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Noise-Induced Excitability in Oscillatory Media
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A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-
Nagumo dynamics. This transition takes place via a noise-induced stabilization of a deterministically
unstable fixed point of the local dynamics, while the overall phase-space structure of the system is
maintained. Spatial coupling is required to prevent oscillations through suppression of fluctuations (via
clustering in the case of local coupling). Thus, the joint action of coupling and noise leads to a different
type of phase transition and results in a stabilization of the system. The resulting regime is shown to
display characteristic traits of excitable media, such as stochastic resonance and wave propagation. This
effect thus allows the transmission of signals through an otherwise globally oscillating medium.
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phase space and locks it close to the stable steady state taken to be global, although as we will show later, similar
Excitable systems are highly sensitive to perturbations,
which trigger large-amplitude spiking responses above a
small threshold. Noise, in particular, exerts an important
influence in their dynamics. An optimal amount of noise,
e.g., induces in them a coherent output in the form of
roughly periodic spike trains, provided the random fluc-
tuations are large enough to excite the system as soon as
the refractory time from the previous spike is over (but
not so large that the phase-space structure is destroyed)
[1]. This effect, known as coherence resonance, has been
observed in physical, chemical, and biological systems
[2], making them behave effectively as oscillators.

Further investigations have shown that parametric
noise is able to induce a bona fide transition from an
excitable to an oscillatory regime, via a renormalization
of the parameters defining the local dynamics of the
system [3,4]. This mechanism has also been found re-
sponsible for inducing excitability in bistable [5,6] and
subexcitable [3,7] media. In all those cases, however,
noise has the expected role of increasing dynamical in-
stability. In this Letter we show, on the other hand, that
certain types of noise operate in the opposite direction of
constructive influence, namely, enhancing stability in the
system. In particular, we demonstrate that random fluc-
tuations can induce a transition from oscillatory to ex-
citable behavior, by stabilizing a deterministically
unstable fixed point of the dynamics, while preserving
the overall phase-space structure that leads to large-am-
plitude pulses (but which will then be triggered only by
above-threshold perturbations). In contrast to previous
results on noise-induced excitability, spatial coupling is
absolutely essential in this case, in order to prevent noise-
driven oscillations from exciting the system and convert-
ing it back in an oscillator. In that sense, the coupling
plays a role similar to that of standard phase transitions,
suppressing fluctuations and coupling the stable regions.
It prevents the system from visiting the whole available
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(until a perturbation triggers an excitable spike). Noise-
induced phase transitions between homogeneous phases
have long been known to use the joint action of coupling
and noise in this way [8,9]; here we extend this funda-
mental mechanism to the field of excitable dynamics.

To demonstrate this noise-induced excitability (NIE)
we consider a system of coupled FitzHugh-Nagumo
(FHN) elements in the oscillating state and under the
action of multiplicative noise. The mechanism of a
noise-induced phase transition is explained theoretically
in the framework of a small-noise expansion, which ex-
tracts the systematic contribution of the multiplicative
noise accounting for the excitability restoration. The ex-
citable character of the noise-induced regime is demon-
strated by showing the existence of stochastic resonance
and wave propagation through the system.

Model.—We analyze the following set of N coupled
FHN oscillators:

_uu i �
1

"
�F�ui� � vi��Du� �uui � ui�; (1)

_vv i � cui � d� vi�i �Dv� �vvi � vi�; (2)

where �xxi �
1
N

PN
j�1 xj, xi � ui; vi, and F�u� is given by

F�u� �

8><
>:

�1� u� b; u � � 1
2 ;

u� b; � 1
2 < u< 1

1�a ;

�1� au� b; u � 1
1�a :

In a neural context, u�t� represents the membrane poten-
tial of the neuron and v�t� is related to the time-dependent
conductance of the potassium channels in the membrane
[10]. The dynamics of the activator variable u is much
faster than that of the inhibitor v, as indicated by the
small time-scale-ratio parameter ". Coupling is consid-
ered in both the activator and the inhibitor and is
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results are obtained for local diffusive coupling. Random
fluctuations are represented by the �-correlated Gaussian
noise �i�t�, with zero mean and the correlation
h�i�t��j�t0�i � �2

m��t� t0��i;j. This multiplicative noise
term is interpreted in the Stratonovich sense [9].

