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Abstract

In chronic kidney disease (CKD) vascular calcification occurs in response to deranged calcium and
phosphate metabolism and is characterized by vascular smooth muscle cell (VSMC) damage and attrition. To
gain mechanistic insights into how calcium and phosphate mediate calcification, we used an ex vivo model of
human vessel culture. Vessel rings from healthy control subjects did not accumulate calcium with long-term
exposure to elevated calcium and/or phosphate. In contrast, vessel rings from patients with CKD
accumulated calcium; calcium induced calcification more potently than phosphate (at equivalent calcium-
phosphate product). Elevated phosphate increased alkaline phosphatase activity in CKD vessels, but
inhibition of alkaline phosphatase with levamisole did not block calcification. Instead, calcification in CKD
vessels most strongly associated with VSMC death resulting from calcium- and phosphate-induced
apoptosis; treatment with a pan-caspase inhibitor ZVAD ameliorated calcification. Calcification in CKD
vessels was also associated with increased deposition of VSMC-derived vesicles. Electron microscopy
confirmed increased deposition of vesicles containing crystalline calcium and phosphate in the extracellular
matrix of dialysis vessel rings. In contrast, vesicle deposition and calcification did not occur in normal vessel
rings, but we observed extensive intracellular mitochondrial damage. Taken together, these data provide
evidence that VSMCs undergo adaptive changes, including vesicle release, in response to dysregulated
mineral metabolism. These adaptations may initially promote survival but ultimately culminate in VSMC
apoptosis and overt calcification, especially with continued exposure to elevated calcium.

Cardiovlascular disease accounts for more than half of all deaths in patients with chronic kildzney disease
(CKD). Vascular calcification is an important con3tdbutor to this cardiovascular mortality, > beginning in the
first decade of life in children who are on dialysis. Calcification can occur in the tunica intima or Enedia in
patients with CKD but, at least in its early stages in young patients with CKD, is typically medial.
Epidemiologic studies have highlighted the impact of dysregulated mineral mgtéabolism and linked both
elevated phosphate (P) and calcium (Ca) to accelerated vascular calcification. > In vitro studies using human
vascular smooth muscle cells (VSMCs) have provided mechanistic insights into the role of Ca and P in the
initiation and progression of calcification and have shown that in response to raised extracellular Ca and P
levels, VSMCs7%ndergo specific phenotypic changes, including osteo/chondrocytic differentiation and
vesicle release. © Recent work has shown that mjniral dysregulation in CKD leads to remarkably similar
processes of VSMC phenotypic modulation in vivo beginning before dialysis and culminating in VSMC
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apoptosis and calcification in dialysis. This suggests that prolonged exposure to worsening mineral
dysregulation, as well as other factors specific to the dialysis milieu, accelerate VSMC damage, reducing
their inhibitory capacity and promoting calcification.

To date, studies into the mechanisms that drive calcification in CKD vessels have been hampered by the lack
of an appropriate in vitro model; explanted VSMCs lack the matrix and architecture of a normal vessel and
undergo substantial phenotypic changes so that they may no longer be representative of contractile VSMCs
invivo. To address this, we used an ex vivo model of intact human arteries from children and tested the
response of CKD vessels (from predialysis and dialysis patients) and age-matched healthy subjects to
exposure to high Ca and P levels. We show that VSMCs in different vessel types have fundamentally
different responses to high Ca and P as a result of phenotypic changes induced during long-term exposure to
dysregulated mineral metabolism in vivo. We hypothesize that these are adaptive changes that may provide
survival benefits in predialysis but are overwhelmed in dialysis, leading to VSMC apoptosis and accelerated
calcification.

Results

Dialysis Vessels Undergo Time-Dependent Ca Accumulation in In Vitro Calcifying
Conditions

Vessel rings were exposed to high Ca and/or P for 7, 14, and 21 d (Figure 1, A and B). Normal vessels did
not increase their Ca load in any of the conditions tested. Predialysis vessels showed a small increase in Ca
load, only in high Ca + P medium, whereas dialysis vessels showed progressively increasing Ca loads in all
of the in vitro conditions, with the greatest response in high Ca + P medium. Ca loading in CKD vessels
increased with time of exposure, and, at each time point, the Ca load was significantly higher in dialysis >
predialysis > normal vessels in comparable in vitro conditions.

Von Kossa staining performed after 14 d of exposure to calcifying conditions revealed that normal and
predialysis vessels did not show any calcification in high P medium; however, a small minority (3%) of
vessels developed some punctate calcification along the internal elastic lamina in high Ca + P medium (
Figure 1C). Strikingly, most dialysis vessels exhibited von Kossa—positive areas in response to both high P
and Ca + P media, with 30% exhibiting dense medial calcification after incubation in Ca + P medium (

Figure 1C).

