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Abstract

The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient
transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here
we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast
plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an
MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p
and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high
transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-
wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by
both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites,
most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast,
which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together
with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback.
Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle
transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident.
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Introduction

Transcript levels of many genes fluctuate periodically as a

function of cell growth and division, peaking at specific phases of

each cell cycle. Such cell cycle-regulated gene expression seems to

be a universal feature of proliferating cells [1–3]. The best

characterized transcriptional wave is induced during the G1/S

transition, named ‘Start’ in yeast and ‘restriction point’ in

mammalian cells, when cells commit to DNA replication and

thus to a new cell-division cycle. In mammalian cells, E2F-DP

complexes control G1/S transcription and are deregulated in most

cancer cells, highlighting the importance of this regulation [4–6].

In the fission yeast, Schizosaccharomyces pombe, a transcription factor

complex termed MBF (MluI Cell Cycle Box [MCB] Binding

Factor) represents the functional equivalent of E2F-DP. MBF

activates transcription during the G1/S transition, binding to

MCB promoter elements that are conserved from yeasts to

humans. The MBF complex contains Cdc10p and at least two

related ankyrin-repeat DNA-binding proteins, Res1p and Res2p

[7–10]. Multiple studies have identified over 20 putative MBF

target genes with roles in DNA replication, DNA repair, and cell-

cycle control (e.g., [11–14]).

The MBF-dependent transcriptional program in fission yeast is

subject to several regulatory inputs in response to both cell-cycle

and external signals. Res1p and Res2p play critical, but poorly

understood roles in MBF-dependent transcriptional regulation

during the cell cycle [9,15]. An additional factor, Rep2p, is crucial

for MBF complex transcriptional activity [15–18]. Two negative

regulatory circuits are known that ensure timely repression of

MBF-dependent genes: the cyclin Cig2p inhibits MBF activity in

G2-phase by phosphorylating Res1p [19], and Nrm1p acts as a

transcriptional co-repressor for MBF-dependent genes [20,21].

Both cig2 and nrm1 are regulated by MBF and are therefore

involved in negative feedback loops. Here, we establish an

additional regulatory factor, the homeodomain protein Yox1p,

as a novel component of MBF that inhibits MBF-dependent
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transcription via negative feedback and that is essential for cell-

cycle regulation of MBF target genes. We also report the target

genes directly bound by Cdc10p and Yox1p at a genome-wide

level.

Results

The gene SPBC21B10.13c encodes a predicted transcriptional

regulator that contains a homeobox domain. It is periodically

expressed during S-phase (Figure 1A) [14] and is induced in

response to ionizing radiation [22], which affects cell-cycle

progression, and in response to hydroxyurea [14,23,24], suggest-

ing a possible regulation by MBF. The protein encoded by this

gene is similar to the budding yeast Saccharomyces cerevisiae

homeodomain protein Yox1p (44.1% identity over 59 amino

acids, BLAST score 128, E-value 5e-08), which is a cell-cycle

transcription factor activated by the MBF-related SBF complex in

budding yeast [25–27]. Due to functional similarities described

below, we also named the S. pombe protein Yox1p (for ‘yeast

homeobox’).

yox1 Is an MBF Target and Yox1p Binds to MBF-
Regulated Promoters

Given that Yox1p is a predicted transcriptional regulator and a

putative target of MBF, we analyzed the genome-wide binding

sites of Yox1p. We performed chromatin immunoprecipitations

combined with microarrays (ChIP-chip) [28] using a yox1-HA

strain, an antibody against the HA epitope, and an Agilent

genomic tiling array of ,300 bp resolution. Among 24 genes

proposed to be MBF targets (Figure 1A) [14], the promoters of 19

genes were substantially enriched in the Yox1p ChIPs, including

yox1 itself (Figure 1B). Among the remaining putative MBF targets,

the promoters of two genes were not enriched (ctp1 and rep2), while

the promoters of three uncharacterized genes were not represented

on the array (SPAC17H9.18c, and two members of repeated

protein families: SPBPB2B2.19c and SPAC750.05c). These data

suggest that Yox1p binds to MBF-regulated genes.

To confirm that Yox1p and MBF-regulated genes overlap and

to gain more direct insight into the genome-wide binding sites of

MBF, we performed ChIP-chip using an antibody against the MBF

component Cdc10p. As for Yox1p, among the 24 proposed MBF

targets, the promoters of the same 19 genes, including cdc10 itself

and yox1, were substantially enriched in the Cdc10p ChIPs

(Figure 1C); the promoters of rep2 and ctp1 were not or only

marginally enriched, respectively, and we could not obtain data for

the same three genes indicated above for Yox1p. The peaks of

enrichments for both Cdc10p and Yox1p were located just

upstream of the open reading frames of the target genes, and the

binding sites of these two factors could not be separated given the

limited resolution of the tiling arrays (Figure 1D). We conclude that

both Cdc10p and Yox1p bind to most promoters of the previously

proposed MBF target genes, including their own genes. Taken

together, these data show that yox1 is transcriptionally activated by

MBF, and Yox1p in turn binds itself to MBF target genes.

Yox1p Dynamically Binds to Repressed MBF Target
Promoters via MBF

No enrichment of homeodomain-related motifs was evident

within the promoters of the shared Yox1p and MBF target genes

(Matias Piipari, personal communication), raising the possibility

that Yox1p binds to DNA via MBF. To test this hypothesis, we

first checked whether Yox1p is part of the MBF complex by

performing co-immunoprecipitation analyses. Anti-HA and anti-

Cdc10p immune complexes prepared from cells expressing wild-

type or HA-tagged Yox1p revealed an interaction between

Cdc10p and Yox1p (Figure 2A). Moreover, anti-myc immuno

complexes prepared from cells expressing Res2p-myc, Yox1p-HA

or both showed an interaction between Res2p and Yox1p

(Figure 2B) These results are confirmed by independent data

from a recent mass spectrometry-based analysis of affinity-purified

Res2p and Nrm1p complexes [20]. Based on these mass

spectrometry data, Yox1p interacts with both Res2p and Nrm1p,

with coverage of Yox1p by specific peptides being similar to the

MBF component Cdc10p (data not shown). Together, these data

indicate that Yox1p physically associates with the MBF complex

and thus represents a new component of MBF.

