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Figure 1: The behaviour of the agents for a game (such as that on the left) can be easily developed using the tools provided by ABS (on the
right).
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Abstract

Computer Graphics have become important for many applications
and the quality of the produced images have greatly improved. One
of the interesting remaining problems is the representation of dense
dynamic environments such as populated cities. Although recently
we saw some successful work on the rendering such environments,
the real–time simulation of virtual cities populated by thousands of
intelligent animated agents is still very challenging.

In this paperwe describe a platform that aims to accelerate the de-
velopment of agent behaviours. The platform makes it easy to enter
local rules and callbacks which govern the individual behaviours.
It automatically performs the routine tasks such as collision detec-
tion allowing the user to concentrate on defining the more involved
tasks. The platform is based on a 2D-grid with a four-layered struc-
ture. The two first layers are used to compute the collision detection
against the environment and other agents and the last two are used
for more complex behaviours.

A set of visualisation tools is incorporated that allows the testing
of the real–time simulation. The choices made for the visualisation
allow the user to better understand the way agents move inside the
world and how they take decisions, so that the user can evaluate if
it simulates the expected behaviour.

Experimentation with the system has shown that behaviours in
environments with thousands of agents can be developed and visu-
alised in effortlessly.

1 Introduction

Computer graphics have become an important domain and are
widely used for games and entertainment as well as for medi-
cal, architectural and cultural applications. At the current stage
of technology, a user can interactively navigate through complex,
polygon–based scenes with a high rendering quality that includes
anti–aliasing and sophisticated lighting effects. It is also possible
to animate characters (or agents) and to interact with them. Cur-
rently most agents’ behaviour is relatively simple with more com-
plex behaviours being pre–computed and the resultant animation se-
quences being replayed triggered by the modes of interaction. To
generate such animations, the behaviour has to be defined for each
agent, which is time–consuming. However, if the user is to interact
with thousands of other individual agents this approach is clearly
unusable. Defining the behaviour for each agent is laborious whilst
updating each of the thousand agents is computationally expensive
for interactive applications such as games.

The initial motivation of this work was to develop and inter-
act with realistic populated urban virtual environments, with all the
crowds and traffic that come with it. In previous work [13], a real–
time city renderer was developed that allows the visualisation of
thousands of animated human walking randomly. An example of
this system is shown in Figure 1. Although this system has already
produced a lively, animating effect for a complex polygonal city, the
random behaviour of the humans is far from giving the impression
of intelligent agents. It is clear that we need to provide more realistic
and complex behaviours such as awareness of pavements and other
pedestrianisedareas, interacting with cars (and other vehicles), stop-
ping at points of interest and walking in small groups of people.

Developing such behaviour is a hard task and it can be difficult



to understand how complex behaviours emerge from simpler rules
with the emergent behaviour often being quite unexpected. Instead
of working directly with the rendering system, which could hinder
the evaluation of the tests and mask some of the behaviour, we have
developed a platform to make the process of behaviour creation and
evaluation far easier. The platform provides a framework to effort-
lessly input simple rules, while taking care of the collision detec-
tion against the model and between agents. It also provides a 3D-
visualisation with functions for tracking individual agents and visu-
alising their path over time. The platform is scalable and allows a
researcher or a game–developer to focus on real–time simulations
as the behaviours may be tested on as many agents as are ultimately
required in the city. In other words, there is no need to test be-
haviours on a smaller sub–sample of the final, projected population.
The tested behaviour can then be integrated in the system to be ren-
dered and animated in a more human–like manner.

When the agents’ behaviours are created, the evaluation of their
efficacy (in term of realism) is often quite difficult to perform accu-
rately. Techniques such as Space Syntax analysis [4, 5] can be used
to analyse the spatial configuration of the city, predicting probable
pedestrian–flows in a real city. These same techniquescould be used
to provide a ’yard–stick’ againstwhich the emergentbehaviour may
be measured and correlated. In this paper, we do not provide tools
for such evaluation, but we believe that the system we have devel-
oped could be extended to perform such evaluations.

