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Abstract, We review the use of the ideas of ‘ionicity’ and ‘covalency’ in quantitative studies 
of the solid state. Such ideas have taken several distinct forms: a description of charge 
distributions of bonding, a spectroscopic classification of perfect solids, and a framework for 
quantitative modelling of defects in polar solids. The limits on the usefulness of ionic pictures 
clearly depend on which form of idea and which application is involved. Nevertheless, many 
misunderstandings persist through failing to recognise that unique, universal, charges cannot 
be assigned except in trivial cases. Further confusion arises from the temptation to ascribe 
almost any unexpected features of ionic crystals to covalence. We discuss in particular the 
use of ionicity in the quantitative modelling of polar solids. Here, it appears, the ionic picture 
provides a framework for defect models and theories which, properly used, covers both the 
traditional ‘ionic’ crystals and ones, like silicates, where appreciable covalency is 
acknowledged. 

1. Introduction 

Most scientists hold clear views on ionicity and covalency. If they all held the same views 
as their colleagues, this paper would be unnecessary. In fact, these old ideas continue to 
stimulate papers clarifying (e.g. Cochran 1961), disputing (e.g. Pauling 1971, Phillips 
1971) and frequently (as when the word merely covers up ignorance or incomplete 
characterisation) obscuring the issues involved. It is because there are several distinct 
ideas that some of the conflicts arise. These, in turn, reflect the several ways in which the 
concepts of ionicity and covalency are used. The debate on ionicity is given an added 
topicality by the recent growth in computer modelling of solids (Catlow and Mackrodt 
1982) where potential models play a central role. Ionic model potentials have been 
widely and successfully applied, and it is clearly important to define any limitations of 
these potentials. 

The central idea is that there is a qualitative difference between ionic crystals, like 
LiF, and covalent crystals, like diamond. Cohesion in LiF, the ionic picture proposes, 
involves electron transfer from Li to F, giving Li’ and F-, two closed-shell ions which 
interact mainly by Coulomb forces and short-range repulsion. Cohesion in diamond, 
the covalent picture indicates, involves bond charge between atoms instead of charge 
transfer; directed hybrids and their ‘chemical’ interaction describe the interactions. At 
this stage controversy is minimal. The two extremes are straightforward, and some 
qualitative implications are obvious. One expects the Coulomb interactions within ionic 
crystals to favour close packing of cations around anions and vice versa, whereas the 
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directed bonds of covalent crystals favour open structures. There are thus structural 
criteria for qualitative assessments of degree of covalency or ionicity. 

Such qualitative criteria illustrate one of the several uses of these ideas: classification. 
One may use as input data crystal structure, crystal thermochemistry, molecular ther- 
mochemistry, spectroscopic information, dielectric constant data, etc, to order systems 
according to their covalency/ionicity, in the hope that other properties show useful 
related orderings. The optimist may even construct quantitative, if empirical, rules 
involving an ionicity parameter. Such cases, as Phillips has observed very aptly, parallel 
the use of temperature scales based on specific properties (e.g. Pt wire resistance). But 
whereas one can confidently accept an absolute temperature scale for all systems, 
absolute ionicity scales of general validity have little justification beyond pedagogical 
convenience:. 

There are five main aspects that will concern us here. First, to what extent are 
covalency and ionicity essential in qualitative solid state physics? There is no doubt 
about the value of the ideas related to covalency, of course. But if one used the ideas of 
ionic crystals to describe a covalent crystal, would misrepresentation or merely com- 
plexity result? We shall show later that (in some cases at least) precisely parallel descrip- 
tions can be given from either the ionic or covalent limits. Secondly, can we obtain 
consistent, operationally defined, quantitative measures of ionicity? Over what range 
of phenomena are these defined? Thirdly, if we wish to relate an experimentally defined 
ionicity to a theoretical parameter (e.g. bond-structure charge density, Szigeti charge, 
or a shell charge) where should we expect this matching to fail? Fourth, what should one 
anticipate about the transferability of ionicity/covalency parameters? Finally, how valid 
are potentials based on an ionic description for different classes of heteropolar solids? 

2. Scales of Ionicity 

We shall limit our survey to a discussion of the thermochemical approach of Pauling, to 
the spectroscopic approach of Phillips, and to the ensemble of approaches which express 
themselves in terms of effective charges. To this summary we shall add remarks about 
the frames of reference within which much discussion is concentrated. 

2.1. The  grand unified schemes 

Perhaps the hardest step is convincing oneself that such schemes could exist. They imply 
at least that one can assign (though possibly not measure) a one-parameter description 
of all species which orders them in a consistent and useful way. Consistency demands 
the same ordering whichever one uses of the many sources of experimental data (pre- 
sumed reliable). Usefulness requires that observable properties are predicted with 
significant precision. Here one can reasonably demand that molecular, perfect-crystal 
and (where appropriate) defect properties all be categorised, without extra parameters 
to whittle away the meaning of the initial assumptions. 

l ’he  first major scheme, due to Pauling (1932,1939,1971) is thermochemically based. 
Suppose the formation energy of a diatomic molecule XY is written EX*. Then, for 
molecule AB, the quantity: 

t By ‘general’ we recognise, of course, that there are important problems in physics which do go beyond the 
special, if standard, cases of defect-free semiconductors and insulators usually discussed. 

