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ABSTRACT

Nitrogen mustards alkylate DNA primarily at the N7 position of guanine.
Using an approach analogous to that of the Maxam-Gilbert procedure for DNA
sequence analysis, we have examined the relative frequencies of alkylation
for a number of nitrogen mustards at different guanine-N7 sites on a DNA
fragment of known sequence. Most nitrogen mustards were found to have simi-
lar patterns of alkylation, with the sites of greatest alkylation being
runs of contiguous guanines, and relatively weak alkylation at isolated
guanines. Uracil mustard and quinacrine mustard, however, were found to
have uniquely enhanced reaction with at least some 5'-PyGCC-3' and 5'-GT-3'
sequences, respectively. In addition, quinacrine mustard showed a greater
reaction at runs of contiguous guanines than did other nitrogen mustards,
whereas uracil mustard showed little preference for these sequences. A
comparison of the sequence-dependent variations of molecular electrostatic
potential at the N/-position of guanine with the sequence dependent
variations of alkylation intensity for mechlorethamine and L-phenylatanine
mustard showed a good correlation in some regions of the DNA, but not
others. It is concluded that electrostatic interactions may contribute
strongly to the reaction rates of cationic compounds such as the reactive
aziridinium species of nitrogen mustards, but that other sequence select-
ivities can be introduced in different nitrogen mustard derivatives.

INTRODUCTION

Mechlorethamine (bis(2-chloroethyl)methylamine, nitrogen mustard, HN2)
was the first clinically effective anticancer drug to be discovered (1).
After more than 30 years of intensive drug development efforts, the nitro-
gen mustard derivatives L-phenylalanine mustard, cyclophosphamide, and
chlorambucil are still among the most useful clinical agents (2). These
compounds are known to alkylate DNA preferentially at guanine-N7 positions
(3,4). Antitumor activity and high potency cell killing require the pre-
sence of two chioroethyl groups per nitrogen mustard molecule, probably
because the effective DNA lesions are crosslinks (4-7).Crosslinks through
bifunctional alkylation of guanine-N7 positions in a right-handed B form
DNA helix can arise either by reaction with two adjacent guanines in the
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same DNA strand or with guanines in opposite strands in the sequence:
5'-GC-3'
3'-C6-5'
It is not known how such DMA lesions would selectively kill certain
tumor cells, hut it possibly could involve selective reactions with
particular GC-rich regions in the cell genome.

Sequence selective reactions with DNA has been observed in the case
of several compounds, including bleomycin (8-10), N-acetoxy-N2-acetyl-
aminofluorene (11}, mitomycin C (12), benzo(a)pyrene (13), aflatoxins
(14,15), cis-dichlorodiammine platinum(II) (16) and chloroethyl-
nitrosoureas (17). The relative extents of guanine-N7 addition reactions
at various guanines can in principle be determined by an application of
the rapid Maxam and Gilbert chemical method of DNA sequence determination
(8,18). Grunberg and Haseltine (19) showed that this method can be
applied to nitrogen mustards. In a 92 base pair fragment of human alpha
DNA, data were obtained sugqestive of sequence selective reactions of
nitrogen mustard (HN2), as well as of differences between nitrogen
mustard derivatives; however these results were not definitive and were
not stated as firm conclusions.

The present investigation aims to determine the nature and degree
of sequence selectivity of guanine-N7 alkylation of isolated DMA hy
several nitrogen mustards and to determine whether the sequence seltect-
ivity can be modified by structural alteration of the nitrogen mustard

molecule.

MATERIALS AND METHODS
Mechlorethamine (bis-2-chloroethylmethylamine hydrochloride; HN2) was

donated by Merck, Sharp and Dohme Research Lab. L-phenylalanine mustard,
uracil mustard {NSC 34462), chlorambucil, phosphoramide mustard

(NSC 26271), spiromustine (NSC 172112) and mustamine (NSC 364989) were
obtained tnrough the Developmental Therapeutics Program, National Cancer
Institute. The following reagents were obtained from commercial sources:
quinacrine mustard and triethanolamine, Fluka Chemical Corp.; dimethyl-
sulfate (99.9%), Aldrich Chemical Company; piperidine, Fisher; T4 poly-
nucleotide kinase and pBR322 DNA, Pharmacia P-L Biochemicals; Eco RI and
Bam HI, New England Biolab; Sal I, International Biotechnologies Inc.;
Hind II1 and ultrapure urea, Bethesda Research Laboratories;

[ gamma-32PJATP (7000 Ci/mmole), New England Muclear.
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Preparation of End-labeled DNA Fragments

