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SAMPLE PATH LARGE DEVIATIONS FOR
QUEUES WITH MANY INPUTS!

By DAMON J. WISCHIK

Statistical Laboratory Cambridge

This paper presents a large deviations principle for the average of
real-valued processes indexed by the positive integers, one which is partic-
ularly suited to queueing systems with many traffic flows. Examples are
given of how it may be applied to standard queues with finite and infinite
buffers, to priority queues and to finding most likely paths to overflow.

1. Introduction. Consider a queue fed by several different input pro-
cesses. Many quantities of interest in queueing theory, such as the amount of
work in the queue, can be expressed as functions of the sequence of variables
(x;)sen> Where x, is the total amount of work received ¢ time steps ago.

The sequence (x,) will typically live in a space on which the quantity of
interest is a continuous function. For example, let 2, be the space of real-
valued sequences x = (x,) for which ¢+ 1Y!_; x; < p eventually. Then the
amount of work @ in a queue with an infinite buffer and fixed service rate
C > u is given by

Qx) = [sup(i % - Ct)r

>0 \;_1

There is a simple topology on ), which we call the uniform topology, that
makes @ continuous.

The principal result of this paper is a large deviations principle (LDP) for a
sequence of random processes X~ in 2’ .. equipped with the uniform topology.
This can be used to understand the large deviations behavior of a wide range
of queueing systems. Consider a sequence of queueing systems, in which the
Lth system has input X”. We will use the contraction principle to deduce,
from the LDP for XZ, LDP’s for various quantities such as @(X%).

In this paper we will be motivated by one particular limiting regime, in
which XI is the average of L processes. This is known in queueing the-
ory as the many sources asymptotic, and was described in an early paper
of Weiss (1986). It is well suited to modern telecommunications networks, in
which a switch may have hundreds of different input flows. Another limit-
ing regime which has been widely studied is the large buffer asymptotic, in
which X’ is a speeded-up version of a base process X. We will see that large
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deviations in this regime can often be found as a special case of the many
sources regime.

The rest of this paper is in two parts. In Section 2, the sample path large
deviations principle for X is established. O’Connell (1997a) has proved a
sample path large deviations principle for the large buffer regime, and the
proof given here for the many sources regime is similar. We also give several
examples of processes satisfying the sample path LDP, including fractional
Brownian motion.

In Section 3, the sample path LDP is used together with the contrac-
tion principle to study large deviations in three different queueing problems:
standard queues with finite and infinite buffers, likely paths to overflow and
priority queues. There are many other possible applications; for example, it is
used by Wischik (1999) in studying the output of a queue. Several authors have
used this approach to study large deviations under the large buffer regime; we
will see that under the many sources regime, large deviations often possess a
richer structure.

2. Large deviations for averages of processes. We will be concerned
with the set 2" of real-valued processes indexed by the natural numbers
{1, 2,...}. Throughout this paper, ¢ will represent a natural number. Denote
a process in 2" by x(0, 00), and its truncation to the set {s+ 1---¢} by x(s, £]
for s < t. When the meaning is unambiguous, x(0, c0) and x(0, {] may be
written as x. Let 1 be the constant process taking value 1 at each time step.
Denote by x, the value of the process at time ¢, and by x(s, ¢] the cumulative
process x(s, t] = Y/_, .1 x;, with x(¢, t] = 0.

Consider a sequence of random processes (X©); .y, where each X takes
values in 2°. We will prove results about the limit of the X’: the principal
result of this section is a sample path large deviations principle for the XZ.
It will be helpful to think of X as the average of L independent, identically
distributed processes. However, despite the title of this section, we will (for
the moment) assume only that the X’ take values in 2.

It should be explained here what is meant by a large deviations principle.
For a full introduction to the theory, and details of the tools and definitions
we will be using, see Dembo and Zeitouni (1993). A sequence of random vari-
ables X* in a Hausdorff space 2" with o-algebra 4 is said to satisfy a large
deviations principle (LDP) with good rate function I if, for any B € %,

1
— inf I(X) < liminf + log P(XE e B)

xeB°

< lim sup 1 log P(X% € B) < —inf I(X),
L—oo L xeB

where I: 2 — R* U {oco} has compact level sets. If X is a process, this is

called a sample path LDP. The left- and right-hand sides of this inequal-

ity are referred to as the large deviations lower and upper bounds. To avoid

measure-theoretic complications, we will assume throughout this paper that %
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contains the Borel o-algebra, and thus that all the open and closed sets we
will be interested in are measurable.

We want to find a sample path LDP in a space appropriate for queueing
applications. This will be done in four steps. The first step is to find an LDP
for finite truncations of the process. If X’ is the average of L processes, a
finite truncation is just the average of L vectors, and there are standard tools
for dealing with this. The next step is to extend the LDP to the entire process.
This is done by taking projective limits, again a standard step. The third step
takes most of the work. Many queueing functions of interest are not continuous
with respect to the projective limit topology, so we need to strengthen the LDP
to a more appropriate topology. O’Connell (1997a) has introduced a suitable
topology: that given by the uniform norm

(D x| = sup Ml

t>0

t

As well as choosing this finer topology, we need to restrict the LDP by incor-
porating a notion of stability; this is the final step.

We will find conditions under which X’ satisfies an LDP, with the uniform
topology, and with good rate function

(2) I(x) = supsup 0 - x(0, £] — A,(0),
t>0 OcR?

where A,(0) is the moment generating function

lim % log Eexp(L# - XX(0, ¢]).

L—oo

An LDP for truncated sequences. The following lemma establishes an LDP
for any finite truncation of the process. It is a direct restatement of the
Gértner—Ellis theorem for the average of vectors in Rf [see Dembo and Zeitouni
(1993), Theorem 2.3.6].

ASSUMPTION 1 (Finite-time regularity). Define the logarithmic moment
generating function AL(0) for 0 € R' by

1
AL(0) = 7 log Eexp(L6 -X*(0, t]).
Assume that for each t and 0 the limiting moment generating function
A(0) = lim AL(0)

exists as an extended real number, and that the origin belongs to the interior
of the effective domain of A,. Assume further that A, is an essentially smooth,
lower semicontinuous function.
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LEMMA 1. Under Assumption 1, for any fixed t, the sequence X% (0, t] sat-
isfies an LDP with good rate function

A;(x(0, ¢]) = sup @ -x(0, t] — A,(0).
0cR?

EXAMPLE 1 (Many sources). Let X be the average of L independent copies
of the process X. Then

A,(0) = AL(0) = log Eexp(0 - X(0, t]).

This example should be borne in mind, because it is the motivation behind all
the following results.

The projective limit. Now we extend the LDP from finite truncations X(0, ¢]
to the full process X(0, co). We need a little more care than this in stating the
result, because the definition of the large deviations principle relies on open
and closed sets and there are several useful topologies on the space of pro-
cesses 2°. We will use the topology of projective limits (i.e., the topology of
pointwise convergence of sequences). The following lemma is a direct appli-
cation of the Dawson—Gértner theorem for projective limits [see Dembo and
Zeitouni (1993), Theorem 4.6.1].