Phase transition to excitability.—The multiplicative
noise term vi�i in Eq. (2) has a nonzero mean given by
hvi�ii � ��2

m=2�vi [9]. Therefore, in the presence of fluc-
tuations the effective local dynamics of the inhibitor
variable is given by _vvi � cui � d� ��2

m=2�vi, at first
order in the noise intensity. The corresponding nullclines
of an isolated oscillator for increasing multiplicative in-
tensity are represented in the phase plane of Fig. 1 (left
panel). Without noise the nullcline for the slow variable v
(curve 1) crosses the nullcline of the fast variable (in-
verted-N piecewise line) in its middle segment, so that
the crossing point is an unstable steady state and the
system exhibits an oscillatory behavior. An increase of
the multiplicative noise intensity �2

m leads to a tilting and
shifting of the v nullcline [curves 2–4 in Fig. 1 (left
panel)]. As a result, for large enough �2

m (here for �2
m *

0:033) the crossing occurs in the left segment of the u
nullcline and the fixed point becomes stable. Throughout
this process, however, the overall phase-space structure of
the system is not changed, which allows perturbations of
the noise-induced stable fixed point to excite large-am-
plitude excursions towards the right segment of the u
nullcline (excited branch). In particular, in an isolated
oscillator, perturbations due to the noise itself may induce
a stochastic limit cycle which prevents the system from
escaping out of the oscillatory regime, i.e., the transition
to excitability cannot be observed in isolated oscillators,
in spite of the renormalization of the dynamical parame-
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FIG. 1 (color online). Left panel: nullclines of a single FHN
oscillator in phase space. The inverted-N piecewise line corre-
sponds to the noise independent nullcline of the activator u. The
other lines (1–4) describe the tilting of the inhibitor nullcline
by increasing the noise intensity: 1—�2

m � 0:0; 2—�2
m �

0:0334; 3—�2
m � 0:06; 4 —�2

m � 0:1. Right panel: time series
of the mean field of the fast variable u with increasing the
multiplicative noise intensity: (a) �2

m � 0:0; (b) �2
m � 0:033;

(c) �2
m � 0:045; (d) �2

m � 0:05; and (e) �2
m � 0:08. Other

parameters are a � 1:0, b � 2:0, c � 0:2, and d � 0:075.
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ters due to noise. In the presence of coupling, the weight of
those oscillators that are not firing prevents these noise-
induced excursions and leads to effective excitability.

Figure 1 (right panel) depicts the appearance of NIE, by
plotting the time series of the activator’s mean field,
u�t� � �1=N�

P
N
i�1 ui�t� for a system of 500 coupled ele-

ments, with the coupling strengths Du � 100 and Dv �
100 and the time-scale-ratio parameter fixed to " � 0:01.
Because of the relatively large values of the coupling
strengths (which nevertheless have the order of magni-
tude of "�1), the time series of the single oscillators
differs only very slightly from that of the mean field,
i.e., the oscillators are synchronized. Figure 1(a) displays
the regular self-sustained oscillations of the system with-
out noise. Increasing the noise intensity �2

m leads to an
increase and randomization of the time interval between
consecutive spikes, as seen in Figs. 1(b)–1(d). Finally, for
large enough noise no spike appears [Fig. 1(e)]. This
corresponds to an oscillation suppression due to multi-
plicative noise: the system stays at the noise-induced
stable fixed point. But besides an oscillation suppression,
the system also exhibits excitable properties when per-
turbations (other than the stabilizing noise) affect the
system. As shown below, this noise-induced regime dis-
plays stochastic resonance when driven periodically and
wave propagation by local coupling.