&AB = EAB - [mean of EAA, E B B ]  
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is a measure of the electronegativity difference ( X A  - X B )  of A and B, in so far as it 
corresponds to electron transfer from the less to more electronegative atom. The concept 
is ionic, i.e. covalent contributions are implicit only. The two working postulates giving 
fractional ionic character fAB are designed to be both intuitively sensible and to satisfy 
the obvious constraintsfAB = ~ B A  and 0 S f A ~  S 1, WithfAB = 1 the ionic extreme. In this 
case Pauling’s algorithms are: 

(xA - XB 1’ = ?&AB 

where yensures that the dimensionless X A  and X B  change by 0.5 with each unit valence 
change in the first row of the periodic table: 

fAB = 1 - exp[-t(XA - XB)’] = 1 - exp(-fy&AB). 

It is this quantity that has been used to understand a very wide range of chemical 
behaviour. 

Phillips (1970; see also Phillips and van Vechten 1969, van Vechten 1969) chose a 
spectroscopic definition, defining a ‘total energy gap’ with two components 

E: = E ;  + Ef 

The total gap is obtained from the optic dielectric constant 

E ,  = /imp/(&, - 1 p *  

with hmp the plasma frequency for the valence electrons; the covalent gap Eh is obtained 
from E ,  for the non-polar system in the same row of the periodic table, with a correction 
for the interatomic spacing. The ionic part, E,, is obtained as ( € 2 ,  Phillips 
defines an ionic character 

f =  E f / ( E i  + E:) .  

It is this parameter that has been used to classify. divide and identify trends in many 
solid state properties. 

We can classify some features by considering again the diatomic AB molecule in a 
simple LCAO approximation (Pearson 1971). Suppose the diagonal matrix elements of 
the Hamiltonian are HA*, H B B ,  and that HAB is the off-diagonal term. The (2 X 2) 
secular equation is easily solved to show the bonding and antibonding orbitals are 
separated in energy by E G ,  where: 

E &  = (HA* - HBB)’ + 4HiB. 

The natural analogies make HAA - H B B  the ionic term (like E c ) ,  and 2HAB the 
covalent term (like E h ) .  When there is overlap S between the orbitals, the ionic term is 
multiplied by (1 - S 2 ) - ’  and the covalent term by (1 + S2)/(1 - S’). Suppose we 
assume the orbitals on A and B do not overlap, so charges can be assigned without 
difficulty. Then we readily find 

f’ = ( Q A  - Q B ) / ( Q A  + Q B )  = (1 + 4A2)-li2 

with A = 2 H A B / ( H A A  - H B B ) .  Phillips’ definition gives: 

f =  (1 + 4 i i y  = ( f ’ ) 2 .  

Clearly both f and f ’  will classify, divide, and identify trends equally well. They are, 
however, only representative members of a broad class of ‘ionicities’. 
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2.2. Ionicity from charge densities 

It is widely believed, especially by those who have just calculated approximate band 
structures, that ‘ionicity’ can be obtained from a knowledge of the charge density for the 
mean (static equilibrium) geometry. It is equally well known that this belief is false. As 
Orgel (1960) observes ‘. . . let us suppose . . . we could obtain electron densities with as 
great an accuracy as we wished. Would this settle the problem of covalency once and for 
all? The answer to this question is negative’. 

2.2.1. Theoretical techniques. We now demonstrate the ambiguities that remain even 
when the exact charge density p( r )  is known. We shall see that the only case in which 
p( r )  uniquely implies ionic charges is the trivial case when the charge distributions do 
not overlap (i.e. j” d3rqA(r )RqB(r )  is zero for a variety of operators Q ( r ) ,  not just 
SZ = 1). A convenient survey of definitions of ionic charges in molecules is given by 
Poliik (1978). He also gives quantitaitve examples for what is, in effect, a generalised 
H i  ion. For our purposes, we shall assume the exact charge density is given in the 
analytic form 

9; = C a W A  + C b Y B ,  

where yA and yB are normalised functions centred on sites A and B; (A 1 B) = S is their 
(finite) overlap. 

Among the more important divisions of charge density p( r )  = 1 q ( r )  1 ’  between the 
two sites are these, where we quote the electron charge associated with site A: 

Mulliken definition, with the overlap charge equally divided: 

Q M  = C: + c , c ~ S .  

Lowdin definition 1, preserving the molecular dipole moment (Lowdin 1953): 

Q L  = C: + c,CbS(l - 2 f / R S )  

where ( i / R )  isj” d3r yX(z - ZM)yg /R ,  withzM the midpoint of AB, z the axial coordinate 
and R the AB spacing. 

Lowdin definition 2, based on orthogonalised orbitals @A, ljrg (Lowdin 1950), 

Qo = Ci C a c b S  + ( C z  - C i ) F ( S )  

withF(S) = S[(l + S)’i2(l - S ) “ ’ -  11. 

associated with A and B (note QpA + Q PB # 1 in general) (Roby 1974) 
Projection definition, using the first-order density matrix to project out components 

QPA = C i  f 2cacbs + C i s 2  

QpB = 1 - cf + ~2,s’. 
2.2.2. Geometric partitioning. Here there are various definitions, e.g. charge within a 
given radius, or charge within the contour of minimum charge density. Analytical forms 
need further assumptions. 