LEMMA 2. Under Assumption 1, the sequence X satisfies an LDP in 2~
under the topology of pointwise convergence, with good rate function

(3) I(x) = sup A; (x(0, t]).

Strengthening the topology. The topology of pointwise convergence is not
directly useful for many queueing applications. For example, if x, is the
amount of work arriving at a queue at time —¢, and the queue is served at
constant rate C, then the queue size at time 0 is

Q(x) =supx(0,¢] — Ct
t>0

and this function is not continuous with respect to the topology of pointwise
convergence. To see this, set x* = C for t < L, x¥ = C + 1 and x} = 0 for
t > L. Then x” converges pointwise to the constant process of rate C, for
which @ = 0, but @(x*) =1 4 0. The answer is to show that the LDP holds
in a finer topology.

The uniform topology (1) defined above allows one to analyze a wide range
of queueing problems. The idea is that it controls what happens over very large
timescales. Under an additional assumption on the large timescale behavior
of the process XZ, we can show that the sample path LDP of Lemma 2 can be
extended to this topology.

The results in Section 3 do not actually need a topology as strong as the
uniform topology. The only properties of the topology they use are that it
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is stronger than the projective limit topology, and that it makes the queue
size function continuous. There are weaker topologies that have these two
properties, such as the weak queue topology used in Wischik (1999), defined
by the metric

d(x,y) = 1Q(0) ~ Q)| + 3. 1=l

t=1

But the uniform topology is easier to work with, so we will use it in what
follows.

ASSUMPTION 2 (Large timescale characteristics). A scaling function is a
function v: N — R for which v(t)/logt — oo. For some scaling function v,
define the scaled cumulant moment generating function

A0 = St (50

for 6 € R. From Assumption 1, for each t there is an open neighborhood of the
origin in which the limit

A(0) = lim AL (0)

exists. Assume that there is an open neighborhood of the origin in which these
limits and the limit

A(6) = lim A,(0)

exist uniformly in 6.

We also know from Assumption 1 that for 6 in some open neighborhood of
the origin, the limit AL(6) — A,(0) — 0 is uniform as L — oco. Assume that for
0 in some open neighborhood of the origin, the limit

@ / l”gi(ALw) A8)) — 0

is uniform in 6 as t, L — oc.

THEOREM 3 (Sample path LDP for process averages). Suppose X satisfies
Assumptions 1 and 2. Then it satisfies an LDP in the space of real-valued
sequences 4" equipped with the uniform topology (1), with good rate function
I given in (3).

EXAMPLE 2 (Many sources). In the case of Example 1, when X’ is the aver-
age of L independent processes with common distribution X, the uniformity
of the limit (4) is guaranteed, since AL = A,.
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PROOF OF THEOREM 3. The processes X’ take values in the set 2" of
real-valued sequences. Write (27, p) for 2" equipped with the projective limit
topology, and (27, |- ||) for 2" equipped with the uniform topology. The identity
map from (27, || - ||) to (27, p) is continuous; we assume as usual that all open
and closed sets in (2, || - |) are measurable; and we know that X’ satisfies an
LDP in (27, p) with rate function I. So, by the inverse contraction principle
[see Dembo and Zeitouni (1993), Theorem 4.2.4], if X’ is exponentially tight
in (2, || -], then it satisfies an LDP in (27, || - ||) with the same rate function.

It remains to show that X’ is exponentially tight in (2, | - ||): in other
words, that there exist compact sets K, in (£, | - ||) such that

lim lim sup % logP(XF ¢ K,) = —oo.

a—> o0 L*)OO

Choose the sets K, as follows. For each ¢, let u, = A}(0), let d, = /log ¢/v(¢),
let

x(0, ¢] .

Ka(t)={xe32”: .

(1ty — adys o + adt]}

and choose

K, =) K.
teN

Exponential tightness with these K, will be shown in the following two
lemmas. O

LEMMA 4. The sets K, are compact in the uniform topology.

PROOF. Because we are working in a metric space, it suffices to show that
the sets K, are sequentially compact. So, let x* be a sequence of processes.
Since the T-dimensional truncation of (,_; K ,(¢) is compact in R”, the inter-
section K, is compact under the projective topology. That is, there is a sub-
sequence x/(*) which converges pointwise, say to x. It remains to show that
x/ — x under the uniform topology.

Given any ¢, since d, — 0 as ¢ — oo, we can find ¢, such that, for ¢t > ¢,
2d,a < &. And since x and all the x/ are in K,

J
sup x7(0,¢]  x(0,¢]

>t t t

Also, since the x/ converge pointwise, there exists a j, such that, for j > j,,

J
sup x/(0,¢]  x(0,¢]

t<to t t

Putting these two together gives the result. O
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LEMMA 5.

1
lim lim sup I logP(Xl ¢ K ) = —oc.

a— o0 L—oo

PrROOF. First, note that if

lim lim sup L~ 'log yﬁ = —o00,
a—>00 LQOO
and the same is true of 2%, then it is also true of y. + zL, by the principle of
the largest term.
Also, note that

PXE ¢ K,) <Y P(X%(0,¢)/t > p, + ad,) + Y. P(XE(0, t]/t < p, — ad,).
t t

We will adopt the strategy of breaking the infinite sums up into several
parts: several finite-timescale parts and a long-timescale infinite part. Finite-
timescale parts are easy to deal with individually, and we can control the
behavior of XZ over long timescales. This strategy is also at the core of proofs
for related large deviations results, proved directly by Courcoubetis and Weber
(1996) and Botvich and Duffield (1995).

First, fix ¢ and consider limsup; L~'log P(X%Z(0, t]/t > u, + ad,). By
Chernoff’s bound,

P(XE(0, ¢/t > p, + ad,) < exp[ — Lv(t)(6(p, + ad,) — AL(6)])

for any 6 > 0. So the expression we are interested in is bounded above by
lim sup;, — v(¢)(0(p, + ad,) — AL(6)). Choosing any 6 for which A,() is finite,
it is clear that this quantity tends to —oco as @ — oo.

Now for the remaining terms. We have assumed that the limits AZ(9) —
A,(0) and A,(0) — A(6) exist uniformly in 6 in an open neighborhood of the
origin. Since Al is a cumulant moment generating function, it has a power
series expansion, and so the coefficients in the power series also converge.
Let AL(6) = 0ul + 36%sL + O(6%), and denote the coefficients of A, and A by
dropping the superscripts and subscripts appropriately.

For fixed ¢, consider the remaining terms

(5) lim lim sup 1 log " exp[ — Lv(¢)(0(u, + ad,) — AL(6))].

a—>00 1 oo .

Assume for the moment that s > 0, and pick 6 depending on L and ¢: 6F =
(d, + eF)/sk, where e& = u, — uL. This gives as the typical exponent

d, + &b)? _
_Lv(t)“—( t+ft) +O(dt+sf)3}+—a Ll
2s; Sy

d,(d, + ef)}.