Cals a More Potent Inducer of Calcification than P at Equivalent Ca-P Products

To determine the potencies of Ca and P at inducing calcification, we compared media with different Ca and
P contents but with an equivalent Ca-P product (Ca x P =5.4 mM?> ; Figure 2A). As before, vessels from
healthy control subjects did not increase their Ca load in any calcifying media. In the presence of high Ca +
P, both predialysis and dialysis vessels showed significantly greater calcification than in media with high P
alone, highlighting the potency of Ca at inducing calcification.

Dialysis Vessels Are Primed for Rapid Ca Accumulation

We next addressed whether the increased propensity of dialysis vessels to calcify in vitro was due to their
higher baseline Ca loading (Supplemental Table 1). First, we compared the response to calcifying media of
dialysis vessels without and with overt calcification, shown by von Kossa—positive areas at baseline.” This
showed greater Ca accumulation in von Kossa—positive vessels (Figure 2B), suggesting that once a nidus for
calcification is formed, it can act to accelerate further calcification; however, when we compared von Kossa—
negative, predialysis and dialysis vessels with similar baseline Ca loads (25 to 35 ng/ul), dialysis vessels
accumulated significantly more Ca than predialysis vessels, under identical in vitro conditions (Figure 2C).
This suggests that a reduced capacity to inhibit calcification is an intrinsic property of VSMCs in dialysis
vessels.

Alkaline Phosphatase Activity Is Differentially Regulated by Extracellular Ca and P

Increased alkaline phosphatase (ALK) activity, an early indicator of VSMC osteogenic conversion, has been
shown to enhance calcification. In response to high P medium, normal vessels did not show any significant
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increase in ALK activity; however, both predialysis and dialysis vessels showed an approximately two- to
three-fold increase in ALK. Thig increase was additional to the already elevated ALK activity observed in
most dialysis vessels at baseline (Supplemental Table 1, Figure 3A). In contrast, incubation in high Ca + P
medium significantly decreased ALK activity to below baseline levels in all vessel types. The marked
reduction in ALK activity was independent of cell loss, because both normal and predialysis vessels showed
no decrease in cell number and trypan blue staining confirmed VSMC viability (data not shown).

To explore the link between ALK activity and calcification, we incubated vessel rings from dialysis patients
in high P medium with the addition of levamisole, an inhibitor of ALK activity. Levamisole caused an
approximately 50% decrease in ALK levels (Figure 3B), but there was no corresponding reduction in the Ca

load (Figure 3C).

ALK is a downstream target of the osteogenic transcription factor Runx2. Immunohistochemistry showed
that normal vessels, under all conditions, showed <5% Runx2-positive nuclei, and these cells were
predominantly at the media—adventitia interface (Figure 3E). Similarly, predialysis vessels showed
approximately 5% Runx2-positive nuclei in both control and high P media, and this increased to 10.4 + 3.2%
after incubation in high Ca + P niedium. Dialysis vessels showed extensive Runx2-positive areas with both
nuclear and cytoplasmic staining  at baseline that increased approximately 1.5-fold in high P medium and
four-fold in high Ca + P medium (Figure 3, D and E).

Dialysis Vessels Undergo VSMC Loss as a Result of Apoptotic Cell Death

Apoptosis has been shown to play a key role in calciﬁca‘[ion.i’z’§ To test whether VSMC loss contributed to
calcification, we performed cell counting. In normal vessels, there was no significant change in cell number
after exposure to calcifying conditions (Figure 4A). Similarly, both predialysis and dialysis vessels
maintained cell numbers in control and high P media; however, both showed a reduction in VSMC number
in high Ca + P medium, which was most striking in dialysis vessels (11 versus 30% reduction; predialysis
versus dialysis). These findings were confirmed on immunohistochemistry for a-smooth muscle actin that
showed prominent cystic areas in the media of dialysis vessels (Figure 4C, top).

To determine whether the increased Ca load in dialysis vessels contributed to greater cell loss,4 we again
examined von Kossa—negative predialysis and dialysis vessels with similar baseline Ca loads.” There was no
significant reduction in VSMC number in the predialysis vessels in response to Ca and P (Figure 4B), but
dialysis vessels showed a significant reduction in cell number, suggesting VSMCs in dialysis vessels have an
increased susceptibility to cell death.

Transferase-mediated dUTP nick-end labeling (TUNEL) staining confirmed that apoptosis was contributing
to VSMC loss. Normal and predialysis vessels had <0.5% apoptotic cells, and this remained unchanged in all
in vitro conditions (Figure 4, C, bottom, and D). Dialysis vessels did not show a significant increase in
TUNEL staining in response to P alone, but, in high Ca + P medium, there was a significant increase in
TUNEL positivity. Additional indicators of apoptosis, including nuclear fragments and condensed nuclei,
were also increased (data not shown; Figure 4C, inset). Apoptosis was detected in both von Kossa—positive
and —negative vessels; however, in heavily calcified vessels, TUNEL co-localized with calcification in
adjacent sections (Figure 4C).

