

Research Articles | Systems/Circuits

Most ventral pallidal cholinergic neurons are bursting basal forebrain cholinergic neurons with mesocorticolimbic connectivity

<https://doi.org/10.1523/JNEUROSCI.0415-25.2026>

Received: 26 February 2025

Revised: 12 December 2025

Accepted: 2 January 2026

Copyright © 2026 Schlingloff et al.

This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International license](#), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

This Early Release article has been peer reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

1 **Most ventral pallidal cholinergic neurons are bursting basal forebrain cholinergic
2 neurons with mesocorticolimbic connectivity**

3 Abbreviated title: Ventral pallidal cholinergic neurons

4 Authors: Dániel Schlingloff^{1,2,#}, Írisz Szabó^{1,#}, Éva Gulyás^{1,2}, Bálint Király^{1,3}, Réka Kispál¹,
5 Marcus Stephenson-Jones⁴, Balázs Hangya^{1,5,*}

6 1, MTA–HUN-REN KOKI Lendület “Momentum” Laboratory of Systems Neuroscience, HUN-
7 REN Institute of Experimental Medicine, H-1083, Budapest, Hungary

8 2, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark

9 3, Institute of Artificial Intelligence, Medical University of Vienna, 1090 Vienna, Austria

10 4, Sainsbury Wellcome Centre, University College London, W1T 4JG, London, United Kingdom

11 5, Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090
12 Vienna, Austria

13 #, These authors contributed equally.

14 *, Correspondence: Balázs Hangya, balazs.hangya@meduniwien.ac.at

16 Number of pages: 25

17 Number of figures: 7

18 Number of tables: 0

19 Number of multimedia: 0

20 Number of 3D models: 0

21 Number of words for Abstract: 237

22 Number of words for Introduction: 643

23 Number of words for Discussion: 1288

24 The authors declare no financial interest.

26 **Acknowledgements**

27 We thank Katalin Lengyel for technical assistance in anatomical methods, and Anna Velencei and
28 Jaishree Biswakarma for their contributions to animal training. We thank the FENS-Kavli Network
29 of Excellence for fruitful discussions. This work was supported by the NKFIH K135561 and
30 K147097 grants of the National Research, Development and Innovation Office, the Hungarian
31 Brain Research Program NAP3.0 (NAP2022-I-1/2022) grant by the Hungarian Academy of
32 Sciences, the “Lendület” LP2024-8/2024 grant by the Hungarian Academy of Sciences and the
33 European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial
34 Intelligence National Laboratory. B.K. was supported by the Postdoctoral Fellowship of the

35 European Molecular Biology Organization (EMBO, grant no. ALTF 699-2025). D.S. was
36 supported by a Postdoctoral Fellowship from the Lundbeck Foundation (R483-2024-1854).

37 **Abstract**

38 The ventral pallidum (VP) lies at the intersection of basal ganglia and basal forebrain circuitry,
39 possessing attributes of both major subcortical systems. Basal forebrain cholinergic neurons are
40 rapidly recruited by reinforcement feedback and project to cortical and subcortical forebrain
41 targets; in contrast, striatal cholinergic cells are local interneurons exhibiting classical 'pause-
42 burst' responses to rewards. However, VP cholinergic neurons (VPCNs) are less characterized,
43 and it is unclear whether basal forebrain and striatal type cholinergic neurons mix in the VP.
44 Therefore, we performed anterograde and mono-transsynaptic retrograde labeling, *in vitro* acute
45 slice recordings and bulk calcium recordings of VPCNs in mice of either sex. We found that
46 VPCNs broadly interact with the mesocorticolimbic circuit that processes rewards and
47 punishments, targeting the basolateral amygdala, the medial prefrontal cortex and the lateral
48 habenula, while receiving inputs from the nucleus accumbens, hypothalamus, central amygdala,
49 bed nucleus of stria terminalis and the ventral tegmental area. Bulk calcium recordings revealed
50 that VPCNs responded to rewards, punishments and reward-predicting cues. Acute slice
51 recordings showed that most VPCNs resembled the bursting type of basal forebrain cholinergic
52 neurons (BFCNs), while a few of them were of the regular rhythmic type, which differentiated most
53 VPCNs from striatal cholinergic interneurons. These results were confirmed by *in vivo*
54 electrophysiological recordings of putative VPCNs. We conclude that VPCNs show burst firing
55 and specialized connectivity to relay aversive and appetitive stimuli to the reinforcement circuitry,
56 possibly implicated in mood disorders and addiction.

57

58 **Significance statement**

59 The ventral pallidum is a special brain area, being part of both the basal ganglia system implicated
60 in goal-directed behavior and the basal forebrain system implicated in learning and attention. It
61 houses, among others, neurons that release the neurotransmitter acetylcholine. While these
62 cholinergic neurons have distinct characteristics in other regions of the basal ganglia and basal
63 forebrain, it is unclear whether those in the ventral pallidum resemble one or the other or both.
64 Here we demonstrate that they are closer to basal forebrain cholinergic neurons both anatomically
65 and functionally, especially resembling a burst-firing subtype thereof. In accordance, we found
66 that they convey information about aversive and appetitive stimuli to the reinforcement circuitry,
67 possibly implicated in mood disorders and addiction.

68

69 **Introduction**

70 The ventral pallidum is considered as the major output structure of the ventral basal ganglia
71 (Maurice et al., 1997; Kupchik et al., 2015; Ahrens et al., 2016; Richard et al., 2016a; Stephenson-
72 Jones et al., 2020), thought to mediate the reinforcing and incentive properties of reward-
73 predicting cues and rewards (Tindell et al., 2005; Tachibana and Hikosaka, 2012; Ahrens et al.,
74 2018; Fujimoto et al., 2019; Ottenheimer et al., 2020a; Hegedüs et al., 2021) and drive reward-
75 seeking behaviors (Smith et al., 2009; Richard et al., 2016a, 2018; Ottenheimer et al., 2020b;
76 Stephenson-Jones et al., 2020; Hernandez-Jaramillo et al., 2024). A study further suggested that

77 the VP is monitoring information for upcoming choice behaviors, which it then relays to
78 downstream decision making areas (Ito and Doya, 2009).

79 At the same time, the VP is also categorized as part of the basal forebrain circuitry (Zaborszky et
80 al., 2012; Faget et al., 2018), integrating limbic and cognitive signals. Indeed, Avila and Lin found
81 that putative GABAergic VP neurons with a bursting phenotype resembled those of other basal
82 forebrain regions and shared their salience-coding properties (Lin and Nicolelis, 2008),
83 suggesting that salience information in the VP might be conveyed by afferents characteristic to
84 the basal forebrain (Avila and Lin, 2014). In line with this, while reward-related signals in the VP
85 were typically attributed to nucleus accumbens inputs (Kupchik et al., 2015; Root et al., 2015;
86 Creed et al., 2016; Pardo-Garcia et al., 2019), a study found earlier and stronger reward value
87 signals in the VP when performing a direct comparison with the accumbens (Ottenheimer et al.,
88 2018), raising the possibility that other afferents may play a major role in these rapid reward
89 responses (Ottenheimer et al., 2018; Soares-Cunha and Heinsbroek, 2023). Another study found
90 that somatostatin-expressing GABAergic VP neurons participate in controlling cortical gamma
91 oscillations (Espinosa et al., 2019), which is a well-established function of the basal forebrain's
92 cortical projections, implicated in controlling attention and arousal (Kim et al., 2015; Yang et al.,
93 2017; Király et al., 2023).

94 Interpreting the VP as a basal ganglia output has initially directed the focus to VP GABAergic
95 neurons (van den Bos and Cools, 1991; Soares-Cunha and Heinsbroek, 2023); however, the VP
96 contains considerable glutamatergic and cholinergic populations that have been addressed more
97 recently (Faget et al., 2018; Stephenson-Jones et al., 2020; Farrell et al., 2021). Stephenson-
98 Jones and colleagues found that both GABAergic and glutamatergic VP neurons can drive
99 movement, but they are active in opposite valance contexts: GABAergic cells represent positive
100 values and drive approach, while glutamatergic neurons represent negative values and drive
101 avoidance (Stephenson-Jones et al., 2020). Similar results were found in the context of cocaine
102 seeking (Heinsbroek et al., 2020), and it was shown that distinct inhibitory and excitatory VP
103 projections mediate different aspects of depression-like symptoms (Knowland et al., 2017) and
104 alcohol relapse (Prasad et al., 2020). Differential nucleus accumbens inputs to VP GABAergic vs.
105 glutamatergic neurons were proposed to at least partially underlie the above differences
106 (Neuhofer and Kalivas, 2023).

107 Comparably less is known about VP cholinergic neurons (Walaas and Fonnum, 1979; Zaborszky
108 et al., 2012; Root et al., 2015). Cholinergic-specific VP lesions increased active coping
109 mechanisms in fearful situations in mice (Akmese et al., 2023) and optogenetic stimulation of VP
110 to basolateral amygdala cholinergic projections reduced pain thresholds and increased
111 depression-like behaviors (Ji et al., 2023). Kim and colleagues found that this projection mostly
112 coded aversive information, while a distinct set of cholinergic neurons represented appetitive cues
113 in the context of odor discrimination (Kim et al., 2024).

114 However, a comprehensive account of the basal forebrain cholinergic population, including input-
115 output mapping and their functional positioning along the basal ganglia - basal forebrain axis is
116 missing, limiting the understanding of VP circuitry and functions. We fill this knowledge gap by
117 revealing VPCN input-output connectivity including long-range cortical projections and showing
118 that VPCNs show bursting responses to task-relevant salient stimuli.

120 **Materials and methods**

121 **Animals.**

122 For targeted in vitro electrophysiological characterization of VPCNs and CINs, fluorophor
123 expression in cholinergic neurons was driven by crossing ChAT-Cre and Ai32 (n = 4, 2/4 males,
124 P40-60) or ChAT-Flp and Ai213 mice (n = 1 male, P40). ChAT-Cre mice were used for the
125 characterisation of Reg- and Burst-BFCNs (n = 12, 7/12 males, p50-150). ChAT-Cre mice were
126 used for anterograde (n = 6, 4/6 males, P50-100) and retrograde (n = 6, 3/6 males, P50-100)
127 anatomical tracings. For the fiber photometry measurements, we used ChAT-Cre mice (n = 22,
128 14/22 males, P90-120). All experiments were conducted according to the regulations of the
129 European Community's Council Directive of 24 November 1986 (86/609/EEC); experimental
130 procedures were reviewed and approved by the Animal Welfare Committee of the Institute of
131 Experimental Medicine, Budapest and the Committee for Scientific Ethics of Animal Research of
132 the National Food Chain Safety Office.

133 **Surgeries and viruses.**

134 The mice were anesthetized using a ketamine-xylazine solution (83 mg/kg ketamine and 17 mg/kg
135 xylazine, prepared in 0.9% saline). After shaving and disinfecting the scalp with Betadine, the skin
136 and subcutaneous tissues were numbed topically with Lidocaine spray. The mice were then
137 positioned in a stereotaxic frame (Kopf Instruments), and their eyes were protected with
138 Corneregel eye ointment (Bausch & Lomb). A sagittal incision was made in the skin using a
139 surgical scalpel, exposing the skull, which was then cleaned. A craniotomy was drilled above the
140 targeted area. For anterograde and retrograde tracings the craniotomy was opened above the
141 ventral pallidum (VP, antero-posterior 0.5 mm; lateral 1 mm). Virus injections were performed for
142 anterograde and retrograde tracing using a stereotaxic frame and a programmable nanoliter
143 injector (Drummond Nanoject III). For anterograde tracing, AAV2/5.EF1a.Dio.hChR2(H134R)-
144 eYFP.WPRE.hGH (Addgene; titer $\geq 1 \times 10^{13}$ vg/mL) was injected into the VP at a dorso-ventral
145 depth of 4.20 mm (20-30 nl). Retrograde tracing involved sequential injections of AAV2/9-Syn-
146 FLEX-nGToG-WPRE3 (50 nl, Cat#BA-96, VCF of the Charité, Berlin) and, after a 4-week interval,
147 pSADB19dG-mCherry (100 nl, Cat#BR-001, VCF of the Charité, Berlin) at the same dorso-ventral
148 depth. Anterograde virus injections were allowed a 4-week expression period, whereas retrograde
149 tracings included a 9-day expression period following the rabies injection. For targeted in vitro
150 electrophysiological characterization of Reg- and Burst-BFCNs, AAV2/5-EF1a-DIO-
151 hChR2(H134R)-mCherry-WPRE-HGHpA was injected either into the caudal NB (antero-posterior
152 -0.9 mm, lateral 2.2 mm, 3- 4 dorso-ventral levels between 3.3 and 5 mm) or the horizontal limb
153 of the diagonal band of Broca (HDB, see also Table S1 for all abbreviations; antero-posterior 0.75
154 mm, lateral 0.6 mm, 2 dorso-ventral levels between 4.5 and 5.5 mm)(Laszlovszky et al., 2020).
155 For fiber photometry experiments, mice were injected with AAVD7/2-CAG-hsyn-jGCaMP8m(rev)-
156 dlox-WPRE-SV40r(A) (HDB and VP, 150 nL each side, HDB: antero- posterior 0.75 mm, lateral
157 -0.60 mm; dorso-ventral -4.7 mm, VP: antero- posterior -0.61 mm, lateral 1.00 mm; dorso-ventral
158 -4.5 mm). During fiber photometry surgeries, injections were followed by the bilateral implantation
159 of 400 μ m core diameter optic fibers with ceramic ferrules (HDB, antero-posterior 0.75 mm, lateral
160 -2.10 mm, dorso-ventral -4.5 mm; 20 degree lateral angle, VP, antero-posterior -0.61 mm, lateral
161 1.00 mm, dorso-ventral -4.3 mm; 0 degree lateral angle). The implant was secured to the skull
162 with Super-Bond (Sun Medical Co.) and dental cement. Mice received analgesics
163 (Buprenorphine, 0.1 mg/kg), local antibiotics (Gentamycin) and were allowed 10 days of recovery
164 before starting behavioral training. All experiments were concluded by transcardial perfusion, and
165 mouse brains were processed for further immunohistology experiments (see below).

