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This paper uses the theory of Cramer-Rao lower bounds (CRLB)
to obtain optimal acquisition schemes for in vivo quantitative
magnetization transfer (MT) imaging, although the method is
generally applicable to any multiparametric MRI technique.
Quantitative MT fits a two-pool model to data collected at
different sampling points or settings of amplitude and offset
frequency in the MT saturation pulses. Here we use simple
objective functions based on the CRLB to optimize sampling
strategies for multiple parameters simultaneously, and use sim-
ulated annealing to minimize these objective functions with
respect to the sampling configuration. Experiments compare
optimal schemes derived for quantitative MT in the human
white matter (WM) at 1.5T with previously published schemes
using both synthetic and human-brain data. Results show large
reductions in error of the fitted parameters with the new
schemes, which greatly increases the clinical potential of in
vivo quantitative MT. Since the sampling-scheme optimization
requires specific settings of the MT parameters, we also show
that the optimum schemes are robust to these settings within
the range of MT parameters observed in the brain. Magn Re-
son Med 56:803–810, 2006. © 2006 Wiley-Liss, Inc.
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Quantitative MRI techniques (1) map parameters of phys-
ical processes across a sample to measure physical prop-
erties and highlight spatial differences of materials and
tissue. Typically, the methods fit a model of the depen-
dence of the MR signal on the physical process to a num-
ber of MRI measurements obtained at different settings of
the acquisition pulse sequence, which is sensitized to the
physical process of interest. Examples include T1 and T2

imaging methods, which map the longitudinal and trans-
verse relaxation constants by fitting exponential decay
models in each voxel (e.g., Refs. 2 and 3); diffusion MRI,
which typically maps the apparent diffusion coefficient
(ADC) (4) or diffusion tensor (5); perfusion imaging, which
maps parameters that characterize the hemodynamics (6);
and quantitative magnetization transfer (MT) (7), which
maps indices of the molecular chemical environment.

In this paper we are concerned primarily with quantita-
tive MT, which is a contrast mechanism based on cross-
relaxation and chemical exchange between protons in free
water (“liquid” protons) and those bound to macromole-

cules (8). Protons bound to macromolecules have very
short transverse relaxation time and are invisible to MRI.
MT-weighted MRI selectively saturates the macromolecu-
lar protons by exposing the sample to radiofrequency (RF)
energy several kilohertz off resonance from the Larmor
frequency to which protons in free water are less sensitive.
The exchange mechanism transfers some of this preferen-
tial saturation to the liquid spins, where it contributes to
the MR signal, thus making some of the properties of
macromolecular protons accessible. These properties are
interesting biological markers. In particular, evidence sug-
gests that molecules associated with myelin dominate this
exchange process in white matter (WM) (9–10). Indices
derived from MT-weighted MRI thus reflect the degree of
myelination in WM and can highlight demyelination from
WM diseases, such as multiple sclerosis (11–13).

Henkelman et al. (7) developed a simple two-pool model
of the MT phenomenon in gels exposed to continuous
wave irradiation, which was later extended to in vivo
pulsed-MT applications by Sled and Pike (14), Yarnyck
(15), and Ramani et al. (16). The two-pool model charac-
terizes each pool by its spin density M0, its longitudinal
relaxation rate R1, and its transverse relaxation time T2,
and assumes that the pools exchange magnetization with
rate R. All of these parameters are potentially interesting to
measure, and they can be estimated by fitting the model to
images acquired with MT pulses of various combinations
of the amplitude �1 and the offset frequency �. Indices of
myelination, such as the macromolecular proton fraction f
(16) (the macromolecular proton to total proton ratio) and
the relative size of the macromolecular pool F (17) (the
macromolecular proton to liquid proton ratio), are simple
to obtain from the fitted model.

