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Figure 11. As figure 9 but for a TSL solution of (2.9) and (2.11) for α = 0.196.

Figure 11 shows an evolution from the very narrow TSL regime. The development
is typical of supercritical solutions, with no upstream influence and a wavetrain swept
downstream. At large time the interface near the topography moves monotonically
towards the predicted hydraulic solution, although, as in figure 10, the approach is
slow. Once again, dispersion has little effect apart from smoothing the SLs.

5.2. Y0 = 0.5

For Y0 = 0.5, the symmetric, mid-channel-shelf geometry of HJH, the CC and AC
regimes are of particular interest. This subsection gives examples for the relatively
large-amplitude perturbation of ε = 0.25, the value, in the present notation, used in
the CD simulations of CC and AC flows in HJH. For moderate ε flows evolve in a
similar, but less extreme, manner.

Figure 12 for α = 0.05 falls into the CC regime near the subcritical boundary.
The flow develops initially like the CC flow of figure 9. However, as the flow lies
near the subcritical rather than the AC boundary the subsequent behaviour differs.
The downstream undular bore evolves into a stationary lee wavetrain attached to the
obstacle and upstream small waves continually generated at the obstacle propagate
away along the positive plateau given by the hydraulic solution. The hydraulic solution
accurately models the behaviour near the maximum topographic perturbation, but
fails due to dispersive effects both upstream and downstream. This solution should
be compared with HJH6(a) where α ≈ 0.053 and µ ≈ 0.15. Figure HJH6(a) shows
no upstream wave generation as the domain shown is too narrow, but HJH6(b),
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Figure 12. As figure 9 but for a CC solution of (2.9) and (2.11) for Y0 = 0.5, ε = 0.25, α = 0.05.

where µ ≈ 1, does show weak unsteady waves at the leading edge of the topography.
In both flows of HJH6 the leading wave of the downstream wavetrain overturns to
form an eddy, although for the longer topography this is only a slight pinching. The
present formulation requires Y to be single-valued. Dispersive effects in the governing
equation (2.9a) prevent the interface C from becoming vertical and so, provided the
resolution of the computation is sufficiently high, flow evolutions can be followed
until C approaches the vertical. In figure 12 the slope does not become vertical
anywhere even though the interfaces of HJH6 show pinching. Once C approaches
the vertical, the closeness of the long-wave integration to the CD simulation is not
assured, however, as higher-order derivatives, neglected in the derivation of (2.9a) may
become important. A brief discussion and comparison of long-wave and overturning
CD integrations for the coastal geometry of Clarke & Johnson (1997a, b) is given in
Johnson & Clarke (1998).

Figures 13 and 14 give evolutions in the AC regime where the CD integrations
of HJH overturn even for long obstacles. Figure 13 with α = 0.1 corresponds to
HJH11 and figure 3 where α ≈ 0.106 and µ ≈ 0.04. The evolution terminates just
after T = 65 when the interface touches, and then attempts to pass through, the wall
at y = 0. Figure 13(b) shows that the touching is at the base of the transition that has
moved downstream from its initial position upstream of the topographic maximum.
This agrees with HJH11(b) where the transition overturns as it moves downstream
of the topographic maximum. The removal of the possibility of overturning leads
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Figure 13. As figure 12 but for an AC solution of (2.9) and (2.11) for α = 0.1. The integration
terminates just after T = 65 as the interface strikes the wall.
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Figure 14. The interface C at time T = 50 of an AC solution of (2.9) and (2.11) with Y0 = 0.5,
ε = 0.25, α = 0.175 and µ = 0.2. The shelf edge is dashed and the hydraulic solution dash-dotted.

the evolution to fail by predicting that the interface passes through the wall. Again,
similar behaviour for coastal flows has been noted in Clarke & Johnson (1997b) and
Johnson & Clarke (1998). Figure 13(a) shows that between T = 20 and T = 40
a small wave, possibly a shock or hydraulic jump, forms on the negative plateau
immediately downstream of the transition as the solution changes from being CC
to AC flow. The wave moves downstream ahead of the transition, decreasing in
amplitude. An identical feature is apparent in the CD simulation of HJH11(a).

