQ(h)]− ln
∫
p(h)eFP (h)−FQ(h)dµ

≤ (Eh∼Q − Eh∼P ) [FP (h)− FQ(h)] , (2.5)

where the final line follows from the convexity of − ln(·).
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Note that the r.h.s. of (2.5) is precisely the type of quantity that PAC-Bayes theory provides a

bound for. In particular, the choice FP = ES [FQ] seems natural and we remark that (2.5) is then reduced

to obtaining a concentration inequality for FQ to its expectation. Thus whereas Popt appears rather

difficult to manipulate, the prior and posterior defined by choosing HP = ES [HQ] seems amenable to

analysis and a good compromise.

2.3 Prediction by Gibbs algorithms

We first consider posterior and prior densities, w.r.t. µ, overH of the following forms:

q(h) =
1
Z
e−(γr̂iskS(h)+ηFQ(h)) (2.6)

p(h) =
1
Z ′
e−(γrisk(h)+ηFP (h)). (2.7)

where FQ : H → R, FP : H → R are regularization functions, and Z a normalization constant. The

unregularized case corresponds to “Gibbs algorithms”, (e.g. Catoni, 2007) and is a type of stochastic

empirical risk minimization-type prediction. FQ(·) and FP (·) may be different and in particular we

will consider the special case where FQ(·) is a sample statistic, allowing us to perform data-dependent

regularization.

We note that Lemma 2.2.4 implies the following upper bound on the KL divergence

KL(Q||P ) ≤ (Eh∼Q − Eh∼P )
[
γrisk(h)− γr̂iskS(h) + ηFP (h)− ηFQ(h)

]
. (2.8)

As we will see later, for suitable choices of parameters γ and η, this divergence decays with the sample.

We now consider several choices of FQ(·) and FP (·) and give PAC-Bayes bounds for the resulting Gibbs

classifiers.

2.3.1 The non-regularized case : η = 0

We recall that the distributionD over X ×Y is unknown, hence so is the prior distribution given by (2.7).

To obtain a bound, we need to bound the KL divergence KL(Q||P ). With reference to (2.8), in the situa-

tion where η = 0 such an upper bound can be obtained given an upper bound for risk(GQ)− r̂iskS(GQ)

and a lower bound for risk(GP )− r̂iskS(GP ), and such bounds can obtained via Theorem 2.2.2.

Lemma 2.3.1. Let P and Q be defined as in (2.6) and (2.7) with η = 0 then with probability at least

1− δ, the following hold simultaneously,

∀Q onH : kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
KL(Q||P ) + ln

ξ(m)
δ

)
(2.9)

KL(Q||P ) ≤ γ
√

2
m

√
ln
ξ(m)
δ

+
γ2

2m
. (2.10)

Proof. Equation (2.9) is just the Seeger bound of Theorem 2.2.2. Then from (2.9), applied for the choices
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Q = Q and Q = P , and from (2.1) we obtain that, simultaneously,

risk(GQ)− r̂iskS(GQ) ≤ 1√
2m

√
KL(Q||P ) + ln

ξ(m)
δ

,

−
(

risk(GP )− r̂iskS(GP )
)
≤ 1√

2m

√
ln
ξ(m)
δ

.

Together with (2.8) the last inequalities give,

KL(Q||P ) ≤ γ
(

risk(GQ)−r̂iskS(GQ)
)
− γ

(
risk(GP )−r̂iskS(GP )

)
≤ γ√

2m

√
KL(Q||P ) + ln

ξ(m)
δ

+
γ√
2m

√
ln
ξ(m)
δ

.

If KL(Q||P ) ≤ γ√
2m

√
ln ξ(m)

δ , we are done. Otherwise, by straightforward algebraic manipulations we

then obtain the following inequality, which, together with the fact that KL(Q||P ) ≥ 0, directly implies

the result.

(KL(Q||P ))2 − 2γ√
2m

√
ln
ξ(m)
δ

KL(Q||P ) +
γ2

2m
ln
ξ(m)
δ
≤ γ2

2m
KL(Q||P ) +

γ2

2m
ln
ξ(m)
δ

.

Thus, Theorem 2.2.2 can be specialized to the following bound.

Theorem 2.3.2. Let P and Q be defined as in (2.6) and (2.7) with η = 0, then

PS

(
kl(r̂iskS(GQ), risk(GQ)) ≤ 1

m

(
γ√
m

√
ln
ξ(m)
δ

+
γ2

4m
+ ln

ξ(m)
δ

))
≥ 1− δ,

PS

(
risk(GQ) ≤ C? r̂iskS(GQ) +

C?

C ·m

(
γ√
m

√
ln

2ξ(m)
δ

+
γ2

4m
+ ln

2
δ

))
≥ 1− δ

Proof. The first result is obtained by combining the two components of Lemma 2.3.1. The second result

is obtained by applying the union bound to (2.10) and Catoni’s bound of Theorem 2.2.2.

Observe that for a large value of γ, the posterior Gibbs classifier GQ will be concentrated on

the classifiers of H with smallest empirical risk. Hence the two bounds of Theorem 2.3.2 are risk

bounds for a type of stochastic empirical risk minimization algorithm. Since the KL-divergence term

has been evaluated and is small, it appears that there is no component of the bound that depends on the

complexity of the learning problem or the class of classifiers. In fact the parameter that controls the

effective complexity is the “inverse temperature”, γ (or γ2 if we view it in the role of a VC dimension).

If the problem is ‘easy’ in the sense that the measure of the set of classifiers with low empirical risk is

not too small then a low value of γ will deliver low empirical risk for the Gibbs classifier. If, however,

the measure of the classifiers that have low empirical risk is very small (as would be likely if the function

class itself is large) then we require a larger value of γ before the Gibbs risk is controlled. The complexity

that γ measures is related to the fit between input distribution and function class in that it will depend on

the measure of the distribution Q on the low empirical risk functions.
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In practice γ would need to be chosen from a grid Γ of values in response to the particular training

problem. Hence, in order to apply the bound we would need to use the union bound over the |Γ| applica-

tions of the bound resulting in an extra log(|Γ|) term in the right hand side brackets. Another possibility

would be to make use the generalized union bound known as Occam’s hammer (Blanchard and Fleuret,

2007).

2.3.2 Regularization with FQ(·) = FP (·)

Given the above argument it appears necessary to control function class capacity in this model in order

to deliver low empirical Gibbs risk. We therefore consider the presence of regularization terms in (2.6),

(2.7) which encode a preference for classifiers which satisfy some notion of simplicity. The flexibility of

this model is such that, with reference to (2.8), when FQ(·) = FP (·), the bounds of Theorem 2.3.2 hold

for this case. We can therefore apply arbitrary (non data-dependent) regularization and attain the same

bound of Theorem 2.3.2, and there are many natural possibilities. For example, if H is equipped with a

norm || · ||H we can choose FQ(·) = FP (·) = || · ||H. This should permit learning with smaller γ.

2.3.3 Regularization in the intrinsic data geometry

The flexibility of this model further permits, in a straightforward way, regularization w.r.t. the geometry

defined by the unknown data-generating distribution, and we detail one way of achieving this. The

regularization methods considered in Section 2.3.2 utilise a geometry which is extrinsic to the data,

that is, determined by the ambient representation space rather than the intrinsic geometry of data. For

example, if the data generating distribution has support on some submanifold of the ambient space, then

encouraging smoothness on the manifold ought to be more suitable for learning (since if the structure of

data is a key factor in the learnability of a task, it is the intrinsic geometry which will capture this relevant

structure most accurately). In general, when using a regularizer informed by the intrinsic geometry of

the data-generating distribution the prior and posterior regularizers must be different since the posterior

regularizer will be an empirical quantity (here, chosen to be an estimate, based on the sample, of the

prior regularizer).

Given a sample S = {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn}, we consider regularizing via the

following smoothness functional, typical in semi-supervised learning (e.g. Belkin et al., 2004; Zhu et al.,

2003a), over functions from some function classH:

ÛS(h) :=
1

n(n− 1)

∑
ij

(h(Xi)− h(Xj))2W (Xi, Xj) (2.11)

where the symmetric W : X ×X → R captures similarity or “weight” between data points, for example

W (x,x′) =

 1 if ||x− x′|| ≤ ε
0 otherwise

or W (x,x′) = e−||x−x
′||2 for some norm || · || over X . Note that

ÛS(h) = 2
n(n−1)h

>Lh where L = D −W is the graph Laplacian of a graph G whose vertices are

the sample instances and whose edge weights are controlled by W , and Dij = δij
∑
kWik and where

h ∈ Rn is the “point evaluation” of h on the sample, hi := h(xi). Minimizing (2.11) encourages
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functions to be smooth over the sample S. Note that ÛS(h) is a U -statistic of order 2 with kernel

fh(Xi, Xj) := (h(Xi) − h(Xj))2W (Xi, Xj) indexed by H. A family of U -statistics indexed by a

function space is often called a U -process. We suppose that the weights are bounded, |W (x,x′)| ≤ w,

for example if W (x,x′) = e−||x−x
′||2 we have w = 1, and that suph∈H,x∈X |h(x)| = b.

A series of results (Bousquet et al., 2003b; Hein et al., 2007) demonstrate that under certain condi-

tions on the distribution of instances, certain constructions of graph Laplacian converge to a generalized

Laplace operator on the support of the data generating distribution and the smoothness functional con-

verges to a natural distribution-dependent dirichlet energy functional over functions defined over the

data.

We choose FQ(·) = ÛS(·) so that,

q(h) =
1
Z
e−(γr̂iskS(h)+ηÛS(h)). (2.12)

The exponent seeks to minimize empirical risk plus the smoothness on the graph formed on the sample,

as is a typical methodology in semi-supervised learning (Belkin et al., 2006, 2004).

We further choose FP (h) = U(h) := EX,X′ [(h(X)− h(X ′))2W (X,X ′)] = ES [ÛS(h)], giving

the prior p(h) = 1
Z′ e
−(γrisk(h)+ηU(h)).

Convergence of the smoothness functional

We consider PAC-Bayes convergence of the U-process (see Ralaivola et al. (2010) for an alternative

PAC-Bayes analysis of U -statistics). Let S = {X1, ...Xn} be an i.i.d. sample. For any second-order

U -statistic ÛS(h) = 1
n(n−1)

∑
i 6=j fh(Xi, Xj) with expectation U(h), and with kernel fh(x, x′) indexed

byH and bounded, a ≤ fh(x, x′) ≤ b, we have the following.

Theorem 2.3.3. For all t, any prior P and simultaneously for all posteriors Q overH,

PS
(

Eh∼Q[ÛS(h)− U(h)] ≤ 1
t

(
KL(Q||P ) +

t2(b− a)2

2n
+ ln

(
1
δ

)))
≥ 1− δ (2.13)

PS
(

Eh∼Q[U(h)− ÛS(h)] ≤ 1
t

(
KL(Q||P ) +

t2(b− a)2

2n
+ ln

(
1
δ

)))
≥ 1− δ. (2.14)

In particular, choosing t =
√
n gives O( 1√

n
) convergence.

Proof. We note that Theorem 2.2.1 implies that with probability at least 1− δ, ∀Q onH:

Eh∼Q[ÛS(h)− U(h)] ≤ 1
t

(
KL(Q||P ) + ln

(
1
δ

Eh∼PES
[
et(ÛS(h)−U(h))

]))
,

so we simply need to bound ES
[
et(ÛS(h)−U(h))

]
. Employing Hoeffding’s canonical decomposition of

U -statistics into forward martingales (e.g. Serfling, 1980), let,

Vk :=
k∑
i=1

(E[fh(Xi, X) | Xi]− U(h))

Wk :=
k∑
j=1

j−1∑
i=1

(fh(Xi, Xj) + U(h)− E[fh(Xi, X) | Xi]− E[fh(X,Xj) | Xj ]) ,
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so that, ÛS(h)− U(h) = 2
nVn + 2

n(n−1)Wn. We then have that,

Vk − Vk−1 = E[fh(Xk, X) | Xk]− U(h)

Wk −Wk−1 =
k−1∑
i=1

(fh(Xi, Xk) + U(h)− E[fh(Xi, X) | Xi]− E[fh(Xk, X) | Xk]) ,

and note the martingale structure EXk [Vk − Vk−1] = EXk [Wk −Wk−1] = 0. Note further that,

Vk − Vk−1 +
1

n− 1
(Wk −Wk−1) =

n− k
n− 1

(E[fh(Xk, X) | Xk]− U(h))

+
1

n− 1

k−1∑
i=1

fh(Xi, Xk)− E[fh(Xi, X) | Xi],

so that,

|Vk−Vk−1 +
1

n− 1
(Wk −Wk−1)| ≤ (b− a)

n− k
n− 1

+ (b− a)
k − 1
n− 1

= b− a. (2.15)

Now,

ES
[
et(ÛS(h)−U(h))

]
= ES

[
e

2t
n

∑n
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)
]

=EX1,...Xn−1

[
EXn

[
e

2t
n

∑n
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1) | X1, ...Xn−1

]]
=EX1,...Xn−1

[
e

2t
n

∑n−1
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)EXn
[
e

2t
n (Vn−Vn−1+ 1

n−1 (Wn−Wn−1))
]]

≤EX1,...Xn−1

[
e

2t
n

∑n−1
i=1 Vi−Vi−1+ 1

n−1 (Wi−Wi−1)
]
e
t2(b−a)2

2n2

...

≤
n∏
i=1

e
t2(b−a)2

2n2 = e
t2(b−a)2

2n ,

where in the final lines we used Hoeffding’s lemma, Lemma B.0.4, combined with (2.15) recursively.

This proves (2.13), and (2.14) follows by a symmetrical argument.

We can now give the following bound for the classification risk of the Gibbs classifier GQ drawn

from the distribution (2.12) overH:

Theorem 2.3.4. For η <
√
n,

PS

(
kl(r̂iskS(GQ), risk(GQ)) ≤ 1

m

(
A2 +B +A

√
2B +A2 + ln

ξ(m)
δ

))
≥ 1− δ,

where

A :=
γ
√
n

2
√
m(
√
n− η)

= O
(

1√
m

)
B :=

√
n√

n− η

(
γ

√
2
m

ln
2ξ(m)
δ

+
2η√
n

(
32b4w2 + ln

4
δ

))
= O

(√
lnm
m

)
.

Proof. From (2.8) we have

KL(Q||P ) ≤ γ(risk(GQ)− r̂iskS(GQ)) + γ(r̂iskS(GP )− risk(GP ))

+ηEh∼Q
[
U(h)− ÛS(h)

]
+ ηEh∼P

[
ÛS(h)− U(h)

]
. (2.16)
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With probability at least 1− δ
2 , we have from Theorem 2.2.2,

∀Q onH : kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
KL(Q||P ) + ln

2ξ(m)
δ

)
. (2.17)

Then from (2.17), applied for the choices Q = Q and Q = P , and from (2.1) we obtain that, with

probability at least 1− δ
2 , simultaneously,

risk(GQ)− r̂iskS(GQ) ≤ 1√
2m

√
KL(Q||P ) + ln

2ξ(m)
δ

,

−
(

risk(GP )− r̂iskS(GP )
)
≤ 1√

2m

√
ln

2ξ(m)
δ

.

And now noting that, because |h(x)| ≤ b, W (x,x′) ≤ w, the kernel satisfies |fh(x,x′)| ≤ 4b2w,

Theorem 2.3.3 applied to the final terms in (2.16), for the choices Q = Q and Q = P , together with the

union bound gives that, with probability at least 1− δ
2 , simultaneously,

ηEh∼Q
[
U(h)− ÛS(h)

]
≤ η√

n

(
KL(Q||P ) + 32b4w2 + ln

4
δ

)
ηEh∼P

[
ÛS(h)− U(h)

]
≤ η√

n

(
32b4w2 + ln

4
δ

)
.

The union bound then implies that with probability at least 1− δ over the draw of S,

KL(Q||P ) ≤ γ
√

1
2m

(
KL(Q||P ) + ln

2ξ(m)
δ

)
+ γ

√
1

2m
ln

2ξ(m)
δ

+
η√
n

(
KL(Q||P ) + 32b4w2 + ln

4
δ

)
+

η√
n

(
32b4w2 + ln

4
δ

)
≤ γ

√
1

2m
KL(Q||P ) +

η√
n

KL(Q||P ) + γ

√
2
m

ln
2ξ(m)
δ

+
2η√
n

(
32b4w2 + ln

4
δ

)
(√

KL(Q||P )− 1√
2
A

)2

≤ B +
A2

2

KL(Q||P ) ≤ A2 +B +A
√

2B +A2,

which we plug into (2.17).

We remark that the ease with which we can obtain this bound for regularization w.r.t. the geometry

defined by the unknown data-generating distribution, with apparently little deterioration in the bound,

is unusual and that in classical frameworks this type of structuring of a function class usually results in

significant deterioration in the bound.

2.4 Prediction by RKHS regularization

We now extend the localization framework to the more practical setting of predicting with a Gaussian

process whose mean is the solution to an empirical risk minimization with RKHS regularization, such

as an SVM solution. We consider a separable1 RKHS HK = span{K(x, ·) : x ∈ X}, for some

positive-definite kernel K : X × X → R, of real-valued functions on X with inner product 〈·, ·〉K
1This is a mild condition, an RKHSHK is separable if X is and if the kernel K : X × X → R is continuous (Krein, 1963).
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defined by 〈K(x, ·),K(x′, ·)〉K := K(x,x′). The class HK can be identified as binary classifiers via

hclass(x) = sgn(h(x)) = sgn(〈h,K(x, ·)〉K). For simplicity we suppose thatX is a compact Hausdorff

space.

For any chosen loss function ` : Y × Y → R, we are interested in the classifiers,

h∗S := argmin
h∈HK

{r̂isk`S(h) + η||h||2K} and h∗ := ES [h∗S ],

where η is a regularization parameter and expectation is taken with respect to samples S with m labelled

points. For our intended applications, typically r̂isk`S(·) will be convex so that h∗S is unique and h∗

well-defined2.

2.4.1 Prior and posterior distributions

Our posterior Q and prior P will be Gaussian processes over X with mean h∗S and h∗ respectively

and covariance 1
γK(x,x′), where γ is a parameter which controls the variance of these processes. To

define this we actually define a distribution over the Hilbert space L2(X ,Σ, ν) of all square integrable

real-valued functions on X with inner product 〈h, g〉L2 :=
∫
X h(x)g(x)ν(dx). Consider the countable

orthonormal basis {φi} for L2(X ,Σ, ν) provided by the eigenfunctions of the integral operator AK

defined by (AKh)(x) :=
∫
K(x,x′)h(x′)ν(dx′), i.e. such that AK(φi) = λiφi, for eigenvalues {λi}

and 〈φi, φj〉L2 =
∫
X φi(x)φj(x)ν(dx) = δij . Denote hi := 〈h, φi〉L2 and consider the isomorphism

I : L2(X ,Σ, ν)→ `2 given by I(h) = (hi) identifying L2(X ,Σ, ν) with the space of square summable

real-valued sequences. Denote by Na,σ2 the one-dimensional Gaussian measure on (the Borel σ-algebra

on) R with mean a and variance σ2. We define,

Qi := Nh∗S,i,
1
γ λi

and Pi := Nh∗i , 1
γ λi

, (2.18)

where h∗S,i = 〈h∗S , φi〉L2 , h∗i = 〈h∗, φi〉L2 , as above. We then define the product measures,

Q :=
∞∏
i=1

Qi =
∞∏
i=1

Nh∗S,i,
1
γ λi

and P :=
∞∏
i=1

Pi =
∞∏
i=1

Nh∗i , 1
γ λi

. (2.19)

The following result is the subject of (Da Prato, 2006, Chapter 1) and are outlined in Appendix C: Q and

P define probability measures on the space R∞ of all real-valued sequences whenever the operator AK

is of trace class, that is
∑
i λi < ∞. AK is of trace class whenever (X ,Σ, ν) is a finite measure space

and K(·, ·) is bounded – this follows by applying Mercer’s theorem,∑
i

λi =
∫
X

∑
i

λiφi(x)φi(x)ν(dx)

=
∫
X
K(x, x)ν(dx) <∞,

2One may wonder whether S → h∗S is a measurable function (i.e. whether h∗S is a valid random variable). In essence in

typical situations this will follow from the continuity of the map S → h∗S since we will usually be able to work with a natural

topology on Zm such that Dm is a Borel measure. For example if X = Rn and Y ⊆ R and Dm is Borel on Zm = (X ×Y)m

then the continuity will follow from a general result on the continuity of the argmin of a strictly convex objective along the lines

of Theorem B.0.3, and measurability follows immediately. For results on the measurability of the SVM function see (Steinwart

and Christmann, 2008, Chapter 5).
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the first equality following because Mercer’s theorem ensures absolute and uniform convergence of

K(x, x) =
∑
i λiφi(x)φi(x) so that integration and summation commute. Further, Q and P are de-

fined on R∞ but their support is precisely `2, i.e. L2(X ,Σ, ν) under the above isomorphism. Thus we

refer to Q and P as both measures on `2 and L2(X ,Σ, ν) by isomorphism3.

For practical prediction purposes we are interested in the following result: when (X ,Σ, ν) is a

finite measure space and X is compact, prediction with the Gibbs classifier drawn from the posterior

(2.19) is equivalent to predicting with a Gaussian process {Gx}x∈X on X with mean E[Gx] = h∗S(x)

and covariance E[(Gx − E[Gx])(Gx′ − E[Gx′ ])] = 1
γK(x,x′). This equivalence is a special case of

the Karhunen-Loève theorem outlined in Appendix D.

We recall the following identity:

Lemma 2.4.1. (Wahba, 1990, Lemma 1.1.1) For any h ∈ L2(X ,Σ, ν),

h ∈ HK ⇔
∞∑
i=1

1
λi
h2
i <∞,

(where we define 0
0 = 0). Whenever h ∈ HK ,

||h||2K =
∞∑
i=1

1
λi
h2
i .

2.4.2 Deriving a PAC-Bayes bound for Q

To obtain a PAC-Bayes bound for the Gibbs classifier drawn from Q, we need to evaluate the relative

entropy between the Gaussian measuresQ and P . In the finite dimensional setting this would be straight-

forward and follow from a well-known result. For a Gaussian measure on an infinite dimensional Hilbert

space we need to take more care, and the following lemma essentially states that the well-known formula

for the relative entropy between finite dimensional Gaussian distributions extends naturally to our case.

Lemma 2.4.2. KL(Q||P ) = γ
2 ||h∗S − h∗||2K .

Proof. We define by A
1
2
K the unique self-adjoint positive definite operator on L2(X ,Σ, ν) such that

A
1
2
Kφi = λ

1
2
i φi and by A−

1
2

K , A−1
K the operators defined on span{φi : λi 6= 0} such that A−

1
2

K φi =

λ
− 1

2
i φi and A−1

K φi = λ−1
i φi. For any h ∈ HK if we define f =

∑∞
i=1 fiφi by fi = hi√

λi
, so that

3To build intuition, when HK is of finite dimensionality (i.e. only a finite number of the λi are non-zero) then the mea-

sures are just finite-dimensional Gaussian distributions on the subspace spanned by the eigenfunctions corresponding to non-zero

eigenvalues and have (Gaussian) density (w.r.t. Lebesgue measure under the above isomorphism),

q(h) =
1

Z
e−

γ
2 ||h−h

∗
S ||

2
K and p(h) =

1

Z′
e−

γ
2 ||h−h

∗||2K , (2.20)

where, Z, Z′ enforce normalization. In the general (possibly infinite-dimensional) case we are building the corresponding distri-

butions but note that the densities (2.20) no longer make sense and in fact there is no analogue of Lebesgue measure on an infinite

dimensional vector space.
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h = A
1
2
Kf , then,

∞∑
i=1

f2
i =

∞∑
i=1

1
λi
h2
i

<∞,

and f ∈ L2(X ,Σ, ν) and h ∈ A
1
2
K(L2(X ,Σ, ν)). Thus by Theorem C.0.10 (b) Q and P are both

equivalent to
∏∞
i=1N0, 1

γ λi
and so are equivalent to each other4 . Further by translation we have that,

dQ
dP

(h) =
d
∏∞
i=1N(h∗S−h∗)i, 1

γ λi

d
∏∞
i=1N0, 1

γ λi

(h),

and thus by Theorem C.0.10 (c),

dQ
dP

(h) = exp

(
〈h− h∗,

(
1
γ
AK

)−1

(h∗S − h∗)〉L2 − 1
2
||
(

1
γ
AK

)− 1
2

(h∗S − h∗)||2L2

)
P − a.e.

= exp

(
γ

2
lim
n→∞

n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi)

)

ln
dQ
dP

(h) =
γ

2
lim
n→∞

n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi) P − a.e.

ln
dQ
dP

(h) =
γ

2
lim
n→∞

n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi) Q− a.e.,

the final line following since any set with positive Q-measure is a set of positive P -measure. Thus,

KL(Q||P ) = Eh∼Q
[
ln

dQ
dP

(h)
]

= Eh∼Q

[
γ

2
lim
n→∞

n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi)

]

= Eh1∼Q1Eh2∼Q2 ...Ehj∼Qj ...

[
γ

2
lim
n→∞

n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi)

]
(2.21)

=
γ

2
lim
n→∞

Eh∼Q

[
n∑
i=1

1
λi

(h∗i − h∗S,i)(h∗i + h∗S,i − 2hi)

]

=
γ

2

∞∑
i=1

1
λi

(h∗i − h∗S,i)2

=
γ

2
||h∗S − h∗||2K .

Each expectation commutes with the limit in (2.21) since there is only one term in the summation in each

hi.

We remark that we do in fact need some conditions on h∗S and h∗ in order for the above lemma to

hold and the fact that h∗S − h∗ ∈ HK is sufficient in our case, but it is not true in general.

We now proceed to upper bound the divergence via a method of bounded differences. For any

Mercer kernel K : X × X → R, we denote
4Recall that this means that each is absolutely continuous w.r.t. to the other, i.e. any set is P -null iff it is Q-null.
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κ(x) := sup
h∈HK

|h(x)|
||h||K

=
√
K(x,x) and κ := sup

x∈X
κ(x),

and define the distance dK(x,x′) := ||K(x, ·)−K(x′, ·)||K . Note that dK(x,x′) ≤ 2κ. Our analyses

will make use of the following property of a loss function:

Definition (Bousquet and Elisseeff, 2002, Definition 19) ` : Y × Y → R is α-admissible with respect

toHK if it is convex in its first argument and for all y ∈ Y ,

|`(y1, y)− `(y2, y)| ≤ α|y1 − y2|,

for all y1, y2 in the domain of the functions fromHK .

The hinge loss and absolute loss are thus 1-admissible. We recall the following definition of

Bregman divergence5 on a Hilbert spaceH: for differentiable6 convex Φ : H → R,

DΦ(u, v) := Φ(u)− Φ(v)− 〈∇Φ(v), u− v〉H. (2.22)

Consider a sample S and its “perturbation” S(i),

S := {(X1, Y1), ...(Xm, Ym)} (2.23)

S(i) := {(X1, Y1), ...(Xi−1, Yi−1), (X ′i, Y
′
i ), (Xi+1, Yi+1), ...(Xm, Ym)}. (2.24)

Lemma 2.4.3. If `(·, ·) is α-admissible and differentiable7 then

||h∗S(i) − h∗S ||K ≤
α

2ηm
(κ(Xi) + κ(X ′i)). (2.25)

Proof. The method of proof is a stability argument which follows (Bousquet and Elisseeff, 2002, Theo-

rem 22). Denote the “objectives”

Ω(h) := r̂isk`S(h) + η||h||2K ,

Ω(i)(h) := r̂isk`S(i)(h) + η||h||2K .

Since ∇Ω(h∗S) = ∇Ω(i)(h∗S(i)) = 0, we have,

DΩ(h∗S(i) , h
∗
S) +DΩ(i)(h∗S , h

∗
S(i)) = Ω(h∗S(i))− Ω(h∗S) + Ω(i)(h∗S)− Ω(i)(h∗S(i))

=
1
m

(`(h∗S(i)(Xi), Yi)− `(h∗S(i)(X ′i), Y
′
i )

+`(h∗S(X ′i), Y
′
i )− `(h∗S(Xi), Yi)).

5See, for example, Frigyik et al. (2008) for an overview of Bregman divergence on function spaces.
6By which we mean that the Fréchet derivative DΦ(v) of Φ at v exists everywhere. As DΦ(v) : H → R is a bounded (and

therefore continuous) linear operator the Reisz representation theorem guarantees the existence of a single element of H, which

we denote ∇Φ(v), such that (DΦ(v)) (u) = 〈∇Φ(v), u〉H for all u ∈ H.
7We note that for the case of the hinge loss or absolute loss this condition can be relaxed – we can define the derivative to be

zero at the point at which they are non-differentiable. For general subdifferentiable convex loss functions we recover the results if

we define the gradient to be zero at the minimum.
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Noting the additivity, DΦ+Ψ = DΦ + DΨ, and non-negativity of Bregman divergences and that

Dη||·||2K (h, g) = η||h− g||2K we have,

2η||h∗S − h∗S(i) ||2K = Dη||·||2K (h∗S(i) , h
∗
S) +Dη||·||2K (h∗S , h

∗
S(i))

≤ DΩ(h∗S(i) , h
∗
S) +DΩ(i)(h∗S , h

∗
S(i))

=
1
m

(
`(h∗S(i)(Xi), Yi)− `(h∗S(i)(X ′i), Y

′
i ) + `(h∗S(X ′i), Y

′
i )− `(h∗S(Xi), Yi)

)
≤ α

m
(|h∗S(Xi)− h∗S(i)(Xi)|+ |h∗S(X ′i)− h∗S(i)(X ′i)|)

≤ α

m
(||h∗S − h∗S(i) ||K(κ(Xi) + κ(X ′i))).

Lemma 2.4.4. If `(·, ·) is α-admissible, differentiable7 andHK is separable then

PS

(
||h∗S − h∗||K ≤

2ακ
η

√
1
m

ln
4
δ

)
≥ 1− δ. (2.26)

Proof. Define the Doob martingale,

Vi = E[h∗S − h∗ | (X1, Y1), ...(Xi, Yi)],

and note that V0 = 0, Vm = h∗S − h∗, and that

E[Vi | (X1, Y1), ...(Xi−1, Yi−1)] = E[h∗S − h∗ | (X1, Y1), ...(Xi−1, Yi−1)]

= Vi−1.

Thus {Vi}mi=1 is a martingale and we have further, if we denote S and S(i) as in (2.23) and (2.24), by

Lemma 2.4.3 and the convexity of || · ||K that,

||Vi−Vi−1||K = ||E [h∗S | (X1, Y1), ...(Xi, Yi)]−E [h∗S | (X1, Y1), ...(Xi−1, Yi−1)] ||K

= ||E(X′i,Y
′
i ),(Xi+1,Yi+1),...(Xm,Ym)

[
h∗S − h∗S(i) | (X1, Y1), ...(Xi, Yi)

]
||K

≤ E(X′i,Y
′
i ),(Xi+1,Yi+1),...(Xm,Ym)

[
||h∗S − h∗S(i) ||K | (X1, Y1), ...(Xi, Yi)

]
≤ κα

ηm
.

Since HK is separable it has a countable basis and so is isomorphic to either `2(R) or Rd and the

result follows from the result of (Kallenberg and Sztencel, 1991, Theorem 3.1) (which gives a version of

Azuma’s inequality for `2-valued martingales, see the details in Theorem B.0.5 and Corollary B.0.6 of

the Appendix).

We can now give the PAC-Bayes bound for the classification risk of the Gibbs classifier, GQ,

drawn from L2(X ,Σ, ν) according to the distribution Q defined by (2.19).

Theorem 2.4.5. If `(·, ·) is α-admissible, differentiable7 andHK is separable then,

PS
(

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
2γα2κ2

η2m
ln

8
δ

+ ln
2ξ(m)
δ

))
≥ 1− δ.
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Proof. Lemma 2.4.2 and Lemma 2.4.4 immediately imply that,

PS
(
KL(Q||P ) ≤ 2γα2κ2

η2m
ln

8
δ

)
≥ 1− δ

2
,

which we combine with Theorem 2.2.2 using the union bound.