To directly test whether Yox1p requires MBF to bind to MBF-

regulated promoters, we used ChIP analysis to analyze Yox1p

binding to the well-established MBF target gene cdc22 (Figure 1D;

[29]) in wild type, res1D and nrm1D cells expressing Yox1p-HA.

This analysis revealed that Yox1p binding to the cdc22 promoter

depends on both of the MBF components tested, Res2p and

Nrm1p (Figure 2C). We conclude that Yox1p can bind to MBF-

regulated promoters only via intact MBF.

We next wondered about the dynamics of Yox1p levels and

Yox1p binding to MBF-regulated promoters during the cell cycle.

Consistent with yox1 mRNA data (Figure 1A), the Yox1p levels were

low during M/G1-phase but then strongly increased during S-phase

(Figure 2D, top), peaking about 40 minutes after the peak of yox1

mRNA levels. These data indicate that Yox1p is unstable and

present at low levels during MBF-dependent transcription and at

high levels when MBF-dependent transcription decreases. We also

analyzed Yox1p binding to the two well-established MBF target

genes cdc22 [29] and cdc18 [30] in cells synchronized by centrifugal

elutriation. Consistent with the kinetics of its accumulation, Yox1p

binding to the cdc22 and cdc18 promoters was observed throughout

the cell cycle but substantially decreased at the time of transcrip-

tional activation of the MBF targets, followed by an increase as cells

progressed into S-phase when transcription became inactivated

(Figure 2D). The Nrm1p co-repressor shows cell cycle-dependent

binding profiles at MBF-regulated promoters similar to those

observed here for Yox1p [20]. We conclude that dissociation of

Yox1p from MBF-regulated promoters coincides with low Yox1p

Author Summary

Cells proliferate by growth and division, which is
supported by different gene groups that are periodically
induced at specific times when they are required during
the cell cycle. These genes not only need to be induced at
the right time but also repressed when they are no longer
required; mistakes in gene regulation can lead to problems
in cell proliferation and diseases such as cancer. A well-
known regulatory complex functions just before cells
replicate their DNA to induce genes required for this
important transition. We show that in fission yeast this
regulatory complex (MBF) induces a gene whose encoded
protein (Yox1p) in turn binds to MBF and represses MBF-
regulated genes. In the absence of Yox1p, the MBF-
regulated genes do not fluctuate during the cell cycle but
remain constantly induced. Thus, MBF sets up not only the
induction but also the timely repression of its target genes
via Yox1p. We also provide a global analysis of all the
genes regulated by Yox1p and MBF. Together, our data
uncover a new negative control loop, further highlighting
the sophistication of gene regulation during the cell cycle,
and illustrating regulatory similarities and differences
between organisms.

Yox1p Cell-Cycle Transcription

PLoS Genetics | www.plosgenetics.org 2 August 2009 | Volume 5 | Issue 8 | e1000626



levels and with active transcription, whereas its subsequent re-

association coincides with high Yox1p levels and with repressed

transcription during the cell cycle.

Yox1p Represses MBF Target Genes at the Transcriptional
Level

The binding data from Figure 2D suggested a negative role of

Yox1p in MBF-regulated transcription. To obtain direct insight

into Yox1p function at target genes, we deleted the yox1 gene and

compared global gene expression levels in yox1D versus wild-type

cells using both spotted DNA microarrays and Affymetrix chips

(Table S1). The cell cycle-regulated target genes bound by both

Yox1p and Cdc10p tended to be more highly expressed in yox1D
than in wild-type cells (Figure 3A,B). To test whether the higher

expression of Yox1p/Cdc10p target genes might reflect an indirect

effect caused by any cell-cycle delay in the yox1D cells, we also

Figure 1. Yox1p is an MBF target and binds to MBF target genes. (A) yox1 is periodically transcribed in the same cluster as MBF target genes.
Two cell-cycle timecourse experiments of cells synchronized by cdc25 block-release (left) or centrifugal elutriation (right) showing the expression
profiles of 24 putative Cdc10p-regulated genes (data from [14]). The yox1 expression profiles are shown in red. (B) Scatter plot showing gene
expression ratios relative to wild-type in cdc10-C4 mutant cells (which shows increased expression of MBF target genes [48]; mean data from four
repeats [14]) versus the enrichment ratios upstream of genes in Yox1p ChIP-chip experiments (mean data from three repeats). The putative Cdc10p-
regulated genes shown in (A) are highlighted in red, and the cdc10 and yox1 genes are indicated with arrows. (C) Scatter plot as in (B) but showing
gene expression ratios relative to wild-type in cdc10-C4 mutant cells versus the enrichment ratios upstream of genes in Cdc10p ChIP-chip experiments
(mean data from three repeats). (D) The cell cycle-regulated gene cdc22 [29] shows a particularly strong enrichment of both Cdc10p (blue) and Yox1p
(red) upstream of its open reading frame. Example data from one repeat each are shown. Transcription of the four genes on chromosome 1 is from
left to right (forward strand), and chromosome coordinates are indicated in kb.
doi:10.1371/journal.pgen.1000626.g001
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PLoS Genetics | www.plosgenetics.org 3 August 2009 | Volume 5 | Issue 8 | e1000626



