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Nature of the topological transition of the Kitaev model in [111] magnetic field
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We investigate the nature of the topological phase transition of the antiferromagnetic Kitaev model on a
honeycomb lattice in the presence of a magnetic field along the [111] direction. The field opens a topological
gap in the Majorana fermion spectrum and leads to a sequence of topological phase transitions before the
field-polarized state is reached. At mean-field level, the gap first closes at the three M points in the Brillouin zone,
where the Majorana fermions form Dirac cones, resulting in a change of Chern number by three. An odd number
of Dirac fermions in infrared is unusual and requires Berry curvature compensation in ultraviolet, which occurs
via topological, ringlike hybridization gaps with higher-energy bands. We perform a renormalization-group
analysis of the topological phase transition at the three M points within the Yukawa theory, allowing for
intravalley and intervalley fluctuations of the spin-liquid bond operators. We find that the latter lead to a breaking
of Lorentz invariance and hence a different universality compared with the standard Ising Gross-Neveu-Yukawa
class.

DOI: 10.1103/jjj6-cx8l

I. INTRODUCTION

The celebrated Kitaev honeycomb model, a bond-
dependent Ising model, has an exactly solvable quantum
spin-liquid (QSL) ground state after the spin-1/2 operators
are fractionalized into Majorana fermions [1]. Many efforts
to realize this model in materials have utilized spin-orbit cou-
pling, as proposed by Jackeli and Khaliullin [2], for which
honeycomb iridates [3–5] and α-RuCl3 [6–8] are promis-
ing candidates. However, these materials display long-range
zigzag antiferromagnetic (AFM) order at low temperatures
[9–11], which can be suppressed in α-RuCl3 by applying a
magnetic field [12,13].

These observations have motivated various theoretical and
numerical investigations of the AFM Kitaev honeycomb
model with an applied field. As already demonstrated in the
seminal work by Kitaev [1], in third-order perturbation theory,
a small field h along [111] leads to the opening of a topo-
logical gap � ∼ h3 at the Dirac points with Chern numbers
C = ±1 of the dispersive Majorana bands. Numerical inves-
tigations using exact diagonalization (ED) and density matrix
renormalization group (DMRG) reported a U(1) gapless in-
termediate phase [14–16] sandwiched between the gapped
non-Abelian QSL at small fields and the topologically trivial
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fully polarized phase at large fields. On the other hand, mean-
field investigations [17,18] and a variational approach [19]
found this intermediate phase to be gapped. It exhibits ringlike
low-energy excitations that might be mistaken for a spinor
Fermi-surface in numerical studies due to finite-size effects
[19]. While DMRG could, in principle, detect gapless modes
through the scaling behavior of the entanglement entropy, no
convergence was found in the intermediate phase up to the
largest system sizes currently accessible [20]. A complemen-
tary DMRG study of Kitaev ladders found glassy behavior
in the intermediate-field regime due to slow dynamics of Z2

fluxes [21].
Here, we focus on the first topological transition, between

the two gapped QSL phases. At this transition, the total Chern
number of the positive bands was found to change from
Ctot = −1 in the QSL at small field to Ctot = 2 in the in-
termediate phase [17–19]. Such a change in Chern number
by �C = 3 is consistent with a gap closing at the three M
points in the Brillouin zone, as indeed observed in previous
mean-field studies [17,18].

The presence of an odd number of Dirac cones at the topo-
logical phase transition is unusual and suggests the absence
of fermion doubling, as described by the Nielson-Ninomiya
theorem [22–25]. To circumvent fermion doubling, it is gener-
ically necessary to break at least one of the properties of
the Hamiltonian among locality, hermiticity, periodicity, bi-
linearity, and chiral symmetry. One way is to construct SLAC
fermions [26] by introducing long-range hopping terms,
which results in a single Dirac cone with singularities at the
Brillouin zone boundary [27–30]. Alternatively, one can break
the chiral symmetry explicitly [31–34]. For example, in the
Bernevig-Hughes-Zhang model [35] and Qi-Wu-Zhang model
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[36], a Wilson term [31] acting like a momentum-dependent
mass is applied to obtain a single Dirac cone at zero energy.
The other Dirac cone is gapped out and pushed into the
ultraviolet (UV) regime. As we will show, the gap closing
at the three M points at the field-driven topological phase
transition of the Kitaev model is possible because of a UV
compensation of Berry curvature due to ringlike hybridization
gaps between the low-energy band and higher-energy Majo-
rana fermion modes.