To confirm experimentally a role for apoptosis in increased calcification, we cultured dialysis vessel rings in
the presence of the pan-caspase inhibitor ZVAD.fmk in either high Ca + P medium, which induced
apoptosis, or high P medium, which did not. The addition of ZVAD reduced calcification (Figure 4E) in Ca
+ P treated dialysis vessels but had no effect on calcification in vessels treated in high P medium suggesting
Ca acts to enhance apoptosis and calcification in dialysis vessels.

Calcification Is Vesicle Mediated in Dialysis Vessels

Vesicles releﬁel(zi from both apoptotic and Ca-stimulated VSMCs have been shown to form the first nidus for
calcification > ° ; therefore, we performed immunohistochemistry for the vesicle marker annexin VI and key
vesicle components fetuin-A and matrix Gla protein (MGP). There was no annexin VI positivity in normal
vessels in control or high P media, but a few punctate areas of positivity in the tunica media after culture in
high Ca + P medium were evident (Figure 5A). In contrast, dialysis vessels showed patchy areas of diffuse
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staining in control medium, and positive areas increased in high P medium and were maximal in high Ca + P
medium, where staining was predominantly along the elastic lamellae. Fetuin-A, an inhibitor of calcification
that is taken up by modified VSMCs and released from intracellular stores via vesicles, showed minimal
deposition in normal vessels in all in vitro conditions but was present in dialysis vessels in control medium
and increased to maximal levels in high Ca + P medium (Figure 5B). MGP, a locally produced inhibitor of
calcification, was deposited in a pattern similar to that of fetuin-A with increased undercarboxylated MGP
deposited in calcified dialysis vessels (data not shown).

Electron microscopy (EM) showed no evidence of calcification of the extracellular matrix (ECM) in normal
arteries exposed to calcifying conditions. Some vesicle debris was observed in association with rare
degenerate VSMCs, but these showed no evidence of calcification (Figure 5C). In contrast, in dialysis
vessels, we observed extensive crystalline ECM calcification in association with elastin and collagen. In
addition, numerous extracellular membranous vesicles, some containing crystalline apatite, were deposited
adjacent to VSMCs, particularly in Ca + P—treated vessels (Figure 5C). An additional striking observation
was that the majority of VSMCs in normal vessels, after long-term exposure to Ca + P medium, exhibited
extensive intracellular mitochondrial calcification. In contrast, the mitochondria of VSMCs in dialysis vessels
seemed intact (Figure 5C).

Discussion

Predialysis and Dialysis Vessels Are Damaged and “Primed” to Calcify

A striking finding in this study was that vessels from healthy control subjects did not calcify even after long-
term exposure to supraphysiologic levels of Ca and/or P in vitro, whereas predialysis and, to a much greater
extent, dialysis vessels calcified. This suggests that normal VSMCs possess intact inhibitory pathways that
prevent calcification. In contrast, vessels from predialysis and dialysis patients were susceptible to
calcification, as a result of their previous exposure in vivo to the CKD milieu, which damaged the VSMCs
and/or compromised their inhibitory mechanisms, thereby “priming” the vessels for calcification. In support
of this notion, a previous study showed that normal rat aortic rings, maintained in high Ca arllgl/or P medium
in vitro, could be induced to calcify only after direct mechanical injury and ALK activation. In this study,
human dialysis vessels at baseline already exhibited increased ALK activity and VSMC loss, and exposure
of the vessels to elevated Ca and/or P in vitro increased these indicators of injury and enhanced calcification.
The factors that induce VSMC injury in CKD are likely to be multiple; however, consistent with other
studies, this study clearly demonstrated that for a fixed Ca x P, elevated Ca was a more potent stimulus to
induce calcification ﬂh"“? elevated P, suggesting Ca may be a key mediator of VSMC damage and
calcification in CKD. >

Ca Acts to Enhance Phenotypic Modulation of VSMCs

In vitro studies have shown that a significant phenotypic adaptation that VSMCs undergo in response to
elevated extracellular Ca is vesicle release. Vesicle release is thought to be an adaptiv&response, because
vesicles extrude Ca from the cell, providing protection from intracellular Ca overload ; however, this
adaptive response promotes ECM calcification when the Vesicle4s are not loaded with calcification inhibitors,
such as fetuin-A and MGP, that act to block mineral nucleation. > * In this study, annexi7n VI staining,
indicative of vesicle deposition, was increased in CKD vessel rings in response to Ca + P, and EM showed
that many of the vesicles released in dialysis vessels contained crystalline apatite. Release of these calcific
vesicles occurred concomitantly with the deposition of dysfunctional undercarboxylated MGP and in the
absence of fetuin-A in the serum-free culture conditions; once the intracellular stores of fetuin-A were
depleted via vesicle release, they could not be replenished by uptake from the media. These observations
support the notion that when inhibitory proteins are 7functional, vesicle release is protective; however, when
inhibitors are lacking, vesicles become procalcific. >