166 **Behavioral training for fiber photometry**

167 Mice were trained on a head-fixed auditory Pavlovian conditioning task. The behavioral setup was
168 custom-built to allow millisecond precision control of stimulus and reinforcement timing (Solari et
169 al., 2018). Mice were subjected to a standard water restriction protocol prior to training and earned
170 small water rewards (4 μ L) during conditioning. Two pure tones of different pitch (4 and 12 kHz,
171 balanced across $n = 10$ and $n = 12$ mice; duration, 1s) predicted water reward or air-puff
172 punishment with 90% probability (10% omissions). Training started with Stage 0, in which mice
173 listened to Cue 1 that was paired with 90% water rewards and 10% omissions. In Stage 1, we
174 introduced Cue 2 (25% of all trials) but without the air puffs. In Stage 2, Cue 2 was paired with
175 90% air puff punishments and 10% omissions. In Stage 3, the proportion of Cue 2 trials was raised
176 to 40%. In the final stage (Stage 4), the two cue tones were presented in a randomized 50-50%
177 ratio. All tones were set to 65 dB SPL. After the onset of the tone, mice could lick a waterspout,
178 and individual licks were recorded by detecting when their tongues interrupted an infrared beam.
179 Following a 400-600 ms post-stimulus delay, the scheduled outcome (water, air-puff, or omission)
180 was delivered in pseudorandomized order based on the cue contingencies. Each new trial began
181 after the animal refrained from licking for a minimum of 2.5 seconds. A foreperiod of 2.5–5.5
182 seconds, determined by a truncated exponential distribution, preceded each stimulus to prevent
183 temporal expectations. Trials were restarted if the mouse licked during this foreperiod. Task
184 control was handled by the Bpod behavioral system (Sanworks LLC, US). Air-puffs, 200 ms in
185 duration, were delivered at 15 psi pressure, which stimulus was reported as aversive for head-
186 fixed mice (Najafi et al., 2014; Hangya et al., 2015).

187 **Fiber photometry imaging**

188 Dual-channel fiber photometry was used to monitor bilateral calcium activity, with fluorescence
189 signals visualized throughout training sessions using the Doric Studio Software (Doric
190 Neuroscience). Two LED sources (465 nm and 405 nm) were used in combination with
191 fluorescent Mini Cubes (iFMC4, Doric Neuroscience). Amplitude modulation of the LEDs was
192 achieved via a two-channel driver (LEDD_2, Doric Neuroscience), with 465 nm light modulated
193 at 208 Hz and 405 nm light modulated at 572 Hz. The light was delivered to 400 μ m patch cord
194 fibers and connected to optical implants during the sessions. The same fibers were used to collect
195 the fluorescence emitted from the tissue, which was detected by 500–550 nm photodetectors
196 integrated into the Mini Cubes. Signals were sampled at 12 kHz, digitally decoded, and saved in
197 *.csv format for later analysis.

198 **Perfusion**

199 Mice were anesthetized with 2% isoflurane followed by an intraperitoneal injection of a mixture of
200 ketamine-xylazine and promethazine-chloride (83 mg/kg, 17 mg/kg and 8 mg/kg, respectively).
201 After achieving deep anesthesia, mice were perfused transcardially (by placing the cannula into
202 the ascending part of the aorta via an incision placed on the left ventricle wall) with saline for 2
203 minutes, followed by 4% paraformaldehyde (PFA) solution for 40 minutes, then saline for 10
204 minutes. After perfusion, mice were decapitated, and brains were carefully removed from the skull
205 and postfixed in PFA overnight.

206 **Track verification for fiber photometry**

207 A block containing the full extent of the HDB and VP was prepared, and 50 μ m thick sections
208 were cut using a Leica 2100S vibratome. All attempts were made to section parallel to the

209 canonical coronal plane to aid track reconstruction efforts. All sections that contained the tracks
210 were mounted on slides in Aquamount mounting medium. Epifluorescence images of the sections
211 were taken with a Nikon C2 confocal microscope or Pannoramic Midi Slidescanner. Atlas images
212 were aligned to fluorescent images of the brain sections showing the fiber tracks and green
213 fluorescent labeling in the target area. Only those recordings that were unequivocally localized to
214 the HDB and VP were analyzed in this study.

215 **Anterograde and retrograde tracing**

216 In case of anterograde tracing experiments, coronal sections of 50 μ m thickness were cut by a
217 vibratome (Leica VT1200S). Sections were extensively washed in 0.1M PB and TBS and blocked
218 in 1% human serum albumin (HSA; Sigma-Aldrich) solution for 1 h. Then, sections were incubated
219 in primary antibodies against eGFP (Thermo Fisher Scientific, Cat#A10262, 1:2000, raised in
220 chicken; Table S2) for 48-60 hours. Sections were rinsed 3 times for 10 minutes in TBS; sec
221 ondary fluorescent antibodies were applied overnight (anti-chicken Alexa-488, Jackson
222 Immunoresearch, Cat#703-545-155, 1:1000; Table S2). Sections were rinsed in TBS and 0.1 M
223 PB and mounted on slides in Aquamount mounting medium (BDH Chemicals Ltd). Sections
224 containing the VP were incubated in primary antibody against ChAT (Synaptic Systems,
225 Cat#297013, 1:500, raised in rabbit, Table S2), and anti-rabbit Alexa-594 secondary antibody
226 (Thermo Fisher Scientific, Cat#A21207, 1:500, Table S2). After identifying brain regions with
227 strong axonal density, fluorescent images were taken with a Nikon A1R Confocal Laser Scanning
228 Microscope. In the target areas of the VPCNs, three fluorescent z-stack images were captured at
229 20x magnification from each animal in each region using a standardized volume. These stacks
230 were projected into single planes, and axonal density was quantified using the open-source
231 software *l*lastik, which is specifically designed for machine learning-based image processing.
232 (Berg et al., 2019). In our analysis, we used the Pixel Classification workflow, where axons were
233 manually annotated to train a classifier. This classifier then generated probability maps, assigning
234 each pixel a likelihood of representing an axon. These probability values were subsequently used
235 to estimate axonal densities for each sampled region. Compared to commonly used approaches
236 that rely on mean pixel brightness to estimate axonal density, this method provides a more reliable
237 and biologically meaningful measure, as it distinguishes axonal structures from background signal
238 and imaging noise.

239 In case of retrograde tracing experiments, coronal sections of 50 μ m thickness were cut by a
240 vibratome (Leica VT1200S). Sections were extensively washed in 0.1M PB and TBS and blocked
241 in 1% human serum albumin (HSA; Sigma-Aldrich) solution for 1 h. Then, sections were incubated
242 in primary antibodies against eGFP (Thermo Fisher Scientific, Cat#A10262, 1:2000, raised in
243 chicken, Table S2) and mCherry (Biovision, Cat#5993-100, 1:1000, raised in rabbit, Table S2) for
244 48-60 hours. Sections were rinsed 3 times for 10 minutes in TBS; secondary fluorescent
245 antibodies were applied overnight (anti-chicken Alexa-488, Jackson Immunoresearch, Cat#703-
246 545-155, 1:1000, anti-rabbit Alexa-594, Thermo Fisher Scientific, Cat#A21207, 1:500, Table S2).
247 Sections were rinsed in TBS and 0.1 M PB and mounted on slides in Aquamount mounting
248 medium (BDH Chemicals Ltd). Every second section was sampled to measure and estimate the
249 number of transsynaptically labeled input cells using a Zeiss Axioplan2 epifluorescent microscope
250 and a Pannoramic Digital Slide Scanner (3DHISTECH Kft., Hungary). We quantified labeled cells
251 across all brain regions containing input neurons. To control for variability in viral spread, we
252 normalized the data by calculating the percentage of labeled neurons in each input region relative
253 to the total number of labeled neurons for that animal. These percentages were then averaged

254 across animals. This approach reduces potential confounds related to injection site size or viral
255 efficiency, as the analysis relies on relative rather than absolute labeling.

256 **Acute in vitro slice preparation**

257 Mice were decapitated under deep isoflurane anesthesia, and the brains were rapidly removed
258 and placed in ice-cold cutting solution, pre-carbogenated (95% O₂–5% CO₂) for at least 30
259 minutes before use. The cutting solution consisted of (in mM): 205 sucrose, 2.5 KCl, 26 NaHCO₃,
260 0.5 CaCl₂, 5 MgCl₂, 1.25 NaH₂PO₄, and 10 glucose. Coronal slices, 300 µm thick, were prepared
261 using a Vibratome (Leica VT1200S). Following acute slice preparation, slices were transferred to
262 an interface-type holding chamber for at least one hour of recovery. This chamber contained
263 ACSF solution maintained at 35 °C, which gradually cooled to room temperature. The ACSF
264 solution consisted of (in mM): 126 NaCl, 2.5 KCl, 26 NaHCO₃, 2 CaCl₂, 2 MgCl₂, 1.25 NaH₂PO₄,
265 and 10 glucose, saturated with carbogen gas as described above.

266 **In vitro electrophysiology recordings**

267 Recordings were performed under visual guidance using Nikon Eclipse FN1 microscope with
268 infrared differential interference contrast (DIC) optics. The flow rate of the ACSF was 4–5 ml/min
269 at 30–32°C (Supertech Instruments, Pecs, Hungary). Patch pipettes were pulled from borosilicate
270 capillaries (with inner filament, thin-walled, outer diameter (OD) 1.5) with a PC-10 puller
271 (Narishige, Tokyo, Japan). Pipette resistances were 3–6 MΩ when filled with intrapipette solution.
272 The composition of the intracellular pipette solution was as follows (in mM): 54 d-gluconic acid
273 potassium salt, 4 NaCl, 56 KCl, 20 Hepes, 0.1 EGTA, 10 phosphocreatine di(tris) salt, 2 ATP
274 magnesium salt and 0.3 GTP sodium salt; with 0.2 % biocytin; adjusted to pH 7.3 using KOH and
275 with osmolarity of ~295 mOsm/l. Recordings were performed with a Multiclamp 700B amplifier
276 (Molecular Devices, San Jose, US), digitized at 10 or 20 kHz with Digidata analog-digital interface
277 (Molecular Devices), and recorded with pClamp11 Software suite (Molecular Devices).
278 Cholinergic neurons expressing GFP or mOrange were visualized with the aid of LED light
279 sources (Prizmatix Ltd., Holon, Israel) integrated into the optical light path of the microscope and
280 detected with a CCD camera (Andor Zyla, Oxford Instruments, UK). We applied a somatic current
281 injection protocol containing a 3-s-long, incremental ‘prepolarization’ step followed by a positive
282 square pulse (1 s), to elicit spiking starting from different membrane potentials as in (Laszlovszky
283 et al., 2020). Furthermore, we applied a simple step protocol consisting of a series of
284 hyperpolarizing and depolarizing steps, each lasting 1 second, to further determine the spiking
285 characteristics of distinct cholinergic cell types.

286 **Immunohistochemical identification of in vitro recorded cholinergic cells**

287 After acute slice electrophysiology experiments, brain sections were fixed overnight in 4% PFA.
288 Sections were extensively washed in 0.1M PB and TBS and blocked in 1% human serum albumin
289 (HSA; Sigma-Aldrich) solution for 1 h. Then, sections were incubated in primary antibody against
290 ChAT (Synaptic Systems, Cat#297013, 1:500, Table S2) for 48-60 hours. This step was followed
291 by thorough rinse with TBS (3 × 10 minutes) and overnight incubation with a mixture of anti-rabbit
292 Alexa-594 secondary antibody (Thermo Fisher Scientific, Cat#A21207, 1:500, Table S2) and
293 streptavidin-A488 (Invitrogen, Cat#S11223, 1:1000). We used 0.1% Triton-X detergent through
294 every incubation step due to the thickness of the brain section. Finally, sections were washed in
295 TBS and PB, mounted on microscopy slides, covered with Vectashield (Vector Laboratories Inc,
296 US) and imaged with a Nikon A1R confocal laser scanning microscope.

297 **Analysis of in vitro experiments**

298 All in vitro data were processed and analyzed offline using Python 3. Spike delay was defined as
299 the interval between the start of the 1-second positive current injection step and the peak time of
300 the first action potential (AP) and was calculated using the 'prepolarization' protocol. Burst
301 frequency was determined from the subsequent three inter-spike intervals (ISIs).
302 Autocorrelograms (ACGs) for each cell were computed using spikes evoked by simple step
303 protocols and were smoothed with a 5-ms moving average. A comprehensive set of
304 electrophysiological features was extracted using the Electophys Feature Extraction Library
305 (eFEL, (Ranjan et al., 2024), including after-hyperpolarization (AHP) properties, action potential
306 (AP) waveform metrics (amplitude, width, duration, rise/fall dynamics, and inter-AP differences),
307 interspike interval (ISI) statistics, spike count and timing measures, as well as passive membrane
308 properties (e.g., voltage deflection, sag, input resistance, and decay constants). These features
309 were derived from the first current injection step that elicited at least four action potentials in simple
310 step protocols. The resulting dataset was used for the low dimensional projection with Uniform
311 Manifold Approximation (UMAP, (McInnes et al., 2018)).