Even without numerical estimates, several points are clear. First, the definitions do 
not yield a unique Q A  or QB unless S = 0, f = 0. Secondly, it is easy to devise still more 
sensible definitions. One might perhaps partition the overlap charge unequally, e.g. in 
the ratio of the atomic coefficients; giving Christofferson and Baker’s (1971) QCB = 
c: +[c?/(c: + cE)]2c,cbS. Or one might make the change of dipole moment with R exact, 
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giving a useful form Ql. which involves derivatives dcA/dR, di /dR and dSldR. Thirdly, 
in exasperation, one might note that it is possible to choose a complete set of functions 
centred on any site (A, B or elsewhere) and to write p(r)  exactly in terms of these one- 
centred functions. This would tempt one to associate all charge with the single centre, 
thus avoiding (albeit unhelpfully) the whole question of partitioning. 

2.2.3. Ionicity from band structures. Charge partition is a more naive exercise in band 
theory than it is in small-molecule studies. The commonest definitions use the charge 
within a muffin-tin sphere (a case of geometric partitioning) , the weights associated with 
Wannier functions (which correspond exactly to Q o )  or, in LCAO methods, analogues of 
the Mulliken approximation. We note in passing that methods based on dipole moments 
have to be used with caution in cluster calculations, since the boundary conditions can 
be deceptively inappropriate. 

2.2.4. Experimental charge densities. Information on charge distribution is, of course, 
available from experiment. Single-crystal x-ray diffraction experiments can yield elec- 
tron density maps. Studies of diamond and quartz, for instance, provide clear evidence 
of the enhancement of electron density between the nuclei that is the defining charac- 
teristic of the covalent model. Reviews of the technique are given by Stewart and 
Spackman (1981) and by Coppens (1977). 

The data provided by such experiments, although of undoubted value, are of little 
use in defining ionicity scales. The method suffers from precisely the same deficiencies 
as those based on theoretically derived charge densities, i.e. the unavoidable ambiguities 
in the division of the total charge density into ionic components. 

Valuable information is also provided by polarised neutron scattering experiments. 
These allow one to obtain maps of unpaired spin density, which may be related to 
covalency parameters (Hubbard and Marshall 1965). The method has been especially 
useful for covalency in transition-metal oxides and fluorides (see e.g. Tofield and Fender 
1970, Jacobson et a1 1974). However, the method is confined to studies of open-shell 
systems, and it yields information on spin delocalisation only for the partially filled 
orbitals. As such, the technique is clearly limited. We note that spin-resonance tech- 
niques (EPR and ENDOR) similarly yield information on unpaired spin distributions (see 
e.g. Hall et a1 1963, Owen and Thornley 1966). Both neutron and spin-resonance 
methods give useful upper bounds on covalency in the nearly ionic limit. For instance, 
Fender et a1 (1968) put quite low bounds on the level of covalency in MnO and NiO. 

2.3. Ionic charges, effective and ineffective 

An effective charge, notes Cochran (1961), is a ‘value for the ionic charge deduced from 
a physical measurement on the basis of an oversimplified model or theory’. This serves 
to illustrate three simple truths: first, the physical measurement is not itself of the ionic 
charge of supposed interest; secondly, the ionic charge is extracted within a chosen 
framework; thirdly, the theory or model used contains imprecisions or artefacts which 
limit its value. We have already encountered ‘exact’ theories in which an ionic charge is 
deduced from a ‘known’ charge distribution, without reference (or in cases without 
useful application) to experiment. 

2.3.1. Lattice dynamics. In most theoretical lattice dynamics there are three basic 
assumptions: the Born-Oppenheimer approximation to separate electronic and nuclear 
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motion so as to ensure a unique energy surface, the harmonic approximation to provide 
a correspondence with harmonic oscillator solutions, and the dipole approximation. 
The third approximation, that only the lowest-order multipole moment due to ionic 
displacement need be retained, leads naturally to a definition of effective charge 

Qeff = dp/dx 

where pis the dipole moment magnitude andx the displacement. Three approximations 
are implied here. First, there is the assumption that the vectors U and x are parallel, so 
that Qeff is representable as a scalar. Secondly, x is a single coordinate; the ion is rigid, 
so that there is no deformation of the ion to make ambiguous the definition of where the 
displaced ion is. Thirdly, only the single coordinate x enters: neither the dipole moment 
nor Q eff must depend on the positions of neighbouring atoms. This group of working 
approximations and their problems provide strong reasons for using the shell model. 
Nevertheless, it is useful to look first at variants of Q eff based on rigid-ion models. 

2.3.2. Transverse, longitudinal and Szigeti charges. When planes of ions vibrate in the 
plane of a slab-like sample, Qeff is the transverse charge e+ given by (Born and 
Goeppert-Mayer 1926, Callen 1949, Cochran and Cowley 1962, Burstein eta1 1967) 

e? = [(@to - ~ + O > E ~ ( M Q / ~ ~ ) ] ” ~  

with M the reduced mass and 51 the cell volume. If the ions vibrate normal to the plane 
of the slab, one has instead the longitudinal charge (Callen 1949) 

e? = [ (ut0 - o+o)~&’(MS2/4rc)] li2. 

Finally, depending on precisely where one puts local-field corrections, one can end with 
the Szigeti charge: 

3 E* e t .  e7 =- e$ = - 
E % + 2  E X + 2  

3 

For E, = 3, typical of ionic crystals, 

e$ = 0.6e: = 1.8et. 