analyzed the expression profiles of Ace2p target genes, whose

expression peaks coincide with the MBF target genes [14,31]. In

contrast to the Yox1p/Cdc10p target genes, the Ace2p target

genes were generally not expressed at higher levels in the yox1D
cells and were not bound by Yox1p or Cdc10p (Figure 3B). An

exception was the putative Ace2p target gene klp8, encoding a

Figure 2. Yox1p binds via MBF to transcriptionally repressed MBF promoters. (A) Western blot analysis of extracts from strains carrying
untagged or HA tagged Yox1p. Immune precipitates (anti-Cdc10p and anti-HA) and whole cell extract (WCE) were probed with anti- Cdc10p or anti-
HA antibodies to detect Cdc10p and Yox1p, respectively. (B) Western blot analysis of extracts from strains carrying myc tagged Res2p, HA tagged
Yox1p, or both. Anti-myc immune precipitates and whole cell extract (WCE) were probed with anti-myc or anti-HA antibodies to detect Res2p or
Yox1p, respectively. (C) Bar graphs of PCR-amplified cdc22 promoter fragments obtained from anti-HA ChIPs and quantified by qPCR as percentage of
WCE signal. Signals are shown for cells without tagged Yox1p (wt) and for cells with HA tagged Yox1p in wild-type, res2D and nrm1D backgrounds.
(D) Small wild-type cells were isolated by centrifugal elutriation and allowed to progress synchronously through the cell cycle with time points
indicated at the bottom. Top graph: cdc22, cdc18, and yox1 mRNA levels (100% is maximum) determined by RT qPCR, along with septation index (S-
phase coincides with septation peak). Below top graph: Yox1p-HA protein levels are detected by anti-HA antibodies at the same time points, with
amido black staining of the same membrane shown as loading control. Middle and bottom bar graphs: PCR-amplified cdc22 and cdc18 promoter
fragments, respectively, generated from Yox1p-HA ChIPs and quantified by qPCR as percentage of WCE signal. Signals detected in an
immunoprecipitation from an unsynchronised culture without tagged genes provides as a negative control (no tag).
doi:10.1371/journal.pgen.1000626.g002

Yox1p Cell-Cycle Transcription
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kinesin-like protein, which was bound by both Yox1p and Cdc10p

and induced in yox1D cells, suggesting that klp8 is regulated by

both Ace2p and MBF. Taken together, the expression signature of

yox1D cells indicates that Yox1p inhibits expression of its target

genes.

To directly test whether inhibition of gene expression by Yox1p

occurs at the transcriptional level, we determined the global RNA

Polymerase II (Pol II) occupancy across coding regions in both

yox1D and wild-type cells, which provides an estimate of

transcriptional efficiency [32]. The Yox1p/Cdc10p target genes

Figure 3. Yox1p inhibits transcription of target genes. (A) Yox1p and Cdc10p target genes tend to be more highly expressed in yox1D cells.
Scatter plot showing gene expression relative to wild-type in yox1D mutant (mean data from three repeats on spotted arrays) versus the enrichment
ratios upstream of genes in Yox1p ChIP-chip experiments (mean data from three repeats). The cell cycle-regulated target genes common to Yox1p
and Cdc10p are highlighted in red, and mfm2 is indicated with an arrow. (B) Cdc10p but not Ace2p target genes are highly expressed in yox1D cells.
Hierarchical cluster analysis with rows representing Yox1p and Cdc10p target genes (top) or putative Ace2p-regulated genes (bottom; [14]). The two
columns on the left represent expression profiling data of yox1D versus wild-type cells (average data of three repeats on spotted arrays and of two
repeats on Affymetrix chips, respectively), with relative mRNA levels color-coded as indicated at the bottom. The three columns on the right
represent ChIP-chip data (average data of two Cdc10p, five Yox1p, and two mock IPs, respectively), with the strength of enrichment color-coded as
indicated at the bottom. Grey indicates missing data. (C) Yox1p and Cdc10p target genes tend to have higher Pol II occupancy in yox1D cells. Scatter
plot showing the relative Pol II occupancy across genes in yox1D cells versus the relative Pol II occupancy across genes in wild-type cells (mean data
from three repeats each). The target genes common to Yox1p and Cdc10p are highlighted in red as in (A). (D) Cdc10p but not Ace2p target genes
show higher Pol II occupancy in yox1D relative to wild-type cells. Hierarchical cluster analysis with rows representing Yox1p/Cdc10p-regulated genes
(top) or putative Ace2p-regulated genes (bottom; [14]). The three columns represent independent repeats of ChIP-chip experiments, with enrichment
ratios in yox1D relative to wild-type cells color-coded as indicated at the bottom.
doi:10.1371/journal.pgen.1000626.g003
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showed consistently higher Pol II occupancy in yox1D than in wild-

type cells (Figure 3C,D), whereas the Ace2p target genes showed

similar Pol II occupancy in the two strains (Figure 3D). We

conclude that Yox1p, unlike Cdc10p, generally plays a negative

role in the transcription of its target genes.

A few genes, however, seem to be positively regulated by Yox1p

(Figure 3A,B). An example is mfm2 (Figure 3A), encoding a

precursor for the M-factor peptide (a mating pheromone) [33],

and the neighbouring SPAC513.04, a sequence orphan that is

divergently transcribed from mfm2. Another example is map1,

encoding a MADS-box transcription factor involved in the

transcriptional response during mating [34]. Among these genes,

only mfm2 is periodically expressed during the cell cycle [35].

Notably, yox1 expression is induced during mating and early

meiosis [36,37], and yox1D cells seemed to exhibit mating defects

(unpublished observations), similar to what has been observed for

res2D [38] and nrm1D cells (unpublished observations). Together,

these findings raise the intriguing possibility that these MBF

components also play a positive role during cell mating, which will

require further work to unravel.

