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ARTICLE INFO ABSTRACT

Keywords: Decentralised finance (DeFi) protocols often claim to implement decentralised governance via mechanisms such

DeFi as decentralised autonomous organisations (DAOs), yet the structure of their development processes is rarely

Contributor structure examined in detail. This study presents an in-depth case analysis of the development activity distribution in

Decentralisation Lido, a prominent DeFi liquid staking protocol. We analyse 6741 human-generated GitHub actions recorded
from September 2020 to February 2025. Using standard inequality metrics — Gini coefficient and Herfindahl-
Hirschman Index - alongside contributors’ interaction network and core-periphery modelling, we find that
development activity is highly concentrated. Overall, the weighted Gini coefficient reaches 0.82 and the
most active contributor alone accounts for 24% of the total activity. Despite an even split between core and
peripheral contributors, the core group accounts for 98.1% of all weighted development actions. The temporal
analysis shows an increase in concentration over time, with the Gini coefficient rising from 0.686 in the
bootstrap phase to 0.817 in the maturity phase. The contributors’ interaction network analysis reveals a hub-
and-spoke structure with high centralisation in communication flows. While a case study of a single protocol,
Lido represents a critical test of decentralisation claims given its prominence, maturity, and DAO governance
structure. These findings demonstrate that open-source DeFi development can exhibit highly concentrated
control patterns despite decentralised governance mechanisms, revealing a persistent gap between governance
and operational decentralisation.

1. Introduction attacks, and fraud have exposed weaknesses in protocol design and
operations [6-10]. The composability of DeFi — where protocols inter-
connect and depend on one another — may amplify systemic risks [11],
prompting regulatory concerns over market integrity and financial
stability [12-14].

Beyond technical and financial risks, questions have emerged

Over the past few years, decentralised finance (DeFi) has evolved
from a niche innovation into a major segment of the global financial
ecosystem. Built on public blockchains and powered by smart contracts,
DeFi protocols offer financial services — such as lending, trading,
staking, and asset management — without the need for traditional

intermediaries [1-3].

Since 2020, the sector has experienced exponential growth, with
total value locked (TVL) in DeFi protocols peaking at over $180 billion.
This surge has been driven by user adoption, venture capital invest-
ment, and the proliferation of decentralised applications (dApps) across
multiple blockchain networks [4]. DeFi has become a core component
of the broader Web3 movement, attracting both retail and institutional
participants seeking open, permissionless alternatives to traditional
finance [5].

However, the rapid expansion of DeFi has also introduced substan-
tial risks. Security breaches, smart contract vulnerabilities, governance

around the true extent of decentralisation in DeFi. Despite decen-
tralised governance mechanisms such as DAOs, power often remains
concentrated in areas such as governance token distribution, validators’
control, and development authority [15,16]. This “decentralisation
illusion” [17] reflects the reliance of many DeFi systems on small
groups of actors for essential functions such as protocol upgrades,
governance coordination, and maintenance.

Open-source development is central to most DeFi protocols, with
platforms like GitHub serving as hubs for collaboration, issue tracking,
and code contributions [11,18-20]. In theory, this model promotes
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transparency and decentralised control. Public access to source code
allows diverse contributors to participate in auditing, feature develop-
ment, and security review. Yet, open-source status alone does not en-
sure decentralisation. In practice, control over repositories, authorship
of key components, and decision-making authority may be restricted
to a few core contributors or affiliated organisations, creating potential
governance bottlenecks and resilience challenges.

Understanding the distribution of development effort is therefore
essential. Projects with a high concentration of contributors may face
risks related to governance capture, single-contributor dependency, and
maintenance bottlenecks. Conversely, broader participation can en-
hance resilience by distributing auditing, innovation, and maintenance
responsibilities across a wider base. Using publicly accessible GitHub
data, it is possible to empirically assess how development activities
are distributed, how collaboration patterns evolve, and whether core
development tasks — such as pull request review or issue resolution —
are concentrated among a limited subset of individuals.

This study focuses on Lido, one of the most prominent DeFi proto-
cols, as a case for analysing development decentralisation. Lido pro-
vides liquid staking solutions across multiple blockchain networks,
allowing users to stake assets such as ETH, SOL, MATIC, and DOT while
maintaining liquidity through “derivative tokens™ like stETH [22].
Governed by the Lido DAO, the protocol is designed to reflect decen-
tralised governance principles. However, as with many DeFi projects,
critical areas — including smart contract control, validator selection,
and core development — remain partially centralised.

Lido’s repositories are hosted on GitHub [23], theoretically allowing
open participation. Yet, the contribution landscape is dominated by a
core development team, raising concerns about contributor diversity
and resilience. Lido serves as a compelling case study for several
reasons. It is the largest liquid staking protocol by TVL, with over
$30 billion at peak, making its development practices systemically
important. Its 54-month GitHub history provides an important longi-
tudinal dataset capturing governance changes, technical upgrades, and
market cycles. It also exemplifies the decentralisation paradox: fully
open-source and DAO-governed, yet subject to technical and coordi-
nation constraints that promote centralisation. Finally, its development
records enable full empirical observation, avoiding the selection biases
seen in projects with fragmented repositories.

This study employs a single-case exploratory design to evaluate
methods for measuring development concentration in DeFi. Following
Yin’s [24] framework, Lido represents both a critical case for testing
assumptions about decentralisation in open-source DeFi development,
and a revelatory case providing complete longitudinal data typically
unavailable for protocol analysis. While not aiming for generalisation
across the entire ecosystem, this work establishes a methodological
basis for future comparative work.

We extract structured GitHub activity records, including commits,
pull requests, issues, and comments, for Lido, and group them by
contributor and calendar month. To quantify the distribution of de-
velopment activity, we apply inequality metrics (Gini coefficient [25],
Herfindahl-Hirschman Index (HHI) [26]), top-N contributor shares,
and interaction network centrality scores based on co-participation in
discussions.

We address the following research questions:

RQ1 How is development activity distributed among contributors in
Lido?

RQ2 How do contribution patterns and collaboration structures evolve
over time?

RQ3 How do external market shocks and governance decisions affect
the distribution and temporal patterns of development activity in
Lido?

1 A “derivative token” has its value derived from its underlying [21].
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RQ1 establishes whether development is broadly distributed or
concentrated. RQ2 introduces a temporal dimension to examine trends
in centralisation and analyses comment-based contributor networks
using centrality metrics to capture structural collaboration dynamics.
RQ3 examines whether external events reinforce or disrupt existing
contribution patterns.

By integrating activity-based and interaction-based analyses, this
study offers a detailed empirical evaluation of open-source develop-
ment in DeFi. The results have implications for assessing decentral-
isation claims, understanding governance structures, and identifying
sustainability risks in protocols’ development.

2. Related work

Our investigation of centralisation of development in DeFi protocols
draws on several research areas. We examine existing work on the
decentralisation illusion in DeFi, concentration patterns in open-source
development, and core—periphery network structures.

2.1. The decentralisation illusion in DeFi

[17] introduced the concept of the “decentralisation illusion” in
their analysis of DeFi risks, arguing that “full decentralisation in DeFi
is illusory” because “algorithm incompleteness” makes some level of
centralisation inevitable. They state that “all DeFi platforms have an
element of centralisation, which typically revolves around holders of
‘governance tokens’ (often platform developers) who vote on proposals,
not unlike corporate shareholders.” While their work provides theoret-
ical grounding for why DeFi systems tend towards centralisation, they
do not empirically measure development activity patterns.

In a related vein, [27] examined how changes in the U.S. federal
funds rate affect the DeFi sector, finding “a statistically significant and
economically important counter-cyclical effect on DeFi lending rates
and DeFi asset growth.” This empirical evidence challenges the com-
mon assumption that DeFi operates independently of traditional finan-
cial systems, and instead suggests that monetary policy in centralised
finance exerts a measurable influence on DeFi activity. The authors
describe this phenomenon as a “decentralisation illusion”, highlighting
the disconnect between DeFi’s decentralised technical architecture and
its economic dependence on macro-financial conditions. This work
focuses on financial performance and investor behaviour rather than
on the development infrastructure underpinning DeFi protocols.