For E, = 10, typical of 111-V hosts: 

e$ = 0.25ef = 2.5et.  

In general e? s e &  s e t .  If one insists on using a rigid-ion model, therefore, there are 
many choices without even resorting to experiment. 

2.3.3.  Cohesive energy. Whilst close relations are usually assumed between cohesion 
and the interatomic forces which determine lattice vibrations, this is often mere wishful 
thinking. In the NaCl structure, for instance, the ionic polarisability does not appear in 
cohesion (all ions are at sites with inversion symmetry, so dipole moments vanish) but 
is fundamental in lattice dynamics. Clearly it is a convenience to assume that the charge 
Q cob, which comes from a simple model of cohesion, equals some other charge Q eff from 
lattice dynamics. In rigid-ion models, there is no flexibility to guarantee Qcoh = Qeff, 
whichever definition is used. In shell models, some flexibility remains, since Q coh should 
equal the sum of core and shell charges ( Qeff = Z  = X + Y ) .  However, one is not entirely 
free to vary X + Y arbitrarily, and the assumption that the sum is equal to Q o h  is an 
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arbitrary constraint. Whether it is a strong constraint or not depends too on the short- 
range interactions. Whilst they give only a modest part of the cohesive energy (typically 
10% in respectably ionic crystals) they can incorporate a number of short-range correc- 
tions. Thus empirical short-range potentials may have an extra component of flexibility 
over directly calculated ones (the phrase a priori, used in this context, often means 
merely that the workers found a convenient place to begin). 

2.3.4. Interatomic potentials. This discussion leads us naturally into what is possibly the 
most ‘practical’ question in the debate on ionicity: how valid are the potential models 
for solids based on an ionic description? In general, ionic model potentials have a simple 
pairwise form: short-range repulsive terms (usually described by some simple analytical 
function) are added to the Coulomb interaction; and electronic polarisation is simulated 
in most modern studies by the shell model. An incentive for studies of interatomic 
potentials has been provided by the development of computer simulation codes for 
modelling the perfect and defect properties of crystals. Potentials (i.e. some simple 
algorithm for total energy as a function of geometry) are the basic input into these 
simulations, and their quality is the major factor in determining the reliability of the 
results. Most modern simulation codes are limited to pair potential models, although 
extensions are in progress to include, for example, bond-charge interactions or bond- 
bending terms. 

Potentials may be developed by parameter fitting to observed crystal properties, 
including structural data, elastic and dielectric constants and phonon dispersion curves, 
and for a wide range of crystals, an impressive measure of agreement can be achieved 
between observed and fitted crystal properties; moreover such crystals include examples 
of compounds where a contribution from covalence might be thought to be significant. 
Examples of fitted and observed properties are given in table 1. 

Potentials may also be developed using theoretical methods; both electron gas 
techniques (e.g. Gordon and Kim 1972) and Hartree-Fock methods have been applied 
to the study of short-range potentials. In many cases the parameters derived are similar 
to those obtained from the empirical fitting procedures although sometimes significant 
differences may occur. A compilation of both types is given by Stoneham (1979). Ionic 
model potentials have proved remarkably successful in computer modelling studies of 
defective solids. Formation and activation energies have been calculated for many oxide 
and halide crystals; typical results are given in table 2. The same methods have even 
worked well for systems like ZnSe and Li3N. Greater details of these studies are available 
in the reviews of Catlow (1980) and Catlow and Mackrodt (1982). 

To what extent does the success of these studies validate the model used? A danger 
inherent in all fitting procedures is that, if sufficient parameters are available, the fitted 
values may have no physical significance, being merely a parameterisation of the data 
used in their derivation. The ability to reproduce the parameters by theoretical methods 
may at least partially remove this problem. A better test, however, is provided by the 
successful extension of the model to the prediction of properties outside the range used 
in their derivation. For this reason we believe that the success of the potentials used in 
defect studies is of particular significance. Defect energies depend critically upon the 
extent of lattice relaxation around the defect. The accuracy of the defect calculation for 
the materials reported in table 2 suggests that for these crystals ionic model potentials 
describe well the response of the lattice to the extensive perturbation that is provided by 
a charged defect, i.e. the displacements which are caused by these perturbations are 
accurately modelled by the potentials based on the use of integral or near-integral 
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Tablel. ( a )  Calculatedandobservedcrystalpropertiesfor A1203 (afterCatloweta1(1982a, b) 
who give references to expenmental data). 

Properties Calculated Observed 

Lattice energy (eV) - 
Cll 
c12 

constants c33 
(10" dyn cm-2) C14 

C44 
CM 
E?, 

Dielectric 883 

constants E G 
Ej3 

Elastic cl3 

160.21 
42.96 
15.48 
12.72 
50.23 

16.66 
13.70 
9.38 

11.52 
2.08 
2.02 

-2.99 

-160.4 
49.69 
16.36 
11.09 
49.8 
-2.35 
14.74 

9.34 
11.54 

3.1 

(Cli - C12)/2 

Table 1. ( b )  Calculated and observed crystal properties for CaFz (after Catlow and Norgett 
(1973) who give references to experimental data). Values in parentheses were usedin fitting. 