Figure 14 shows the interface C at large time from a second large-amplitude AC
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Figure 15. As figure 13 but for an AC solution of (2.9) and (2.11) for Y0 = 0.75, ε = 0.1, α = 0.15
(so Fr = 0.8).

flow. A constant-amplitude wake propagates downstream leaving behind a region
where the flow evolves monotonically towards the predicted hydraulic solution. This
differs from weakly nonlinear solutions where the bore amplitude decreases down-
stream and also from the CD integrations of HJH where the wave at the upstream
edge of the downstream-propagating bore overturns. As in the evolution of figure
12, provided the resolution is sufficiently high, integrations of equation (2.9a) do not
overturn even when the CD integrations do. The filtering out of short-scale effects
in the long-wave equation leads to faster dispersion of the downstream undular bore
and prevents overturning of the wave forming the bore’s upstream edge.

5.3. Y0 = 0.75

The regime diagram shows four hydraulic solutions for Y0 = 0.75: subcritical, CC,
AC and supercritical. Except for large ε, where the interface overturns early in the
evolution, the CC regime is narrow and so CC flows for this value of Y0 are unlikely
to be observed. This leaves subcritical and AC flows as those whose behaviour is of
most interest. Two examples are given here.

Figure 15 shows AC flow with ε = 0.1 and α = 0.15 (so Fr = 0.8). Upstream the
evolution is similar to the other AC flows with a rarefaction propagating away from
the topography. The downstream-propagating wavetrain evolves differently. Instead
of developing into a solitary wave the leading edge of the downstream undular bore
forms into a dispersionless shock which propagates downstream. The shock is a



50 E. R. Johnson and S. R. Clarke

1.0

0

0.5Y

–20 –10 0 10 20
χ

T = 400

Figure 16. An unsteady solution of (2.9) and (2.11) for Y0 = 0.75, ε = 0.05, α = 0.15 (so Fr = 0.8)
and µ = 0.05, corresponding to the steady flows shown in figure 8. The interface C is shown at
T = 400 with the shelf-edge (dashed) and the AC hydraulic solution (dash-dotted).

propagating kink soliton as described in CJ and § 4.1. Here however Y− and Y+ are
fixed as the Y -positions of the two possible supercritical hydraulic solutions (saddle
points) and Y T

h = Y0. The conditions (3.13) or (4.4) now determine the propagation
speed of the shock. Downstream from the shock the wake is beginning to disperse
into a train of negative solitary waves of the same form as those given by the dashed
trajectory of figure 7(c), pointing towards the centre of the channel from the positive
plateau of the supercritical solution. At large times the flow near the topographic
perturbation becomes steady, with a constant-amplitude positive plateau upstream
and negative plateau downstream, in close agreement with the hydraulic solution.

Figure 16 shows the interface C at large time for a smaller-amplitude perturbation
at the same speed α but with much reduced dispersion of µ = 0.05. The parameter
values correspond to the ‘+’ of figure 5(e), falling into the subcritical region but
close to the AC region. This is the point noted in § 4.2 where the subcritical solution
branch disappears when µ exceeds µ0 ≈ 0.15444. The dispersion in figure 16 is
however far smaller with µ < 1

3
µ0. Nevertheless, the solution ignores the well-behaved

(metastable) subcritical flow (which has a far smaller-amplitude wavetrain than figure
8(a)), evolving to the coexisting (absolutely stable) AC flow. The evolution is slow
because dispersion is weak, but by T = 400 the interface shows the downstream
wavetrain dispersing into a train of negative solitary waves dipping down from the
reference level given by the ‘inaccessible’ supercritical solution, as in figure 15. It
appears that when the CC region of parameter space is too small to offer a barrier
between subcritical and AC regions, unsteady flows can evolve to be AC well before
the topography is so short that the solution passes through the cusp catastrophe of
§ 4.2.

6. Discussion
The simple model introduced in HJH of Rossby-wave hydraulics in a rotating

channel has been extended to incorporate higher-order, dispersive, effects. Retaining
higher-order terms in the aspect ratio µ1/2 of the motion gives a finite-amplitude
evolution equation for the potential vorticity interface, which at leading order is the
hydraulic equation derived in HJH. At the next order dispersion becomes important,
preventing the formation of the shock-like discontinuities typical of hydraulic solu-
tions. The evolution of the interface can thus be efficiently followed up to large time
and steady equations integrated to give continuous stationary solutions.