2.2. Concentration in open-source software development

[28] conducted an analysis of 263 Apache Software Foundation
projects, finding a severe concentration in developer contributions.
They report: “Among the 263 analysed cases, 100 (38.02%) cases are
in the range of 0.7-0.8, while 234 (88.97%) of the analysed population
is between 0.6 and 0.9” for Gini coefficient values. Their study “under-
mines the widespread idealistic belief that open-source development is
a wide collaborative movement,” showing instead that projects were
“created by a small, but very active, group of individual, separate
contributors.”

[29] proposed using the Gini coefficient to measure team activities
in open-source software development, specifically noting its appli-
cation to GitHub projects. Although their work establishes method-
ological precedent for using inequality metrics in software develop-
ment contexts, detailed findings about temporal patterns or specific
concentration levels were not presented.

Beyond Apache projects, similar concentration patterns have been
observed across diverse open-source ecosystems. [30] studied 661 pub-
lic and 171 enterprise GitHub projects, finding that the “hero” pattern,
where 20% of contributors produce 80% of work, is prevalent across
both OSS and commercial software development. [31] provided early
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evidence of this concentration in Apache and Mozilla projects, estab-
lishing foundational benchmarks for understanding OSS contribution
patterns. More recent work [32] examined the Solidity smart con-
tract language over a 10-year period and found that the top 1% of
contributors accounted for 85% of weighted activity, demonstrating
that blockchain-related projects exhibit particularly high concentra-
tion. [33] further demonstrated that concentrated leadership structures
are characteristic of successful software development teams. These
findings establish that contributor inequality is endemic to open-source
development, with Gini coefficients typically ranging from 0.6 to 0.9
and top contributor shares often exceeding 70%-80% of total activity.

2.3. Core-periphery network structures

The core—periphery paradigm has been extensively studied in net-
work science. [34] developed methods to investigate “the meso-scale
feature known as core—periphery structure, which entails identify-
ing densely connected core nodes and sparsely connected peripheral
nodes.” Applying this concept to software development, [35] stud-
ied the impact of so-called different core-periphery movements on
Open Source projects, concluding that “a steady core—periphery shift
towards the core is beneficial to the project.” Their work established
the relevance of core—periphery analysis for understanding software
development dynamics, though they did not examine blockchain or
DeFi projects specifically.

2.4. Blockchain development activity

Limited empirical research exists on development patterns in
blockchain projects. CryptoMiso? provides rankings of cryptocurrencies
based on GitHub commit history, offering descriptive statistics but
no analysis of contribution distributions. General observations about
blockchain development suggest significant activity, for instance, vari-
ous sources report thousands of active blockchain developers monthly,
but a systematic analysis of concentration patterns remains absent from
the literature.

2.5. Research gap

Existing literature has established that (1) DeFi suffers from a decen-
tralisation illusion in governance, (2) traditional open-source projects
exhibit high contributor concentration with Gini coefficients typically
between 0.6 and 0.9, (3) core—periphery structures characterise collab-
orative networks. However, no prior work has empirically measured
development concentration specifically in DeFi protocols

Our study addresses this gap by applying established concentration
metrics and network analysis techniques to examine whether DeFi’s
unique characteristics, including token incentives and decentralised au-
tonomous organisation (DAO) governance, may alter the development
patterns observed in traditional open-source projects. By analysing 54
months of development data from Lido, we provide the first large
empirical assessment of the “decentralisation illusion” as it manifests
in actual development activities, rather than in theoretical governance
structures.

3. Dataset & methods

For this study, we collected data from the core implementation
repositories of the Lido Finance GitHub project [23], with a focus on
protocol-level smart contracts and essential infrastructure. The dataset
consists of structured CSV files that capture key elements of devel-
opment and collaboration. These include source code modifications

2 https://www.cryptomiso.com
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(commits), proposed changes (pull requests), issue reporting and en-
hancement suggestions (issues), and related discussions (comments).
Each record contains a contributor identifier and a timestamp, enabling
both temporal and contributor-level analysis.

The following files were extracted for analysis:

commits.csv Records of code commits with author identi-
fiers and timestamps.
file_commits.csv Links commits to modified files, supporting
analysis of codebase evolution.
files.csv Metadata on tracked files (e.g., filenames,
paths).
pull_requests.csv Information on submitted pull requests, in-
cluding descriptions, status, and timestamps.
issues.csv Reports of bugs, feature requests, or improve-
ment suggestions, along with associated life-
cycle metadata.
comments.csv Contributor discussions on issues and pull re-
quests, used to model interaction networks.

This information was extracted for the entire lifetime of the Lido
project, from September 2020 to February 2025.

GitHub repositories often include also automated bot accounts that
perform routine maintenance tasks such as dependency updates, test
notifications, code formatting, and continuous integration processes.
These accounts can distort development metrics by introducing activity
patterns that do not reflect human engagement. To address this, we
identified and excluded bot accounts using several criteria: account
naming conventions (e.g., containing terms such as bot, automated,
or suffixes like [bot]), activity patterns indicative of automation
(e.g., highly regular commit intervals or exclusively automated pull
request creation), and GitHub’s built-in bot designation features where
available. This preprocessing step was necessary to ensure that the
analysis of contribution patterns reflects human contributor behaviour
rather than automated processes.

3.1. Activity unification and temporal aggregation

To enable consistent analysis across the different types of contribu-
tions, we first grouped in uniform formatting all recorded contribution
actions (commits, pull requests, issues, and comments) into a com-
mon data structure. This was necessary because each activity type is
recorded differently on GitHub and conveys distinct contextual infor-
mation. By consolidating these heterogeneous sources into a unified
format, where each record includes a contributor identifier, a times-
tamp, and an activity type, we were able to compute contributor-level
metrics in a coherent manner over time. This consolidation facilitated
two key dimensions of analysis: contributor-based aggregation (i.e., to
examine how effort is distributed among participants) and time-based
aggregation (i.e., to observe how these patterns evolve).

The final dataset covers a 54-month period and comprises 6741
human-generated activity records from 96 distinct contributors.

All data were aggregated on a monthly basis. This choice, rather
than using weekly or yearly intervals, was informed by three consider-
ations. First, monthly aggregation offers a balance between granularity
and interpretability: it is fine-grained enough to capture medium-term
variations in activity, yet coarse enough to avoid excessive noise from
short spikes in participation. Second, monthly intervals align with
typical reporting and review cycles in open-source governance contexts.
Third, from a statistical perspective, monthly aggregation ensures a
sufficient number of observations per contributor, supporting stable
estimates of activity distribution and inequality metrics. Following the
unification of activity types, we computed both raw activity counts and
a composite weighted activity score for each contributor on a monthly
basis. The weighted score was introduced to reflect the varying levels
of technical complexity and review effort associated with different
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types of contributions. We assigned weights to each activity type based
on qualitative judgements informed by prior research on software
engineering practices and collaborative development [32]:

Pull requests (PRs): weight = 5. Pull requests typically involve
substantial code changes, peer review, and merge decisions. They
are more structured and subject to formal approval processes.
Commits: weight = 3. Commits represent direct modifications
to the codebase but may vary in complexity and are not always
reviewed prior to integration.

Issues: weight = 2. Issues include the identification of bugs,
suggestions for enhancement, or user feedback. They initiate
problem-solving processes, but do not constitute implementation
work.

Comments: weight = 1. Comments support discussion and co-
ordination, often in response to other activities. While essential
for collaboration, they generally require the least technical input
individually.

These weights were applied to each activity type to calculate a
monthly weighted activity score for each contributor, alongside the raw
counts. Including both measures, raw and weighted, enabled us to
distinguish between the quantity of engagement and the depth of
involvement. This distinction is particularly relevant when assessing
decentralisation: a contributor who frequently comments, but does not
engage in implementation, should not be considered equivalent to one
who submits pull requests that are subject to review and integration.
While the weighting scheme is necessarily heuristic, it seeks to ap-
proximate the typical effort and influence associated with each type
of contribution within the collaborative development process.

3.2. Contributor distribution metrics

To evaluate the extent to which development activity is decen-
tralised across contributors, we applied three widely used distribu-
tional metrics: the Gini coefficient [25], the Herfindahl-Hirschman
Index (HHI) [26], and the Contributor Share Concentration (Top 5
and Top 10). Each metric was selected to capture a different facet of
distributional imbalance, drawing on established applications in eco-
nomics, social stratification studies, and software engineering research
on open-source development [28-30].