For all quantitative techniques based on model fitting,
the precision and accuracy of the parameter estimates
depend on the choice of the sampling points (in MT, these
are the settings of �1 and � in the MT-weighted images). In
most published MT protocols, the set of sampling points is
selected empirically. Sled and Pike (14,17) did not per-
form a formal analysis, but explored different sampling
schemes with 60 sample points. They reported little ben-
efit in using more than two values of �1 each with a range
of �. The choice of points is particularly critical for in vivo
imaging where time limits the number of images we can
acquire. Ramani et al. (16) acquired 10 images, using three
unique settings for �1 (two with three distinct settings of �,
and one with four). Cercignani et al. (18), following Ra-
mani et al. (16), acquired 10 images and, following Sled
and Pike, used two settings of �1, each with five unique �.
The central aim of this paper is to explore optimal config-
urations of sample points for in vivo quantitative MT,
where the number of acquisitions is limited by scan time
constraints.
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The issue of determining optimal sampling strategies
arises in all quantitative MRI and other model-fitting tech-
niques. Several approaches are available. For simple models
in which we can express the parameter of interest directly as
a function of measurements with known variance, error
propagation provides an estimate of the parameter variance,
which we can optimize with respect to the sample points.
For example, error propagation provides optimal b-values in
the basic ADC measurement (19). Numerical simulations
also provide insight into the dependence of parameter esti-
mates on sample points, and aid in searching for optimal
configurations (e.g., Ref. 20). For more complex models, such
as quantitative MT models, the theory of Cramer-Rao lower
bounds (CRLB) provides a useful analogue to error propaga-
tion. The CRLB (21) sets a lower bound on the variance of any
unbiased estimate. In other words, the variance of any pa-
rameter estimate obtained by fitting a model to noisy mea-
surements cannot be lower than the CRLB. Although the
CRLB is not an estimate of the parameter variance directly,
we can use it in a similar way to obtain good sampling
configurations by minimizing it with respect to the sample
points. In quantitative MRI, this method has been used to
optimize sampling configurations for measuring T2 relax-
ation time (22), diffusion coefficients (23), and the decompo-
sition of water and fat signals in Dixon imaging (24). In a
preliminary study Samson et al. (25) used the CRLB to opti-
mize MT acquisition. They optimized sampling to measure a
single parameter of the MT model. They used numerical
simulations to show that an optimized scheme with six
points can estimate the macromolecular proton fraction as
precisely as the 10-point scheme used by Ramani et al. (16).
However, their method sets all the other parameters to fixed
values, which is unrealistic for heterogeneous samples like
the human brain.

All of the above applications of the CRLB optimize the
sampling configuration to estimate a single parameter.
However, in MT several fitted parameters are of interest.
Here we construct simple objective functions based on the
CRLB to optimize sampling strategies for multiple param-
eters simultaneously, and use simulated annealing to
search for sampling configurations that minimize these
objective functions. We use this approach to obtain opti-
mal acquisition schemes for in vivo quantitative MT im-
aging, although the method is generally applicable to any
multiparametric MRI technique and beyond. Experiments
compare optimal schemes derived for quantitative MT in
the human WM at 1.5T with previously published
schemes (18), using both synthetic and human-brain data.
The results show large reductions in error of the fitted
parameters (factors of �3 in standard deviation (SD)) with
the new scheme, which greatly increases the clinical po-
tential of in vivo quantitative MT.

THEORY

MT Model

The relative size of the macromolecular pool (17) is

F �
M0

B

M0
A, [1]

where A labels the liquid pool of spins in free water, and
B labels the macromolecular pool of spins so that M0

A and
M0

B are the fully relaxed values of magnetization in the
two pools, respectively.

We can rewrite Henkelman et al.’s (7) two-pool model in
terms of F to obtain

S��1,�� �

S0�RB�RM0
AF

RA
� � RRFB��1,�� � RB � RM0

A�
�RM0

AF
RA

� �RB � RRFB��1,��� � �1 � � �1

2���
2� 1

RAT2
A�� �RRFB��1,�� � RB � RM0

A�

, [2]

where S(�1, �) is the MT-weighted MR signal with amplitude
�1 and offset frequency �; S0 is the signal with no MT
weighting; R is the MT exchange rate between the two pools;
RA (� 1/T1

A) and RB are the longitudinal relaxation rates of
the free and macromolecular pools, respectively; and T2

A is
the transverse relaxation time of the liquid pool. The rate
RRFB of loss of longitudinal magnetization owing to the irra-
diation by the MT pulse depends on �1 and �, and on the
transverse relaxation time of the semisolid pool T2

B. Li et al.
(26) showed that in brain tissue RRFB is closely modeled by a
super-Lorentzian:

RRFB��1,�� � �1
2�2�

� �T2
B�

0

1 1
�3u2 � 1�exp� � 2� 2��T2

B

3u2 � 1�2�du� [3]

and we adopt this model here.