Yox1p Is Required for Cell-Cycle Regulation of MBF
Target Genes

Given that Yox1p bound to MBF target promoters in a cell

cycle-dependent manner and was required for transcriptional

repression of MBF-regulated genes, we next examined the role of

Yox1p in periodic cell-cycle transcription of the Yox1p/Cdc10p

target genes. To this end, we synchronized yox1D cells using

centrifugal elutriation and compared microarray expression

profiles with those of wild-type cells. In wild type cells, the

Yox1p/Cdc10p and Ace2p target genes all peak during S-phase/

cell division (Figure 4A; [1]). In yox1D cells, on the other hand,

the Yox1p/Cdc10p targets showed little or no cell-cycle

regulation, whereas the cell-cycle regulation of Ace2p targets

was not affected (Figure 4A). Exceptions were the histone genes

hta1 and htb1, which peak later than the other Yox1p/Cdc10p

targets and maintained some cell-cycle regulated expression in

yox1D cells, albeit with lowered amplitude (Figure 4A). We also

analyzed the normalized signal intensities to estimate absolute

expression levels, which revealed that the Yox1p/Cdc10p target

genes, but not the Ace2p target genes, were continually higher

expressed during the cell cycle in the absence of Yox1p (Fig. 4A,

lower graph). Taken together, we conclude that cell-cycle

regulated transcription of Yox1p/Cdc10p target genes is highly

deficient in yox1D cells, reflecting that these genes are no longer

down-regulated after S-phase.

To check whether increased transcription and absence of cell-

cycle regulation of Yox1p/Cdc10p target genes leads to any

obvious defects, we also analyzed the phenotype of the yox1D
mutant at the cellular level. yox1D cells were viable and did not

show any overall growth defect (Figure 4B). The septation index

was marginally higher in yox1D compared to wild-type cells (10.4%

vs 9.4%), suggesting a slight delay in cytokinesis and/or cell

separation. The yox1D cells were about 14% longer on average

than wild-type cells during septation (17.4 mm vs 15.3 mm)

(Figure 4C). While fewer than 2% of wild-type cells were longer

than 18 mm during septation, 31% of yox1D cells exceeded this

length. A few yox1D cells (,5%) also contained excessive vacuoles

(not shown). FACS analysis showed that the bulk of yox1D cells

were in G2-phase as is the case for wild-type cells (data not shown).

Together with the elongated phenotype, this finding suggests that

yox1D cells are somewhat compromised in cell-cycle progression

after S-phase.

Figure 4. Cell-cycle defects in yox1D cells. (A) Yox1p/Cdc10p target
genes are not cell cycle-regulated in yox1D cells. Top graph: Two cell-
cycle timecourse experiments of wild-type cells (left; [14]) and yox1D
cells (right) synchronized by centrifugal elutriation, showing the
expression profiles of cell cycle-regulated target genes common to
Yox1p and Cdc10p (red) and putative Ace2p target genes (green; [14]).
The histone genes hta1 and htb1 are highlighted in blue. The
expression profiles were measured using spotted arrays and normalized
such that the median expression ratios are equal to 1 for each
timecourse. Bottom graph: As top graph but showing the mean
absolute signal intensities, normalized to 50th percentile of measure-
ments from each array, for Ace2p (green) and for Yox1p/Cdc10p (red)
targets. Note that the timepoints of wild-type and yox1D experiments
are not normalized relative to the cell cycle, and absolute times cannot
be directly compared. (B) Normal growth of yox1D cells. 10-fold serial
dilutions of wild-type (top) and yox1D (bottom) cells spotted on rich
media. (C) Elongated phenotype in yox1D cells. Wild-type (top) and
yox1D (bottom) cells were stained with calcofluor to highlight cell wall
and division septa.
doi:10.1371/journal.pgen.1000626.g004

Yox1p Cell-Cycle Transcription
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Common and Specific Targets of Cdc10p and Yox1p
Our ChIP-chip experiments also provided a global overview of

genomic regions directly bound by Cdc10p and Yox1p. The

enrichment ratios of all ChIP-chip experiments are provided in

Table S2. Among cell cycle-regulated genes, most Cdc10p and

Yox1p target genes peaked in transcript levels around G1/S

(Figure 5A), consistent with the results described above. Cdc10p

also seemed to weakly bind to some cell-cycle-regulated genes

outside of G1/S phase (Figure 5A), raising the possibility that this

factor has additional regulatory roles, perhaps in combination with

other cell-cycle transcription factors.