The Gini coefficient measures inequality in the distribution of ac-
tivity across contributors. A Gini value of 0 corresponds to perfect
equality, where all contributors are equally active, whereas values
closer to 1 indicate greater disparity, with a small number of individu-
als accounting for a substantial share of activity [25]. This measure
is particularly suitable for detecting structural imbalances, even in
projects with a large number of contributors, and enables comparisons
across teams of varying sizes. We computed the Gini coefficient sep-
arately for each activity type (e.g., commits, PRs) as well as for total
and weighted activity aggregates. For a given set of observations with
values x;, x,, ..., x, in ascending order, the Gini coefficient is calculated
as:

G = Z?:] Z;l:1n|xi - le
2n 30 x;
where x is the mean of the distribution.

To complement the Gini coefficient, we also calculated the share
of total contributions made by the top 5 and top 10 most active
contributors. While the Gini index provides a summary of the overall
distribution, it may obscure the specific influence of the most active
individuals. The top-N contributor share offers a more direct perspec-
tive on whether a small subset of contributors is responsible for a
substantial portion of activity. This is particularly relevant in assessing
decentralisation: for instance, if a project is described as community-
driven but a majority of contributions originate from a small group of
contributors, the strength of that claim warrants scrutiny.

, (€Y
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The final metric, the Herfindahl-Hirschman Index (HHI) [26], is
derived from industrial organisation economics, where it is used to
evaluate market concentration. In this context, the index is defined as
the sum of squared contribution shares across all contributors:

2
n
X
HHI = ) ( o— >><104,
i=1<z;'ll Xj

where x; is the activity count (or weighted score) for contributor i.
HHI values range from close to zero (indicating a large number of
equally active contributors) to 10,000 (indicating complete concen-
tration). Although originally developed to assess firm dominance in
market contexts, the HHI has been adapted in software engineering
research to capture patterns of dominance in collaborative projects.
Compared to the Gini coefficient, it places greater emphasis on larger
individual shares and is more sensitive to changes among the most
active contributors.

All three metrics were computed across the complete dataset, as
well as separately for each calendar month. Monthly computation
enabled us to examine how contributor concentration changed over
time, allowing us to assess whether development became more or
less centralised during significant events such as governance changes,
security incidents, or protocol upgrades. The use of multiple metrics
contributes to robustness: when findings are consistent across the Gini
coefficient, HHI, and top-N contributor shares, they are less likely to
reflect artefacts of any one metric and more likely to capture underlying
structural characteristics of the contributor base.

3.3. Sensitivity analysis of activity weights

To address potential concerns regarding the selection of weights
in our weighted activity score calculation, we conducted a sensitivity
analysis to assess the robustness of our findings.

Predefined scenario analysis. We tested six theoretically motivated
weighting scenarios to evaluate the robustness of our findings. Table
1 presents the specific weights assigned to each activity type across
these scenarios. Our original weights (PR=5, Commits=3, Issues=2,
Comments=1) balance code contributions with collaborative activi-
ties. The code-centric scheme increases weights for commits (6) and
pull requests (8) while minimising collaborative activities (Issues=1,
Comments=0.5). Conversely, the collaboration-centric approach em-
phasises discussion and coordination by increasing weights for issues
(3) and comments (2) while reducing code-related weights. We also
tested equal weights (all activities=1), a pull request-dominant scheme
(PR=10), and an issue-focused configuration (Issues=5). Across all
scenarios, the Gini coefficient ranged from 0.797 to 0.861, consis-
tently indicating a high level of contribution concentration. Notably,
the collaboration-centric configuration yielded a higher Gini coef-
ficient (0.856) than our original scheme (0.823), while the code-
centric approach produced the lowest concentration (0.797). This
suggests that the overall pattern of concentration persists regardless
of whether code contributions or collaborative activities are priori-
tised, though emphasising collaborative activities actually increases
measured inequality.

Monte Carlo simulation. We performed 10,000 iterations with weights
drawn from a uniform distribution U(0.5, 10), while maintaining the
logical constraint that pull requests should not receive a lower weight
than comments. This exploration of the parameter space revealed con-
sistent results. The Gini coefficient exhibited a mean of 0.842 with
a standard deviation of 0.018, yielding a 95% confidence interval of
[0.799, 0.865]. Similarly, the top 1% of contributors accounted for a
mean share of 27.88%, with a 95% confidence interval of [18.54%,
32.18%]. These narrow confidence intervals indicate that the main
concentration patterns are not artefacts of specific weight assignments.
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Table 1
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Weight configurations used in sensitivity analysis. The Gini column shows the Gini coefficient of
weighted activity distribution. The Top 1% column indicates the share of total weighted activity
contributed by the top 1% of contributors, ranked by weighted activity (with 96 contributors,
this corresponds to the single most active contributor).

Scenario Pull Requests Commits Issues Comments Gini Top 1%
Original 5 3 2 1 0.823 24.06%
Code-centric 8 6 1 0.5 0.797 17.10%
Collaboration-centric 2.5 2 3 2 0.856 30.69%
Equal weights 1 1 1 1 0.861 31.72%
PR-dominant 10 2 1 0.5 0.800 16.40%
Issue-focused 3 2 5 2 0.850 29.38%

Rank correlation analysis. We computed Spearman rank correlations
between contributor rankings generated under different weighting
schemes. Correlation values ranged from 0.877 to 0.994, with most
exceeding 0.9. This indicates that the identification of core contributors
remains stable across weighting configurations. Whether emphasis is
placed on implementation or collaboration, the same contributors
consistently appear among the most active participants in the project.

Fig. 1 presents the results of the sensitivity analysis based on 10,000
Monte Carlo simulations using randomly generated activity weights.
The top panels illustrate the distribution of the primary concentration
metrics. Panel (a) shows a right-skewed distribution of the Gini coeffi-
cient, with a mean of 0.842 and a standard deviation of 0.018. Panel (b)
displays the distribution of the top 1% contributor share, which is also
right-skewed and exhibits a broader spread, with a mean of 27.88%. In
both cases, the red dashed lines represent the values obtained using the
original weighting scheme (Gini = 0.823, Top 1% = 24.06%), which
fall below their respective means, hence indicating that the baseline
estimates are conservative.

Panel (c) compares the distributions of four concentration metrics
using box plots. The Gini coefficient exhibits the least variability,
whereas the contributor-share metrics (1%, 5%, and 10%) display
increasing sensitivity to changes in weight configurations. Despite this
variation, all metrics suggest a consistently uneven distribution of
activity across simulations: the median Gini coefficient exceeds 0.84,
and the median top 1% contribution remains above 27%.

Panel (d) illustrates the joint distribution of the Gini coefficient
and the top 1% contributor share across all simulations. A strong
positive—albeit slightly non-linear—association emerges between the
two metrics. The red star indicates the outcome using the original
weights, situated in the lower-left area of the distribution. This cor-
relation pattern implies that higher values of one measure tend to be
associated with higher values of the other, reinforcing the robustness
of the observed concentration patterns. The placement of the original
weighting scheme within the broader distribution further supports the
interpretation that it provides a conservative estimate.

The consistency of results across a wide range of weighting schemes
supports the validity of our methodological approach. Even in contrast-
ing configurations — such as equal weights that treat all activity types
identically, or code-centric weights that downplay collaborative actions
— the overall pattern of contributor concentration remains evident.
In the most evenly distributed scenario, the top 1% of contributors
account for at least 18.54% of weighted activity, while in the most
concentrated configuration, this share rises to 32.18%. Both figures
indicate a notable imbalance, well above what might be expected in
a fully decentralised development setting.

The original weighting scheme, which seeks to balance code-related
and collaborative contributions, offers a representative measure of
this distribution without disproportionately accounting for any specific
activity type.

3.4. Interaction network construction
While contribution metrics such as commits and PRs capture direct

technical activity, they do not account for the social dimension of devel-
opment. To complement these measures, we constructed a contributor

interaction network based on GitHub discussions. This network ap-
proximates patterns of collaboration and communication by modelling
interactions between contributors through their shared participation in
issue and PR threads.