Because of our assumption on the uniformity of convergence (4), there exists a
to and L such that, for ¢ > ¢, and L > L, 6 is positive; and because d, — 0,
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the term in brackets {-} is also positive. (If s = 0, pick 6L = d, + ; then the
same conclusion holds.)
So the typical exponent in (5) is bounded above by

a—1
¢
for sufficiently large ¢ and L. Indeed, for sufficiently large ¢ and L we can
bound it by —Luv(t)k(a — 1)d? for some constant « > 0. Therefore, by our
choice of d,, for ¢, sufficiently large, expression (5) is bounded above by

lim lim sup (a— D log Y ¢tL.

a— 00 L—)OO L tZtO

It is easy to check that this is equal to —oco. O

Stability. We have achieved the goal of a sample path LDP for averages of
processes. But it is still not directly useful for queueing applications, because
the queue size function is still not continuous, even with respect to the finer
topology. The problem is that there is no notion of stability. If the mean arrival
rate is higher than the service rate, the queue will be unstable. Mathemati-
cally speaking, the queue size function is only continuous on the subspace of
processes for which the mean arrival rate is less than the service rate. The
following theorem shows that the sample path LDP holds in this restricted
space. First, we must define the mean rate of the arrivals.

DEFINITION 3 (Mean rate). Define the mean rate of the XZ to be the deriva-
tive A’(0).

We will also explain here what we mean by stationarity. We do not need this
definition immediately, but as it crops up again and again, it will be useful to
give it now.

DEFINITION 4 (Stationarity). Say that XI is stationary if the limiting
moment generating functions A, correspond to a stationary process. Note that
if X is stationary, then the mean rate is equal to t"*A}(61) for all ¢, where
the derivative is taken at 6 = 0.

THEOREM 6. Under Assumptions 1 and 2, the LDP of Theorem 3 holds on
the space 2, which has the uniform topology and is given by

“w

%:{xe@”:@

<m eventually}

for any u greater than the mean rate of the X-.

PROOF. By Dembo and Zeitouni [(1993), Lemma 4.1.5] it suffices to show
that {x : I(x) < oo} C Z],, and for L sufficiently large, P(Xt e 2,)=1.
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Recall that I(x) = sup; A{(x(0, t]). Let w = A’(0) + &, and pick 6 > 0 such
that A(6) < 6(n — %s) Now if x(0, £]/¢ > u, then, for sufficiently large ¢,

AF(x(0,¢]) = sup 0 - x(0, ¢] — A,(0) > Gv(t)<x(2’ f_ (,u - %s)) > %Gv(t)s.
0
So if x ¢ 2, then this inequality holds for infinitely many ¢, and since v(#) is
unbounded, I(x) = oc.
Second, since AX(0) — A,(6) uniformly for ¢ sufficiently large and A,(6) —
A(6), there exists 6 > 0 such that, for L and ¢ sufficiently large, AX(0) <
O(p — %s). Then, by Chebyshev’s inequality,

(0

e

> M) < i exp [ — Lo(t)(6p — A7 (6))],
t=1

which is finite for L sufficiently large. So, by the Borel-Cantelli lemma, P(X” ¢
2,)=1 0
N

This result will be used to study the large deviations behavior of a variety
of queueing systems. Some of the systems can easily be studied directly. But
the indirect route, via the sample path LDP, can give more insight. It also
means there is less additional work for each different application.

2.1. Examples. We have already given the example of the many sources
asymptotic, in which X’ is the average of L independent processes. We now
give three more examples. The first shows how large buffer results can be
obtained from the same theorems (though they usually turn out to have a less
rich structure).

EXAMPLE 3 (Large buffer). Given a base process X, let X%(0, ¢] = f(L) x
X (0, f(L)t]. This is the large buffer asymptotic regime. For a variety of pro-
cesses X, it is possible to choose a normalizing function f(L) such that
Assumption 1 is satisfied. Often, the normalizing function is just f(L) = L,
and the limit A, has the simple linear form A,(0) = Y‘_; A(6;). For an
account of conditions under which this occurs, see Dembo and Zajic (1995).
In Example 5, the normalizing function is not linear and A, has a more com-
plicated form.

Suppose for now that A, has the simple linear form: this gives as the rate
function I(x) = Y_, Aj(x,). Then Assumption 2 is satisfied. To see this, choose
v(t) = ¢, so that A(6) = A;(6). Since AL() is given by

1
Lt
and we have assumed that this converges as L — oo, we can by choosing
t and L sufficiently large make AX(6) — A,(0) arbitrarily small. Thus the

limit (4) is uniform as ¢, L — oco. O’Connell (1997a) describes sample path
large deviations under the large buffer asymptotic in more detail.

AF(0) = — log Eexp(0X(0, Lt]),
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The next two examples are of fractional Brownian motion, a process with
long-range dependence, by which we mean that the sum of covariance coeffi-
cients > 72, Cov(X,, X;) is infinite. This makes it both appealing as a model
for Internet traffic, since this phenomenon has been observed empirically by
Leland, Taqqu, Willinger and Wilson (1994) and others, and also a problem for
the standard large buffer asymptotic. But under the many sources asymptotic,
it looks just like any other process.

EXAMPLE 4 (Fractional Brownian motion with many sources). As an illus-
tration of the many sources asymptotic, let X~ be the average of L independent
copies of the process X, defined by X (0, t] = At + 0 Z,, where Z, is a fractional
Brownian motion with Hurst parameter H. Then A,(0) =10 -1+ %0’20 - S,0,
where the ¢ x ¢ matrix S, is given by (S;);; = 2(|j—i—1PHE 4| j—i+12H -
2|j —i|*7), and so A,(01) = A0t + L2022,

To check that Assumption 2 is satisfied, choose the scaling function v(¢) =
20-H) 5o that AF(6) = A0 + 10262 This does not depend on L or ¢, so it is
also equal to A,(6) and A(0).

ExAMPLE 5 (Fractional Brownian motion with large buffer). To contrast
the many sources and the large buffer asymptotic, consider the large buffer
version of fractional Brownian motion. Let X be a fractional Brownian motion
with Hurst parameter H, as in the previous example. Choose the scaling
XL(0,¢] = f(L)*X(0, f(L)t] with f(L) = LY20-H) This gives AF(61) =
A,(61) = A0t + 1020%¢%H | the same expression as before. This is not linear in
t, so A,(0) does not have the simple linear form described in Example 3.

For Assumption 2, as with any large buffer example the limit (4) is uni-
form for any scaling function v, and as in Example 4 we can choose v(t) =
(20-H)

Applying the results in Section 3 to the LDP we obtain from this, we can
rederive a result of Duffield and O’Connell (1995) for the workload in a queue
fed by a single fractional Brownian motion source.

We shall revisit these examples in the next section, to see what they tell us
about large deviations of queue size.