In order to describe quantitatively the transition to-
wards excitability, we compute the relative resting time
with respect to the whole measuring time. Because of the
random character of the time series, we need to specify a
measurement threshold. We define the resting time as the
interval during which every oscillator fulfills the condi-
tions ui <�0:5 and vi � 1:85. The first requirement
corresponds to the absence of spikes, and the second
checks the absence of large excursions towards the left
on the left branch of the u nullcline. Such excursions
would lead to a large excitation threshold and weaken
the system’s excitability. The threshold for the relative
resting time is set to 0.98.

According to the previous definitions, Fig. 2(a) displays
a phase diagram in the plane of parameters Du � �2

m
distinguishing the regions where the original oscillatory
behavior and the NIE regime exist. The left boundary of
the NIE balloon corresponds basically to the condition
ui <�0:5 and the right one to vi < 1:85. The NIE region
shrinks in size as Dv decreases (results not shown). In
other words, minimum coupling strengths of both the
activator and the inhibitor are required for the NIE re-
gime to exist. Figure 2(b) pictures the dependence of the
transition to NIE on the number of coupled elements of
the system. As in standard phase transitions, the region of
noise intensity values for which NIE exists becomes
larger as the number of oscillators increases. We can
also see that a minimum number of elements is needed
(in the present case �250).

Stochastic resonance in NIE.—Defined as the en-
hanced response to an external signal for an optimal
180601-2
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FIG. 3 (color online). Left panel: time series of the average
activator concentration for increasing additive noise intensity
and �2

m � 0:08: (a) �2
a � 0:0; (b) �2

a � 0:1; (c) �2
a � 0:5; (d)

�2
a � 2:0; and (e) �2

a � 5:0. Right panel: response of the
system to the signal frequency versus additive noise intensity,
for �2

m � 0:08 (circles) and �2
m � 0:0 (crosses). Parameters are

Du � 100, Dv � 100, f � 0:012, and !f � 0:0175. Other pa-
rameters are those of Fig. 1.
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FIG. 2. Phase diagram for the transition from a self-sus-
tained oscillatory regime to NIE. (a) Coupling strength Du
versus multiplicative noise intensity �2

m for 300 coupled ele-
ments. (b) Number of coupled elements N versus multiplicative
noise intensity �2

m for Du � 416 and Dv � 64.
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amount of noise, stochastic resonance (SR) has long been
found in excitable media [11–13]. In order to show that
the NIE regime possesses all immanent properties of
excitable systems, we now examine the response of the
system to external periodic driving and an additive source
of noise. The behavior of the inhibitor is then given by

_vv i�cui�d�vi�i�Dv� �vvi�vi���i�fcos!ft; (3)

where �i is a Gaussian white noise with intensity �2
a, the

intensity of the multiplicative noise is taken large enough
to make the system excitable, and the amplitude f of the
external forcing is chosen small enough so that no ex-
citation is produced in the absence of the additive noise.
We are interested in the response of the system at the
signal frequency !f when the additive noise intensity �2

a
is increased. Figure 3 (left panel) displays the time series
of the averaged activator concentration for different addi-
tive noise intensities, superimposed with the periodic
input signal (with enlarged amplitude for a better com-
parability with the output signal). In the absence of addi-
tive noise [Fig. 3(a)], the signal alone is too small, and the
system remains at the noise-induced stable fixed point.
When additive noise is added, spikes appear more and
more frequently, until at an optimal noise intensity the
spikes occur basically synchronously with the signal
[Figs. 3(b)–3(d)]. Further increase of additive noise de-
stroys the synchronization effect [Fig. 3(e)].

To evaluate the linear response Q of the system at the
input frequency !f we extract the parameter Q from a
signal huri as in [14,15]. In order to compute this quantity,
we neglect subthreshold dynamics and replace the global
signal by hur�t�i � ��hui � uth� � 0:6��uth � hui�,
where h  i denotes the average over the population and
uth � �0:45. The numerical results are shown in Fig. 3
(right panel) both with and without the multiplicative
noise. The typical bell-shaped SR curve appears only in
the presence of a suitable multiplicative noise intensity
(i.e., in the NIE regime), whereas in the original self-
sustained oscillatory regime (�2

m � 0:0), the SR effect
cannot be observed. The former behavior corresponds to a
double stochastic effect [15–18], because optimal re-
sponse in the presence of additive noise occurs due to a
180601-3
property (excitability) which is induced by a second,
multiplicative noise. In light of these results, one could
speculate that sensory adaptation by noise in living
organisms [19] can be possible even in oscillatory situ-
ations because parametric noise can suppress undesirable
oscillations.