In this network, each node represents a unique contributor. An
undirected, weighted edge is added between two contributors if both
have commented on the same issue or pull request, with the edge
weight representing the number of issues/PRs on which they have
co-participated. This connection does not imply direct dialogue, but
rather co-participation in a shared context of problem-solving or design
discussion. The underlying assumption is that contributors who engage
in the same threads are likely to be aware of each other’s work,
with stronger weights indicating more frequent collaboration, thereby
supporting informal coordination and knowledge diffusion within the
project. This weighted approach is consistent with prior empirical
software engineering research, where comment-based proximity and
frequency of interaction have been shown to reflect meaningful social
ties, particularly in distributed teams.

To analyse the resulting graph, we applied standard graph-
theoretical centrality metrics:

* Degree centrality measures the number of distinct collaborators
(i.e., other contributors to whom a node is connected). High
degree centrality indicates broad involvement in conversations
and may suggest a coordinating role.

Betweenness centrality quantifies the extent to which a contributor
lies on the shortest paths between other nodes. A high score
indicates a bridging role between otherwise disconnected sub-
groups, which may be important for cross-module coordination
or agreement-building.

Eigenvector centrality captures influence beyond direct connections
by assigning higher scores to contributors who are connected
to other highly connected individuals. This metric is useful for
identifying participants whose impact extends through indirect
relationships.

Each of these centrality metrics offers a distinct perspective on col-
laboration: degree centrality reflects breadth of interaction, between-
ness highlights strategic positioning, and eigenvector centrality cap-
tures embedded structural influence within the network [36,37].

This network-based perspective complements the distributional met-
rics by providing insight into how contributors engage with one an-
other, rather than focusing solely on the volume of their contributions.
It is particularly relevant when assessing decentralisation, as a devel-
opment process characterised by a single, tightly connected cluster
may reflect a different form of centralisation compared to one where
contributions are dispersed but unevenly distributed. To further char-
acterise the network structure, we applied core—periphery analysis to
partition contributors into two groups: a densely connected core and
a sparsely connected periphery. Contributors were classified based
on their degree centrality, using the median centrality value as the
threshold for core membership. We computed connection densities
within the core, within the periphery, and between the two groups,
as well as a core-periphery fitness score (defined as the difference
between core density and periphery density) to measure the strength
of this structural division.
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Fig. 1. Sensitivity analysis of activity weights. Top panels show the distribution of (a) Gini coefficients and (b) share of activity from the top 1% of contributors
across 10,000 Monte Carlo iterations with random weights. (c) panel displays box plots for all concentration metrics. (d) panel illustrates the relationship between
the Gini coefficient and top 1% contributor share, with the red star indicating results from our original weighting scheme.

3.5. Time-series analysis of development activity

To examine the relationship between development activity and
protocol value, we employed time-series analysis techniques using Total
Value Locked (TVL) as a proxy for protocol adoption and trust. TVL
data was obtained from DefiLlama and aggregated to monthly averages
to align with our activity metrics.

For this analysis, we focus specifically on commit activity rather
than the weighted activity index used in concentration analysis. This
distinction is deliberate: while the weighted activity index captures
the breadth of contributor engagement (including discussion and co-
ordination through comments), commit activity represents deployed
code changes that directly affect protocol functionality. TVL, as a mea-
sure of capital locked in the protocol, responds primarily to technical
improvements, security updates, and feature deployments rather than
to discussion volume. Empirically, we observed that weighted activity
(which is dominated by comments) shows near-zero correlation with
TVL (Pearson r = —0.08), while commit activity demonstrates moderate
positive correlation.

We applied three complementary analytical approaches:

Correlation analysis. We computed Pearson and Spearman correlation
coefficients between TVL and monthly commit counts. The Spear-
man rank correlation provides robustness to outliers and non-linear
relationships common in financial time series.

Cointegration testing. To assess whether TVL and development activity
share a long-term equilibrium relationship, we applied the Engle—
Granger two-step cointegration test [38]. This test determines whether
two non-stationary time series move together over time, even if they
diverge in the short term. We tested both raw TVL and log-transformed
TVL, as financial series often exhibit exponential growth patterns. A
statistically significant cointegration relationship (p < 0.05) indicates
that the series share a common stochastic trend.

Lag correlation analysis. To investigate temporal precedence, we com-
puted lagged cross-correlations between TVL and commit activity for
lags ranging from -3 to +3 months. Negative lags indicate that commit
activity leads TVL changes, while positive lags indicate that TVL leads
commit activity. This analysis helps identify whether development
efforts precede value accrual or vice versa.

Event analysis. We overlaid development activity patterns with ma-
jor external events to examine how the protocol responds to ecosys-
tem shocks and governance decisions. Events were categorised into
two types: (1) market events including the Terra/Luna collapse (May
2022), Ethereum Proof-of-Stake merge (September 2022), FTX col-
lapse (November 2022), and Eigenlayer mainnet launch (April 2024);
and (2) governance decisions including major DAO votes and proto-
col upgrades. This qualitative analysis complements the quantitative
measures by contextualising activity patterns within the broader DeFi
ecosystem.

4. Results

In Fig. 2 we show the overall Lido monthly activity. The number
of unique contributors per month is relatively low, with a long-term
average of 7.2. Even during peak months, the number of unique con-
tributors rarely exceeds 20, suggesting that development is concen-
trated within a small group. Certain periods, such as late 2021 and
mid-2024, show minimal activity and reduced contributor engagement,
highlighting the uneven distribution of participation over time.

These findings point to a pattern of centralised contribution, in
which the majority of activity, particularly high-weighted actions such
as pull requests, is carried out by a limited subset of contributors.
When broader participation does occur, it tends to be associated with
discussion-based actions rather than direct code implementation.
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Combined Contributor Activity Over Time
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Fig. 2. Monthly development activity in Lido by type (stacked area), with unique contributors per month (dashed line, right axis). Comments dominate the total
volume of activity. Spikes in contribution frequency often align with governance events or protocol upgrades.
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Fig. 3. Monthly Gini coefficients for each activity type in Lido. Higher values indicate greater inequality in the distribution of contributions.

4.1. Concentration of contributions

To quantify the observed concentration of contributions, we com-
puted the Gini coefficient over time for each activity type, as well
as for the total and weighted activity aggregates. Fig. 3 shows the
monthly evolution of these metrics. The top panel displays Gini co-
efficients for individual activity types (commits, pull requests, issues,
and comments), while the bottom panel presents aggregate measures
(total activity and weighted activity). This separation reveals that
while individual activity types exhibit considerable volatility, the ag-
gregate measures show a more stable pattern with an upward trend in
centralisation over time.

The Gini coefficient evolution provides empirical support for the
“decentralisation illusion” hypothesis within DeFi development.
Throughout the 54-month observation period, centralisation metrics
remain consistently high, with Gini coefficients typically ranging be-
tween 0.4 and 0.8 across different activity types, significantly above the
0.5 threshold commonly associated with moderate-to-high inequality.
The temporal patterns lead to several observations. First, the higher

volatility seen during Lido’s early development phase (2021) reflects
the structural instability of contribution dynamics in the initial stages of
DeFi projects, when governance mechanisms and contributor incentives
may not yet be well established. Second, the recurring drops to zero in
issue-related activity (green line) reflect months with either no issues
created or issue activity limited to single contributors, highlighting
the irregular nature of participation in technical discussions. Third,
the gradual stabilisation of commit-related Gini values around 0.17
by 2025 suggests a modest trend towards broader distribution of code
contributions, though still distant from the decentralised ideal often
presented in DeFi governance narratives.

The sustained concentration in comment activity and total activity
(in the 0.4 to 0.7 range) indicates that, despite decentralised gover-
nance through the Lido DAO, actual development dialogue and coordi-
nation remain concentrated among a small group of contributors. These
temporal findings are consistent with the results of our core-periphery
network analysis, and suggest that governance decentralisation does
not necessarily imply decentralised development practices.
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Phase boundary sensitivity analysis. All configurations show monotonic increase in weighted
activity Gini coefficient from earlier to later phases.