Properties Experimental Calculated 
value 

Lattice constant (A) 
Second-order elastic 
constants (10" dyn cm-') 

Dielectric constants 
at zero and high frequency 
Transverse optic 
and Raman frequencies (cm-I) 

Third-order elastic constants 
(10" dyn cm-2) 

Lattice formation energy (eV) 

2.722 
17.124 
4.675 
3.624 
6.47 
2.05 

270.0 
330.5 

-124.6 
-40.0 
-25.4 
-12.4 
-21.4 
-7.5 

-26.76 

(2.722) 
(16.9) 
(4.80) 
3.23 

(6.42) 
(2.01) 

(259.2) 
310.7 

-107.8 
-33.8 
-17.5 
-9.3 

-23.2 
-7.8 

-28.06 

charge. To this extent, the ionic model provides the basis of a good description of these 
systems. 

To summarise this section, our knowledge of ionicity derives from a variety of 
experimental and theoretical techniques, each of which yields information on different 
properties of the solid. The most widely used ionicity scales are based on thermochemical 
and spectroscopic data. Information on charge distribution may be obtained from x- 
ray-polarised neutron diffraction, although the analysis of these data in terms of ionic 
charges is always and necessarily ambiguous when interpretation in terms of effective 
charges is required. Lattice properties-phonon dispersion curves, elastic and dielectric 
constants- yield information on the extent to which displacements and dipole moments 
in crystals are compatible with an ionic description. We note that applications of ionicity 
in the development and use of interatomic potential models are often most closely 
related to this last usage: it is the ionicity of § 2.3, not of § 2.1 or 2 .2 ,  that is important. 
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Table 2. Some defect formation and activation energies in metal halides and oxides. For 
references to calculated and experimental data we refer to Catlow and Mackrodt (1982). 
(a) Formation energies 

Compound Defect Calculated Experimental 
energy (eV) energy (eV) 

NaCl Schottky pair 2.32 2.30 
CaF2 Frenkel pair 2.75 2.7 
MgO 
ZnO Cation Frenkel pair 2.51 
AgCl Cation Frenkel pair 1.4 1.45 

(b)  Activation energies 

Compound Process Experimental Calculated 

Schottky pair 7.5 5-7 
- 

energy (eV) energy (eV) 

NaCl Cation vacancy 0.67 0.65-0.75 

CaF2 Anion interstitial 1.0 0.91 
migration 

migration 

migration 
4 0  Cation vacancy 2.1-2.3 2.2 

3. Frames of reference 

Before discussing ionicity in specific systems, we turn to a number of features presumed 
in our last section. 

3.1, Electronegativity versw covalency/ionicity 

Whilst many discussions are framed as if the concepts were the same, this is clearly not 
so. Electronegativity is only the first of several concepts which decide the degree of 
covalency. A second is a ‘propensity to bond’ parameter. This takes various forms: the 
homopolar gap in Phillips’ (1970a, b) approach, the off-diagonal (transfer) matrix ele- 
ment in standard tight-binding, the density of electrons at the edge of the Wigner-Seitz 
cell in the theory of Miedema et a1 (1973), the bonding parameter in semi-empirical 
molecular orbital schemes, etc. And a third factor (though it can be built into the first 
two parameters) is the ratio of a typical orbital radius to interatomic spacing. 

3.2. One charge per ion 

A second assumption is that each ion can be represented by one charge only. This unique 
number has to fulfil many separate conditions, notably to represent the field at large 
distances and the dipole produced per unit displacement (ignoring the many, often 
unmeasurable, alternatives). When one goes to the shell model, for instance, one uses 
two charges, both to recognise the several criteria and to represent the interactions 
between short-range repulsions and polarisability. But how general is Dick and Over- 
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hauser’s original idea that the shells correspond to the outer electrons, and the cores to 
the nucleus plus inner electrons? Sadly, the clear physical picture can lead one astray. 
Sometimes this is painfully apparent: shells with charges opposite in sign to electrons 
clearly represent other effects, e.g. overlap charge components (Bib er a1 1975). At 
other times deception is subtle. In a calculation coupling pseudopotential electronic 
structure and shell-model displacements, suppose one divides the interaction of a bound 
electron with an ion into (a)  a point-ion contribution and (b )  an ‘ion-size correction’ 
(Bartram et a1 1968). Can one assume the shells experience all the ion-size forces, as 
one’s intuition might suggest (Stoneham and Bartram 1970)? On the other hand, if one 
uses a self-consistent treatment, e.g. Hartree-Fock, of some small group of atoms, 
should one force this group to have the dipole moment given in the shell model? Or 
should one make sure that these atoms experience the correct electric field due to the 
rest of the crystal, and assume Hartree-Fock theory takes care of the rest (see Norgett 
et a1 1977, Sharma and Stoneham 1970)? These questions are part of a whole range of 
problems, often merely ignored, in calculations of defect structure. They emerge too in 
the separate context of relating experiment and theory. Does a particular experiment 
monitor a shell coordinate or a core coordinate? This is important, since the displace- 
ments can be opposite in sign. In surface structure measurements, for instance, (see 
Stoneham 1981) core positions are measured in neutron scattering, LEED and EXAFS 
experiments, whereas low-energy rare-gas atom diffraction appears to monitor shell 
positions. 