312 **Analysis of in vivo electrophysiology data**

313 *Recording, spike sorting and optotagging.* We used electrophysiology recordings collected in
314 Stephenson-Jones et al., 2020. In vivo recordings were conducted using custom-built screw-
315 driven microdrives with tetrodes attached to a 50 μ m optic fiber (Kvitsiani et al., 2013). Broadband
316 signals were filtered between 0.2 and 8500 Hz and recorded at 25 kHz sampling rate. Next, the
317 acquired signals were band-pass-filtered between 300-5000 Hz for spike detection and spike
318 waveforms were sorted offline using MClust v3.5 (A.D. Redish). Well-isolated units with Isolation
319 Distance over 20 and L-ratio under 0.1 were included based on amplitude and waveform energy
320 features (Schmitzer-Torbert et al., 2005). Putative GABAergic or glutamatergic neurons in the VP
321 were identified using ArchT-based optotagging (Courtin et al., 2013) in GAD2-IRES-Cre and
322 Vglut2-Cre mice, respectively. After behavioral recordings, green laser pulses (532 nm, 200 ms)
323 were delivered every 5 s for 100 trials. Neurons were considered tagged if their firing was rapidly
324 suppressed (<10 ms latency) and stayed below 0.5 Hz during stimulation. Hierarchical clustering
325 was performed on the first three principal components of neuronal responses to rewards and
326 punishments as in (Cohen et al., 2012), which identified four distinct functional classes. All
327 identified glutamatergic neurons belonged to Type II, while all identified GABAergic neurons
328 belonged to Types III and IV. Thus, Type I contained putative cholinergic neurons – the only class
329 that was characterized by activation after both rewards and punishments. Although an
330 unambiguous separation of cholinergic neurons based on simple electrophysiological signatures
331 has not been reported, they form separate principal component clusters in conditioning tasks
332 featuring rewards and punishments that allows a reliable separation (Hangya et al., 2015), similar
333 to the midbrain dopaminergic cell type (Cohen et al., 2012).

334 *Eye-blink tracking.* Data from (Stephenson-Jones et al., 2020) was used. Briefly, a CMOS camera
335 (QSIIC2) was used to track eye blinks. Videos were analyzed offline using EthoVision XT
336 software (Noldus; Wageningen, The Netherlands). Oval regions of interest (ROI) surrounding the
337 eye were drawn manually and pixels darker than the background (corresponding to the eye) were
338 detected. A threshold number of such pixels was used to define a blink.

339 *Auto-correlation analysis.* Data were processed in Matlab R2018a (Mathworks, Natick). Auto-
340 correlograms (ACG) were computed at 0.5 ms resolution and smoothed using a 2.5 ms (5-point)

341 moving average for visualization. Individual ACGs were normalized to their mean values, sorted
342 by Burst Index or refractory period, and averaged per group. The Burst Index was calculated as
343 the difference between the maximum ACG at 0-25 ms and the mean ACG at 180-200 ms,
344 normalized by the larger of these two values, yielding an index between -1 and 1 (modified from
345 (Laszlovszky et al., 2020) based on the slower bursts of VPCNs). The Theta Index was calculated
346 based on the difference between the mean ACG values within a ± 25 ms window around the 5-10
347 Hz theta peak (100-200 ms lags). Refractory periods were estimated by identifying low-probability
348 spiking intervals from the ACGs, using a 10 ms moving average to find the half-height point of the
349 ACG's central trough. This provided a measure of relative refractory periods rather than absolute
350 spike repolarization (Royer et al., 2012; Laszlovszky et al., 2020).

351 *Analysis of event-related firing rate changes.* First, we searched for minimal/maximal firing rates
352 as minimum/maximum values of peri-event time histograms (PETHs) within 500 ms from
353 rewards/punishments. For comparison, baseline firing was determined as the mean firing rate
354 from the 500 ms window prior to rewards/punishments. Next, the time course of
355 inhibition/activation was assessed by crossings of the half-distance between the extreme and the
356 baseline before and after the minimum/maximum. This temporal window of inhibition/activation
357 was then used to find corresponding intervals around local extremes in the baseline period. Spike
358 counts in these baseline periods and spike counts in the previously determined
359 inhibition/activation windows were then compared using one-sided Mann-Whitney U-test (due to
360 the asymmetric null hypothesis in each analysis). Significant firing rate changes were evaluated
361 at $p < 0.01$ to keep the false positive rate low. If both activation and inhibition reached significance,
362 the earlier one was designated as the primary response.

363 **Analysis of fiber photometry recordings**

364 *Pre-processing.* Matlab R2018a was used to process fiber photometry data, following the
365 procedures described in refs. (Lerner et al., 2015; Hegedüs et al., 2023). Animals with sufficient
366 viral expression in the target region, as well as successful surgical targeting that resulted in
367 measurable fluorescent signals were included in the analyses, resulting in $n = 21$ mice for VP-
368 specific analyses, $n = 16$ mice for HDB-specific analyses, and $n = 15$ mice for VP-HDB
369 comparisons. The fluorescence signals were digitally filtered below 20 Hz using a low-pass
370 Butterworth filter to remove high-frequency noise. The delta fluorescence (dF/F) signal was
371 computed by fitting a least-squares regression to the 405 nm isosbestic control signal and aligning
372 its baseline with that of the 465 nm calcium-dependent signal (f465). The normalized 405 nm
373 signal (f405,fitted) was then subtracted from the 465 nm signal as follows: $dF/F = (f465 -$
374 $f405,fitted) / f405,fitted * 100$, to account for motion artifacts and autofluorescence. Slow baseline
375 decay was corrected with a 0.2 Hz high-pass filter. The dF/F signals were Z-scored relative to the
376 mean and standard deviation of a baseline period (2 seconds before cue onset) for each trial.

377 *Peri-event time histograms.* The normalized photometry traces were averaged across trials. The
378 analysis included only the last 5 sessions where Cue 1 and Cue 2 occurred with equal (0.5)
379 probabilities. Response maxima, along with latency, duration, and area under the curve (AUC),
380 were computed as follows. Two time windows were defined for response (1 s relative from trigger)
381 and baseline (2 s before stimulus start), respectively. Analyses were run for rewarded and
382 punished trials, allowing for within-animal comparison across conditions. For each session, the
383 calcium trace was z-scored using a baseline window (2 s) measured during ITIs: $z = (trace -$
384 $mean(baseline)) / std(baseline)$. Peak value: the largest peak within the 1s analysis window was
385 identified using Matlab's max function. Area Under the Curve (AUC): the area under the signal

386 was computed around the main peak in a window between the half-maximum locations by
387 summing the dF/F values and dividing by the sampling rate. Duration of the response: the
388 temporal width (in ms) of the signal at half-maximum was used to define response duration.
389 Latency: the latency (in ms) of the largest peak was determined relative to the trigger event. In an
390 additional analysis, Cue 2 responses were further characterized in a trialwise manner by
391 comparing the maximum response value (0 to 0.5 s relative to stimulus) to baseline fluctuations
392 (-0.5 s to 0 relative to stimulus), and latency and duration were calculated only for animals showing
393 a significant increase relative to baseline.

394 *Cross-correlation analysis.* Sessions containing both cue types were included in the analysis.
395 Cross-correlations (CCG) between two photometry signals (VP and HDB) were computed at the
396 maximal time resolution allowed by the sampling rate (12048 Hz) using MATLAB's built-in xcorr.m
397 function, normalized to the autocorrelations at lag 0 (i.e., the signal magnitudes):

$$398 \hat{R}_{xy,norm}(t) = \frac{1}{\sqrt{\hat{R}_{xx}(0)\hat{R}_{yy}(0)}} \hat{R}_{xy}(t),$$

399 where $\hat{R}_{xy}(t)$ is the cross-correlation of the time series x and y at lag t . The cross-correlations
400 were calculated over the full length of the signal for each session. To reject common mode noise,
401 the central ± 20 ms window around 0-ms lag was excluded from the analysis. The resulting cross-
402 correlation curves were then truncated to a ± 10 second window and averaged across sessions.
403 Maximal CCG values as well as the time lag of maximal correlation were calculated for each
404 animal.

405 **Analysis of pupil dynamics**

406 To monitor pupil dynamics during behavioral training, we used a Flea3 FL3-U3-32S2M camera
407 focused on the mouse's eye. Video capture was synchronized with the fiber-photometry recording
408 through TTL signals, with a TTL pulse sent at the beginning of each frame and recorded at 59
409 FPS. The videos were analyzed offline using DeepLabCut (Mathis et al., 2018), which was trained
410 to track pupil edges at three diagonal points and eyelid positions. Pupil diameter was calculated
411 as the mean distance between the three diagonal points and interpolated to match the sampling
412 rate of the fiber-photometry data. Calcium transient peaks recorded in either the VP or the HDB
413 were used to calculate VP/HDB activity-evoked changes in pupil size. Transfer entropy values
414 were computed on the z-scored, downsampled, and discretized VP/HDB and pupil time series
415 using the PyInform Python library for information-theoretic measures of time-series data. During
416 discretization, the continuous data were divided into 200 equally spaced bins, and each data point
417 was assigned to its corresponding bin.

418 **Statistical Analysis**

419 We estimated the sample size before conducting the study based on previous publications
420 (Laszlovszky et al., 2020; Hegedüs et al., 2023) and corresponding statistical power estimations
421 (<https://github.com/hangyabalazs/statistical-power>). The study did not involve separate
422 experimental groups, so randomization and blinding were not relevant to the study. Automated
423 data analysis was conducted independently of neuron identity. For neurons with more than 50000
424 spikes, ACG calculation was capped at 50000 spikes to avoid memory limitations. Comparisons
425 between conditions were performed using non-parametric tests to avoid assumptions on
426 normality, which could not be confirmed statistically. The Wilcoxon signed-rank test was used for

427 paired samples, while the Mann-Whitney U-test was used for unpaired comparisons. Peri-event
428 time histograms (PETHs) were presented as mean \pm SE, while box plots showed median,
429 interquartile range, and non-outlier range, with all data points displayed.

430

431 **Results**

432 **Input-output connectivity of VPCNs reveal broad connections with the mesocorticolimbic
433 circuit**

434 Mapping of afferent and efferent connectivity of BFCNs have been carried out for the broadly
435 defined basal forebrain (Do et al., 2016; Hu et al., 2016); however, these experiments did not
436 include specific VP injections. Additionally, cholinergic output connectivity was determined for the
437 substantia innominata (SI), horizontal limb of the diagonal band of Broca (HDB) and medial
438 septum (MS) regions (Saper, 1984; Zaborszky et al., 2012; Agostinelli et al., 2019) but not for the
439 VP.

440 To fill this gap, we first performed anterograde tracing of VPCNs by injecting AAV2/5-EF1a-DIO-
441 EYFP in the VP region of ChAT-Cre mice (Fig.1A). We screened for the major anterograde
442 projections of VPCNs and then acquired high-resolution confocal images to assess axonal
443 projection density within these major target regions using a machine-learning-based
444 segmentation algorithm (see Methods). We found that VPCNs projected robustly to the
445 basolateral amygdala, the prefrontal cortex, and, to lesser extent, to the lateral habenula and the
446 parasubthalamic nucleus (Fig.1B-D). This projection pattern was concordant with general BFCN
447 projections to the prefrontal cortex and the amygdala.

448 Next, we performed input mapping of VPCNs by mono-transsynaptic rabies tracing (Fig.2A). We
449 found that VPCNs received the majority of their monosynaptic inputs from the nucleus
450 accumbens, the lateral hypothalamus, and the central amygdala, with smaller contributions from
451 the preoptic area, and the bed nucleus of stria terminalis (Fig.2B-E). This afferent connectivity
452 aligns with previously reported inputs to BFCNs (Do et al., 2016; Hu et al., 2016).

453 **Ventral pallidal cholinergic neurons resemble the bursting type of basal forebrain
454 cholinergic neurons**

455 BFCNs form two distinct cell types, a synchronous population of neurons that fire bursts that
456 correlate with cortical activity (Burst-BFCNs), and a regular rhythmic firing group of cells that
457 synchronizes with cortical activity in a behavior-predictive manner (Reg-BFCN) (Laszlovszky et
458 al., 2020; Lozovaya et al., 2024). The firing patterns of striatal cholinergic interneurons (CINs)
459 resemble that of Reg-BFCNs (Inokawa et al., 2010; Zhang et al., 2018; Cox and Witten, 2019).
460 We characterized intrinsic electrophysiological properties of VPCNs, BFCNs and CINs with
461 identical protocols to determine how VPCN activity is related to the above better-known
462 cholinergic populations. We included two separate striatal populations of dorsal CINs (dCINS)
463 recorded from the dorsal striatum and ventral CINs (vCINS) recorded from the nucleus
464 accumbens (Fig.3A-C).