The 3741 base pair Hind III to Sal 1 fragment of pBR322 was labeled at
the 5' end of the Hind III site with T4 polynucleotide kinase as described
by Maxam and Gilbert (18). The 276 base pair Bam HI to Sal I fragment 5'
labeled at the Bam HI site was prepared similarly. Isolation of the

fragments was by preparative electrophoresis on 0.8% agarose gels.
Alkylation Reaction

Labeled DNA was incubated with alkylating agent in a buffer of 1 mM
EDTA, 25 mM triethanolamine HCY, pH 7.2, in a total volume of 50 yut.
After incubation at 20°C for 60 minutes, 50 ul of an ice-cold solution
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Figure 1. Structures of the nitrogen mustards used in this study.
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containng 0.6 M sodium acetate, 20 mM EDTA, and 100 ug/ml tRNA was added
and the DNA recovered by precipitation with three volumes of ethanol.
After resuspending the pellet in 0.3 M sodium acetate, 1 mM EDTA, the DNA
was ethanol precipitated again and the pellet washed with cold ethanol
prior to vacuum drying.

Breaks at sites of N7-quanine alkylation were created by resuspending
the salt-free DNA pellet in freshly diluted 1 M piperdine and incubating
at 90°C for 20 minutes (18). Creation of breaks at alkylation sites is
complete under these conditions; further incubation results in degradation
of control DMA (unpublished data). After lyophilisation the radioactivity in
each sample was determined by Cerenkov counting and the samples resuspended
in loading buffer (18) to aive 15,000 cpm/ul. Samples were heated at
90°C for 1 minute, and then chilled in an ice-bath before loading onto
the gel.
Polyacrytamide Gel Electrophoresis

Electrophoresis of the DNA fragments was on 0.4 mm x 90 cm x 20 cm 6%
polyacrylamide gels containing 7 M urea and a Tris~boric acid-EDTA buffer
system (18). 2 ul samples were loaded and run for 3 hours at approximately
3600 volts. Following autoradiography of the dried gel, relative band
intensities were determined by microdensitometry using a Beckman Dy-8
scanning spectrophotometer with gel scanning accessory. The extent of
alkylation for any dose of drug was determined by comparing the integrated
area of the band corresponding to the full length fragment for the treated
sample with that for an untreated sample and using the absolute value of
the natural logarithm of that ratio to give the average number of breaks
per molecule (13).

RESULTS
N7-guanine alkyl adducts render the imidazole ring of guanine suscept-
ible to ring opening at elevated pH (20). Treatment with the secondary

Figure 2. The 3741 bp Hind II1 - Sal I fragment of plasmid pBR322 DNA,
TabeTed at 5' end of the Hind III site, was reacted with the indicated
compounds, precipitated and electrophoresed as described in Materials
and Methods. Lane a: no drug; lane b: 250 M phosphoramide mustard
{phosphoramide mustard is a reactive metabolite of cyclophosphamide);
lane c¢: 250 uM chlorambucil; lane d: 0.1 uM mustamine; lane e: 10 uM
uracil mustard; lane f: 20 yM mechlorethamine; lane g: 50 ;M L-phenyl-
alanine mustard; lane h: 0.05 uM quinacrine mustard; tane i: 5 uM spiro-
mustine; lane j: 500 uM dimethyl sulfate; lane k: A+G reaction (de-
purination with formic acid). Arrows indicate sites of preferential
alkylation with mustamine (lane d).
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Figure 3. Densitometric scans of the guanine N7-alkylation pattern
produced by nitrogen mustard (mechlorethamine), L-phenylalanine mustard,
uracil mustard, and quinacrine mustard. Scans correspond to Figure 2,
lanes f, g, e, and h, respectively.
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amine piperidine converts these modified base sites into strand breaks
{18). If the DNA is labeled only at one end of one strand, and is of
known sequence, the lengths of the labeled fragments produced after
alkylation and subsequent alkaline piperidine treatment indicate the
position of the original alkylation (18). Fragments differing in size by
only one nucleotide can be resolved on high resolution DNA sequencing
gels, and the intensity of the autoradiographic image of each band
gives an indication of the amount of alkylation at that site. Using
this approach we have examined the sequence selectivity of guanine -N7
alkylation of several nitrogen mustard derivatives (figure 1). A 3741
base pair fragment of pBR322 DHA was reacted with these drugs, treated
with piperidine, and electrophoresed (fioure 2). In the region of the
gel where they can be resolved, the bands produced corresponded to
positions of guanines. For each of the drugs the intensity varied
greatly from band to band. Furthermore, the relative intensities of
some bands was markedly influenced by the non-alkylating moiety of the
drug. Compared to the parent compound mechlorethamine {lane f),
phosphoramide mustard {lane b}, chloambucil (lane ¢), L-phenylalanine
mustard (lane g), and spiromustine (lane i) showed similar patterns of
alkylation intensities. In general these agents showed strong alkylation
at the two runs of three contiguous guanines (positions 4028-4030 and
4040-4042), whereas isolated guanines were alkylated relatively weakly.
In contrast to the other mustards, uracil mustard (lane e) had greatly
enhanced reaction with the guanine in the 5'-TGCC-3' sequence at base
position 4103, fNuinacrine mustard (lane h) had yet again a different
pattern with an enhanced reaction at the isolated guanines in 5'-AGT-3'
sequences at base positions 4151 and 4157, and in a 5'-TGT-3' sequence
at base position 4216. In a part of the sequence not clearly resolved by
the gel, mustamine (lane d)} showed two sites (indicated by the arrows)
of enhanced reaction not observed with the other compounds. Differences
between uracil mustard, quinacrine mustard, and nitrogen mustard and
phenylalanine mustard can be clearly seen in densitometric scans (figure
3) of portions of the corresponding lanes of figure 2. The relative
reaction intensities in relation to the base sequence are schematically
summarized in Figure 6a.