The hydraulic behaviour of the system for simple contractions (only one extremum)
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of the shelf width depends on three non-dimensional parameters: Y0, the unperturbed
position of the topographic step; ε, the maximum perturbation to the position of
the step; and α, the oncoming flow speed. Here the analysis of HJH for the special
symmetric case of Y0 = 1

2
has been extended to the full range of these parameters.

Five types of hydraulic solutions occur: subcritical, supercritical, controlled at the
constriction (CC), controlled at the leading edge (approach-controlled, AC) and twin
supercritical leaps (TSLs). The first four have been described in HJH but the last
occurs only for Y0 <

1
3
. For each value of Y0 the regimes for these solutions have

been delineated in the (α, ε)-plane, giving five characteristic types of regime diagrams.
The general form depends on whether 0 < Y0 <

1
3
, 1

3
< Y0 <

2
3

or 2
3
< Y0 < 1.

Three of the hydraulic solutions – subcritical, supercritical and CC – are smoothly
varying. The remaining two, AC and TSLs, involve sudden jumps of the hydraulic
solution between different supercritical branches. Integrations and analysis of the
steady form of the finite-amplitude evolution equation show that in the hydraulic
limit these supercritical leaps (SLs) correspond to the kink soliton solutions of the
unforced problem. Transitions occur between points on the hydraulic curve having
the same value of the ‘potential’ V of (4.3). Hydraulic theory augmented by the
jump conditions (3.13) or, equivalently, (4.4) determines the position of an SL. Within
the SL dispersive effects are important at leading order. Although the analysis
of SLs and TSLs is particularly straightforward for the present model with its
simple two-valued potential vorticity distribution, these phenomena should be generic
for systems with similarly shaped hydraulic diagrams. The simple single-step shelf
discussed here is equivalent to filtering out the higher cross-channel modes present
over smoother depth changes and retaining only the fundamental mode. In coastal
wave-scattering problems over finite-amplitude topography restricting attention to
the fundamental mode has been shown to give accurate approximations to the full
multi-mode solutions (Johnson 1990, 1993). Preliminary calculations indicate that the
flow behaviours described here are also present in continuously stratified flows.

In supercritical, AC and TSL flows dispersion simply smooths the hydraulic solution
where the interface slope would otherwise change rapidly. In subcritical flows a finite-
amplitude standing lee wavetrain forms downstream, and upstream the interface
displacement is given by the constant value of the hydraulic solution. CC flows show
two distinct behaviours depending on whether they lie nearer the subcritical or AC
boundaries of the CC regime. Those near subcritical flow show the constant upstream
interface displacement and steady downstream wake typical of subcritical flow. Those
near AC flow show the steady downstream displacement of supercritical solutions
but at the leading edge of the obstacle show continual, unsteady, generation of waves
which propagate upstream superposed on the plateau of the hydraulic solution. In
general, all these flows, at least near the perturbation and often elsewhere, are well-
described by hydraulic theory. However, in some flows for Y0 >

2
3

even very weak
dispersion changes the whole character of the flow. This happens when the CC region
separating the subcritical and AC regions is thin as in figure 5(e) or the CC and AC
regions are absent and subcritical borders supercritical as in figure 5(f). Near these
boundaries the steady subcritical solution disappears as the dispersion µ is increased
(the topographic scale reduced) past some critical value µ0, leaving an AC solution as
the sole candidate for steady flow. Integrations of the initial value problem show that
in these parameter regimes even far smaller dissipation (µ < 1

3
µ0) leads flows to evolve

to the coexisting steady AC flow rather than the well-behaved smooth subcritical flow.
The long-wave formulation (2.9) is valuable for unsteady flows as it can be straight-