Importantly, vesicle release occurred only in CKD vessels; it was absent in normal vessels that were resistant
to calcification. This suggests that VSMCs in CKD vessels were “preadapted” to release vesicles as a result
of their previous exposure to dysregulated mineral metabolism in vivo and were phenotypically modified
when compared with normal contractile VSMCs. The factors that induce VSMCs to become “vesicle
releasing” cells are unknown but may be linked to VSMC osteogenic differentiation. Vesicle release occurs
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spontaneously in explanted VSMCs and correlates with expression of Runx2#; consistent with this, we
found high ll%aseline expression of Runx?2 in dialysis vessels and showed that Ca increased Runx2
expression. The observation that after long-term exposure to high Ca + P in vitro VSMCs in normal vessels
exhibited intracellular Ca overload and mitochondrial calcification further supports the idea that vesicle
release is protective. Whether the mitochondrial Ca overload observed1 9115 glormal vessels, which is likely to
be a prelude to necrotic cell death, also occurs in vivo remains unclear ° ; the inability of VSMCs in normal
vessel rings to adapt in vifro may represent a tissue culture phenomenon, as a result of their acute and
prolonged exposure to high Ca and P in suboptimal, serum-free culture conditions.

Although vesicle release may initially be adaptive, we also found that dialysis vessels showed an increased
susceptibility to undergo apoptosis in response to elevated Ca. Apoptosis promotes calcification by a number
of mechanisms, and inhibition of apoptosis blocked calcification. Thus, Ca-induced apoptosis may be an
important mechanism inducing calcification in CKD. The factors causing increased VSMC susceptibility to
apoptosis in dialysis vessels are unknown. They may include increased VSMC damage as a result of
oxidative stress and other dialysis-specific stresses as we%l as depletion of energy stores or other cellular
factors as a result of prolonged periods of vesicle release” > ; however, the onset of apoptosis also correlated
with the first evidence for the deposition of crystalline apatite in dialysis vessels. It was recently shown that
phagocytosis of Ca/P nanocrystals potently induces VSMC apoptosis.. Thus, in the earliest stages of
mineral deposition, nanocrystals may induce a wave of apoptosis, leading to a vicious cycle of cell death and
calcification, and may also account, in part, for why calcification itself can promote further calcification. Our
findings are also consistent with a recent study in uremic mice induced to calcify by P feeding. At early
stages of calcification, VSMCs upregulated Runx2 and osteopontin, and this phenotypic adaptation was
followed by VSMC attrition in highly calcified areas.

Upregulation of ALK Occurs in Response to High P and Is Uncoupled from Runx2 in
Response to Ca

Increased ALK activity in predialysis and dialysis vessels occurred in response to high P. Previous studies
have defined a role for ALK in inactivating pyrophosphate, an inhibitor %‘ cza7lciﬁcati0n that binds to nascent
hydroxyapatite crystals and prevents further incorporation of inorganic P~ ; however, inhibition of P
induced ALK activity in dialysis vessel rings using levamisole failed to inhibit Ca loading, whereas
incubation in high Ca + P medium significantly lowered ALK activity in all vessel types but nevertheless
induced calcification. This suggests that although pyrophosphate inactivation due to ALK degradation may
be an initial priming event, other factors are also required to induce calcification (Figure 6). Importantly, the
role of ALK in soft tissues is poorly understood, an1d3 its cellular substrates have not been identified. ALK is
upregulated in response to injury in multiple tissues and has roles in phosphorylation/depzl(l)ozs 2}(1)01‘y1ati0n
and cellular transport—factors that are likely to be dysregulated by exposure to elevated P. > > Indeed, in
thg %udy and others, ALK upregulation was uncoupled from Runx2 expression in response to Ca and

P, ° suggesting that it may represent a VSMC adaptation in response to high P, and this idea requires

further exploration.