Note that the PAC-Bayes bounds for Gibbs classifiers presented here will provide sharp bounds

on the mean classifier (which, with suitable choices for parameters, could be various types of SVM),

with an additional factor of 1 + ε, under a margin assumption, by standard techniques (Langford and

Shawe-taylor, 2002).

2.4.3 Data-dependent regularization in a “warped” RKHS

We now consider RKHS regularization algorithms in which the RKHSHK is defined using the data in an

attempt to make the structure of the RKHS – specifically the norm – reflect the smoothness of functions

h ∈ HK with respect to the data sample. Specifically we analyse methods related to LapSVM (Belkin

et al., 2006) in which the RKHS norm is mixed with an empirical norm defined using the Laplacian of a

graph formed on the data sample so that regularizing in this “warped” RKHS encourages the solution to

be smooth over the data sample.

Given a RKHS HK with kernel K : X × X → R and a sample I := {X1, ...Xt} of instances

from the input space we define the following empirical semi-inner product overHK ,

〈h, g〉L :=
2

t(t− 1)
h>Lg,

where, recalling Section 2.3.3, L is the Laplacian of a graph formed on the instances I and h :=

(h(Xi)) ∈ Rn, g := (g(Xi)) ∈ Rn are the point evaluations of h and g on I. We consider the “warped”

RKHS (Sindhwani et al., 2005) H̃K of functions fromHK with modified inner product,

〈h, g〉H̃K := 〈h, g〉K + τ〈h, g〉L,

where τ controls the relative weight given to the inner product in HK and the empirical inner product.

The motivation here is that we are using the data to construct an empirically defined RKHS whose inner

product captures the intrinsic geometry of the data; recalling Section 2.3.3, functions which have a small

Hilbert space norm are smooth on the data. This intrinsic geometry can be quite different from that

captured by the ambient geometry. According to arguments in Sindhwani et al. (2005) H̃K is a RKHS

with kernel K̃ : X × X → R given by

K̃(x,x′) = K(x,x′)− 2τ
t(t− 1)

k>x

(
I +

2τ
t(t− 1)

LK

)−1

Lkx′ ,

where kx = (K(x1,x), ...K(xt,x))>, and K is the t × t Gram matrix Kij = K(xi,xj) for i, j ≤ t.

Thus we can identify H̃K = HK̃ and 〈·, ·〉H̃K = 〈·, ·〉K̃ .

Note that L, K̃ andHK̃ are all empirical quantities which depend upon I but for ease of notation

the dependence upon I will only be implicit. Recalling Section 2.3.3 and (2.11) note that,

||h||2
K̃

= ||h||2K + τŨI(h).
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In the following we denote,

κ̃(x) := sup
h∈HK

|〈h, K̃(x, ·)〉K̃ |
||h||K̃

= ||K̃(x, ·)||K̃ =
√
K̃(x,x)

κ̃ := sup
x∈X

κ̃(x).

Using only unlabelled data to define the RKHS

In the presence of a reasonable quantity of unlabelled data, so that we have a sample S :=

{(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn} of labelled and unlabelled points drawn from X × Y , we

can take I = {Xm+1, ...Xn} and form the empirical kernel K̃ accordingly. We can then perform stan-

dard supervised classification using this kernel by training on the labelled part of the sample exactly as

described in Section 2.4.1. Because K̃ is defined using only the unlabelled component of the sample

this reduces to the case already studied and we simply note that the bound of Theorem 2.4.5 holds in this

case (with κ replaced by κ̃):

Theorem 2.4.6. If `(·, ·) is α-admissible, differentiable7 andH is separable then

PS
(

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
2γα2κ̃2

η2m
log

8
δ

+ ln
2ξ(m)
δ

))
≥ 1− δ.

Using all data to define the RKHS

The analysis of the previous section is adequate for the semi-supervised setting with plenty of unlabelled

data, but, ideally, we would like obtain a classifier by regularizing with respect to the empirically-defined

RKHS whose geometry captures the data structure defined by all labelled and unlabelled data. In par-

ticular, when we have access to little or no unlabelled data we would like to use the labelled sample to

inform this construction, and still obtain a risk bound in the vein of Theorem 2.4.5. The following analy-

sis provides a bound for algorithms such as LapSVM (Belkin et al., 2006) when the empirically-defined

RKHS is informed by the whole data sample.

Again we suppose that we have a sample S := {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn} of

labelled and unlabelled8 points drawn from X × Y and now take I = {X1, ...Xn} and form the RKHS

HK̃ with kernel K̃ described in Section 2.4.3. We are interested in this case in the (semi-supervised)

hypotheses,

h∗S := argmin
h∈H

{r̂isk`S(h) + η||h||2
K̃
} (2.27)

h∗ := ES [h∗S ], (2.28)

where, as before, `(·, ·) is some admissible loss function and expectation is over the draw of the sample

S with m labelled instances and n − m unlabelled instances. Recalling Section 2.4.1 we then form

distributions over L2(X ,Σ, ν) via isomorphism with `2 which are identical to those defined by (2.19),

8The unlabelled set can be small or empty.
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but with different means defined in this case by the hypotheses (2.27) and (2.28),

Qi := Nh∗S,i,
1
γ λi

and Pi := Nh∗i , 1
γ λi

,

Q :=
∞∏
i=1

Qi P :=
∞∏
i=1

Pi. (2.29)

Note that the {λi} correspond to the kernel K and not K̃. We remark that using the empirically-

defined warped RKHS to obtain not just the mean of the Gaussian process (as is done here) but also to

define the covariance structure seems to require a much more involved analysis.

Lemma 2.4.7.

KL(Q||P ) =
γ

2
||h∗ − h∗S ||2H. (2.30)

Proof. This follows analogously to Lemma 2.4.2.

We bound this divergence using arguments analogous to Lemma 2.4.3 and Lemma 2.4.4 for the

non-empirical case. Consider a sample S and its perturbation S(i),

S := {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn}

S(i) := {(X1, Y1), ...(Xi−1, Yi−1), (X ′i, Y
′
i ), (Xi+1, Yi+1), ...(Xm, Ym)} ∪ {Xm+1, ...Xn} i ≤ m

S(i) := {(X1, Y1), ...(Xm, Ym)} ∪ {Xm+1, ...Xi−1, X
′
i, Xi+1, ...Xn} i > m

Lemma 2.4.8. If `(·, ·) is α-admissible then for i ≤ m,

||h∗S − h∗S(i) ||K ≤
ακ

mη
+

16ȳκ2τw

n
√
η

,

and for m < i ≤ n,

||h∗S − h∗S(i) ||K ≤
16ȳκ2τw

n
√
η

,

where ȳ := supy∈Y `(0, y) denotes the maximum loss incurred by the zero function9

Proof. Denote by K̃ the empirical kernel formed on the sample S, and by K̃(i) the empirical kernel

formed on the sample S(i). Denote the “objectives”,

Ω(h) := r̂isk`S(h) + η||h||2
K̃

Ω(i)(h) := r̂isk`S(i)(h) + η||h||2
K̃(i) ,

and associated Bregman divergences,

DΩ(h, g) := Ω(h)− Ω(g)− 〈∇Ω(g), h− g〉K

DΩ(i)(h, g) := Ω(i)(h)− Ω(i)(g)− 〈∇Ω(i)(g), h− g〉K .

9For the hinge loss and absolute loss ȳ = 1 when Y = {−1, 1}.
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Since ∇Ω(h∗S) = ∇Ω(i)(h∗S(i)) = 0 we have,

DΩ(h∗S(i) , h
∗
S) +DΩ(i)(h∗S , h

∗
S(i)) = Ω(h∗S(i))− Ω(h∗S) + Ω(i)(h∗S)− Ω(i)(h∗S(i))

=
1
m

(`(h∗S(i)(Xi), Yi)− `(h∗S(i)(X ′i), Y
′
i )

+`(h∗S(X ′i), Y
′
i )− `(h∗S(Xi), Yi))

+ητ(ÛS(h∗S(i))− ÛS(h∗S) + ÛS(i)(h∗S)− ÛS(i)(h∗S(i))).

Noting the additivity, DΦ+Ψ = DΦ + DΨ, and non-negativity of Bregman divergences and that

Dη||·||2
K̃

(h, g) = η||h− g||2
K̃

we have,

2η||h∗S − h∗S(i) ||2K ≤ η||h∗S − h∗S(i) ||2K̃ + η||h∗S − h∗S(i) ||2K̃(i)

= Dη||·||2
K̃

(h∗S(i) , h
∗
S) +Dη||·||2

K̃(i)
(h∗S , h

∗
S(i))

≤ DΩ(h∗S(i) , h
∗
S) +DΩ(i)(h∗S , h

∗
S(i))

=
1
m

(`(h∗S(i)(Xi), Yi)− `(h∗S(i)(X ′i), Y
′
i )

+`(h∗S(X ′i), Y
′
i )− `(h∗S(Xi), Yi))

+ητ(ÛS(h∗S(i))− ÛS(h∗S) + ÛS(i)(h∗S)− ÛS(i)(h∗S(i))).

Now by noting that,

ÛS(h)− ÛS(i)(h) =
2

n(n− 1)

∑
j:j 6=i

(
(h(Xi)− h(Xj))2W (Xi, Xj)− (h(X ′i)− h(Xj))2W (X ′i, Xj)

)
,

and by the α-admissibility assumption,

2η||h∗S − h∗S(i) ||2K ≤ α

m
(|h∗S(Xi)− h∗S(i)(Xi)|+ |h∗S(X ′i)− h∗S(i)(X ′i)|)

+
2ητ

n(n− 1)

∑
j:j 6=i

W (Xi, Xj)
(
(h∗S(i)(Xi)− h∗S(i)(Xj))2 − (h∗S(Xi)− h∗S(Xj))2

)
+W (X ′i, Xj)

(
(h∗S(X ′i)− h∗S(Xj))2 − (h∗S(i)(X ′i)− h∗S(i)(Xj))2

)
≤ α

m

(
||h∗S − h∗S(i) ||Kκ(Xi) + ||h∗S − h∗S(i) ||Kκ(X ′i)

)
+

2ητw
n(n− 1)

∑
j:j 6=i

( ∣∣h∗S(i)(Xi)− h∗S(i)(Xj)− h∗S(Xi) + h∗S(Xj)
∣∣

×
∣∣h∗S(i)(Xi)− h∗S(i)(Xj) + h∗S(Xi)− h∗S(Xj)

∣∣
+
∣∣h∗S(X ′i)− h∗S(Xj)− h∗S(i)(X ′i) + h∗S(i)(Xj)

∣∣ ∣∣h∗S(X ′i)− h∗S(Xj) + h∗S(i)(X ′i)− h∗S(i)(Xj)
∣∣ )

≤ 2ακ
m
||h∗S − h∗S(i) ||K

+
2ητw

n(n− 1)

∑
j:j 6=i

( ∣∣〈h∗S(i) − h∗S ,K(Xi, ·)−K(Xj , ·)〉K
∣∣

×
∣∣〈h∗S(i) ,K(Xi, ·)−K(Xj , ·)〉K + 〈h∗S ,K(Xi, ·)−K(Xj , ·)〉K

∣∣
+
∣∣〈h∗S − h∗S(i) ,K(X ′i, ·)−K(Xj , ·)〉K

∣∣ ∣∣〈h∗S ,K(X ′i, ·)−K(Xj , ·)〉K + 〈h∗S(i) ,K(X ′i, ·)−K(Xj , ·)〉K
∣∣ )

≤ 2ακ
m
||h∗S − h∗S(i) ||K +

4ητw
n
||h∗S(i) − h∗S ||K sup

x,x′∈X
{d2
K(x, x′)}(||h∗S(i) ||K + ||h∗S ||K)

≤ 2ακ
m
||h∗S − h∗S(i) ||K +

16κ2ητw

n
||h∗S(i) − h∗S ||K(||h∗S(i) ||K + ||h∗S ||K)

≤ 2ακ
m
||h∗S − h∗S(i) ||K +

32ȳκ2√ητw
n

||h∗S(i) − h∗S ||K .
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where the final line follows since η||h∗S ||2K ≤ ȳ and η||h∗S(i) ||2K ≤ ȳ, otherwise the zero function

contradicts the Ω-minimality of h∗S and the Ω(i)-minimality of h∗S(i) .

This proves the first inequality. The second follows in the same way but noting that, for i ≥ m,

r̂isk`S(i)(h) = r̂isk`S(h) and so all terms related to the risk cancel.

We now bound ||h∗ − h∗S ||K w.h.p. as in the previous sections.

Lemma 2.4.9. Under the conditions of Lemma 2.4.8 and for separableHK we have

PS

(
||h∗S − h∗||K ≤ 2

κ

η

√(
α2

m
+

256ȳ2κ2ητ2w2

n
+

32ȳκ
√
ητwα

n

)
log

4
δ

)
≥ 1− δ.

Proof. This follows analogously to Lemma 2.4.4 – we create the same martingale and use Corol-

lary B.0.6 noting that Lemma 2.4.8 implies that for i = 1, ...m

c2i ≤
κ2

η2

(
α2

m2
+

256ȳ2κ2ητ2w2

n2
+

32ȳκ
√
ητwα

mn

)
,

and for i = m+ 1, ...n

c2i ≤
κ2

η2

(
256ȳ2κ2ητ2w2

n2

)
.

We can now give the PAC-Bayes bound for the classification risk of the Gibbs classifier, GQ,

drawn from L2(X ,Σ, ν) according to the distribution Q defined by (2.29).

Theorem 2.4.10. If `(·, ·) is α-admissible, differentiable7 and HK is separable then with probability at

least 1− δ over the draw of S,

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
2γκ2

η2

(
α2

m
+

256ȳ2κ2ητ2w2

n
+

32ȳκ
√
ητwα

n

)
log

8
δ

+ ln
2ξ(m)
δ

)
,

Proof. Claim 2.4.7 and Lemma 2.4.9 immediately implies that,

PS
(
KL(Q||P ) ≤ 2γκ2

η2

(
α2

m
+

256ȳ2κ2ητ2w2

n
+

32ȳκ
√
ητwα

n

)
log

8
δ

)
≥ 1− δ

2
,

which we combine with Theorem 2.2.2 using the union bound.

Note that Theorem 2.4.5 is a special case of Theorem 2.4.10 obtained by setting τ = 0 (or w = 0).

Remark We recall a few notes on the quantities in Theorem 2.4.10: α, ȳ, κ, w could all reasonably

be typically approximately 1. For example, for the hinge and absolute loss α = 1 and ȳ = 1, for the

exponential kernel κ = 1, and it is common to build a graph such that w = 1, for example by choosing

0/1 weights or weights determined by the Gaussian kernel. This leaves only parameters of the algorithm

in Theorem 2.4.10; η and τ which control how much we regularize and γ which controls the variance of

our Gaussian process.



Chapter 3

Relating function class complexity and cluster

structure with applications to transduction

Abstract

We relate function class complexity to cluster structure in the function domain. This facilitates risk

analysis relative to cluster structure in the input space which is particularly effective in semi-supervised

learning. In particular we quantify the complexity of function classes defined over a graph in terms of

the graph structure.

3.1 Introduction

We relate the learning process to cluster structure in the data which the learner is attempting to classify. It

is well-known that data-dependent measures of function class complexity can lead to sharper risk bounds

than those which do not capture the data distribution. We elaborate this principle by demonstrating

a relationship between the richness of a function class and structural features in data drawn from the

underlying input space X on which it acts. Specifically, a typical assumption in machine learning is that

data are clustered and we refine a recent upper bound on Rademacher complexity of a function class, by

relating it to cluster structure in the domain.

The intended application of these ideas is in the settings of transductive and semi-supervised learn-

ing. In Chapelle and Zien (2005) it is argued that virtually all successful semi-supervised learning tech-

niques exploit the cluster assumption. In these frameworks we typically work with empirically defined

hypothesis classes and it is natural to relate the learning process to the data which informs their construc-

tion. In such frameworks, an empirical metric on X which captures the intrinsic geometry of the data,

can be constructed giving an opportunity to relate learning to the intrinsic structure of data. A typical

empirical metric, equivalent to electrical resistance distance, is particularly sensitive to clustering, thus

relating function class complexity to the cluster structure of X is effective in this case.
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A key object in these settings is a graph formed using the available data and, as pointed out in

Hanneke (2006) it is important to reach an understanding of which properties of a graph are relevant

to the performance of an algorithm which predicts the labeling of the graph, and we provide a further

step in that direction: in the spirit of the work of Herbster (2008) in the online setting, we present risk

bounds (and suggest a prototype regularization scheme) derived from the cluster structure of the graph

in the resistance metric. In particular we bound the richness of a class of functions with bounded cut

defined over the vertices of a graph. When a graph exhibits good k-means clustering, in the resistance

metric, this cluster structure seems to serve as a sharp practical measure of the richness of classifiers over

a graph when learning under the typical “smoothness” assumption of a small graph cut; this is intuitive

and is established using a duality theory.

We finally give a semi-supervised risk bound in which the complexity terms are related to the

cluster structure of the (labeled and unlabeled) data instances.

3.2 Preliminaries

We denote by H a class of real-valued functions (hypotheses) mapping a domain X to a decision space

D and refer to h(x) ∈ D as the (soft) classification of x by h ∈ H. It is typical to assign a measure of

complexity F : H → R≥0 over functions inH. This generally captures a prior belief that the hypothesis

most likely to explain the relationship between data and their classification is simple, or that the true

classifier respects the structure of the input space. Given F : H → R≥0 we denote

Hα := {h ∈ H : F (h) ≤ α}.

We consider only function classes consisting of linear functions (in some, possibly kernelized, space) so

that (soft) classification is h(x) = 〈h,x〉.

Given a distribution PXY over the labeled input spaceX×Y , and a loss function ` : D×Y → R≥0

we denote the true risk of h ∈ H by risk`(h) := E(X,Y )∼PXY `(h(X), Y ), and the risk on a specific

set T by risk`T (h) := 1
|T |
∑

(X,Y )∈T `(h(X), Y ) and, in particular, the empirical risk on a labeled

training sample S by r̂isk`S(h) := 1
|S|
∑

(X,Y )∈S `(h(X), Y ). When `(·, ·) is the 0 − 1 loss of binary

classification, `0−1(y, y′) :=

 0 if y = y′

1 if y 6= y′
, then, for simplicity, we denote the corresponding binary

classification risk and its empirical counterpart by risk(·) and r̂iskS(·) respectively.

Definition The empirical Rademacher complexity of a function class H, on a sample S = {x1, ...xm}
is defined,

R̂S(H) := Eσ

[
sup
h∈H

(
1
m

m∑
i=1

h(xi)σi

)]

where the σi are Rademacher random variables, P(σi = ±1) = 1/2.
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Definition Given a probability distribution over the draw of training samples from X , the Rademacher

complexity of a function classH, w.r.t. samples of size m, is definedRm(H) := ES(R̂S(H)).

Interest in the Rademacher complexity of function classes stems from the fact that it can provide

generalization bounds which are typically sharper than VC bounds, since it captures the distribution of

the data under consideration. For example, it is known thatRm(H) = O
(√

VC(H)
m

)
and we have:

Theorem 3.2.1. (Bartlett and Mendelson, 2002)1 Assume a loss function ` : D × Y → R≥0 is K-

Lipschitz in its first argument and bounded by C, then for any δ > 0, we have, with probability at least

1− δ over the draw of a training sample S of size m, that

sup
h∈H

(
risk`(h)− r̂isk`S(h)

)
≤ 2KRm(H) + C

√
log 1

δ

2m
.

3.3 Relating function class complexity to structure in the function

domain

Definition Given a set S of points drawn from a vector space X a clustering of S is any partition

C = {C1, ...CN} of S. Given a metric d : X × X → R≥0, for each k we define the center of Ck by

ck := argminx∈X
∑
x′∈Ck d

2(x′,x) and note that if d(·, ·) arises from the Euclidean inner product,

d2(x,x′) = 〈x− x′,x− x′〉, then this is identical to the centroid ck = 1
|Ck|

∑
x∈Ck x. For each x ∈ S

we denote its corresponding center by c(x) := ck where k is such that x ∈ Ck.

3.3.1 A “duality” of complexity onH and distance on X

Given a class of linear functions H : X → R, any norm || · || on H (which would generally capture

complexity inH) gives rise to a specific metric d(·, ·) : X ×X → R≥0 defined, via the dual norm || · ||∗,
by

d(xi,xj) : = ||xi − xj ||∗

= sup
h∈H,||h||6=0

|h(xi)− h(xj)|
||h|| .

Call such a metric the implied metric. Intuitively, if xi and xj can be classified differently by some

simple hypothesis in h they are distant in d(·, ·), and conversely if they are distinctly classified only by

complex hypotheses then they are close. Given a norm on H, it is this implied metric which we use to

quantify cluster structure in X .

Examples

1. Linear classification in an arbitrary RKHS. Given any kernel K on a space X , consider the re-

producing kernel Hilbert space HK = span{K(x, ·) : x ∈ X}, consisting of all linear combina-

tions of the features {K(x, ·)}x∈X . The inner product inH is defined by 〈K(x, ·),K(x′, ·)〉K :=
1This is actually a sharper result than that in the cited reference, obtained using the sharper contraction inequality of (Meir and

Zhang, 2003, Theorem 7) than that provided by (Ledoux and Talagrand, 1991, Theorem 4.12).
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K(x,x′), for all x, x′ ∈ X (Aronszajn, 1950). Given a set of points S = {x1, ...xm} drawn from

X , we consider classifiers of the form h =
∑m
i=1 αiK(xi, ·), with α ∈ Rm, such that a given

point x ∈ X receives the (soft) classification h(x) = 〈h,K(x, ·)〉K =
∑m
i=1 αiK(xi,x). Kernel

methods often amount to seeking a classifier by minimizing, or regularizing in H w.r.t., the norm

||h||K =
√
〈h, h〉K , whose dual, by the arguments above, defines an implied metric on the feature

space (and by extension on X ),

dK(x,x′) : = d(K(x, ·),K(x′, ·))

= ||K(x, ·)−K(x′, ·)||∗K

= sup
||h||K 6=0

{ |〈h,K(x, ·)−K(x′, ·)〉K |
||h||K

}
=
√
K(x,x) +K(x′,x′)− 2K(x,x′).

2. Transductive classification on a graph. Given an n-vertex connected graph G = (V, E), with

(weighted) adjacencyA, we seek a classifier h ∈ Rn which classifies the vertices V = {v1, ...vn}
according to h(vi) := sgn(h>ei) = sgn(hi), where we have identified each vertex vi with the

corresponding standard basis vector ei in Rn. A typical scheme is to minimize a smoothness

functional

FL(h) : =
1
2
||h||2L :=

1
2
h>Lh

=
1
2

∑
(i,j)∈E

(hi − hj)2Aij

induced by the graph Laplacian L, subject to label constraints (Zhu et al., 2003a; Belkin et al.,

2004). By following the above procedure, the dual of the semi-norm ||h||L, again implies a metric

dL(·, ·) on V as follows,

dL(vi, vj) : = ||ei − ej ||∗L

= sup
h∈Rn,||h||L 6=0

{ |h>(ei − ej)|
||h||L

}

= sup
h∈Rn,||h||L 6=0

{
|(Lh)>L+(ei − ej)|√

(Lh)>L+(Lh)

}

= sup
w∈col(L),w>L+w 6=0

{ |w>L+(ei − ej)|√
w>L+w

}
=
√

(ei − ej)>L+(ei − ej),

where L+ is the pseudoinverse of the graph Laplacian. This metric is equal to the square root of

the electrical resistance between vertices on G (Klein and Randić, 1993), which arises by viewing

the graph as an electrical network in which each edge corresponds to a resistor with conductance

equal to the edge weight2. Note the connection to the previous example: the space of balanced3

2This captures the geometry of a finite transductive input space particularly effectively, measuring the ease with which current

flows through the body defined by the data which is more appropriate than a generic distance in an ambient space.
3i.e. vectors in Rn perpendicular to the all ones vector.
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classifiers on a graph, with the inner product given by the quadratic form induced graph Laplacian,

can be viewed as a RKHS whose Gram matrix is L+ (Herbster and Pontil, 2007).

3. Semi-supervised classification. The previous transductive example can be extended “out of sam-

ple”. Suppose wish to build a classifier h : X → R and are given a sample of data points

S = {x1, ...xn} from X , but the true distribution of data from X is otherwise unknown. Given

a kernel K : X × X → R which defines a RKHS of functions HK over X with inner product

〈·, ·〉K , we may consider the space H̃ of functions fromHK with modified inner product,

〈h, g〉H̃ := γH〈h, g〉K + γS〈Sh, Sg〉S ,

where S(·) is the (linear) point evaluation function on S, Sh = (h(x1), ...h(xn))>, and 〈·, ·〉S is

an inner product over the space of functions over S, and γH, γS control the relative weight given

to the inner product inHK and the empirical inner product. If 〈Sh, Sg〉S = (Sh)>M(Sg), where

M is a positive semi-definite matrix measuring smoothness on a graph G formed on S , such as

the graph Laplacian, according to arguments in Sindhwani et al. (2005) H̃ is a RKHS HK̃ with

kernel K̃ : X × X → R given by

K̃(x,x′) =
1
γH

K(x,x′)− γS
γH
k>x(γHI + γSMK)−1Mkx′ , (3.1)

where kx = (K(x1,x), ...K(xn,x))>, andK is the n× n Gram matrix Kij = K(xi,xj) for i,

j ≤ n.

By similar arguments to those above, seeking a classifier h ∈ HK̃ by minimizing the norm

||h||K̃ := ||h||H̃ :=
√
〈h, h〉H

K̃
implies a metric on X given by

dK̃(x,x′) =
√
K̃(x,x) + K̃(x′,x′)− 2K̃(x,x′).

Thus, (an approximation to) the resistance distance (or another such empirical distance) can be

extended to the whole of X .

3.3.2 Bounding Rademacher complexity

With reference to Appendix E we require the notion of convex conjugate, strong convexity and smooth-

ness. Note that any positive semi-definite quadratic form 1
2h
>Mh is 1-strongly convex w.r.t. the (semi-

)norm ||h||M =
√
h>Mh. We require the following lemma, which is a straightforward generalization

of (Kakade et al., 2008, Lemma 4).

Lemma 3.3.1. Let S ∈ W be a closed convex set and F : S → R≥0 be κ-strongly convex w.r.t. a norm

|| · || over S. Let {Zi}mi=1 be conditionally zero mean random variables (i.e. E[Zi|Z1, ..., Zi−1] = 0)

with values in W∗ such that E[(||Zi||∗)2] ≤ r2
i . Then E[F ?(

∑m
i=1 Zi)] ≤ 1

2κ

∑m
i=1 r

2
i , where F ?

denotes the Legendre-Fenchel conjugate of F .
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Proof. Let Sk :=
∑k
i=1 Zi. F is κ-strongly convex w.r.t. || · || and so, by Theorem E.0.12, F ? is

1
κ -strongly smooth w.r.t. || · ||∗, this means,

F ? (Sm−1 + Zm) ≤ F ? (Sm−1) + 〈∇F ? (Sm−1) , Zm〉+
1

2κ
(||Zm||∗)2.

Denoting Ek−1(·) := EZk(· | Z1, ...Zk−1) and taking conditional expectation gives,

Em−1[F ? (Sm)] ≤ F ? (Sm−1) +
1

2κ
Em−1[(||Zm||∗)2],

and since F ?(0) = supz(−F (z)) ≤ 0 the result follows by iterated use of the tower rule.

We now refine a result of (Kakade et al., 2008, Theorem 3) (which uses convex duality to bound

Rademacher complexity, but does not account for detailed structure such as cluster structure in the input

space) by demonstrating the dependence of the Rademacher complexity of a function class H on the

cluster structure of the data drawn from the domain X on which it acts.

Theorem 3.3.2. For a class H of bounded linear functions on a set X , if F : H → R≥0 is κ-strongly

convex w.r.t. a norm || · ||F on H, then for any sample S = {x1, ...xm} of points from X and all

clusterings C of S we have, for all α > 0,

R̂S(Hα) ≤ B
√
|C|
m

+

√
2αρS
mκ

, (3.2)

where ρS := 1
m

∑m
i=1 d

2
F (xi, c(xi)), dF (·, ·) is the implied metric onX andB := suph∈Hα,x∈X |h(x)|.

Further, for all clusterings C of X we have,

Rm(Hα) ≤ BES

[√
|CS |
m

]
+

√
2α
mκ

ES [
√
ρS ], (3.3)

where expectation is over the draw of a random sample S = {X1, ...Xm} from X and CS := {Ck ∈
C : S ∩ Ck 6= ∅} is the clustering restricted to the sample S.

Proof. Let C = {C1, ...CN} be an arbitrary clustering of S, and denote mj := |Cj |.

R̂S(Hα) = Eσ

[
sup
h∈Hα

〈h, 1
m

m∑
i=1

σixi〉
]

= Eσ

[
sup
h∈Hα

(
〈h, 1

m

m∑
i=1

σic(xi)〉+ 〈h, 1
m

m∑
i=1

σi(xi − c(xi))〉
)]

≤ Eσ

 sup
h∈Hα

〈h, 1
m

N∑
j=1

∑
i:xi∈Cj

σicj〉

+ Eσ

[
sup
h∈Hα

〈h, 1
m

m∑
i=1

σi(xi − c(xi))〉
]

(3.4)

We take these two terms in turn.
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Eσ

 sup
h∈Hα

〈h, 1
m

N∑
j=1

∑
i:xi∈Cj

σicj〉

 ≤ 1
m

N∑
j=1

Eσ

 sup
hj∈Hα

 ∑
i:xi∈Cj

σi

 〈hj , cj〉


≤ B

m

N∑
j=1

Eσ

∣∣∣∣∣∣
∑

i:xi∈Cj
σi

∣∣∣∣∣∣


≤ B

m

N∑
j=1

√
mj ≤ B

√
N

m
. (3.5)

The final lines hold by the concavity of the square root and since
∑N
j=1mj = m. For the second term

we follow the procedure in Kakade et al. (2008): denote, θ := 1
m

∑m
i=1 σi(xi − c(xi)). By Fenchel’s

inequality we have, for any λ > 0, 〈h, λθ〉 ≤ F (h) + F ?(λθ), so,

Eσ
[

sup
h∈Hα

〈h,θ〉
]
≤ Eσ

[
sup
h∈Hα

(
F (h)
λ

)
+
F ?(λθ)

λ

]
≤ α

λ
+

1
λ

Eσ [F ?(λθ)] (3.6)

We have that || λmσi(xi − c(xi))||∗F = λdF (xi,c(xi))
m and so by Lemma 3.3.1, Eσ [F ?(λθ)] ≤

λ2

2κm2

∑m
i=1(dF (xi, c(xi)))2 = λ2ρS

2κm . Therefore by picking λ =
√

2αmκ
ρS

in (3.6), we have,

Eσ
[

sup
h∈Hα

〈h,θ〉
]
≤
√

2αρS
mκ

. (3.7)

Combining (3.4), (3.5) and (3.7) gives the result.

Note that these bounds are optimized by the best k-means clustering for some k. In line with

intuition, if the data distribution clusters and a good classifier respects this structure (i.e. has a small

complexity) we can learn well with few examples and if the training sample reveals this structure we can

be more confident in our risk analysis. In Appendix G we suggest a possible means of deriving a cluster

structure-dependent risk analysis and regularization scheme from this result.