It is pertinent to note that the doses for each drug used for these
experiments were chosen so as to give a comparable extent of alkylation
(approximately 1 break per 500 bases, see Materials and Methods). Also,
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the differences observed were not markedly dependent on the solvent
condition of the reaction, e.g. 0.1 M and 1.0 M Na*, 10 mM Mgz*, 20%
ethanol (data not shown).

Given the observed preference of these agents for the two (G)3
sequences, we examined the alkylation of the 276 base pair Bam H1-Sal I
fragment of pBR322 DNA, a sequence which was not contained in the fragment
examined in figure 2 but which has several occurences of three or more
contiguous guanines (Figure 4). As can be seen from figure 4, and the
corresponding microdensitometric scans in figure 5, mechlorethamine
(lanes ¢ and d), L-phenylalanine mustard (lanes e and f), and quinacrine
mustard (lanes h and i) reacted strongly with these runs of guanines.
From the microdensitometric analysis the average intensity of guanines
within the runs of contiguous guanines was determined (Table 1). There
seems to be a pattern of overall increasing reaction with increasing
guanine number in such sequences by mechlorethamine, L-phenylalanine
mustard and particularly quinacrine mustard. In contrast, uracil mustard
showed 1ittle preferential reaction with these sequences. All drugs
however showed a lower overall reaction for the single (G)g sequence
{5'-CCGGGGGAC-3') than of the single (G)4 sequence {5'-ATGGGGAA-3').

There seem to be some differences between mechlorethamine, L-phenyl-
alanine mustard and quinacrine mustard in their relative reaction with
individual bases in runs of contiguous guanines (Figure 4). This can be
seen more clearly in the corresponding microdensitometric scans in Figure
5 (e.g. compare the reaction with the guanines in the (G)4 sequence at
positions 461-464, and the (G)3 sequences at positions 471-473, 485-487,
and 511-513).

Compared to its reaction with other isolated guanines quinacrine
mustard (lanes h and i) shows particularly strong alkylation with the

Figure 4, The 276 bp Bam HI - Sal I fragment of plasmid pBR322 DNA,
TabeTed at the 5' end of the Bam HI site, was reacted with the indicated
agents and prepared for electrophoresis as described in Materials and
Methods. Lane a: 0.5 mM dimethyl sulfate; lane b: 1 mM dimethyl sulfate;
lane c: 20 uM mechlorethamine; lane d: 40 uM mechlorethamine; lane

e: 50 uM L-phenylalanine mustard; lane f: 100 uM L-phenylalanine
mustard; lane g: A+G reaction (depurination with formic acid); lane h:
0.05 uM quinacrine mustard; lane i: 0.1 uM quinacrine mustard; lane j:
10 uM uracil) mustard; lane k: 20 uM uracil mustard. Numbered arrows
indicate the base position in pBR322, and the positions and lengths of
runs of guanines are indicated by dotted lines.
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TABLE 1.

Average intensity of guanine N7-alkylation in runs of 2-5

qguanines relative to the average intensity of a single isolated guanine.