1.1 A platform to aid behaviour development

In this paper, we propose a platform to develop and visualise in real–
time the behaviour for thousands of agents. It is based on a segmen-
tation of the space into a two–dimensional grid. This grid is used to
delimit areas in which simple local rules are applied. Each agent is
localised in the 2D–grid and hence applies the rules relevant to its
position. In the rest of the paper, we will call local behaviour the
behaviour resulting from these rules applied to each agent. Using
simple, local rules allows the system to be fast enough for real–time
simulation.

The local rules are governed by four different layers of the grid,
each reflecting a different aspect of an agent’s behaviour. This
multi–layer representation allows for an aggregation of different
components of the expected behaviour, such as inter–collision de-
tection between agents and collision detection with the model, sim-
ple general behaviour (but local to an area) and finally more com-
plex and individual behaviours.

In the next section, we describe previous work on human be-
haviour simulation and discuss the different models used to visualise
the behaviour. In section 3, the platform itself is described along
with the choices that were made to enable both good functionality
and appropriate visualisation. In section 4, some simple examples
of behaviours have been implemented using the platform and tested
to evaluate the quality of the platform.

2 Background

2.1 Previous work on behaviour

Researchers from different disciplines ranging from psychology to
architecture and geography have been making observations of the
micro–scale behaviours of pedestrians for over thirty years. For ex-
ample, Goffman [3] discusses the techniques that pedestrians use to
avoid bumping into each other. Early work of researchers at Uni-
versity College London began to systematically develop techniques
for observing and analysing patterns of pedestrian flows and corre-
lating these to spatial properties of the environments through which
people moved. Examples of these techniques are documented in [5]
and [4]. Up until this point, observations had been made purely by

hand, with the sole research aim of being able to better understand
how people moved through space at a more macro–level (e.g. [4, 5])
and a more micro–scale (e.g. [3]). A second aim was to be able to
predict real–world movement. Ideas of using such observations as
the basis of rule sets to simulate pedestrian movement or to populate
virtual worlds with realistic humans were hampered by computer
processing power.

More recently researchers have begun to attempt to devise rule–
sets to drive navigating agents. Many techniques have been bor-
rowed from, or adapted from parallel work done on real–world navi-
gating robots, such as Prescott et al. [11]. Equally researchers work-
ing on navigating robot problems have occasionally used software
simulations to test their ideas. In this way it can be held that there
are clear parallels and areas of crossover between the two fields.
However, the majority of work, undertakenon simulating pedestrian
movement has involved simulating densely populated crowd scenes
such as in [9, 7, 8]. Although serving as useful precedents, this work
is less useful for games programming, where the aim is frequently
to populate environments with realistic individual virtual humans,
not crowds.

Work done on non–crowd or natural movement includes early
work by Penn et al. [10] in which rules were applied to agents, with
distinct groups of agents using different heuristics for navigating
from origins to destinations assigned randomly. The resulting paths
taken were compared to spatial analyses of the environment and ob-
served movement in the corresponding real environment (a district
of London). A similar approach of assigning origins and destina-
tions served as the basis of a later paper, Farenc et al. [2] in which
groups of agents navigated through a cityscape from ’home’ to ’su-
permarket’.

Sophisticated variations on natural movement modelling include
work done on the weighting and use of interest–attractors by Smith
et al. [12]. Attractors in this environment include shop–doorways,
recreational areas, and street entertainers. Other refinements of
standard natural movement models include Mottram et al. [6] and
Thomas et al. [14].

2.2 Previous approaches taken to develop be-
haviour

In Penn et al. [10] the agent behaviour was simulated using the
mathematical modelling application Mathematica. The agents were
given simple rules such as “follow the longest line of sight”. The re-
sultant data was purely numerical which was then transformed into
2D representations of the routes taken by the agents (not in real–
time). These rules were later refined and extended to more sophis-
ticated agents in Mottram et al. [6]. These later agents were given
a restricted field of view and hence, could look around, identifying
long lines of sight to follow. Since the environment being simu-
lated was an art gallery, the behaviour being modelled was purely
exploratory behaviour. This system was run on an SGI UNIX ma-
chine using the Performer 3D library. The agents were given rules
programmed in a simple scripting language, which was interpreted
not compiled, so that the agents’ behaviours could be ’tweaked’ or
modified in real–time whilst the system was running, without need-
ing to recompile. However, the agents were represented as nothing
more than simple ’cubes’ and the system was limited by allowing
only a relatively small number of agents in each world. In both cases
the methods used to evaluate the efficacy of the rules, was to com-
pare the results to real–world observations and to spatial analysis of
the environments.