3.4 Application to transduction

Statistical analyses of induction typically require that the hypothesis class is not informed by available

data instances, thus, being necessarily inherited from the geometry of the ambient representation space

of the data, the metric in which structure is quantified in our theory is unlikely to ideally capture the

intrinsic geometry of the data distribution. In the settings of transduction and semi-supervised learning

the learner is more informed about the true nature of the data distribution, effectively reducing an element

of uncertainty, and typically uses this information to choose a data-dependent hypothesis class implying

a metric on the input space which captures the intrinsic geometry of the data. Furthermore, we will see

that the empirically-defined metric implied on the input space by learning under typical “smoothness”

assumptions is very sensitive to the clustering of data – much more so than any non-empirical metric can

be – so the ideas above should be effective in this case. We recall the definitions relevant to transduction

in the discussion of the subject in Section 1.3.1.
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3.4.1 Transductive Rademacher complexity

Recalling Section 3.2, for clarity we henceforth denote the transductive Rademacher complexity by

Rtrs
m (·) when the draw of a sample is uniform without replacement from a finite set andRind

m (·) the stan-

dard inductive Rademacher complexity4. We specialize the bound provided by (3.3) to the transductive

setting.

Corollary 3.4.1. For a class H of bounded functions on a finite set X , if F : H → R is κ-strongly

convex w.r.t. a norm || · ||F onH, then for all clusterings C of X , for all α > 0,

Rtrs
m (Hα) ≤ BES

[√
|CS |
m

]
+

√
2αρ
mκ

, (3.8)

where ρ := 1
n

∑n
i=1 d

2
F (xi, c(xi)), dF (·, ·) denotes the implied metric onX ,B := suph∈Hα,x∈X |h(x)|,

expectation is w.r.t. the (uniform without replacement) draw of a sample S = {Xs1 , ...Xsm} from X
and CS := {Ck ∈ C : Ck ∩ S 6= ∅} is the clustering restricted to the sample S.

Note that the expectation can be evaluated with ease since the distribution of training samples is

known.

Proof. In (3.3) we exploit the concavity of
√· and then we evaluate the expectation.

Binary Classifiers With Bounded Graph Cut

Transduction is typically posed as predicting the labeling of a partially labeled n-vertex graph G =

(V, E). By representing each vi ∈ V by the standard basis element ei ∈ Rn we seek a classifier h ∈ H,

such that h(vi) := hi = h>ei is the (soft) classification of vertex vi. As discussed in Section 3.3.1 one

principle involves minimizing the smoothness functional FL(h) := 1
2h
>Lh, derived from the graph

Laplacian5. Note that for h ∈ {−1, 1}n, 1
4h
>Lh = cut(h), the weighted sum of all edges connecting

differently labeled vertices. This is 1-strongly convex w.r.t. ||h||L :=
√
h>Lh and the implied metric

on V in this case is given by dL(vi, vj) =
√

(ei − ej)>L+(ei − ej), the square root of the electrical

resistance on the graph. The above result therefore bounds the Rademacher complexity of the class

Hφ := {h ∈ {−1, 1}n : h>Lh ≤ φ}

of binary classifiers with bounded cut:

Corollary 3.4.2. Given a graph G = (V, E), for any clustering C of V , for all φ > 0,

Rtrs
m (Hφ) ≤ ES

[√
|CS |
m

]
+

√
φρ

m
. (3.9)

where ρ := 1
n

∑n
i=1 d

2
L(vi, c(vi)) and CS := {Ck ∈ C : S ∩ Ck 6= ∅} is the clustering restricted to the

sample S.
4Another form of transductive Rademacher complexity is studied in El-Yaniv and Pechyony (2007).
5There is a technical point here; because of the shift from single points to pairs of points arising in the cluster analysis, all

duality inequalities that we want to hold do hold, which is not the case otherwise. In particular we do not need to restrict the

function class to functions perpendicular to the null space of the Laplacian, as some analyses do.
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Note that each centroid c(vi) is not a point on the graph but is represented in Rn by
1
|Ck|

∑
{j:vj∈Ck} ej where k is such that vi ∈ Ck. Thus if G exhibits good k-means clustering in

the (square root of the) resistance metric then the class of binary classifiers Hφ is small. Because of

the strong convexity framework we can also extend this analysis to the “p-resistances” of Chapter 5,

a generalization of p-norms to graphs6: Lemma 5.3.5 establishes the (p − 1)-strong convexity of the

complexity 1
2‖·‖2Ψ,p.

Analysis for prototypical clusters

The prototypical example of a cluster is a clique, we consider the (unweighted) graph K, a collection of

N cliques K1, ...KN , such that |Ki| = ki, connected arbitrarily with edges (see Figure 3.1).

49

51

Figure 3.1: A Collection Of Cliques

By standard rules for resistors in series and parallel, the electrical resistance between any two

distinct vertices in an k-clique is 2
k , and, by Rayleigh’s monotonicity principle, the intra-clique distances

in a k-clique on K satisfy d2
L(vi, vj) ≤ 2

k . Now, for any set of n vertices V ′ we have

1
n

∑
i:vi∈V′

d2
L(vi, c(vi)) =

1
n

∑
i:vi∈V′

ei − 1
n

∑
j:vj∈V′

ej

>L+

(
ei −

1
n

∑
k:vk∈V′

ek

)

=
1
n

∑
i:vi∈V′

ei − 1
n

∑
j:vj∈V′

ej

>L+ei

=
1

2n2

∑
i,j:vi,vj∈V′

(ei − ej)>L+ (ei − ej)

=
1

2n2

∑
i,j:vi,vj∈V′

d2
L(vi, vj)

≤ 1
2

1
n

∑
i:vi∈V′

1
n− 1

∑
j:vj∈V′,j 6=i

d2
L(vi, vj),

so, on K, the resistance distance from any vertex vi to the centroid of its clique Kj satisfies

6Further, this analysis is easily generalized to certain quadratic forms FM (h) := 1
2
h>Mh where M is a p.s.d. matrix

derived from the graph Laplacian. Sensible choices might include the “canonical regularizers” derived from the Laplacian in

Smola and Kondor (2003), for example L2 or the heat kernel, or norms whose implied metric would be the diffusion distances

considered in Coifman and Lafon (2006); Nadler et al. (2005), the implied metric on V in this case is given by dM (vi, vj) =√
(ei − ej)>M+(ei − ej).
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d2
L(vi, c(vi)) ≤ 1

kj
. Thus, for the graph K, (3.9) implies that

Rtrs
m (Hφ) ≤

√
N

m
+

√
Nφ

mn
. (3.10)

Accounting for the cluster structure here offers significant improvement since the resistance distance

between vertices in separate cliques is much larger (and on weighted graphs can be arbitrarily large).

Comparison to VC-dimension bounds

We now compare the result (3.9) to the bound of Kleinberg et al. (2004) on the VC-dimension ofHφ for

unweighted graphs:

VC(Hφ) = O
(
φ

φ?

)
, (3.11)

where φ? is the minimum number of edges that must be removed in order to disconnect the graph. Since

Rm(H) = O
(√

VC(H)
m

)
,Rm(H) should be directly compared to

√
VC(H)
m .

We first consider the (n2, n)-lollipop graph, see Figure 3.2, and compare the bounds for VC(Hφ)

and Rm(Hφ). For large n, since the VC dimension is independent of the distribution over vertices

VC(Hφ) measures the complexity of Hφ on a path graph (the handle of the lollipop): for n > φ,

the VC dimension is equal to the VC dimension on the n-path graph, VC(Hφ) = φ + 1. Whereas

Rm(Hφ) will (approximately) measure the complexity of Hφ on a n2-clique, since the majority of

vertices will be sampled from the lolly: from the argument above the bound (3.10) implies, for large n,

Rm(Hφ) . 1√
m

+
√

φ
mn2 . Thus, even though the bound provided by (3.11) is tight (upto constants)

in this case, a comparison of the bounds for Rm(H) and
√

VC(H)
m show that the Rademacher bound is

a significant improvement by a factor of approximately 1
|V| . This is a symptom of the VC dimension

failing to capture the underlying distribution of instances.
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Figure 3.2: A (9,3)-lollipop

More generally, for an unweighted collection of cliques K which is fairly easily disconnected7,

e.g. φ? < n
N , the bound (3.10) can be preferred to

√
VC(Hφ)

m = O
(√

φ
mφ?

)
for φ reasonably large, e.g.

φ > Nφ?. We note that because of the appearance of the
√

1
n term in the bound (3.10) there is a lot of

slack to relax the connectivity of the graph while still maintaining a good bound.

7Note that φ? doesn’t reveal much about graph structure and could realistically be as small as 1 in practical applications
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We note however that at the other end of the connectivity spectrum the bound (3.9) degrades:

for example, for an unweighted path graph (3.9) becomes vacuous, at least for small m, and the VC

bound is tight. This situation is improved by passing to p-resistances of Chapter 5: essentially the bound

(3.8) holds simultaneously over a family of p-norms defined on the graph labellings and p-resistance, for

p → 1, is more suitable when the graph is sparse and to a large extent solves the problem encountered

here. We note however that (3.9) degrades here because d2
L(vi, c(vi)) = O(n) for a path graph, and this

situation is far from typical in practical machine learning applications, and, in anycase, we can always

upper bound Rm(H) with an equivalent VC term in any bound whenever the latter is sharper (see e.g.

Kääriäinen).

3.4.2 Transductive risk analysis

The following risk bound essentially due to Pelckmans and Suykens (2007) but slightly generalized here,

is valid in the transductive setting8. For completeness a proof is supplied in Appendix H.

Theorem 3.4.3. (Pelckmans and Suykens, 2007) For a given loss function ` : D×Y → R≥0,K-Lipschitz

in its first argument, bounded by C, for any δ > 0, simultaneously for all h ∈ H,

PS

(
risk`T (h) ≤ r̂isk`S(h) + 2K

m+ u

max(m,u)
Rtrs

min(m,u)(H)

+ C

(
1
m

+
1
u

)√
min(m,u)

2
log

1
δ

)
≥ 1− δ,

where probability is w.r.t. the (uniform, without replacement) draw of the training sample S =

{(Xs1 , Ys1), ...(Xsm , Ysm)} from Z and T ∪ S = Z .

We specialize this to the case of predicting the binary labeling of a graph G and apply the bound

(3.9). Let H = {−1, 1}n and FL(h) = 1
2h
>Lh where L is the Laplacian of G. For simplicity we

suppose m < u. We have D = Y = {−1, 1} and by choosing the 0 − 1 loss, which is 1
2 -Lipschitz

for this function class, and bounded by 1, we have the following result bounding transductive binary

classification risk:

Theorem 3.4.4. Given a graph G = (V, E) for any clustering C of V , for any δ > 0, with probability at

least 1− δ over the draw of S, simultaneously for all h ∈ {−1, 1}n,

riskT (h)− r̂iskS(h) ≤ n

u

(
ES

[√
|CS |
m

]
+ 2

√
F ′L(h)ρ
m

+

√
log 1

δ

2m

)
, (3.12)

where ρ := 1
n

∑n
i=1 d

2
L(vi, c(vi)), F ′L(h) := minr∈{1,2,...}max

(
φr, 2 r+1

r FL(h)
)
, φr := r log 2

2ρ and

CS := {Ck ∈ C : S ∩ Ck 6= ∅} is the clustering restricted to the sample S.

Proof. Define the stratification9: H(0) = {} and, for t ∈ {1, 2, ...},H(t) = Hφt . Theorem 3.4.3 implies

8As u→∞ we recover the inductive bound of Theorem 3.2.1.
9This technique is similar to that employed in (Balcan and Blum, 2010, Theorem 12).
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that with probability at least 1− δ
2t simultaneously for all h ∈ H(t)\H(t−1) we have,

riskT (h)− r̂iskS(h) ≤ n

u

Rtrs
m (Hφt) +

√
log 2t

δ

2m


≤ n

u

ES

[√
|CS |
m

]
+

√
φtρ

m
+

√
t log 2
2m

+

√
log 1

δ

2m


≤ n

u

ES

[√
|CS |
m

]
+ 2

√
φtρ

m
+

√
log 1

δ

2m

 . (3.13)

Now noting that for r ∈ {1, 2, ...}, φt > φr implies that t ≥ r + 1 and φt ≤ t
t−1φt−1 ≤ r+1

r φt−1, so

φt ≤ min
r∈{1,2,...}

max
(
φr,

r + 1
r

φt−1

)
≤ F ′L(h) (3.14)

The result follows by combining (3.14) with (3.13) and applying the union bound over all t ∈ {1, 2, ...}.

This bound resembles the bounds of Herbster (2008) for graph label prediction in the online frame-

work which are related to a cover in the resistance metric.

This bound gives means of analyzing the transductive classification risk of any algorithm which

produces a binary labeling of a graph, in terms of the structure of the underlying graph, including the

harmonic energy minimization algorithm of Zhu et al. (2003a), the regularization of Belkin et al. (2004),

the TSVM (Joachims, 1999), Mincut (Blum and Chawla, 2001) and the algorithm of Pelckmans et al.

(2007). It also suggests an algorithm obtained by minimizing the bound simultaneously over classifiers

and clusterings: essentially a Laplacian regularization whose regularization parameters are determined

by the cluster structure of the graph.

Comparison

We compare Theorem 3.4.4 to similar bounds in the literature.

The following bound10 is provided in Hanneke (2006).

Theorem 3.4.5. (Hanneke, 2006, Corollary 2) With probability at least 1 − δ simultaneously for all

h ∈ {−1, 1}n,

riskT (h) ≤ r̂iskS(h) +

√
n(u+ 1)

u2

FL(h)
φ? lnn+ ln 2(QW+1)

δ

2m
(3.15)

where φ? is the minimum number of edges that must be removed to disconnect the graph, W :=∑
(i,j)∈E Aij , whereA is the (weighted) adjacency of G, and Q is the smallest positive rational number

such that QAij ∈ Z for all (i, j) ∈ E .

10We note that Hanneke (2006) provides a sharper implicit bound. Since we are interested in the essential dependence of these

bounds on structural quantities of the graph we compare, for simplicity, to the explicit bound only.
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Since this is essentially equivalent to a bound derived from the VC-dimension bound (3.11), we

note that (ignoring multiplicative constants) (3.12) will be preferred to (3.15) whenever the Rademacher

complexity bound (3.9) is preferred to the VC-dimension bound (3.11), and we refer the reader to the

discussion of that subject in Section 3.4.1: for clustered graphs which are fairly easily disconnected,

(3.12) seems preferable, nevertheless (3.15) remains tighter for sparser graphs, such as a path graph.

The following result relates the cardinality of Hφ and transductive classification risk to the spec-

trum {λi}ni=1 of the graph Laplacian:

Theorem 3.4.6. (Pelckmans et al., 2007, Theorem 1 and Theorem 2) With probability at least 1− δ,

sup
h∈Hφ

|riskT (h)− r̂iskS(h)| ≤
√

2(n−m+ 1)
nm

log
|Hφ|
δ

with |Hφ| ≤
(
en
nφ

)nφ
where nφ := |{λi : λi ≤ φ}|.

We compare these results with that given by (3.12). For the simple toy example given in Figure

3.1, nφ = |V| for φ ≥ 3 and so the bound on |Hφ| is vacuous. For a practical comparison we consider the

MNIST data set of hand-written digits (Lecun and Cortes) and form a 4-NN graph from 500 instances

each of the digits “0” and “1”. The two approaches to bounding the richness of Hφ on this data set

and graph are summarized in Table 3.1 (results are averaged over 5 randomly chosen sets of data). The

(average) true labeling y has a cut of 8, and so y>Ly = 32.

Table 3.1: Practical evaluation of complexity bounds

φ nφ |Hφ| (Thm. 3.4.6) Rtrs
m (Hφ) (Eq. (3.9))

10 902
(

1000e
902

)902 1√
m

(√
2 + 0.57

√
10
)

25 1000 e1000 1√
m

(√
2 + 0.57

√
25
)

50 1000 e1000 1√
m

(√
2 + 0.57

√
50
)

A comparison of the consequent bounds given by Theorem 3.4.6 and Theorem 3.4.3 apparently

demonstrate that the bound (3.9) on the Rademacher complexity ofHφ yields a sharper quantification of

the richness ofHφ on this data set. Note that nφ tends to be very large on this particular dataset, rendering

the bounds of Theorem 3.4.6 weak. One explanation for this is that graphs used in this context in machine

learning tend to be very sparse (e.g. k-nearest neighbour graphs where k � n) the eigenvalues of sparse

Laplacians are all small:

Claim 3.4.7. Let G = (V, E) be an unweighted n-vertex graph with maximal degree d =

maxv∈V degree(v). Then let u ∈ Rn be a normalized eigenvetor of the Laplacian L of G with

eigenvalue λ. Then λ = u>Lu ≤ 2d.

Proof. We consider only the case where all vertices have degree d and prove that on such a graph any

normalised vector u satisfies u>Lu ≤ 2d (the claim will then follow since removing edges stricly
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decreases the value of u>Lu). We have

u>Lu =
∑

(i,j)∈E
(ui − uj)2

=
∑

(i,j)∈E
u2
i + u2

j − 2uiuj

=
1
2

∑
i

∑
j∼i

u2
i +

1
2

∑
j

∑
i∼j

u2
j − 2

∑
(i,j)∈E

uiuj

= d+
∑
j

uj
∑
i∼j

ui

≤ d+
√∑

j

u2
j

√√√√√∑
j

∑
i∼j

ui

2

≤ d+ d

√√√√√∑
j

1
d

∑
i∼j

ui

2

≤ d+ d

√
1
d

∑
j

∑
i∼j

u2
i

= d+ d

√
1
d

∑
i

∑
j∼i

u2
i

≤ 2d.

When building k-nearest neighbour greaphs the maximal degree will often be small, and thus all

eigenvalues will be small. Further the bound of Claim 3.4.7 is very crude and could clearly be generalized

and improved; clearly in practice most eigenvalues on such graphs will be much smaller than even the

bound suggests.

3.5 Application to semi-supervised learning

We indicate how the above ideas can be applied in a typical semi-supervised analysis to provide a semi-

supervised bound in which the complexity is related to the cluster structure of the data sample.

The setting we consider is this: we are given a set S = {(Xs1 , Ys1), ...(Xsm , Ysm)} of m labeled

instances drawn i.i.d. from PXY over Z = X × Y and a set XT = {Xt1 , ...Xtu} of u unlabeled

instances drawn i.i.d. from the marginal PX . Let XS := {Xs1 , ...Xsm} and I := XT ∪ XS denote

the set of all n = m + u instances. Consider a space H of bounded hypotheses mapping X to D and

a complexity measure F : H → R≥0, κ-strongly convex w.r.t. a norm || · ||F on H and which is not

informed by the sample of data instances, and let Hα := {h ∈ H : F (h) ≤ α}. We then consider

the space H̃ of functions from H with “modified” complexity F̃ : H → R≥0, κ̃-strongly convex w.r.t.

a norm || · ||F̃ on H, which can take into account an empirical complexity measure derived from the

entire sample of instances I. The following semi-supervised bound on hypotheses from the empirically
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defined H̃β := {h ∈ Hα : F̃ (h) ≤ β} is essentially a version of the sample complexity result (Balcan

and Blum, 2005, Theorem 5) for the statistical learning theory framework and specialized to our cluster

structure method. Note that the statistical analysis relies on an initial hypothesis classHα chosen before

the data is available as a tool to prove the convergence of transductive risk to inductive risk, and we

perform two structurings of this hypothesis class, one which is data-dependent and one which is not.

Theorem 3.5.1. Let ` : D×Y → R≥0 be a loss function, K-Lipschitz in its first argument and bounded

by C. Then simultaneously for all h ∈ H̃β we have,

P

(
risk`(h) ≤ r̂isk`S(h) + 2KRtrs

m (H̃β) + 2KR̂ind
I (Hα) + C

(√
1

2m
log

2
δ

+ 3

√
1

2n
log

4
δ

))
≥ 1− δ,

(3.16)

where probability is w.r.t. the draw of the labeled and unlabeled data from PXY . Further, for all

clusterings C, C′ of I,

Rtrs
m (H̃β) ≤ BE

[√
|CXS |
m

]
+

√
2β
mnκ̃

∑
x∈I

d2
F̃

(x, c(x)),

and,

R̂ind
I (Hα) ≤ B

√
|C′|
n

+
1
n

√
2α
κ

∑
x∈I

d2
F (x, c′(x)),

where CXS := {Ck ∈ C : XS ∩Ck 6= ∅} is the clustering restricted to the labeled instances, expectation

is with respect to the (uniform without replacement) draw of XS from I, dF (·, ·) and dF̃ (·, ·) are the

metrics on X implied by || · ||F and || · ||F̃ , and B := suph∈Hα,x∈X |〈h,x〉|.

Proof. Let T := {(Xt1 , Yt1), ...(Xtu , Ytu)} where the Yti are drawn from the conditional PY |X . The

transductive bound Theorem 3.4.3 implies that,

P

(
sup
h∈H̃β

(
risk`S∪T (h)− r̂isk`S(h)

)
≤ 2KRtrs

m (H̃β) + C

√
1

2m
log

2
δ

)
≥ 1− δ

2
,

where risk`S∪T (h) := 1
|S∪T |

∑
(X,Y )∈S∪T `(h(X), Y ). The empirical counterpart of Theorem 3.2.1

(see e.g. Bousquet et al., 2003a) implies that

P

(
sup
h∈Hα

(
risk`(h)− risk`S∪T (h)

)
≤ 2KR̂ind

I (Hα) + 3C

√
1

2n
log

4
δ

)
≥ 1− δ

2
,

and (3.16) follows from the union bound. The final results follow from the bounds (3.8,3.2) on the

transductive Rademacher complexity and empirical inductive Rademacher complexity.

In particular, when H̃ is a “warped” RKHS of the form discussed in Section 3.3.1 then κ = κ̃ = 1

and we know the form of the implied metrics precisely.

The idea here is that the terms relating to the (non-empirical) hypothesis spaceHα decay asO( 1√
n

)

and so with plenty of unlabeled data11 these terms are small, and we have a data-dependent hypothesis
11It is argued in Bennett and Demiriz (1998), for example, that unlabeled data should be almost free.
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space H̃β within which we should be able to find a low risk hypothesis, even when β is small, if the true

classifier respects the data structure; the advantage offered by unlabeled data is therefore seen to be that

we can form an empirically defined hypothesis space (which should be more suitable for the learning

process), and (with enough unlabeled data) obtain bounds similar to standard inductive bounds which are

usually restricted to hypothesis spaces chosen before seeing the data and therefore without knowledge

of the true data distribution. We have given a bound in which the complexity terms are entirely related

to structure in the observed data using the results developed in previous sections.

3.6 Discussion

We have related the cluster structure in data to a common distribution-dependent notion of the capacity of

a class of functions defined over the input space. This demonstrates the intuitive notion that when a data

distribution exhibits a good k-means clustering in a metric which is related to our learning assumptions

by a natural duality then our performance guarantees for the learning method will be sharper. We showed

that accounting for cluster structure in this way can offer significant improvement in the quantification

of the Rademacher capacity of a function class.

We specialized this observation to the case of transductive learning over a graph: when a graph

exhibits a good k-means clustering in the resistance metric, relating the richness of the class of binary la-

bellings defined over the vertices of the graph to this cluster structure appears to allow a sharp accounting

of the richness of the function class. It is unknown whether the information contained in the clustering

which is relevant to learning is contained in a simpler object like the Laplacian spectrum; after all finding

the best k-means clustering is in general an NP-hard problem (though good clusterings can usually be

found more easily). An open problem is therefore to improve the spectral approach or to identify other

relevant structural features which can be tightly related to the performance of a learned classifier.

Cluster structure is very likely prevalent in “small world” networks which have been a huge focus

of recent interest (Chung and Lu, 2006; Durrett, 2006) due to their apparent ubiquity in diverse domains

of the information age – the web, social and biological networks etc.. Such networks are known to

be generally very sparse but highly concentrated around “hubs” with low degree nodes belonging to

dense (low resistance) subgraphs – precisely the type of graphs which exhibit clustering in the resistance

metric.



Chapter 4

Efficient transduction by graph linearization

Abstract

We study the problem of efficiently learning the labeling of a large graph in the online setting, presenting

algorithms with performance guarantees related to natural quantities associated with the graph. We

show a fundamental limitation of a standard Laplacian-based interpolation algorithm: the number of

mistakes made may be proportional to the square root of the number of vertices, even when tackling

simple problems. We present an efficient algorithm which achieves a logarithmic mistake bound. It is

based on the notion of a spine, a path graph which provides a linear embedding of the original graph.

In practice, graphs may exhibit cluster structure; thus in the last part, we present a modified algorithm

which achieves the “best of both worlds”: it performs well locally in the presence of cluster structure,

and globally on large diameter graphs.

4.1 Introduction

Huge data sets with a high degree of data-defined structure are increasingly common in practical machine

learning applications meaning that efficient methods are vital. Particularly common is the situation in

which data is represented as a graph. Many semi-supervised and transductive learning methods do not

scale well in the amount of (unlabelled) data. Standard methods involving minimising a cost function

derived from a graph Laplacian, for example, typically require the inversion of the Laplacian matrix.

Online learning is inherently an efficient learning strategy, and in the graph prediction setting we must

think of ways to exploit the structure defined by the graph in an efficient way without, for example,

inverting the full Laplacian matrix. This research is about efficiently learning the labelling of a graph

in the online framework, while maintaining good performance guarantees relative to natural quantities

associated with the graph: we present an efficient algorithm which attains an upper bound on the number

of mistakes superior to a lower bound we prove for a standard technique of transductive learning, that

of harmonic energy minimization (Zhu et al., 2003a) discussed in Section 1.3.1i. The general idea is to

define certain Markov random fields over the labellings of a graph. It is well-known that marginalizing
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a discrete random field is intractable for general graphs. On trees marginalization can be achieved in

time complexity linear in the number of vertices, by belief propagation. Here, by utilising a certain

linear embedding, we define a random field that can be marginalized to produce sequential predictions

in logarithmic time.

We study the problem of predicting the labelling of a graph in the online learning framework.

The strength of the methods in Herbster and Pontil (2007); Herbster (2008) is in the case when the graph

exhibits “cluster structure”. The apparent deficiency of these methods is that they have poor bounds when

the graph diameter is large relative to the number of vertices. We observe that this weakness is not due to

insufficiently tight bounds, but is a problem in their performance. In particular, we discuss an example

of a n-vertex labelled graph with a single edge between disagreeing label sets. On this graph, sequential

prediction using the common method of harmonic energy minimization based upon minimising a cost

derived from the graph Laplacian , subject to constraints, incurs Ω(
√
n) mistakes (see Proposition 4.2.1).

The expectation is that the number of mistakes incurred by an optimal online algorithm is bounded by

O(lnn).

We solve this problem by observing that there exists an approximate structure-preserving embed-

ding of any graph into a path graph. In particular the cut-size of any labelling is increased by no more

than a factor of two. We call this embedding a spine of the graph. The spine is the foundation on

which we build two algorithms. Firstly we study prediction on the spine with the majority vote classifier

for a particular Markov random field. In the noiseless case we demonstrate that this equivalent to the

1-nearest-neighbor algorithm acting on the spine. A logarithmic mistake bound for learning on a path

graph is proved by the Halving algorithm analysis. We further consider this algorithm in the presence

of noise. Secondly, we use the spine of the graph as a foundation to add a binary support tree to the

original graph. This enables us to prove a bound which is the “best of both worlds” – if the predicted

set of vertices has cluster-structure we will obtain a bound appropriate for that case but if, instead, the

predicted set exhibits a large diameter we will obtain a polylogarithmic bound.

Denoting by ΦG(u) the size of the cut induced by a binary labelling u ∈ {−1, 1}n of an n-vertex

graph G = (V, E) (see (4.1)) our first algorithm predicts every vertex of G in O(|V| log |V| + |E|) time

with a mistake bound of O
(

ΦG(u) log
(
|V|

ΦG(u)

))
.

4.1.1 Previous Work

In Herbster and Pontil (2007); Herbster (2008) the online graph labelling problem was studied. An

aim of those papers was to provide a natural interpretation of the bound on the cumulative mistakes of

the kernel Perceptron when the kernel is the pseudoinverse of the graph Laplacian – bounds in this case

being relative to the cut and (resistance) diameter of the graph. The online graph labelling problem is also

studied in Pelckmans and Suykens (2008) and Cesa-Bianchi et al. (2009a), and here the graph structure

is not given initially. A slightly weaker logarithmic bound for the online graph labelling problem has

also been independently derived via a connection to an online routing problem in Fakcharoenphol and
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Kijsirikul (2008).

4.2 Background

In this section, we describe the problem of online graph labelling, recall some common approaches to

this problem and point out weaknesses of these methods, which motivate our subsequent analysis.

4.2.1 The online graph labelling problem

Recalling the notions outlined in Section 1.3.1 we let G = (V, E) be an undirected n-vertex graph and

in this chapter, we consider only connected graphs, that is, graphs for which there exists a path between

any two vertices.

We study the problem of predicting the labelling of a graph in the online learning framework.

Consider the following game for predicting the labelling of a graph: Nature presents a graph; nature

queries a vertex vi1 ; the learner predicts the label of the vertex ŷ1 ∈ {−1, 1}; nature presents a label y1;

nature queries a vertex vi2 ; the learner predicts ŷ2; and so forth. The learner’s goal is to minimise the

total number of mistakesM = |{t : ŷt 6= yt}|. If nature is adversarial, the learner will always mispredict,

but if nature is regular or simple, there is hope that a learner may make only a few mispredictions. Thus,

a central goal of on-line learning is to design algorithms whose total mispredictions can be bounded

relative to the complexity of nature’s labelling.

We shall study the case of a consistent labelling, but also address the case of noisy labelling. The

former case means that whenever a vertex appears more than once in the trial sequence, nature will

always present the same label for it. Hence, in this case we may speak of a “true” underlying labeling of

the graph. The latter permits an inconsistent trial sequence.

As in earlier chapters, the complexity measure which plays a central role in our analysis, is the cut

size of a graph labelling u ∈ {−1, 1}n, which is defined as

ΦG(u) =
∑

(i,j)∈E
Aij(ui − uj)2 =

1
4
u>Lu. (4.1)

We also say that a cut occurs on edge (i, j) if ui 6= uj , so that ΦG(u) measures the number of such cuts.

Sometimes, we will evaluate equation (4.1) at continuous labellings u ∈ Rn, still referring to it as the

cut size.

4.2.2 Markov random fields and Gibbs measures

Given a working assumption that the true labelling of a graph induces a small cut, a natural learning

methodology is to encode this assumption as a probability measure over labellings, which would be

updated according to knowledge acquired during the learning process and used to produce predictions.

One practical way of achieving this is by defining a Markov random field (MRF) over the labellings of a

graph (see, for example, Kinderman and Snell (1980)).
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Definition Let G = (V, E) be an undirected graph and, for every vertex vi ∈ V , define its neighborhood

set as Ni := {vj ∈ V : (i, j) ∈ E}. A collection of random variables {U1, ...Un} drawn from a

probability distribution P is a Markov random field with respect to G if it satisfies the equation,

P (Ui = ui|Uj = uj , ∀j 6= i) = P (Ui = ui|Uj = uj , ∀vj ∈ Ni), ∀ vi ∈ V.

It is difficult to analyze MRFs using this conditional dependency structure alone, but it turns out that they

arise only from the following specific class of probability measures which factorize over cliques. Recall

that a subgraph C of G is a clique if every pair of two vertices in C are connected by an edge. We denote

by C(G) the set of all cliques of G.

Definition A probability distribution P defined over a space Ω ⊆ Rn of labellings of an n-vertex graph

G = (V, E) is a Gibbs measure if its probability (mass or density) function p(·) factorizes over cliques,

p(u) =
1
Z

exp

− ∑
C∈C(G)

EC(uC)

 ,

for some choice of “potential functions” EC and where the sum is over the set C(G) all cliques of G, and

Z =
∑
u∈Ω exp

(
−∑C∈C(G)EC(uC)

)
, or Z =

∫
Ω

exp
(
−∑C∈C(G)EC(uC)

)
du if p(·) is a density,

are normalizing “partition functions”.