465 We prepared acute slices from mice expressing fluorescent proteins selectively in cholinergic
466 neurons (see Methods) and performed whole-cell patch clamp recordings from $n = 20$ VPCNs.
467 These recordings were contrasted to novel acute slice recordings of dCINs ($n = 8$) and vCINs (n
468 = 13) as well as previously obtained traces (Laszlovszky et al., 2020) of Burst-BFCNs and Reg-

469 BFCNs ($n = 29$ and 31 , respectively; Fig.3D). Autocorrelations of VPCN activity during somatic
470 current injection protocols revealed a homogeneous bursting phenotype, resembling burst-
471 BFCNs of the HDB and SI (Fig.3E), markedly different from dCINS, vCINs and Reg-BFCNs.
472 However, VPCNs were differentiated from Burst-BFCNs by somewhat longer refractory periods
473 and lower maximal burst frequency (Fig.3G-I). In sum, VPCNs form a distinct group based on
474 their intrinsic electrophysiological properties, closely resembling Burst-BFCNs of the HDB and SI
475 (Fig.3J; Fig.S1C).

476 **VPCNs respond to rewards, punishments and reward-predicting cues**

477 To determine the behavioral correlates of VPCNs, we trained head-fixed mice on Pavlovian
478 conditioning, where two pure tones of different pitch (Cue1 and Cue2) predicted water reward or
479 air-puff punishment, respectively (Fig.4A). Mice learned these task contingencies, indicated by
480 preferential anticipatory licking after the reward-predicting tone (Fig.4B-C, Fig.S2A) and a
481 conditioned squinting response after the tone predicting air-puff punishment (Fig.S2C-G).

482 ChAT-Cre mice ($n = 22$) were injected with AAV D7/2-hSyn-dlox-GCaMP8-dlox-WPRE-SV40r(A)
483 to express the fluorescent calcium indicator GCaMP8 in VPCNs and implanted with optic fibers
484 in the VP and HDB regions on the two sides (Fig.4D). We performed fiber photometry recordings
485 of bulk calcium levels of cholinergic neurons while mice performed the Pavlovian task. We found
486 that both VPCNs and HDB cholinergic neurons (HDBCNs) consistently responded to cues,
487 rewards and punishments (Fig.4E-G; Fig.S3). While the reward-predicting Cue1 evoked large
488 increases of calcium in VPCNs, the punishment-predicting Cue2 induced smaller and more
489 variable responses (Fig.4F). Nevertheless, most mice showed a detectable peak response after
490 Cue 2 as well, allowing further quantification ($n = 16$ of 21 mice tested, $W < 88276$, $p < 0.05$,
491 Wilcoxon signed rank test; Fig.S4A-C). Overall, responses to Cue1 were significantly larger in
492 amplitude and integral, and longer in duration (Fig.4G; including mice with individually significant
493 Cue 2 response, Fig.S4D).

494 Both rewards and punishments evoked consistent, large increases in VPCN calcium signals. A
495 quantitative comparison revealed that reward responses were larger and faster than punishment
496 responses (Fig.4H-I).

497 Next, we directly compared VPCN calcium responses to parallel recordings from the HDB of the
498 basal forebrain (Fig.5). We found that the response patterns were qualitatively similar, including
499 cue, reward and punishment responses (Hegedüs et al., 2023). These signal correlations were
500 accompanied by consistent positive moment-by-moment noise correlations revealed by cross-
501 correlation analysis, showing a zero-lag positive correlation flanked by negative correlations
502 around a characteristic delay of approximately 0.8 s (-0.721 s and 0.861 s; Fig.5A-B). This
503 indicates an ongoing co-ordination of cholinergic neurons of the two regions, likely caused by
504 common excitatory inputs. However, a quantitative comparison uncovered notable differences as
505 well: while responses to the reward-predicting Cue1 were almost identical (Fig.5C,E), VPCNs
506 exhibited smaller responses to the punishment-predicting Cue2 (Fig.5D,F; Fig.S4E). While
507 reward-responses were much larger, longer and faster in VP (Fig.5G,I), the punishment
508 responses were comparable in amplitude but slower in the VP (Fig.5H,J). These results revealed
509 qualitatively similar response patterns in cholinergic neurons of the VP and the HDB, but also a
510 quantitative preference to appetitive stimuli in VPCNs.

511 **Most putative VPCNs show spike responses to salient stimuli**

512 To assess the spiking heterogeneity of VPCNs corresponding to these bulk calcium responses,
513 we analyzed the activity of putative VPCNs (pVPCNs) recorded in a similar Pavlovian conditioning
514 task. In this task, different auditory cues predicted large water reward, small reward or no reward,
515 large air-puff punishment, small punishment or no punishment in blocks of positive and negative
516 valence trials (Stephenson-Jones et al., 2020) (Fig.6A). It was demonstrated that VP neurons (n
517 = 331 from 6 mice) fell into four distinct response categories by hierarchical clustering of the first
518 three principal components of the Z-scored neuronal responses to reward and punishment (see
519 Fig.1. in (Stephenson-Jones et al., 2020)), and optogenetic tagging of glutamatergic and
520 GABAergic neurons unambiguously identified two clusters as GABAergic and one as
521 glutamatergic. The remaining ‘Type I’ neurons (n = 22 / 331) did not contain any glutamatergic or
522 GABAergic neurons and were therefore identified as pVPCNs (see Fig.S1 in (Stephenson-Jones
523 et al., 2020)).

524 We found that most pVPCNs showed precise reward and punishment responses similar to what
525 was shown for basal forebrain cholinergic neurons in multiple nuclei (Hangya et al., 2015;
526 Laszlovszky et al., 2020; Hegedüs et al., 2023) (Fig.6B-D). Most pVPCNs were activated by
527 rewards, punishments and conditioned stimuli, while a smaller population showed activation by
528 positive valence and inhibition by negative valence stimuli (Fig.6C-G). These responses were
529 unlike those described for CINs, especially regarding the well-characterized “pause-burst” reward
530 responses of CINs in dorsal striatum (Inokawa et al., 2010; Zhang et al., 2018; Cox and Witten,
531 2019). Nevertheless, a few pVPCNs showed more delayed and sustained reward-elicited firing
532 rate increase resembling those of CINs (Fig. S5A-B). These two types could even be recorded
533 concurrently on the same electrode, suggesting that they are spatially mixed.

534 We also examined the autocorrelation of pVPCNs. Consistent with our in vitro recording, most
535 pVPCNs showed a bursting in vivo firing pattern with a refractory period that was somewhat longer
536 than what was previously shown for burst-BFCNs (Fig.6H-I) (Laszlovszky et al., 2020). Indeed,
537 when we categorized pVPCNs to strongly bursting Burst-pVPCNs (Burst-pVPCN-SB), Poisson-
538 like Burst-pVPCNs (Burst-pVPCN-PL) and regular rhythmic pVPCNs (Reg-pVPCNs) based on
539 their burstiness and refractory period as was done for BFCNs (Laszlovszky et al., 2020), we found
540 n = 11/22 Burst-pVPCN-SB and n = 10/22 Burst-pVPCN-PL neurons, a firing pattern distribution
541 resembling cholinergic neurons of the HDB (Fig.6J-K). Corroborating that a small fraction of
542 VPCNs might be CIN-like, one pVPCN showed long refractory and theta-rhythmicity characteristic
543 of both CINs and reg-BFCNs (n = 1/22 Reg-pVPCN).

544 **Pupil size correlates with VPCN activity**

545 Changes in pupil diameter under constant illumination were shown to be predicted by cholinergic
546 transients originating from the basal forebrain (Nelson and Mooney, 2016; Reimer et al., 2016;
547 Jing et al., 2020; Neyhart et al., 2024). We tested whether VPCN activity correlated with changes
548 in pupil diameter as well, by monitoring pupil diameter in parallel with VPCN and HDBCN bulk
549 calcium signals (n = 12 mice, Fig.7A-C).

550 As expected, pupil dilations were temporally predicted by calcium transients recorded in HDBCNs
551 of the basal forebrain. Similarly, we found that VPCN calcium peaks showed a comparable level
552 of correlation with forthcoming pupil dilations (Fig.7B-D). To perform a quantitative comparison of
553 the predictive value of VPCN and HDBCN signals, we calculated transfer entropy (TE), an
554 information theory measure of predictability across time series that is not restricted to the linear
555 domain (Gourévitch and Eggermont, 2007) (Fig.7E). As expected based on the above temporal

556 dynamics, prediction of the pupil size based on cholinergic signals (HDB to pupil TE and VP to
557 pupil TE) were characterized by the highest TE values. At the same time, VPCNs showed
558 comparable predictive values in terms of pupil size as the HDBCNs (Fig.7F). These results
559 revealed that cholinergic neurons of the VP showed correlations with pupil dynamics.

560

561 **Discussion**

562 We demonstrated that most VPCNs belong to the basal forebrain cholinergic projection system
563 based on their hodology, intrinsic biophysical properties and *in vivo* physiological responses to
564 behaviorally salient appetitive and aversive events.

565 The mediodorsal thalamus is considered a primary output of VP, along with parts of the reticular
566 and paraventricular thalamic regions (Zahm et al., 1996; Tripathi et al., 2013; Root et al., 2015).
567 The VP also sends important projections to the lateral habenula and the VTA, which were shown
568 to express PV and contain both GABAergic and glutamatergic components, linked to different
569 aspects of depression (Knowland et al., 2017). Additionally, the VP sends topographically
570 organized projections to the lateral hypothalamus and GABAergic efferents to the subthalamic
571 nucleus, and projects back robustly to the nucleus accumbens, its major source of afferents (Root
572 et al., 2015; Soares-Cunha et al., 2022; Domingues et al., 2023). While most of these projections
573 are considered GABAergic, a strong cholinergic component of the VP to BLA pathway has been
574 described (Root et al., 2015; Kim et al., 2024), while a cholinergic cortical projection was also
575 assumed (Zaborszky et al., 2012). Concerning BFCNs, Do and colleagues characterized whole-
576 brain distribution of axonal projections and found the hippocampus, piriform area, ventral striatum,
577 amygdala and neocortical regions as main BFCN targets, though these were not stratified
578 according to input cell location within the BF (Do et al., 2016). Except for an absence of
579 hippocampal targets that are known to receive their cholinergic input from rostral BF (Agostinelli
580 et al., 2019), we found VPCN projections consistent with BFCN outputs.

581 The densest input to VP is provided by GABAergic fibers from the nucleus accumbens,
582 complemented by VTA/SNC dopaminergic, dorsal raphe serotonergic, STN glutamatergic,
583 infralimbic cortical and amygdalar afferents (Root et al., 2015). It has been shown that besides
584 dopaminergic, the VTA also provides GABAergic and glutamatergic VP inputs (Hnasko et al.,
585 2012; Root et al., 2015). Whole-brain monosynaptic inputs to BFCNs were described by Hu et al.
586 (Hu et al., 2016), pointing to the caudoputamen, central amygdala, lateral hypothalamus, nucleus
587 accumbens and VTA as major sources of afferents, in line with earlier reports (Zaborszky and
588 Cullinan, 1992). We found that VPCNs received most of their monosynaptic inputs from nucleus
589 accumbens, lateral hypothalamus and central amygdala, consistently with BFCNs in general.
590 Although whole-brain studies identified some cortical input sources to BFCNs (Do et al., 2016; Hu
591 et al., 2016), the classical view holds that most cortical basal forebrain inputs are from the
592 prefrontal cortex arriving onto GABAergic BF neurons, thus BFCNs only receive indirect cortical
593 inputs via local inhibitory cells (Gaykema and Zaborszky, 1997; Zaborszky et al., 1997, 2012). In
594 line with the latter, we did not identify direct cortical inputs to VPCNs. In summary, input-output
595 mapping of VPCNs suggests that they are full-fledged members of the basal forebrain cholinergic
596 projection system.

597 BFCNs were shown to be either early or late firing in acute slice experiments (Unal et al., 2012),
598 and later demonstrated to form two distinct types of regular rhythmic and bursting neurons
599 (Khateb et al., 1992; Alonso et al., 1996; Szymusiak et al., 2000) both in the nucleus basalis and

600 in the HDB *in vivo* (Laszlovszky et al., 2020). Striatal cholinergic interneurons resemble Reg-
601 BFCNs regarding their firing patterns in their slow-theta rhythmicity and long functional refractory
602 period (Inokawa et al., 2010; Laszlovszky et al., 2020). We found that most VPCNs *in vitro* as well
603 as pVPCNs *in vivo* showed bursting properties like Burst-BFCNs, with a few exceptions that fired
604 like Reg-BFCNs and CINs. Of note, VPCNs showed slightly but distinctively longer refractory
605 periods in their auto-correlograms than BFCNs, the significance of which should be determined
606 by future studies. These results suggest that most VPCNs fire in accordance with a topographical
607 antero-posterior gradient of bursting cholinergic neurons within the basal forebrain (Laszlovszky
608 et al., 2020).

609 VPCNs responded to rewards, punishments and reward-predicting stimuli, consistent with both
610 BFCN (Lovett-Barron et al., 2014; Hangya et al., 2015; Harrison et al., 2016; Sturgill et al., 2020;
611 Robert et al., 2021; Allard and Hussain Shuler, 2023; Hegedüs et al., 2023) and VP function in
612 reward coding, motivation and associative learning (Tindell, 2004; Smith et al., 2009; Wassum et
613 al., 2009; Richard et al., 2016b, 2018; Saga et al., 2017; Wulff et al., 2019; Ottenheimer et al.,
614 2020a; Stephenson-Jones et al., 2020; Hegedüs et al., 2021; Soares-Cunha et al., 2022). When
615 we performed a direct comparison with the HDB nucleus of the BF in Pavlovian conditioning, we
616 found that VPCN and HDBCN calcium signals were robustly positively correlated. Nevertheless,
617 bulk calcium recordings also revealed a bias in VPCNs toward reward responses, with faster and
618 larger calcium responses to rewards but slower responses to punishments. This is in line with the
619 known importance of VP in the reward aspects of learning (Tindell et al., 2006; Smith et al., 2009;
620 Prasad et al., 2020), recent findings on the role of HDB in aversive coding and learning from
621 negative experience (Hangya et al., 2015; Hegedüs et al., 2024), and supports the conclusion of
622 Ottenheimer et al. that the VP processes certain aspects of reward independently of the nucleus
623 accumbens, based on faster and more robust reward responses in the VP (Ottenheimer et al.,
624 2018). Indeed, our results suggest that faster-than-striatal reward responses in the VP may arrive
625 through VPCNs.