The promoters of 76 genes were substantially and consistently

enriched in both Cdc10p and Yox1p ChIPs, including the 19

previously discussed MBF target genes (Fig 5A,B; Table S3). These

genes also significantly overlapped with lists of putative Cdc10p,

Res1p, and Rep2p target genes, which were obtained from

independent ChIP-chip experiments using custom-spotted inter-

genic arrays (P = 3e-26 to 8e-16). Both Yox1p and Cdc10p bound

Figure 5. Common and specific Cdc10p and Yox1p targets. (A) Cdc10p and Yox1p target genes predominantly peak in expression around G1/
S. The top-500 cell cycle–regulated genes were ordered in columns by their peak expression times [35] with 0% and 100% of cell-cycle time set
around the G2/M transition. Relative peak times are indicated on top along with approximate cell-cycle phases. The rows (from top to bottom)
correspond to two independent repeats of Cdc10p ChIP-chip, five independent repeats of Yox1p ChIP-chip, and two independent repeats of mock
IPs. The orange shading reflects the strength of relative enrichment as indicated in legend (top left). (B) Comparison of Cdc10p and Yox1p targets.
Scatter plot showing the enrichment ratios upstream of genes in Cdc10p ChIP-chip experiments (mean data from three repeats) versus the
enrichment ratios upstream of genes in Yox1p ChIP-chip experiments (mean data from three repeats). The target genes common to Yox1p and
Cdc10p are highlighted in red, and the genes flanking replication origins [40] are highlighted in green, many of which are specifically enriched in
Cdc10p ChIP-chip. (C) The divergently transcribed histone H3 and H4 genes (hht1 and hhf1, respectively) show enrichment of Yox1p (red), but not of
Cdc10p (blue), in their shared promoter region. Example data from one repeat each are shown. Transcription of the three upper genes is from left to
right (forward strand), while hhf1 is transcribed from right to left (reverse strand). Chromosome 1 coordinates are indicated in kb. (D) Cdc10p, but not
Yox1p, frequently binds close to replication origins. Hierarchical cluster analysis with rows representing 445 genes flanking origins of replication [40]
and columns representing Cdc10p ChIP-chip (left, average of all experiments) and Yox1p ChIP-chip (right, average of all experiments). The strength of
relative enrichment is indicated by orange shading as in (A). (E) The intergenic region between the genes SPAC27F1.05c and SPAC27F1.10 contains an
origin of replication and shows enrichment of Cdc10p (blue), but not of Yox1p (red). Neither of these genes is cell cycle–regulated. Example data from
one repeat each are shown. Transcription of the three genes is from right to left (reverse strand). Chromosome 1 coordinates are indicated in kb.
doi:10.1371/journal.pgen.1000626.g005

Yox1p Cell-Cycle Transcription
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to the promoter between the divergently transcribed histone genes

hta1 and htb1 (H2Aa and H2Ba, respectively) and to pht1 (H2A

variant), while Yox1p was also bound to the promoter between the

divergently transcribed histone genes hht1 and hhf1 (H3 and H4,

respectively) (Figure 5C). In total, 40 of the 76 common target

genes were among the top-500 cell cycle-regulated genes [35]. The

promoters of these 40 genes were significantly enriched for

different versions of MCB motifs (Matias Piipari, personal

communication). These experiments thus uncovered additional

MBF target genes and, as expected, many of these genes are

involved in DNA replication and repair (Table S3). Among the 36

genes enriched in Cdc10p and Yox1p ChIPs that were not cell

cycle-regulated, 10 genes were also enriched in the independent

Cdc10p, Res1p and Rep2p ChIP-chip experiments using

intergenic arrays (P ,2e-17), although 6 of these genes are

divergently expressed from neighboring Cdc10p target genes and

the enrichment may therefore reflect binding at the neighboring

promoter. The four exceptions are mei3, gdi1, spt6, and a putative

non-coding RNA, SPNCRNA.93. Visual inspection of their

expression profiles during the cell cycle, however, confirmed that

these genes do not seem to be periodically transcribed.

The experiments shown in Figures 3 and 4A also helped to

identify further Yox1p/Cdc10p targets, for which the ChIP-chip

experiments were not conclusive. For example, SPAC17H9.18c

and ctp1 were more highly expressed and showed no cell-cycle

regulation in yox1D cells, indicating that they are true Yox1p

targets. We have therefore added these genes to Table S3.

SPBPB2B2.19c, SPAC750.05c and rep2, on the other hand, were

not expressed at higher levels and showed strong cell-cycle

regulation in yox1D cells, indicating that they are likely not Yox1p

targets, consistent with the ChIP-chip data. Taken together, we

conclude that the most strongly bound promoters are highly

coherent between Cdc10p and Yox1p and provide a global survey

of MBF target genes.

Yox1p, but not Cdc10p, also showed consistent, albeit weak,

enrichment in association with genes located close to telomeres.

Further work will be required to establish whether Yox1p plays an

additional role at these telomere-associated genes. Cdc10p, on the

other hand, showed substantial and specific enrichment upstream

of.200 additional genes. Only 12 of these Cdc10p-specific target

genes were among the top-500 cell cycle-regulated genes [35].

Among these genes were four 5S ribosomal RNAs (SPRRNA.19,

SPRRNA.20, SPRRNA.34, and SPRRNA.38), which is consistent

with the finding that Cdc10p binds to Pol5p that is required for

rRNA transcription [39]. Intriguingly, the Cdc10p-specific target

genes were significantly enriched for genes flanking mitotic origins

of replication (Figure 5B; P = 1e-15) [40]. Most of the genes

flanking origins of replication were associated to some extend with

Cdc10p (Figure 5D). Unlike for MBF target genes, the Cdc10p

enrichment associated with replication origins peaked near the

centre of intergenic regions in some cases (Figure 5E), although the

array resolution was generally insufficient to distinguish binding

patterns relative to genes. These data suggest that Cdc10p has an

affinity for replication origins.

Discussion

In this study, we provide a systematic analysis of genome-wide

binding sites for Yox1p and Cdc10p and show that these factors

share more than 40 target genes that are transcriptionally induced

during G1/S and are repressed during the other cell-cycle phases.

Furthermore, we establish Yox1p as a new regulatory MBF

component with a critical role in the MBF-dependent transcrip-

tional program. In agreement with our observation that Yox1p

does not directly bind to MBF-regulated promoters but via MBF,

no enrichment of homeodomain-related motifs is evident within

the promoters of the shared target genes (Matias Piipari, personal

communication) and the binding sites of Yox1p and Cdc10p

coincide (Figure 1D). The Yox1p and Cdc10p target genes show

higher transcript levels and higher Pol II occupancy in the absence

of Yox1p, and they also require Yox1p for their periodic down-

regulation during the cell cycle. Consistently, Yox1p accumulates

as cells progress into S-phase, and its binding to promoters peaks

when MBF-dependent transcription is repressed. Yox1p therefore

plays a negative role for the transcription of its target genes outside

of G1/S.