3. Large deviations for queues. In this section, the sample path LDP
is applied to study large deviations in several queueing problems: standard
queues with finite and infinite buffers, likely paths to overflow and priority
queues.

The common approach will be to take the sample path LDP and then apply
the contraction principle to find an LDP for the quantity of interest. The
contraction principle says that if X satisfies the sample path LDP in 2 o
and if f is a continuous function on %, then f (XL) satisfies an LDP with
good rate function I(y) = inf{l(x) : x € 2}, f(x) = y)}. See Dembo and
Zeitouni (1993), Theorem 4.2.1, for a proof of the contraction principle.

First, though, we relate the abstract setting of the last section to queueing
models and describe the limiting regime.
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3.1. Queueing model. Consider a sequence of queues, indexed by L, in
which the Lth queue has service rate C and buffer size B. Let X’ be the
total amount of work arriving at the Lth queue at time —¢. (Depending on the
context, X will variously be called an input process, a source or a traffic flow.)

There are several ways in which we can interpret this, depending on what
X’ represents, though none of the results in this paper relies on a particular
interpretation. Here are two possibilities, corresponding to examples from the
previous section.

The first example is the one we have in mind throughout this paper: when
the total input flow is the aggregate of many independent flows. This sort
of scaling is well suited to modern telecommunications networks, in which a
switch may have hundreds of inputs but only a small amount of buffer space
per input.

EXAMPLE 6 (Many sources). In the many sources asymptotic, XZ is the
average of L independent identically distributed flows. So the Lth queue can
be thought of as multiplexing together L different flows, with its resources
growing in proportion: it has service rate LC and buffer size LB.

The next example has been much more widely studied. For Markov-
modulated fluid sources and for many others, the probability of loss decays
exponentially in buffer size, so a good way to reduce loss is to make the
buffers larger; and it is natural to study asymptotic regimes in which the
buffer size increases. The observation that this is largely inaccurate when
there are many input flows or when the sources exhibit long-range dependence
[see Choudhury, Lucantoni and Whitt (1994) and Leland, Tagqu, Willinger
and Wilson (1994) for example] has prompted some of the work on the many
sources asymptotic.

ExAMPLE 7 (Large buffer). In the large buffer asymptotic, described in
Example 3, X’ is a speeded up version of a base process: X% (0, ¢] = f(L) !x
X (0, f(L)t]. So the Lth queue can be thought of as having a single input X
and fixed service rate C, but increasing buffer size f(L)B.

Several authors, including O’Connell (1996, 1998), Paschalidis (1996) and
Puhalskii and Whitt (1998), have used the contraction principle approach to
study the large deviations behavior of various queueing systems under this
asymptotic.

3.2. Buffer size in a queue. In this section, we look at a standard queue
with a constant service rate. Some of the following results have previously
been proved directly, but it is instructive to see the techniques used in deriving
them from the sample path LDP, as these same techniques will be used in the
following sections.

Consider a queue with constant service rate C fed with input process x.
The amount of work in the queue at time —u may be defined to be
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lim,_, . @, (x(0, ¢]), where @,(x(0, ¢]) is given by the Lindley recursion

Q1=(Q+x,-C)", Q@ =0.

If the input is a stationary process, the stationary queue size may be written
as

Q(x) = sup x(0, t] — Ct.

Lemma 13 shows that this function is continuous on Z;, for any u < C. By the
contraction principle, this immediately gives Corollary 7: an LDP for workload
in queues with infinite buffers, which when simplified duplicates the results of
Botvich and Duffield (1995) for linear scaling functions v(¢), of Duffield (1996)
for general scaling functions and of Simonian and Guibert (1995) for the spe-
cial case of Markov-modulated fluid sources. The estimate which this LDP
provides can be refined with the Bahadur—-Rao improvement, as described by
Likhanov and Mazumdar (1999), but for the purposes of this paper we will
stick with large deviations.

COROLLARY 7. Under Assumptions 1 and 2, if XL has mean rate less than
C, then Q(XL) satisfies an LDP with good rate function

I1(b) = inf I(x).
( ) XeZp: Q(x)=b ( )

PROOF. The only point to note is that the infimum is taken over 2. But
it might as well have been taken over 2|, for any u greater than the mean
rate and less than C, since the rate function will be infinite on 2¢:\Z, by
Theorem 6. O

We can do the same thing for queues with finite buffers. The queue size
@ in a queue with a finite buffer B is defined similarly to @, except that it
cannot fill to greater than B and any excess work is discarded. More precisely,
define the queue size at time —u to be lim,_,  @,(x(0, ¢]), where @,(x(0, £])
is given by the Lindley recursion

stlz <Qs+xs_c)+/\B> QtZO

Lemma 13 also shows that @ is a continuous function of the input process, and
so we obtain Corollary 8: an LDP for workloads in queues with finite buffers.

COROLLARY 8.  Under Assumptions 1 and 2, if XL has mean rate less than
C, then Q(XT) satisfies an LDP with good rate function

I(b) = inf  I(x).
XeZp: Q(x)=b
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These expressions for the rate functions are not very informative, and so
Theorem 9 gives a more manageable expression for 1(b). In fact, if the process
is stationary, then, for b < B, I(b) and I(b) are identical [and for b > B,
I(b) = oo]; this is shown in Theorem 10. The proofs of these theorems are
deferred to the end of this section.

THEOREM 9. Under Assumptions 1 and 2, if the mean rate is less than C
and if furthermore A,(61) < Ct at 6 = 0 for all t, then I(b) is increasing in b
and is given by

(6) I(b) = inf I
( ) xe.%blz Q(x)=b (X)
(7) =inf _ inf o A(x(0,1)
®) = inf sup 6(b + Ct) — A,(61).
9

THEOREM 10. If I(b) is finite, then the optimal timescale { and the optimiz-
ing path %(0,%] are both attained; and if the optimal spacescale 0 is
attained, then

%(0, ] = VAx(01).

For a queue with a finite buffer B and stationary input whose mean rate is less
than C, if b < B, then 1(b) = I(b) and the same path X is optimal.

Note that Theorem 9 does not assume stationarity. The condition that
Aj(61) < Ct at 6 = 0 for all ¢ is implied by stationarity, but allows some
additional cases such as appear in Wischik (1999).

The optimal § and 7 appearing in Theorem 10 are called the operating point
of the switch, or the critical spacescale and timescale. Courcoubetis, Siris and
Stamoulis (1999) give a detailed account, with simulation results, of how they
are affected by the traffic mix and the queue parameters under the many
sources asymptotic regime.

Examples. Toillustrate the different forms that this rate function can take,
we will go back to the two examples of Section 3.1—the many sources asymp-
totic and the large buffer asymptotic—paying particular attention to the inter-
pretation of the critical timescale.