626 Spike responses of most pVPCNs to rewards, punishments and conditioned stimuli showed
627 temporal dynamics characteristic to other basal forebrain cholinergic neurons (Hangya et al.,
628 2015; Sturgill et al., 2020; Hegedüs et al., 2023), while a few neurons exhibited striatal-like pause-
629 burst responses to rewards (Inokawa et al., 2010). Most VPCNs showed correlated responses to
630 positive and negative valence stimuli (Stephenson-Jones et al., 2020) similar to BFCNs (Hangya
631 et al., 2015; Sturgill et al., 2020; Hegedüs et al., 2023), while a few VPCNs exhibited strong bias
632 towards positive or negative outcomes, in line with a recent study that used olfactory stimuli (Kim
633 et al., 2024). These results suggest an involvement of VPCNs in explicit learning likely including
634 fear learning (Akmese et al., 2023; Ji et al., 2023), similar to what was shown for BFCNs in general
635 (Letzkus et al., 2011; Jiang et al., 2016).

636 The bias towards rewarding stimuli seen in the bulk calcium recordings was not obvious for the
637 average spiking response of pVPCNs, which could be due to a number of reasons. First, there
638 was a larger fraction of punishment-inhibited than reward-inhibited neurons (23% vs 9%), that
639 may have affected the cell-type-averaged bulk calcium signal. Second, fast spiking responses
640 might have been low-pass filtered by slower biophysical processes, including the dynamics of
641 neurotransmitter spillover and fluorescent dye kinetics. Third, while the reward magnitude was
642 comparable across experiments, the more aversive strong air-puffs in the electrophysiology
643 experiments could be a contributor to the larger punishment responses at the individual cellular

644 level. Fourth, we cannot fully rule out that small differences of recording locations within the VP
645 contributed to the differences.

646 Changes in pupil size under constant illumination has been linked to multiple neuromodulatory
647 systems (Larsen and Waters, 2018) including noradrenergic (Reimer et al., 2016; de Gee et al.,
648 2017; Bang et al., 2023), cholinergic (Nelson and Mooney, 2016; Reimer et al., 2016; Jing et al.,
649 2020; Neyhart et al., 2024) and serotonergic (Cazettes et al., 2021) activity, and were recently
650 shown to reflect learning (Lee and Margolis, 2016) and consolidation processes (Chang et al.,
651 2025) of associative memories. A difference in the time lag between acetylcholine rise and pupil
652 dilation across different cortical areas suggested that different parts of the cholinergic system may
653 have distinct temporal correlations with pupil size (Neyhart et al., 2024). We tested this by
654 correlating VPCN and HDBCN activity with pupil diameter and found comparable predictive value
655 of the two cholinergic signals in forecasting pupil dilations.

656

657 **References**

658 Agostinelli LJ, Geerling JC, Scammell TE (2019) Basal forebrain subcortical projections. *Brain*
659 *Struct Funct* 224:1097–1117.

660 Ahrens AM, Ferguson LM, Robinson TE, Aldridge JW (2018) Dynamic encoding of incentive
661 salience in the ventral pallidum: Dependence on the form of the reward cue. *eNeuro* 5:1–
662 16.

663 Ahrens AM, Meyer PJ, Ferguson LM, Robinson TE, Wayne Aldridge J (2016) Neural activity in
664 the ventral pallidum encodes variation in the incentive value of a reward cue. *J Neurosci*
665 36:7957–7970.

666 Akmese C, Sevinc C, Halim S, Unal G (2023) Differential role of GABAergic and cholinergic
667 ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping.
668 *Prog Neuro-Psychopharmacol Biol Psychiatry* 125:110760.

669 Allard S, Hussain Shuler MG (2023) Cholinergic Reinforcement Signaling Is Impaired by
670 Amyloidosis Prior to Its Synaptic Loss. *J Neurosci* 43:6988–7005.

671 Alonso A, Khateb A, Fort P, Jones BE, Mühlethaler M (1996) Differential Oscillatory Properties
672 of Cholinergic and Non-cholinergic Nucleus Basalis Neurons in Guinea Pig Brain Slice. *Eur*
673 *J Neurosci* 8:169–182.

674 Avila I, Lin S-C (2014) Distinct neuronal populations in the basal forebrain encode motivational
675 salience and movement. *Front Behav Neurosci* 8:421.

676 Bang D et al. (2023) Noradrenaline tracks emotional modulation of attention in human
677 amygdala. *Curr Biol* 33:5003-5010.e6.

678 Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T,
679 Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U,
680 Hamprecht FA, Kreshuk A (2019) ilastik: interactive machine learning for (bio)image
681 analysis. *Nat Methods* 16:1226–1232.

682 Cazettes F, Reato D, Morais JP, Renart A, Mainen ZF (2021) Phasic Activation of Dorsal Raphe
683 Serotonergic Neurons Increases Pupil Size. *Curr Biol* 31:192-197.e4.

684 Chang H, Tang W, Wulf AM, Nyasulu T, Wolf ME, Fernandez-Ruiz A, Oliva A (2025) Sleep

685 microstructure organizes memory replay. *Nature*.

686 Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for
687 reward and punishment in the ventral tegmental area. *Nature* 482:85–88.

688 Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton
689 J, Bienvenu TCM, Herry C (2013) Prefrontal parvalbumin interneurons shape neuronal
690 activity to drive fear expression. *Nature*.

691 Cox J, Witten IB (2019) Striatal circuits for reward learning and decision-making. *Nat Rev
692 Neurosci* 20:482–494.

693 Creed M, Ntamati NR, Chandra R, Lobo MK, Lüscher C (2016) Convergence of Reinforcing and
694 Anhedonic Cocaine Effects in the Ventral Pallidum. *Neuron* 92:214–226.

695 de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH (2017)
696 Dynamic modulation of decision biases by brainstem arousal systems. *Elife* 6:1–36.

697 Do JP, Xu M, Lee S, Chang W, Zhang S, Chung S, Yung TJ, Fan JL, Miyamichi K, Luo L, Dan Y
698 (2016) Cell type-specific long-range connections of basal forebrain circuit. *Elife* 5:1–17.

699 Domingues AV, Rodrigues AJ, Soares-Cunha C (2023) A novel perspective on the role of
700 nucleus accumbens neurons in encoding associative learning. *FEBS Lett* 597:2601–2610.

701 Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P (2019) Basal forebrain somatostatin cells
702 differentially regulate local gamma oscillations and functionally segregate motor and
703 cognitive circuits. *Sci Rep* 9:1–12.

704 Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, Yoo JH, Dulcis D,
705 Hnasko TS (2018) Opponent control of behavioral reinforcement by inhibitory and
706 excitatory projections from the ventral pallidum. *Nat Commun* 9:849.

707 Farrell MR, Esteban JSD, Faget L, Floresco SB, Hnasko TS, Mahler S V. (2021) Ventral
708 Pallidum GABA Neurons Mediate Motivation Underlying Risky Choice. *J Neurosci*
709 41:4500–4513.

710 Fujimoto A, Hori Y, Nagai Y, Kikuchi E, Oyama K, Suhara T, Minamimoto T (2019) Signaling
711 incentive and drive in the primate ventral pallidum for motivational control of goal-directed
712 action. *J Neurosci* 39:1793–1804.

713 Gaykema RP, Zaborszky L (1997) Parvalbumin-containing neurons in the basal forebrain
714 receive direct input from the substantia nigra-ventral tegmental area. *Brain Res* 747:173–
715 179.

716 Gourévitch B, Eggermont JJ (2007) Evaluating information transfer between auditory cortical
717 neurons. *J Neurophysiol* 97:2533–2543.

718 Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central Cholinergic Neurons Are Rapidly
719 Recruited by Reinforcement Feedback. *Cell* 162:1155–1168.

720 Harrison TC, Pinto L, Brock JR, Dan Y (2016) Calcium Imaging of Basal Forebrain Activity
721 during Innate and Learned Behaviors. *Front Neural Circuits* 10:1–12.

722 Healy J, McInnes L (2024) Uniform manifold approximation and projection. *Nat Rev Methods
723 Prim* 4:82.

724 Hegedüs P, Heckenast J, Hangya B (2021) Differential recruitment of ventral pallidal e-types by

725 behaviorally salient stimuli during Pavlovian conditioning. *iScience* 24:102377.

726 Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó I, Mayer MI, Zelenak Z, Nyiri
727 G, Hangya B (2024) Parvalbumin-expressing basal forebrain neurons mediate learning
728 from negative experience. *Nat Commun* 15:4768.

729 Hegedüs P, Sviatkó K, Király B, Martínez-Bellver S, Hangya B (2023) Cholinergic activity
730 reflects reward expectations and predicts behavioral responses. *iScience* 26:105814.

731 Heinsbroek JA, Bobadilla AC, Dereschewitz E, Assali A, Chalhoub RM, Cowan CW, Kalivas PW
732 (2020) Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the
733 Ventral Pallidum. *Cell Rep* 30:2018-2027.e3.

734 Hernandez-Jaramillo A, Illescas-Huerta E, Sotres-Bayon F (2024) Ventral Pallidum and
735 Amygdala Cooperate to Restrain Reward Approach under Threat. *J Neurosci*
736 44:e2327232024.

737 Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral Tegmental Area Glutamate
738 Neurons: Electrophysiological Properties and Projections. *J Neurosci* 32:15076–15085.

739 Hu R, Jin S, He X, Xu F, Hu J (2016) Whole-Brain Monosynaptic Afferent Inputs to Basal
740 Forebrain Cholinergic System. *Front Neuroanat* 10:1–10.

741 Inokawa H, Yamada H, Matsumoto N, Muranishi M, Kimura M (2010) Juxtacellular labeling of
742 tonically active neurons and phasically active neurons in the rat striatum. *Neuroscience*
743 168:395–404.

744 Ito M, Doya K (2009) Validation of decision-making models and analysis of decision variables in
745 the rat basal ganglia. *J Neurosci* 29:9861–9874.

746 Ji Y-W, Shen Z-L, Zhang X, Zhang K, Jia T, Xu X, Geng H, Han Y, Yin C, Yang J-J, Cao J-L,
747 Zhou C, Xiao C (2023) Plasticity in ventral pallidal cholinergic neuron-derived circuits
748 contributes to comorbid chronic pain-like and depression-like behaviour in male mice. *Nat
749 Commun* 14:2182.

750 Jiang L, Kundu S, Lederman JD, López-Hernández GY, Ballinger EC, Wang S, Talmage DA,
751 Role LW (2016) Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances
752 Plasticity of Cortical-Amygdala Circuits. *Neuron* 90:1057–1070.

753 Jing M et al. (2020) An optimized acetylcholine sensor for monitoring *in vivo* cholinergic activity.
754 *Nat Methods* 17:1139–1146.

755 Khateb A, Mühlethaler M, Alonso A, Serafin M, Mainville L, Jones BE (1992) Cholinergic
756 nucleus basalis neurons display the capacity for rhythmic bursting activity mediated by low-
757 threshold calcium spikes. *Neuroscience* 51:489–494.

758 Kim R, Ananth MR, Desai NS, Role LW, Talmage DA (2024) Distinct subpopulations of ventral
759 pallidal cholinergic projection neurons encode valence of olfactory stimuli. *Cell Rep*
760 43:114009.

761 Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B,
762 Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically
763 projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations.
764 *Proc Natl Acad Sci* 112:3535–3540.

765 Király B, Domonkos A, Jelitai M, Lopes-dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff

766 D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V,
767 Hangya B (2023) The medial septum controls hippocampal supra-theta oscillations. *Nat*
768 *Commun* 14:6159.

769 Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EHJ, Lim BK (2017) Distinct Ventral
770 Pallidal Neural Populations Mediate Separate Symptoms of Depression. *Cell* 170:284-
771 297.e18.

772 Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the
773 direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. *Nat*
774 *Neurosci* 18:1230–1232.

775 Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepcs A (2013) Distinct behavioural
776 and network correlates of two interneuron types in prefrontal cortex. *Nature* 498:363–366.

777 Larsen RS, Waters J (2018) Neuromodulatory Correlates of Pupil Dilation. *Front Neural Circuits*
778 12:1–9.

779 Laszlovszky T, Schlingloff D, Hegedüs P, Freund TF, Gulyás A, Kepcs A, Hangya B (2020)
780 Distinct synchronization, cortical coupling and behavioral function of two basal forebrain
781 cholinergic neuron types. *Nat Neurosci* 23:992–1003.

782 Lee CR, Margolis DJ (2016) Pupil Dynamics Reflect Behavioral Choice and Learning in a
783 Go/NoGo Tactile Decision-Making Task in Mice. *Front Behav Neurosci* 10:1–14.