For in vivo applications, when pulsed-MT saturation re-
places a continuous RF wave, we use the continuous wave
power equivalent (CWPE) for �1, which is the precession
frequency of a continuous wave with the same mean square
amplitude (16). The model in Eq. [2] then contains six inde-
pendent parameters: RM0

A, S0, RB, F/RA,1/RAT2
A, and T2

B

(16), which we estimate by fitting the model to six or more
measurements with independent �1 and �. The dependence
of S(�1, �) on RB is weak, which makes fitting this parameter
unstable. Since the estimates of the other parameters are
largely insensitive to its value, RB is usually kept fixed at 1
s–1 (7,16,17). This reduces the number of fitted parameters
to 5. To determine F from the fitted F/RA, we must estimate
RA. The observed longitudinal relaxation rate of the sam-
ple, RAobs (� 1/T1obs), can be measured independently,
and RA can be estimated, rearranging Eq. [23] in Ref. 7,
from:
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RA � RAobs �
RM0

AF�RB � RAobs�

RB � RAobs � RM0
A. [4]

CRLB

The theory behind the CRLB is extensively covered else-
where (e.g., Ref. 21), and only the concepts required for the
present application will be reviewed here. Consider a
model S with Q unknown parameters p1, . . ., pQ fitted to N
� Q measurements A(x1), . . ., A(xN) acquired with differ-
ent known settings x1, . . ., xN. The Cramer-Rao inequality
states that � � J–1, i.e., that the difference �J–1 is a positive
semi-definite matrix, where � is the covariance matrix of
an unbiased estimate of p1, . . ., pQ, J is the Fisher infor-
mation matrix, which has ijth element

Jij �
1
�2�

n�1

N 	S�p1,· · ·,pQ;xn�

	pi

	S�p1,· · ·,pQ;xn�

	pj
, [5]

and � is the SD of the noise, which we assume is indepen-
dent of x. Specifically, the variance of any unbiased esti-
mator of pi cannot be smaller than the ith diagonal element
[J–1]ii of J–1.

To find a set of sample points x1, . . ., xN that minimize
the variance �i

2 of a particular pi, the standard approach in
the absence of a direct estimate of �i

2 is to minimize the
lower bound [J–1]ii instead with respect to x1, . . ., xN. To
maximize the precision of multiple parameter estimates,
we must find sample points that minimize several diago-
nal elements of J–1 simultaneously. To ensure that the
relative precision of each parameter is similar, we weight
the variance of each parameter by the inverse square of the

parameter’s value (27) and aim to minimize �
i�1

Q pi

2�i

2.

However, since we do not know the variances, we substi-
tute the CRLB for each parameter to obtain the objective
function

V � �
i�1

Q pi

2�J
1�ii [6]

for a typical set of pi.
We emphasize here that Eq. [6] requires the choice of a

particular set of values for p1, . . ., pQ. Often, however, we
wish to map the parameters over a heterogeneous sample,
such as the human brain, in which they assume a range of
values. Thus we use an alternative to V that considers a
range of settings of the pi:

Vmax � max
k

	�
i�1

Q pik

2�Jk


1�ii
, [7]

where k ranges over K combinations of the pi, pik is the
value of pi in combination k and Jk is the Fisher informa-
tion matrix for combination k. Minimizing Vmax maxi-
mizes the precision of the parameters for the worst case in
the K combinations of settings; it is analogous to the stan-
dard G-optimality criterion in optimal experiment design
(27).

Application to MT

In quantitative MT, the acquisition variables that define
the sampling points are �1 and �, so xn � (�1n, �n). Our
application of interest is clinical quantitative MT imaging,
in which acquisition time is limited. We set N � 10, as in
previously published acquisition protocols (16,18). In
each voxel we fix RB at 1 s–1 and estimate the remaining
parameters by fitting the model in Eq. [2] to the measure-
ments using a Levenberg-Marquardt algorithm, as in Ref.
18. Since the second term on the right-hand side of Eq. [4]
is very close to zero, F/RA is almost linear in F, and we
choose to optimize the sampling directly for the fitted
parameters even though F is the parameter of interest
rather than F/RA. In fact, we include only four terms (Q �
4) in the sum in Eqs. [6] and [7], which correspond to the
parameters RM0

A, F/RA, T2
B, and 1/RAT2

A. We exclude the
terms for RB, which we fix to 1 s–1, and S0, which is of little
interest.

MATERIALS AND METHODS

Optimization

To optimize the sampling points for quantitative MT, we
must search for the sampling configurations, x1, . . ., xN,
that minimize V and Vmax from Eqs. [6] and [7]. The global
minima of these cost functions are hard to find because of
local minima. Thus, we use a minimization technique that
combines simulated annealing with the downhill simplex
method (28). The routine makes 100 evaluations of the cost
function at each temperature T, using expansions, contrac-
tions, and reflections of the simplex to reach a local min-
imum. The cost-function value is randomly perturbed by a
quantity proportional to log(T) to allow occasional uphill
transitions, which increases the probability of finding the
global minimum. The temperature T, decreases according
to the annealing schedule

T�n � 1� � �1 � ε�T�n�, [8]

where 1 

 ε 
 0, until it reaches a prespecified final
temperature. The initial temperature is 100, above which
we find empirically that perturbations are too large to be
useful, and the final temperature is 0.001, below which
perturbations make no difference within the accuracy of
the scanner’s settings of �1 and �.