Configuration Phase 1 Phase 2 Phase 3 Phase 4
Original (Jun 2021, Jan 2023) 0.686 0.713 0.817 -
Shifted +3 months (Sep 2021, Apr 2023) 0.696 0.743 0.829 -
Shifted -3 months (Mar 2021, Oct 2022) 0.603 0.686 0.817 -

Two phases (Jul 2022) 0.706 0.826 - -

Four phases (yearly) 0.686 0.689 0.690 0.831

Throughout the 54-month period, the Gini coefficients for total and
weighted activity generally remain above 0.5, indicating a consistent
degree of inequality in the distribution of development tasks. In some
months, values approach or exceed 0.7, suggesting that a small number
of contributors is responsible for the majority of activity. This pattern
is particularly evident in the comment and weighted activity cate-
gories, where inequality increases during periods of heightened overall
engagement. Commits and PRs also show periods of concentration,
though with greater variance. This is likely due to their lower frequency
and the smaller number of contributors involved. Issues tend to exhibit
lower Gini values when present, although data are missing or sparse
in several months, resulting in discontinuities in the time series. Taken
together, the Gini time series supports the earlier descriptive findings:
development activity in Lido appears to be concentrated among a
limited group of contributors, with fluctuations in active participation
having only a modest effect on the overall distribution of effort.

To consider whether temporal aggregation might obscure struc-
tural change in contributor concentration, we conducted an additional
analysis dividing the 54-month period into separate lifecycle phases.
This allows us to assess whether the high overall Gini coefficient
of 0.82 reflects temporary concentration during early development,
or whether centralisation remains throughout the protocol’s evolu-
tion. We divided the 54-month observation period into three approxi-
mately equal phases: Bootstrap (September 2020-May 2021, 9 months),
Growth (June 2021-December 2022, 19 months), and Maturity (Jan-
uary 2023-February 2025, 26 months). While these boundaries do
not correspond directly to specific protocol milestones, they provide
a framework for assessing whether centralisation patterns change as
the protocol evolves. The unequal phase durations reflect the natural
progression of the project, with a shorter initial development period fol-
lowed by extended growth and operational phases. For each phase, we
computed separate concentration metrics, including Gini coefficients,
unique contributor counts, and top-N contributor shares.

The distribution of activity among top contributors follows a sim-
ilar pattern. The share of weighted activity attributable to the most
active contributor rose from 16.9% in the bootstrap phase to 31.4%
during maturity. Meanwhile, the average number of monthly active
contributors remained low throughout (9.2, 5.2, and 7.9 in each phase
respectively), suggesting that the growth in the contributor base did
not result in sustained engagement.

These findings suggest that Lido’s development became more con-
centrated over time, rather than shifting towards broader participation.
The higher concentration observed in the maturity phase, relative to the
bootstrap phase, points to a structural trend rather than a temporary
feature of early development.

To validate that this increasing centralisation pattern is not an
artifact of our specific phase definitions, we tested four alternative tem-
poral partitions: boundaries shifted forward by three months, bound-
aries shifted backward by three months, a two-phase division at the
observation period midpoint, and a four-phase yearly division. Table 2
presents the results. Across all five configurations (including the orig-
inal), the weighted activity Gini coefficient increased monotonically
from earlier to later phases. This consistency confirms that the observed
centralisation trend is robust to boundary selection.

This raises questions about whether, without deliberate structural
changes, DeFi protocols may tend towards greater centralisation as they

evolve, complicating claims about the relationship between protocol
growth and development decentralisation.

To further examine the temporal dynamics of contributor activity,
we tracked the weighted monthly contributions of individual contrib-
utors over time. Fig. 4 presents a mountain graph visualisation that
illustrates how development effort is distributed across contributors
throughout the observation period. The figure supports the concen-
tration patterns observed in the Gini analysis. During a period of
heightened development in early 2023, Contributor A recorded a peak
of over 300 weighted contributions in a single month. This peak
coincides with key phases of protocol development, suggesting that
substantial portions of technical work were undertaken by a single
contributor.

The visualisation highlights the top ten individual contributors (A
through J), while the yellow “Others” category, representing 86 addi-
tional contributors, shows a consistent pattern: although numerically
dominant, these contributors account for only intermittent and limited
activity. The figure captures not only static inequality, but also dynamic
shifts in contribution patterns. Development activity tends to cluster
around a small group of core contributors (particularly A, B, C, and D),
while most participants remain on the periphery in terms of sustained
engagement. Periods of high activity, especially those corresponding to
major protocol updates, appear to be primarily driven by individual
contributors rather than broad-based collaboration.

To illustrate the distribution of development effort, we plot the
Lorenz curve for weighted activity in Fig. 5. The Lorenz curve displays
the cumulative percentage of contributions (on the y-axis) against the
cumulative percentage of contributors (on the x-axis), with contributors
ordered by their contribution volume in ascending order. In a scenario
of perfect equality, the distribution would follow the diagonal line y = x
(the line of equality). In practice, empirical distributions typically fall
below this line, with the area between the curve and the diagonal
representing the extent of inequality.

The curvature of the Lorenz curve indicates a markedly unequal
distribution: a small proportion of contributors are responsible for the
majority of substantive development activity. The corresponding Gini
coefficient is 0.82, consistent with the values observed in the temporal
Gini plot, and reinforces the finding that a limited group of individuals
carries out most of the core implementation work. This static represen-
tation complements the monthly metrics and supports the observation
that decentralised governance structures do not necessarily translate
into decentralised development activity.

p
RQ1 asked: How is development activity distributed among contribu-
tors in Lido? Answer: Our analysis reveals that development activity is highly
concentrated among a small subset of contributors. The Gini coefficient for
weighted activity is 0.82, indicating inequality in the contribution distribution.
Only 96 unique human contributors participated over 54 months, with an
average of just 7.2 active contributors per month. The core group accounts
for 98.1% of all development activities. This concentration persists across
all activity types, with pull requests and commits showing particularly high
centralisation.

4.2. Contributor interaction network

To supplement the activity-based indicators, we constructed a con-
tributor interaction network based on comments and examined its
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Contributions Over Time (Mountain Graph)
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Fig. 4. Mountain graph visualisation of anonymised contributor contributions over time. Contributor A represents the most active contributor (corresponding
to the dominant peak in early 2023), while the “Others” category contains the remaining 86 contributors who collectively contribute minimal development
effort. The visualisation demonstrates extreme temporal centralisation, where a single contributor (Contributor A) dominated development activity during critical

protocol development phases.
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Fig. 5. Lorenz curve of total (left) and weighted (right) contributor activity in Lido. The high curvature reflects a strong concentration of contributions.

structural characteristics. Fig. 6 presents key metrics across four di-
mensions: centralisation, community structure, cohesion, and network
distance.

The network comprises 96 contributors and 203 undirected,
weighted edges, where each edge represents co-participation in issue
or pull request discussions and edge weights indicate the number of
shared discussions.

The network is fragmented into 16 disconnected components, with
the largest component containing 81 contributors (84.4% of the net-
work).

Centrality metrics indicate high concentration: the Gini coefficient
computed over node degrees is 0.576, while betweenness centrality
yields a higher Gini coefficient of 0.854, suggesting that a small num-
ber of contributors mediate a substantial proportion of information
flow. Notably, the eigenvector centrality Gini of 0.551 also indicates
concentration, contradicting expectations of distributed influence. The
degree centralisation score of 0.397 further confirms the presence of a
hierarchical structure.

Regarding community structure, analysis of the largest component
identified 7 distinct sub-groups with a modularity of 0.182, indicating
weak community separation. The average community size Gini of 0.406
suggests slightly uneven distribution of members across communities.

Cohesion metrics reveal a sparse network. The network density
of 0.0445 (4.5%) indicates limited overall connectivity. While the
clustering coefficient of 0.353 suggests some local collaboration, the
fragmentation into 16 components undermines network-wide cohesion.
Within the largest component, a diameter of 6 and average short-
est path of 2.76 indicate that connected contributors can reach each
other, but only through key intermediaries. These findings reveal that
development coordination operates through isolated clusters with lim-
ited cross-cluster collaboration. The combination of high betweenness
centralisation (0.854) and network fragmentation demonstrates that
Lido’s development depends on a few key coordinators who bridge
otherwise disconnected groups, reinforcing the centralisation evident
in contribution metrics.