3.3. Is the covalent/ionic switch sudden? 

If one is to limit one’s vocabulary to covalent or ionic, there must be a minimal inter- 
mediate regime. This sharp boundary notion is implied in much ‘mapping’ work for 
crystal structures. Are there cases where sudden changes seem to appear? The situations 
which appear to show relatively sudden changes include Schottky barriers (Kurtin et a1 
1969, Mele and Joannopoulos 1978), organic polar semiconductor/metal systems (Metz- 
ger 198l), excited states of rare gases on metals (Cunningham er al1980), and no doubt 
some other systems. Other situations show no sign whatsoever of a sudden change, e.g. 
the trends of Mn2+ hyperfine structure in hosts with different degrees of covalency 
(Simanek and Muller 1970). We note in passing that the fractional charges associated 
with solitons are not in any way associated with covalency. As Prange (1982) has noted, 
these non-integral (possibly irrational) multiples of 1 e 1 occur only if there is a change in 
polarity on crossing the soliton, rather like a case noted for ferroelectric domain walls. 

Sudden transitions presumably require a reinforcement mechanism: a cooperative 
interaction which drives the system away from comparable ionic and covalent contri- 
butions. Madelung terms, quadratic in suitable effective charges, help; shifts of ionisa- 
tion energy and other factors with occupancy (e.g. Coulson era1 1962) are also involved. 

4. Materials 

Previous sections have stressed the diversity of meaning that may be attached to the 
term ‘ionicity’ when used in any operational sense. The present section attempts to 
summarise for a range of materials the present states of our knowledge of the degree of 
ionicity in its various senses. We shall emphasise the consequences after theoretical 
investigations of the materials. 
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4.1. Metal halides 

Table 3 lists Phillips ionicities for a range of metal halides; Pauling electronegativities 
are also given. We exclude from consideration the molecular halides found by metals in 
higher valence states, e.g. UF6, PbC14. The halides of the metals of groups I and IIA 
show high values off,  in line with our preconception that they are the most strongly 
ionic materials. The decline in ionicity with increased electronegativity of the metal is 
reflected in corresponding structural changes seen in the trend to lower coordination 
numbers (as in ZnC12) and the adoption of layer structures (e.g. CdC12). The inability 
of ionic model potentials to reproduce accurately the cohesive energies of specific halides 
such as AgCl might perhaps be evidence of significant deviation from ionicity in these 
halides. 

Table 3. Phillips ionicities and Pauling (1960) electronegativities of some metal halides. 
~ 

Compound Phillips Metal Non-metal 
ionicity ( f )  electronegativity electronegativity 

LiF 
LiCl 
NaF 
NaCl 
NaBr 
KF 
KBr 
AgCI 
AgBr 
AgI 

0.915 1 .o 
0.903 1.0 
0.946 0.9 
0.935 0.9 
0.934 0.9 
0.955 0.8 
0.952 0.8 
0.856 [0.8771] 1.9 
0.850 [0.864t] 1.9 
0.770 [0.772t] 1.9 

3.90 
3.15 
3.90 
3.0 
2.8 
4.0 
2.8 
3.0 
2.8 
2.5 

t Pauling (1960) ionicity. 

Evidence from sources other than those implicd above (i.e. from thermochemical 
and dielectric data) is sparse, except for a small group of materials-principally the 
alkali halides, alkaline-earth fluorides and silver chloride. For these compounds there 
is detailed information on lattice dynamical properties: reviews are available from e.g. 
Cochran (1971) and Singh (1982). There is little indication from these data of any 
significant deviation from ionicity, where ‘ionicity’ is used in the sense of Cochran (1971) 
and amplified in Q 2 of the present paper. Whilst measured phonon curves are observed 
to deviate from the predictions of simple shell-model ionic potentials, we should stress 
that for certain compounds, e.g. KC1, such deviations are small and are confined to 
optical branches of the dispersion curves. The deviations are greater for AgCl than for 
the alkali halides, but there is no clear evidence that any of these effects may be attributed 
to covalence. Most of the discrepancies between observed and calculated dispersion 
curves may be accounted for by going beyond the dipole approximation to include 
quadrupole terms, or by the inclusion of ion deformation terms, e.g. ‘breathing’ and 
deformable shell effects, i.e. isotropic and elliptical shell deformations-the latter being 
of particular importance for AgCl. There seems therfore to be no clear evidence from 
lattice dynamical studies for covalence in non-molecular metal halides. The ionic model 
potentials have enjoyed a remarkable degree of success in predicting both phonon 
dispersion curves and more testing properties such as defect formation energies (see 
Mackrodt 1982). This applies to the silver halides, for instance, as well as to the alkali 
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halide materials. It would seem that for most ‘modelling’ purposes ionicmodel potentials 
are fully acceptable. 

In concluding this section we should note that detailed electron density maps are 
available for some compounds in this class. These observed maps clearly support the 
assumption of ionicity, for there is no evidence for bonding electron density between 
the nuclei. Yet even here there is ambiguity if the density maps are used to deduce partial 
ionic charges: as usual, a range of values may be obtained, depending on the choice of 
sphere radii. 

4.2. Metal oxides 

A greater diversity of information is available for these compounds. In addition to 
thermochemical and spectroscopic data and dielectric functions, which yield Phillips 
ionicities, data are available from lattice dynamical studies, from magnetic measure- 
ments, including polarised neutron scattering and from theoretical calculations. 