Average Alkylation Intensity per Guanine
Drug (6)2 (6),° (6)5° (61,9 (6)0
Nitrogen Mustard 1.0 1.87 3.60 6.43 2.77
(0.46-1.62) (1.41-2.75) (1.33-4.86)
Phenylalanine Mustard 1.0 1.59 2.53 5.14 2.76
(0.73-1.27) (1.03-1.90) (1.32-3.64)
Quinacrine Mustard 1.0 1.58 3.95 11.05 5.28
(0.28-3.87) (0.83-3.65) (1.76-6.46)
Quinacrine Mustard€ 1.0 2.83 7.06 19.7 9.44
(0.50-2.04) (1.48-6.51) (3.14-11.54)
Uracil mustard 1.0 1.16 1.72 1.98 1.22
(0.38-2.24) (0.98-1.25) (0.92-2.23)
Uracil Mustardf 1.0 1.55 2.32 2.66 1.64
(0.52-1.61) (1.28-1.68) (1.24-3.17)
Dimethylsulphate 1.0 1.16 1.5 2.17 1.49
(0.51-1.16) (0.82-1.62) (0.94-1.84)

4 Average intensity (with range) of all isolated guanines from position
450-550 unless otherwise stated.

Mean and range of five occurrences within the sequence.

Mean and range of four occurrences within the sequence.

Single occurrence within the sequence.

Excluding the two prefered sites (5'-PyGT-3') at positions 509 and 529.
Excluding the two prefered sites {5'-PyGCC-3') at positions 477 and 550.

-h O @O o

two occurances of 5'-CGT-3' sequences within the fragmemt at positions
509 and 530 as indicated in figure 4. Uracil mustard showed enhanced

reaction with the two occurances of 5'-CGCC-3'
477 and 551.
examined in figure 6. In particular, quinacrine mustard showed a prefer-

sequences at positions
The results are summarised and compared to the sequences

ence for runs of contiguous guanines that was greater than that observed
for other mustards, and, compared with other isolated guanines a uniquely
enhanced reaction with several occurences of 5'-GT-3' {eg. at base
positions 4263, 4216, 4157, 4151, 4134, 4136, and 509).
reacted preferentially at three 5'-PyGCC-3' sites (base positions 4216,
477, and 551). A more detailed analysis covering a broader range of se-

Uracil mustard

quences is in progress.
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Figure 5. Densitometric scans of the guanine-N7 alkylation pattern produced
by nitrogen mustard (mechlorethamine), L-phenylalanine mustard, uracil
mustard, quinacrine mustard, dimethylsulfate, and formic acid. Scans
correspond to Figure 4, lanes d, f, k, i, b, and g respectively. Numbers
above peaks indicate the base position in pBR322, and filled boxes in

the formic acid scan indicate the guanine positions.
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DISCUSSION

The effects of nucleotide sequence context on the covalent reaction
of many different compounds have been described and recently reviewed
(21). We have examined the effects of sequence context on the reaction
of a group of compounds having a common reactive species, the chloroethyl-
aziridinium group (22). We have found that the non-alkylating moiety to
which the chloroethylaziridium group is attached can strongly influence
the sequence selectivity of covalent binding to quanine N7 positions.

Muench et. al. (15) considered two possible explanations for the
sequence specificity of aflatoxin: 1) guanines in different sequence
contexts have inherently different reactivities, or 2) the reactive
chemical has specific non-covalent interactions with the DNA double
helix that vary with sequence and lead to differences in the subsequent
covalent interactions with those sequences. They conclude that the
latter explanation is consistent with their observation that the reaction
of aflatoxin with single stranded DNA is weak and not sequence specific,
and that non-reactive analogs of aflatoxin compete for reactive sites in
DNA. The difference between the sequence specific reaction of gquinacrine
mustard and uracil mustard with that of other nitrogen nustards observed
in the present study strongly suggests that non-covalent interactions
are occurring between the non-alkylating moieties of these drugs and DNA
prior to covalent reaction.

On the other hand all the nitrogen mustard derivatives we have
studied so far react with guanines in a sequence dependent fashion. Almost
all (with the possible exception of uracil mustard) show an enhanced
reaction with guanines flanked by other guanines as opposed to reaction
with isolated guanines. Grunherg and Haseltine (19) had noted enhanced
reactivity of mechlorethamine and phosphoramide mustard with pairs of
guanines in a segment of alpha DNA, a reiterated sequence in the
human genome. Our recent experiments indicate that the reaction of
alkyldiazohydroxides with guanine-N7 positions also is greatly enhanced
in gquanines flanked by other guanines (17). Similarly aflatoxin showed
the highest level of reaction at GG and GGG sequences (15).