Yox1p provides a negative feedback: it is transcriptionally

activated by MBF and in turn binds to MBF and transcriptionally

represses the MBF target genes (including yox1 itself). This

regulatory circuit has parallels but also intriguing differences to

the circuit involving S. cerevisiae Yox1p (Figure 6). In S. cerevisiae, the

MADS-box factor Mcm1p is involved in transcriptional activation

of SWI4 (similar to cdc10) and CLN3 genes [41–43], thus

promoting activation of the SBF complex, which is orthologous

to S. pombe MBF [1]. SBF then activates transcription of several

targets including S. cerevisiae YOX1 [27,28,44]. Yox1p in turn binds

next to the Mcm1p target sequences and inhibits Mcm1p-

dependent transcription and thus also the downstream SBF-

dependent transcription [26]. In both yeasts, the MBF/SBF

complexes therefore transcriptionally activate a negative feedback

via Yox1p, which either directly (S. pombe) or indirectly (S. cerevisiae)

inhibits MBF/SBF-mediated transcription (Figure 6). Budding

yeast contains a Yox1p paralog, Yhp1p, which is not cell cycle-

regulated but also acts as a repressor of Mcm1p-dependent

transcription [26]. No such paralog is present in fission yeast.

Two negative feedback loops have previously been reported to

constrain transcription to G1/S by promoting timely repression of

MBF-dependent genes: 1) the cyclin Cig2p, whose gene is

activated by MBF, in turn inhibits MBF activity in G2-phase by

phosphorylating Res1p [19]; and 2) Nrm1p, whose gene is also

activated by MBF, in turn acts as a transcriptional co-repressor for

MBF-dependent genes much like Yox1p [20,21]. Consistently, our

data show that both Cdc10p and Yox1p bind to cig2 and nrm1

promoters. Notably, genetic perturbation of yox1, nrm1, or cig2

leads to increased MBF-dependent transcription, although cig2

mutants show residual transcriptional repression of MBF targets

outside of G1/S. All proteins seem therefore to be required, but

Figure 6. Yox1p-based negative feedback loops in fission and
budding yeast. Positive and negative regulation is indicated by
arrows and bars, respectively. See main text for detailed comparison of
regulatory circuits.
doi:10.1371/journal.pgen.1000626.g006
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are not sufficient, to repress MBF transcription outside of G1/S.

This repression is not essential in rapidly growing cells: cig2D,

nrm1D and yox1D cells are viable, although all deletion mutants

show some cell elongation phenotype ([45]; unpublished data; this

study). It is possible that the repression becomes more critical

under specific conditions such as inhibited proliferation during

nutrient limitation. Notably, deletion of yox1 has been reported to

lead to cadmium sensitivity [46].

We propose that there are two independent negative feedback

mechanisms that tune down MBF-regulated transcription, one

involving Cig2p and the other involving both Yox1p and Nrm1p.

The following evidence indicates that Yox1p and Nrm1p act in the

same pathway. The increase of MBF-dependent transcript levels in

unsynchronized yox1D cells (Figure 3) is similar to that observed in

nrm1D cells (unpublished data). Moreover, a yox1D nrm1D double

deletion mutant does not show any increased MBF-regulated

transcript levels compared to either single deletion alone

(unpublished data). Both yox1D and nrm1D cells also show very

similar phenotypes with respect to cell elongation, mating defects,

and synthetic lethality with cdc25-22 (this study; unpublished data).

Furthermore, binding of Yox1p to MBF-regulated promoters

depends on Nrm1p (Figure 2C). Together, these findings suggest

that Yox1p and Nrm1p operate in the same negative feedback

loop in which the role of Yox1p in transcriptional repression

depends on Nrm1p. Whether Nrm1p depends on Yox1p for its

association with MBF or is a connector protein required for

Yox1p-dependent repression of MBF-regulated transcription

remains to be determined.

Besides the negative feedback loop based on Yox1p, both yeasts

also seem to apply positive feedback loops based on the SBF-

regulated SWI4 in budding yeast [41,47] or the MBF-regulated

gene cdc10 in fission yeast ([14]; this study) (Figure 6), although

Cdc10p may have both positive and negative roles in MBF-

mediated transcription [24,48].

Cells arrested in S-phase with incompletely replicated DNA

show persistent expression of MBF-dependent genes [14,15],

which depends on the DNA replication checkpoint pathway and is

required for cell survival [23,24]. Recent data indicate that the

DNA replication checkpoint maintains MBF-dependent transcrip-

tion by inactivating the Nrm1p repressor [20] and by directly

regulating Cdc10p [24]. It is possible that Yox1p is also involved in

regulating the persistent MBF-dependent transcription during the

checkpoint response or in mediating checkpoint recovery.

Yox1p also binds to genes encoding all four canonical histones

(hht1, hhf1, hta1, htb1) and the histone variant pht1, while Cdc10p

binds only to hta1, htb1, and pht1. It therefore seems that Yox1p can

also bind independently of MBF to some target genes that are not

regulated by MBF (Figure 5C). With the exception of pht1, which is

,2-fold higher expressed and shows no periodic transcription in

yox1D cells, we could detect only subtle, if any, effects on histone

gene expression in the absence of Yox1p, which may therefore only

have a marginal role in the poorly understood control of these

highly regulated genes. S. cerevisiae Yox1p also binds to the genes

encoding histones H3 and H4, but not to H2A and H2B, and it has

been suggested to play a role in their transcriptional regulation [27].

In S. pombe, the GATA-type transcription factor Ams2p binds to the

promoter regions of core histone genes and is necessary for their

transcriptional activation [49]. Moreover, the HIRA-like protein

Hip1p is involved in repressing histone genes outside of S-phase

[50]. Intriguingly, hip1 is a Cdc10p (but not a Yox1p) target

according to our data, although hip1 transcript levels do not seem to

be cell cycle-regulated. It is possible that this regulatory interaction

becomes more important during specialized conditions such as

starvation or meiosis.