To further reduce the effects of local minima in the
objective function, we repeat the optimization from a num-
ber of different starting points. In each optimization, we
use six unique starting points and select the final config-
uration with the minimum value of the cost function. This
procedure does not guarantee that the global-minimum
configuration will be found, but in practice it gives good
results that we do not expect to improve on dramatically
with more starting points or slower annealing schedule.
For larger numbers of points (N 
 10), more careful opti-
mization may be required. From Eq. [2] we can see that
S(�1, �) � S(��1, ��); therefore, two final configurations
are considered to be identical if their points differ only in
sign.

Off-resonance irradiation inevitably produces some di-
rect saturation of the liquid pool (7), which rapidly in-
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creases as the offset frequency of the MT pulse is reduced,
and eventually suppresses any MR signal when � becomes
small compared to the MT pulse bandwidth. Values of �
close to zero thus result in dramatic signal loss, particu-
larly in the presence of static field inhomogeneities, where
the actual offset frequency can deviate slightly from its
nominal value and vary across the sample. Moreover,
safety issues associated with the deposition of RF energy
into the patient, as measured by the specific absorption
rate (SAR), impose some restrictions on the maximum
value of �1. We constrain �1 � 950 rad s–1 and |�| 

0.15 kHz to enforce these practical limitations on the com-
binations of �1 and �. The value of 0.15 kHz is determined
empirically by selecting the minimum offset frequency
that does not result in macroscopic areas of signal loss in
the image at the median value of �1 (�1 � 450 rad s–1). The
most appropriate choice may vary depending on the MT
pulse bandwidth and the static field strength.

We compute and test three optimal configurations
(schemes 2–4), and compare them with a standard config-
uration from Ref. 18, which we label scheme 1. Scheme
2 minimizes V for a set of typical MT parameters measured
in WM at 1.5T. Specifically, we set RM0

A � 25 s–1, F/RA �
0.08 s–1, T2

B � 10 �s, 1/RAT2
A � 10, RB � 1 s–1, and S0 �

1000 (arbitrary), which are typical measured values in
Refs. 13 and 18. Schemes 3 and 4 minimize Vmax for
different combinations of settings. For scheme 3 we use
the values measured in K � 15 regions of interest (ROIs) in
gray matter (GM) and WM by Cercignani et al. (18). For
scheme 4 we define a range of values for each fitted pa-
rameter that are typical for the human brain at 1.5T, and
take the K � 33 combinations from the center and the 32
vertices of the “hypercube” spanning all the ranges. We
estimate the ranges from the measurements in Ref. 18.
Specifically, RM0

A � [25, 35] s–1, F/RA � [0.05, 0.1] s–1,
T2

B � [7, 15] �s, 1/RAT2
A � [10, 20], S0 � [700, 1300], and

RB � 1 s–1. In the minimization of V, we set ε � 0.0001, but
for Vmax we increase ε to 0.001, since computation of the
cost function is more expensive. With ε � 0.0001, the
number of temperatures between the starting and final
temperatures is approximately 115,000, while with ε �

0.001 it is approximately 11,500. An Intel Pentium 4
3.2GHz machines computes V about 50 times per second
(thus Vmax 50/K times per second), so each optimization
typically takes a few days.

EXPERIMENTS AND RESULTS

This section outlines some experiments that were con-
ducted to test the new acquisition protocols computed
from the methods outlined above. We had two central
hypotheses: 1) little improvement would come from opti-
mizing Vmax for many combinations of parameter settings
over the simpler optimization of V for a single well-chosen
set, and 2) all of the optimum point sets would produce
more stable maps of the MT parameters compared to stan-
dard acquisition schemes from the literature.