Clinical Implications

These findings may have important clinical implications because they suggest that elevated Ca in the context
of high P is a major inducer of VSMC apoptosis, suggesting that transient hypercalcemic episodes,
particularly in dialysis patients, may promote vascular calcification. Large ob()sg{vational studies have
correlated serum Ca levels with increased mortality in hemodialysis patients. > The greatest mortality risk
occurs when high Ca and P levels coexist, with the lowest mortality risk seen when Ca levels are in a lower
range than previously recommended. ~ Although free (ionized) serum Ca levels are tightly regulated,
episodic increases, as seen during hemodialysis 203r3w3i;ch the use of vitamin D analogs or Ca-based P binders,
may potentially influence vascular calcification. > ~— C%lécgl%m channel blocke}rg inhibit Ca influx into
VSMCs and have been shown in both preclinical studies * and clinical trials  to limit calcification
progression, and it may be appropriate to revisit these drugs in the context of CKD.

Concise Methods
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Sample Collection

Medium-sized muscular arteries routinely removed and discarded in the course of planned intra-abdominal
surgery were collected. Omental arteries (removed during omentectomy at the time of insertion of a
peritoneal dialysis catheter) and the inferior epigastric artery (removed at renal transplantation) were
compared with mesenteric arteries (removed at major intra-abdominal surgery) from disease-free age-
matched control subjects. We studied 24 inferior epigastric arteries (18 from dialysis patients and six from
predialysis patients with stage 5 CKD [GFR <15 ml/min per 1.73 mz]), 14 omental arteries (six dialysis
patients, four predialysis patient, and four normal control subjects), and two mesenteric arteries (normal
control subjects). Clinical and b}ochemical parameters, baseline Ca load in the vessel wall, and histology
have been previously described and are summarized in Supplemental Table 1. The study was approved by a
local research ethics committee.

Media and In Vitro Treatments

Under sterile conditions, vessels were gently stripped of excess adventitia and cut into 1-mm rings.
Approximately 12 to 20 rings were typically obtained from a single vessel. The vessel rings were placed in
serum-free tissue culture medium and incubated at 37°C in a 5% CO3 atmosphere with medium changes
every 3 d. Using CaClp and NaH,POy4, graded concentrations of ionic Ca and P were added to standard
culture medium (M199) to give four in vitro conditions: Control medium (1.0 mM P + 1.8 mM Ca), high P
medium (2.0 mM P + 1.8 mM Ca and 3.0 mM + 1.8 mM Ca), and a high Ca + P medium (2.0 mM P + 2.7
mM Ca). Vessel rings were incubated for 14 d in the these culture media for all experiments except for the
time-course studies, which were performed at 7, 14, and 21 d. Baseline refers to vessel measurements glade
at day 0 (i.e., before in vitro culture) and are shown in Supplemental Table 1 and previously described.”

Calcification and ALK Assays

Vessels were cut into 2-mm rings immediately after harvest, and the rings were used in assays as described
next. The Ca content in the vessel was measured by cresolphthalein complexone chemistry (Sigma): Vessel
rings were decalcified in 0.1 M HCI, and the supernatant was removed for colorimetric assay at 540 nm. For
the ALK assay, the vessel was lysed with 10% SDS on ice, and the supernatant was used to measure ALK
activity colorimetrically at 405 nm using a p-nitrophenyl phosphate substrate (Sigma). The protein content in
the vessel rings was measured colorimetrically at 710 nm (Bio-Rad, Hercules, CA). The total Ca and ALK
levels per vessel ring were normalized to the protein content in that ring to allow for comparisons. A total of
100 uM of ZVAD.fmk or 10 uM levamisole was added to vessel rings cultured in the aforementioned
calcifying conditions, using rings from the same vessel as internal controls.

Vessel Histology

Viability of VSMCs in the vessel rings was confirmed by trypan blue (0.5%) staining as standard.
Hematoxylin/eosin (Sigma HHS-32 and E8017) staining was performed for vessel integrity and cell
counting: The number of VSMC nuclei and the percentage of apoptotic cells were counted in a 0.25 -m? area
and expressed as cells per unit area. Each sample was analyzed twice, and the mean of the readings was
used. Vessel rings were stained with von Kossa for calcification (counterstained with 1% Neutral Red
Aqueous Solution), and immunohistochemistry was performed for a-smooth muscle cell actin (DAKO
MO0851, 1:500 dilution) for smooth muscle cells. Apoptosis was examined by immunohistochemistry using
TUNEL staining visualized by a rhodamine-labeled anti-digoxigenin antibody. Immunohistochemistry for
known vesicle components and osteogenic factors was performed using annexin VI (BD Bioscience
610300, 1:500 dilution) and fetuin-A (AS237 antibodies; a gift from Prof. Willi Jahnen-Dechent,
Interdisciplinary Centre for Clinical Research on Biomaterials, Aachen, Germany; 1:200 dilution). The
carboxylated and undercarboxylated (Glu and Gla) forms of MGP (from Dr. Leon Schurger, VitaK,
Department of Biochemistry, University of Maastricht; 1:500 dilution) and Runx2 (Santa Cruz SC10758,
1:100 dilution) were examined. Using ImagelJ software on the Olympus BX51 microscope, a region of
interest was marked around the Von Kossa—positive areas, and this was expressed as a percentage of the total
area of the tunica media of the vessel. The percentage of TUNEL-, cbfa-1-, fetuin-A—, and annexin VI —
positive areas was expressed in a similar manner, analyzing each sample in duplicate.
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Transmission EM