ExAMPLE 8 (Fractional Brownian motion with many sources). As in Ex-
ample 6, consider a sequence of queues indexed by L in which the Lth queue
Q' is fed by an aggregate LX” of L independent inputs and has service rate
LC, and suppose the event of interest is that the queue size reaches Lb. As
in Example 4, let each source be a fractional Brownian motion with mean
rate A and Hurst parameter H. We can calculate the critical spacescale and
timescale:

b+ (C—M)i

6 = .
o2¢2H
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and

b H

fe= ———
C—-\AN1-H

(or rather, f is an integer close to this value; but we will ignore this minor
complication). This gives rate function

1 H 2(1-H) 1
10)= 526 PC N (7)) g

and large deviations approximation

log P(QL(LXL) = Lb) ~ —LI(b) for large L.

Under the large buffer asymptotic, the rate function is exactly the same,
but it has a very different interpretation, as we now illustrate.

ExXAMPLE 9 (Fractional Brownian motion with large buffer). Instead of a
sequence of queues, we will consider a single queue with fixed service rate
C and fed by a single input flow X, as in Example 7. Let the input flow again
be a fractional Brownian motion, and consider the event that the queue size
reaches f(L)b, where f(L) = L1/?0-H)

As we saw in Example 5, the moment generating function A, is exactly the
same as for the many sources asymptotic, and so the rate function 1(d) is the
same, too. This similarity disguises the fact that the results have very different
interpretations. To see this, note that b is just a scaling factor so we may as
well set b = 1, and let B = f(L). Then the large deviations approximation
amounts to

log IP(Q(X) - B) ~ —2-H (1) for large B.

Notice that when H = % the decay is exponential in 8: many other sources
including Markov-modulated fluid sources share this exponential decay. But
when H > % the source has long-range dependence and the decay is less
than exponential, which means that increasing the buffer size does not give
as much of a reduction in loss probability. This phenomenon was observed
in real network traffic by Leland, Tagqu, Willinger and Wilson (1994), and
it has stimulated much interest in long-range-dependent traffic models. But
as we saw in the last example, it makes no difference to the many sources
approximation whether H = 1 or H > 1.

There are some noteworthy differences between the many sources and large
buffer asymptotics as regards the critical timescale ¢ identified in Theorem 9.
We point out these differences in the next example.
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ExXAMPLE 10 (Timescales). In the many sources asymptotic, the timescale
{ is easy to interpret: it is the length of time which the buffer is most likely
to take to fill from empty to a given level Lb. In the large buffer asymptotic, ¢
has a slightly different interpretation. It is a scaling parameter which relates
the buffer level f(L)b to the time taken to reach that level, f(L).

In the latter case, the time taken to fill the buffer tends to oo and so
the rate function I(b) depends only on the infinite-time characteristics of the
source. For Markov-modulated fluid sources [and many other sources which
satisfy conditions described by Dembo and Zajic (1995)], it is appropriate to
take f(L) = L and so A,(01) = tlim; . L~ 'log Eexp(6X(0, L]). Then the
rate function I(b) simplifies to I(b) = sup, 0b, where the supremum is taken
over all 6 such that A(9) < C.

By contrast, under the many sources asymptotic, the rate function depends
on the characteristics of the source log Eexp(6X(0, ¢]) over all timescales ¢.

More LDP’s. There are actually three more useful LDP’s, which are eas-
ily confused with Corollaries 7 and 8. The first gives the probability that a
queue with an infinite buffer is nonempty. At first sight, we can find this from
Corollary 7: just consider the event & > 0. But the upper bound we get is
useless, because it involves the closure of this set—which is b > 0, the entire
space. So for a better bound, we can go back to the sample path LDP and
look at the closure of the set of sample paths for which @(x) > 0, now not
the entire space. The same technique can be used for the events that a queue
with a finite buffer is nonempty or overflows. The infinite buffer result has
been proved by Botvich and Duffield (1995), and the finite buffer results have
been proved by Courcoubetis and Weber (1996). The proof of Corollary 11 is
deferred to the end of this section. The proof of Corollary 12 is similar, and is
omitted.

COROLLARY 11.  Under the assumptions of Theorem 9, the event {Q > 0}
has large deviations lower bound —I(0") and upper bound —I*(0). If, in addi-
tion, B > 0, then the event {Q > 0} has the same large deviations bounds.
Here, I(b*) =1lim,;, I(a) and I*(0) is given by

I*(0) =sup 6C — A;(61).
0

COROLLARY 12.  Under Assumptions 1 and 2, if XL is stationary and has

mean rate less than C, then the event that @ overflows has large deviations
lower bound —I(B") and upper bound —I(B) [or —I%(0) if B = 0].

Note that in Corollary 11 X’ need not be stationary, and so @(X’) may
not be, either. This corollary, like Theorem 9, makes the weaker assumption
that A}(61) < Ct¢ at 8 = 0 for all ¢. On the other hand, our results for queues
with positive but finite buffers—Theorem 10 and Corollary 12—do require
stationarity.
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Proofs. The rest of this section is given over to proofs.

LEMMA 13. The queue size functions @ and @ are continuous on Z, if
n<C.

PROOF. Consider a sequence of processes x* — xin 2’ ., under the uniform

topology. That is, given ¢, there is a %k such that, for £ > k&,

SupIJC"“(O, t]  x(0,¢]| .
| ¢ ¢ |
t | |

And since x € Z),, there is a ¢, such that, for ¢ > ¢,
x(0, t]/t < .

Then for £ > ky and ¢t > ¢, choosing ¢ = C — p,
x*(0,¢t]/t < C

and the same holds for x. So the expression for queue size @ simplifies: for
k> ko, Q(x*) = Q(x*(0, ty]), and the same holds for x. Thus for & > k,,

1Q(x*) - Q(x)| = fgtp<xk(0, t] - Ct) — sup(x(0, 1] - Ct) ,

t<t,

which tends to 0 as £ — oc.

Now for Q. Since Q(x) = Q(x(0, ¢,]), the infinite-buffer queue must empty
at some time in [—¢,, 0]. For suppose it does not. Let s < ¢, be the last time
at which the queue, started from empty at —¢,, is empty; then Q(x(0, ¢,]) =
Q(x(0, s]) = x(0,s] — Cs. But Q(x) = ¢ + x(0, s] — Cs, where ¢ > 0 is the
queue size at time —s, leading to a contradiction.

So @ empties at some time in [—Z,, 0]. So, too, must @, because @ < Q.
In other words, Q(x) = Q(x(0, ¢,]). The same holds for x* for % sufficiently
large, and so we deduce that @ is also continuous. O

PROOF OF THEOREM 9. If b =0, then (7) and (8) take the value 0 at ¢ = 0.
Now consider the sample path given by x(0, ¢] = VA,(0). Since A}(01) < Ct at
60 = 0 for all ¢, x(0, t] < Ct for all ¢, and so Q(x) = 0. And x has rate I(x) = 0,
so (6) also takes the value 0. So we restrict our attention to the case b > 0.

Note that because b + Ct is greater than A}(61) at 6§ = 0, we may take the
supremum only over 6 > 0; thus (8) is increasing in b.