784 Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka
785 RC, Luo L, Tomer R, Deisseroth K (2015) Intact-Brain Analyses Reveal Distinct Information
786 Carried by SNC Dopamine Subcircuits. *Cell* 162:635–647.

787 Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, Lüthi A (2011) A disinhibitory
788 microcircuit for associative fear learning in the auditory cortex. *Nature* 480:331–335.

789 Lin S-C, Nicolelis M a L (2008) Neuronal ensemble bursting in the basal forebrain encodes
790 salience irrespective of valence. *Neuron* 59:138–149.

791 Lovett-Barron M, Kaifosh P, Kheirbek M a, Danielson N, Zaremba JD, Reardon TR, Turi GF,
792 Hen R, Zemelman B V, Losonczy A (2014) Dendritic inhibition in the hippocampus
793 supports fear learning. *Science* (80-) 343:857–863.

794 Lozovaya N, Moumen A, Hammond C (2024) Basal Forebrain Cholinergic Neurons Have
795 Specific Characteristics during the Perinatal Period. *eneuro* 11:ENEURO.0538-23.2024.

796 Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018)
797 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
798 *Nat Neurosci* 21:1281–1289.

799 Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1997) Position of the ventral
800 pallidum in the rat prefrontal cortex-basal ganglia circuit. *Neuroscience* 80:523–534.

801 McInnes L, Healy J, Melville J (2018) UMAP: Uniform Manifold Approximation and Projection for
802 Dimension Reduction. *arXiv*:1–63.

803 Najafi F, Giovannucci A, Wang SSH, Medina JF (2014) Coding of stimulus strength via analog
804 calcium signals in Purkinje cell dendrites of awake mice. *Elife* 3:e03663.

805 Nelson A, Mooney R (2016) The Basal Forebrain and Motor Cortex Provide Convergent yet
806 Distinct Movement-Related Inputs to the Auditory Cortex. *Neuron* 90:635–648.

807 Neuhofer D, Kalivas P (2023) Differential Modulation of GABAergic and Glutamatergic Neurons
808 in the Ventral Pallidum by GABA and Neuropeptides. *eneuro* 10:ENEURO.0404-22.2023.

809 Neyhart E, Zhou N, Munn BR, Law RG, Smith C, Mridha ZH, Blanco FA, Li G, Li Y, Hu M,
810 McGinley MJ, Shine JM, Reimer J (2024) Cortical acetylcholine dynamics are predicted by
811 cholinergic axon activity and behavior state. *Cell Rep* 43:114808.

812 Ottenheimer D, Richard JM, Janak PH (2018) Ventral pallidum encodes relative reward value
813 earlier and more robustly than nucleus accumbens. *Nat Commun* 9:4350.

814 Ottenheimer DJ, Bari BA, Sutlief E, Fraser KM, Kim TH, Richard JM, Cohen JY, Janak PH
815 (2020a) A quantitative reward prediction error signal in the ventral pallidum. *Nat Neurosci*
816 23:1267–1276.

817 Ottenheimer DJ, Wang K, Tong X, Fraser KM, Richard JM, Janak PH (2020b) Reward activity in
818 ventral pallidum tracks satiety-sensitive preference and drives choice behavior. *Sci Adv*
819 6:27–30.

820 Pardo-Garcia TR, Garcia-Keller C, Penaloza T, Richie CT, Pickel J, Hope BT, Harvey BK,
821 Kalivas PW, Heinsbroek JA (2019) Ventral pallidum is the primary target for accumbens D1
822 projections driving cocaine seeking. *J Neurosci* 39:2041–2051.

823 Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, Power JM, McNally GP
824 (2020) Complementary roles for ventral pallidum cell types and their projections in relapse.
825 *J Neurosci* 40:880–893.

826 Ranjan R, Van Geit W, Moor R, Rössert C, Riquelme J, Damart T, Jaquier A, Tuncel A, Mandge
827 D, Kilic I (2024) eFEL (5.7.13). Available at: <https://doi.org/10.5281/zenodo.14222078>.

828 Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS (2016) Pupil
829 fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. *Nat*
830 *Commun* 7:13289.

831 Richard JM, Ambroggi F, Janak PH, Fields HL (2016a) Ventral Pallidum Neurons Encode
832 Incentive Value and Promote Cue-Elicited Instrumental Actions. *Neuron* 90:1165–1173.

833 Richard JM, Ambroggi F, Janak PH, Fields HL (2016b) Ventral Pallidum Neurons Encode
834 Incentive Value and Promote Cue-Elicited Instrumental Actions. *Neuron* 90:1165–1173.

835 Richard JM, Stout N, Acs D, Janak PH (2018) Ventral pallidal encoding of reward-seeking
836 behavior depends on the underlying associative structure. *Elife* 7:1–25.

837 Robert B, Kimchi EY, Watanabe Y, Chakoma T, Jing M, Li Y, Polley DB (2021) A functional
838 topography within the cholinergic basal forebrain for encoding sensory cues and behavioral
839 reinforcement outcomes. *Elife* 10:1–28.

840 Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: Subregion-specific
841 functional anatomy and roles in motivated behaviors. *Prog Neurobiol* 130:29–70.

842 Royer S, Zemelman B V, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G (2012) Control of
843 timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. *Nat*
844 *Neurosci* 15:769–775.

845 Saga Y, Richard A, Sgambato-Faure V, Hoshi E, Tobler PN, Tremblay L (2017) Ventral pallidum
846 encodes contextual information and controls aversive behaviors. *Cereb Cortex* 27:2528–
847 2543.

848 Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular
849 basal nucleus. *J Comp Neurol* 222:313–342.

850 Schmitzer-Torbert N, Jackson J, Henze D, Harris K, Redish a D (2005) Quantitative measures
851 of cluster quality for use in extracellular recordings. *Neuroscience* 131:1–11.

852 Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and
853 motivation. *Behav Brain Res* 196:155–167.

854 Soares-Cunha C, Domingues AV, Correia R, Coimbra B, Vieitas-Gaspar N, de Vasconcelos
855 NAP, Pinto L, Sousa N, Rodrigues AJ (2022) Distinct role of nucleus accumbens D2-MSN
856 projections to ventral pallidum in different phases of motivated behavior. *Cell Rep*
857 38:110380.

858 Soares-Cunha C, Heinsbroek JA (2023) Ventral pallidal regulation of motivated behaviors and
859 reinforcement. *Front Neural Circuits* 17:1–25.

860 Solari N, Sviatkó K, Laszlovszky T, Hegedüs P, Hangya B (2018) Open Source Tools for
861 Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic
862 Manipulations. *Front Syst Neurosci* 12.

863 Stephenson-Jones M, Bravo-Rivera C, Ahrens S, Furlan A, Xiao X, Fernandes-Henriques C, Li
864 B (2020) Opposing Contributions of GABAergic and Glutamatergic Ventral Pallidal Neurons
865 to Motivational Behaviors. *Neuron* 105:921–933.e5.

866 Sturgill JF, Hegedus P, Li SJ, Chevy Q, Siebels A, Jing M, Li Y, Hangya B, Kepcs A (2020)
867 Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error.
868 bioRxiv.

869 Szymusiak R, Alam N, McGinty D (2000) Discharge patterns of neurons in cholinergic regions of
870 the basal forebrain during waking and sleep. *Behav Brain Res* 115:171–182.

871 Tachibana Y, Hikosaka O (2012) The Primate Ventral Pallidum Encodes Expected Reward
872 Value and Regulates Motor Action. *Neuron* 76:826–837.

873 Tindell AJ (2004) Ventral Pallidal Representation of Pavlovian Cues and Reward: Population
874 and Rate Codes. *J Neurosci* 24:1058–1069.

875 Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW (2005) Ventral pallidal neurons code
876 incentive motivation: amplification by mesolimbic sensitization and amphetamine. *Eur J
877 Neurosci* 22:2617–2634.

878 Tindell AJ, Smith KS, Peciña S, Berridge KC, Aldridge JW (2006) Ventral pallidum firing codes
879 hedonic reward: when a bad taste turns good. *J Neurophysiol* 96:2399–2409.

880 Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in
881 the rat. *Brain Struct Funct* 218:1133–1157.

882 Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain harbors two distinct
883 cholinergic populations defined by their electrophysiology. *Front Behav Neurosci* 6:21.

884 van den Bos R, Cools AR (1991) Motor activity and the GABA-A-receptor in the ventral
885 pallidum/substantia innominata complex. *Neurosci Lett* 124:246–250.

886 Walaas I, Fonnum F (1979) The distribution and origin of glutamate decarboxylase and choline
887 acetyltransferase in ventral pallidum and other basal forebrain regions. *Brain Res* 177:325–
888 336.

889 Wassum KM, Ostlund SB, Maidment NT, Balleine BW (2009) Distinct opioid circuits determine
890 the palatability and the desirability of rewarding events. *Proc Natl Acad Sci* 106:12512–
891 12517.

892 Wulff AB, Tooley J, Marconi LJ, Creed MC (2019) Ventral pallidal modulation of aversion
893 processing. *Brain Res* 1713:62–69.

894 Yang C, Thankachan S, McCarley RW, Brown RE (2017) The menagerie of the basal forebrain:
895 how many (neural) species are there, what do they look like, how do they behave and who
896 talks to whom? *Curr Opin Neurobiol* 44:159–166.

897 Záborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic
898 neurons of the ventral pallidum: a correlated light and electron microscopic double-
899 immunolabeling study in rat. *Brain Res* 570:92–101.

900 Záborszky L, Gaykema R., Swanson D., Cullinan W. (1997) Cortical input to the basal forebrain.
901 *Neuroscience* 79:1051–1078.

902 Záborszky L, van den Pol A, Gyengesi E (2012) The Basal Forebrain Cholinergic Projection
903 System in Mice. In: *The Mouse Nervous System*, 1st ed. (Watson C, Paxinos G, Puelles L,
904 eds), pp 684–718. Amsterdam: Elsevier.

905 Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV.
906 Relative involvements of neurochemically distinct subterritories in the ventral pallidum and
907 adjacent parts of the rostroventral forebrain. *J Comp Neurol* 364:340–362.

908 Zhang Y, Reynolds JNJ, Cragg SJ (2018) Pauses in Cholinergic Interneuron Activity Are Driven
909 by Excitatory Input and Delayed Rectification, with Dopamine Modulation. *Neuron* 98:918–
910 925.e3.

911

912 **Figure legends**

913 **Figure 1. VPCNs innervate the mesocorticolimbic circuit.**

914 **(A)** Schematic illustration of an anterograde tracer virus injection into the ventral pallidum of a
915 ChAT-Cre mouse. See reconstructed injection sites in Fig.S1A.

916 **(B)** Fluorescent image of the injection site, showing eYFP (green) and DAPI (blue) labeling.

917 **(C)** Fluorescent images showing the main target areas innervated by VPCNs, including the
918 prefrontal cortex (PFC), the basolateral amygdala (BLA), and the lateral habenula (LHb); green,
919 eYFP; blue, DAPI.

920 **(D)** Estimated projection density in the primary output regions of VPCNs, expressed as a
921 percentage of labeled axons (n = 6 mice). Bars and error bars represent mean ± SEM (BLA, 43.81
922 ± 1.77%; PFC, 17.00 ± 1.33%; LHb, 11.04 ± 1.47%; PSTN, 10.59 ± 1.26%).

923 **Figure 2. VPCNs receive inputs from the limbic system.**

924 **(A)** Schematic illustration of the injection site in the ventral pallidum of a ChAT-Cre mouse,
925 showing the delivery of the helper virus (green) and pseudotyped rabies virus (red). See
926 reconstructed injection sites in Fig.S1B.

927 **(B)** Fluorescent image of the injection site. Inset, cells co-expressing the helper and rabies viruses
928 (white arrowheads).

929 (C) Fluorescent images showing input cells in the nucleus accumbens (NAc), the lateral
930 hypothalamus (LH), the central amygdala (CeA), and the ventral tegmental area (VTA).
931 (D) Estimated input density as a percentage of total input cells (n = 703 cells from 6 mice) across
932 various brain regions. Bars and error bars represent mean \pm SEM (NAc, 30.73 \pm 4.69%; LH, 24.18
933 \pm 5.14%; CeA, 17.64 \pm 3.94%; POA, 10.81 \pm 2.67%; BNST, 9.25 \pm 2.36%; VTA, 2.28 \pm 0.48%;
934 STN, 1.99 \pm 0.62%; LS, 1.99 \pm 0.79%; MS, 1.14 \pm 0.28%).
935 (E) Schematic summary of the major input and output regions of the VPCNs.

936 **Figure 3. VPCNs resemble burst-firing cholinergic cells of the basal forebrain.**

937 (A) Schematic of the in vitro acute slice recording experiment.

938 (B) Locations of the recorded VPCNs (n = 20), dCINs (n = 8) and vCINs (n = 13).

939 (C) Representative confocal images of a recorded and biocytin-filled (green) VPCN (left; scale
940 bars, 1 and 0.1, mm respectively), a dCIN (middle; scale bars, 1 and 0.1 mm, respectively) and a
941 vCIN (right; scale bars, 1 and 0.1 mm, respectively) from a reporter mouse expressing red
942 fluorescent protein in all cholinergic neurons.

943 (D) Representative firing patterns of ventral pallidal, dorsal and ventral striatal, basal forebrain
944 burst-, and regular-firing cholinergic cells. VPCNs displayed short spike delays and high-
945 frequency spike clusters in response to positive current injections, resembling burst-firing basal
946 forebrain cholinergic neurons (Burst-BFCNs). In contrast, both dCINs and vCINs exhibited firing
947 patterns similar to regular-firing BFCNs (Reg-BFCNs).