To understand the nature of the topological phase tran-
sition, we first briefly revisit the Majorana-fermion parton
mean-field theory. Our results are in quantitative agreement
with those of earlier mean-field studies [17,18]. In addition,
we carefully analyze the role of hybridization gaps and the
redistribution of Berry curvature from UV to infrared (IR),
thereby providing an understanding of why a gap closing at
three M points is possible. We further compute the edge states
from an armchair ribbon on the two sides of the topological
phase transition. For h < hc, one chiral mode exists on each
edge, with chiral central charge of −1/2, indicative of non-
Abelian anyons and consistent with the total Chern number
Ctot = −1 for the positive energy bands For h > hc, Ctot = 2
corresponds to two chiral Majorana modes per edge, with
central charge +1. According to Kitaev’s 16-fold way [1],
the topological order can be described by a chiral U(1) theory
with Abelian semion excitations. Therefore, the ground state
changes from a gapped Z2 spin liquid to an Abelian U (1)
chiral spin liquid across hc.

We then use our mean-field results to identify the effective
field theory at the topological phase transition around the
three M points and perform a renormalization group (RG)
calculation within the Gross-Neveu-Yukawa (GNY) approach
that is controlled by the number of fermion flavors N . We
account for fluctuations of the QSL bond operators for both
intravalley and intervalley channels and derive the quantum
critical exponents to order 1/N . We show that intervalley
fluctuations explicitly break Lorentz invariance, resulting in
a dynamical exponent that departs from z = 1. This suggests
that the intermediate topological phase transition of the Kitaev
QSL at high field is not in the standard Ising GNY universality
class.

The paper is organized in the following way: In Sec. II,
we describe the AFM Kitaev model on the honeycomb lat-
tice in a magnetic field along [111]. In Sec. III, we perform
a nonperturbative mean-field calculation at finite magnetic
field and explicitly calculate the Chern numbers of individual
bands, the distribution of Berry curvature in the Brillouin
zone, and the edge-state spectra in a strip geometry. In Sec. IV,
we derive the effective field theory of the topological phase
transition and carry out the RG analysis of the transition in the
presence of fluctuation fields. We derive the critical exponents
and characterize the universality class of the transition. In
Sec. V, we summarize our results.

II. MODEL

We consider the AFM Kitaev model on a honeycomb lat-
tice, which is illustrated in Fig. 1(a). The key feature of this
model is the bond-directional Ising exchange where, along
each of the three different bonds of the honeycomb lattice,

FIG. 1. (a) Illustration of the Kitaev model on a honeycomb
lattice. The different bonds are labeled by γ = x, y, z and shown in
different colors. Along a bond of type γ , only the γ components of
the spins are coupled. The unit cell is spanned by the lattice vectors
a1 and a2 and contains two sites of the honeycomb lattice, labeled
A and B. (b) High-symmetry points in the hexagonal Brillouin zone.
For small [111] field h, a topological gap � ∼ h3 opens at the two
K points. At larger field h = hc, we observe a topological phase
transition with gap closing at the three M points. The unit vectors
n̂i parametrize the local coordinate frames at Mi.

labeled by γ = x, y, z, only the γ components of the spin-1/2
operators are coupled. In addition, the spins are subject to a
magnetic field along the [111] direction. The corresponding
Hamiltonian can be written as

Ĥ =
∑

r,γ=x,y,z

⎧⎨
⎩K σ̂ γ

a (r)σ̂ γ

b (r + δγ ) − h√
3

∑
s=a,b

σ̂ γ
s (r)

⎫⎬
⎭, (1)

where σ̂
γ
s (r) are spin-1/2 operators on the sites s = a, b in

the unit cell r of the triangular lattice spanned by a1,2 =
(±√

3/2, 3/2). Using these conventions, the lattice vectors for
the three different bonds are given by δx = a1, δy = a2, and
δz = 0. Measuring the spins in units of h̄/2, the spin commu-
tator relations read [σ̂ α

s (r), σ̂ β

s′ (r′)] = 2δr,r′δs,s′εαβγ σ̂
γ
s (r).