forwardly numerically integrated with high accuracy to large times, contrasting with
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the CD integrations of HJH which become prohibitively computationally intensive
as the disturbance to the interface lengthens. CD simulations can, however, follow
flows after the interface overturns, as it will in flows forced by sufficiently large
perturbations (ε comparable to Y0 or 1 − Y0) of sufficiently small scale (µ ∼ 1). The
three overturning sites are within a downstream-propagating bore, at the upstream
wave of what would otherwise be a steady lee wavetrain, and during the formation
of some AC flows. In CD integrations eddies forming on a downstream-propagating
bore are swept away without affecting the flow near the topography whereas large
eddies formed in a steady lee wavetrain remain near the topography and alter the
flow field. In both these cases the long-wave problem (2.9) can be integrated without
difficulty provided the resolution of the computation is sufficiently high. Filtering out
the short-scale components regularizes the evolution of the interface. This seems to
give an accurate description of the long-time behaviour when the CD eddies are swept
downstream but may be inaccurate when the eddies remain near the topography. The
overturning during the formation of some AC flows is more troublesome both here
and in the CD simulations and appears for large ε even when dispersion is small.
As noted in § 5.2, HJH11 shows the transition associated with an initially CC flow
steepening as it move slowly downstream to eventually overturn close to the wall
y = 0. Integration of the long-wave problem for these parameters (figure 13) fails
when the steepening interface attempts, as it moves downstream, to pass through the
wall y = 0. Here filtering out the short scales precludes following the evolution further.
To carry the CD integrations to very large times HJH found it necessary to replace
the downstream wavetrain at some large intermediate time with a smooth transition.
The evolution could then be followed to a monotonic steady state closely agreeing
with the hydraulic solution (figure 3). Vanishingly small frictional effects could lead
however to flows in this parameter regime departing from the CD integration. In
discussing AC flows in two-layer non-rotating flow over topography Lawrence (1993)
suggests that friction may cause a transition to evolve to a hydraulic jump upstream
of the point at which the steady SL of the AC flow would be expected to form. It is
not straightforward to include frictional effects in the CD integrations but they could
be added to the long-wave model in the same way as to the forced KdV equation in
Smyth (1988).

The dispersive hydraulic method should prove useful in other flows where hydraulic
theory has been applied. It has been previously used by Grimshaw & Yi (1990) and
the authors to study finite-amplitude waves on coastal currents. Indeed, in the present
geometry in the limit Y0 → 0, 1 and ε→ 0 the appropriate cross-channel length scale
becomes the shelf width rather than the channel width and the analysis approaches
that of Clarke & Johnson (1997a, b).

The UK Natural Environment Research Council supported this work under grant
number GR3/09174. We are grateful to the referees whose comments let us improve
the presentation of this work.

Appendix. Numerical determination of steady solutions
Steady solutions of the governing equation (2.9) can be rapidly and accurately

evaluated by a Newton iteration. Equation (2.9) can be written in the form

Ψh(Y , Yh) +
µ

6
Ψ1(Y , Yh)− µ

3
Y (1− Y )

∂

∂χ

[
Y (1− Y )Yχ

]
= ψ0, (A 1)
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where Ψh(Y , Yh) and Ψ1(Y , Yh) are low-order polynomials in Y and the derivatives
of Yh are known analytically. Take N evenly spaced points χi (i = 1, . . . , N) and let
yi and Fi be the corresponding values of Y (χ) and the residuals of equation (A 1) at
these points (with the derivatives of Y in (A 1) approximated by central differences).
Then the discrete form of (A 1) is

F (y) = 0, (A 2)

and the corresponding Newton iteration

y(n+1) = y(n) + ŷ(n), (A 3a)

where
T ŷ(n) = −F (y(n)). (A 3b)

The non-zero elements of the tridiagonal Jacobian matrix T follow easily by direct
differentiation as

Ti−1,i = −µ
3
yi(1− yi) [yi(1− yi)/h2 + (1− 2yi)y

′
i/h
]
, (A 4a)

Ti,i =
∂Ψh

∂Y
(yi, Yh) +

µ

6

∂Ψ1

∂Y
(yi, Yh) +

2µ

3
[yi(1− yi)]2 /h2

−µ
3

{
2y′′i

[
yi(1− yi)2 − (1− yi)y2

i

]
+ y′2i (1− 6yi + 6y2

i )
}
, (A 4b)

Ti+1,i = −µ
3
yi(1− yi) [yi(1− yi)/h2 − (1− 2yi)y

′
i/h
]
, (A 4c)

where y′i = (yi+1 − yi−1)/2h and y′′i = (yi+1 − 2yi + yi−1)/h
2. The iteration can be

readily adapted to a stretched grid, however the tridiagonal inversion is so rapid
that no stretching was found necessary even for the thinnest transition regions.
Typical computations with 4000 points required approximately ten iterations and a
few seconds of CPU time on a PC to converge to an accuracy of 10−10.
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