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Abstract
Internal strain fields due to dislocations will cause birefringence in crystals
such as CaF2. This birefringence will exceed levels considered acceptable
for 157 nm lithography unless essentially all dislocations can be eliminated.

Lithography is moving to shorter and shorter wavelengths
in response to pressures towards semiconductor device
miniaturization. This, in turn, is placing demands on materials
for lithography optics, and driving a move from silica to
CaF2. The move to CaF2 has raised particular concerns
relating to birefringence. There is an intrinsic component,
which might be reduced by alloying with BaF2 [1]. There is
also stress-induced birefringence, where industry has ‘invested
substantial resources to control stress-induced birefringence
to one part in 107 (or, equivalently, 1 nm/cm)’ [1]. This letter
quantifies the likely role of dislocations normally present in
fluorite. It appears very unlikely that birefringence can be
reduced to the 1 in 107 level unless dislocations are eliminated.

Of course, birefringence is just one of several reasons for
wishing to eliminate dislocations. For example, because they
are natural defects to grow, or move, or to spawn other defects
under UV excitation [2]. Further, in (Ca, Ba)F2 alloys, the
strain fields will bias the relative proportions of Ba and Ca
close to dislocation cores, and this segregation may affect any
delicate compositional balance aimed at eliminating intrinsic
birefringence.

The random strains due to dislocations can be quantified,
both theoretically and experimentally through spectroscopy
[3, 4]. The key characteristics are the magnitude characterizing
these strains, and the scale length over which these strain
fields change significantly. The strain to which we refer is
a linear combination of the components of the strain tensor,
the precise combination chosen to match the problem under
consideration. For dislocations, theory and experiment agree
that the distribution of strain fields is roughly Gaussian, so a
root mean square (rms) strain can be defined. The magnitude
of the rms strain will depend on the density, Burgers vectors,
orientations and spatial distribution of the dislocations.
The quantitative orders of magnitude quoted below assume

randomly-oriented, randomly-distributed straight dislocations
for illustrative purposes. For a random distribution of point
defects, such as a dilute solution of BaF2 in CaF2, the
distribution of strain fields is not Gaussian, but roughly
Lorentzian, and the rms strain diverges, although there are
useful ways to characterize the range of values.

Dislocations will be present in a concentration which is
expressed as L, the length of dislocation per unit volume. It is
usually given in cm/cc (1 cm/cc is 104 m/m3). A reasonably
typical value for ionic solids is 105 cm/cc [5]. For this
value, the rms strain is of order 10−4. Roughly speaking,
one expects an rms strain of order 3 × 10−7 (L cm/cc)1/2.
The piezooptic constants linking the strain tensor to the
birefringence are of order unity for CaF2 (see, e.g. [6]), that is
to say, the birefringence will also have a distribution with rms
value of order 3 × 10−7 (L cm/cc)1/2. These estimates show
that the root mean square birefringence will only be less than
the acceptable average value of 10−7 for dislocation densities
which are essentially zero.

As presented, this argument is too simple, since it does
not mention a scale length. After all, in a simple silica glass,
the variations in bond angles and lengths will certainly have
rms values of effective strain which are reasonable large, but
they have little effect optically because the scale lengths (not
much larger than an atomic spacing) are much smaller than the
wavelength of light. Even the density fluctuations in glasses
(such as those which give Rayleigh scatter in optical fibres)
have a scale length much less than the optical wavelength
[7]. For a strictly random alloy (and (Ca, Ba)F2 might be an
example, in the absence of dislocations or grain boundaries),
the scale length will be a few interatomic spacings, unless the
alloy is very dilute. For dislocations, the relevant scale length
is roughly δ, the spacing of dislocations, or 1/L1/2. This is
easily understood physically, and can also be derived formally
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from the distribution of strain gradients. For the ‘typical’
ionic, with an L of 105 cm/cc, this is about 30µ, i.e., about 20
wavelengths of 157 nm light. For smaller dislocation densities,
the scale length is even larger.

One expects the dislocation-induced stresses to create
some regions with positive birefringence and others with
negative values, i.e. there will be cancellations for any optical
path. Since we are assuming a random distribution of
dislocations, does this compensation eliminate the problem?
For an optical system with a very short scale length, like
the ideal random alloy, the answer is probably yes. For
dislocations, a more careful analysis is needed. Suppose the
optical component has thickness D. The path will encounter
about N = D/δ dislocations en route through the component.
The average spacing of dislocations δ is of order L−0.5. For a
component with thickness D = 0.01 m, we have roughly N ∼
L0.5, with L in cm/cc. Compensation by the sign fluctuations
in the strain (and consequently in the birefringence) will
effectively reduce the strain we should consider from the
rms value by a factor of about N1/2 or L0.25. Thus, for L ∼
105 cm/cc the 10−4 birefringence is reduced by just over a
factor 10 to 10−5. This value is still much higher than the
figures of 10−7 being cited as acceptable. For the very lowest
dislocation densities, of course (e.g. L ∼ 1 cm/cc), the precise
dislocation structure must be considered, as dislocations
running parallel to the surface will have different effects from
those running normal to it.

In strictly random alloys, the fluctuations in interatomic
distances can be quantified and, for a (non-dilute) random
alloy, will change on a characteristic length scale of a few
interatomic spacings [4, 8]. However, real alloy systems, like
(Ca, Ba)F2, are not strictly random. As mentioned, there can
be strain-induced segregation close to dislocations which will
affect birefringence. Further, there will be alloy fluctuations.
In glassy systems, the analogous problem would be density

fluctuations. In fused silica glass [9] inhomogeneities of order
10−4 are reported level, leading to levels of residual stress of
31 nm/cm and wavefront distortion of above 90 ppm.

It would seem that dislocation-induced birefringence
should be taken seriously in CaF2 for lithography optics. This
is especially so if (Ca, Ba)F2 is to be used. It will be difficult
to reduce this component of birefringence to acceptable levels
without eliminating dislocations almost completely. There
may be further problems associated with UV-induced defect
processes causing property changes with time.
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