First, (7) = (8). Fix ¢. Then XX(0, ¢]-1 is just a real-valued random variable,
and from Assumption 1 it satisfies an LDP with good rate function given by
the expression in (8). Another way of finding this is by contracting from the
sample path LDP for XZ(0, t], which gives as rate function the expression
in (7). By the uniqueness of the rate function, these are equal.

Next, (6) > (7). It will be helpful to introduce some new notation. For a
finite process x and an infinite process y, write x :: y for the concatenation of
the two. And recall that we may replace 2¢ in (6) with Z;, for any u greater
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than the mean arrival rate and less than C, because by Theorem 6 the sample
path rate function is infinite on 2¢:\Z),.

Suppose that (6) is finite (otherwise the inequality is trivial). The sample
path rate function I is good, so an optimal path X is attained. Now Q(x) =
sup, £(0, t] — Ct = b, and this supremum must be attained since otherwise
there is a sequence ¢, for which £(0, ¢,]/¢, — C, which cannot happen in Z,.
So % = %(0, t] : ¥ for some ¥, with £(0,7] = b+ Cf and Q(§) = 0. Clearly,
A;(x(0, ¢]) is increasing in ¢ for any x, so

1) = sup A7, (x = §/(0, s]) > A (&(0, f]).

Taking the infimum over ¢ and x(0, ¢] gives the result.

Finally, (6) < (7). Assume that (7) is finite (since otherwise the inequality
is trivial). For a given ¢, an optimal %(0, 7] is attained by goodness of the rate
function A?. And an optimal f is also attained. For suppose not, and take a
sequence ¢, — oo and x"(0, ¢,], with x"(0, ¢,]/¢, — C and A (x") bounded
above by K say. By the contraction principle and the goodness of the rate
function I, we can extend x"(0, ¢,,] to x*(0, c0), with I(x") < K. Since I is
good it has compact level sets, so the x™ have a convergent subsequence, say
x* — x, also with I(x) < K. But then x(0, ,]/¢, — C also, and so I(x) = oo
giving a contradiction.

By the contraction principle and the goodness of the rate function, we can
extend %(0, £ ] to X = %(0, c0), where I(%(0, #]) = I(%). If Q(X) = b the inequal-
ity is proved. So suppose Q(X) = & > b. Then there is some s > { with
x(0, s] = &'. But then

inf inf Aj(x) > inf inf Aj(x) > inf inf Al (x),
t x:x(0,t]=b+Ct s>t x:x(0,s]=b'+Cs s>t x:x(0, s]=b+Cs
where the last inequality is because for fixed ¢, (8) is increasing in b. The
inequalities must then both be equalities. We can repeatedly apply this argu-
ment until we find an optimal %X such that @Q(x) = . For otherwise, as in
the previous paragraph, there are arbitrarily large optimal £, leading to a
contradiction. O

PROOF OF THEOREM 10. First, we prove that I(b) = I(b). If I(b) is infinite,
then I(b) must certainly be infinite, as any path which makes @Q(x) = b makes
Q(x) > b. So suppose I(b) is finite, and let the optimizing path in Theorem 9 be
%(0, 7]. We may assume that this path never causes the buffer to exceed level
b. For suppose that under x the buffer reaches level ¥ > b at time —s. Consider
the truncated process %(0, s] = x( — s, £ ]. By stationarity, A7(X) = A3(X). And

AX(X) > inf Al(x) > inf Al
S(X) - xeRﬁx%&s]:b#cs S(X) - xeRsle(}:)l, s]=b+cs S(X),
where the second inequality follows because (8) is increasing in b. Because the

optimal path does not cause the buffer to exceed level b, it is also optimal for
the finite buffer case, and so I(b) = I(b).
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Now fix ¢ and suppose that 6 is optimal in (8). By Assumption 1, A, must be
differentiable at 61. Set X = VA,(#1). Differentiating (8) gives -1 = b + Ct.
But by Dembo and Zeitouni [(1993), Lemma 2.3.9], A}(X) is equal to (8), and
so X is optimal. O

PROOF OF COROLLARY 11. Let F be the event that @ > 0. For the large
deviations lower bound, we will prove that inf, g I(x) = lim,, I(b), and for
the large deviations upper bound,

(9) ;ggl(x) - ltI>1(f)‘ x:x(l()r,lf]th I(X)

This reduces to

inf sup 0Ct — A,(61)
t>0 ¢

as in Theorem 9. By convexity, A,(61) < ¢A;(61), so the optimum is attained
at ¢ = 1 and we are left with I*(0).

Since F = Up_o{Q = b}, inf, pI(x) = inf,_q I(b). But because I(d) is
increasing, this is lim, o 1(b).

LHS < RHS in (9) Suppose x(0,¢] = Ct for some ¢ > 0. For ¢ > 0, let
x® = (x;+ &,%9,...). Then Q(x°) > 0 so x° € F. But as ¢ — 0, X°* — X, so
x € F. Thus {x : 3¢ > 0,x(0,¢] = Ct} c F. Taking the infimum of I over
these sets gives the result.

LHS > RHS in (9) Let x € F. Then there exist x” — x in F, and Q(x") —
Q(x) by Lemma 13. If @(x) > 0, then

I(x) > inf I(b) > inf sup 6Ct — A,(61)
b>0 t>0 ¢

because the optimal 7 in (8) must be strictly positive for b > 0.
So suppose Q(x") — 0. As in Lemma 13, there exist an n, and ¢, such that,
for n > n,,

Q(x") =supx™(0, t] — Ct.
t<ty
And because Q(x") > 0, the supremum must be attained at ¢ > 0. Some ¢
must be repeated infinitely often as n — oo; for that ¢, x(0, ¢] = C¢. Taking
the infimum over such x gives the result.
Now for {@ > 0}. If @(x) > 0, then @(x) > 0 also, so the same upper bound
works. And as for @ > 0, the lower bound is straightforward. O

3.3. Paths to overflow. The expression for the rate function in Corollary 7
tells us more than just the probability that the queue size reaches a certain
level. It tells us how the queue reaches that level. Because the rate function
I is good, the infimum in

I(b) - xeC?%fX):b I(X)
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is attained. And Theorems 9 and 10 tell us what that sample path looks like:
X is the path most likely to make the queue fill from empty to level b, and it
takes time £ to do so. Furthermore, the sample path LDP tells us the likelihood
of any deviation from this path.

The problem of most likely paths to overflow under the many sources asymp-
totic has been studied before using direct methods. Weiss (1986) solves it for
two-state Markov-modulated fluid sources, and Mandjes and Ridder (1999)
solve it for general Markov sources and for periodic sources. The advantage of
our sample path LDP method is that it can be applied very easily to general
input processes.

EXAMPLE 11 (Markov-modulated fluid source). Let X~ be the average of L
independent sources distributed like X, where X is a Markov chain which
produces an amount of work 4 each time step while in the on state and no
work while in the off state, and which flips from on to off with probability p
and from off to on with probability ¢. If 6 and ¢ are the critical space- and
timescales, then the most likely path to overflow is given by

[E(XseHX(O,t])

xg=VA,(61) = TE(efX0])

To calculate this, first define

A, = [E(e"X(O’t]’XO = on)
and

B, = [E(e"X(O’”)XO = off).

