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We predict, by means of ab initio calculations, stable electron and hole polaron states in perfect
monoclinic HfO2. Hole polarons are localized on oxygen atoms in the two oxygen sublattices. An electron
polaron is localized on hafnium atoms. Small barriers for polaron hopping suggest relatively high mobility
of trapped charges. The one-electron energy levels in the gap, optical transition energies and ESR g-tensor
components are calculated.
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Control over carrier mobility in semiconductors and
insulators under charge injection, photogeneration, or dop-
ing conditions is of enormous practical importance. In
particular, the possibility of small electron and hole po-
laron formation in perfect deformable lattice (otherwise
called self-trapping) has been considered in many studies
(see Refs. [1–4] for recent reviews). However, proving
polaron self-trapping remains extremely challenging.
Essentially, the subject of debate is whether the carrier
trapping takes place at preexisting precursor states (shal-
low donor, acceptor, or defect states, disorder fluctuations)
or whether the injected carriers self-trap in a perfect lattice,
where the potential well is only created by the carrier-
induced lattice polarization.

Experimentally, distinguishing between trapping at de-
fect sites and self-trapping in the perfect lattice is difficult
due to crystal imperfection and generally small values of
polaron self-trapping and migration energies. Reliable
theoretical predictions, on the other hand, are rare, due to
extreme sensitivity of the interplay between potential and
kinetic energy of a polaron to a chosen Hamiltonian and
boundary conditions (see, for example, Refs. [5,6]). The
spectroscopic properties and diffusion barrier have been
calculated for a number of systems, such as the self-
trapped hole in alkali halides (Vk center) [2,4], electron
polaron in TiO2 [7], and for a number of predominantly
hole small polarons trapped at impurities (see, for example,
Ref. [8]) and in amorphous silica [9].

In this Letter we predict the self-trapping of both elec-
trons and holes in the perfect monoclinic hafnium oxide
(m-HfO2) using static approach and density functional
theory. HfO2 has been in the spotlight of both scientists
and engineers over the last ten years as a potential sub-
stitute for SiO2 as a gate oxide in metal-oxide-
semiconductor field-effect transistors (MOSFETs) [10].
The electron trapping in the dielectric layer in these de-
vices may lead to degradation of their performance and
reliability. The properties of the bulk HfO2 are very similar
to those of ZrO2, which has much wider abundance and

range of applications. The primitive unit cell of m-HfO2

(space group P21=c) contains 12 atoms and two anion
sublattices: in one oxygen ions are threefold coordinated
(3C) and in the other—fourfold coordinated (4C).

Recent theoretical calculations predicted polaronlike
electron trapping near neutral oxygen vacancies in
m-HfO2 [11–13] and in the hypothetical amorphous
HfO2 [14]. Here we investigate whether electrons and/or
holes could be also trapped intrinsically by the perfect
lattice. We address this question by calculating the polaron
self-trapping energies, diffusion barriers, and spectro-
scopic properties in the framework of density functional
theory (DFT). We have used the hybrid B3LYP functional,
which includes nonlocal Fock exchange [15] and has been
used successfully to model hole trapping in crystalline and
amorphous SiO2 [9] and electron localization in an inor-
ganic electride [16].

We use two complementary computational schemes im-
plemented in periodic and embedded cluster methods.
Periodic DFT calculations were performed with a parallel
version of the CRYSTAL03 package [17], which uses local
basis sets of Gaussian-type orbitals (GTOs) and the hybrid
B3LYP functional. This method gave reliable predictions
of defect properties in m-HfO2 [11] and in other insulators
[16,18]. We used an all electron basis set on oxygen ions
and a relativistic effective core pseudopotential with a
basis set for the outer electrons on Hf developed for this
system in previous works [11]. The calculations were
carried out in a 96-atom supercell with a Monkhorst-
Pack mesh of 9 k points in the irreducible part of the
Brillouin zone used for integration in the reciprocal space.
A uniform background potential method was used in the
calculations of charged supercells [17].