Wave propagation in NIE.—One of the main character-
istics of excitable media is their ability to sustain propa-
gation of structures. This is, e.g., the way in which
electrical pulses propagate through neural tissue in physi-
ological systems [10]. The NIE regime reported here
offers the possibility of a signal propagation through
oscillatory media. Additionally, NIE allows the activa-
tion/deactivation of the excitable property so that infor-
mation transport can be controlled by multiplicative
noise.

In order to verify that the NIE regime allows the
propagation of excitable structures, we substitute the
global coupling considered so far by a local diffusive
coupling. Hence the coupling term in Eqs. (1) and (2) is
now given by �xxi �

1
N

P
j2n:nxj, where the sum runs only

over the N nearest neighbors of site i. In what follows we
consider a 2-dimensional lattice with fixed boundary
conditions. Additionally, the u nullcline is now given by

F�u� �

8><
>:

�1� u�b; u�� 1
2 ;

gu�b� 1
2 �g� 1�; � 1

2<u< 1
g�

1
2 ;

�1� au�b� 1
2� a�1g�

1
2�; u� 1

g�
1
2 ;

in such a way that the slope of its unstable middle branch
decreases, so that the refractory time becomes smaller.
The dynamical equation of v, on the other hand, is un-
changed from Eq. (2), and thus the noise-induced tran-
sition mechanism described above persists. Under these
conditions, this system displays a noise-induced phase
180601-3



FIG. 4. Snapshots of the activatory variable u for increasing time (from left to right). The
upper row shows the propagation of a plane wave front in an 130� 130 array at time steps 10.9,
11.5, 12.3, 13.4, and 14.2 time units. The lower row shows spiral wave propagation in a 1000�
1000 array at time steps 11.0, 13.5, 14.5, 16.0, and 21.0 time units. Parameters are " � 0:01,
a � 1:0, b � 2:0, c � 0:2, d � 0:075, g � 0:2, Du � 416, Dv � 64, and �2

m � 0:072.
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transition to excitability, as for global coupling, but in this
case via the formation of clusters of stable elements. In the
NIE region (i.e., for large enough �2

m), independently of
the initial conditions every oscillator of the coupled en-
semble moves to the NIE fixed point and remains there. In
this situation, the spatiotemporal response of the system
to a plane-wave perturbation is depicted in Fig. 4 (upper
row). We observe a clear propagation of the plane wave
from bottom to top. Spiral wave propagation can also be
seen in Fig. 4 (lower row). In the absence of multiplicative
noise, on the other hand, the system exhibits a synchro-
nous self-sustained oscillatory behavior and no wave
propagation can be observed. This means that the pres-
ence of multiplicative noise is crucial for information
transmission in this system.

In summary, we have studied a different kind of phase
transition in which the application of noise to an array of
oscillating elements leads to the suppression of oscilla-
tions and induces excitability. The appearance of noise-
induced excitability is a collective effect and occurs via a
phase transition due to the joint action of coupling and
multiplicative noise. In contrast to standard phase tran-
sitions and other studies on excitable systems [3–7], the
increase of noise enhances the stability in the system and
restores excitable properties. This noise-supported excit-
ability displays characteristic properties of standard ex-
citable media, such as stochastic resonance and wave
propagation. Since SR relies on a property of the system
which is in turn induced by noise, optimization of both
noise sources is needed, and hence this effect is an ex-
ample of a doubly stochastic phenomenon [16]. The inter-
play between excitable and oscillatory dynamics in noisy
systems is a current important issue [20]. In particular,
these theoretical findings suggest a possible mechanism to
suppress undesirable global oscillations in neural net-
works (which are usually characteristic of abnormal
medical conditions such as Parkinson’s disease or epi-
lepsy), using the action of noise to restore excitability,
which is the normal state of neuronal ensembles.
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