We can find expressions for A, and B, by conditioning on X;:

A\ [ (1= pe et
(5)- ("o 120 (1)
We can now calculate
[E(Xs exp(6X (0, t]))
= E[ X,E(exp(6X (0, s — 1])| X,) exp(6 X ,)E(exp(6 X (s, t])| X,)]

- ﬁms,1 exp(6h)A,_,.

The first equality follows from the Markov property, and the second equality
follows from reversibility. This gives

x. = qheehAt—sAs—l
’ qA,+pB, -

If p+ g < 1, the path to overflow s — x, is concave over s € (0, ¢]: the
sources start slowly, then conspire to produce lots of work in the middle of
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the critical time period, then slow down again at the end. (If p + ¢ > 1, it is
convex.)
Multistate Markov models exhibit more varied behavior.

EXAMPLE 12 (Gaussian sources). Suppose XZ is the average of L indepen-
dent Gaussian processes, each with mean A and covariance structure Cov(X,
X;) = v;. It is easy to work out the optimal path: VA,(61) = A1+ 0V1, where
Vii = Vi-j-

Consider the earlier fractional Brownian motion example, Example 4. For
this process, y; = 302[(i —1)*# —2i2# 4 (i + 1)2#], and so the most likely path
to overflow is given by

%= A+ 5002 (27 — (i = DM 4 (¢ — i+ 1) — (¢ - i),

IfH > %, the source exhibits long-range dependence, and the most likely input
path x leading to overflow is concave; whereas if H < %, the path to overflow
is convex.

Now let X be a single-step autoregressive process: X; = A+a(X,_ ;1 —A)+
(1 — a®)e,;, where &, ~ N(0, 0?) and |a| < 1. Then y, = o2a’, and the most
likely path to overflow is

1_ai 1_at—i+1
x; = A+ 002 1+ + .

l1-a 1-a

If a > 0, then the path to overflow is concave; whereas if a < 0, it starts and
finishes at a high rate and in between it oscillates.

ExAMPLE 13 (Large buffer). By contrast, in the large buffer asymptotic it is
often the case that the buffer is most likely to fill up at a constant rate. Suppose
that the base process X leads to a limiting moment generating function A,
with the simple linear form A,(0) = > A;(6;). Then A} (x(0,¢]) = > Ai(x;),
and because A; is convex, the most likely path x to overflow is constant, and
so the queue fills up at a steady rate.

3.4. Priority queues. The sample path LDP for the average of processes
can be applied to a wide variety of queueing models. We have seen in the
last two sections how it gives overflow probabilities and sample paths to over-
flow for a standard queue. As a further illustration of the power of the tech-
nique, in this section we look at another queueing discipline: the priority
queue. This has been studied under the large buffer regime by Berger and
Whitt (1998), and related queueing models have been studied by Kulkarni,
Giin and Chimento (1995) and O’Connell (1998).

Consider a sequence of priority queues, indexed by L. The Lth queue has
two inputs, LX% and LYZ, and service rate LC. Think of X’ and Y’ as the
averages of L processes. The two streams are assumed to be independent.
The first stream X% has high priority; the second stream Y has low priority.
Let @~ and RL be respectively the stationary amounts of high-priority and
low-priority work waiting to be served.
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Kelly (1996) notes that the amount of high-priority traffic @ is exactly
the amount of work in a standard queue with service rate C and only the
high-priority input X, and that the total amount of work @ + R is the amount
of work in a standard queue with service rate C and the aggregate input
X + Y. Therefore, results from Section 3.2 can be applied directly to find the
high-priority loss probability and the aggregate loss probability. But this
leaves some open questions, such as how much low-priority work there is
in the queue. Such questions can be answered with methods very similar to
those of Section 3.2.

THEOREM 14. Suppose that XL and YL satisfy Assumptions 1 and 2 with
limiting moment generating functions A, and M,, respectively. Suppose also
that the sum of the mean arrival rates for XY and Y% is strictly less than C.
Then the pair (QY, RT) satisfies an LDP with good rate function

10 I = inf AF(x(0, ¢t M (y(0, ¢]).
(10) (g, 7) xedoryedn: ¥ : (x(0, ])+S1t1p /(v(0, 2])
Q(x)=q, R(x,y)=r

This is bounded below by

(11) ir}finfsupﬂ(q+ Cs)+¢(r+C(t—s)) —A,(61(0,s]+ d1(s,t]) —M,($1).
s< 9,4)

Let I(-,r) =inf .o I(q, 7). This is bounded below by

(12) iI}f sup 6(r + Ct) — A,(61) — M,(61).
0

PrROOF. Let Ix(x) = sup, A}(x), and define Iy similarly. Because X’ and
Y% are independent, the pair (X, Y) satisfies an LDP with good rate function
I(x,y) = Ix(x) + Iy(y). Let A and u be the mean rates for X* and Y. Since
A+pu < C, we can pick an ¢ > 0 such that A +u +2¢ < C: then by Theorem 6,
(XL, YF) satisfies the LDP on (2},,, Z;,,.), and the rate function I is infinite
outside this space. So if we can show that (@, R) is continuous on this space,
then using the contraction principle we can deduce (10).

Now @ depends only on the high-priority process: it is defined as though
there were no other inputs to the queue. So, by Lemma 13, it is continuous
on Z),,. Also, @ + R is the aggregate workload, and does not depend on
the structure of the queue: so, again by Lemma 13, @ + R is continuous on
Pytie X Zyye- Thus (Q, R) is continuous.

The bound on the rate function I(q, ) may be obtained by noting a few prop-
erties of the optimal paths to overflow. The optimal paths must be attained,
because the rate function is good. As in Theorem 9, there must be a last time
—t at which the high-priority and low-priority queues are both empty. And
there must be a last time —s > —¢ at which the high-priority queue is last
empty. Because Q(x) = g, it must be that x(0,s] = ¢ + Cs. And because
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R(x,y) = r, it must be that x(s, ¢]+ y(0,¢] =r+ C(t — s). So

(13) I(q, r) > infinf inf AX(x) + M,(y).
t s<t x,yeR!:
x(0, s]=q+Cs,
x(s, t]1+¥(0, t]=r+C(t—s)

Now fix s and ¢. As in Theorem 9, the pair (X%(0, s], XZ(s, t] + YZ(0, t])
is just an R2-valued random variable, and by Assumption 1 it satisfies an
LDP with a good rate function which simplifies to the expression in (11).
Another way of finding this LDP is by contracting from the sample path LDP
for (XZ(0, ¢], YX(0, t]) which gives as rate function the expression in (13). By
the uniqueness of the rate function, these are equal.