948 (E) Spike autocorrelograms during somatic current injection protocols for all recorded cholinergic
949 neurons, grouped by cell type.

950 (F) Average autocorrelograms for VPCNs (teal, n = 20), dCINs (blue, n = 8), vCINs (magenta, n
951 = 13) Burst-BFCNs (red, n = 29), and Reg-BFCNs (pink, n = 31). Solid lines represent the mean,
952 and shaded regions indicate SEM.

953 (G) Maximal burst frequency plotted against maximal spike delay for all recorded cells on a log-
954 log scale, color-coded by cell type.

955 (H) Population statistics comparing the maximum spike delay across all cholinergic neuron types.
956 **, p < 0.01; ***, p < 0.001; Mann-Whitney U-test. Maximal spike delay, VPCNs vs. dCINs, U =
957 23.50, p = 0.0044; VPCNs vs. Burst-BFCNs, U = 436.50, p = 0.00298; VPCNs vs. Reg-BFCNs,
958 U = 41.00, p = 2.21 \times 10⁻⁷; dCINs vs. Burst-BFCNs, U = 221.00, p = 0.00012; dCINs vs. Reg-
959 BFCNs, U = 104.00, p = 0.50502; Burst-BFCNs vs. Reg-BFCNs, U = 896.00, p = 2.08 \times 10⁻¹¹;
960 VPCNs vs. vCINs, U = 22.00, p = 7.47 \times 10⁻⁵; dCINs vs. vCINs, U = 58.00, p = 0.69; vCINs vs.
961 Reg-BFCN, U = 165.00, p = 0.35; vCINs vs. Burst-BFCNs, U = 374.00, p = 4.80 \times 10⁻⁷.

962 (I) Population statistics comparing the maximum burst frequency across all cholinergic neuron types.
963 **, p < 0.01; ***, p < 0.001; Mann-Whitney U-test. Maximal burst frequency, VPCNs vs.
964 dCINs, U = 152.00, p = 4.31 \times 10⁻⁵; VPCNs vs. Burst-BFCNs, U = 29.00, p = 1.16 \times 10⁻⁷; VPCNs
965 vs. Reg-BFCNs, U = 575.00, p = 3.34 \times 10⁻⁷; dCINs vs. Burst-BFCNs, U = 0.00, p = 2.021 \times 10⁻⁵;
966 dCINs vs. Reg-BFCNs, U = 119.00, p = 0.88; Burst-BFCNs vs. Reg-BFCNs, U = 0.00, p =
967 1.54 \times 10⁻¹¹. VPCNs vs. vCINs, U = 256.00, p = 3.76 \times 10⁻⁶; dCINs vs. vCINs, U = 53.00, p = 0.97;
968 vCINs vs. Reg-BFCN, U = 168.00, p = 0.40; vCINs vs. Burst-BFCNs, U = 0.00, p = 3.12 \times 10⁻⁷.

969 (J) Uniform Manifold Approximation and Projection (UMAP) of a high-dimensional
970 electrophysiological feature set extracted from all cholinergic cells (see Methods), color-coded by
971 cell type. Please note that UMAP does not preserve global topology or scale but rather
972 emphasizes local neighborhood structure, so clusters may not appear close in the embedding
973 despite being related in the original space (McInnes et al., 2018; Healy and McInnes, 2024).

974 **Figure 4. Cholinergic cells in the ventral pallidum respond differently to the reward- and**
975 **punishment-predicting cues**

976 **(A)** Schematic of the head-fixed probabilistic Pavlovian conditioning task. Created using Mathis,
977 M. (2020), Classical Conditioning Mouse, Zenodo, <https://doi.org/10.5281/zenodo.3925907>,
978 under Creative Commons 4.0 license (<https://creativecommons.org/licenses/by/4.0/>). The original
979 image was not modified.

980 **(B)** Raster plot of individual licks aligned to the onset of Cue 1 and Cue 2, respectively, from an
981 example recording session on the last day of training. The mouse showed preferential anticipatory
982 licking to the reward-predicting Cue 1.

983 **(C)** Average z-scored anticipatory lick rate of all animals (n = 21), aligned to the reward-predicting
984 Cue 1 (green) and the punishment-predicting Cue 2 (red). Error shades indicate SEM. The last 5
985 sessions in Stage 4 were used.

986 **(D)** Left, schematic representation of the fiber photometry measurements. We injected AAV D7/2-
987 hSyn-dlox-GCaMP8-dlox-WPRE-SV40r(A) into the ventral pallidum (VP) and the horizontal limb
988 of the diagonal band of Broca (HDB) in the two hemispheres of ChAT-Cre mice and measured
989 cholinergic calcium signals using fiber photometry. Created using Petrucco, L. (2020), Mouse
990 head schema, Zenodo, <https://doi.org/10.5281/zenodo.3925902> and Scidraw, S. (2020), Neuron
991 silhouette, Zenodo, <https://doi.org/10.5281/zenodo.3925927>, under Creative Commons 4.0
992 license (<https://creativecommons.org/licenses/by/4.0/>). The original image was not modified.
993 Right, representative fluorescent histological image of the measurement site (green, GCaMP8;
994 blue, DAPI nuclear staining). Scale bars, 1 mm.

995 **(E)** Example fiber photometry recording of VPCNs from an example recording session on the last
996 day of training. Top, normalized dF/F traces of all rewarded and punished trials aligned to cue
997 onset, color coded (blue, low values; yellow, high values). Bottom, average dF/F traces from the
998 same session. Error shades indicate SEM.

999 **(F)** Average z-scored dF/F of VPCNs aligned to the reward-predicting Cue 1 (green) and the
1000 punishment-predicting Cue 2 (red), averaged across all animals (n = 21). Error shades indicate
1001 SEM. The last 5 sessions in Stage 4 were used.

1002 **(G)** From left to right, comparison of response magnitude, duration, integral and latency between
1003 VPCN responses to the reward-predicting Cue 1 and the punishment-predicting Cue 2. Each dot
1004 represents the session-average of a single animal. AUC, area under the curve. Bar graphs show
1005 mean. **, p < 0.01; maximum, W = 27, p = 0.0021; integral, W = 27, p = 0.0021; duration, W = 27,
1006 p = 0.0021; Wilcoxon signed-rank test.

1007 **(H)** The same as in panel F but aligned to reward (green) and punishment delivery (red). Error
1008 shades indicate SEM. The last 5 sessions in Stage 4 were used.

1009 **(I)** The same as in panel H but comparing VPCN responses to reward and punishment. Each dot
1010 represents the session-average of a single animal. Bar graphs show mean. *, p < 0.05; **, p <
1011 0.001; maximum, W = 43, p = 0.0117; integral, W = 54, p = 0.0325; latency, W = 14, p = 0.0004;
1012 Wilcoxon signed-rank test.

1013 **Figure 5. Differences of cholinergic reward and punishment responses between VP and**
1014 **HDB.**

1015 **(A)** Cross-correlation of HDBCN and VPCN bulk calcium recordings, averaged across all animals
1016 (n = 15 mice with both signals accepted, see Methods).

1017 **(B)** Maximal cross-correlation (CCR) values averaged per mice (n = 15). ***, p < 0.001 for CCR
1018 > 0, W = 0.00, p = 0.0001, Wilcoxon signed-rank test.

1019 (C) Average z-scored dF/F of VPCNs (green) and HDBCNs (blue) aligned to the reward-predicting
1020 cues, averaged across all animals (VP, n = 21; HDB, n = 16). Error shades indicate SEM.
1021 (D) Average z-scored dF/F of VPCNs (red) and HDBCNs (orange) aligned to the punishment-
1022 predicting cues, averaged across all animals (VP, n = 21; HDB, n = 16). Error shades indicate
1023 SEM.
1024 (E) From left to right, comparison of Cue1 response magnitude, duration, integral and latency
1025 between VPCNs (n = 21) and HDBCNs (n = 16). Each dot represents the session-average of a
1026 single animal. Bar graphs show mean. Mann-Whitney U-test.
1027 (F) From left to right, comparison of Cue2 response magnitude, duration, integral and latency
1028 between VPCNs (n = 21) and HDBCNs (n = 16). Each dot represents the session-average of a
1029 single animal. Bar graphs show mean. *, p < 0.05; maximum, U = 85, p = 0.0114; integral, U =
1030 97, p = 0.0307; Mann-Whitney U-test.
1031 (G) Average z-scored dF/F of VPCNs (green) and HDBCNs (blue) aligned to rewards, averaged
1032 across all animals (VP, n = 21; HDB, n = 16). Error shades indicate SEM.
1033 (H) Average z-scored dF/F of VPCNs (red) and HDBCNs (orange) aligned to punishments,
1034 averaged across all animals (VP, n = 21; HDB, n = 16). Error shades indicate SEM.
1035 (I) From left to right, comparison of reward response magnitude, duration, integral and latency
1036 between VPCNs (n = 21) and HDBCNs (n = 16). Each dot represents the session-average of a
1037 single animal. Bar graphs show mean. **, p < 0.01; ***, p < 0.001; maximum, U = 43, p = 0.0001;
1038 duration, U = 73, p = 0.0038; integral, U = 41, p = 0.0001; latency, U = 69, p = 0.0025; Mann-
1039 Whitney U-test.
1040 (J) From left to right, comparison of punishment response magnitude, duration, integral and
1041 latency between VPCNs (n = 21) and HDBCNs (n = 16). Each dot represents the session-average
1042 of a single animal. Bar graphs show mean. *, p < 0.05; latency, U = 86, p = 0.0125; Mann-Whitney
1043 U-test.
1044

1045 **Figure 6. Most putative VPCNs show spike responses to salient stimuli.**

1046 (A) Schematic of the Pavlovian conditioning task.
1047 (B) Top, raster plot of spike times aligned to cue onset of an example pVPCN during the Pavlovian
1048 task in rewarded and punished trials. Bottom, corresponding PETHs (green, rewarded trials; red,
1049 punished trials).
1050 (C) Z-scored PETHs of all recorded pVPCNs (n = 22) during rewarded trials shown on a heatmap,
1051 sorted by the punishment response magnitudes (for consistent ordering across panels C and D).
1052 Cells activated significantly after punishment are shown above the upper white line, while those
1053 that were significantly inhibited by punishment are shown below the lower white line.
1054 (D) Z-scored PETHs of all recorded pVPCNs (n = 22) during punishment trials shown as a
1055 heatmap. Cells activated significantly after punishment are shown above the upper white line,
1056 while those that were significantly inhibited are shown below the lower white line.
1057 (E) Pie charts showing the proportions of pVPCN response types. Top left, reward responses of
1058 all recorded pVPCNs (n = 22). Top right, punishment responses of all pVPCNs. Bottom left,
1059 punishment responses of reward-activated pVPCNs (n = 16). Bottom right, reward responses of
1060 punishment-activated pVPCNs (n = 16).
1061 (F) The average normalized firing rate of reward-activated pVPCNs (n = 16) aligned to cue onset
1062 during rewarded trials (mean ± SEM).

1063 (G) The average normalized firing rate of punishment-activated pVPCNs (n = 16, dark red) and
1064 punishment-inhibited pVPCNs (n = 5, light red) aligned to cue onset during punishment trials
1065 (mean \pm SEM).

1066 (H) Autocorrelations (ACG, normalized to a sum of one) of all recorded pVPCNs (n = 22). Reg-
1067 pVPCN, above the upper white line; Burst-pVPCN-PLs (n = 10), between the two horizontal white
1068 lines; Burst-pVPCN-SBs (n = 11), below the lower white line; sorted by Burst Index within each
1069 group.

1070 (I) Normalized autocorrelation of all recorded pVPCNs averaged by firing pattern type. Dark red,
1071 Burst-pVPCN-SB (n = 11); blue, Burst-pVPCN-PL (n = 10), light red in inset, Reg-pVPCN (n = 1).

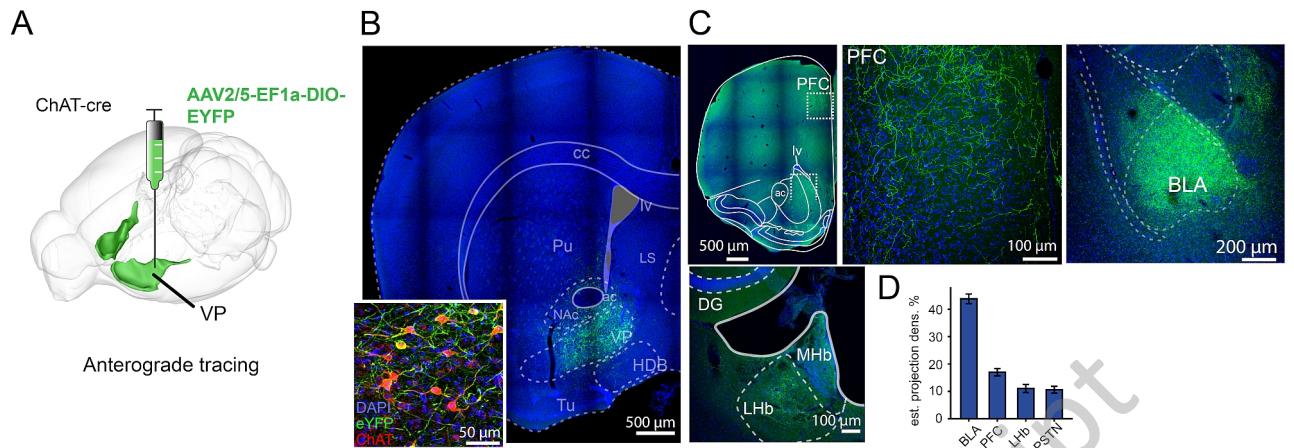
1072 (J) Burst Index vs. refractory period of pVPCNs, color coded by firing pattern type.