The Phillips ionicities given in table 4 demonstrate the trends to be expected from 
the deviations in electronegativity. However, the lattice dynamical data, as for the 
halides, show little evidence for covalence: figure 1 shows dispersion curves for NiO and 
U02 both of which can be reasonably reproduced by ionic, shell-model potentials. 
Again, deviations from the predictions of this model can generally be attributed to ion 
deformation effects; an example is provided by MgO, where ‘breathing’ effects of the 
02- ion appear to play an important role. 

Table 4. Phillips ionicities and Pauling electronegativities for some metal oxides. 

Compound Phillips Metal 
ionicity ( f )  electronegativity+ 

MgO 0.841 [0.911$] 1.20 
CaO 0.913 1.00 
SrO 0.926 1.00 
ZnO 0.616 1.49 
CdO 0.785 1.40 

t Pauling electronegativity for oxygen = 3.50. 
$ Pauling (1970) ionicity. 

Polarised neutron scattering experiments have been performed on MnO, NiO and 
UOz. In all three cases, the degree of transfer of unpaired electron density from the 
unpaired cation spin orbitals to the ligand, is small (Fender et a1 1968). As argued in 
0 2, the interpretation of transferred spin density quantitatively in terms of partial 
charges (or called any other ionicity scale) is ambiguous. Nevertheless, there seems to 
be no clear evidence from polarised neutron studies for large degrees of covalence in 
transition-metal or actinide oxides. 

The evidence from theory is confusing. Band-structure calculations are reported for 
a number of the divalent transition-metal oxides like TiO, MnO and NiO (Mattheiss 
1972, Kunz 1981) and for UOz. The exact interpretation of the results is difficult, 
although population analyses suggest significant deviation from ionicity. In contrast, 
detailed Hartree-Fock calculations of Colbourn and Mackrodt (1983) for MgO for small 
clusters of ions (surrounded by point charges) indicate a very high degree of ionicity for 
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Figure 1. Phonon dispersion: predictions from ionic models compared with experiment. ( a )  
Theory for U02 (Harding ta l  (1980), based on potentials of Catlow (1977)) and experiment 
of Dollingetal(l965). (b)Theoryfor simpleoxides (Sangsterand Stoneham 1980) compared 
with experiments of Sangster et a1 (1970) for MgO, Chang e? a1 (1975) for BaO, Kugel et a1 
(1977) for F e 0  and Reichardt et a1 (1975) for NiO. 

this oxide. Mackrodt and co-workers (Mackrodt 1983) have also shown that for a large 
number of oxides interionic potentials derived by theoretical methods-ither electron 
gas or Hartree-Fock-can yield remarkably good agreement with structural and 
dynamic properties of transition-metal and actinide oxides. Moreover, the potentials, 
when applied in studies of defect and surface properties, yield reliable quantitative 
results. 

The position for the oxides therefore appear to resemble those of the halides. There 
is clear evidence of the inability of ionic model potentials to reproduce adequately 
thermochemical data in the oxides of the less electropositive metals, but there is little 
evidence from other sources of strong deviations from the model. We have noted before 
that cohesion (measured thermochemically) and interatomic forces (from elastic or 
dielectric data) are determined by different features on an atomic scale. The results for 
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these less electropositive metal compounds suggest we may still use an ionic framework 
provided we do not try to invoke both types of feature simultaneously. 

4.3. ( I I / V I )  and f I I I / V )  semiconductors 

There is no question of the occurrence of extensive deviations from ionicity in these 
systems; this is shown by Phillips ionicities (see table 5 ) ,  by electron density maps and 
by lattice dynamical studies (Martin 1970). The main question is whether the ionicmodel 
can ever form an acceptable approximation in studies of these systems. Some evidence 
here has recently been provided by Harding and Stoneham (1982) who derived ionic 
model potentials for ZnSe which successfully reproduced elastic and dielectric constants 
for these materials. The potentials were applied in a study of defect formation and 
charge-transfer transition energies in ZnSe. 

Table 5. Phillips ionicities and Pauling electronegativities for II-VI and II-V compounds 

Compound Phillips Metal Non-metal 
ionicity ( f )  electronegativity electronegativity 

ZnS 0.623 1.49 2.60 
ZnSe 0.630 1.49 2.55 
CdSe 0.699 [0.558t] 1.40 2.55 
CdTe 0.675 [0.519+] 1.40 2.30 
GaP 0.327 1.95 2.15 
GaAs 0.310 1.95 2.10 

t Pauling (1970) ionicity. 

Harding and Stoneham’s discussion makes two points relevant here. First, one can 
start from two entirely different extremes, namely ionic (Zn” , Se2-) or covalent 
(Zn2-, Se2+) and deduce qualitatively identical pictures of some simple defects. This, 
shown for the V- centre (formed by removing Zn’) was noted previously by Stoneham 
(1975, p 618). Secondly, certain observable properties are determined by the polarisation 
of the lattice. Any model that correctly quantifies polarisation will successfully predict 
these properties. Degrees of covalency and ionicity become important only for other 
properties (Stoneham and Harding 1982). 

Harding and Stoneham’s work suggests that the ionic model could form the basis of 
acceptable potentials for certain properties of some of these systems; although clearly 
elaborations of the model of the type that will be discussed in the next section will almost 
certainly be necessary for satisfactory models. 