Optimal Configurations

Table 1 compares the three optimized sampling schemes
with the standard 10-point scheme (scheme 1) from Ref.
18. Table 1 shows the values of V and Vmax for every
scheme in order to provide a theoretical comparison of
their performances. The minimum Vmax is 11.3 for the
hypercube (scheme 4) and 3.5 for the ROIs (scheme 3). For
the optimum sampling scheme returned for a single setting
(scheme 2), Vmax is 11.8 for the hypercube and 3.5 for the
ROIs, supporting our first hypothesis that the optimum
sampling would be fairly insensitive to the exact pi used in
the optimization. In particular, the sets of points in
schemes 2 and 3 are very similar. With the standard
scheme (scheme 1), Vmax is 48.1 for the hypercube and
12.4 for the ROIs, which suggests large improvements in
precision with the optimum configuration compared to the
standard one. Table 1 shows similar reductions for V when
scheme 1 (V � 7.0) is compared with scheme 2 (V � 2.2),
scheme 3 (V � 2.3), and scheme 4 (V � 3.1).

Simulations

We use Monte Carlo simulations at various noise levels to
measure the error in the fitted parameters from the differ-

Table 1
Standard and Optimized MT Acquisition Schemes*

1) Standard (see
Ref. 18) V � 7.0;

Vmax
hypercube � 48.1;

Vmax15 ROIs � 12.4

2) Optimized for a
single set V � 2.2;

Vmax
hypercube � 11.8;

Vmax15 ROIs � 3.5

3) Optimized for 15
ROIs V � 2.3;

Vmax
hypercube � 12.3;

Vmax15 ROIs � 3.5

4) Optimized for the
hypercube V � 3.1;
Vmax

hypercube � 11.3;
Vmax15 ROIs � 4.9

�1 � �1 � �1 � �1 �

222 0.4 37 42 12 14.84 217 0.15
222 1 265 0.15 255 0.15 310 0.26
222 3 128 100 365 100 400 1.13
222 7.5 397 1.38 398 1.28 444 1.74
222 20 405 1.48 465 2.05 495 2.34
885 0.4 405 1.48 483 2.36 522 82.26
885 1 950 0.97 950 0.88 950 1.28
885 3 950 0.98 950 1.02 950 1.30
885 7.5 950 0.98 950 1.04 950 13.62
885 20 950 11.6 950 11.15 950 56.79

*V and Vmax are the objective functions used for the optimization and are defined by Eqs. [6] and [7] in the text. The superscripts on Vmax

indicate the set of parameter combinations. �1 is measured in rad s
1; � is measured in kHz.
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ent acquisition schemes. First, four (one for each scheme)
noise-free synthetic sets of 10 MT-weighted signal inten-
sities are generated by substituting the MT parameters
used to obtain scheme 2 into Eq. [2]. We add complex
noise with zero-mean Gaussian real and imaginary parts,
and take the modulus to obtain a noisy data sample. The
SD of the Gaussian noise is S0/�, where � is the desired
SNR in the unweighted image, which we vary over the
interval [20, 300]. For each level of noise we generate
10000 sets of noisy independent samples and fit Eq. [2] to
each set.

For all four parameters (RM0
A, F/RA, T2

B, and 1/RAT2
A),

the estimates obtained using schemes 2–4 are more precise
than those obtained with scheme 1, with SDs smaller by a
factor of at least 1.5. Accuracy also increases, particularly
at low SNR (�50). Schemes 2 and 3 produce similar per-
formance, while scheme 4 produces slightly larger SDs for
the estimates of T2

B and 1/RAT2
A.

Figure 1 compares the estimates of the MT parameters
from schemes 1 and 2 and confirms an improvement in
both precision and accuracy for all four parameters at all
SNR levels when the optimized scheme is used. We omit
the results for schemes 3 and 4 from Fig. 1 for clarity, since
they are almost indistinguishable from the scheme 2 re-
sults.

To confirm the near-equivalence in performance of the
three optimized schemes, we repeat the simulation exper-

iments using the worst-case combinations of parameters
from both the hypercube and 15-region sets of combina-
tions. The set of MT parameter values that gave the worst
V among the 15 ROIs was {RM0

A � 33.2 s–1; F/RA �
0.07 s–1; T2

B � 12.3�s; 1/RAT2
A � 11.4; and S0 � 804}.

Using these values for the simulations, schemes 2 and 3
perform similarly in terms of precision (as expected given
their similarity), with slightly lower variance from scheme
3 at very low SNR (�50) for T2

B. The estimates obtained
using scheme 4 are more precise than those obtained using
scheme 1, but less precise than those obtained using
schemes 2 and 3.