4.2.1. Community structure visualisation

We visualised the collaboration network of the largest connected
component (81 contributors, 84% of the network) with nodes coloured
by their detected community, as shown in Fig. 7. The Louvain method
[39] identified seven communities within this component. Commu-
nity 0 (blue) is the largest, encompassing 30 contributors (37% of the
component). This is followed by Community 1 (orange) with 16 con-
tributors, Community 2 (red) with 14 contributors, and progressively
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Fig. 6. Summary of collaboration network metrics for Lido.

smaller communities: Community 3 (8 contributors), Community 4
(7 contributors), Community 5 (4 contributors), and Community 6 (2
contributors).

The visualisation reveals a clear hub-and-spoke topology, with de-
velopment coordination flowing through a small set of highly con-
nected contributors. Contributors O1 and F1 occupy the most central
positions, serving as primary bridges between communities. Contribu-
tors A, F, E, C, and O also function as important hubs, each connecting
multiple peripheral contributors who would otherwise be isolated. This
hierarchical structure is reflected in the network’s high betweenness
centrality Gini coefficient of 0.854.

The modularity value of 0.182 indicates weak community separa-
tion, suggesting that despite the visual clustering, communities are not
functionally independent. Instead, they depend on central coordinators
for cross-community collaboration. Most contributors connect to only
one or two others, relying on the hub contributors to access the broader
network. This structure aligns with earlier findings of concentrated
development activity, where collaborative interactions are mediated by
a small number of highly connected contributors rather than through
distributed peer-to-peer connections typical of decentralised systems.

4.2.2. Contributor network evolution

To examine changes in decentralisation over time, we analysed
the evolution of the contributor collaboration network throughout the
lifespan of the Lido project. The dataset was divided into six non-
overlapping time intervals, and core network statistics were computed
for each period.
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Fig. 8 presents key quantitative trends. The top-left panel shows
the number of active contributors and their connections over time.
While the number of contributors fluctuates modestly (between 9 and
24), the number of connections varies dramatically (from 10 to 91),
indicating phases of intensified collaboration. The top-right panel de-
picts the network’s density, which peaks at 0.38 in the 2023-10 period
before declining, suggesting a phase of tighter coordination among
contributors.

The bottom-left panel displays the Gini coefficient of node degrees,
which serves as a proxy for the centralisation of the contributor net-
work. The data reveal significant fluctuations: a notable drop to 0.19
during 2021-06 (the most decentralised period) followed by increases
reaching 0.47 by 2022-12. The bottom-right panel shows a critical
finding: during the 2021-06 period, only 67% of contributors belonged
to the largest connected component, indicating network fragmenta-
tion. This fragmentation coincides with the lowest activity period (9
contributors, 10 connections).

Fig. 9 presents the temporal evolution of Lido’s contributor collab-
oration networks, segmented into six time windows. Each subgraph
depicts the co-engagement network formed by contributors interacting
through issues, pull requests, or comments.

In the early phase (2020-09 to 2021-06), the network shows 21
contributors with 51 connections and Gini coefficient of 0.413. The
structure reveals several high-degree nodes acting as coordination hubs.

The 2021-06 to 2022-03 interval exhibits the most dramatic change:
contributors drop to 9, connections to just 10, and the network frag-
ments (only 67% in the largest component). Despite this contraction,
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Fig. 7. Community structure of the largest connected component (81 contributors) in the Lido contributor network. Seven communities are identified, with a
clear hub-and-spoke topology centred on Contributors O1, F1, A, F, E, C, and O. Node size represents degree centrality. The visualisation shows 84% of the
network; the remaining 15 contributors exist in isolated components.
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Fig. 9. Contributor Network Structure Evolution. Each subgraph represents the collaboration network within a time interval. Node size corresponds to degree
centrality (i.e., number of links). Denser graphs indicate greater contributor interconnection. Degree Gini is shown for each period.

the Gini coefficient falls to 0.189—the lowest across all periods—
suggesting more equal participation among the remaining active con-
tributors.

The 2022-03 to 2022-12 period marks a recovery phase with 18
contributors and 53 connections. However, centralisation increases
(Gini = 0.407), and the network reconnects to 100% cohesion. The
visual structure shows renewed hub-and-spoke patterns.

The subsequent periods (2022-12 through 2025-04) show continued
growth and fluctuation. The 2022-12 to 2023-10 interval reaches high-
est degree Gini (0.466) with 23 contributors. The network then slightly
decentralises in 2023-10 to 2024-07 (Gini = 0.325) before rising again
in the final period (Gini = 0.370) with the highest connectivity ob-
served (24 contributors, 91 connections).

These temporal patterns reveal that Lido’s development network
experiences cycles of expansion and contraction, with centralisation
generally increasing during growth phases. The 2021-06 fragmentation
period likely reflects a transitional phase in the protocol’s development,
possibly corresponding to major architectural changes or governance
restructuring.

Building on the temporal analysis of decentralisation, we now ex-
amine the structural composition of the contributor network using a
core-periphery model [40]. Fig. 10 shows the result of this analysis.

The partition reveals an exact 50-50 split between core (48 con-
tributors) and periphery (48 contributors). However, the distribution
of development activity is highly asymmetric: 98.1% of all interactions
originate from core contributors, while peripheral contributors account
for only 1.9%. This extreme imbalance reinforces previous findings
of concentrated participation and suggests that half of the network
contributors have minimal engagement in development activities.

To address whether the high overall concentration is merely an
artifact of including minimally active peripheral contributors, we
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computed the Gini coefficient within each group separately. The core
group (48 contributors) exhibits a Gini coefficient of 0.687, while
the periphery group shows 0.418. The high within-core Gini indicates
that even among active contributors, development effort is unevenly
distributed. This confirms that centralisation is not solely driven by
the presence of inactive peripheral contributors, but reflects structural
inequality within the productive core itself.

The connection density matrix reinforces this distinction. Core-to-
core connections exhibit relatively high density (0.151), while core-
to-periphery links are sparse (0.014) and periphery-to-periphery con-
nections are essentially absent (0.000). This pattern indicates that
peripheral contributors rarely interact with each other and have limited
connections even to core contributors. The computed core-periphery
fitness score (0.1507) confirms a clear structural separation, though not
as extreme as the activity distribution might suggest.

This structure has critical implications for the protocol’s sustainabil-
ity. While the even split between core and periphery members might
suggest balanced participation, the reality is that half the (peripheral)
network contributes negligibly to development activity. The project’s
heavy reliance on 48 core contributors, with virtually no peer-to-
peer collaboration among peripheral contributors, creates significant
risk: the departure of even a small fraction of core contributors could
severely impact development capacity.

These network characteristics—temporal fluctuations with increas-
ing centralisation, fragmentation during transition periods, and stark
core-periphery division—provide structural evidence for the concentra-
tion patterns observed in our distributional analysis. The architecture
not only reflects existing centralisation, but likely reinforces it by
possibly creating barriers to peripheral contributors becoming more
engaged.
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Core-Periphery Structure of Contributor Network
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Fig. 10. Core—periphery structure of the Lido contributor network. Contributors are classified into core (dark blue) and periphery (light blue) groups. The bar
chart shows an even contributor distribution (48 core, 48 periphery), yet a substantial imbalance in development effort: 98.1% of contributions stem from core
contributors. Connection density is also skewed: most interactions occur within the core (density = 0.151), while cross-tier and periphery-periphery connections
are minimal. The resulting core—periphery fitness score of 0.1507 confirms a moderate structural separation.

RQ2 asked: How do contribution patterns and collaboration struc-
tures evolve over time? Answer: The temporal analysis demonstrates that
development centralisation in Lido is not static but shows a general trend
towards increased concentration over time. Monthly Gini coefficients fluctuate
between 0.19 and 0.47, with the lowest centralisation occurring during a
fragmentation period (2021-06) when the network contracted to just 9 con-
tributors. The mountain graph visualisation reveals that development leadership
shifts between a small set of core contributors (particularly Contributors A
through 0O), while 86 peripheral contributors remain marginalised. Network
evolution analysis shows cycles of expansion and contraction, with centrali-
sation typically increasing during growth phases. The core-periphery structure
reveals that while contributors are evenly split (48 core, 48 periphery), 98.1%
of all development activity originates from the core group, demonstrating
persistent concentration despite temporal fluctuations.