Cdc10p showed more promiscuous binding across the genome

than Yox1p. Many of the additional target regions coincided with

origins of mitotic replication [40], and most replication origins

were associated with Cdc10p (Figure 5D). The genes flanking

replication origins are not enriched for MBF- or cell cycle-

regulated genes, and these regions do not seem to be enriched for

MCB elements recognized by MBF (Matias Piipari, personal

communication). It is possible that Cdc10p simply binds to these

chromatin regions because they are depleted of nucleosomes and

thus accessible [51]. However, this finding also raises the intriguing

possibility that Cdc10p, either alone or in complex with other

proteins, is directly involved in controlling replication origins, in

addition to its role in transcriptionally regulating genes functioning

during replication. Cdc10p would certainly be present at the right

places and at the right time during the cell cycle for such a role.

Notably, Drosophila dE2F1, the functional equivalent of Cdc10p,

also binds to origins of replication [52]. This study indicates that

dE2F1 functions at replication origins to limit DNA replication

through its interaction with the origin recognition complex [52].

Future research will establish whether Cdc10p plays an active role

at replication origins and is directly involved in controlling DNA

replication.

In conclusion, we have uncovered an additional regulatory

layer, based on the homeodomain protein Yox1p, to switch-off

MBF-dependent transcription during S-phase progression. Similar

roles have been identified for Cig2p and Nrm1p. The requirement

for these multiple, non-redundant negative feedback mechanisms

is striking. Although potentially rendering down-regulation of G1/

S transcripts during S-phase less robust, this system might provide

an additional mechanism by which checkpoint activation could

override the regular periodic transcriptional program, by directly

regulating Yox1p (as has been shown for Nrm1p and Cdc10p

[20,24]) and may thus reflect the importance of timely and robust

activation of G1/S transcription in response to problems with

DNA replication. It will be important to tease out how the

different regulatory layers are coordinated with each other during

regular cell proliferation, during meiotic differentiation, and in

response to perturbation of DNA replication.

Materials and Methods

Yeast Strains, Experimental Conditions, and Phenotyping
The yox1 gene was deleted in a diploid background made from

strains JB5 (ade6-210 h+) and JB6 (ade6-216 h2) using the KanMX6

marker with a PCR-based approach [53], resulting in strain JB361

(yox1D::kanMX6 ade62 h+). yox1 was C-terminally tagged with a 3HA

epitope in strain JB22 (972 h2) with the PCR-based approach [53]

and verified by western blot, resulting in strain JB644B (yox1-

3HA::kanMX6 h2). All strains were grown in rich medium

(YE+supplements) at 32uC. Centrifugal elutriation was performed

as described [14]. As a reference for all time points, we used

unsynchronized cells taken from the same culture before elutriation.

For septation index and cell length measurements, duplicate cell

populations at a density of ,56106 cells/ml were fixed in 10%

formaldehyde for 15 minutes, washed three times in 1 x PBS and

stored at 4uC. Calcofluor (50 mg/ml; Polysciences) was used to

stain the septa and cell wall. Images were captured using a

Hamamatsu digital camera C4742-95 fitted to a Zeiss Axioskop

microscope with plan-Apochromat 6361.25 oil objective and

recorded using OpenLab 3.4 software (Improvision), downloaded

to either Microsoft Excel for analysis or to Adobe Photoshop 7. To

determine the septation index, the amount of fully septated cells

was calculated as a percentage of the total population (n.700 each

strain). The mean maximal cell length was calculated from
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measurements of fully septated cells (n.300 each strain). For

FACS analysis, cells were fixed in 70% ethanol at ,56106 cells/

ml, washed with 10 mM EDTA, and treated with 0.1 mg

RNAseA overnight at 37uC. DNA was subsequently stained with

4 mg/ml propidium iodide, and cells were sonicated prior to

FACS analysis. 10,000 cells, in duplicate samples, were analysed

using a Cyan ADP Flow Cytometry system (Beckman-Coulter).

Chromatin Immunoprecipitation (ChIP)
Our protocol was adapted from [54]. For each IP, 50 ml of

exponentially growing cells (titer: 66106 cells/ml) were fixed with

1% formaldehyde for 30 min, and the reaction was stopped by

adding 2.5 ml of 2.5M glycine. Cells were mechanically broken

with glass beads (BioSpec) in lysis buffer containing protease

inhibitors by vortexing 2613 sec. Subsequently, the lysates were

sonicated in a Bioruptor (Diagenode) for 365 min, with 30 sec

ON and 30 sec OFF. A 50 ml aliquot per sample was immediately

withdrawn and saved as input. Protein DNA-complexes were

immunoprecipitated with 5 mg of antibody by incubating

overnight at 4uC with 50 ml protein A Sepharose beads

(Amersham). We used polyclonal anti-Cdc10p antibody (a kind

gift of Jérome Wuarin), anti-HA antibody (Abcam 9110), and anti-

Pol II antibody (Abcam 5408) for Cdc10p, Yox1p, and Pol II IPs,

respectively. The immunoprecipitated material was washed and

eluted twice in TES, and the samples were then treated with

Proteinase K and de-crosslinked for 5 hours at 65uC. Following

de-crosslinking, RNA was digested for 1 h at 37uC. DNA was

extracted once with phenol/chloroform/isoamyl alcohol and

precipitated with 3M NaAc and 100% ethanol. Precipitated

DNA pellets were air-dried and resuspended in 20 ml double-

distilled water. ChIP analysis followed by qPCR with the

synchronised strain JB644B (yox1-HA) was performed as described

[55].

ChIP-chip Assay and Data Analysis
For Cdc10p, we performed two independent biological ChIP-

chip repeats plus one technical repeat with dye swaps using wild-

type strain JB22 (972 h2). For Yox1p, we performed five

independent biological ChIP-chip repeats plus one technical

repeat with strain 644B (yox1-HA), using dye swaps for one

biological and the technical repeat. For Pol II, we performed three

independent biological ChIP-chip repeats with strain 644B (yox1-

HA) and three independent biological repeats with strain JB361

(yox1D). Mock IPs were performed from two independent

biological repeats with strain JB361.