Transmission EM was performed to examine cell morphology, localization of calcification, vesicle release,
and mineral deposition. Blood vessels were fixed by immersion in 4% glutaraldehyde containing 2 mmol/L
CaCl; in 0.1 M PIPES buffer at pH 7.4. A total of 100 pl of 33% H>O7 was added to each 10-ml aliquot

immediately before use. They were fixed for 4 h at 4°C, washed twice in buffer (0.1 M PIPES), and stored at
4°C. After buffer washes, they were postfixed in 1% osmium ferricyanide for 1 h, rinsed three times in water,
and bulk-stained in 2% uranyl acetate for 1 h. They were rinsed in water and dehydrated in an ascending
series of ethanol solutions to 100% ethanol, rinsed twice in acetonitrile, and embedded in Quetol epoxy resin
(9.0 g of Quetol 651, 11.6 g of nonenylsuccinic anhydride, 5.0 g of methylnadic anhydride, and 0.5 g of
benzyl dimethylamine). Fifty-nanometer sections were cut on a Leica Ultracut UCT, stained with saturated
uranyl acetate in 50% ethanol and lead citrate, and viewed in a FEI Philips CM100 operated at 80 kv.

Statistical Analysis

Data are presented as mean £ SD or median (range). The paired or unpaired ¢ test was used as appropriate.
ANOVA was used for multiple comparisons. Significance was defined as P < 0.05. Statistical analyses were
performed using SPSS 12.0.1 (SPSS, Chicago, IL).
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Dialysis vessels show time-dependent Ca accumulation in vitro. The Ca load in normal, predialysis, and dialysis vessel rings
was quantified after incubation for 7, 14, and 21 d. Normal vessels did not increase Ca loading, whereas dialysis vessels
showed maximal Ca load in response to Ca + P. (A) Incubation in high P medium (2.0 mM P + 1.8 mM Ca). The Ca load in
normal vessels was 10.0 + 2.4 versus 8.4 + 3.6 versus 11.4 £ 1.6 pg/ul (P = 0.40), in predialysis vessels was 20.2 + 5.8 versus
30.1 £ 11.9 versus 41.7 7.2 pg/ul (P =0.07), and in dialysis vessels was 176.3 + 17.9 versus 298.2 + 93.7 versus 726.7 =
103.9 pg/ul (P <0.0001) at 7, 14, and 21 d, respectively. (B) Incubation in high Ca + P medium (2.0 mM P + 2.7 mM Ca).
The Ca load in normal vessels was 11.2 = 1.9 versus 12.9 + 3.5 versus 17.0 = 6.0 ng/ul (P = 0.16), in predialysis vessels was
43.2 £ 13.8 versus 115.1 £49.0 versus 170.8 = 35.5 pg/ul (P =0.01), and in dialysis vessels was 325.7 + 137.0 versus 711.0 £
206.0 versus 1857.0 £ 90.0 pg/pl (P =0.0007) at 7, 14, and 21 d, respectively. (C) Von Kossa staining of vessel rings after 14
d in calcifying media. Normal and predialysis vessels did not show any calcification in high P medium. In high Ca + P
medium, some normal and predialysis vessels showed punctate calcification along the internal elastic lamina (inset).

Dialysis vessels developed calcification in all in vitro conditions with large confluent areas of calcification in the high Ca +
P medium (inset). M, medium; Ad, adventitia

Figure 2.

https://iwww.ncbi.nim.nih.gov/pmc/articles/PMC2799273/?report=printable 1015



6/6/2017

Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification

A C—mormal nEG '_%'

2000 | Pre-dialysis no=10
B Dialysis n=20

p = 0.04
2004

I

_ 1500
=

E

= 10004

£ so0r p = 0.0001 ;

o

g ™ ! l
&

£

T 3004

-

2

m

(%]

e — m— =
imM PO, 2mM Py ImM POy 2mM Pa,
+ 1.8mM Ca + 1.8mM Ca + 1.6mM Ca + 2.TmM Ca

w
O

2000+ 212331 j P oooe
=)

&
3 2 a00]
1500 3
? SDD_
2 i
gﬂ)DEId !'