In Tecchia et al. [13], the authors focused on the rendering aspect
of a crowd. Using image–based rendering techniques, they man-
aged to display thousands of walking humans in real–time. The be-
haviour was computed in real–time and concerned inter–collision
detection between humans, and collision detection of the buildings



as well as accommodating sloping, uneven terrain. The direction
of the humans was decided randomly resulting in non–realistic be-
haviour. Based on a spatial subdivision, the decision process was
developed directly in the same system used to render the crowd and
the model of the city. As a consequence it was hard to determine if
the initialisation of agents’ positions was performed correctly since
some agents could have been hidden inside the buildings. To avoid
this kind of problems that are difficult to detect and to precisely vi-
sualise the simulated behaviour, using a behaviour–dedicateddevel-
opment platform was necessary.

3 The platform

As mentioned before, it was necessary to develop a new platform to
make the process of creating and visualising behaviour easier. With
this intention, a platform that allows a user to develop and visualise
the behaviour of large numbers of agents was developed. Consid-
ering the previous approaches described in section 2, we decided to
adopt a 2D–grid upon which the agents navigate. In order to simu-
late their behaviour, the platform is composed of four different lay-
ers. By combining the effect of each layer, an individual agent reacts
depending on the area it is occupying and the relative position of the
other agents.

The layers are ordered from the more basic (detection of possible
collisions) to the more complex behaviours. Each cell of the grid
corresponds to an entry to each layer. When an agent reaches a cell,
it checks from the first to the fourth layer to decide what is going
to be its next action. One or more cells are checked by each agents
for each layer, and the decision on the position and the number of the
checkedcells is freely made by the user. With the current implemen-
tation of the platform, the subdivision of the layers corresponds to
the one chosen for the collision–detection grid, but the subdivisions
of all grids need not be identical.

3.1 A multi–layer platform

The four different behaviour layers of the platform can be imagined
as maps. As explained previously, they are aligned with the 2D–grid
representation. In the following, we name and describe these four
layers in the same order an agent access them during a simulation.

1. Inter–collision detection layer: This layer corresponds to
agent–to–agent collision detection. Before moving to a new
cell, an agent checks to determine if the target cell is free. The
user can specify how far ahead to check so that the avoidance
can be made more smoothly.

2. Collision detection layer: It corresponds to environment col-
lision detection and defines the accessibility of areas. An im-
age is used as an input to the platform, encoding by white the
accessible cells and by black the inaccessible areas. This in-
put image could be more complex and used as a height map
(relief map or Digital Elevation Model) with grey levels indi-
cating the height of the obstacles. By examining its local–area
map, an agent can decide if it can pass by, climb up or descend
in order to continue its journey, or if it must change direction
to avoid an obstacle. An example of such a map is shown in
Figure 2(a). In this figure only binary information indicating
accessibility is provided, suggesting that the original model is
flat.

3. Behaviour layer: This third layer corresponds to more com-
plex behaviours encoded for each local region of the grid. A
colour map is used as an input file, so that with 8 bits per com-
ponent in a RGBA space, up to 2

32 distinct behaviours can

be encoded. The user then associates with colour the corre-
sponding behaviour. When an agent reaches a cell, it checks
the encodedcolour to decide which behaviour to adopt. It may
be a simple behaviour like ’waiting’ or ’turning left’ or more
complex like ’compute a new direction depending on the sur-
rounding environment’. For example, we can use a visibility
map (see Figure 2(b)) to encode more probable paths, or an
attractor map (see Figure 2(c)) which may reflect how agents
are attracted by some points of interest such as a bus stop or
a shop–window. If requiered, this layer can have several in-
put images although it may increase the memory required by
the system. Depending on the available resources, one might
prefer to compress data into a single image.