4.3. External influence

To examine the relationship between Lido’s protocol growth and its
open-source development activity, we conducted correlation and coin-
tegration analyses using monthly data on total value locked (TVL) and
contributors’ commit activity. As detailed in Section 3.5, we use commit
activity rather than the weighted activity index for this analysis. While
the weighted index captures overall engagement including discussion,
commit activity represents code changes that directly affect protocol
functionality. This distinction is empirically supported: weighted activ-
ity shows negligible correlation with TVL (Pearson r = —0.08, Spearman
p = —0.05), while commit activity demonstrates moderate positive
correlation (Pearson r = 0.46, Spearman p = 0.55). This suggests
that protocol value responds to deployed code changes rather than to
discussion volume.

The correlation analysis shows a moderate positive association be-
tween TVL and commit frequency, with a Pearson correlation coeffi-
cient of 0.46 and a Spearman rank correlation of 0.55. These values
indicate that increases in commit activity tend to align with periods of
higher TVL. However, the correlation is not strong enough to suggest
a direct or exclusive dependency, implying the presence of additional
influencing factors on both metrics.

To assess potential long-term relationships, we applied the Engle—
Granger cointegration test. The results indicate that log-transformed
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TVL and commit activity are cointegrated at the 5% significance level
(test statistic = —6.72, p-value < 0.001). This suggests a stable long-
term equilibrium between protocol value and development intensity.
While short-term deviations exist, the two variables tend to converge
over time, reflecting an underlying structural link shaped by ecosystem
expansion, protocol stability, and market dynamics.

Fig. 11 visualises these dynamics through two complementary anal-
yses. The top panel displays normalised time series of TVL and commit
activity from 2021 to 2025, revealing several periods of strong co-
movement. Notable alignment occurs during the 2023 growth phase,
where both metrics rise in tandem, while divergences appear during
market stress periods such as mid-2022. The bottom panel presents
the lag correlation analysis, examining correlation coefficients across
a range of —3 to +3 months. The analysis reveals a clear asymmet-
ric pattern: negative lags (where commits lead TVL) show stronger
correlations than positive lags. Specifically, the peak correlation of
0.618 occurs at lag —3, substantially higher than the contemporaneous
correlation of 0.46. This pattern strengthens progressively from lag 0
(0.46) to lag —1 (0.50), lag —2 (0.55), reaching maximum at lag —3
(0.618), before declining slightly at longer lags.

While short-term predictive causality is not supported — as con-
firmed by Granger causality tests — the moderate correlation and
evidence of cointegration indicate that Lido’s development activity and
TVL are interconnected over the long term. The lag analysis provides
crucial insight: the strongest correlation (0.618) at a 3-month lead
time suggests that development efforts systematically precede value ac-
crual in the protocol. This temporal relationship implies that sustained
development activity may serve as a leading indicator for protocol
growth, with technical improvements and feature implementations re-
quiring approximately three months to translate into increased protocol
adoption and value locked.

An examination of Lido’s development activity, measured through
commits and pull requests, also reveals meaningful patterns when
aligned with major market disruptions and governance interventions.
Beyond the expected increases in activity surrounding technical mile-
stones, several external events appear to correspond with shifts in
contributors’ behaviour. The selected events include:

Market Events

» May 9-13, 2022: Terra/Luna collapse causing stETH depeg event
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Normalised Time Series of Lido TVL and Contributor Commit Activity
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Fig. 11. Top: Normalised time series of Lido’s Total Value Locked (TVL) and contributor commit activity from 2021 to 2025. The chart highlights periods
of co-movement between protocol value and development efforts. Bottom: Lagged correlation between TVL and commit activity. The plot illustrates Pearson
correlation coefficients for lags ranging from —3 to +3 months. The highest correlation (0.618) is observed at lag —3, indicating that commit activity leads TVL

changes by approximately 3 months.

+ September 15, 2022: Ethereum Proof-of-Stake merge

» November 8-11, 2022: FTX collapse affecting stETH liquidity

» March 28, 2023: Lido surpassed 30% of all staked ETH on
Ethereum

« June 22, 2023: Exceeded $10 billion in TVL

+ April 10, 2024: Eigenlayer mainnet launch enabling restaking

» May 23, 2024: SEC approval of spot Ethereum ETFs

Governance Decisions

+ July 19, 2022: Dual Governance proposal passed

» December 21, 2022: Vote to phase out Lido on Solana

» February 7, 2023: Implementation of “Safe program” protocol
insurance

+ August 15, 2023: Governance vote on staking limits

» October 5, 2023: Passed LIP for Withdrawal Request System

During major market events, such as the Terra/Luna collapse in May
2022 and the FTX collapse in November 2022, we observe moderate
increases in development activity, as illustrated in the bottom panel of
Fig. 12.

The bottom panel specifically tracks market events against nor-
malised development activity (commits and pull requests), reveal-
ing distinct spikes that align with crisis periods. For instance, the
Terra/Luna collapse period (marked in May 2022) shows a notable
surge in both commit and pull request activity, while the FTX col-
lapse (November 2022) demonstrates a similar response pattern. These
periods were followed by increased development activity focused on
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addressing emerging risks, maintaining protocol stability, or mitigating
liquidity concerns. The visualisation clearly demonstrates that exoge-
nous market shocks can lead to concentrated bursts of contribution as
contributors work to sustain protocol functionality under stress.

Similarly, significant governance decisions correlate with elevated
development activity, as demonstrated in the top panel of Fig. 12.
The top panel presents governance-related events overlaid on the same
normalised development metrics, allowing for direct comparison with
market-driven responses. For example, the Dual Governance proposal
passed in July 2022 corresponds with a pronounced spike in both
commits and pull requests visible in the top panel, suggesting imme-
diate implementation efforts. The vote to phase out Lido on Solana in
December 2022 shows an even more dramatic increase in development
activity, with the top panel revealing sustained elevated activity levels
in the weeks following this decision. The “Safe program” implementa-
tion (February 2023) and the Withdrawal Request System LIP (October
2023) also show increased activity, though to varying degrees. These
spikes coincide with DAO-initiated decisions, suggesting an association
between governance activity and development intensity.

Overall, while routine development aligns with planned upgrades,
both market volatility and governance actions are associated with
periods of intensified activity. This dual dynamic — proactive execution
of roadmap objectives and reactive responses to external disruptions
— highlights the embeddedness of Lido’s development process within
broader ecosystem forces and DAO deliberations. These findings point
to a model of protocol maintenance in which contributor activity is
contingent on both internal planning cycles and governance and market
events.
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Phase out Solana
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Fig. 12. Development activity patterns overlaid with key external events. Top: Governance decisions and their impact on development activity. Bottom: Market
and ecosystem events including the Terra/Luna collapse, Ethereum Proof-of-Stake merge, FTX collapse, Eigenlayer mainnet launch, and Ethereum ETF approval.
Vertical lines mark event dates; activity patterns show commits and pull requests normalised to [0,1] range.

RQ3 asked: How do external market shocks and governance deci-
sions affect the distribution and temporal patterns of development
activity in Lido? Answer: External factors demonstrate significant influence
on development patterns, with TVL and commit activity showing moderate
correlation (Pearson 0.46, Spearman 0.55) and long-term cointegration at
the 5% significance level. The analysis reveals that commit activity leads TVL
changes by 3 months, suggesting development efforts precede value accrual.
Market crises such as the Terra/Luna collapse and FTX failure are followed by
development spikes, while governance decisions including the Dual Governance
proposal and Solana phase-out correlate with intensified development phases.
These patterns indicate that while Lido’s development responds to external
stimuli, the responses consistently rely on the same concentrated group of core
contributors, reinforcing rather than alleviating centralisation dynamics during
critical periods.

5. Discussion

The empirical evidence of development centralisation in Lido
supports the ‘decentralisation illusion’ identified in prior DeFi re-
search [17]. While the use of DAOs and token-based voting implies
distributed control, our analysis shows that core development remains
concentrated in a small group of contributors.