For the Agilent platform, input and immunoprecipitated (and

mock) material were amplified by random PCR amplification as

described [56]. For labelling of amplified DNA, 500 ng per sample

was used for incorporation of Cy3 (input) and Cy5 (IP material) d-

CTP nucleotides as recommended in the genomic DNA Bioprime

labelling kit (Invitrogen). For dye swap experiments, Cy3 was used

for IP material and Cy5 for input material. Hybridization and

washes were carried out according to the manufacturer’s

instructions, and guidelines for the 4x44K Chip-on-chip whole

genome DNA microarray platform (Agilent). For the custom-

spotted intergenic arrays, the IP DNA was not amplified but

directly labelled with the Bioprime kit and hybridized against a

directly labelled mock IP performed with rabbit IgG. Hybridiza-

tion and washes were then performed as previously described [40].

The Agilent arrays were scanned in a GenePix 4000B laser

scanner at 5 mm resolution, and the acquired fluorescent signals

were subsequently processed for analysis with GenePix Pro 6.0

software (Axon instruments). The data were then imported in

Bioconductor version 2.6.1, and systematic or array bias was

removed by the variance stabilization algorithm (vsn) [57]. Briefly,

each column (Cy3 and Cy5) on the array was calibrated by an

affine transformation and then the data were transformed by a

glog2 variance stabilizing transformation. After normalization,

signal ratios were obtained for each array element. In order to

determine enrichment at promoter regions, we calculated the

mean intensity of all probes located within 1000 bp upstream of

each open reading frame. For the Pol II ChIP-chip experiments,

the mean intensities of probes were calculated for all coding

regions.

In order to determine statistically significant enrichment over a

promoter or coding region, we applied SAM statistics (Significance

Analysis of Microarrays) [58]. For the Yox1p ChIP-chip

experiments, we compared six independent repeats (with one

repeat performed as technical repeats) and two independent mock

IPs. We determined a conservative list of significantly enriched

promoters using 0% FDR (false discovery rate). For the Cdc10p

ChIP-chip experiments, we ranked the promoter ratios from all

three repeats (2 biological, 1 technical) and used a conservative

cut-off of 2-fold for enrichment relative to the input. Overlaps

between functional gene lists were determined in GeneSpring GX

7.3 (Agilent), using a standard Fisher’s exact test, and the p-values

were adjusted with a Bonferroni multiple testing correction. The

ChIP-chip data are available from ArrayExpress under the

accession number E-TABM-647.

Co-Immunoprecipitation
Anti-HA, anti-myc and anti-Cdc10p immunoprecipitations

were carried out using TAP purification buffers [59]. Immuno-

precipitated proteins were resolved by 10% SDS-PAGE. Anti-HA,

anti-myc and anti-Cdc10p antibodies as described above were

used to detect HA-tagged proteins and endogenous Cdc10p,

respectively.

Real-Time PCR and RT PCR
Total RNA was isolated using the Rneasy Plus kit (Qiagen). The

iQ SYBR Green supermix (Biorad) was used for quantitative PCR

on ChIP samples, and the iScript One-Step RT-PCR kit with

SYBR Green (Biorad) was used for RT-PCR experiments.

Reactions were run on the Chromo-4 Real-Time PCR Detector

(Biorad) using standard PCR and RT/PCR conditions. Data were

analyzed using MJ Opticon Monitor Analysis Software 3.0.

Microarray Expression Profiling
RNA was extracted from logarithmically growing cultures as

described [60]. For the Affymetrix platform, two technical repeats

from wild-type strain JB22 (972 h2) and two independent

biological repeats, one with an additional technical repeat, from

strain JB361 (yox1D) were used to extract 5 mg of RNA each. The

RNA was labelled using the standard Affymetrix GeneChip

eukaryotic hybridization protocols, and all samples were hybrid-

ised on the Affymetrix Yeast 2.0 GeneChip arrays. Scanning was

performed on a GeneChip Scanner 3000. Data were extracted

and normalised in Bioconductor version 2.6.1 using the GCRMA

package [61]. Ratios were obtained by dividing the probe values

for each yox1D repeat over the averaged probe values from the two

wild-type repeats.

For our custom-spotted arrays, RNA extracted from three

independent biological repeats each from strain JB361 (yox1D) and

strain JB6 (ade-216 h2) was labelled by direct incorporation of Cy3

and Cy5 d-CTP as instructed in the Superscript reverse

transcriptase kit (Invitrogen). The cDNA was then hybridized on

custom-spotted microarrays containing the known and predicted

S. pombe genes [60]. Microarrays were washed and scanned using a
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GenePix 4000B laser scanner, and the acquired fluorescent signals

were subsequently processed for analysis with GenePix Pro 6.0

software (Axon instruments). After removing flawed spots, the data

were normalised using a Perl script as described [60]. The

transformed expression ratios were then imported into Gene-

Spring GX 7.3 for further data analyses. The expression profiling

data are available from ArrayExpress under the accession number

E-TABM-646.

Supporting Information

Table S1 Expression ratios of yox1D relative to wild-type cells for

all genes from three custom-spotted arrays and two Affymetrix

chips

Found at: doi:10.1371/journal.pgen.1000626.s001 (0.95 MB

XLS)

Table S2 Enrichment ratios of all genes in two Cdc10p, five

Yox1p, and two mock ChIP-chip experiments

Found at: doi:10.1371/journal.pgen.1000626.s002 (1.31 MB

XLS)

Table S3 Genes enriched in both Yox1p and Cdc10p ChIP-chip

Found at: doi:10.1371/journal.pgen.1000626.s003 (0.03 MB

XLS)
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