The set of MT parameter values that gave the worst V
among the 33 vertices-and-center of the hypercube was
{RM0

A � 35.0 s–1; F/RA � 0.05 s–1; T2
B � 7.0 �s; 1/RAT2

A

� 20.0; and S0 � 700}. Schemes 2 and 3 performed simi-
larly, with slightly larger variances than scheme 4 for all
four parameter estimates. The SD of RM0

A estimated using
scheme 1 was larger than that obtained with any other
scheme at all SNR levels, while all four schemes behaved
similarly for estimates of F/RA, T2

B, and 1/RAT2
A at SNR 


120.

MRI Acquisition and Analysis

In the experiment described in this section we assess the
precision of the in vivo MT parametric maps and aim to
confirm the conclusions from the simulation experiments.
We estimate and compare the SDs of each MT parameter
from different acquisition schemes in several ROIs in the
human brain. Acquiring enough separate data sets for good
estimates of the SD in each voxel requires a prohibitively
long scan time. Therefore, we collect a small number of
data sets for each scheme and use the bootstrap method
(29) to produce a large number of data sets by resampling
with replacement on a voxel-by-voxel basis. To further
reduce the scan time, we restrict the in vivo analysis to
schemes 1 and 2, since the Monte Carlo simulations
showed that schemes 3 and 4 provide little extra advan-
tage.

One healthy subject (male, 35 years old) was scanned
twice on a 1.5 T system (SIGNA Horizon Echospeed; Gen-
eral Electric, Milwaukee, WI, USA) using a 3D MT-
weighted fast spoiled-gradient recalled-echo (SPGR) se-
quence (18) (TR/TE � 28/5.1 ms, flip angle � 5°, Gaussian
MT pulses, duration � 14.6 ms, SD � 2.98 ms, band-
width � 125 Hz, 28 reconstructed slices). During each
session, three complete data sets were obtained using ei-
ther scheme 1 or scheme 2. In addition to the MT data, two
four-shot spin-echo echo-planar imaging (EPI) sequences
(TR/TE � 15000/13.6 ms, flip angle � 60° and 120°, ma-
trix � 64 � 64), and two 3D SPGRs (TR � 16 ms, TE � 4
and 8.54 ms, flip angle � 25°) were collected for B1 and B0

mapping, respectively. The total scan time for each session
was just under an hour. The body coil was used for signal
transmission and the eight-channel head coil was used for
reception, with the exception of the B0 mapping sequence,
in which the body coil was used for reception as well as
transmission. This avoids the scanner’s automatic com-
bined reconstruction when using multichannel receiver
coils and therefore preserves the complex data. After im-
age coregistration (30), B1 maps are obtained from the

FIG. 1. Plot of mean MT parameters from 10000 Monte Carlo sim-
ulations against SNR in the unweighted image for the standard
scheme 1 (red) and optimized scheme 2 (black). The error bars show
the SD. The dashed blue line shows the value of parameter used to
synthesize the data. No symbol is present for RM0

A from scheme 1
at SNR � 50 because the mean value was too large to be in the
scale of the figure.
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multishot EPI data with the use of the double-angle
method (31) and the resulting maps are smoothed using a
third-order polynomial fitting. Maps of the B0 deviation
from the value in the center of the head are calculated from
the phase images obtained from the SPGR data, according
to Cusack and Papadakis (32).

To compare the in vivo results with the numerical sim-
ulations, we measure the SNR of the MT-SPGR data in
WM. The SNR is difficult to measure because it is not
uniform in images obtained with multichannel coils. How-
ever, a good estimate can be obtained using two images
with the same weighting, as described by Firbank et al.
(33). Using this method, we estimate the following SNR
values in four WM regions on the least saturated image: 86
in the anterior periventricular WM, 123 in the posterior
periventricular WM, 112 in the corona radia, and 70 in the
frontal WM. We fit the MT model in Eq [2], as in Ref. 18, to
the first repeat from each acquisition scheme to obtain an
initial qualitative comparison of the two schemes. During
the fitting, B1 and B0 maps are used to correct for any
deviation from the nominal values of �1 and � (14,17).
Figure 2 shows the MT parametric maps from the first
repeat from each scheme. Maps from the optimized
scheme show clear improvements in spatial homogeneity
and GM/WM contrast.