It is a fundamental result of Hammersley-Clifford that a collection of random variables with dis-

tribution P with a positive mass or density function is a MRF with respect to a graph G if and only if P

is a Gibbs measure over the labellings of G (see, for example, Grimmett (1973) and Lauritzen (1996) for

a rigorous presentation). It readily follows, for every γ > 0, that the Gibbs measure

p(u) =
1
Z

exp (−γΦG(u)) , u ∈ {−1, 1}n, (4.2)

is a MRF with respect to G (as is the relaxation to the continuous distribution over real-valued labellings);

a factorization of ΦG(u) into 2-cliques identified with the edges is given by equation (4.1).

4.2.3 Predicting the labelling of a graph with Markov random fields and Gibbs

measures

Online learning is concerned with proving “worst-case” bounds without probabilistic assumptions on the

data generation process. Surprisingly, however this goal is achieved by the adaptation of probabilistically

motivated algorithms. We describe two algorithms of this kind, which play a central role in our develop-

ment. We denote with a bold capital letter the vector valued random variable drawn from a MRF. Given

a trial sequence S = {(vi1 , y1), , ...(vim , ym)}, when P is a discrete distribution, we use the notation

p(u|S) and p(ui|S) as shorthands for P (U = u|Uit = yt, t ≤ m) and P (Ui = ui|Uit = yt, t ≤ m),

respectively. When P is continuous p(u|S) denotes the conditional density at u.

First, we consider the majority vote classifier associated with a Gibbs measure (4.2) on G. This

classifier is obtained by marginalising the posterior distribution at a given vertex i and taking the
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weighted average prediction,

uVOTED
i := sgn

 ∑
ui∈{−1,1}

uip(ui|S)

 (4.3)

= argmax
ui∈{−1,1}

p(ui|S)

= sgn

 ∑
u∈{−1,1}n

p(u|S)ui

 .

We appeal to Haussler and Barron (1993) to note that this classifier is equivalent to the Bayes classifier

for the 0-1 loss, under the assumption that the data are generated according to the same Gibbs measure.

However, the majority vote classifier may be of limited utility for generic graphs as even the computation

of the partition function (see Definition 4.2.2) is known to be ]P -complete (Jerrum and Sinclair, 1993,

Theorem 15). However, by approximating the original graph with a tree the required marginalization

may then be computed in linear time with belief propagation (see e.g. Yedidia et al., 2003) (see, for ex-

ample, Mackay (2002) for a description of the method). Such an algorithm has been investigated on trees

in the context of binary classification in Blum et al. (2004). We go further: in the next section we shall

show that there exists a path graph (spine) which 2-approximates the original graph in cut-size (meaning

that the cut size of no vertex labelling increases by more than a factor of 2 when the representation is

transferred to the spine, see Section 4.3), such that the computation of the Bayes classifier is improved

to O(log n) time.

The second algorithm we consider is based on minimum semi-norm interpolation, whose value at

the vertex i is defined as

uINTERPOLANT
i =

(
argmax
u∈Rn

p(u|S)
)
i

=
(

argmin
u∈Rn

{u>Lu|uit = yt, t ≤ m}
)
i

. (4.4)

A binary prediction is then obtained by taking the sign of the above quantity. Predicting with the mini-

mum semi-norm interpolant (MNI) is called the method of harmonic energy minimization or regularized

interpolation (Zhu et al., 2003a; Belkin and Niyogi, 2004) and is a foundational methodology in semi-

supervised learning. It may be interpreted as a MAP prediction obtained from a relaxation of the discrete

measure (4.2) to a continuous probability density, corresponding to a Gaussian random field1. Unlike

the previous method, the minimum seminorm interpolation classifier can be computed efficiently as the

optimization problem (4.4) consists in solving a linear system of equations.

Although MNI is computationally appealing, in Section 4.2.4 we shall show that this method does

not enjoy a good mistake bound in the online framework. Specifically, we will provide an example of a

simple graph, on which MNI may incur at least Ω(
√
n) mistakes. On the other hand, if the trial sequence

is well clustered relative to the resistance distance, MNI is known to perform significantly better than

1The semi-norm interpolant is also equal to both the mean and the majority vote classifier arising from this Gaussian random

field, conditioned on observations. These facts follow from elementary properties of the Gaussian distribution.
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the Bayes classifier (Herbster, 2008). Finally, we will present a new algorithm which leverages the two

algorithms described above and establish a mistake bound for this algorithm, which is the “best of both

worlds”.

4.2.4 Limitations of online minimum semi-norm interpolation

Unfortunately, a deficiency of MSNI is that it may perform poorly on graphs with large diameters,

whereas the majority vote classifier may still have a nontrivial log n upper bound. Specifically, we

provide an example of a graph for which there exists a trial sequence on which MSNI will make at least

Ω(
√
n) mistakes.

Definition An octopus graph of size d is defined to be d path graphs (the tentacles) of length d (that

is, with d + 1 vertices) all adjoined at a common end vertex, to which a further single head vertex is

attached, so that n = |V| = d2 + 2.

Proposition 4.2.1. Let G = (V, E) be an octopus graph of size d and y = (y1, . . . , y|V|) the labelling

such that yi = 1 if vi is the head vertex and yi = −1 otherwise, see Figure 4.1. There exists a trial

sequence for which online minimum semi-norm interpolation makes Ω(
√
|V|) mistakes.

}
length d

+1

-1

-1

-1

-1}
d tentacles

...

Figure 4.1: Partially labelled octopus graph

Proof. Let the first query vertex be the head vertex, and let the end vertex of a tentacle be queried at

each subsequent trial. We show that this strategy forces at least d mistakes. The solution, uINTERPOLANT,

to this minimum semi-norm interpolation with boundary values problem is precisely the harmonic solu-

tion (Doyle and Snell, 2000) – that is, for every unlabeled vertex vj ,

n∑
i=1

Aij(uINTERPOLANT
i − uINTERPOLANT

j ) = 0.

If the graph is connected uINTERPOLANT is unique and the graph labelling problem is identical to that of

identifying the potential at each vertex of a resistive network defined on the graph where each edge



4.3. Graph linearization 78

corresponds to a resistor of 1 unit; the harmonic principle corresponds to Kirchoff’s current law in this

case. Using this analogy, suppose that the end points of k < d tentacles are labelled and that the end

vertex vq of an unlabelled tentacle is queried. Suppose a current of kλ flows from the head to the body

of the graph. By Kirchoff’s law, a current of λ flows along each labelled tentacle (in order to obey the

harmonic principle at every vertex it is clear that no current flows along the unlabelled tentacles). By

Ohm’s law λ = 2
d+k . Minimum semi-norm interpolation therefore results in the solution,

uINTERPOLANT
q = 1− 2k

d+ k
≥ 0 iff k ≤ d.

Hence the minimum semi-norm solution predicts incorrectly whenever k < d and the algorithm makes

at least d mistakes.

The above demonstrates a limitation in the method of MSNI for predicting a graph labeling. We

note that similar arguments can be formulated for other online algorithms based on the graph Laplacian,

in particular the perceptron algorithm.

4.3 Graph linearization

We demonstrate a method of embedding data represented as a connected graph G into a path graph, we

call it a spine of G, which partially preserves the structure of G. This construction will be used in the

algorithms studied below. Let Pn be the set of path graphs with n vertices. We would like to find a path

graph with the same vertex set as G, which solves,

min
P∈Pn

max
u∈{−1,1}n

ΦP(u)
ΦG(u)

.

If a Hamiltonian path H of G (a path on G which visits each vertex precisely once) exists, then the

approximation ratio is ΦH(u)
ΦG(u) ≤ 1. The problem of finding a Hamiltonian path is NP-complete however,

and such a path is not guaranteed to exist. As we shall see, a spine Pspine of G may be found efficiently

and satisfies
ΦPspine (u)

ΦG(u) ≤ 2.

We now detail the construction of a spine of a graph G = (V, EG), with |V| = n. Starting from

any node, G is traversed in the manner of a depth-first search (that is, each vertex is fully explored before

backtracking to the last unexplored vertex), and an ordered list L = {v`1 , v`2 , . . . , v`2k+1} of the vertices

(k ≤ |E|) in the order that they are visited is formed, allowing repetitions when a vertex is visited more

than once. Note that each edge in EG is traversed no more than twice when forming L. For a given list

L define an edge multiset EL = {(`1, `2), (`2, `3), . . . , (`2k, `2k+1)} – the set of pairs of consecutive

vertices in L. Let u be an arbitrary labelling of G and denote, as usual, ΦG(u) = 1
4

∑
(i,j)∈EG (ui−uj)2

and ΦL(u) = 1
4

∑
(i,j)∈EL(ui − uj)2. Since the multiset EL contains every element of EG no more than

twice, ΦL(u) ≤ 2ΦG(u).

We then take any subsequenceL′ ofL containing every vertex in V exactly once. A spinePspine =

(V, EL′) is a graph formed by connecting each vertex in V to its immediate neighbours in the subsequence
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v1

v3v2

v4

v5

v1

Figure 4.2: Example of spine construction.

V ′L with an edge. Since a cut occurs between connected vertices vi and vj in Pspine only if a cut occurs

on some edge in EL located between the corresponding vertices in the list L we have,

ΦPspine(u) ≤ ΦL(u) ≤ 2ΦG(u). (4.5)

Thus we have reduced the problem of learning the cut on a generic graph to that of learning the cut on a

path graph. In the following we see that 1-nearest neighbour (1-NN) algorithm is an implementation of

the majority vote classifier (4.3) from a natural MRF on the path. Note that the 1-NN algorithm does not

perform well on general graphs; on the octopus graph discussed above, for example, it can make at least

Ω(
√
n) mistakes, and even Ω(n) mistakes on a related graph construction (Herbster and Pontil, 2007).

Finally, we note that the problem of embedding a graph in a path graph was considered in Hall

(1970); Atkins et al. (1999). The essential idea is based on the computation of the eigenvector associated

with the smallest nonzero eigenvalue of the graph Laplacian. The elements of this vector are then sorted

and a path graph is obtained by reordering the vertex set accordingly. Although simple and elegant, it is

apparent that this graph linearization does not enjoy the same approximation guarantee as in (4.5).

4.4 Predicting with a spine

4.4.1 The majority vote classifier defined on a spine

The general idea is to reduce an arbitrary graph to a simpler structure using the spine construction and

define a Markov random field on the embedding obtained and predict with the majority vote classifier

(4.3) from the posterior MRF obtained by a certain inference process. The key point of our construction is

that the marginalisation required to produce the majority vote classifier from our predictive distribution

can be performed in logarithmic time, rather than the linear time it generally takes to marginalize a

discrete Markov random field on a tree.

We detail the construction of a particular Gibbs distribution over the labellings of a path graph.

Let P = (V, E) be a path graph, where V = {v1, v2, . . . , vn} is the set of vertices and E =
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{(1, 2), (2, 3), . . . , (n − 1, n)}. Consider the probability distribution P over the space of all labellings

u ∈ {−1, 1}n of P obtained by allowing a cut to occur on any given edge with probability α, inde-

pendently of all other cuts; P (Ui+1 6= Ui) = α ∀i < n. The position of all cuts fixes the labelling up

to flipping every label, and each of these two resulting possible arrangements are equally likely. This

recipe associates with each possible labelling u ∈ {−1, 1}n a probability p(u) which is a function of

the labelling’s cut size

p(u) =
1
2
αΦP(u)(1− α)n−1−ΦP(u). (4.6)

This induces a full joint probability distribution on the space of vertex labels. In fact (4.6) is a Gibbs

measure defined by (4.2) with γ = − ln α
1−α , and as such defines a Markov random field over the space

of binary labellings of P .

Given a trial sequence S = {(vi1 , y1), (vi2 , y2), ...(vim , ym)}, the Markov random field (4.6) can

be used to define a posterior predictive measure p(·|S) over u ∈ {−1, 1}n by simply conditioning on

the observed vertices,

p(u|S) :=
p(S|u)p(u)

p(S)
(4.7)

where (with abuse of notation2) p(S|u) is the probability of observing the labels {y1, ...ym} given the

query sequence {vi1 , ...vim} and the true labelling u, which in general depends upon the noise model

which is to be chosen, and p(S) =
∑
u∈{−1,1}n p(S|u)p(u). Thus the posterior predictive measure is

that obtained by Bayesian inference under a certain noise model. The noise model we assume is that

each observed label in the trial sequence may be flipped with probability β < 1
2 , independently of all

other observations. Thus, denoting for a given trial sequence S, MS(u) := |{(vit , yt) ∈ S : uit 6= yt}|
the number of mistakes incurred by the hypothesis u on S we have,

p(S|u) = β
1
2

∑
t≤m |yt−uit |(1− β)

1
2

∑
t≤m |yt+uit |

= βMS(u)(1− β)m−MS(u),

and the predictive distribution (4.7) becomes,

p(u|S) =
1

2p(S)
αΦP(u)(1− α)n−1−ΦP(u)βMS(u)(1− β)m−MS(u). (4.8)

In the case of no assumed noise we define 00 := 1.

The majority vote classifier, defined by (4.3), from the predictive distribution (4.8) is then used to

produce predictions on any new queried vertex vi of P ,

uVOTED
i := sgn

 ∑
u∈{−1,1}n

p(u|S)ui

 (4.9)

= argmax
ui∈{−1,1}

p(ui|S)

2Since there is no distribution over the vertices queried, only over the labelling.



4.4. Predicting with a spine 81

Using this method we can predict the labelling of an arbitrary graph G = (V, E), by first transferring the

data representation to that of a spine Pspine of G, and predicting with the majority vote classifier (4.9)

acting on Pspine. This methodology can be used to produce sequential predictions in the online setting,

see Algorithm 1 in Figure 4.3.

Input: A graph G = (V, E), a trial sequence S := {(vi1 , y1), ...(vim , ym)}
Parameters: 0 < α, β < 0.5

Create: A spine Pspine of G
Initialization: M := 0

for t = 1, ...m do

Define: St := {(vi1 , y1), ...(vit−1 , yt−1)}
Define: the posterior predictive distribution p(u|St) as in (4.8)

Receive: it ∈ {1, ...n}
Predict: ŷt = uVOTED

it
= argmaxuit∈{−1,1} p(uit |St)

Receive: yt

if ŷt 6= yt then M = M + 1

end

Figure 4.3: Algorithm 1: prediction with a spine

We observe that Algorithm 1 is in fact equivalent to (a version of) the Weighted Majority algo-

rithm3 (Littlestone and Warmuth, 1989) with prior weights w(u) = p(u) as defined by (4.6) and such

that the weight of each labelling is multiplied by the update factor η = β
1−β whenever it incurs a mistake,

producing the posterior weighting

w(u|S) =
1
2
αΦP(u)(1− α)n−1−ΦP(u)

(
β

1− β

)MS(u)

, (4.10)

which is equal to p(u|S) as defined by (4.8) up to a constant multiple. In the special case β = 0

Algorithm 1 is therefore equivalent to the halving algorithm (Barzdin and Frievald, 1972) (so-called

because at each mistake hypotheses contributing at least half of the total probability mass are ‘deleted’).

4.4.2 Noiseless case

Assuming no noise, so that β = 0, we have that p(S|u) = I{uit=yt ∀t≤m}, where I denotes the indicator

function, and so the predictive distribution (4.7) is simply the Markov random field (4.6) conditioned on

observed vertices,

p(u|S) := p(u|ui1 = yi1 , ...uim = yim). (4.11)

3We recall that the Weighted Majority algorithm, for binary classifiers proceeds as follows: a positive weightw(f) is associated

with each binary classifier f in a pool. At each trial Weighted Majority makes the prediction in agreement with the largest total

weight in the pool. The weight of each function f which erred on the trial is then multiplied by a fixed update factor 0 ≤ η < 1,

w(f)← ηw(f).
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Giving the majority vote classifier,

uVOTED
i := argmax

ui∈{−1,1}
p(ui|ui1 = yi1 , ...uim = yim). (4.12)

We now show that predicting with the majority vote classifier (4.12) on a path graph is equivalent to

predicting with the nearest neighbour algorithm for all 0 < α < 1
2 . The nearest neighbour algorithm, in

the standard online learning framework described above, attempts to predict a graph labelling by produc-

ing, for each query vertex vit , the prediction ŷt which is consistent with the label of the closest labelled

vertex (and predicts randomly in the case of a tie). This equivalence gives an efficient implementation of

Algorithm 1 in the noiseless case.

To demonstrate the equivalence we note a few properties of the distribution P defined by the

measure (4.6). Since P defines a Markov random field it satisfies the Markov property

P (Ui = u|Uj = uj ∀j 6= i) = P (Ui = u|Uj = uj ∀vj ∈ Ni), (4.13)

where here Ni is the set of vertices neighbouring vi – those connected to vi by an edge. We will give an

equivalent Markov property which allows a more general conditioning to reduce to that over boundary

vertices.

Definition Given a path graph P = (V, E), a set of vertices V ′ ⊂ V and a vertex vi ∈ V , we define the

boundary vertices v`, vr (either of which may be vacuous) to be the two vertices in V ′ that are closest to

vi in each direction along the path; its nearest neighbours in each direction.

The distribution P induced by (4.6) satisfies the following Markov property; given a partial la-

belling of P defined on a subset V ′ ⊂ V , the label of any vertex vi is independent of all labels on V ′

except those on the vertices v`, vr (either of which could be vacuous)

P (Ui = u|Uj = uj , ∀j : vj ∈ V ′) = P (Ui = u|U` = u`, Ur = ur). (4.14)

Given the construction of the probability distribution formed by independent cuts on graph edges,

we can evaluate conditional probabilities. For example, p(Uj = u|Uk = u) is the probability of an

even number of cuts between vertex vj and vertex vk. Since cuts occur with probability α and there are(|k−j|
s

)
possible arrangements of s cuts we have

P (Uj = u|Uk = u) =
∑
s even

(|k − j|
s

)
αs(1− α)|k−j|−s =

1
2

(1 + (1− 2α)|k−j|), (4.15)

and likewise we have that

P (Uj 6= u|Uk = u) =
∑
s odd

(|k − j|
s

)
αs(1− α)|k−j|−s =

1
2

(1− (1− 2α)|k−j|), (4.16)

which follow by forming the binomial expansion of 1 = (α + (1 − α))|k−j| and (1 − 2α)|k−j| =

(−α+ (1− α))|k−j| and adding and subtracting the resulting expressions. Note also that for any single

vertex we have P (Ui = u) = 1
2 for u ∈ {−1, 1}.
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Theorem 4.4.1. Given the task of predicting the labelling of an n-vertex path graph online, the nearest

neighbour algorithm is an implementation of the majority vote classifier (4.9) for any 0 < α < 1
2 .

Proof. Suppose that t− 1 trials have been performed so that we have a partial labelling of a subset V ′ =

{(vi1 , y1), (vi2 , y2), . . . , (vit−1 , yt−1)} ⊂ V . Suppose the label of vertex vit is queried so that Algorithm

1 makes the following prediction ŷt for vertex vit : ŷt = y if P (Uit = y|Uij = yj ∀ 1 ≤ j < t) > 1
2 ,

ŷt = −y if P (Uit = y|Uij = yj ∀ 1 ≤ j < t) < 1
2 (and predicts randomly if this probability is equal to

1
2 ). We first consider the case where the conditional labelling includes vertices on both sides of vit . We

have, by (4.14), that

P (Uit = y|Uij = yj ∀ 1 ≤ j < t) = P (Uit = y|U` = yτ(`), Ur = yτ(r))

=
P (U` = yτ(`)|Ur = yτ(r), Uit = y)P (Ur = yτ(r), Uit = y)

P (U` = yτ(`), Ur = yτ(r))

=
P (U` = yτ(`)|Uit = y)P (Ur = yτ(r)|Uit = y)

P (U` = yτ(`)|Ur = yτ(r))
(4.17)

where v` and vr are the boundary vertices and τ(`) and τ(r) are trials at which vertices v` and vr are

queried, respectively. We can evaluate the right hand side of this expression using (4.15, 4.16). To show

equivalence with the nearest neighbour method whenever α < 1
2 , we have from (4.15, 4.16, 4.17)

P (Uit = y|U` = y, Ur 6= y) =
(1 + (1− 2α)|`−it|)(1− (1− 2α)|r−it|)

2(1− (1− 2α)|`−r|)

which is greater than 1
2 if |`− it| < |r − it| and less than 1

2 if |`− it| > |r − it|. Hence, this produces

predictions exactly in accordance with the nearest neighbour scheme. We also have more simply that for

all it, ` and r and α < 1
2

P (Uit = y|U` = y, Ur = y) >
1
2
, and P (Uit = y|U` = y) >

1
2
.

This proves the theorem for all cases.

Performance analysis

We recall the following mistake bound for the Weighted Majority algorithm:

Theorem 4.4.2. (Littlestone and Warmuth, 1994, Theorem 2.1) The number of mistakes, M , incurred by

Weighted Majority on any sequence of instances and binary labels satisfies,

M ≤ log2 (winit/wfin)
log2 (2/(1 + η))

.

where η is the update factor and winit, wfin are the totals of all initial and final weights respectively.

We now prove a mistake bound for Algorithm 1 in the noise free case.

Theorem 4.4.3. Given the task of predicting the labelling of any unweighted, connected, n-vertex graph

G = (V, E) in the online framework, the number of mistakes, M , incurred by Algorithm 1 satisfies

M ≤ 2ΦG(u) max
[
0, log2

(
n− 1

2ΦG(u)

)]
+

2ΦG(u)
ln 2

+ 1, (4.18)

where u ∈ {−1, 1}n is any labelling consistent with the trial sequence.
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Proof. A direct application of the well-known bound for the halving algorithm (Theorem 4.4.2 with

η = 0) gives,

M ≤ log2

(
1

p(u)

)
= log2

(
2

αΦPspine (u)(1− α)n−1−ΦPspine (u)

)
,

where u is any labelling consistent with the trial sequence. By Theorem 4.4.1, for all 0 < α < 1
2 , the

algorithm is independent of α, we choose α = min(ΦP(u)
n−1 , 1

2 ) (note that the bound is vacuous when
ΦP(u)
n−1 > 1

2 since M is necessarily upper bounded by n) giving

M ≤ ΦPspine(u) log2

(
n− 1

ΦPspine(u)

)
+ (n− 1− ΦPspine(u)) log2

(
1 +

ΦPspine(u)
n− 1− ΦPspine(u)

)
+ 1

≤ ΦPspine(u) log2

(
n− 1

ΦPspine(u)

)
+

ΦPspine(u)
ln 2

+ 1,

since ln(1+x) ≤ x for x ≥ 0. Since this is an increasing function of ΦPspine(u) for ΦPspine(u) ≤ n−1

and is vacuous at ΦPspine(u) ≥ n − 1 (M is necessarily upper bounded by n) we upper bound by

substituting ΦPspine(u) ≤ 2ΦG(u) (equation (4.5)).

We observe that predicting with the spine is a minimax improvement over Laplacian minimal semi-

norm interpolation: recall Proposition 4.2.1, there we showed that there exists a trial sequence such that

Laplacian minimal semi-norm interpolation incurs Ω(
√
n) mistakes. In fact this trivially generalizes to

Ω(
√

ΦG(u)n) mistakes by creating a colony of ΦG(u) octopi then identifying each previously separate

head vertex as a single central vertex. The upper bound (4.18) is smaller than the prior lower bound.

Efficient Implementation/Complexity analysis

The computational complexity for this algorithm is O(|E| + |V| log |V|) time. We compute the spine

in O(|E|) time by simply listing vertices in the order in which they are first visited during a depth-first

search traversal of G. Using online 1-NN requires O(|V| log |V|) time to predict an arbitrary vertex

sequence using a self-balancing binary search tree (e.g., a red-black tree) as the insertion of each vertex

into the tree and determination of the nearest left and right neighbour is O(log |V|).

4.4.3 Noisy case

We now consider the more general case in which the vertex labels might be subject to noise. As well

as giving bounds for the case of noisy observations, this allows us to prove regret bounds in which the

number of mistakes incurred by our algorithm is related to the performance of any fixed classifier, and

not necessarily a classifier which is correct on all trials, which might give tighter bounds even in the

noiseless case.

Performance analysis

Theorem 4.4.4. Given the task of predicting the labelling of any unweighted, connected, n-vertex graph

G = (V, E) in the online framework, the number of mistakes, M , incurred by Algorithm 1 on a trial
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sequence S satisfies,

M ≤ 1
1 + log2(1− β)

(
ΦPspine(u) log2

(
1
α

)
+ (n− 1− ΦPspine(u)) log2

(
1

1− α

)
+ 1
)

+
log2(1− β)− log2(β)

1 + log2(1− β)
MS(u). (4.19)

where u ∈ {−1, 1}n is any labelling of G.

Proof. We observed in Section 4.4.1 that Algorithm 1 is identical to the Weighted Majority algo-

rithm with posterior weights defined by (4.10) (an update factor η = β
1−β ). The result then follows

immediately from Theorem 4.4.2 by noting that winit = 1 and wfin ≥ w(u|S) = 1
2α

ΦP(u)(1 −
α)n−1−ΦP(u)

(
β

1−β

)MS(u)

.

For the sake of illustrating what can be hoped for if the parameters are chosen well we now present

a bound in which we suppose that the trial sequence S and number of mistakes MS(u) incurred by each

labelling is known a-priori so that the learner may tune the above bound by choosing α and β to be

dependent on these quantities. Clearly this is an unrealistic learning setting (in fact with this information

there is no learning to be done) we are simply illustrating the type of bound that can be achieved when

the learning parameters to be chosen happen to perfectly align with the learning problem. The concept

and proof are due to Cesa-Bianchi et al. (1997) – we repeat it here for convenience.

Corollary 4.4.5. Given the task of predicting the labelling of any unweighted, connected, n-vertex graph

G = (V, E) in the online framework, the number of mistakes,M , incurred by Algorithm 1 with the tuning

α := min(
ΦPspine (u)

n−1 , 1
2 ) and β

1−β = g
(√

− ln p(u)
MS(u)

)
, for any particular u, where,

g(z) :=
1

1 + 2z + z2

ln 2

,

satisfies,

M ≤ 2MS(u) + 2
√
MS(u) ln 2B(u) +B(u)

where u ∈ {−1, 1}n is any labelling of G and

B(u) := 2ΦG(u) max
[
0, log2

(
n− 1

2ΦG(u)

)]
+

2ΦG(u)
ln 2

+ 1.

Proof. We again recall the equivalence with the Weighted Majority algorithm with the update factor

η = β
1−β as discussed in Section 4.4.1. We denote x =

√
− ln p(u)
MS(u) and we observe that winit = 1 and
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wfin ≥ p(u)ηMS(u). Thus Theorem 4.4.2 implies that,

M ≤ − log2(wfin)

log2

(
2

1+η

)
≤ − ln(p(u))−MS(u) ln η

ln
(

2
1+η

)
= 2MS(u) +

− ln(p(u))

ln
(

2
1+η

) + 2MS(u)

 − ln η

2 ln
(

2
1+η

) − 1


= 2MS(u) + 2MS(u)

 x2 − ln g(x)

2 ln
(

2
1+g(x)

) − 1


≤ 2MS(u) + 2MS(u)

(
x+

x2

2 ln 2

)
,

where in the final line we applied the following inequality, valid for any z > 0, (see (Cesa-Bianchi et al.,

1997, Lemma 4.4.1)),

z2 − ln g(z)
2 ln( 2

1+g(z) )
≤ 1 + z +

z2

2 ln 2
.

We therefore have,

M ≤ 2MS(u) + 2

√
MS(u) ln 2 log2

(
1

p(u)

)
+ log2

(
1

p(u)

)
,

and log2

(
1

p(u)

)
= log2

(
2

α
ΦPspine

(u)
(1−α)

n−1−ΦPspine
(u)

)
is bounded exactly as in the proof of Theo-

rem 4.4.3 (for the same choice of α).

Efficient implementation

To demonstrate an efficient implementation of Algorithm 1 in the noisy case we show equivalence with

predicting using the majority vote classifier from a certain conditional Markov random field defined on

a graph construction called a comb.

α1,2 α2,3 αn−1,n

β1
2 β1

n−1 β1
nβ1

1

v1 v2 v3 vn−1 vn

C β1
3

d1 d2 d3 dn−1 dn

Figure 4.4: Comb

Given a spine Pspine = (V, E) with V = {v1, ...vn} we define a new set of vertices D :=

{d1, ...dn} called dongles and define the comb C := (V ∪ D, E ∪ {(v1, d1), ...(vn, dn)}). With each

edge (vj , dj) is associated a weight βj ∈ [0, 1], and each edge (vj , vj+1) a weight αj,j+1. For any
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labelling û ∈ {−1, 1}2n of C denote by û(vj) the label of vertex vj , and likewise û(dj) the label of don-

gle dj . Denote by u = (û(vj)) ∈ {−1, 1}n the labelling of the spine Pspine. We define the following

Markov random field over the space {−1, 1}2n of labellings of C,

q(û) =
1
2

n−1∏
k=1

α
1
2 |û(vk)−û(vk+1)|
k,k+1 (1− αk,k+1)

1
2 |û(vk)+û(vk+1)|

n∏
j=1

β
1
2 |û(vj)−û(dj)|
j (1− βj)

1
2 |û(vj)+û(dj)|,

(4.20)

i.e. precisely in the manner of the measure (4.6) with a cut occurring on each edge (vj , dj) with proba-

bility βj and on (vj , vj+1) with probability αj,j+1.

Given a trial sequence S := {(vi1 , y1), ...(vim , ym)}, we set

βj :=
βnj,1(1− β)nj,−1

βnj,1(1− β)nj,−1 + βnj,−1(1− β)nj,1
,

where nj,1 := |{(vit , 1) ∈ S : it = j}| and nj,−1 := |{(vit ,−1) ∈ S : it = j}| denote the number of

times vertex vj receives a positive and negative label. The measure (4.20) can then be used to define the

following posterior predictive measure on the restriction u of the labelling û to Pspine, which is obtained

by conditioning (4.20) on each dongle having a positive label,

q(u|S) := q(û|û(di) = 1 ∀i). (4.21)

When αk,k+1 = α for all k, we have,

q(u|S) :=
q(u, û(di) = 1 ∀i)
q(û(di) = 1 ∀i)

=
αΦPspine (u)(1− α)n−1−ΦPspine (u)∏n

j=1 β
1
2nj,1|uj−1|(1− β)

1
2nj,−1|uj−1|β

1
2nj,−1|uj+1|(1− β)

1
2nj,1|uj+1|

2q(û(di) = 1 ∀i)∏n
j=1 β

nj,1(1− β)nj,−1 + βnj,−1(1− β)nj,1

=
αΦPspine (u)(1− α)n−1−ΦPspine (u)βMS(u)(1− β)m−MS(u)

2q(û(di) = 1 ∀i)∏n
j=1 β

nj,1(1− β)nj,−1 + βnj,−1(1− β)nj,1
. (4.22)

Since the denominators in both (4.22) and (4.8) are independent of u (and so are just normalization

constants) when αk,k+1 = α the predictive measure (4.21) is clearly seen to be identical to the pre-

dictive measure of Algorithm 1 defined by (4.8), i.e. q(u|S) = p(u|S). This leads to the alternative

implementation of Algorithm 1 defined in Figure 4.5.

The remainder of this section will be a demonstration that the sequential updates required to

marginalise the conditional Markov random field (4.21) and perform predictions at each trial in Fig-

ure 4.5 can be calculated in logarithmic time.