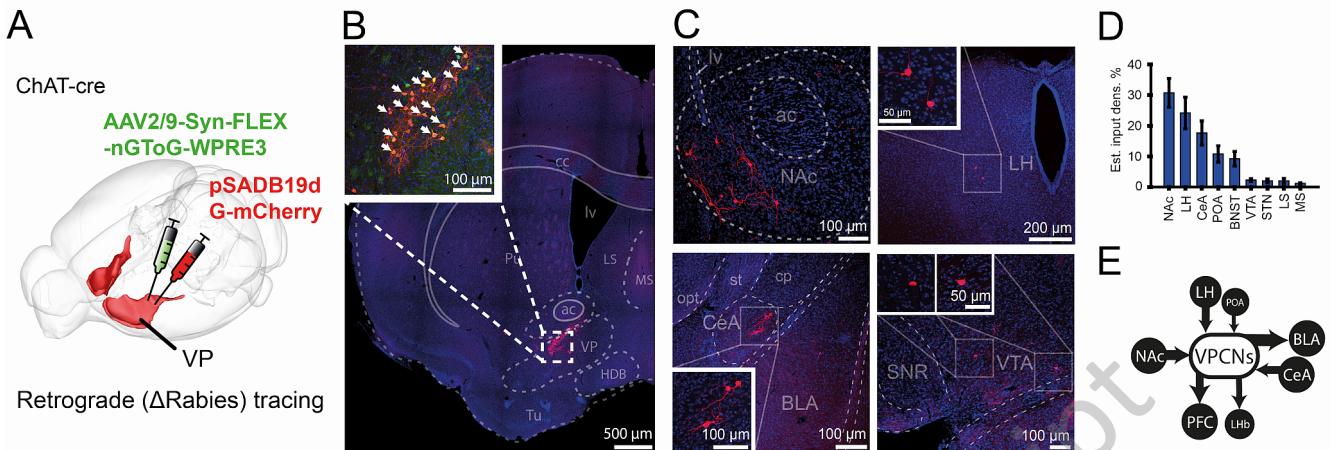
1073 (K) Theta Index vs. refractory period of pVPCNs, color coded by firing pattern type.

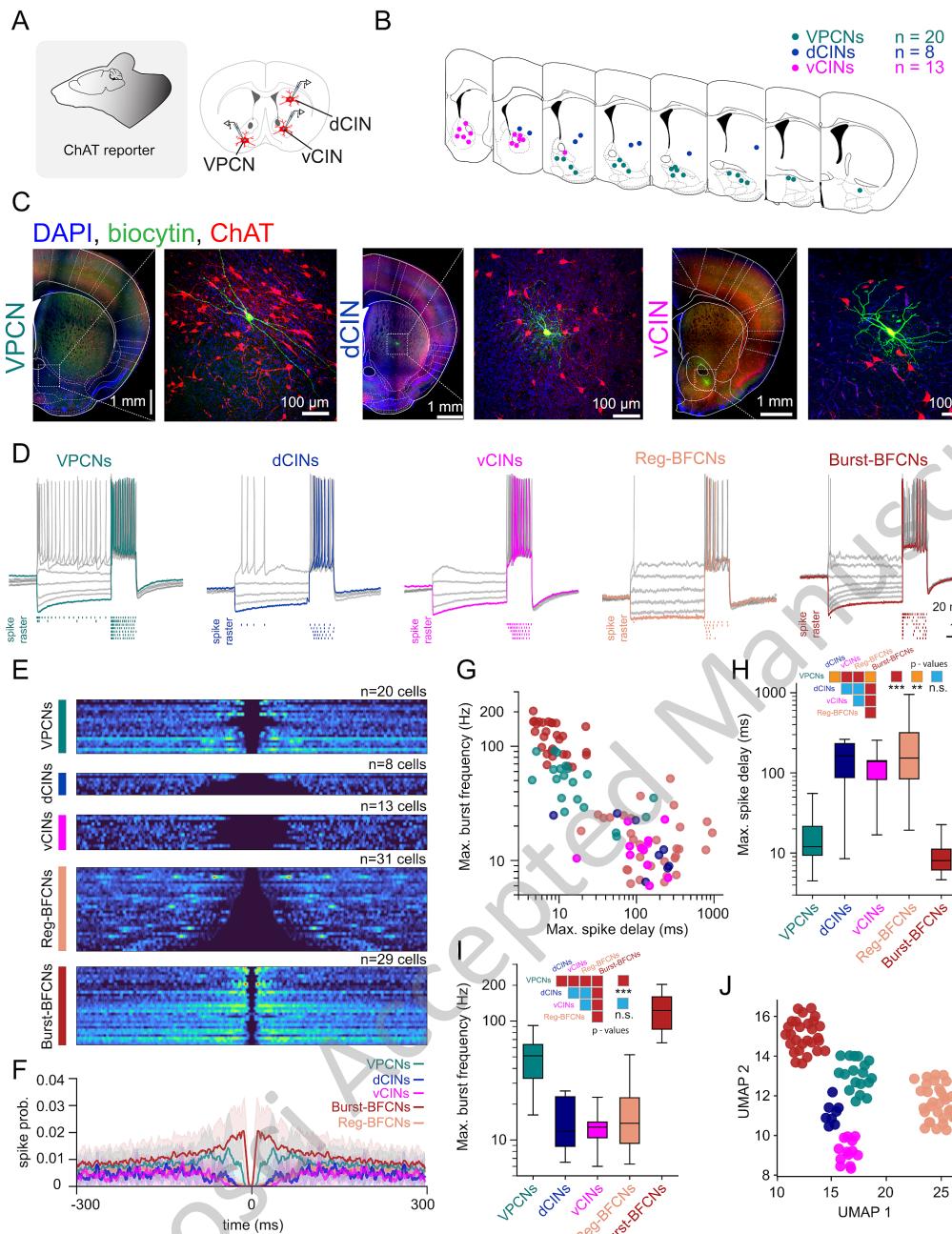
1074 **Figure 7. Pupil size correlates with VPCN activity.**

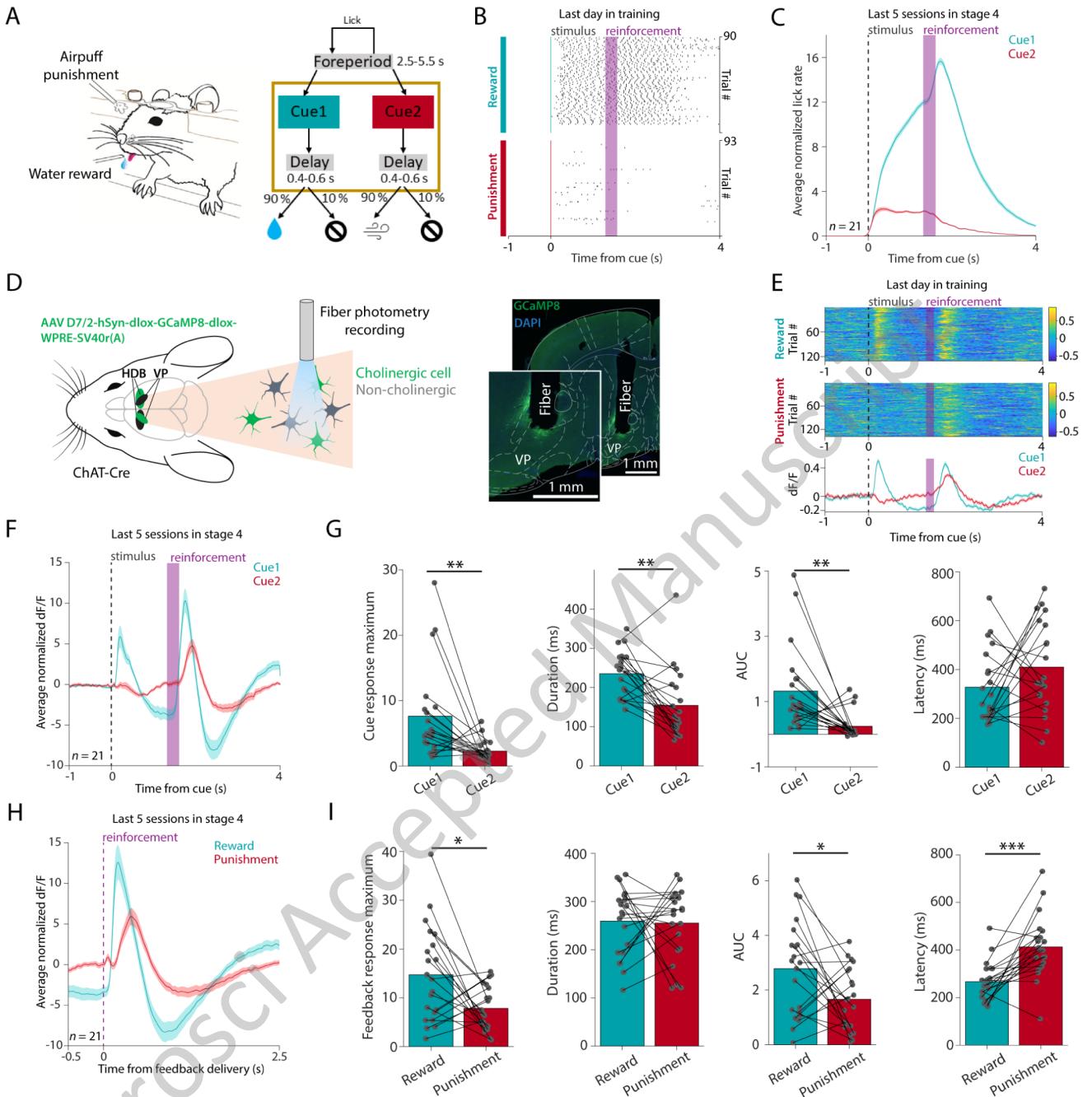
1075 (A) Representative image from a video recording synchronized with fiber-photometry
1076 measurements of VP and HDB cholinergic neuron activity. Pupil size was tracked using
1077 DeepLabCut, trained to identify pupil edges (P1–P3, P1'–P3') and eyelid positions (L1–L1').

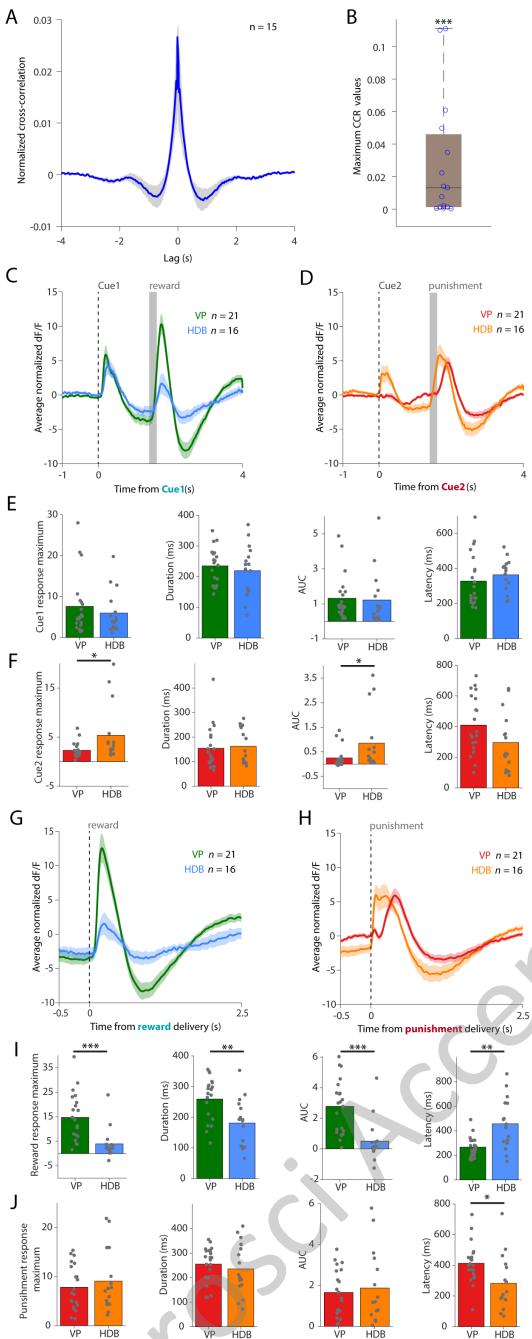
1078 (B) Representative traces showing normalized pupil size (black) and normalized cholinergic
1079 activity in the VP (teal) and HDB (red). The boxed region is expanded in panel C.


1080 (C) Magnified view of the boxed region in panel B, illustrating that both VP and HDB cholinergic
1081 activity peaks are strongly synchronized with periods of pupil dilation.


1082 (D) Average pupil size triggered by transient calcium peaks of VPCNs and HDBCNs (n = 12 mice).


1083 (E) Population statistics comparing transfer entropy, which quantifies directional information flow
1084 between pupil size and calcium activity of VPCNs and HDBCNs.


1085 (F) Significance matrix for the transfer entropy analysis shown in panel E. Note that TE values
1086 from HDB or VP to pupil are not significantly different (U = 74.0, p = 0.93, Mann-Whitney U-test).


1087