Next, with the three repeats we generate 1000 MT raw
data sets for each scheme by bootstrapping. We fit the
model to each of the 1000 bootstrapped samples, provid-
ing 1000 estimates of RM0

A, F/RA, T2
B, and 1 /RAT2

A. We
compute the coefficient of variance (COV, defined as the
SD divided by the mean across the 1000 bootstrapped
samples) of the MT parameters in each voxel. Table 2
compares the average COVs (expressed in percentage
units) obtained for two GM (putamen and thalamus) and
three WM (genu of corpus callosum, anterior periventricu-
lar, and posterior periventricular) ROIs outlined by hand
on the least saturated image of each set. The COV for the
optimized scheme 2 is consistently less than half that for
the standard scheme 1, and reduces by a factor of up to 5
in some regions. This shows dramatic improvements in
parameter estimation and confirms the qualitative obser-
vations from Fig. 2.

DISCUSSION

We have presented a method based on the theory of CRLB
for optimizing the sample positions for any multiparamet-
ric quantitative MRI technique. We used this method to
optimize in vivo quantitative MT acquisition, which col-
lects a series of MT-weighted images and estimates several

FIG. 2. MT parametric maps obtained with the standard (top) and the optimized (bottom) sampling schemes. From left to right: RM0
A, F/RA,

T2
B, and 1/RAT2

A. Spatial homogeneity and WM/GM contrast increase in all maps, and in particular the RM0
A map, for the optimized

scheme.

Table 2
Mean Parameter COV (Percentage Units) Across 1000 Bootstrapped Samples for Schemes 1 (Standard) and 2 (Optimized)*

Scheme RM0
A F/RA T2

B 1/(RAT2
A)

Scheme 1 2 1 2 1 2 1 2
Putamen 31 11 16 6 18 5 15 3
Thalamus 23 8 10 4 10 2 10 3
Corpus callosum 28 11 12 5 8 4 10 4
Anterior periv. WM 27 13 12 7 10 4 11 4
Posterior periv. WM 21 9 10 5 9 3 10 5

*For bilateral structures, the value is the average of left and right. periv. � periventricular; WM � white matter.
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parameters by fitting a nonlinear model to the measure-
ments. The uncertainty associated with the estimate of
RM0

A is particularly large (18,34), and some studies based
on Ramani et al.’s (16) model have failed to estimate this
parameter entirely (13). The Monte Carlo simulations and
in vivo results showed that selecting appropriate sampling
schemes greatly enhances both the precision and accuracy
of MT parametric maps. In particular, the optimized ac-
quisitions reduce the error in parameter estimates by fac-
tors of around 2 or 3 and allow us to estimate RM0

A with
accuracy and precision similar to those of the other param-
eters. The sampling-scheme optimization requires specific
settings of the MT parameters. The results in the previous
section show that the optimum schemes are robust to these
settings within the range of MT parameters observed in the
brain. Specifically, we propose two types of objective func-
tion. First, we use Eq. [6] to select the optimum sampling
points for measuring a single set of MT parameters. Sec-
ond, we use Eq. [7] to account for the variability of MT
parameters within the brain (18,35). The optimizations for
the single set and the 15 ROIs return very similar schemes
(schemes 2 and 3), with almost identical values of V and
Vmax, which suggests that the optimum sampling depends
only weakly on the exact parameter settings in the optimi-
zation, at least over the range of combinations observed in
healthy brain tissue. Monte Carlo simulations confirmed
that schemes 2 and 3 provide very similar precision of
parameter estimates across a range of settings typical of the
human brain. Scheme 4, which is optimized for the hyper-
cube, provides slightly lower precision for the typical
combinations, probably because even though the hyper-
cube covers the range of possible parameter values, the
vertices are not necessarily realistic combinations. Table 1
shows that although scheme 3 (optimized for ROIs) is close
to optimal for the hypercube (Vmax � 12.3; optimal Vmax �
11.3), scheme 4 (optimized for hypercube) is not so close
to optimal for the ROIs (Vmax � 4.9; optimal Vmax � 3.5).
This suggests that although some of the ROI combinations
have high variance with the optimum configuration for the
hypercube, we can reduce that variance significantly (by
optimizing the ROI combinations directly) with only a
slight cost at the parameter combinations in the hyper-
cube. Since the hypercube contains the combinations in
each ROI (though not at the vertices where we sample it),
denser sampling of the hypercube is likely to reduce the
ROIs metric while low variance is retained in all portions
of the hypercube. However, the ROIs optimization pro-
duces a sample set with a near-optimal hypercube metric,
which suggests that optimizing over portions of the hyper-
cube that are not close to any of the ROI combinations
provides little benefit. Moreover, computation time is lin-
ear in the number of parameter combinations K, so denser
sampling of the hypercube rapidly becomes impractical.
Since the ROI combinations are directly measured in the
brain (18), we expect that the configuration from the ROI
optimization is more useful than the hypercube in prac-
tice. One possible refinement would be to weight combi-
nations by the frequency of the observations in the brain.