This is achieved by constructing a stack of combs each derived from that below using a

4-comb to 2-comb transform. We explain this structure below. We first explain the basic 4-

comb → 2-comb transform and refer to Figure 4.6. Given a 4-comb C = (V, E) with V =

{v1, v2, v3, v4, d1, d1, d3, d4} and weights α1,2, α2,3, α3,4, β1, β2, β3, β4 we wish to find a 2-comb C′ =

({v1, v4, d1, d4}, {(v1, v4), (v1, d1), (v4, d4)}) with weights α′1,4, β
′
1, β
′
2 such that for all a, b ∈ {−1, 1}

we have,

q′(Û ′(v1) = a, Û ′(v4) = b|Û ′(dj) = 1 ∀j) = q(Û(v1) = a, Û(v4) = b|Û(dj) = 1 ∀j), (4.23)
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Input: A graph G, a trial sequence S := {(vi1 , y1), ...(vim , ym)}
Parameters: 0 < α, β < 0.5

Create a spine Pspine = (V, E) of G
Create a comb C on Pspine

Initialization: M = 0, βj = 1
2 ∀j ≤ n, αj,j+1 = α ∀j < n

for t = 1, ...m do

Define: St := {(vi1 , y1), ...(vit−1 , yt−1)}
Define: the posterior predictive distribution q(u|St) on Pspine as in (4.21)

Receive: it ∈ {1, ...n}
Predict: ŷt = uVOTED

it
= argmaxuit∈{−1,1} q(uit |St)

Receive: yt

Update: nit,1, nit,−1

Modify: βit ← β
nit,1 (1−β)

nit,−1

β
nit,1 (1−β)

nit,−1+β
nit,−1 (1−β)

nit,1

if ŷt 6= yt then M = M + 1

end

Figure 4.5: Algorithm 1 – comb implementation

where q and q′ are the Gibbs distributions defined by (4.20) over labellings Û , Û ′ on C and C′ respec-

tively.

α1,2 α2,3 α3,4

β2 β3 β4β1

v1 v2 v3 v4

C
d1 d2 d3 d4

T (C)

v1 v4

d1 d4

β′
4β′

1

α′
1,4

Figure 4.6: 4-comb to 2-comb transform

We denote C′ = T (C) and we have the following result:

Lemma 4.4.6. Given an arbitrary 4-comb C the transform C′ = T (C) exists and the required weights

are given by,

β′1 = f−1

(√
q1,1

q−1,−1

q1,−1

q−1,1

)
β′4 = f−1

(√
q1,1

q−1,−1

q−1,1

q1,−1

)
α′1,4 = f−1

(√
q1,1q−1,−1

q−1,1q1,−1

)
,
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where f−1(y) = 1
1+y and qa,b denotes the quantity4,

qa,b := q(Û(v1) = a, Û(v4) = b|Û(dj) = 1 ∀j) ∀a, b ∈ {−1, 1}. (4.24)

Proof. We define f(x) := (1− x)/x. Using the identity,

q(Û ′(v1) = a, Û ′(v4) = b|Û ′(d1) = 1, Û ′(d4) = 1) =
q(Û ′(v1) = a, Û ′(v4) = b, Û ′(d1) = 1, Û ′(d4) = 1)

q(Û ′(d1) = 1, Û ′(d4) = 1)
,

(4.25)

the system of equations (4.23) is equivalent to,

q1,1 = (1− β′1)(1− α′1,4)(1− β′4)/z

q1,−1 = (1− β′1)α′1,4β
′
4/z

q−1,1 = β′1α
′
1,4(1− β′4)/z

q−1,−1 = β′1(1− α′1,4)β′4/z,

with,

z : = q(Û ′(d1) = 1, Û ′(d4) = 1)

= (1− β′1)(1− α′1,4)(1− β′4) + (1− β′1)α′1,4β
′
4 + β′1α

′
1,4(1− β′4) + β′1(1− α′1,4)β′4.

We have,
q1,1

q−1,−1
= f(β′1)f(β′4) ;

q1,−1

q−1,1
=
f(β′1)
f(β′4)

;
q1,1

q1,−1
= f(α′1,4)f(β′4), (4.26)

from which the solution follows from straightforward manipulations.

In the following theorem we show that by transforming any sub-4-comb of an arbitrary comb C,

marginalizations (at any remaining vertices) of the Markov random field defined by (4.20) are unaffected

by the transform. We first need a simple lemma:

Lemma 4.4.7. For any random variables A,B, conditionally independent given X we have,

P (X = x|A = a,B = b) =
P (A = a|X = x)P (X = x|B = b)∑
x′ P (A = a|X = x′)P (X = x′|B = b)

.

The following theorem now shows that the transform T preserves the marginal distributions of the

conditional MRFs defined by (4.21).

Theorem 4.4.8. Given any n-comb C, with n ≥ 4, let C′ be obtained by applying the basic transform T

to any sub-4-comb of C. Let q, q′ be the Gibbs measures defined by (4.20) on C and C′ respectively. For

any spine vertex vi of C (not deleted by the transform) we have that q′(Û ′(vi) = a|Û ′(dj) = 1 ∀j) =

q(Û(vi) = a|Û(dj) = 1 ∀j).

4Note that these quantities are easily calculated: qa1,a4 =

∑
a2,a3∈{−1,1} q(Û(vj)=aj ,Û(dj)=1 ∀j∈{1,...4})∑

a1,a2,a3,a4∈{−1,1} q(Û(vj)=aj ,Û(dj)=1 ∀j∈{1,...4})
.
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αk−1,k αk,k+1 αk+1,k+2 αk+2,k+3 αk+3,k+4

βk−1 βk βk+1 βk+2 βk+3 βk+4 βi βnβ1

αk−1,k αk+3,k+4

βiβ′
k β′

k+3

C

T (C)

vk−1v1 vk vk+1 vk+2 vk+3 vk+4 vi vn

d1 dk−1 dk dk+1 dk+2 dk+3 dk+4 di dn

v1 vk−1

vk vk+3
vk+4 vi vn

αk,k+3

d1 dk−1 dk dk+3 dk+4 di dn

β1 βk−1 βk+4 βn

Figure 4.7: Embedded 4-comb to 2-comb transform

Proof. Let the transformed sub-4-comb have vertex set {vk, vk+1, vk+2, vk+3, dk, dk+1, dk+2, dk+3},
and the 2-comb thus have vertex set {vk, vk+3, dk, dk+3}. We can suppose w.l.o.g. that i ≥ k + 3

(the case i ≤ k follows by symmetry), so that the construction is as shown in Figure 4.7. Denote for

convenience,

DA := {Û(dj) = 1 ∀j < k} D′A := {Û ′(dj) = 1 ∀j < k}

DB := {Û(dk) = 1, ...Û(dk+3) = 1} D′B := {Û ′(dk) = 1, Û ′(dk+3) = 1}

DC := {Û(dj) = 1 ∀j > k + 3} D′C := {Û ′(dj) = 1 ∀j > k + 3}.

First note the following,

q(Û(vk+3) = a|DA,DB) =
∑

b∈{−1,1}
q(Û(vk+3) = a, Û(vk) = b|DA,DB)

=
∑

b∈{−1,1}
q(Û(vk+3) = a|DA,DB , Û(vk) = b)q(Û(vk) = b|DA,DB)

=

∑
b∈{−1,1} q(Û(vk+3) = a|DB , Û(vk) = b)q(DA|Û(vk) = b)q(Û(vk) = b|DB)∑

x∈{−1,1} q(DA|Û(vk) = x)q(Û(vk) = x|DB)
, (4.27)

where (4.27) follows from the Markov property and Lemma 4.4.7. By an identical argument we have,

q′(Û ′(vk+3) = a|D′A,D′B)

=

∑
b∈{−1,1} q

′(Û ′(vk+3) = a|D′B , Û ′(vk) = b)q′(D′A|Û ′(vk) = b)q′(Û ′(vk) = b|D′B)∑
x∈{−1,1} q

′(D′A|Û ′(vk) = x)q′(Û ′(vk) = x|D′B)
. (4.28)

That the r.h.s. of equations (4.27) and (4.28) are equal follows from the defining properties of the 4-comb

→ 2-comb transform and the definition of the Gibbs measures q and q′, thus,

q′(Û ′(vk+3) = a|D′A,D′B) = q(Û(vk+3) = a|DA,DB). (4.29)
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Now we have,

q(Û(vi) = a|DA,DB ,DC)

=
∑

b∈{−1,1}
q(Û(vi) = a|Û(vk+3) = b,DA,DB ,DC)q(Û(vk+3) = b|DA,DB ,DC)

=
∑

b∈{−1,1}
q(Û(vi) = a|Û(vk+3) = b,DC)

q(Û(vk+3) = b,DC |DA,DB)
q(DC |DA,DB)

=

∑
b∈{−1,1} q(Û(vi) = a|Û(vk+3) = b,DC)q(Û(vk+3) = b,DC |DA,DB)∑

x∈{−1,1} q(Û(vk+3) = x,DC |DA,DB)

=

∑
b∈{−1,1} q(Û(vi) = a|Û(vk+3) = b,DC)q(DC |Û(vk+3) = b,DA,DB)q(Û(vk+3) = b|DA,DB)∑

x∈{−1,1} q(DC |Û(vk+3) = x,DA,DB)q(Û(vk+3) = x|DA,DB)

=

∑
b∈{−1,1} q(Û(vi) = a|Û(vk+3) = b,DC)q(DC |Û(vk+3) = b)q(Û(vk+3) = b|DA,DB)∑

x∈{−1,1} q(DC |Û(vk+3) = x)q(Û(vk+3) = x|DA,DB)
. (4.30)

By an identical derivation we have,

q′(Û ′(vi) = a|D′A,D′B ,D′C)

=

∑
b∈{−1,1} q

′(Û ′(vi) = a|Û ′(vk+3) = b,D′C)q′(D′C |Û ′(vk+3) = b)q′(Û ′(vk+3) = b|D′A,D′B)∑
x∈{−1,1} q

′(D′C |Û ′(vk+3) = x)q′(Û ′(vk+3) = x|D′A,D′B)
,

(4.31)

and (4.31), and (4.30) are seen to be identical from the defining properties of the 4-comb → 2-comb

transform and from the identity (4.29).

Now we describe the efficient implementation of our algorithm. We restrict our description to

the case n = 2k for simplicity. Over the course of the learning process we maintain a stack of combs

in which each comb in a higher tier is derived by applying a 4-comb to 2-comb transform T to every

4-comb in the collection of sub-4-combs which comprise the lower tier, as shown in Figure 4.8 (for the

case n = 16). At each trial t we build a comb Ĉ of smallest possible size containing vit (and v1 and

vn) and comprising only of transformed 2-combs and their necessary connecting edges. In Figure 4.8

such a minimal comb is highlighted for the query vertex v6. The size of this minimal comb is O(log n).

Since this comb can be obtained from the initial comb by applying a succession of basic transforms,

by Theorem 4.4.8 marginalization of the conditional MRF defined by (4.21) on Ĉ produces predictions

equivalent to marginalizing the conditional MRF defined by (4.21) on the original comb C. Thus Algo-

rithm 1 can be implemented by marginalizing q̂ defined by (4.21) on Ĉ. Thus prediction is achieved by

marginalizing a MRF defined on a tree of size O(log n) and therefore has complexity O(log n) using

e.g. Belief Propogation. After each trial t the ’modify’ step of Figure 4.5 of updating βit is performed

which is a constant time operation. The stack of combs must then be “repaired” by recalculating every

4-comb to 2-comb transform which involved βit or any quantity derived from it, i.e. every transform

appearing above vit in the stack must be calculated. There are log n such transforms, one for each tier,

and each calculation is a constant time operation. The overall time complexity of this implementation is

therefore O(log n) per query plus a one-time O(n) operation to calculate all n initial transforms.
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β1
5 β1

6 β1
7 β1

8

α8,9α7,8α6,7α5,6α4,5

β3
9 β3

16

α9,16

β2
1 β2

4

α1,3

Figure 4.8: The stack of combs

4.5 Prediction with a binary support tree

In this section, we turn our attention to the MSNI algorithm in equation (4.4). We begin by stating

the mistake bound for MSNI, which will be proved in the form given here in Corollary 5.4.1 (with

p = 2), but which was first proved (with slightly worse constants) in Herbster (2008). We must recall

the notion of resistance distance, as discussed in Section 3.3.1, Example 2 (and which will be further

discussed in Chapter 5), which we denote by rG : V × V → R and is given by the formula rG(vi, vj) =

(ei − ej)>L+(ei − ej).

Theorem 4.5.1. Given the task of predicting the labelling of an unweighted graph G = (V, E) in the

online learning framework, the number of mistakes, M , incurred by MSNI defined by (4.4) on a trial

sequence S satisfies, for any ρ > 0, the bound

M ≤ N(V ′, ρ, rG) + 4ΦG(u)ρ, (4.32)

where u ∈ Rn is any labelling consistent with the trial sequence, V ′ = {i1, i2, . . . } ⊆ V is the set of

trial vertices and N(V ′, ρ, rG) is the minimum number of balls of radius at most ρ, required to cover V ′

according to the effective resistance distance.

This bound indicates that the predictive MSNI performs well on graphs with pronounced cluster

structure. The mistake bound (4.32) can be preferable to (4.18) whenever the inputs are sufficiently

clustered and so has a cover of small diameter sets. For example, consider two (m + 1)-cliques, one

labeled “+1”, one “−1” with cm arbitrary interconnecting edges (c ≥ 1) here the bound (4.18) is

vacuous while (4.32) is M ≤ 8c+ 3 (with ρ = 2
m , N(X, ρ, rG) = 2, and ΦG(u) = cm).

An graph G may have both local cluster structure yet have a large diameter. Imagine a “universe”

such that vertices are distributed into many dense clusters such that some sets of clusters are tightly

packed but overall the distribution is quite diffuse. A given set of trial vertices V ′ ⊆ V may then be

centered on a few clusters or alternatively encompass the entire space. Thus, for practical purposes,

we would like a prediction algorithm which achieves the “best of both worlds”, that is a mistake bound

which is no greater, in order of magnitude, than the minimum of (4.18) and (4.32). This section is



4.5. Prediction with a binary support tree 93

directed towards this goal.

We introduce the notion of binary support tree, detail the use of minimum semi-norm interpolation

method in the support tree setting and then prove the desired result.

Definition Given a graph G = (V, E), with |V| = n, and spine Pspine, we define a binary support tree

of G to be any binary tree T = (VT , ET ) of least possible depth, D, whose leaves are the vertices of

Pspine, in order. Note that D < log2(n) + 1.

We show that there is a weighting of the support tree which ensures that the resistance diameter of the

support tree is small, but also such that any labelling of the leaf vertices can be extended to the support

tree such that its cut size remains small. This enables effective learning via the support tree. A related

construction has been used to build preconditioners for solving linear systems (Gremban et al., 1995).

Lemma 4.5.2. Given any spine graph Pspine = (V, E) with |V| = n, and labelling u ∈ {−1, 1}n, with

support tree T = (VT , ET ), there exists a weighting A of T , and a labelling ū ∈ [−1, 1]|VT | of T such

that ū and u are identical on V , ΦT (ū) < ΦPspine(u) andRT ≤ (log2 n+1)(log2 n+4)(log2(log2 n+

2))2.

Proof. Let vr be the root vertex of T . Suppose each edge (i, j) ∈ ET has a weight Aij , which is

a function of the edge’s depth d = max{dT (vi, vr), dT (vj , vr)}, Aij = W (d) where dT (v, v′) is

the number of edges in the shortest path from v to v′. Consider the unique labelling ū such that, for

1 ≤ i ≤ n we have ūi = ui and such that for every other vertex vp ∈ VT , with child vertices vc1 , vc2 ,

we have ūp = ūc1+ūc2
2 , or ūp = ūc in the case where vp has only one child, vc. Suppose the edges

(p, c1), (p, c2) ∈ ET are at some depth d in T , and let V ′ ⊂ V correspond to the leaf vertices of T
descended from vp. Define ΦPspine(uV′) to be the cut of u restricted to vertices in V ′. If ūc1 = ūc2 then

(ūp − ūc1)2 + (ūp − ūc2)2 = 0 ≤ 2ΦPspine(uV′), and if ūc1 6= ūc2 then (ūp − ūc1)2 + (ūp − ūc2)2 ≤
2 ≤ 2ΦPspine(uV′). Hence

W (d)
(
(ūp − ūc1)2 + (ūp − ūc2)2

)
≤ 2W (d)ΦPspine(uV′) (4.33)

(a similar inequality is trivial in the case that vp has only one child). Since the sets of leaf descendants of

all vertices at depth d form a partition of V , summing (4.33) first over all parent nodes at a given depth

and then over all integers d ∈ [1, D] gives

4ΦT (ū) ≤ 2
D∑
d=1

W (d)ΦPspine(u).

(4.34)

We then choose

W (d) =
1

(d+ 1)(log2(d+ 1))2
(4.35)

and note that
∑∞
d=1

1
(d+1)(log2(d+1))2 ≤ 1

2 + ln2 2
∫∞

2
1

x ln2 x
dx = 1

2 + ln 2 < 2.
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Further, RT = 2
∑D
d=1(d+ 1)(log2(d+ 1))2 ≤ D(D+ 3)(log2(D+ 1))2 and so D ≤ log2 n+ 1

gives the resistance bound.

Definition Given the task of predicting the labelling of an unweighted graph G = (V, E) the augmented

minimum semi-norm interpolation algorithm proceeds as follows: An augmented graph Ḡ = (V̄, Ē) is

formed by attaching a binary support tree of G, with weights defined as in (4.35), to G; formally let

T = (VT , ET ) be such a binary support tree of G, then Ḡ = (VT , E ∪ ET ). The minimum semi-norm

interpolation algorithm is then used to predict the (partial) labelling defined on Ḡ.

Theorem 4.5.3. Given the task of predicting the labelling of any unweighted, connected, n-vertex graph

G = (V, E) in the online framework, the number of mistakes, M , incurred by the augmented minimum

semi-norm interpolation algorithm satisfies

M ≤ min
ρ>0
{N(X, ρ, rG) + 12ΦG(u)ρ}+ 1, (4.36)

where N(X, ρ, rG) is the covering number of the input set X = {vi1 , vi2 , . . . } ⊆ V relative to the

resistance distance rG of G and u ∈ Rn is any labelling consistent with the trial sequence. Furthermore,

M ≤ 12ΦG(u)(log2 n+ 1)(log2 n+ 4)(log2(log2 n+ 2))2 + 2. (4.37)

Proof. Let u be some labelling consistent with the trial sequence. By (4.5) we have that ΦPspine(u) ≤
2ΦG(u) for any spine Pspine of G. Moreover, by the arguments in Lemma 4.5.2 there exists some

labelling ū of the weighted support tree T of G, consistent with u on V , such that ΦT (ū) < ΦPspine(u).

We then have

ΦḠ(ū) = ΦT (ū) + ΦG(u) < 3ΦG(u). (4.38)

By Rayleigh’s monotonicity law the addition of the support tree does not increase the resistance between

any vertices on G, hence

N(X, ρ, rḠ) ≤ N(X, ρ, rG). (4.39)

Combining inequalities (4.38) and (4.39) with the minimum semi-norm interpolation bound (4.32) for

predicting ū on Ḡ, yields

M ≤ N(X, ρ, rḠ) + 4ΦḠ(ū)ρ+ 1 ≤ N(X, ρ, rG) + 12ΦG(u)ρ+ 1.

which proves (4.36). We prove (4.37) by covering Ḡ with single ball so that M ≤ 4ΦḠ(ū)RḠ + 2 ≤
12ΦG(u)RT + 2 and the result follows from the bound on RT in Lemma 4.5.2.

4.6 Conclusion

Existing techniques for predicting the labelling of a graph do not scale well in the size of the graph. We

have explored a further theoretical deficiency with existing techniques for predicting the labelling of a
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graph online. As a solution, we have presented an approximate cut-preserving embedding of any graph

G = (V, E) into a simple path graph, which we call a spine, such that efficient realization of the weighted

majority algorithm can be performed. This achieves a mistake bound which is logarithmic in the size of

the vertex set for any graph, and the complexity of this algorithm is of O(|E| + |V| ln |V|). We further

applied the insights gained to a second algorithm – an augmentation of the Pounce algorithm, which

achieves a polylogarithmic performance guarantee, but can further take advantage of clustered data, in

which case its bound is relative to any cover of the graph.



Chapter 5

p-norm algorithms for learning the labelling of

a graph

Abstract

We study the problem of predicting the labelling of a graph. The graph is given and a trial sequence of

(vertex,label) pairs is then incrementally revealed to the learner. On each trial a vertex is queried and

the learner predicts a boolean label. The true label is then returned. The learner’s goal is to minimise

mistaken predictions. We propose minimum p-seminorm interpolation to solve this problem. To this

end we give a p-seminorm on the space of graph labellings. Thus on every trial we predict using the

labelling which minimises the p-seminorm and is also consistent with the revealed (vertex, label) pairs.

When p = 2 this is the harmonic energy minimisation procedure of Zhu et al. (2003a), also called

(Laplacian) interpolated regularisation in Belkin et al. (2004). In the limit as p→ 1 this is equivalent to

predicting with a label-consistent mincut. We give mistake bounds relative to a label-consistent mincut

and a resistive cover of the graph. We say an edge is cut with respect to a labelling if the connected

vertices have disagreeing labels. We find that minimising the p-seminorm with p = 1 + ε where ε → 0

as the graph diameter D → ∞ gives a bound of O(Φ2 logD) versus a bound of O(ΦD) when p = 2

where Φ is the number of cut edges.

5.1 Introduction

As in Chapter 4 we study the online graph labelling problem and recall the definitions of Section 4.2.1.

5.1.1 The p-norm algorithms

In previous work (Herbster and Pontil, 2007; Herbster, 2008) a norm induced by the graph Laplacian

was used to predict the labelling of a graph in the online setting with algorithms such as the Perceptron.

In Kivinen et al. (1997) it was shown that the perceptron, “online SVM”s and similar algorithms applied

to the problem of learning sparse linear classifiers in Euclidean space, suffer from the limitation that



5.2. Background and preliminaries 97

there exist example sequences such that these algorithms incur mistakes linearly in the dimension of the

examples. These lower bounds should be contrasted to upper bounds for multiplicative algorithms such

as Winnow (Littlestone, 1988) and the “quasi additive” p-norm Perceptron (Grove et al., 1997; Gentile,

2003) which are logarithmic in the dimension of the examples. An analogous observation for the graph

labelling problem (which will be presented in Chapter 4) demonstrated that there exists an n-vertex

graph with a single cut edge for which the foundational semi-supervised method of Harmonic Energy

Minimization (or “Regularized interpolation”) (Zhu et al., 2003a; Belkin et al., 2004) incurs Ω(
√
n)

mistakes.

Inspired by the results for the p-norm perceptron’s ability to learn sparse concepts in Rn, with

a mistake bound logarithmic in n, we consider a similar idea for building classifiers on graphs. We

thus introduce a family of seminorms defined on the labellings of a graph – we term them Laplacian

p-seminorms which include the smoothness functional of Belkin et al. (2004); Zhu et al. (2003a) and the

label-consistent graph cut (Blum and Chawla, 2001) as limiting cases. We present an online algorithm

for learning concepts defined on graphs based upon minimum p-seminorm interpolation. We derive a

mistake bound for this algorithm in which the graph cut of a labelling is the measure of the complexity

of the learning task. In the graph setting the dual seminorm gives rise to a generalisation of the notion

of resistance between graph vertices (Klein and Randić, 1993; Doyle and Snell, 2000), which we term

p-resistance and show that it is a natural measure of similarity between graph vertices. We give a brief

survey of its fundamental properties by extending a well-known analogy with resistive networks. Clus-

ter structure in the graph w.r.t. the p-resistance distance (captured via covering number of the vertex

set) features as the “structural” term in our mistake bound. Expressing the bound in this way helps to

demonstrate that our algorithm exploits connectivity and cluster structure in data.

We demonstrate that, in natural cases, the optimal choice for the parameter p (inasmuch as opti-

mizing our bounds) results in an algorithm which lies between the mincut (p = 1) of Blum and Chawla

(2001) and the method of Harmonic Energy Minimization (p = 2) of Belkin et al. (2004); Zhu et al.

(2003a). In a further parallel with the behaviour of the p-norm Perceptron we demonstrate that we can

choose the parameter p (using only information available a-priori to the learner) to ensure a performance

guarantee which is logarithmic with regard to graph diameter. The bound also decreases with the edge

connectivity of the graph or clusters thereof as a consequence of the p-resistance term.

5.2 Background and preliminaries

If z ∈ Rn then let ‖z‖p := p
√∑n

i=1 |zi|p denote the p-norm when p ∈ [1,∞). More generally, if

Ψ : Rn → Rm is any linear map we define the associated (Ψ, p)-seminorm as,

‖u‖Ψ,p := ‖Ψu‖p. (5.1)

If {0} = {u ∈ Rn : Ψu = 0} then ‖·‖Ψ,p defines a norm since we have a unique minimal vector.

Given a seminorm ‖·‖ : Rn → R the (unique) dual seminorm ‖·‖∗ : Rn → R∪ {+∞} is defined on the
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vector space of continuous linear functionals Z : Rn → R as,

‖Z‖∗ := sup
w∈Rn,||w||6=0

{ |Z(w)|
‖w‖

}
= [ inf

w∈Rn
{‖w‖ : Z(w) = 1}]−1. (5.2)

We immediately recover the useful “generalized Hölder” inequality,

|Z(w)| ≤ ‖Z‖∗‖w‖.

Since the dual space of Rn is isometrically isomorphic to Rn we can identify each linear functional with

an element of Rn with evaluation corresponding to the dot product between vectors. The canonical basis

vectors of Rn we denote as e1, . . . , en and we are particularly interested in the corresponding linear

functionals Ei(w) := e>i w.

Given a set U ⊆ X , a cover of U is a collection C = {Ci}ki=1 of subsets Ci ⊆ X such that

U ⊆ ∪ki=1Ci. For a given symmetric discrepancy function d : U × U → R (d(x, y) = d(y, x)) and any

ρ > 0, the covering number N(U , ρ, d(·, ·)) of U is the cardinality of the smallest cover C such that for

each Ci ∈ C we have d(x, x′) ≤ ρ if x, x′ ∈ Ci.

We consider undirected graphs G = (V, E) so that E := {(i, j)|i ∼ j} is the set of unordered

pairs of adjacent vertex indexes. Associated with each edge (i, j) ∈ E is a weight Aij > 0 and Aij = 0

if (i, j) 6∈ E , so that A is the (weighted) symmetric adjacency matrix. Typically we consider n-vertex

graphs with n̂ edges. We say that G is unweighted if Aij ∈ {0, 1}.

We say G′ is a subgraph of G whenever V ′G ⊆ VG and E ′G ⊆ EG and we write G′ ⊆ G. If V ′G ⊆ VG
then the induced subgraph is (V ′G , E ′G) with E ′G := {(i, j) ∈ EG : vi, vj ∈ V ′G}.

A path graph P is a graph of the form VP = {v0, v1...vn}, EP = {(0, 1), (1, 2)...(n− 1, n)} and

we define the length, `(P), of any path P by `(P) :=
∑

(i,j)∈EP
1
Aij

. The distance between any two

vertices vi, vj ∈ VG is the length of the shortest path containing vi and vj ,

δ(i, j) := min
{P⊆G:vi,vj∈VP}

`(P),

and is equal to∞ if no path exists. We define the diameter of G, D(G) := maxi,j δ(i, j). In this chapter,

we generally consider connected graphs (that is, graphs in which a path connects any two vertices).

We denote Nn := {1, 2, , ..., n}.

5.2.1 Laplacian (Ψ, p)-seminorms on functions over a graph

A labelling u ∈ Rn of an n-vertex graph G is viewed as a function u : VG → R defined on the vertices

of G whereby ui corresponds to the label of vi. If G = (V, E = {(i1, j1), . . . , (in̂, jn̂)}) is a graph then

an associated edge map 1 ΨG : Rn → Rn̂ (with p implicit) is a linear map such that,

ΨGu = (A
1
p

i1j1
(ui1 − uj1), . . . , A

1
p

in̂jn̂
(uin̂ − ujn̂))>. (5.3)

1Corresponding to a weighted, oriented incidence matrix.
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When p = 2, the n × n matrix L = Ψ>GΨG is the graph Laplacian. We introduce a class of Laplacian

(Ψ, p)-seminorms defined on the space of graph labellings: if u ∈ Rn then,

‖u‖G,p := ‖u‖ΨG ,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

. (5.4)

These seminorms generalise the “smoothness functional” uTLu (Belkin et al., 2004; Zhu et al., 2003a)

which corresponds to the case p = 2, and as such measure the complexity of graph labellings. In fact

one feature map associated to the natural kernel K : V × V → R defined by the pseudoinverse of the

graph Laplacian K(vi, vj) := L+
ij (see, e.g. Smola and Kondor, 2003) is the edge map

(Ψ>G)+ : V → Rn̂

: vi → (Ψ>G)+ei,

where the inner product in the feature space Rn̂ is then the Euclidean inner product. A binary labelling

u ∈ Rn has a small graph cut precisely when the image (Ψ>G)+u has a small 1-norm (and so is “sparse”)

in this particular feature space. These p-smoothness functionals have also been considered by Bühler and

Hein (2009) in the context of spectral clustering and Singaraju et al. (2009) in the context of computer

vision. Closely related are other notions of discrete p-Dirichlet forms (e.g. Zhou and Schölkopf, 2005)

which are a discrete counterpart to the continuous p-Laplacian which has been studied to a much greater

extent (Heinonen et al., 1993).

When the labelling is restricted to u ∈ {−1, 1}n we say that edge (i, j) is cut if ui 6= uj and we

define the weighted cut size of u as,

ΦG(u) :=
1
2p
‖u‖pG,p =

1
2p

∑
(i,j)∈E

Aij |ui − uj |p. (5.5)

The cut-size is independent of p and if the graph is unweighted it is just the number of cut edges.

We will use the dual norm ‖·‖∗G,p to give a discrepancy rG,p(·, ·) called effective p-resistance

between vertices by identifying vertices vi and vj with the functionals Ei and Ej so that,

rG,p(i, j) =
(
‖Ei − Ej‖∗G,p

)p
. (5.6)

When p = 2 there is an established natural connection (Doyle and Snell, 2000) between graphs and

resistive networks where each edge (i, j) ∈ EG is viewed as a resistor with resistance 1
Aij

. The effective

resistance rG(i, j) = rG,2(i, j) is the potential difference needed to induce a unit current flow between

vi and vj .The effective resistance may be computed with the formula (Klein and Randić, 1993) (and see

the derivation in Section 3.3 Example 2),

rG(i, j) = (ei − ej)TL+(ei − ej),

where L+ denotes the pseudoinverse of L.

The p-resistance (diameter) of a graph G is defined Rp(G) := max{vi,vj∈VG} rG,p(i, j) (R(G) =

R2(G)). In this chapter the notion of (effective) p-resistance will be a key to our bounds and is further

developed in Section 5.4.1.
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5.2.2 Previous work

The problem of learning a labeling of a graph is a natural problem in the online learning setting, as well

as a foundational technique for a variety of semi-supervised learning methods (Blum and Chawla, 2001;

Kondor and Lafferty, 2002; Zhu et al., 2003a; Belkin et al., 2004).

The problem of predicting the labelling of a graph in the online framework was first considered

in Herbster et al. (2005) and a mistake bound for the kernel perceptron was given in (Herbster and Pontil,

2007, Theorem 4.2 (with b = R(G); c = 0)) of ,

|M| ≤ 8ΦG(u)R(G) + 2,

where u is any labelling consistent with the trial sequence.

In Herbster (2008) the Pounce on-line prediction technique was developed to exploit any cluster

structure in a graph. The algorithm achieves the mistake bound,

|M| ≤ N(V ′, ρ, rG) + 4ΦG(u)ρ+ 1,

for any ρ > 0. Here, u ∈ Rn is any labelling consistent with the trial sequence, V ′ =

{vi1 , vi2 , . . . vim} ⊆ V is the set of inputs and the covering number N(V ′, ρ,√rG) is the minimum

number of vertex sets of resistance diameter no greater than ρ2 required to cover V ′ (see Section 5.2).

The Pounce algorithm therefore captures the notion of cluster structure through a graph cover of low

resistance vertex sets. For a definition of Pounce see the projection algorithms defined in Section 5.5.1,

where Pounce corresponds to the choice p = 2.