To facilitate the hole or electron localization, we created
some small distortion around particular sites in the periodic
cell and then allowed the whole system to relax. To study
localization of electrons, we displaced two neighboring
hafnium atoms by 0.2 Å towards each other. In the case
of holes, we elongated the Hf-O bonds of the correspond-
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ing oxygen atom by 0.1 Å, similar to the V� oxygen
vacancy. We have found a stable electron polaron state
and two hole polaron states. The holes are localized on the
3C and 4C oxygen sites, respectively. In the case of the
electron polaron, about 70% of the electron spin density is
localized predominantly on three Hf ions sharing the 4C
oxygen (see Fig. 1). It is distributed asymmetrically among
these three ions, in a 40:20:10% proportion. The rest of the
spin density is delocalized over the more distant Hf ions.
The lattice distortion is fairly small; the 4C oxygen ion
shared by these three Hf ions is displaced by 0.2 Å towards
the fourth Hf ion.

The hole polaron predominantly localizes on a single
oxygen site in both 3C and 4C oxygen sublattices. The hole
localization on a 3C oxygen atom is accompanied by an
outward displacement of the nearest neighbor (NN) Hf
atoms by about 0.1 Å, and smaller displacements of the
NN oxygen atoms (see Fig. 1). 74% of the spin density is
on the oxygen atom, and three of the NN oxygen atoms trap
a 9, a 7, and a 4% of density, respectively, (see Fig. 1). The
remaining spin density is delocalized over the other oxygen
atoms of the lattice. In the case of self-trapping on a 4C
oxygen site, the lattice distorts in such a way that one of the
O-Hf distances increases by 0.4 Å and the other two Hf-O
distances increase by about 0.2 Å. The NN oxygen atoms
have smaller displacements, of the order of 0.1 Å. This
atomic configuration is very similar to that obtained for the
hole self-trapped on the 3C oxygen. 70% of the spin
density is localized on the displaced oxygen atom, with
11% of the density on one of the NN O atoms (see Fig. 1).

The self-trapping energies, EST, are calculated as a
difference between the total energies of the fully relaxed
localized polaron state and the delocalized electron or hole
state in the perfect undistorted lattice. They are summa-
rized in Table I. The energy of the relaxed localized state is
lower in all cases. In order to check that the localized states
calculated in this work are not an artifact of the B3LYP
functional we performed test calculations for MgO, where
no self-trapped holes have been found in the perfect lattice
[2,4]. The geometry of a 64-atom supercell with the same
oxygen basis set was distorted towards the hypothetical
one- or two- center hole configurations [19]. In both cases
the lattice relaxed into the perfect geometry and the hole
uniformly delocalized over the supercell. This suggests
that the B3LYP functional is well balanced and does not
artificially favor hole localization in similar oxides and the
effect we observe in HfO2 may be genuine.

Figure 2(a) shows the density of states in the gap region
for all polarons. The band gap of 6.1 eV calculated for the
perfect lattice is not affected by the polaron presence. The
hole polaron, both in 3C and in 4C oxygen, creates an
unoccupied localized state deep in the gap split by about
1 eV from the valence band (VB) maximum. This state
consist mainly from p orbitals of the oxygen atom on
which the polaron is localized. The electron polaron in-
duces an occupied localized state split by 0.5 eV from the
conduction band (CB), and is mainly composed of a com-
bination of d orbitals of the three Hf atoms on which the
electron is localized. The dispersion of polaron bands in
both cases does not exceed 0.1 eV, in line with strong
polaron localization.

The polaron mobility can be characterized by adiabatic
barriers for hopping between different sites. To estimate
these barriers we used a linear interpolation approach (see
also Ref. [7]). Let R1 and R2 be the coordinates of all
atoms in the initial and final polaron states, respectively.
Then the coordinates of all atoms along the hopping path
can be approximated as R � tR1 � �1� t�R2, where t is
varied in the range from 0 to 1. Calculating energies for
several configurations allows us to determine the highest
energy along the adiabatic path and thus estimate a barrier.
In Table I we present the barriers for polaron jumps be-

FIG. 1 (color online). Scheme of the lattice relaxation and spin
localization in the three polaronic states. Left part shows the
lattice relaxation and right part shows an isosurface (value �
0:007) of the spin distribution in the area of the polaron.
(a) corresponds to a self-trapped electron, (b) to a self-trapped
hole in 3C oxygen, and (c) to a self-trapped hole in 4C oxygen.
Bright balls represent Hf atoms and dark balls represent O
atoms.