4. Callback layer: This is the most complex of all the layers.
Callbacks can be associated to some cells of the grid in or-
der to simulate more complex agent–environment behaviour.
Such callbacks can allow for pushing buttons to call elevators
or climbing aboard a bus on its arrival. For the moment, the
user needs to specify callbacks for each cell. As future work,
we would like to develop a graphical user interface, where any
callbacks can be defined as modules that can be integrated by
the user by selecting them from a menu. This module can then
be associated with a cell or a region of cells selected interac-
tively.

The combination of these four layers permits the creation of com-
plex behaviours that can appear extremely realistic but can be still
executed at interactive rates. With such a platform, we can for ex-
ample simulate an agent walking along a pavement to reach a bus
stop. Whilst walking along the pavement the agent will avoid obsta-
cles such as rubbish bins, telephone kiosks and other agents in front
of it. When it reaches the cell that corresponds to the bus stop (for
which the associated behaviour is to wait) it pauses appropriately.
When the bus arrives, a callback is activated to cause the agent to
climb into the bus. Using this simple scenario, we utilise all of the
four layers described above. Since each rule is applied only locally,
the callback, which is a more complex algorithm, is executed only
when needed so that the whole series of behaviours can still be com-
puted in real–time even if the environment contains many thousands
of agents.

3.2 Visualisation

The purpose of the system is to provide a platform to easily de-
velop different types of behavioural rules and to immediately visu-
alise them. The following visualisations are important to better un-
derstand this methodology.

In other systems the agents are animated and can move about
freely, but it is difficult for the developer to ensure that they react in
the manner expected. To facilitate the developer’s evaluation, the
agents’ motion is rendered in 3D. This 3D representation allows the
user to navigate and to zoom into the scene when a precise evalua-
tion is needed or to zoom out when a global view is required. The
2D–grid is displayed using a colour for each cell of the grid that is
computed by multiplying the input colour values from maps of the
collision detection layer and the behaviour layer. The user can op-
tionally choose which map to display.

In the simulation process, the number of displayed agents can
vary from the number of total agents used for the behaviour sim-
ulation. It allows the user to focus easier on agents. Again this is an
option of the system and all the agents can also be displayed. Five
entities can be displayed for each agent:

� Moving agents are represented by vertical triangles of random
colours. These triangles are always user–oriented so that in
whatever direction the user looks, all the agents are visible.
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Figure 2: (a) An example of a collision map. The regions where agents can move are encoded in white and inaccessible regions in black. (b)
and (c) Examples of behaviour maps. (b) Visibility map. (c) Attraction map.

Figure 3: The 3D visualisation of the simulated behaviour.

Figure 4: Explanation of the different visual cues.

The choice of using random colours was to clarify the visu-
alisation and not confuse an agent with its neighbour. How-
ever, the user could specify a colour for a ’type’ of agent (i.e.
tourist/resident or male/female), and the renderer could then
render these agents with a colour gradation to enable the de-
veloper to visually differentiate them from their neighbours.

� A small horizontal triangle is associated to each agent to rep-
resent its current direction.

� A square is displayed on the grid using the same colour as the
agent’s body–triangle and is included to improve the percep-
tion of the position of the agent.

� Another square of the same colour is displayed to represent the
checked cell further away.

� Finally, the path followed by agents can be displayed. To clar-
ify the visualisation, the user specify how many paths are go-
ing to be displayed. It avoids to display and keep track for
thousands of agents, which could confuse the evaluation.

An illustration of the system is shown in Figures 3 and 4. As
shown in Figure 4, the vertical triangles represent the agents and the
flat small triangles their direction. In this example, the checked cell,
represented by a square of the same colour as the agent, is located
two cells from the occupied cell. Some trails had been displayed for
twenty of the agents (chosen arbitrarily). Figure 3 provides a more
global view of the simulated behaviour.