4.4.  Quartz and silicates 

These materials are generally considered as covalently bonded networks with some 
degree of ionicity. Such models are supported by electron density maps which for SiO;!, 
for instance, clearly show regions of bonding electron density (Stewart et all980, Stewart 
and Spackman 1981). More general support for this description is provided by the 
‘openness’ of the structures of the polymorphs of Si02 and of many mineral systems. 

The question of the degree of ionicity in quartz has been controversial. Pauling 
(1980) on the basis of electronegativity arguments proposed an ionicity of 52%. A study 
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of x-ray photoemission favoured 58% for Si02 and 63% for MgSiOs (Tossell 1977). Such 
values are now widely accepted. Whilst lattice dynamical studies clearly reveal the 
inadequacy of ionic models for quartz, recent work of Catlow er a1 (1983) has shown that 
it is possible to reproduce the elastic and dielectric properties of Si02 with reasonable 
accuracy using a shell model plated with full ionic charges, two-body ion-ion repulsive 
forces, and bond-bending terms. 

There is some evidence for higher ionicities in the less-condensed silicate structures, 
i.e. those systems based on isolatedSi0:- groups and on silicate chains and rings. X-ray 
diffraction studies (Sasaki et a1 1980) suggest relatively high ionicities (of 6&70%) for 
CaMg(Si03)z (a chain-structured silicate). In addition, for these types of silicates a 
surprising measure of success has been enjoyed by ionic model potentials in predicting 
crystal structures by energy minimisation techniques (Parker 1983, Parker and Catlow 
1983). Table 6 lists some of the silicates whose structures which have been reproduced 
within experimental error by energy minimisation using ionic model potentials. More 
critical tests of the validity of these potential models will be provided by calculations of 
dispersion curves and of phase transition energies. Such work is in progress. 

Table 6 .  Silicate minerals investigated by energy minimisation techniques for which struc- 
tures have been successfully reproduced. 

Type Name Formula 

(1) Isolated Si04 Forsterite 

Tephroite 
Zircon 

Thorite 
Uranite 

tetrahedra Fayalite 

(2) Ring structures - 
a-strontium metasilicate 

Beryl 

Orthoferrosilite 
Sodium metasilicate 

(3) Chain structures Orthoenstatite 

MgzSi04 
FezSi04 

MnzSi04 
ZrSi04 

ThSiO4 
USi04 

Na~BezSi309 

a-Sr3Si309 

AI~Be3Si608 

MgSiO3 
FeSiO3 
Na2SiO3 

We should note that the simpler ionic model potentials showed clear inadequacies 
when applied to structural studies of more condensed silicates (e.g. zeolites), although 
it is likely that improvements will follow when bond-bending forces of the type used in 
the study of quartz are incorporated. 

For silicates, therefore, despite the undisputed existence of an appreciable contri- 
bution from covalence, ionic model potentials are useful approximations for at least 
certain classes of structure and behaviour, and it is possible that relatively simple 
extensions of the model would enable useful models to be constructed for the entire 
range of mineral systems. 
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4.5. Materials: summary 

The brief survey we have just presented has for obvious reasons excluded certain classes 
of solids-mainly metals, homopolar and molecular solids. However, for the materials 
considered, i.e. heteropolar solids with continuous structures, we have found that the 
ionic model often provides useful approximationsfor certain classes of application. This 
is true even when thermochemical and spectroscopic data and electron density studies 
may suggest appreciable contributions from covalence. The use of the ionic model 
potentials for these systems should not be rejected on the grounds that some deviation 
from simple ionicity is known to occur. Ionic models of the sort described provide a 
framework within which the important energies can be described. Properly used, ionic 
potentials may still provide useful and reliable results, and should certainly not be 
discarded because some effective charge (perhaps irrelevant to the calculation in hand) 
deviates from the ionic charge adopted. 

5. Conclusions: practical ionicity 

This article has emphasised repeatedly that the meaning and use of the terms ionicity 
and covalency depend upon the physical properties that are being discussed. In which 
contexts are these concepts useful? There is certainly no value in debasing the words by 
using them to hide ill-understood complex behaviour. But, apart from such misuse, we 
believe that the terms now have least quantitative use in those solid state contexts closest 
to their original molecular applications, that is in the description of bonding and its 
relation to the electron density distribution. Although these areas have attractive qual- 
itative applications, we have seen that it proves impossible to abstract unique and 
unambiguous ionicity parameters (e.g. partial charges) from such sources. In particular, 
the analysis of electron density distributions into charged spheres appears to be an 
exercise of little value. 

The Pauling and Phillips ionicity scales fulfil a useful function in parameterising 
experimental data (thermochemical and spectroscopic respectively) which are clearly 
related to charge distribution, and the scales which emerge have unquestioned value. 
However, it is questionable as to the extent to which these scales do more than provide 
a useful summary of the data on which they are based. The most practical application of 
the concept of ionicity concerns the development of interatomic potentials. Here ‘ion- 
icity’ is used to provide a workable framework for modelling, rather than an ordered 
sequence of systems. The validity of such potentials can be assessed by their performance 
in predicting perfect-lattice properties. More critically, tests of the model and the 
framework are provided by their success in predicting defect and surface properties and, 
where data are available, the properties of molten salts. Using these criteria, we believe 
it will be found that the ionic picture and ionic model potentials may be used consistently 
and accurately in describing a wide range of heteropolar solids. 
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