400+
2 £
E E
3 5004 'E 200
B =
5 8
0 TmM P 2 M P+ ImM P+ o 1mM P ZmM P+ MM P+
18l Ca 18mM Ca 2TmM Ca 1.8mM Ca 1.8mM Ca 2T mM Ca
—=— won kessa nagative —=— Pre-dialysis

e o kossa pesite —— Dialysis
Ca is a more potent inducer of calcification than P. The Ca load in all vessel types was quantified after exposure to calcifying
media with the same Ca x P of 5.4 mM? (3.0mMP + 1.8 mM Caand 2.0 mM P + 2.7 mM Ca) for 14 d. (A) The Caload in
normal vessels was unaffected (6.7 + 2.4 versus 8.4 + 3.6 versus 11.8 + 2.9 versus 12.9 + 3.5 pg/ul; P = 0.3), was increased in
predialysis (19.7 £ 1.1 versus 30.1 = 11.9 versus 47.9 &+ 8.3 versus 115.1 £ 49.0 pg/ul; P =0.03), and was maximum in
dialysis vessels (129.0 + 53.0 versus 298.2 + 93.7 versus 350.0 = 147.0 versus 711.0 £ 206.0 pg/ul; P <0.0001) in response
toin1.0mMP+1.8mMCa, 2.0 mMP + 1.8 mM Ca,3.0 mMP + 1.8 mM Ca, and 2.0 mM P + 2.7 mM Ca media,
respectively. On comparing media with similar Ca x P, the Ca load was significantly increased in predialysis (P = 0.04) and
dialysis (P = 0.02) vessels but not in normal vessels (P = 0.77). (B) Dialysis vessels with baseline von Kossa positivity (n =
6) showed greater calcification than baseline von Kossa—negative (n = 18) vessels after culture for 14 d in calcifying media.
Caload in von Kossa—positive vessels was 44.2 + 5.1,370.0 = 25.1, and 1254.0 + 406.2 pg/ul (P = 0.0005, ANOVA) versus
30.5+5.4,208.0 + 78.6,and 476.3 + 143.7 ng/pl (P <0.001, ANOVA) in von Kossa—negative vesselsin 1.0 mM P + 1.8
mM Ca, 2.0 mM P + 1.8 mM Ca, and 2.0 mM P + 2.7 mM Ca media, respectively. (C) Predialysis (n =4) and dialysis (n = 6)
vessels with similar baseline Ca loads after culture for 14 d in calcifying media showed increased Ca loading in dialysis
vessels (31.5+2.4 and 278.2 + 105.0 ug/pl; P =0.0008) compared with predialysis vessels (27.0 = 3.3 and 48.7 = 13.2
versus 96.8 £ 14.4 ng/ul; P=0.03) in identical calcifying conditions. All probability values calculated by ANOVA.