In Chapter 4 a limitation of existing methods for predicting the labelling of a graph online was

identified. In particular for an online version of the foundational Harmonic Energy Minimization method

of minimising the smoothness functional given by (5.4), when p = 2, an n-vertex graph construction

for which the algorithms incur Ω(
√

ΦG(u)n) mistakes was constructed. It is further demonstrated that

any unweighted graph can be embedded into a path graph in such a way that an efficient Bayes optimal

classifier used to predict the labelling of the embedding (and, therefore, of the underlying graph) obtains

a mistake bound which grows only logarithmically in the size of the graph,

|M| ≤ 2ΦG(u) max
[
0, log2

(
n− 1

2ΦG(u)

)]
+

2ΦG(u)
ln 2

+ 1. (5.7)

This algorithm, however, involves the corruption of the graph structure resulting in a drawback: the

method does not exploit graph connectivity – in fact the mistake bound (5.7) improves if the graph is

replaced by any spanning tree – and is therefore not demonstrably suitable for the case of dense or

clustered data. A further algorithm to utilise an embedding of G into a simpler structure was presented

in Cesa-Bianchi et al. (2009b) and here the reduction is to a tree T . A mistake bound of,

|M| ≤ O(ΦT (u) logD(C)),

is derived, where here ΦT (u) is the cut size of the true labelling u on T and D(C) is the maximum

diameter of any cluster (unitarily labelled) of vertices which T is partitioned into by u.
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A goal of research in this area is to present an algorithm which fully exploits cluster structure and

connectivity in graphs and obtains a logarithmic performance guarantee. In this chapter we present an

algorithm with a mistake bound in terms of a revealing resistance feature and demonstrate that this is

upper bounded by a logarithmic function of the graph diameter. The algorithm therefore exploits cluster

structure and connectivity but is also suitable in the case in which a graph exhibits a sparse structure or

large diameter.

5.3 Minimum (Ψ, p)-seminorm interpolation

Given the problem of predicting a labelling of a set of objects, a natural approach is to specify a norm

on the labelling of those objects and to choose a labelling which is then both consistent and minimal in

norm; this approach is known as minimum norm interpolation. Recalling Section 5.2, in this chapter we

investigate interpolation with (Ψ, p)-seminorms, ‖·‖Ψ,p, which are specified by choosing a linear map

Ψ : Rn → Rn̂ and a p ∈ (1, 2]. In the case when p = 2 and when Ψ has a rank of n this is equivalent

to using the Euclidean norm induced by the kernel matrix K = (Ψ>Ψ)−1. The intention is that Ψ is

chosen so that the (Ψ, p)-seminorm captures our assumptions about the complexity of the true labelling

or acts as a regularizer suitable for the problem in question, and in our application it will capture the

geometry of a graph; our assumption will be that the labelling is smooth over a graph. First we present

the algorithm in a general abstract form and specialize later to the case of predicting the labelling of a

graph.

Given a (Ψ, p)-seminorm and a sequence of online trials t ∈ {1, 2, 3, ...} in which (index,label)

pairs (it, yt) are revealed, our algorithm (see Figure 5.1) maintains a weight vector wt ∈ Rn such that

sgn(e>itwt) is the hypothesised label for indexed object it at trial t. On trial t, the weight vector is

updated by choosing that vector consistent with all previous examples2 which attains the least (Ψ, p)-

seminorm, if there are multiple minimisers an arbitrary vector is chosen3.

We bound the mistakes of our interpolation algorithm in the following theorem.

Theorem 5.3.1. The number of mistakes, |M|, incurred by minimum (Ψ, p)-seminorm interpolation,

for any ρ > 0, is bounded by,

|M| ≤ N(X ′, ρ, dΨ,p) +
ρ2 ‖u‖2Ψ,p
p− 1

, (5.8)

where u ∈ Rn is any labelling such that uit = yt ∀t ≤ m, and N(X ′, ρ, dΨ,p) is the covering number

of the input set X ′ = {i1, i2, ..., im} relative to the distance,

dΨ,p(i, j) := ‖Ei − Ej‖∗Ψ,p. (5.9)

The bound above is for the abstract general case of (Ψ, p)-seminorm interpolation for an arbitrary

linear map Ψ. In the following we will study the case corresponding to prediction of the labelling of
2The conservative version of the algorithm where a vector is chosen consistent with only the “mistaken” examples obtains the

same bound as Theorem 5.3.1.
3If Ψ is the edge map of a connected graph this will never occur.
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Parameters: A linear map Ψ : Rn → Rn̂ and p ∈ (1, 2]

Initialization: w1 = 0; M = {}
Input: {(it, yt)}mt=1 ∈ (Nn × {−1, 1})m

for t = 1, . . . ,m do

Receive: it ∈ {1, . . . , n}
Predict: ŷt = sign(e>itwt)

Receive: yt

if ŷt 6= yt thenM =M∪ {t}
wt+1 ∈ argminu∈Rn{‖u‖Ψ,p : ui1 = y1, . . . , uit = yt}

end

Figure 5.1: Minimum (Ψ, p)-seminorm interpolation

a graph where ‖u‖2Ψ,p will correspond to a function of the cut size (see (5.5)) of the labelling u and

dΨ,p(i, j) will be identified with a measure closely related to resistance in an electrical network. We first

provide a proof of Theorem 5.3.1.

5.3.1 Mistake bound analysis (proof of Theorem 5.3.1)

In this section we recall Bregman divergence and develop some properties relevant to our application.

Then we show that the minimum (Ψ, p)-seminorm interpolation algorithm is equivalent to successive

projections with regard to a Bregman divergence and we complete our proof.

Properties of Bregman projections

Bregman (1967) introduced the Bregman divergence for convex programming.

Definition Let F : Rn → R be a C 2 convex function. Denote by DF (u,w) the Bregman divergence

w.r.t. F ;

DF (u,w) = F (u)− F (w)− (u−w)>∇F (w). (5.10)

The Bregman divergence is generally defined in terms of a strictly convex potential function F where

“strictness” ensures the uniqueness of a projection. In our application we will use the nonstrictly convex

potential F (v) = ‖v‖2Ψ,p and thus projection (see (5.11)) will not necessarily be unique. The Bregman

divergence is nonnegative as the convexity of F guarantees that the first order approximation F (u) ≈
F (w) + (u−w)>∇F (w) is not an overestimate. We will use the following notation Dp := D‖·‖2p and

DΨ,p := D‖·‖2Ψ,p .

We define the projection of w onto a non-empty set U ⊆ Rn with respect to DF as,

projF (U ;w) := argmin
u∈U

DF (u,w) . (5.11)

We note that the argmin is not necessarily unique.
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Lemma 5.3.2. If U ⊆ Rn is a nonempty affine set and w ∈ Rn, then projΨ,p(U ;w) is non-empty.

Proof. We recall that a direction of recession of a convex function is any direction in which the function

is non-increasing (Rockafellar, 1972, p. 69). We observe that any direction of recession x of DΨ,p(·,w)

is exactly one such that Ψx = 0 and in these directions DΨ,p(·,w) is constant. It then follows that

projΨ,p(U ;w) is non-empty by (Rockafellar, 1972, Theorem 27.3) which in particular guarantees that

a continuous convex function on Rn attains its minima on a given affine constraint set if the function is

constant in every common direction of recession between the function and the constraint set.

The following is the well-known Pythagorean equality for Bregman divergences.

Lemma 5.3.3. If w′ ∈ Rn is a projection of w ∈ Rn to the affine set U ⊆ Rn with regard to the

Bregman divergence DF , then ∀u ∈ U we have,

DF (u,w) = DF (w′,w) +DF (u,w′). (5.12)

Proof. Let U = ∩ki=1{u : u>xi = yi}. By expanding DF in (5.12) we obtain the equivalent form,

(∇F (w)−∇F (w′))> (u−w′) = 0. (5.13)

Recalling the method of Lagrange multipliers to compute w′, we note that the unconstrained minimum

of the Lagrangian,

L(λ,v) = DF (v,w) +
k∑
i=1

λi(x>i v − yi),

occurs at v = w′. Thus,

0 = ∇vL(λ,v) |v=w′

= ∇F (w′)−∇F (w) +
k∑
i=1

λixi.

Thus, since u,w′ ∈ U ,

(∇F (w)−∇F (w′))> (u−w′) = (
k∑
i=1

λixi)> (u−w′)

= 0,

as required.

We build on the following lemma, which requires the linearity of Ψ, to prove the important

Lemma 5.3.5.

Lemma 5.3.4. Given a linear map Ψ then,

DΨ,p(u,w) = Dp(Ψu,Ψw).
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Proof. As ‖z‖Ψ,p = ‖Ψz‖p we have, by applying the chain rule,

DΨ,p(u,w) = ‖u‖2Ψ,p − ‖w‖2Ψ,p − (u−w)>∇z ‖z‖2Ψ,p
∣∣∣
z=w

= ‖Ψu‖2p − ‖Ψw‖2p − (u−w)>∇z ‖Ψz‖2p
∣∣∣
z=w

= ‖Ψu‖2p − ‖Ψw‖2p −Ψ(u−w)>∇z′ ‖z′‖2p
∣∣∣
z′=Ψw

(5.14)

= Dp(Ψu,Ψw),

where (5.14) follows from the chain rule.

The following lemma is inspired directly by arguments upper bounding the quadratic remainder

term in the Taylor’s series expansion of the squared p-norm in Grove et al. (1997). We will need only

the first inequality.

Lemma 5.3.5.

(p− 1)‖w′ −w‖2Ψ,p ≤ DΨ,p(w′,w) p ∈ (1, 2] (5.15)

DΨ,p(w′,w) ≤ (p− 1)‖w′ −w‖2Ψ,p p ∈ [2,∞) (5.16)

Proof. We first recall the Hölder inequality (for functions on discrete spaces). If a, b ∈ Rn and 1
r + 1

s =

1, then,

n∑
i=1

|aibi| ≤ ‖a‖r‖b‖s r ∈ (1,∞). (5.17)

Now, if ξ = w′ −w then, for p ≥ 2 by Taylor’s theorem there is some point ζ ∈ Rn such that,

||w′||2p − ||w||2p −∇‖z‖2p |z=w · ξ =
1
2

∑
ij

∂2‖z‖2p
∂zi∂zj

∣∣∣∣∣
z=ζ

ξiξj

Dp(w′,w) =
1
2

∑
ij

∂2(‖z‖2p)
∂zi∂zj

∣∣∣∣∣
z=ζ

ξiξj

We have,
∂(||z||2p)
∂zi

= 2||z||2−pp zp−1
i sgn(zi) ,

and for i 6= j,

∂2(||z||2p)
∂zi∂zj

=
∂

∂zj

(
2||z||2−pp zp−1

i sgn(zi)
)

= 2(2− p)||z||2−2p
p (zizj)p−1sgn(zizj),

and,
∂2(||z||2p)
∂z2
i

= 2(2− p)‖z‖2−2p
p |zi|2p−2 + 2(p− 1)‖z‖2−pp |zi|p−2,
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which exist for all z 6= 0 for p ≥ 2. Thus,

Dp(w′,w) = (2− p)||ζ||2−2p
p

n∑
i,j=1

ξiξj(ζiζj)p−1sgn(zizj)

+ (p− 1)‖ζ‖2−pp

n∑
i=1

ξ2
i |ζi|p−2

= (2− p)||ζ||2−2p
p

[
n∑
i=1

ξiζ
p−1
i

]2

+ (p− 1)‖ζ‖2−pp

n∑
i=1

ξ2
i |ζi|p−2.

For p ≥ 2 the first term here is not positive while the second term is bounded above with equation (5.17)

with r = p
2 , s = p

p−2 giving,

Dp(w′,w) ≤ (p− 1)‖ξ‖2p p ≥ 2. (5.18)

With reference to Appendix E, this is equivalent to the (p− 1)-strong smoothness of the function 1
2 || · ||2p

with respect to the norm || · ||p. This function has Fenchel conjugate 1
2 || · ||2q , where 1

p + 1
q = 1, and by

the duality of strong convexity and strong smoothness, Theorem E.0.12, we therefore have that 1
2 || · ||2q

is (q − 1)-strongly convex w.r.t. || · ||q , and so,

Dp(w′,w) ≥ (p− 1)||ξ||2p 1 < p ≤ 2. (5.19)

Finally, since ‖z‖Ψ,p = ‖Ψz‖p an application of Lemma 5.3.4 to (5.18) and (5.19) gives the result.

Successive Bregman projection and interpolation

We prove that minimum (Ψ, p)-seminorm interpolation is equivalent to the sequential composition of

Bregman projections in Corollary 5.3.7. First we show that Bregman projections to affine sets compose

using the following well-known lemma.

Lemma 5.3.6. If U1 and U2 are affine sets and U2 ⊆ U1 then

projΨ,p(U2;w0) = projΨ,p(U2; projΨ,p(U1;w0)) (5.20)

Proof. Let w1 = projΨ,p(U1;w0) and w2 = projΨ,p(U2;w1). We have the following string of in-

equalities which hold for every u ∈ U2,

D(w1,w0) = D(u,w0)−D(u,w1), (5.21)

D(w2,w1) = D(u,w1)−D(u,w2), (5.22)

D(w1,w0) +D(w2,w1) = D(u,w0)−D(u,w2), (5.23)

D(w2,w0) = D(u,w0)−D(u,w2), (5.24)

where equations (5.21) and (5.22) follow from the Pythagorean theorem (Lemma 5.3.3) equation (5.24)

then follows from setting u = w2 in (5.21) then substituting into (5.23). Equation (5.24) implies w2 is

the projection of w0 onto U2.
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We now observe that the minimum p-seminorm interpolation (Figure 5.1) is equivalent to a proxy

method of successive projections which minimise the Bregman divergence DΨ,p(wt+1,wt). Since

∇||u||2Ψ,p|u=0 = 0, we have the following corollary.

Corollary 5.3.7. If w1 := 0 and we recursively define,

wt+1 := argmin
u∈Rn

{DΨ,p(u,wt) : uis = ys ∀s ≤ t}.

then,

wm+1 = argmin
u∈Rn

{‖u‖Ψ,p : uis = yis ∀s ≤ m}

Proof of Theorem 5.3.1

Proof. In Corollary 5.3.7 we noted that the minimum (Ψ, p)-seminorm interpolation algorithm is iden-

tical to a successive Bregman projection algorithm. We prove a bound for the latter. Let u ∈ Rn be such

that uit = yt for all trials t ≤ m. From (5.12) we have,

m∑
t=1

DΨ,p(wt+1,wt) = DΨ,p(u,w1)−DΨ,p(u,wm+1). (5.25)

Using Lemma 5.3.5 we lower bound Dp(wt+1,wt),

(p− 1)‖wt+1 −wt‖2Ψ,p ≤ DΨ,p(wt+1,wt). (5.26)

Note that there is a mistake, by convention, on the first trial since w1 = 0. Now, for each mistaken trial

t ∈M with t ≥ 2, recalling Section 5.2 we define the linear functional Zt = Eit − Eηit , where,

ηit = argmin
is

{‖Eit − Eis‖∗Ψ,p : s ∈M, s < t},

so that,

1 ≤ |Zt(wt+1)− Zt(wt)| t ≥ 2

= |Zt(wt+1 −wt)| t ≥ 2

≤ ‖Zt‖∗Ψ,p‖wt+1 −wt‖Ψ,p t ≥ 2

≤ ‖Zt‖∗
2

Ψ,p‖wt+1 −wt‖2Ψ,p t ≥ 2, (5.27)

thus on a mistaken trial t ≥ 2 combining (5.26) and (5.27) gives,

p− 1
‖Zt‖∗2Ψ,p

≤ Dp(wt+1,wt) t ≥ 2. (5.28)

We follow a technique introduced in Herbster (2008). Recalling Section 5.2, consider any cover C =

∪kCk which covers X ′ = {i1, i2, . . . , im} with regard to the distance,

dΨ,p(i, j) := ‖Ei − Ej‖∗Ψ,p,

with N(X ′, ρ, dΨ,p) covering sets of diameter no greater than ρ. Let F be the set of trials in which a

mistake first occurred on a cover set, F = ∪k{min{t : it ∈ Ck}}. Setting w1 = 0 we deduce from
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(5.25) and (5.28), ∑
t∈M\F

1
‖Zt‖∗2Ψ,p

≤
∑

t∈M\{1}

1
‖Zt‖∗2Ψ,p

≤ 1
p− 1

∑
t∈M\{1}

DΨ,p(wt+1,wt)

≤ 1
p− 1

m∑
t=1

DΨ,p(wt+1,wt)

≤
‖u‖2Ψ,p
p− 1

.

Recall that,

‖Zt‖∗Ψ,p = dΨ,p(it, ηit).

Hence for any t ∈M\F we have ‖Zt‖∗Ψ,p ≤ ρ. Hence as |F| ≤ N(X ′, ρ, dΨ,p)∑
t∈M−F

1 ≤
ρ2‖u‖2Ψ,p
p− 1

|M| ≤ N(X ′, ρ, dΨ,p) +
ρ2‖u‖2Ψ,p
p− 1

.

5.4 Interpolation on a graph

We proceed to our intended application of predicting the labelling of a given graph G by choosing Ψ

to be an edge map ΨG of G (recall (5.3)), so that ‖u‖ΨG ,p measures smoothness of functions over the

vertices V . If we denote the adjacency of G by A, (ΨG , p)-seminorm interpolation on G is therefore the

process of choosing the labelling u of G which minimises the seminorm (recalling (5.4)),

‖u‖ΨG ,p =

 ∑
(i,j)∈EG

Aij |ui − uj |p
 1

p

,

subject to the constraints imposed by the revealed vertex labels. The dual norm term (5.9) of our mistake

bound for (Ψ, p)-seminorm interpolation now corresponds to the following generalization of effective

resistance.

Definition Given a graph G, we define the (effective) p-resistance between any two vertices va, vb ∈ VG
as,

rG,p(a, b) := (||Ea − Eb||∗G,p)p. (5.29)

Thus when p = 2 this is the usual effective resistance and as p→ 1 then rG,p(s, t)→ 1

“st-mincut” .

We will see that for 1 < p ≤ 2 effective p-resistance provides a natural measure of similarity between

vertices on a graph.

Rewriting Theorem 5.3.1 with the substitution (5.29) we now have the following corollary, which

is the main result of this chapter.
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Corollary 5.4.1. After m trials we have, for any ρ > 0,

|M| ≤ N(V ′, ρ, rG,p) +
ρ

2
p ‖u‖2G,p
p− 1

, (5.30)

where u ∈ Rn is any labelling of G such that uit = yt ∀t ≤ m, p ∈ (1, 2], and N(V ′, ρ, rG,p) is the

covering number of the input set V ′ = {vi1 , vi2 , ...vim} relative to the p-resistance rG,p.

Proof. This is a special case of Theorem 5.3.1 with Ψ = ΨG . We must simply recall the identity relating

dual norm and graph p-resistance, Definition 5.4.

We have, then, a bound which relates the number of mistakes to cluster structure in data via the

notion of resistive cover of a graph. Note that the bound is valid for all choices of ρ, and so always valid

for the optimal cover, which the learner is never required to calculate.

We proceed to develop an interpretation of the bound (5.30) to culminate in Corollary 5.4.10. The

norm of the classifier ‖u‖2G,p is relatively simple to interpret while the properties of the p-resistance

measure rG,p are less immediate. We therefore next establish an instructive theory of the p-resistance

which will both clarify the bound above and provide guidance on the tuning of the parameter p. We

will see that the resistance defined by (5.29) is a natural measure of (dis)similarity between vertices on

a graph and that this construction admits a surprisingly rich theory which extends a common analogy

between graphs and electrical networks.

5.4.1 Theory of p-resistive networks

We now build on a popular connection between the graph labelling problem and the problem of identify-

ing the potential at the nodes of an electric network derived from the graph (Zhu et al., 2003a; Doyle and

Snell, 2000). We describe the notion of a network as parallel to a partially labelled graph, in which each

edge is a resistive conduit along which electric charge flows between vertices. The label ui of a vertex

vi is equivalent to it’s electric potential (or voltage). A partial labelling constrains the potential on the

corresponding subset of vertices in the network, through which current then flows along edges according

to the laws of the electric network theory. The foundation of our theory here differs from standard theory

in a single respect – energy is produced in resistors according to a purely hypothetical formulation of

power. This results in changes to other familiar key concepts, such as Ohm’s law.

A p-resistive networkN = (G,S, p) consists of an n-vertex weighted connected graph G = (V, E)

with adjacency A, a set S = {(vi1 , y1), . . . , (vim , ym)} ∈ (VG × R)m of 0 ≤ m ≤ n feasible potential

constraints and a constant p ∈ (1, 2]. The potential constraints can be viewed as (the effect of) voltage

sources applied to the relevant vertices. Denote by VS the set of constrained vertices. The resistance of

an edge, πij := 1
Aij
∈ (0,∞), measures the resistance of (i, j) to current flow and is constant. Given a

network N a state is an assignment of potentials u ∈ Rn to VG . In the following we will additionally

define for any network, a power P (N , ·) : Rn → [0,∞), a current I(N ) : V × V → R satisfying
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Iij = −Iji, and Iij = 0 whenever Aij = 0, and when G is clear from the context we will abbreviate the

effective p-resistance rG,p to rp.

Central to electric network theory is the notion of a flow.

Definition A flow is any map J : V × V → R satisfying Jij = −Jji, Jij = 0 whenever Aij = 0 and

Kirchoff’s junction law
∑
j:j∼i Jij = 0 for vi not constrained.

Denote the total flow leaving any vertex vi by Ji =
∑
j:j∼i Jij . If Ji > 0 we say that vi is a source

and write vi ∈ Vsource. If Ji < 0 we say that vi is a sink and write vi ∈ Vsink. A k-flow is such that∑
i : vi∈Vsource

Ji = k. A 1-flow is a unit flow.

Fundamental properties

To draw a parallel with our graph labelling problem we define the power of potential state u as,

P (u) :=
∑

(i,j)∈E

|ui − uj |p
πij

. (5.31)

and the corresponding power of any edge (i, j) as,

Pij(u) :=
|ui − uj |p

πij
.

The standard electric network theory corresponds to the choice p = 2, and all other choices result

in hypothetical theories. Determining the labelling with minimal p-seminorm (5.4) subject to certain

label constraints is equivalent to determining the potential state which minimises (5.31) under the same

corresponding potential constraints. Given a network N = (G,S, p), if the potential constraints S =

{(vi1 , y1), . . . , (vim , ym)} 6= ∅ then let w(N ) denote the unique minimiser

w(N ) = argmin
u∈Rn

{P (u) : ui1 = y1, . . . , uim = ym}.

A p-resistive network operates according to the principle of minimising (5.31) and so a set of potential

constraints S induces the minimal potential state w(N ) on the network. The power of a network N is

therefore defined as the power of the minimal feasible state,

P (N ) := min
u∈Rn

{P (u) : ui1 = y1, . . . , uim = ym}.

At the minimum we have,

∂P (u)
∂ui

∣∣∣
u=w

= 0 vi 6∈ VS∑
j:j∼i

|wi − wj |p−1sgn(wi − wj)
πij

= 0 vi 6∈ VS . (5.32)

We define the current from vertex vi to vj of a network,

Iij(N ) :=
|wi − wj |p−1sgn(wi − wj)

πij
, (5.33)
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(if p = 2 this is Ohm’s law) and the net current from vertex vi as,

Ii :=
∑
j:j∼i

Iij .

Since πij ≥ 0 we see that current flows from vertices with high potential to those with low potential. We

see that (5.32) is Kirchoff’s current law for I ,

0 = Ii vi 6∈ VS , (5.34)

so that current is a flow and we can alternatively express power of a potential state u via Joule’s law,

Pij(u) = (ui − uj)Iij . (5.35)

Lemma 5.4.2. Given a networkN = (G,S, p) with potential constraints S = {(va, ya), (vb, yb)}, then,

P (N ) = (wa − wb)Ia, (5.36)

where w and I are the minimal potential state and the current induced by S .

Proof. The power of a network is sum of the power along the edges P (N ) =
∑

(i,j)∈E Pij(w) and thus

by Joule’s law (5.35) we have,

P (N ) =
∑

(i,j)∈E
(wi − wj)Iij

=
∑
i

∑
j:j<i

wiIij −
∑
j

∑
i:i>j

wjIij

=
∑
i

∑
j:j<i

wiIij +
∑
i

∑
j:j>i

wiIij

=
∑
j

waIaj +
∑
j

wbIbj +
∑
i:i6=a,b

∑
j

wiIij ,

and the result follows since Ia =
∑
j Iaj = −∑j Ibj and

∑
j Iij = 0 ∀i 6= a, b.

We now demonstrate that the construction (5.29) can indeed naturally be interpreted as a resistance

feature in our electric network analogy, via an identity similar to Ohm’s Law relating potential, current

and effective p-resistance.

Lemma 5.4.3. Given a network N = (G,S, p) with potential constraints S = {(va, ya), (vb, yb)} and

ya 6= yb, then,

P (N ) =
|wa − wb|p
rp(a, b)

, (5.37)

and,

rp(a, b) =
|wa − wb|p−1sgn(wa − wb)

Ia
, (5.38)

where w and I are the minimal potential state and the current induced by S .
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Proof. We have, by the definition of power:

P (N ) = min
u∈Rn

{
‖u‖pG,p : ua = ya, ub = yb

}
= |ya − yb|p min

u∈Rn

{
‖u‖pG,p : ua − ub = 1

}
.

Substituting (5.2) into (5.29) gives,

rp(a, b) =
(

min
u∈Rn

{
‖u‖pG,p : ua − ub = 1

})−1

,

now equation (5.37) follows since wa = ya and wb = yb. Finally if we apply Lemma 5.4.2 by substitut-

ing P (N ) = (wa − wb)Ia into (5.37) we obtain (5.38).

The following final observations will not be required in the sequel but are included to complete

the theory.

Definition The power associated with any flow J is defined,

P (J) =
∑

(i,j)∈E
|Jij |

p
p−1π

1
p−1
ij , (5.39)

and note that this equals the power of a potential assignment when the flow has a corresponding assign-

ment - that is when the flow is the current induced by some set of potential constraints. Note that not

every flow has a consistent assignment of potentials.

We prove that the unit electrical current I between any pair of vertices va to vb is the unit flow of

minimal power.

Lemma 5.4.4. (Thompson’s Principle) The unit flow of minimal power between any pair of vertices va

to vb is the unit electrical current.

Proof. We wish to minimise

P (J) =
∑

(i,j)∈E
|Jij |

p
p−1π

1
p−1
ij

such that ∑
j∼i

Jij = 0 ∀i 6= a, b

∑
j∼a

Jaj = 1 = −
∑
j∼b

Jbj

Jij = −Jji ∀i, j (5.40)

Jii = 0 ∀i (5.41)

We form the Lagrangian,

L(λ,J) =
∑

(i,j)∈E
|Jij |

p
p−1π

1
p−1
ij +

∑
i

λi

∑
j∼i

Jij − I{i=a} + I{i=b}

 ,
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where I denotes the indicator function. Using (5.40) and (5.41) we can consider only the upper triangular

part of J ,

L(λ,J) = 2
∑

(i,j)∈E:i>j

|Jij |
p
p−1π

1
p−1
ij +

∑
i

λi

 ∑
j∼i:j>i

Jij − Ii=a

−∑
j

λj

 ∑
i∼j:i<j

Jij − Ij=b

 .

Differentiating w.r.t. Jst for s < t we see that ∇L = 0 occurs when Jij = |ui−uj |p−1sgn(ui−uj)
πij

,

λi = − p
p−1ui if such a consistent set of {ui}ni=1 exists. We know that such an assignment does exist -

any potential which induces unit current from va to vb. Since P (J) is strictly convex and the constraints

are linear this is the unique minimizer.

Bounding the p-resistance

The holy grail of this section would be a closed form for the dual norm ‖v‖∗Ψ,p = supu∈Rn,‖u‖Ψ,p 6=0
|v>u|
‖u‖Ψ,p

of a (Ψ, p)-seminorm ‖·‖Ψ,p as defined by (5.1) for an arbitrary linear map Ψ on Rn. This would provide

a closed form for the p-resistance as defined by (5.6). This problem remains open (as does establishing

the existence of a closed form) but we offer the following upper bound.

Claim 5.4.5. Given a connected graph G with edge map Ψ, the dual norm ‖v‖∗Ψ,p = supu∈Rn,‖u‖Ψ,p 6=0
|v>u|
‖u‖Ψ,p

of (5.4) has the following form over Rn

‖v‖∗Ψ,p ≤ ||v||(Ψ+)>,q v⊥1,

where 1
p + 1

q = 1, and is equal to +∞ when v 6⊥1.

Proof. For v⊥1 we have,

‖v‖∗Ψ,p = sup
u∈Rn,‖u‖Ψ,p 6=0

v>u

‖u‖Ψ,p

= sup
u∈Rn,‖Ψu‖p 6=0

v>Ψ+Ψu
‖Ψu‖p

= sup
Ψu∈Ψ(Rn),‖Ψu‖p 6=0

((Ψ+)>v)>(Ψu)
‖Ψu‖p

= sup
w∈col(Ψ),||w||p 6=0

((Ψ+)>v)>w
‖w‖p

≤ ||(Ψ+)>v||q (5.42)

= ||v||(Ψ+)>,q ,

where we applied Hölder’s inequality in (5.42) and col(Ψ) denotes the column space of Ψ.

Inequality in (5.42) is generally strict because the vector w required to attain equality in Hölder’s

inequality will in general not be in the column space col(Ψ) of Ψ: a simple counter example which

demonstrates that this is typically not the case is provided by the (3,1)-lollipop graph. For p = 2 and for

trees equality occurs in (5.42). For graphs with n̂ edges and n vertices this upper bound will therefore

presumably be large when n̂� n (since col(Ψ) is in that case a much smaller (rank n− 1) subspace of
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Rn̂), and note that finding a precise form for the dual norm amounts to finding the dual of the p-norm

when confined to a linear subspace of Rn̂.

Black box principles in electric circuit theory are useful tools that allow the simplification of

complex networks. In the p-resistive framework we give analogues of the classic “series” (Lemma 5.4.6)

and “parallel” laws (Lemma 5.4.7). The fact that we can compose sequential applications of these laws

is guaranteed by the seemingly intuitive Thevenin-type theorem (Theorem 5.4.8).

Lemma 5.4.6. (Resistors in series) Consider a path graph P , with VP = {v1, v2...vn}, EP =

{(1, 2), (2, 3)...(n− 1, n)} and edge resistance πij for each i ∼ j. Then,

rp(1, n) =

(
n−1∑
i=1

π
1
p−1
i,i+1

)p−1

.

Proof. Given a network N = (P,S, p) with potential constraints S = {(v1, y1), (vn, yn)} let w and I

denote the minimal potential state and current induced on N . We have, from Lemma 5.4.3 and (5.33),

w1 − wn =
n−1∑
i=1

wi − wi+1

|I1|
1
p−1 rp(1, n)

1
p−1 =

n−1∑
i=1

|Ii,i+1|
1
p−1π

1
p−1
i,i+1,

and the result follows since, by (5.34), we have that I1 = Ii,i+1 for i < n.

Lemma 5.4.7. (Resistors in parallel) Consider a multigraph G with two vertices VG = {va, vb} joined

by m resistive edges with resistances {πk}mk=1. Then,

rp(a, b) =

(
m∑
k=1

1
πk

)−1

.

Proof. Given a network N = (G,S, p) with potential constraints S = {(va, ya), (vb, yb)} let w denote

the minimal potential state on N . Then by (5.37) we have the following identity for the power P (N ),

|wa − wb|p
rp(a, b)

=
m∑
k=1

|wa − wb|p
πk

,

and the result follows immediately.

We define the notion of a resistive unit U = (VU , EU ) as any combination of resistors and vertices

with two terminal vertices VTU = {va, vb} ⊆ VU . We refer to the non-terminal vertices VIU = VU\VTU as

the interior vertices. Any unit U can be treated as a component in a larger graph G = (VG , EG), such that

U ⊆ G and whenever v ∈ VU , v′ ∈ VG\VU and v ∼ v′ then v ∈ VTU .