We cannot be certain that the optimization will find the
global minimum configurations. Minimization of Eqs. [6]
and [7] is complicated by the presence of local minima. To
reduce the effects of local minima, we use six unique

starting points and a method based on simulated anneal-
ing, which is particularly suitable for this type of problem.
The improvement in the quality of the parametric maps is
evident in Fig. 2, and scheme 2 clearly provides substan-
tial advantages compared to scheme 1. We expect little
further practical improvement from more careful optimi-
zation that gets closer to the global minimum, although we
may require this for larger N.

The three optimal schemes (2–4) in Table 1 include six
to seven unique points, while some positions are sampled
twice. They all include four points at high power (of which
three are unique), and one measurement that is as close to
the Larmor frequency as possible with the � � 0.15kHz
constraint. Lifting the constraint on � moves that point
even closer to the Larmor frequency, which rapidly brings
the signal down due to direct saturation of the liquid pool.
At offset frequency lower than 0.15 kHz, � approaches the
magnitude of the B0 field inhomogeneities, which causes
large artifacts and areas of low SNR in the image. Further-
more, although the MT model in Eq. [2] does account for
direct effect (7), it assumes an infinitesimally narrow pulse
bandwidth. As the offset frequency approaches zero, the
finite pulse width becomes more significant.

Furthermore, all of the optimized schemes include at
least one point with either large � or small �1, which
yields measurements that are virtually identical to those
with no MT weighting (i.e., S0). This suggests that a good
estimate of S0 is necessary to fit the remaining parameters
accurately.

These results are in contrast to the experimental obser-
vations of Sled and Pike (14), who employed regular sam-
pling at constant logarithmic frequency steps using only
two values of �1. In the present work we restrict our
analysis to 10-point acquisition schemes, whereas Sled
and Pike used a different model (14,36) and a larger num-
ber of points. It seems likely from our experiments that, for
N 
 10, the configuration of �1 and � that minimizes the
variance of MT parameters is substantially different from
the two-�1 scheme they suggest. We confine investigations
of this hypothesis to future work.

Another area for further work is to investigate the de-
pendence of V and Vmax on N, to establish whether there is
cutoff above which the benefit gained by increasing the
number of points is small compared to the cost in terms of
increased scan time. Using an approach similar to ours
(although it was limited to the measurement of a single MT
parameter while keeping the rest fixed), Samson et al. (25)
attempted to identify optimal combinations of �1 and �
with small N, and demonstrated that N can be reduced to
3 without compromising the SD of the estimated T2

B, or to
6 without compromising the SD of the estimated f.

Equation [2] differs from that proposed by Ramani et al.
(16) in that we use F � M0

B/M0
A instead of f � M0

B/(M0
A �

M0
B). We restated the model to keep a near-linear relation-

ship between the fitted parameter, F/RA, and the parameter
of interest, F. In practice, since f �� 1 in the brain, we do
not expect to observe large differences in the optimum sets
of points returned for either choice of parameter. The
model we use here is only an approximation when using
pulsed MT. Several alternative MT models have been pro-
posed (15,35,36), and the optimization procedure we in-
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troduce here can be applied equally to these more complex
models. This also we confine to further work.

In this study we optimized quantitative MT sampling
schemes for healthy brain tissue, and we assume that
changes in MT parameters in pathology will be small
enough that the sampling will remain close to optimal. In
particular, the parameter F is likely to change most in
pathology. However, change in F is generally accompanied
by a change in RA that keeps F/RA (which is the important
parameter for sampling optimization) fairly stable. Never-
theless, alternative approaches are possible. An alternative
optimization might choose a configuration that maximizes
the contrast between healthy and damaged tissue. How-
ever, a complication with this approach in a disease like
multiple sclerosis is that a range of abnormalities can
occur in, for example, chronic and inflammatory lesions or
normal-appearing WM. The optimum schemes we propose
provide a substantial improvement for the quantification
of MT parameters in both healthy and pathologic brain
compared to previous acquisitions, and sampling optimi-
zation for contrasting specific parameter combinations is
another area for future work.

In some applications, F may be the only parameter of
interest. In such cases, Eq. [6] reduces to a classic CRLB
optimization problem. One last area for further work is to
quantify the improvement in the precision of a single
parameter (for example F, provided by the use of a scheme
optimized for the estimation of F only) compared to those
optimized for all MT parameters at the same time.
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