Figure 6. Summary of alkylation intensities for mechlorethamine, L-phenyl-
aTanine mustard, uracil mustard and quinacrine mustard compared with the
corresponding sequence. Alkylation intensities at a given sequence position
on each fragment were determined as peak height relative to the highest
peak of alkylation for that compound on that fragment.
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Figure 7. Upper panel: the deviation (% change) in the electrostatic
potential at guanine N7 from -238.9 kcal/mol was calculated for each
guanine from base 440 to base 550 in pBR322 using values reported by
Pullman and Pullman (24). The numbers take into account the influence of
only the immediate 5' and 3' neighboring bases. Lower three panels:
plotted areas from the densitometric scans of figure 4 lanes f (L-phenyl-
alanine mustard), d (nitrogen mustard, mechloethamine) and b (dimethy}
sulfate). Numbers above peaks indicate the base position in pBR322 DNA.
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What might explain the enhanced reactivity of such sequences? These
sequences would be expected to have greater stacking interactions than
those in a GT dinucleotide (23), and so would not be expected to have a
more accessible M7 site. Hence accessibility of the N7 position does
not seem to be a major factor. Another possibility is that the neighbor-
ing bases might alter the reactivity of the guanine N7 position via
electrostatic interactions. A local increase in the electronegativity
near the guanine N7 position would be expected to increase the affinity
for a positively charged species such as the chloroethylaziridinium ion.
Pullman and Pullman {24) have calculated the effects on the molecular
electrostatic potential at the N7 site of guanines in duplex DMA produced
by adjacent base pairs. Using these numbers we have plotted the sequence
dependent variations in the electrostatic potential at the guanine N7
position for bases 440-550 of pBR322 (figure 7). The sequence dependent
variations in alkylation for this same region were examined in figure 4.
When the experimentally determined variations in alkylation intensities
are compared with the calculated variations in electrostatic potential a
distinct similarity in some regions can be seen; in fact, the regions of
greatest agreement are sequences of contiguous guanines. The relationship
is not a perfect one: peaks of intense alkylation by nitrogen mustard
and phenylalanine mustard at positions 513 and 539 seem to be offset
slightly from the peaks of electronegativity at positions 512 and 537,
respectively. Other discrepancies can be seen in the figure. It should
be noted that the calculations for variations in the electrostatic
potential take into account only the contribution of the two bases
surrounding the guanine position examined. However, the correlation is
good enough to suggest that sequence dependent variation in electrostatic
potential at the guanine-N7 position is a causal factor in determining
the sequence specificity of many agents (especially cationic reactants)
that attack this site. Alternatively, the variations in electrostatic
potential may parallel some other feature of the DNA configuration that
is a causal factor contributing to alkylating agent sequence specificity.
(It is pertinent to note that the sequence specific variations in the
electrostatic potential at other sites of guanine in duplex DNA may be
different from those at the N7 position, and that the reactive sites of
guanine are much less electronegative in single stranded DNA (24)}.)

Since the nitrogen mustard derivatives used in this study are
bifunctional it may be anticipated that after one alkylating moiety
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has reacted with a guanine in a DNA helix the other one can go on to
react with a neighboring guanine in the same or complementary strand.
Such reactions would thus be expected to enhance the reactivity of con-
tiguous guanines in the same strand (sites of intra-strand crosslinks)

or guanines in 5'-GC-3"' sequences (sites of inter-strand crosslinks).

One would predict that intra-strand crosslinking at a GG site would lead
to an apparent enhancement of strand breakage at the guanine closest to
the labeled end. In fact, when we compared the alkylation of one fragment
of pBR322 labeled at its 5' end with alkylation of the same fragment
labeled at its 3' end there were no evident differences in the patterns
of strong and weak alkylation in contiguous guanines (data not shown).
Thus it would appear that intra-strand crosslinks are not a major contri-
buting element to the patterns of alkylation we have observed. A more
detailed and quantitative comparision of 3' and 5' labeled fragments may
reveal the actual extent of intra-strand crosslink formation at certain
sites. As for inter-strand crosslinks, we actually observe that 5'-GC-3'
sites are some of the least reactive sites for almost all of the nitrogen
mustards, with the possible exception of uracil mustard. Thus our data
suggest that the formation of inter-strand crosslinks by most nitrogen
mustards may be limited by not only the low frequency of 5'-GC-3' sites
but also by the weak alkylation reaction at these sites.

An important significance of our observations is that these alkylating
agents may preferentially attack regions of the genome rich in contiguous
guanines. Some transforming genes, including the c-H-ras oncogene, have
such regions, which constitute regions of enhanced reactivity with some
chemotherapeutic agents (unpublished results). Whether preferential
reaction with such regions {control regions?) of these genes may partially
explain their chemotherapeutic potential is an intriguing speculation.
Further understanding of the mechanisms contributing to the sequence
selectivities of such agents may lead to the rational design of drugs
with markedly enhanced sequence preferences.
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