Figure 3.
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Osteogenic conversion of VSMCs in predialysis and dialysis vessels. (A) ALK levels in normal vessels were 5.7 (2.3 to 7.5)
versus 4.2 TU/ul (3.2 to 4.8 IU/ul; P = 0.4), in predialysis vessels were 3.9 (2.4 to 15.1) versus 14.4 1U/ul (4.2 to 27.1 TU/pl;
P =0.03, and in dialysis vessels were 5.0 (5.7 to 19.3) versus 30.5 ITU/ul (16.0 to 42.1 IU/ul; P =0.001) after incubation in
1.0 mMP + 1.8 mM Ca and 2.0 mM P + 1.8 mM Ca media for 14 d, respectively. In 2.0 mM P + 2.7 mM Ca medium, ALK
levels were significantly reduced in all vessel types (2.1 [0.9 to 3.1],2.2 [1.0 to 2.9],and 5.7 TU/pul [3.8 to 8.9 IU/ul] in
normal, predialysis, and dialysis vessels, respectively). (B) Dialysis vessels incubated in 2.0 mM P + 1.8 mM Ca medium
with the addition of levamisole showed a decrease in ALK levels (31.1 [16.3 to 42.3] versus 17.1 [6.2 to 19.3]; P =0.03). (C)
Caload in vessel rings from the aforementioned experiment remained unchanged (387.2 + 22.0 versus 356.0 + 37.0 pg/ul; P
=0.62). (D) Immunohistochemistry for Runx2 was performed in dialysis vessels after culture for 14 d in calcifying media.
Runx?2 positivity increased in high P medium and was significantly greater in high Ca + P medium. Note the cytoplasmic
localization of Runx2 in dialysis vessels potentially reflecting alternative isoform usage in these vessels.  (E) The number
of Runx2-positive areas per unit area of tunica media was counted in dialysis vessels after incubation for 14 d. Runx2-
positive areas were 16.6 +4.1,24.9+7.8,and 61.5+ 10.9% (P =0.002) in 1.0 mM P + 1.8 mM Ca, 2.0 mM P + 1.8 mM Ca,
and 2.0 mM P + 2.7 mM Ca media, respectively.
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Dialysis vessels undergo VSMC loss as a result of apoptotic cell death. VSMC nuclei per unit area of tunica media were
counted on hematoxylin-eosin—stained samples in all vessel types after in vitro culture for 14 d in high P and high Ca + P.
(A) The VSMC number in normal vessels was 122.0 + 3.9 versus 120.0 = 5.8 versus 115.0 £ 4.7 cells per unit area (P =
0.09), in predialysis vessels was 118.0 = 9.1 versus 118.0 + 9.8 versus 108.0 + 7.7 cells per unit area (P = 0.047) and in
dialysis vessels was 85.0 £ 17.9 versus 82.0 + 14.6 versus 59.0 + 10.7 cells per unit area (P =0.03) in 1.0 mM P + 1.8 mM Ca,
2.0mMP + 1.8 mM Ca, and 2.0 mM P + 2.7 mM Ca media, respectively. (B) At similar baseline Ca loads, predialysis vessels
had 120.5 £ 8.4 versus 114.3 + 11.3 versus 107.0 + 8.6 cells per unit area (P = 0.16), and dialysis vessels had 87.8 + 9.1 versus
76.0 £ 9.9 versus 54.0 + 6.7 cells per unit area (P =0.003) in 1.0 mM P + 1.8 mM Ca, 2.0 mM P + 1.8 mM Ca, and 2.0 mM P
+ 2.7 mM Ca media, respectively. (C) Staining for a-smooth muscle actin (o-SM actin) was patchy in dialysis compared
with predialysis and normal vessels; arrows show cystic areas denoting VSMC loss. TUNEL-positive areas were observed in
dialysis vessels only, and the frequency of nuclear fragments was also increased. Inset shows hematoxylin-eosin staining of
nuclear fragments (arrow) associated with a VSMC cyst in a dialysis vessel treated with Ca + P medium. (D) The number of
TUNEL-positive cells per unit area of each vessel was counted and expressed as a percentage of total cell number after 14 d
of incubation in calcifying media. Normal and predialysis vessels had <0.5% apoptotic cells in all in vitro conditions,
whereas dialysis vessels showed a significant increase (2.6 [0.0 to 6.2],2.9 [0.0 to 8.6], and 7.7% [0.0 to 37.9%] TUNEL-
positive cells (P =0.03) in .0 mMP + 1.8 mM Ca, 2.0 mM P + 1.8 mM Ca, and 2.0 mM P + 2.7 mM Ca media,
respectively). (E) On addition of ZVAD to Ca + P—treated dialysis vessels, the Ca load reduced from 363.7 & 28.0 versus
278.0 + 34.0 pg/ul (P =0.04) but remained unchanged in vessels treated in high P medium alone (279.2 + 24.1 versus 265.3
+30.3 pg/ul; P =0.12). All probability values were calculated by ANOVA.
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Figure 5.
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Immunohistochemistry for vesicle markers and EM analysis of vessels. (A) Immunohistochemistry for the vesicle marker
annexin VI showed minimal deposition in normal vessels after exposure to calcifying media for 14 d but increased
deposition in dialysis vessels. (B) A similar pattern was observed for the vesicle-associated protein fetuin-A, which was
absent in normal vessels but heavily deposited in dialysis vessels. Fetuin is present intracellularly as well as deposited in the
VSMC matrix. All panels show a-SM actin co-staining (blue) and fetuin-A (brown). (C, 1) EM showing calcified
mitochondria (arrow) in VSMCs from control vessels exposed to high Ca + P medium in vitro. *Degenerate VSMC with
remnant calcified mitochondria and membrane debris. (ii) Enlargement of calcified mitochondria. (iii) Enlargement of rare
membrane debris found associated with degenerate VSMCs in control vessels. This was never calcified, and no evidence of
ECM calcification was observed in normal vessels. (iv) Crystalline ECM calcification (arrow) was observed in calcified
dialysis vessels after exposure to Ca + P in vitro. These VSMCs exhibited intact mitochondria (arrowheads). (v) Vesicle
deposition in the ECM of dialysis vessels exposed to Ca + P occurred in close proximity to healthy intact VSMCs
(membranes arrow) and associated with elastin. (vi) Enlargement of vesicles. Note that a large number of these vesicles
show crystalline apatite within the lumen (arrow). Bar = 0.5 pm.

Figure 6.
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Model shows VSMC phenotypic adaptation in response to mineral dysregulation in CKD. VSMCs that fail to adapt to a
synthetic phenotype and release vesicles to protect against Ca overload will eventually undergo necrosis. In contrast,
VSMCs that release vesicles do not succumb to intracellular Ca overload but deposit Ca in the ECM, which eventually
calcifies. This process eventually results in apoptosis of VSMCs.
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