TABLE I. Self-trapping energies (EST), diffusion barriers for
jumps to equivalent (Ed;e) and nonequivalent (Ed;n) sites, optical
ionization (EI) and optical excitation (Ee) energies, in eV, and
ESR g-tensor components for electron polaron and two different
hole polaron states in m-HfO2. Negative oxygen vacancy calcu-
lated in the previous work [11] is included for comparison.

State EST Ed;e Ed;n EI Ee gxx gyy gzz

Hole 3C 0.57 0.08 0.56 1.21 1.51 2.014 2.025 2.040
Hole 4C 0.14 0.19 0.16 0.96 1.15 2.009 2.037 2.043
Electron 0.32 0.05 - 0.46 1.47 1.812 1.829 1.922
V� - - - 1.24 0.78 1.811 1.829 1.941

PRL 99, 155504 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
12 OCTOBER 2007

155504-2



tween equivalent lattice sites, e.g., from 3C to 3C oxygen
sites, and the barriers for jumps between nonequivalent,
e.g., 3C and 4C oxygen sites. The barriers are quite low in
almost all cases considered, with one notable exception—
the barrier for the 3C— 4C hole jump is much higher than
that for the opposite process. Together with the larger self-
trapping energy this indicates that a preferential pathway
for hole diffusion in m-HfO2 structure is along oxygen 3C
sites.

To further characterize the polaron states we have calcu-
lated optical ionization energies (EI, see Table I). For that
purpose we calculate the difference in the total energies of
the fully relaxed polaron state and that of the state in which
the electron or hole are delocalized at the bottom of the CB
(electron) or the top of the VB (hole), far from its original
site, but the lattice atoms are still in the original polaron
positions. We note that thermal ionization energies are well
approximated by self-trapping energies, EST. As expected
[1], they are much smaller than EI.

Optical absorption energies and ESR parameters are
among the most important polaron fingerprints [2,4]. To
calculate these properties we used an embedded cluster
model implemented in the GUESS computer code described
in Ref. [11]. A quantum (QM) cluster with the polaron at
the center includes 13 hafnium ions and 26 oxygen ions. It
is embedded in a spherically shaped nanocluster with
monoclinic symmetry containing 2016 classical rigid
ions and having a radius of approximately 25 Å. An inter-
face between quantum and classical regions is described by
substituting classical Hf atoms within a radius of 10 Å from
the polaron by large-core Hay and Wadt pseudopotentials
[20]. The latter substitute all but four electrons of a haf-
nium atom. This prevents an artificial polarization of the
electron density towards positive point ions outside the
quantum cluster. The point ions outside the quantum clus-
ter carry formal charges and contribute to the electrostatic
potential within the quantum cluster (see Ref. [11] for
more detail). We used the same GTO basis sets, pseudo-

potentials, and B3LYP density functional as in the periodic
calculations. The coordinates of the ions surrounding the
relaxed polaron obtained in the CRYSTAL calculations were
used also in embedded cluster calculations without further
geometry optimization. The time-dependent (TD) DFT
method was employed for calculating optical transition
energies and g-tensor components were calculated using
the technique implemented in the GAUSSIAN 03 package
[21].