We can obtain the lower bound on I(-, r) in a similar way, by noting that
if R(x,y) = r then there exists a last time —¢ at which both queues were
empty, and since then x(0, ]+ y(0, ] > r + Ct. The argument of the previous
paragraph can be applied to paths for which x(0, ¢] + ¥(0,¢] = g + r + Ct.
The resulting expression is increasing in q [it is a special case of (8) which is
increasing in b], and setting g = 0 yields the result. O

To help interpret this result, we will give an alternative description in terms
of the service seen by the low-priority stream. A sensible first guess would be
that the service is a random amount, the service rate C less a random amount
of high-priority work. More thought would throw up various complications
about queue sizes and leftover workloads. In fact, both of these cases arise,
and a system can switch from one to the other as its parameters change. We
will give an example to illustrate this transition.

But first, to make these statements precise we will introduce the idea of
effective bandwidths. They are described in more detail by Kelly (1996). Con-
sider a single queue with many independent inputs, as in Section 3.2. The
overflow probability depends on the moment generating function A,(61). Sup-
pose the critical space- and timescales are § and 7, and consider replacing a
small proportion of the inputs by constant rate inputs, producing (6 )1A;(61)
units of work every time step. Locally, at (6, ), these new inputs have the
same moment generating function as the original inputs, and so the opera-
tion of the queue is not affected by the replacement. For this reason, A(6, t) =
(6¢)"1A,(01) is called the effective bandwidth of a source.

We can use this idea to describe the service seen by the low-priority stream.
Consider a single queue fed by a process with effective bandwidth w(6, t),
but where t}~1e service is an independent stochastic process C with effective
bandwidth C(6, ¢). As above, if the critical space- and timescales are 6 and
t, replacing a small part of the service with constant service of rate 5(9, t)

does not affect the operation of the queue, and so we will call C(6,¢) the
effective service rate. Before we use this idea to describe the service seen by the
low-priority stream, we had better check that it actually exists; that is, that
the appropriate cumulant moment generating functions converge.
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LEMMA 15 (Effective service). Under the assumptions of Theorem 14, the
service seen by the low-priority queue has an effective service rate.

ProOOF. O’Connell (1997b) shows that the departure map (which maps the
aggregate input process to the aggregate departure process) is continuous
under the uniform topology. Let d be the departure process from the high-
priority queue. The service seen by the low-priority queue is C, where C, = C—
d,. Since the departure map is continuous, the service map is also continuous.
Therefore the service process satisfies a large deviations principle, say with
good rate function dJ.

Applying Varadhan’s integral lemma [Dembo and Zeitouni (1993), Theo-
rem 4.3.1], and using the fact that the service process is bounded, we find
that

1 ~
Llim Zlog[Eexp(L() - C(0, t]) =sup-c—J(c).

ceR!

In particular, the limit exists. O

We are now in a position to make precise the earlier claim about the service
seen by the low-priority queue. The effective service rate is difficult to deal
with analytically, but fortunately we can avoid doing so by using Theorem 14.
The following corollary is a restatement of the bound (12). The terminology is
due to Berger and Whitt (1998), who independently obtained the correspond-
ing result for the large buffer asymptotic regime. As noted in Example 3, large
buffer results can be deduced from a special case of the corresponding many
sources results.

COROLLARY 16 (Empty buffer approximation). The effective service rate
seen by the low-priority queue is bounded below by the empty buffer approxi-

mation to the service rate, C(0,t) = C — A(6, t), in the following sense:

I(r)z EI(r) = inf sup 6(r + tC(0, 1)) — 0tu(6, ),
6

where u(6, t) is the effective bandwidth of the low-priority source.

This is just the usual rate function (8) for overflow in a single queue, but
with the service rate C replaced by the effective service rate C. It is called
the empty buffer approximation because it is the rate function for the total
workload reaching r—so if the most likely way for this to happen leaves the
high-priority buffer empty, then EI(r) will agree with I(-, r).

Berger and Whitt (1998) stress the point that this approximation gives a
simple admission control region. But it is also interesting to consider the con-
ditions under which the inequality is strict. When there is equality, the two
queues operate essentially independently. But when the inequality is strict,
the low-priority queue gets extra benefit from the sharing arrangement. Such
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an arrangement seems desirable from an engineering perspective. The follow-
ing example illustrates how the queue and traffic parameters control whether
or not there is extra benefit to the low-priority traffic.

ExaMPLE 14 (Phase transition in priority queues). It is often hard to sim-
plify rate functions like I(q, r) because the queue could overflow over any
timescale. But for periodic processes, the queue can only overflow over time-
scales less than the period, so the calculations are easier.

Consider a sequence of priority queues indexed by L. Let the high-priority
stream X’ be the average of L independent copies of a stationary periodic
process of random phase, which produces 4 units of work every second time
step. Let the low-priority stream YZ be the average of L independent copies
of the process that independently at each time step produces 1 unit of work
with probability p and no work with probability 1 — p. Let the service rate C
be in the range [3, 4).

These figures are chosen so that the entire queue empties every second
time step, so that if it overflows it must do so in a single time step. This means
that the only sample paths we need consider in (10) are those over a single
time step. So

I(0,r) = Oinfc Aj(x)+Mj(r+C —x),
I(q,r)=Ai(g+C)+Mj(r) forqg=>0.
Since q + C is greater than the mean rate of A, Aj(q + C) > Aj(C). Taking
x = C, we see that I(0, r) < I(q, r) for ¢ > 0; and since I(-, r) = inf ., I(q, 1),
it must be that I(-, r) = I(0, r).

Now for the empty buffer approximation. Since EI(r) is the rate function
of the sample path most likely to give total queue size r,

El(r)= 0<Jicr<1£+r Aj(x) +Mj(r + C — x).

Clearly, I(-,r) > EI(r). When is this inequality strict? Let g(x) = Aj(x) +
M;i(r + C — x). It is easy to calculate that, for » < 1,

g(x)=Nh(x/4|1/2)+ h(r+C—x | p),

where h(x|p) = xlog(x/p)+ (1 —x)log(l—x)/(1— p), and to show that g(x)
is convex. So I(-,r) > EI(r) if and only if g'(C) < 0, where

p
1-p’

— log

1 C r
"(C)y=-1 1
g(C)=;log —5 T +1log

In other words, there is extra benefit to the low-priority traffic when the
service rate is small, or when the low-priority buffer is large, or when there

is little low-priority work.
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4. Conclusion. A sample path large deviations principle is an LDP fac-
tory: it makes it easy to study the large deviations in a wide range of queue-
ing problems. Many LDP’s have previously been found in this way, under the
large buffer asymptotic regime. This paper presents a sample path LDP for the
many sources asymptotic regime, and applies it to study three queueing prob-
lems. Existing results for standard queues have been refined, and new results
have been presented for likely paths to overflow and for priority queues.

We have seen that the large buffer asymptotic can often be described as a
special case of the many sources asymptotic. This means that large deviations
of queueing systems under the many sources asymptotic, which depend on the
characteristics of the traffic over all timescales, tend to have richer structure
than those under the large buffer asymptotic, which depend only on the long-
timescale characteristics of the traffic.
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