Theorem 5.4.8. (Thevenin) Any resistive unit U with two terminals va and vb and with effective p-

resistance rU,p(a, b) is electrically identical to a single edge with p-resistance πab = rU,p(a, b). In

particular, in any given network in which U is a component and VIU is unconstrained we can “black

box” U , and replace it with a single edge of p-resistance rU,p(a, b) without affecting current or potential

in the external network.
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Proof. Consider a networkN = (G,S, p) in which U is a component of an n-vertex graph G = (VG , EG)

with adjacencyA. Suppose that the non-empty potential constraints S are defined on a subset of vertices

VS ⊆ VG\VIU not in the interior of U . Denote by w and I the minimal feasible potential state and

current, and by P (N ) the induced power. Define the power produced across U by potential state u ∈ Rn

as PU (u) =
∑

(i,j)∈EU Aij |ui − uj |p.

Consider a second network N ′ = (G′,S, p) formed by replacing U with a single edge (a, b);

VG′ = VG\VIU , EG′ = (EG\EU )∪ {(a, b)}. Let πab = rU,p(a, b), |VG′ | = n′ and denote the adjacency of

G′ byA′. Let w′ denote the minimal feasible potential state induced by S on N ′.

The potential at no vertex v ∈ VIU is constrained by S and so PU (w) is equal to the power

produced across U when it is considered as an isolated circuit with the terminal vertices constrained to

{(va, wa), (vb, wb)}. Since such a circuit satisfies the conditions for Lemma 5.4.3 we have,

PU (w) =
|wa − wb|p
rU,p(a, b)

=
|wa − wb|p

πab
.

Thus PU (w) is always identical to the power produced across a single edge with resistance πab =

rU,p(a, b) and,

P (N ′) = min
u∈Rn′

 ∑
(i,j)∈EG′

|ui − uj |pA′ij : S


= min
u∈Rn′

 ∑
(i,j)∈EG\EU

|ui − uj |pAij +
|ua − ub|p

πab
: S


= min
u∈Rn′

 ∑
(i,j)∈EG\EU

|ui − uj |pAij +
|ua − ub|p
rU,p(a, b)

: S


= min
u∈Rn

 ∑
(i,j)∈EG

|ui − uj |pAij : S


= P (N ). (5.43)

It is then sufficient to notice thatw′ must be identical tow on VG\VIU since by (5.43) they then produce

the same (minimal) power: PN (w) = PN ′(w′). That current on the external circuits is identical follows

from (5.33).

We demonstrate that the effective p-resistance satisfies an equivalent of Rayleigh’s monotonicity

law – suppose that the weighting of some edge of G is increased (equivalently, its resistance is decreased)

or a new edge created, then the effective p-resistance between any two vertices of G does not increase.

Lemma 5.4.9. (Rayleigh’s Monotonicity Principle) Given G with adjacency matrix A. Let G′, with

adjacencyA′, be identical to G except for the increase in the weight of one arbitrary edge (a, b), so that

A′ab = A′ba = Aab + δ for δ > 0. Then for arbitrary vertices i and j,

rG,p(i, j) ≥ rG′,p(i, j).
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Proof. Given any vi, vj ∈ VG , let,

w = argmin
u∈Rn

{‖u‖pG,p : ui − uj = 1}.

Suppose that we can find a labellingw′ of G′ such that w′i −w′j = 1 and ‖w′‖pG′,p < ‖w‖pG,p, then note

that, ∑
(k,`)∈EG

|w′k − w′`|pAk`

=
∑

(k,`)∈EG′
|w′k − w′`|pA′k` − |w′a − w′b|pδ

≤
∑

(k,`)∈EG′
|w′k − w′`|pA′k`

<
∑

(k,`)∈EG
|wk − w`|pAk`,

which contradicts the minimality of w. Hence,

min
u∈Rn

{‖u‖pG′,p : ui − uj = 1} ≥ ‖w‖pG,p,

from which (5.29) implies,

rG′,p(i, j) ≤ rG,p(i, j).

Further we also have monotonicity in p so that for a graph G and vertices i and j if p ≤ q then,

rG,p(i, j) ≤ rG,q(i, j).

5.4.2 Analysing the mistake bound for unweighted graphs

We are now better equipped with an understanding of effective p-resistance to analyse the mistake bound,

Corollary 5.4.1. We see, through Lemmas 5.4.6 and 5.4.7, that p-resistance is a distance measure which

captures both connectivity and the length of paths connecting points. Since it is difficult to evaluate the

behaviour of (5.30) through p-resistance directly, we choose a more tractable approximation: we general-

ize the notion of graph diameter to that of (unweighted) wide diameter (Hsu, 1994). This approximation

captures connectivity in the graph structure.

The k-wide distance δk(i, j) is the minimum value ` such that there exists k edge disjoint paths

each containing vi and vj of length no more than ` (and δk(i, j) =∞ if no such k paths exist). We then

define the k-wide diameter ∆k(G) := maxi,j(δk(i, j)). Thus ∆1(G) is just the usual diameter and if,

Φ0
G := min

u∈{−1,1}n
{ΦG(u) : ΦG(u) ≥ 1},

then by Menger’s theorem (Diestel, 2005) then there exists Φ0
G edge-disjoint paths between all pairs

of vertices. Thus if k ≤ Φ0
G then ∆k(G) ≤ n. We can now bound the p-resistance diameter of an
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unweighted graph G by,

Rp(G) ≤ ∆k(G)p−1

k
. (5.44)

This follows immediately from application of resistors in parallel and series laws (Lemmas 5.4.6

and 5.4.7) to the set of k edge disjoints paths determined by the wide diameter ∆k(G) and an appli-

cation of Rayleigh’s monotonicity principle (Lemma 5.4.9). We observe that (5.44) becomes tight as

p→ 1 hence,

lim
p→1

Rp(G) =
1

Φ0
G
.

In the following we use the upper bound (5.44) to investigate the mistake bound (5.30). In Chap-

ter 4 it is demonstrated that the case p = 2 (which is an online version of the harmonic energy min-

imisation of Zhu et al. (2003a); Belkin et al. (2004)) suffers a limitation – there exist graphs for which

the algorithm makes Ω(
√
|VG |) mistakes. It has been demonstrated that simple online algorithms with

a logarithmic mistake bound exist (Herbster et al., 2008; Cesa-Bianchi et al., 2009b). We will demon-

strate that it is possible to choose p to ensure that (ΨG , p)-seminorm interpolation achieves a logarithmic

guarantee.

The choice of p

A natural question arises: how does the behaviour of the (ΨG , p)-seminorm interpolation algorithm

differ for various choices of p? To begin an investigation into this question we first deduce a mistake

bound for the unweighted graph case in terms of a graph’s wide diameter, and consider a simple tuning

of p for unweighted graphs. For any vertex set partition V1 ∪ . . . ∪ VN = VG with induced subgraphs

G1, . . . ,GN of maximum wide diameter ∆k := max{∆k(Gi) : i = 1, . . . , N} we have as an immediate

consequence of Corollary 5.4.1,

|M| ≤ N +
4∆2

k

p− 1

(
Φ(u)
k∆k

) 2
p

, (5.45)

for any u ∈ {−1, 1}n correct on all trials. For the purpose of investigating the dependence of the bound

(5.45) on the parameter p, we consider the hypothetical situation in which the graph cut Φ(u) is known

to the learner a-priori and consider tuning (5.45) with regard to p. Note that, for k∆k > e2Φ(u) the

quantity 1
p−1

(
Φ(u)
k∆k

) 2
p

is minimised when,

p= p∗ = log
( k∆k

Φ(u)

)
−
√(

log
( k∆k

Φ(u)

))2

−2 log
( k∆k

Φ(u)

)
,

and we have that 1 < p∗ < 2. Of course, the value of k∆k is dependent upon the (optimal) choice

of graph partition. Typically, when the diameter of a graph is large relative to the cut, lower values

of p optimise (5.45). Note that the optimal value for p depends upon the unknown value of the cut of

the true labelling. One situation in which the cut is typically likely to be small relative to the diameter

is when the graph is sparse and has a large diameter. The situation is not simple, however, due to the

connectivity element; below we demonstrate a dense, clustered graph for which a small choice of p is

equally reasonable.
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A simple tuning

We now give a simpler tuning (near-optimal) which will be used to evaluate the behaviour of p-seminorm

interpolation in instructive cases. In a parallel with the logarithmic behaviour of the p-norm Perceptron,

we show that it is possible to choose p (using information known to the learner a-priori) to ensure a

performance guarantee which is logarithmic in the graph diameter.

Corollary 5.4.10. Given the task of predicting the labelling of any unweighted, connected graph G =

(V, E) in the online framework, the number of mistakes, |M|, incurred by minimum (ΨG , p)-seminorm

interpolation with p := c
c−1 is bounded by,

|M| ≤

N + 4e2Φ2(u)[log(k∆k)−log(Φ̂)−1]
k2

k∆k

Φ̂
> e2

N + 4Φ(u)∆k

k
k∆k

Φ̂
≤ e2,

where c = max(log[k∆k

Φ̂
], 2) and V1∪ . . .∪VN = VG is any vertex set partition with induced subgraphs

G1, . . . , GN of maximum wide diameter ∆k := max{∆k(Gi) : i = 1, . . . , N}, Φ̂ is any constant

1 ≤ Φ̂ ≤ Φ(u) and u ∈ {−1, 1}n is any labelling consistent with the trial sequence.

Note immediately that by choosing k = 1, Φ̂ = 1, for ∆1 = maxiD(Gi) > e2, we recover a

mistake bound which is a logarithmic function of the graph diameter. In the following we consider three

examples with varying degrees of connectivity. The tree, a prototypically sparse graph, is minimally

connected with k = 1. The 2m-vertex dense barbell, an idealized model of two clusters, has connectivity

k = m− 1. Finally the mD-vertex cylinder has an intermediate connectivity k = m. This intermediate

case more generally includes graphs with spatially extended clusters whose internal connectivity equals

or exceeds the cut between clusters. The bounds for these intermediately connected graphs uniformly

improve on the results in Herbster (2008); Herbster et al. (2008); Cesa-Bianchi et al. (2009b).

Tree graph

Consider a tree. We take N = 1, k = 1,∆k = D = maxiD(Gi) in Corollary 5.4.10. For D

Φ̂
> e2 the

first tuning (p < 2) in Corollary 5.4.10 is preferred and we derive,

|M| ≤ 1 + 4e2Φ2(u)[log(D)− log(Φ̂)− 1].

For D
Φ̂
≤ e2 we derive, from the second tuning (p = 2)

|M| ≤ 1 + 4Φ(u)D.

Barbell graph

Consider the barbell graph: two m-cliques joined by Φ connecting cut edges. We take N = 2,∆k =

2, k = m − 1 in Corollary 5.4.10. For 2(m−1)

Φ̂
> e2 the first tuning (p < 2) in Corollary 5.4.10 is

preferred and we derive,

|M| ≤ 2 +
4e2Φ2(u)[log(2(m− 1))− log(Φ̂)− 1]

(m− 1)2
.
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For 2(m−1)

Φ̂
≤ e2 we derive, from the second tuning (p = 2),

|M| ≤ 2 +
8Φ(u)
m− 1

.

Note that a bound of 2 is optimal for this barbell graph labelling problem.

Cylinder graph

Consider the “cylindrical” graph that is the Cartesian product of an m-clique with a path graph of D

vertices. This cylinder may be visualized asD “aligned” cliques. We assume the cylinder is labeled with

two classes by an m-edge cut that partitions into two cylinders. Assuming D > e2 − 1 then choosing

p = 1 + 1
log(D+1)−1 (with N = 1, k = m, and ∆k = D + 1) and substituting into Corollary 5.4.10 we

derive,

|M| ≤ 4e2 log(D + 1) .

If instead we tune with p = 2 we have |M| ≤ 5 + 4D. Further this bound improves on the “spine”

method in Chapter 4 which has a bound of O(k logD) for this problem.

5.5 Towards efficient p-norm projections

(This section is essentially useless without a closed form for the dual norm in the graph case. It can be

skipped without loss. It is included as a point of interest and to show that the problem of obtaining a

closed form has an immediate useful application.)

In Corrolary 5.3.7 we observed that the online minimum (Ψ, p)-seminorm interpolation algorithm

is equivalent to performing successive Bregman projections to the intersection of constraint sets. Each

single such projection could itself be performed by successive projections to each hyperplane constraint –

such a succession of projections will converge to the projection to the intersection of constraints (Csiszar,

1975; Bauschke and Borwein, 1997). However this would not be an efficient implementation.

In this section we present a related algorithm which, at each (mistaken) trial performs a single

projection to a single hyperplane and obtains exactly the same mistake bound provided by Theorem 5.3.1

and Corollary 5.4.1 for the (Ψ, p)-seminorm interpolation algorithm.

5.5.1 Projection algorithm

Let H⊥ := {u ∈ Rn : u>1 = 0}. Let F (u) = 1
2‖u‖2Ψ,p be defined over all u ∈ H⊥. Denote by

f? the Legendre-Fenchel conjugate of a convex function f and, with reference to Appendix E, note that

F ?(v) = 1
2‖v‖∗

2

Ψ,p. Define the Bregman divergence,

DF (u,w) = F (u)− F (w)− (u−w)>∇F (w).

Define the Bregman projection of w ∈ H⊥ to a convex set C ⊆ H⊥,

projC(w) = argmin
u∈C

DF (u,w).
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We consider the following Pounce-like (Herbster, 2008) algorithm of Figure 5.2. Note that Pounce

Herbster (2008) corresponds to the case p = 2.

Parameters: A linear map Ψ : Rn → Rn̂ and p ∈ (1, 2]

Initialization: w1 = 0; M = {}
Input: {(it, yt)}mt=1 ∈ (Nn × {−1, 1})m

for t = 1, . . . ,m do

Receive: it ∈ {1, . . . , n}
Predict: ŷt = sgn((eit − eiηt )>wt + yηt)

Receive: yt

if ŷt 6= yt then

M =M∪ {t}
wt+1 = projUt(wt), where Ut is the hyperplane Ut := {u ∈ H⊥ : (eit − eiηt )>u = yt − yηt}

end

Figure 5.2: Minimum (Ψ, p)-Bregman projection

Form of the projection

Note that F is Legendre (closed, proper and essentially smooth and strictly convex on the relative interior

of its domain (e.g. Rockafellar, 1972)) onH⊥. To find the projectionwt+1 = projUt(wt) it is then just a

case of forming the Lagrangian of the relevent constrained convex minimisation problem, and following

standard techniques (see, for example, (Dhillon and Tropp, 2008, Section 3.1)). We have the following

convex problem,

min
u∈Rn

DF (u,wt) subject to : (eit − eiηt )
>u = yt − yηt

1>u = 0.

Forming the Lagrangian for this problem and taking the derivative in u, which must be zero at wt+1,

implies that,

∇uDF (u,wt)|u=wt+1 − ξ(eit − eiηt )− ζ1 = 0

∇F (wt+1) = ∇F (wt) + ξ(eit − eiηt ) + ζ1 (5.46)

where ξ and ζ are Lagrange multipliers. By taking the inner product with 1, (5.46) implies ζ = 0 (as

expected) and since the inverse gradient of a strictly convex function is the gradient of its conjugate we

have,

wt+1 = ∇F ?(ξ(eit − eiηt ) + ∇F (wt)), (5.47)

where ξ is such that,

(eit − eiηt )
>∇F ?(ξ(eit − eiηt ) + ∇F (wt)) = yt − yηt . (5.48)
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Note that, equivalently, ξ is the minimum of the strictly convex univariate function,

J(x) = F ?(x(eit − eiηt ) + ∇F (wt))− (yt − yηt)x. (5.49)

The projection (5.47) can then be found by either solving for ξ analytically in (5.48) or by, for example,

numerically finding the minimiser of (5.49).

Note then that calculating this projection amounts to finding a closed form for the dual norm

‖v‖∗Ψ,p, since without this closed form none of (5.47), (5.48) or (5.49) have closed form expressions.

Mistake bound

This attains the same mistake bound as the algorithm in Herbster and Lever (2009): using the notation

of Theorem 5.3.1 we have:

Theorem 5.5.1. The number of mistakes, |M|, incurred by the (Ψ, p)-Bregman projection algorithm,

for any ρ > 0, is bounded by,

|M| ≤ N(X ′, ρ, dΨ,p) +
ρ2 ‖u‖2Ψ,p
p− 1

,

where u ∈ Rn is any labelling such that uit = yt ∀t ≤ m, and N(X ′, ρ, dΨ,p) is the covering number

of the input set X ′ = {i1, i2, ..., im} relative to the distance,

dΨ,p(i, j) := ‖Ei − Ej‖∗Ψ,p.

Proof. (sketch) This is proved as in Theorem 5.3.1. The key points are as follows: we have a Pythagorean

theorem for each projection on a (mistaken) trial t,

DF (u,wt) = DF (wt+1,wt) +DF (u,wt+1) ∀u ∈ Ut,

and so over all trials t ∈ [1,m] we have,

DF (u∗,wt) = DF (wt+1,wt) +DF (u∗,wt+1) ∀u∗ ∈ U∗, (5.50)

where U∗ = ∩>t=1Ut. Note that U∗ is nonempty in the realisable case since, for example, the projection

of the true labelling of G ontoH⊥ is always in U∗. Summing (5.50) gives,
>∑
t=1

DF (wt+1,wt) = DF (u∗,w1)−DF (u∗,wT+1)

≤ DF (u∗,0)

= F (u∗).

The rest of the proof follows as in Theorem 5.3.1.

5.6 Transductive risk bound for the minimum (Ψ, p)-seminorm al-

gorithm

We recall the setting of transductive learning discussed in Section 1.3.1. In this section we prove a bound

on the transductive classification risk as defined in (1.14) for the minimum (Ψ, p)-seminorm algorithm.
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Several methods to derive bounds on the generalization ability of a classifier which is learned

through an online process have been proposed (Littlestone, 1989; Cesa-Bianchi et al., 2001; Graepel

et al., 2005; Cesa-Bianchi and Gentile, 2008). Such methodologies can yield tight risk tail bounds

for common algorithms such as the perceptron (Graepel et al., 2005). These techniques for deducing

risk bounds from online analyses require the assumption that draws of instances from some underlying

input space are i.i.d. and as discussed in Section 1.3.1 this assumption is atypical in the transductive

setting. Here we adapt the result of Cesa-Bianchi et al. (2001) to the case in which instances are sampled

uniformly without replacement from a finite set. Thus we extend this methodology for deriving a risk

bound from an online analysis to make it more naturally applicable to transduction.

Recalling Section 1.3.1, in the transductive learning framework it is common to assume that in-

stances are uniformly sampled without replacement from the finite set Z = X × Y of labeled in-

puts. Let X be a finite input set and Y the corresponding label space so that Z = X × Y is the

joint space of labeled inputs. Consider an online algorithm A acting on an (ordered) trial sequence

S = {(x1, y1), (x2, y2)...(xm, ym)} ⊆ Z and let ht : X → D denote the hypothesis formed after trial t,

where D is a decision space. LetHS = {h0, h1...hm−1} be the ensemble of hypotheses produced when

A is run on S (note the exclusion of the final hypothesis hm). Denote |Z| = n so that u = n−m is the

size of the “test set” (i.e. that part of Z remaining unlabelled and on which a labelling must be inferred).

Let (Xt, Yt) denote the pair of random variables, taking values in Z , drawn at trial t according

to some distribution. We suppose that labeled instances are sampled uniformly without replacement

from Z . Denote by Pt(·) = P(Xt,Yt)(· | (X1, Y1), ...(Xt−1, Yt−1)) the probability measure for the tth

draw from Z , that is, the uniform probability measure over the draw of instances from the finite set

Zt = Z\{(X1, Y1), ...(Xt−1, Yt−1)} of labeled inputs remaining at trial t, and Et[·] the corresponding

expectation. We note that the results of Cesa-Bianchi et al. (2001), regarding the risk of learned hy-

potheses, are no longer valid under the above assumptions on the distribution of the draw of instances.

(However if we are willing to adopt the less typical assumption of an i.i.d. draw of instances then the

standard bounds are immediately applicable.)

Let `0−1 : D×Y → {0, 1} denote the zero-one loss function. We recall the notion of transductive

(classification) risk as defined in (1.14),

riskT (ht) =
1
u

n∑
i=m+1

`0−1(ht(Xi), Yi). (5.51)

For each ht ∈ HS we also define the following measure of risk,

risk(ht−1) := Et(`0−1(ht−1(Xt), Yt)) (5.52)

=
1

|n− t+ 1|
n∑
i=t

`0−1(ht−1(Xi), Yi) (5.53)

which follows since the draw from Zt = {(Xt, Yt), ...(Xn, Yn)} is uniform. We ultimately derive a

bound on the transductive risk for a specific classifier by first proving a bound for the quantity defined

by (5.53).
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Let algorithm A act on a trial sequence S = {(x1, y1), (x2, y2)...(xm, ym)} ⊆ Z . In complete

analogue to Cesa-Bianchi et al. (2001) we demonstrate that a particular hypothesis from the ensemble

HS which has low risk with high probability is that which minimizes the notion of penalized empirical

risk.

Definition The empirical risk of ht is defined r̂isk(ht, t+ 1) = 1
m−t

∑m
i=t+1 `0−1(ht(Xi), Yi).

Definition The δ-penalized empirical risk of ht is defined

r̂isk
(δ)

(ht, t+ 1) = r̂isk(ht, t+ 1) + cδ(m− t) (5.54)

where cδ(x) =
√

1
2x ln m(m+1)

δ for x = 1, 2, ...m.

We denote ĥ = argminht∈HS{r̂isk
( δ2 )

(ht, t + 1)} and we will prove the following bound for risk(ĥ)

which is the counterpart of (Cesa-Bianchi et al., 2001, Theorem 4).

Theorem 5.6.1. Suppose an online algorithm A is run on a trial sequence S = {(x1, y1), ...(xm, ym)}
of labeled instances, drawn uniformly without replacement from a discrete labeled input set Z = X ×
Y . For any δ ∈ (0, 1] let ĥ ∈ {h0, h1, ...hm−1} be that hypothesis which minimizes the δ

2 -penalized

empirical risk. Then,

P

(
risk(ĥ) ≥ M(S)

m
+ 6

√
1
m

ln
2(m+ 1)

δ

)
≤ δ (5.55)

where the probability is w.r.t. the draw of the training sample and M(S) is (any upper bound on) the

number of mistakes incurred by A on S.

The result and technique of the proof are due almost entirely to Cesa-Bianchi et al. (2001), but

the argument is repeated in Appendix F with the changes required for our application highlighted. In

general it is fairly straightforward to derive risk tail bounds valid for the transductive setting which are

analogous to those from the inductive setting: it is simply a case of analysing not the tails of the binomial

distribution but the (shallower) tails of the hypergeometric distribution which can be done using, for

example, Serfling’s inequality (Serfling, 1974).

The following corollary provides a bound on the transductive classification risk as defined in (5.51)

for the minimum (Ψ, p)-seminorm interpolation algorithm.

Corollary 5.6.2. Suppose the minimum (Ψ, p)-seminorm interpolation algorithm is run on a trial se-

quence S = {(vi1 , y1), ...(vim , ym)} of labeled vertices, drawn uniformly without replacement from G.

For any δ ∈ (0, 1] let ĥ be that hypothesis which minimizes the δ
2 -penalized empirical risk, and let t̂ be

such that ĥ = ht̂. We have, for any ρ > 0,

P

(
riskT (ĥ) ≤ n− t̂

n−m

N(VS , ρ, rp) + [ρΦp(u)]
2
p

p−1

m
+ 6

√
1
m

ln
2(m+ 1)

δ


− 1
n−m

m∑
i=t̂+1

`0−1(ĥ(xi), yi)

)
≥ 1− δ (5.56)
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where the probability is w.r.t. the draw of the training sample and u ∈ Rn is any labeling of G such

that uit = yt ∀t ≤ m, p ∈ (1, 2], and N(VS , ρ, rp) is the covering number of the input set VS =

{vi1 , vi2 , ...vim} of labeled vertices relative to the p-resistance rp.

Proof. We first note the equality, valid for all t < m,

riskT (ht) =
n− t
n−m

(
1

n− t
n∑

s=m+1

`0−1(ht(vis), ys)

)

=
n− t
n−m

(
risk(ht)−

1
n− t

m∑
s=t+1

`0−1(ht(vis), ys)

)
. (5.57)

The term risk(ĥ) can then be bounded using (5.55) and then we finally plug the mistake bound of

Corollary 5.4.1 into (5.57).

Let’s make some observations: typically we expect n � m so that the multiplicative term in the

bound (5.56) satisfies n−t̂
n−m ≈ 1. However when n ≈ m the bound is crude (and there is a convergence

issue) – we note this could probably be corrected with a more thorough argument. Nonetheless, this

bound should be compared favourably to typical risk bounds for the transductive setting. For example,

the rate of convergence of the complexity term is O( 1
m ) compared to the typical O( 1√

m
) bounds of, for

example, Theorem 1.3.1 and the bounds of Theorem 3.4.5 and Theorem 3.4.6 discussed in Chapter 3.

5.7 Discussion

We have presented an algorithm for predicting the labelling of a graph which achieves bounds of a similar

form to those of the p-norm Perceptron of Grove et al. (1997). A main argument of this chapter is that

intermediate values of p in our (Ψ, p)-seminorm interpolation algorithm may have important advantages

over the extreme cases of p = 1 and p = 2. This is in agreement with the practical observations

in Bühler and Hein (2009); Singaraju et al. (2009), which considers an algorithm similar to (Ψ, p)-

seminorm interpolation for interactive image segmentation. As with the p-norm perceptron there is a

direct argument that gives bounds which scale logarithmically with the dimension n of the input space.

We refined these “O(log n)” to “O(logD)” bounds in section 5.4.2 using the geometrical results on p-

resistive networks from 5.4.1: it is possible for the learner to tune p using known geometrical quantities

of the graph to obtain a O(logD) bound. The bounds may be further improved by recognizing that the

diameter D of the input space is replaceable by the diameter of the balls that constitute a cover of the

inputs. This was accomplished by adapting the methods of Herbster (2008) to a p-norm framework.

We remark that as p → 1 the bound 5.8 diverges since the strong convexity arguments are not tight. A

sharper analysis of the case p→ 1 may be possible by other methods.

We note the following open problem. As discussed for trees we obtain a bound of O(Φ2 logD).

In Herbster et al. (2008) and in Cesa-Bianchi et al. (2009b) efficient online algorithms were proposed

with mistake bounds of O(Φ log n
Φ + Φ) and O(Φ logD) respectively. The drawbacks of these algo-

rithms are that they are not able to fully exploit additional connectivity in non-tree graphs as typified by



5.7. Discussion 124

barbell or cylinder graphs. This leaves as an open problem the discovery of an algorithm that can obtain

O(Φ logD) on trees but also exploit edge-connectivity as typified by Corollary 5.4.10.

We also remark that Theorem 5.3.1 holds for a much wider class of interpolation algorithms in

which the complexity penalty is κ-strongly convex – the denominator p − 1 in the bound would be

replaced by κ. Lemma 5.3.4 and Lemma 5.3.5 are then just seen as a proof of the p− 1-strong convexity

of the complexity 1
2‖u‖2Ψ,p. However we do not know how to recover the clustering aspect of the bound

under a relaxation of the constraint that the comparison function is exactly correct on the entire trial

sequence (which seems strict in the general case).



Chapter 6

Summary of online graph label prediction

algorithms

Since the original conference publication of the results of Chapters 4 and 5 (Herbster et al., 2008; Herb-

ster and Lever, 2009) more research in this field has emerged, and we here compare these existing

methods and tabulate a overview of the key results. We recall some notation: D(G) is the diameter

of a graph G; N(X , ρ, d) is the minimum number of sets of diameter no greater than ρ in the metric

d : V × V → R≥0 required to cover a set X ⊆ V; rG is the resistance distance metric; RG is the

resistance diameter of G; Φ(u) =
∑

(i,j)∈E Aij |ui−uj |2 is the cut of u. Recalling Chapter 5 rG,p is the

p-resistance on G induced by a p-norm ||u||2G,p =
(∑

(i,j)∈E Aij |ui − uj |p
) 2
p

which generalizes the cut

which is obtained when p = 2.

The online graph labelling problem was first studied in Herbster et al. (2005) where a bound for the

kernel Perceptron was derived which related learning to the resistance diameter of the graph, and the cut

size induced by the underlying binary labelling. This bound was improved upon by a second algorithm,

Pounce (Herbster, 2008), which furhter exploited cluster structure in the resistance metric (along with

demonstrating that this is not the case for the Perceptron). Both of these algorithms have quadratic

runtime in the number of vertices. The algorithm of Chapter 4 (originally in Herbster et al. (2008))

was the fisrt demonstration of an algorithm with a mistake bound (Theorem 4.4.3) which is always

logarithmic in the number of vertices of the graph. This algorithm has loglinear runtime in the number

of vertices and this was accompanied by a second algorithm which exploited cluster structure in the sense

of Pounce (Theorem 4.5.3). Slightly weaker logarithmic bounds were later presented in Fakcharoenphol

and Kijsirikul (2008). More-or-less simultaneously two algorithms were presented which attained a

mistake bound which is logarithmic in the diameter of the graph – the algorithm of Chapter 5 and the

algorithm of (Cesa-Bianchi et al., 2009b). The former exploits cluster structure in the sense of Pounce

and the primary mistake bound is in terms of the cluster structure in the p-resistance metric, when

compared purely in terms of the simultaneous dependence upon the graph cut and the diamter terms the

latter bound has a favourable linear dependence on the cut (compared to a quadratic dependence for the
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algorithm of Chapter 5 when p is chosen to ensure logarithmic dependence on the diameter) and has

runtime which is quadratic in the number of vertices.

The following table presents the results, time complexity is the (amortized per trial) time required

to predict all |V| vertices of a graph. When two bounds exist for a given algorithm, both hold simul-

taneously. Note that Algorithms A, B, D and E require an expensive initialization of computing the

pseudoinverse of a graph Laplacian, which would often be of complexity greater thanO(|V|2) and is not

included in the complexity below. The improved amortized time per trial complexity of Algorithm C was

proved recently in Cesa-Bianchi et al. (2010), even though the worst case time per trial is O(log |V|).

The ‘initialization’ of algorithms C and D of finding a spine by performing a depth first search of the

graph is included and accounts for the O(|E|) term.

Table 6.1: Comparison of algorithms predicting all vertices of an unweighted graph G = (V, E)

Algorithm Mistake Bound Time Complexity

A Perceptron O(Φ(u)RG) O(|V|2)

(Herbster and Pontil, 2007)

B Pounce (Herbster, 2008) ∀ρ > 0 : O(N(V, ρ, rG) + Φ(u)ρ) O(|V|2)

C Prediction with a spine O
(

Φ(u) log
(
|V|

Φ(u)

))
O(|V|+ |E|)

Theorem 4.4.3

D Prediction with a support tree ∀ρ > 0 : O (N(V, ρ, rG) + Φ(u)ρ) O(|V|2 + |E|)
Theorem 4.5.3 O(Φ(u)(log |V|)2 log(log |V|))

E p-seminorm interpolation ∀ρ > 0 : O
(
N(V, ρ, rG,p) + ||u||2G,pρ2/p

p−1

)
N/A

Theorem 5.4.1

F (Cesa-Bianchi et al., 2009b) O(Φ(u) logD(G)) O(|V|2)



Notation

Recurrent notation is listed below. Notation that is introduced and used only locally is ommitted. Section

numbers are given in brackets.