The electronic structure of m-HfO2 obtained in this
model is in agreement with the periodic calculations. The
band gap is by about 0.5 eV larger than that in the CRYSTAL

calculations and the splitting of the polaron states from the
bands are also larger by about 0.5 eV for the hole and
0.3 eV for the electron polaron. These trends have also
been observed in the previous embedded cluster study of
the oxygen vacancy in m-HfO2 [11]. Using TDDFT we
have calculated the relevant optical transitions: from the
states in the VB to the localized unoccupied hole state in
the gap, and from the electron polaron state in the gap to
the unoccupied states in the CB [see Fig. 2(b)]. For each of
these two types, 20 transitions have been calculated. The
onset of hole transitions is at 0.4 eV in the case of the 3C
hole and at 0.3 eV in the case of the 4C hole. The highest
oscillator strength transitions are at 1.51 eV (3C hole) and
1.15 eV (4C hole). These transitions take place from the
oxygen ions surrounding that carrying the hole and form-
ing a resonant state in the VB. The onset of electron
polaron excitations is at 0.20 eV and the maximum oscil-
lator strength transition is at 1.47 eV. Similarly to the hole,
this transition is to a resonant state composed of d orbitals
of Hf ions from the next coordination sphere.

The calculated g-tensor components for all polaron are
shown in Table I. The value for the hole has little depen-
dence on the site where it is self-trapped. It has ortho-
rhombic symmetry, although the differences between com-
ponents are small. The electron polaron shows a smaller
value of the g tensor and larger anisotropy in one of the
components. In addition, the g-tensor components for this
state are very similar to those calculated for the negatively
charged oxygen vacancy [11], supporting the notion that
the negatively charged vacancy is in fact an electron po-
laron trapped near a neutral vacancy.

In conclusion, we predict the existence of both hole and
electron small polarons inm-HfO2. Holes can self-trap on a
single oxygen atom in either of the two different sublattices
of m-HfO2, and electrons can self-trap on three Hf ions
sharing an oxygen atom. This is a remarkable result, as the
existence of both types of polarons is not common in
insulators (see, for example, Ref. [22]). The low symmetry
of m-HfO2, with two different oxygen sublattices stacked
in alternate 2D slabs, combined with the high dielectric
constant may facilitate the hole polaron self-trapping. The
bottom of the CB, composed mainly of narrow d bands of
Hf favors the electron localization, similar to other tran-

FIG. 2. (a) Density of states of m-HfO2 with the polaron states
in the gap region marked by arrows. (b) Schematic of the optical
transitions involving hole and electron polarons. Resonant states
are indicated by dotted lines.
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sition metal oxides [23]. Experimental and theoretical
works point out to the ability of the Zr-vacancy complex
in yttrium-stabilized cubic ZrO2 to trap an electron and
form the so-called Zr3� center [24,25]. In this complex, the
Zr atom lowers its coordination from eightfold to sevenfold
or sixfold, which is similar to the Hf arrangement in the
m-HfO2 lattice. Therefore the sevenfold coordination of Hf
can be another factor in favor of the electron self-trapping.

Our results suggest that both hole and electron polarons
in m-HfO2 could be observed as stable immobile defects at
low temperatures and should remain localized and exhibit
hopping mobility at relatively high temperatures.
Therefore, the hole and electron conductivity of pure
m-HfO2 samples should exhibit a characteristic tempera-
ture dependence [1]. It is interesting to note that the
electronic conductivity of ZrO2 samples demonstrates ac-
tivation energies in the range between 0.03 and 0.26 eV
[26,27]. These are similar to the barriers for polaron hop-
ping obtained in our calculations of m-HfO2.

Apart from purely fundamental importance, these find-
ings may have implications for our understanding of the
performance of HfO2, ZrO2 and possibly other so-called
high-k oxides in microelectronic devices and in other
applications. We note that an electron migration process
exhibiting a very low activation energy of 0.01 eV has
recently been identified by simulating temperature depen-
dent threshold voltage shift during constant voltage stress
of the HfO2 gate dielectric MOSFETs using temperature-
assisted charge migration model [28]. This low activation
energy process might represent the transport of self-
trapped electron polarons. Finally, we note that the exis-
tence of polaron bands should be taken into account in
defining band offsets with respect to Si and other gate
materials [29,30]. Self-trapping of both holes and electrons
strongly suggests that excitons in this material would also
self-trap. This may have important implications for its
radiation stability [4].
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