4 Results

The system developed proved to be able to simulate and visualise
at interactive frame rates virtual scenarios for large numbers of
agents1. To test the platform, we simulated three different simple
behaviours. We first tested the collision detection by adding only a
collision map to the system without providing any input for the be-
haviour layer and the callback layer (see section 4.1). We then tested
more complex behaviours by testing changes in direction at junc-
tions (see section 4.2). And in the final example, agents remember
last change in direction and take that in account (see section 4.3).
For these examples the behaviour for a variable number of agents
was simulated. We used a 512x512 grid, with each cell in the grid
corresonding to a physical area of 30x30 cm2, and each agent nav-
igates over the grid and accesses any available information corre-
sponding to its current position. An agent can stand on any point in

1The current maximum number allowed is 50,000 agents.
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Figure 5: Examples of behaviour simulation. (a) Random walk with collision detection. (b) Same behaviour as (a) with decision taken at
junctions. (c) Same behaviour as (b) with agents storing in memory the last decision taken.

a cell (not necessarily the centre) but only one agent can occupy a
cell at a time.

We observed that the frame rate was related to the number of
agents included in the simulation but not to the behaviour algo-
rithm used. This indicates that the graphical rendering of the agents,
even in its simplicity is still the major bottleneck in the simula-
tion/visualisation. Our simulation runs at 75 Fps with 1000 agents
(limited by the video refresh), 37 Fps with 5000 and 21 Fps with
10.000. In the following examples we reduced for clarity the num-
ber of agents to 8 and then tracked their movements to show the dif-
ferences produced by different behaviour algorithms.

4.1 Random walk

We first tested a random walk combined with obstacle collision–
detection and avoidance of other agents. For this simulation, only
the two first layers concerning collision detection of the platform
are used. The input for the collision map is shown in Figure 2(a).
The initial position and direction of the agents were set randomly but
were placed inside the navigable areas. Each time an agent encoun-
ters an obstacle or an occupied cell, it changesgradually its direction
until it finds a free cell. This algorithm was also used in [13]. The
collision avoidance behaviour is shown in Figure 5(a). For a small
number of agents, the movement is characterised by long straight
lines showing that the agent keeps the same direction and do not take
any decision. Of course as the number grows larger then the inter-
agent collisions grow and so do the number direction changes.

4.2 Choice of direction

In this example, agents navigate through the accessible areas whilst
following some rules at junctions. Collision detection is performed
using the same collision map as for the previous example. In this
case agents use the information provided by the behaviour map to
detect junctions [1]. When arriving at a junction, agents are likely
to change their heading direction by approximatively 50 degrees.
They choose to turn left or right on the basis of a test for obstacles
in the 2 candidate directions, trying to discard, if it is the case, the
one that is more likely to cause a collision after just a few steps.
The agents don’t have any kind of memory, and each decisions is
taken independently from the previous one. As it can be seen in Fig-
ure 5(b) showing the simulated behaviour, agents tend to change di-
rection in correspondence of the junction, generating a more realis-
tic behaviour than in the previous case (described in section 4.1. On
the other hand decisions are sometimes too frequent, and as it can be
seen this can generate unwanted loops in the path of the agents. In
this example, only the three first layers were used (inter–collision
detection layer, collision detection layer and behaviour layer).

4.3 Choice of direction with memory storage

In the last example, we added to the strategy used in the previous
example (described in section 4.2) the concept of “memory”. This
is implemented by using a variable local to each agents and indicat-
ing to the agents if they are allowed to take a decision. After taking
a decision, each agent sets a private variable to a arbitrarily fixed
value. For each following pass in the algorithm, this value is de-
creased until reaching 0. An agent can take another decision only
when its memory value is 0. In this way we avoid agents changing
direction too often and, as can be seen in Figure 5(c), this results in
more regular and “smooth” paths.

5 Conclusion

We have presented a system that facilitates the development and
the visualisation of behaviours for moving independentagents. The
representation combines a 2D–grid implemented in four–layers to
encode different levels of behaviour. We believe that these four–
layers can be used to encode complex behaviours. We demonstrate
by some results that the system is practical to visualise the simulated
behaviour and to evaluate whether it effectively corresponds to the
expected behaviours.

For future work, we would like to extend the number of
behaviours tested and to integrate the tested behaviour into a
crowd simulator currently developed [13], as for example re-
duced/accelerated speed along sloped, uneven terrain (slower up-
hill, faster downhill). We would also like to enable multi–level sub-
divisions depending on the precision needed for each level. We
would like to be able to provide a more user–friendly interface that
allows the user to associate callbacks (pre–defined or newly written
by the user) to cells selected interactively, without needing to go into
the code.
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