Sets, spaces and related objects

X ,Y,Z = X × Y Input space, label space joint space of labelled inputs (1.1.1)

D Decision space (1.1.1)

H,HK Hypothesis class (1.1.1), reproducing kernel Hilbert space (1.2.2)

Hα Hypotheses with α-bounded complexity (3.2)

S,Slabelled,Sunlabelled Training sample (1.1.1), labelled sample, unlabelled sample (1.3.1)

T Test set (1.3.1) (also a tree in Chapter 4)

(X ,Σ, ν) Measure space (1.2.2)

L2(X ,Σ, ν) Square integrable functions on (X ,Σ, ν) (1.2.2)

`2,R∞ Square-summable real-valued sequences, Real vlaued sequences

C = {Ci}i Clustering or cover (comb graph in Chapter 4)

N(U , ρ, d) Covering number of U w.r.t. distance d

Loss, risk and mistakes

`, `0−1 Loss function, classification loss (1.1.1)

risk`, r̂isk`S Risk associated to `, empirical risk on S (1.1.1)

risk, r̂iskS classification risk, empirical classification risk on S (1.1.1)

risk`T Transductive risk on T (1.3.1)

MS(u) Number of mistakes on S by u (4.4.1)
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Operators, matrices, special functions, norms

K(·, ·) Kernel function (1.2.2)

κ supx∈X K(x, x) (2.4.2)

dK(·, ·) Feature space metric associated to K (2.4.2)

AK Integral operator associated to a kernel K (1.2.2)

FP (·), FQ(·) Energy functions or regularizers (2.2.1)

ÛS(·), U(·) Smoothness functional and its expectation (2.3.3)

ÛS(·), U(·) Generic U -statistic and its expectation (2.3.3)

DΦ(·, ·) Bregman divergence associated to Φ (2.4.2)

|| · ||, || · ||∗(|| · ||∗) Norm and its dual (occasional usage)

|| · ||p p-norm (5.2)

Ei Linear functional Ei(v) = e>i v (5.2)

FL(·) Laplacian complexity (3.3.1)

dF (·, ·) Distance implied by F (3.3.1,3.3.2)

Dp D‖·‖2p (5.3.1)

projF (U ; ·) Projection onto U operator (5.3.1)

Probability

P(A) The probability of event A

PS(·) Probability over the draw of S

E[·],EX [·] Expectation, expectation w.r.t. r.v. X

P,Q Prior and posterior distributions over hypotheses (2.2)

KL(·, ·), kl(·, ·) KL divergence between distributions and between Bernouilli distributions (2.2)

Complexity

VC(·) The VC dimension (1.4.1)

R̂S(·),Rm(·) Empirical Rademacher complexity, Rademacher complexity (3.2)

Rind
m (·),Rtrs

m (·) Inductive and transductive Rademacher complexity (3.4.1)
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Graphs and related objects

V, E ,G = (V, E) Vertex set, edge set, graph on V, E (1.3.1)

L,D,A Graph Laplacian, degree matrix and Adjacency (1.3.1)

∇G ,divG Gradient and divergence operator on G (1.3.1)

P,Pspine Path graph, spine (4.3)

`(P) length of P (5.2)

ΦG(·) Cut functional on G (4.2.1)

Ni Neighbourhood of vertex vi (4.2.2)

C, D = {di}i Comb graph and dongles (4.4.3)

rG , rG,p Resistance metric, p-resistance (3.3.1,5.2.1)

R, Rp Resistance diameter, p-resistance diameter (5.2.1)

ΨG Edge map (5.2.1)

‖·‖Ψ,p, ‖·‖G,p (Ψ, p)-seminorms (5.2.1)

DΨ,p D‖·‖2Ψ,p (5.3.1)

N = (G,S, p) p-resistive network (5.4.1)

P, I, J Power, current, flow (5.4.1)
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Appendix A

Kernels and Green’s functions

Given a linear operator equation,

Af(x) = g(x), (A.1)

we seek a function G(·, ·) such that, for all x ∈ X∫
X
g(x′)G(x′, x)ν(dx′) = f(x).

That is, G provides an integral operator representation of the inverse function A−1 : F → F . If it exists,

such a function G is called the Green’s function for the operator A (or the equation (A.1)). Denote

Gx(·) := G(·, x) then

f(x) = 〈g,Gx〉L2

= 〈Af,Gx〉L2

= 〈f,A∗Gx〉L2 ,

where A∗ represents the adjoint of A. In other words,

(A∗Gx)(z) = δ(x, z). (A.2)

Equation (A.2) is usually the definition of the Green’s function for A∗.

We specialize to the case where A is a self-adjoint linear operator AR := R∗R : L2(X ,Σ, ν) →
L2(X ,Σ, ν), where R is some linear operator1 such that reg : h → 〈h,ARh〉L2 = 〈Rh,Rh〉 is a

regularization operator in the sense of Tikhonov and Arsenin (1977). The Green’s function G(·, ·) is

the function which satisfies δ(x, z) = (ARGx)(z) so it is seen that G plays the role analogue to that of

a matrix right inverse for operators on a Hilbert space. It is shown by Smola et al. (1998) that G is a

Hilbert-Schmidt kernel and we have the following result:

Claim A.0.1. Let HK := span{K(x, ·)}x∈X be an RKHS whose Mercer kernel K is the Green’s

function for the regularization operatorAR. Then the inner product 〈·, ·〉K inHK (on finitely generated2

1For example R might be the gradient operator.
2i.e. elements h ∈ HK such that h(·) :=

∑m
i=1 αiK(xi, ·) for finite m.
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elements ofHK) can be represented as the bilinear form

〈h, g〉K = 〈h,ARg〉L2

=
∫
X
h(x)(ARg)(x)ν(dx).

Proof. Let,

h(·) :=
m∑
i=1

αiK(xi, ·)

g(·) :=
n∑
i=1

βiK(xi, ·).

Then, ∫
X
h(x)(ARg)(x)ν(dx) =

∫
X

∑
i,j

αiβjK(xi, x)(ARK(xj , ·))(x)ν(dx)

=
∫
X

∑
i,j

αiβjK(xi, x)(ARGxj )(x)ν(dx)

=
∫
X

∑
i,j

αiβjK(xi, x)δ(xj , x)ν(dx)

=
∑
i,j

αiβjK(xi, xj)

= 〈h, g〉K .

Corollary A.0.2. The RKHS norm || · ||K (on finitely generated elements of HK) can be represented in

the following ‘regularizer’ form,

||h||2K = 〈h,ARh〉L2 . (A.3)

Often, the above argument can be reversed: the natural L2 regularizer corresponding to an RKHS

norm is the Green’s function of the integral operator (1.8) corresponding to the kernel.
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Technical lemmas

Theorem B.0.3. (Bouman and Sauer, 1993, Theorem 1) Let U and V be Euclidean metric spaces. Let

f(·, ·) be a continuous functional f : U × V → R such that for all v ∈ V , f(·, v) is strictly convex with

a local minimum. Then,

argmin
u∈U

f(u, v),

is a unique and continuous function of v.

Lemma B.0.4. (Hoeffding’s lemma) Let X be a random variable with E[X] = 0 and a < X < b then

for t > 0,

E[etX ] ≤ e t
2(b−a)2

8 .

The following theorem demonstrates that many key properties of martingales are independent of

their dimension. The authors note that it is true for any Hilbert space-valued martingale but the proof is

just for martingales in `2.

Theorem B.0.5. (Kallenberg and Sztencel, 1991, Theorem 3.1) Let {Vt} be a martingale in Rd or `2.

Then there exists a martingale {Ut} in R2 such that ||Vt|| = ||Ut|| a.s. and ||Vt − Vt−1|| = ||Ut −
Ut−1|| a.s..

Given the above result all that we must do to obtain a large deviation inequality for `2-valued

martingales is to demonstrate a variation of Azuma-Hoeffding inequality for a martingale in R2, which

is elementary if we are not concerned with obtaining the best constants.

Corollary B.0.6. For a martingale {Vi}mi=1 in Rd or `2, such that, for all i,

||Vi − Vi−1|| ≤ ci,

we have for all δ > 0,

P

||Vm − V0|| ≤ 2

√√√√ m∑
i=1

c2i ln
4
δ

 ≥ 1− δ.
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Proof. Consider a martingale {Ui}mi=1 in R2 such that,

||Ui − Ui−1|| ≤ ci. (B.1)

Let Ui = (U (1)
i , U

(2)
i ), so that we have that {U (1)

i }ni=1 and {U (2)
i }ni=1 are clearly martingales and that,

|U (1)
i − U (1)

i−1| ≤ ci

|U (2)
i − U (2)

i−1| ≤ ci.

Now,

P (||Um − U0|| ≥ ε) = P
(

(U (1)
m − U (1)

0 )2 + (U (2)
m − U (2)

0 )2 ≥ ε2
)

≤ P
(
|U (1)
m − U (1)

0 | ≥
ε√
2

)
+ P

(
|U (2)
m − U (2)

0 | ≥
ε√
2

)
≤ 4 exp

(
− ε2

4
∑m
i=1 c

2
i

)
,

where the last line follows by the Hoeffding-Azuma inequality (e.g. Azuma, 1967). The result then

follows by theorem B.0.5.



Appendix C

Gaussian measures on infinite-dimensional

Hilbert space

We recall some fundamental facts about Gaussian measures on infinite-dimensional Hilbert space. These

results are the focus of (Da Prato, 2006, chapter 1) and here we just sketch the main ideas.

LetH be a Hilbert space with inner product 〈·, ·〉H and M a self-adjoint positive-definite compact

operator on H. Thus M provides a countable orthonormal basis {φi} for H, comprising its eigenfunc-

tions, with corresponding eigenvalues λi. Suppose further that M is of trace class,
∑∞
i=1 λi < ∞.

Define hi := 〈h, φi〉H and the isomorphism I : H → `2 by I(h) = (hi).

We define by Nai,λi the Gaussian measure on the Borel σ-algebra B(R) of R with mean ai and

variance λi. Define,

Na,M :=
∞∏
i=1

Nai,λi .

(C.1)

Theorem C.0.7. (Da Prato, 2006, Theorem 1.9) Na,M is a probability measure on R∞.

Proof. (Sketch.) The measure is first defined on the ring1 C of cylinder sets, defined for eachA ∈ B(Rn)

by In,A = {(xk) ∈ R∞ : (x1, ...xn) ∈ A} which contain the whole of R∞ in all but finitely many

dimensions (and correspond to a Borel measurable set in those dimensions). The product Na,M can

be shown to be σ-additive on C and so, by Carathéodory’s extension theorem (e.g. Billingsley (1995))

Na,M extends uniquely to a probability measure on the σ-algebra generated by C which is shown to be

B(R∞) (the Borel σ-algebra generated by the product topology).

1Meaning, in this case, a setR such that,

∅ ∈ R

A,B ∈ R ⇒ B\A ∈ R

A,B ∈ R ⇒ A ∪B ∈ R.
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The following two results show that although defined on R∞ the support of Na,M is precisely `2,

i.e. H under the above isomorphism. Thus we refer to Na,M as a measure on `2 and also on H via

isomorphism.

Theorem C.0.8. (Da Prato, 2006, Proposition 1.11) Na,M (`2) = 1.

Theorem C.0.9. (Da Prato, 2006, Proposition 1.25) Let A be any non-empty open subset of H, then

Na,M (A) > 0.

We denote by M
1
2 , M−

1
2 , M−1, the operators onH such that M

1
2φi = λ

1
2φi, M−

1
2φi = λ−

1
2φi,

M−1φi = λ−1φi (which are not necessarily continuous). The following is attributed as a particular

version of the Cameron-Martin formula:

Theorem C.0.10. (Da Prato, 2006, Theorem 2.8)

(a) If a /∈M 1
2 (H) then Na,M and N0,M are singular.

(b) If a ∈M 1
2 (H) then Na,M and N0,M are equivalent.

(c) If Na,M and N0,M are equivalent4 then the Radon-Nikodym derivative is given by,

dNa,M
dN0,M

(h) = exp
(
〈h,M−1a〉H −

1
2
||M− 1

2 a||2H
)
,

where equality is as a function in L1(H, N0,M ).
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The Karhunen-Loève theorem applied to a

Gaussian process

We recall the Karhunen-Loève expansion of a Gaussian process (e.g. Wahba, 1990, page 5). Consider any

zero-mean Gaussian process {Gx}x∈X on a measure space (X ,Σ, ν) with covariance K : X ×X → R.

Suppose that K is a Mercer kernel and therefore has expansion,

K(x,x′) =
∞∑
i=1

λiφi(x)φi(x′),

where {φi}∞i=1 ⊂ L2(X ,Σ,X ) are the eigenfunctions and {λi} eigenvalues of the corresponding inte-

gral operator AK on L2(X ,Σ, ν) i.e. such that,

AKφi(x) =
∫
X
K(x,x′)φi(x′)ν(dx′) = λiφi(x) ∀x ∈ X .

Under certain conditions on (X ,Σ, ν) – for example, when X is compact and ν a finite Borel measure –

Gx has (quadratic mean) representation,

Gx =
∞∑
i=1

Viφi(x), (D.1)

where Vi are independent zero-mean Gaussian random variables with E[V 2
i ] = λi. Convergence in (D.1)

is in the quadratic mean (and so also in probability and distribution), and uniformly over X , i.e.,

E

sup
x∈X

(
Gx −

n∑
i=1

Viφi(x)

)2
→ 0, (D.2)

as n→∞. Note that the Gaussian process {Gx}x∈X corresponds to a distribution on the function space

L2(X ,Σ, ν) which is in general much bigger than the RKHS HK whenever more than a finite number

of the λi are non-zero.
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Convex analysis in general vector spaces

We recall some basic definitions and results from convex analysis. Some of the following concepts hold

in more general settings but throughout let V be a normed vector space over the field of real numbers

and denote by V∗ the continuous dual space of continuous linear functionals on V and denote by 〈·, ·〉 :

V∗ × V → R the dual pairing.

Definition For a function f : V → R ∪ {+∞} we define the convex (or Legendre-Fenchel) conjugate

f? : V∗ → R ∪ {+∞},

f?(v∗) := sup
u∈V
〈v∗, u〉 − f(u).

The Fenchel-Young inequality 〈v∗, u〉 ≤ f?(v∗) + f(u) is an immediate consequence of the

definition. Note that when V is a real Hilbert space (as is generally the case throughout this thesis) the

continuous dual space is isometrically isomorphic to V and the dual pairing 〈·, ·〉 can be identified with

the Hilbert space inner product. An important case is the fact that the Legendre-Fenchel conjugate of a

half norm squared is a half of the dual norm squared, i.e. if f(·) = 1
2 || · ||2 then f?(·) = 1

2 (|| · ||∗)2.

Definition Given a convex function f : V → R ∪ {+∞} any element v∗ ∈ V∗ which satisfies,

∀u ∈ V : 〈u− v, v∗〉 ≤ f(u)− f(v),

is called a subgradient of f at v. The subdifferential ∂f(v) of f at v is the set of all subgradients of f at

v.

In particular if f is differentiable at v with derivative ∇f(v) then ∂f(v) = {∇f(v)}. In the

following it is understood that V is a Banach space.

Definition A function f : V → R is κ-strongly convex w.r.t. a norm || · || on V if for all u, v ∈ V and

v∗ ∈ ∂f(v) we have,

f(u)− f(v)− 〈v∗, u− v〉 ≥ κ

2
||u− v||2.
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It is not necessary for a function to be differentiable to be strongly convex, and strong convexity

can be equivalently defined as follows (see e.g. (Shalev-Shwartz, 2007, Lemma 13) for the simpler case

of finite dimensional spaces and (Zălinescu, 2002, Corollary 3.5.11) for the general case):

Lemma E.0.11. A function f : V → R is κ-strongly convex w.r.t. a norm || · || on V if for all u, v ∈ V
in the relative interior of the domain of f we have,

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v)− κ

2
α(1− α)||u− v||2.

Definition A function f : V → R is κ-strongly smooth w.r.t. a norm || · || on V if for all u, v ∈ V and

v∗ ∈ ∂f(v) we have,

f(u)− f(v)− 〈v∗, u− v〉 ≤ κ

2
||u− v||2.

The following result has been of recent interest in the learning theory community. The proof can

be found in (Zălinescu, 2002, Corollary 3.5.11) (see the equivalence of statements (i), (iii) and (viii)

therein and in fact a more general case is studied), an accessible proof of a less general case is presented

in Kakade et al. (2009).

Theorem E.0.12. A lower semicontinuous convex function f : V → R is κ-strongly convex w.r.t. a norm

|| · || on V if and only if its Legendre-Fenchel conjugate f? : V∗ → R is 1
κ -strongly smooth w.r.t. the dual

norm || · ||∗ on V∗.



Appendix F

Proof of Theorem 5.6.1

We try to maintain the structure and notation of the proof in Cesa-Bianchi et al. (2001) as closely as

possible.

Proposition F.0.13. (Cesa-Bianchi et al., 2001, Proposition 1) LetHS = {h0, h1...hT−1} be the ensem-

ble of hypotheses produced by an online algorithm A on a trial sequence S = {(x1, y1), ...(xT , yT )}.
For any δ ∈ (0, 1] we have,

P

(
1
T

T∑
t=1

risk(ht−1) ≥ M(S)
T

+

√
2
T

ln
1
δ

)
≤ δ, (F.1)

where M(S) is (any upper bound on) the number of mistakes incurred by A on S.

Proof. Set S0 = 0 and for 1 ≤ t ≤ T set,

Vt = risk(ht−1)− `0−1(ht−1(Xt), (Yt))

St =
t∑
i=1

Vi.

Note that ST =
∑T
t=1 risk(ht−1) −M(S). Note further that the sequence {St} is a martingale with

respect to the sequence {Xt} since for all 1 ≤ t ≤ T we have |Vt| ≤ 1 and,

E[St | X1, ...Xt−1] = St−1 + E[Vt | X1, ...Xt−1]

= St−1.

Thus we can use the Azuma-Hoeffding inequality (Azuma, 1967) to derive,

P

(
1
T

T∑
t=1

risk(ht−1) ≥ M(S)
T

+

√
2
T

ln
1
δ

)
= P

(
ST ≥

√
2T ln

1
δ

)
≤ δ.

Lemma F.0.14. (Cesa-Bianchi et al., 2001, Lemma 3) Let HS = {h0, h1...hT−1} be the ensemble of

hypotheses produced by an online algorithm A on a trial sequence S = {(x1, y1), ...(xT , yT )}. For any

δ ∈ (0, 1] let ĥ = argminht∈HS{r̂isk
(δ)

(ht, t+ 1)}. We have,

P
(

risk(ĥ) > min
0≤t≤T

{risk(ht) + 2cδ(T − t)}
)
≤ δ. (F.2)
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Proof. But for the final lines, this is proved as in (Cesa-Bianchi et al., 2001, Lemma 3). Setting T ∗ =

argmin0≤t≤T {risk(ht) + 2cδ(T − t)}, h∗ = hT∗ and Rt = r̂isk(ht, t+ 1), the inequality,

P
(

risk(ĥ) > risk(h∗) + 2cδ(T − T ∗)}
)
≤

T−1∑
t=0

P(Rt ≤ risk(ht)− cδ(T − t))

+ T

T−1∑
t=0

P(Rt ≥ risk(ht) + cδ(T − t)),

can be derived exactly as in Cesa-Bianchi et al. (2001). We then note thatRt = 1
T−t

∑T
i=t+1 `0−1(ht(Xi), Yi)

is not a sum of independent random variables (so we cannot use Chernoff-Hoeffding bounds as in Cesa-

Bianchi et al. (2001)). Rather,
∑T
i=t+1 `0−1(ht(Xi), Yi) has a hypergeometric distribution. The result

then follows by using Serfling’s inequality for sums of random variables obtained by sampling uniformly

without replacement (Serfling, 1974) 1.

Proof of Theorem 5.6.1. Theorem 5.6.1 can now be proved by following (Cesa-Bianchi et al., 2001,

Theorem 5), invoking the results Proposition F.0.13 and Lemma F.0.14 in place of their counterparts

therein.

1If Z has a hypergeometric distribution with k ≥ 1 draws from a set of size N then P(Z ≤ E[Z]− kε) ≤ e−2kε2 N
N−k−1 ≤

e−2kε2 and similarly P(Z ≥ E[Z] + kε) ≤ e−2kε2 N
N−k−1 ≤ e−2kε2 .



Appendix G

Structure dependent risk bound and

regularization

Theorem 3.3.2 supplies a risk bound in terms of the observed cluster structure in the training sample.

Theorem G.0.15. Using the notation of Theorem 3.3.2, and when `(·, ·) is positive and bounded by C,

for all h ∈ H,

PS

(
risk`(h) ≤ r̂isk`S(h) + 2K

(
B

√
|C|
m

+ 2

√
2F ′(h)ρS
mκ

)
+ 3C

√
log 2

δ

2m

)
≥ 1− δ.

where F ′(h) := minr∈{1,2,...}max
(
αr,

r+1
r F (h)

)
and αr := 9C2κr log 2

16K2ρS
.

Proof. Define the stratification: H(0) = {} and, for t ∈ {1, 2, ...}, H(t) = Hαt . The empirical version

of Theorem 3.2.1 (e.g. Boucheron et al., 2005) implies that with probability at least 1− δ
2t simultaneously

for all h ∈ H(t)\H(t−1) we have,

risk`(h)− r̂isk`S(h) ≤ 2KR̂S(Hαt) + 3C

√
log 2t+1

δ

2m

≤ 2K

(
B

√
|C|
m

+

√
2αtρS
mκ

)
+ 3C

√
t log 2
2m

+ 3C

√
log 2

δ

2m

≤ 2K

(
B

√
|C|
m

+ 2

√
2αtρS
mκ

)
+ 3C

√
log 2

δ

2m
. (G.1)

Now noting that for r ∈ {1, 2, ...}, αt > αr implies that t ≥ r + 1 and αt ≤ r+1
r αt−1 so

αt ≤ min
r∈{1,2,...}

max
(
αr,

r + 1
r

αt−1

)
≤ F ′(h) (G.2)

The result then follows by combining (G.2) with (G.1) and applying the union bound over all t ∈
{1, 2, ...}.

Theorem G.0.15 suggests an algorithm: pick the classifier which minimizes the bound. this is

simply regularization w.r.t. the complexity F (·) but the regularization parameters are determined by the
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observed cluster structure in the data. In principle the information needed to choose the regularization

parameter should be encoded in the data, so it would be of interest to understand this relationship and

reduce the need for cross validation.

A special case of the above is RKHS regularization, obtained by picking the 1-strongly convex

Hilbert space norm as a complexity, F (h) = 1
2 ||h||2K . The cluster structure in this case is that in feature

space.



Appendix H

Proof of Theorem 3.4.3

The theorem is due to Pelckmans and Suykens (2007), but no full proof could be found in the literature

so we supply one here. The proof follows the familiar strategy of using a McDiarmid-type inequality fol-

lowed by the introduction of a ghost sample, requiring a little more manipulation due to the transductive

setting.

We require some preliminaries: let P be the set of all n! permutations of n = m + u objects

Z: for each π ∈ P , each πi is a distinct element of Z . Let πij be the permutation vector obtained by

exchanging element i with j in π. We use the following lemma.

Lemma H.0.16. (El-Yaniv and Pechyony, 2007, Lemma 3) Suppose that, for each π, f : P → R is

symmetric on (π1, ...πm) and on (πm+1, ...πn) and |f(π)−f(πij)| ≤ β for all i and j. Let π be drawn

uniformly at random from P , then

Pπ (f(π)− Eπ(f(π)) ≥ ε) ≤ exp
( −2ε2

β2 min(m,u)

)
.

We now prove the theorem.

Proof. Define D(S) := suph∈H
(

risk`T (h)− r̂isk`S(h)
)

and notice that D satisfies the conditions of

Lemma H.0.16 with β = C( 1
m + 1

u ), thus with probability at least 1− δ over the draw of S

D(S) ≤ ES(D(S)) + C

(
1
m

+
1
u

)√
min(m,u)

2
log

1
δ
. (H.1)

Denote Zi := (Xi, Yi) for each (Xi, Yi) drawn from Z . For each h ∈ H denote `h(Zi) := `(h(Xi), Yi)
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so that LH := {`h : h ∈ H} is the class of loss functions indexed byH over Z . We have

ES(D(S)) = ES
[

sup
h∈H

(
risk`T (h)− r̂isk`S(h)

)]
= ES

[
sup
h∈H

(
1
u

u∑
i=1

`h(Zti)−
1
m

m∑
i=1

`h(Zsi)

)]
(H.2)

= ES

[
sup
h∈H

(
1
u

n∑
i=1

`h(zi)−
(

1
m

+
1
u

) m∑
i=1

`h(Zsi)

)]

=
n

u
ES

[
sup
h∈H

(
1
n

n∑
i=1

`h(zi)−
1
m

m∑
i=1

`h(Zsi)

)]

=
n

u
ES

[
sup
h∈H

(
ES′

[
1
m

m∑
i=1

`h(Z ′si)

]
− 1
m

m∑
i=1

`h(Zsi)

)]
(H.3)

where S ′ = {Z ′s1 , ...Z ′sm} = {(X ′s1 , Y ′s1), ...(X ′sm , Y
′
sm)} is a familiar “ghost sample” drawn according

to the same distribution as S, that is, uniformly without replacement from Z . Continuing, the r.h.s. of

(H.3) is no greater than,

n

u
ES,S′

[
sup
h∈H

(
1
m

m∑
i=1

`h(Z ′si)− `h(Zsi)

)]
≤ n

u
ES,S′,σ

[
sup
h∈H

(
1
m

m∑
i=1

`h(Z̃ ′si)− `h(Z̃si)

)]
(H.4)

=
n

u
ES,S′,σ

[
sup
h∈H

(
1
m

m∑
i=1

σi`h(Z ′si)− σi`h(Zsi)

)]
,

(H.5)

where the {σi}mi=1 are independent Rademacher variables and where Z̃si := 1
2 (1+σi)Zsi+

1
2 (1−σi)Z ′si

and Z̃ ′si := 1
2 (1 − σi)Zsi + 1

2 (1 + σi)Z ′si . Inequality in (H.4) occurs because S̃ := {Z̃s1 , ...Z̃sm} and

S̃ ′ := {Z̃ ′s1 , ...Z̃ ′sm} can each contain repeated instances and are less likely than S and S ′ to have

in common a copy of the same labeled point, thus the expected supremum is larger1: we prove this

formally, for a particular σ, S and S ′ denote,

K := {(i, j) : Zsi = Z ′sj}

K̃ := {(i, j) : Z̃si = Z̃ ′sj},

and call such occurances “clashes”. Put N := |K| − |K̃| ≥ 0 so that the action of σ on S, S ′ swaps

N clashes; there are N instances which S and S ′ had in common, which occur in one of S̃, S̃ ′ with

multiplicity 2. Now let M0 = m− |K| and define,

Ψ := {ψ1, ...ψM0} := S\{Zi : (i, j) ∈ K for some j}

Ψ′ := {ψ′1, ...ψ′M0
} := S ′\{Z ′j : (i, j) ∈ K for some i}

Ψ̃ := {ψ̃1, ...ψ̃M0+N} := S̃\{Z̃i : (i, j) ∈ K̃ for some j}

Ψ̃′ := {ψ̃′1, ...ψ̃′M0+N} := S̃ ′\{Z̃ ′j : (i, j) ∈ K̃ for some i}

1In the inductive setting these steps are more straightforward since there the random variables Z′si and Zsi have the same

distribution for each i and an equality follows by symmetry.
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so that, for example, Ψ is S with any elements common to S and S ′ removed. Note that

{ψ1, ...ψM0 , ψ
′
1, ...ψ

′
M0
} are all distinct. Further, w.l.o.g. we order Ψ̃ and Ψ̃′ such that at least one

copy of any elements which occur in either Ψ̃ or Ψ̃′ with multiplicity 2 (there are N such elements in

total, shared between Ψ̃ and Ψ̃′) is placed in a position j where M0 < j ≤ M0 + N . This ordering

ensures {ψ̃1, ...ψ̃M0 , ψ̃
′
1, ...ψ̃

′
M0
} are all distinct. Because of this, the sets {ψ1, ...ψM0 , ψ

′
1, ...ψ

′
M0
} and

{ψ̃1, ...ψ̃M0 , ψ̃
′
1, ...ψ̃

′
M0
} have the same distribution: they are both drawn uniformly without replacement

from Z . Now we set

h∗ := argmax
h∈H

M0∑
i=1

`h(ψ̃′i)− `h(ψ̃i) (H.6)

and note,

ES,S′,σ

[
sup
h∈H

(
1
m

m∑
i=1

`h(Z̃ ′si)− `h(Z̃si)

)
− sup
h∈H

(
1
m

m∑
i=1

`h(Z ′si)− `h(Zsi)

)]

= ES,S′,σ

[
sup
h∈H

(
1
m

M0+N∑
i=1

`h(ψ̃′i)− `h(ψ̃i)

)
− sup
h∈H

(
1
m

M0∑
i=1

`h(ψ′i)− `h(ψi)

)]

≥ ES,S′,σ

[
1
m

M0+N∑
i=1

`h∗(ψ̃′i)− `h∗(ψ̃i)− sup
h∈H

(
1
m

M0∑
i=1

`h(ψ′i)− `h(ψi)

)]

= ES,S′,σ

[
1
m

M0+N∑
i=M0+1

`h∗(ψ̃′i)− `h∗(ψ̃i)
]
, (H.7)

and we now show that the final line (H.5) ≥ 0. Denote Ψ1 := {ψ̃′i}M0
i=1, Ψ2 := {ψ̃i}M0

i=1. The result

will follow essentially because conditional on Ψ1 ∪ Ψ2, elements of {ψ̃′M0+1, ...ψ̃
′
M0+N} are drawn

from Z\Ψ2 and elements of {ψ̃M0+1, ...ψ̃M0+N} are drawn from Z\Ψ1: consider {ψ̃′i}M0+N
i=M0+1, N1 of

these are drawn uniformly without replacement from Ψ1, where N1 = Bin(N, 1/2). Likewise N2 =

N −N1 of the {ψ̃i}M0+N
i=M0+1 are drawn uniformly without replacement from Ψ2. Denote these by Ξ1 :=

{ξ′i}N1
i=1 and Ξ2 := {ξi}N2

i=1 respectively and Ξ := Ξ1 ∪ Ξ2. The remaining N elements of Ω :=(
{ψ̃′i}M0+N

i=M0+1 ∪ {ψ̃i}M0+N
i=M0+1

)
\Ξ are drawn uniformly without replacement fromZ\(Ψ1∪Ψ2). Denote

these by {ψ̃′i}M0+N
i=M0+1\Ξ1 =: {ω′i}N2

i=1 and {ψ̃i}M0+N
i=M0+1\Ξ2 =: {ωi}N1

i=1. Then we have,

(H.5) =
1
m

E

[
N1∑
i=1

`h∗(ξ′i)−
N2∑
i=1

`h∗(ξi)

]
+

1
m

E

[
N2∑
i=1

`h∗(ω′i)−
N1∑
i=1

`h∗(ωi)

]

=
1
m

E

 ∑
ξ′∈Ξ1

`h∗(ξ′)−
∑
ξ∈Ξ2

`h∗(ξ)

+
1
m

E

[
N2∑
i=1

`h∗(ω′i)−
N1∑
i=1

`h∗(ωi)

]
.

The second summand is zero by symmetry (ω′i and ωi have the same distribution). The first summand is

not less than zero since, conditioned on Ψ1 ∪Ψ2, Ξ1 is drawn uniformly without replacement from Ψ1,

and Ξ2 is drawn uniformly without replacement from Ψ2 and otherwise we would have a contradiction

on the definition (H.6) of h∗. Thus (H.5) ≥ 0 and (H.4) holds.

To continue, we finally just note,

(H.5) ≤ 2
n

u
Rtrs
m (LH)

≤ 2K
n

u
Rtrs
m (H),
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The final line is a consequence of the contraction inequality for Rademacher complexities, (Meir and

Zhang, 2003, Theorem 7).

Finally, notice the symmetry in (H.2) for m ↔ u and that by producing precisely the sym-

metrically opposite argument we would derive ES(D(S)) ≤ 2K n
mRtrs

u (H), hence ES(D(S)) ≤
2Kn

max(m,u)Rtrs
min(m,u)(H).
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