Our three research questions collectively reveal that not only is de-
velopment highly concentrated RQ1, but this concentration intensifies
as protocols mature RQ2, and external pressures that might be expected
to democratise participation instead reinforce existing power structures
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RQ3. The 3-month lead time between development activity and TVL
growth suggests that this concentrated contributor control is associated
with protocol value changes, creating a feedback loop where those who
control development also capture the benefits of growth.

The persistence of centralisation

The consistently high Gini coefficients observed over the 54-month
period, reaching 0.82 for weighted activity, show that centralisation
is a persistent structural feature, not a transitional phase. Moreover,
this concentration has intensified over time, with the Gini coefficient
rising from 0.686 during the bootstrap phase to 0.817 in the maturity
phase. Despite Lido’s size, maturity, and governance mechanisms, de-
velopment leadership rotates among a narrow set of individuals rather
than expanding to include peripheral contributors. This indicates that
current incentive structures do not support broader participation.

The core—periphery network structure reinforces this view. Al-
though core and peripheral contributors are numerically equal (48
each), their engagement is dramatically asymmetric: 98.1% of all
development activity originates from the core group. The presence of
moderate clustering (coefficient of 0.353) and negative degree assor-
tativity (—0.331) indicates a disassortative network where high-degree
core contributors connect primarily to low-degree peripheral contrib-
utors, reinforcing the hub-and-spoke topology that hinders upward
mobility from periphery to core.
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Governance-development disconnect

Governance decisions align with spikes in development activity,
but these are consistently executed by the same small set of core
contributors. In practice, decentralised governance acts as a coordi-
nation signal rather than a mechanism for redistributing development
responsibility. The cointegration between Total Value Locked (TVL)
and development activity further show this imbalance. Our analysis re-
veals that development activity leads TVL changes by approximately 3
months (correlation of 0.618 at lag —3), suggesting that while protocol
value increases alongside development intensity, authority over that
effort remains centralised. This feedback loop reinforces contributor
concentration as the protocol matures.

Structural drivers and risks

Network analysis clarifies how centralisation is sustained. Con-
tributors with high betweenness centrality dominate communication
flows (betweenness Gini of 0.854), effectively acting as gatekeepers
of technical knowledge and coordination. The low modularity (0.182)
and the fragmentation into 16 disconnected components, with 84.4%
of contributors in a single large component, limit the emergence of
specialised or autonomous working groups.

These structures present operational risks. A small number of con-
tributors oversee critical functions, creating a single point of failure.
While the responses to the Terra/Luna and FTX collapses show that
the core team can respond effectively, they also highlight the fragility
of relying on a few individuals during periods of stress or parallel crises.

Conceptual and methodological implications

This study shows that decentralised governance does not ensure de-
centralised development. Contributor activity in Lido follows a pattern
of structural inequality similar to that observed in traditional open-
source projects. To analyse decentralisation more precisely, we propose
distinguishing between governance, operational, and developmental
decentralisation, as these dimensions do not necessarily align.

Headline contributor counts obscure the concentration of meaning-
ful effort. In Lido, 98.1% of weighted activity originates from the core
group. This demonstrates the limits of participation-based metrics and
supports the use of weighted activity models. Our approach offers a
replicable framework for empirically assessing decentralisation across
DeFi and other blockchain ecosystems.

Efforts to reduce centralisation must address knowledge asymme-
tries and structural access. Modular codebases, rotating code review
authority, and mentorship pipelines can facilitate wider participation.
Without sustained measurement and institutional support, however,
decentralisation may remain more of a rhetorical claim than a practical
reality.

6. Threats to validity

While our empirical analysis provides robust evidence for develop-
ment centralisation in DeFi, several limitations should be acknowledged
within the context of our single-case study design.

Single protocol analysis. While single-case designs limit statistical gen-
eralisability, Lido represents a best-case scenario given its promi-
nence (largest liquid staking protocol by TVL), maturity (54-month
history), and DAO governance structure. If centralisation persists in
such favourable conditions, it likely exists across less mature or smaller
protocols, making this a particularly informative case for the ecosystem.
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GitHub activity as development proxy. Private communications and off-
platform coordination may influence development patterns not cap-
tured in public repositories. We mitigated this by focusing on Lido’s
primary repositories, where core protocol implementation occurs and
analysing multiple activity types (commits, pull requests, issues, com-
ments) to provide coverage of observable development activities. The
consistency of patterns across all activity types strengthens our confi-
dence in the findings.

Activity weighting scheme. Our weighting system (pull requests: 5, com-
mits: 3, issues: 2, comments: 1) reflects qualitative judgments about
contribution complexity. However, our extensive sensitivity analysis
(Section 3) using Monte Carlo simulation (10,000 iterations) and mul-
tiple weighting scenarios demonstrated that concentration patterns
persist across all reasonable weight configurations, with Gini coeffi-
cients consistently ranging from 0.799 to 0.865. This robustness check
validates our methodological choices.

Temporal aggregation. Monthly aggregation may obscure short-term
dynamics but provides appropriate balance between statistical stability
and temporal resolution. Our 54-month observation period captures
multiple development cycles, market crises (Terra/Luna, FTX), and
governance decisions, enabling robust identification of both trends and
event-driven patterns.

Network construction. Comment-based interaction networks assume co-
participation indicates meaningful collaboration. While this assumption
may not capture all forms of contributor interaction, the convergence
of findings across network metrics (betweenness Gini = 0.854) and
activity metrics (weighted Gini = 0.82) suggests that our network con-
struction captures meaningful patterns of centralisation. The consistent
identification of hub-and-spoke structures and core-periphery divisions
across different analytical approaches strengthens the validity of our
conclusions.

Despite these limitations inherent to single-case designs, our multi-
method approach, extensive temporal coverage, and convergent evi-
dence across different analytical frameworks provide strong support for
our conclusions. The case study methodology enables deep, contextual
understanding of development centralisation mechanisms that broader
but shallower analyses might miss. Future research should extend this
framework to multiple protocols to assess the generalisability of these
patterns across the DeFi ecosystem.

7. Conclusions

This study provides a detailed empirical assessment of decentral-
isation within the open-source development processes of DeFi proto-
cols, using Lido as a critical case study. Despite operating under a
decentralised governance framework and maintaining publicly acces-
sible code repositories, our analysis demonstrates that Lido’s devel-
opment activity is highly centralised. A small subset of core contrib-
utors accounts for the vast majority of meaningful technical actions,
with 98.1% of weighted development efforts originating from the core
group.

The application of distributional metrics, such as the Gini coeffi-
cient (0.82) and Herfindahl-Hirschman Index, consistently indicates
high levels of contributor concentration over time. Moreover, this
concentration has increased throughout the protocol’s evolution, rising
from 0.686 in the bootstrap phase to 0.817 in maturity. Interaction
network analysis reveals high centralisation in communication flows
(betweenness Gini = 0.854), with key contributors occupying central
coordination roles. The fragmentation into 16 disconnected compo-
nents and the stark core—periphery divide, where peripheral contribu-
tors are numerically equal but contribute only 1.9% of activity, reflect
structural barriers to broader participation.

These findings align with the concept of the “decentralisation illu-
sion”, where protocols branded as decentralised rely on centralised op-
erational structures. This poses risks to governance integrity, protocol
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sustainability, and resilience against contributor attrition or capture.
The 3-month lead time between development activity and TVL changes
further suggests that concentrated development control precedes value
accrual in the protocol.

Future research should expand this single-case study approach
across multiple DeFi protocols to determine whether similar patterns
persist throughout the ecosystem. Methodologically, large language
models could be used to semantically interpret commit messages and
code changes, enabling classification of contributions by type (e.g., se-
curity patches, feature additions, refactoring) and assessment of con-
tribution complexity beyond simple activity counts. Such approaches
would complement quantitative concentration metrics with qualitative
insights into the nature and impact of development work.

Additionally, exploring the impact of incentive mechanisms, gov-
ernance reforms, and community engagement strategies could offer
pathways to fostering more genuinely decentralised development envi-
ronments. For stakeholders and policymakers, these insights highlight
the importance of looking beyond governance tokens and DAOs when
assessing the true decentralisation of critical financial infrastructure in
the DeFi space.
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