In the absence of field h = 0, the Kitaev model is exactly
solvable by expressing the spin operators in terms of a set of
four Majorana fermion operators η̂μ

s (r) (μ = 0, x, y, z),

σ̂ γ
s (r) = iη̂0

s (r)η̂γ
s (r). (2)

The Majorana fermions satisfy the Clifford algebra
{η̂μ

s (r), η̂ν
s′ (r′)} = 2δr,r′δs,s′δμ,ν and are subject to the local

constraints

η̂0
s (r)η̂γ

s (r) + 1
2εαβγ η̂α

s (r)η̂β
s (r) = 0, (3)

to correctly represent the spin-Hilbert space.
Although the Kitaev model is quartic in terms of the Ma-

jorana fermions, an exact solution can be obtained because
the bond operators Âγ (r) = iη̂γ

a (r)η̂γ

b (r + δγ ), which have
eigenvalues ±1, are local and commute with the Hamilto-
nian. As a consequence, it is sufficient to diagonalizr the
quadratic Hamiltonian for the η̂0 Majorana fermion for a given
realization of fluxes, which are obtained by multiplying the
corresponding bond operator eigenvalues around each pla-
quette. In the zero-flux ground-state sector, this results in the
energy dispersion ±K|1 + exp(ik · a1) + exp(ik · a2)| for η̂0,
with Dirac points at the corners K± of the hexagonal Brillouin
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FIG. 2. Evolution of the Majorana fermion mean-field spectrum along a high-symmetry path as a function of magnetic field h along [111].
(a) Spectrum of the Kitaev model at h = 0, showing a dispersive Majorana band with Dirac cones at the K points and three degenerate flat
bands. (b) For small h, a small gap � ∼ h3 open at the K points, and the dispersive band hybridizes with the flat ones. All bands acquire nonzero
Chern numbers, where C = −3 for the low-energy band. (c) At h = 1, a softening at the M points becomes visible. The Chern numbers remain
unchanged. (d) At the critical point h = hc ≈ 1.43, the gap closes at the three M points. (e) Bands at h = 1.6. The Chern number of the
low-energy band changes to C = 0 at h > hc ≈ 1.43, indicating the presence of a topological phase transition.

zone [see Fig. 1(b)], and three degenerate flat bands of the
local η̂x, η̂y, and η̂z Majorana fermions, shown in Fig. 2(a).

III. MEAN-FIELD THEORY

A magnetic field along the [111] direction represents the
simplest way to break the exact solvability of the Kitaev
model. For h > 0, the different Majorana fermions hybridize,
and the plaquette operators no longer commute with the
Hamiltonian. As a first step, we use self-consistent mean-field
theory to decouple the quartic Majorana fermion Hamiltonian,
introducing the bond expectation values

A = 〈
iη̂γ

a (r)η̂γ

b (r + δγ )
〉
,

B = 〈
iη̂0

a(r)η̂0
b(r + δγ )

〉
, (4)

which by symmetry take the same values on all nearest-
neighbor bonds. To account for effects of internal magnetic
fields, we also decouple in the local magnetization channel

mγ = m√
3

= 〈
iη̂0

s (r)η̂γ
s (r)

〉
. (5)

We treat the three local constraints in Eq. (3) on average
through Lagrange multipliers λγ = λ/

√
3, with the additional

contribution to the Hamiltonian

Ĥλ = iK
λ√
3

∑
r,s,γ

{
η̂0

s (r)η̂γ
s (r) + 1

2
εαβγ η̂α

s (r)η̂β
s (r)

}
. (6)

In momentum space, the mean-field Hamiltonian has an
8 × 8 matrix structure (μ = 0, x, y, z and s = a, b). In the
following, we measure all energies in units of the Kitaev
coupling K . For given mean-field parameters A, B, m and
Lagrange parameter λ, we can numerically diagonalize this
matrix for each momentum k in the Brillouin zone, resulting
in four pairs of energy eigenvalues ±εi(k, A, B, m, λ), with
εi � 0, and a zero-temperature mean-field energy per unit cell

E = −
4∑

i=1

∫
BZ

d2k
VBZ

εi(k, A, B, m, λ) + 3AB + m2, (7)

where VBZ stands for the area of the Brillouin zone. The three
equations ∂E/∂x = 0, with x = A, B, m, can be conveniently
solved using the standard iterative procedure. However, at

each iteration step, we need to determine the Lagrange mul-
tiplier λ by solving the integral equation ∂E/∂λ = 0 with
bisection.

A. Mean-field results

For h = 0, the mean-field equations can be solved analyt-
ically and reproduce the exact solution of the Kitaev model,
shown in Fig. 2(a). For small h, a very small gap opens at
the K points, which is still barely visible at h = 0.2 [see
Fig. 2(b)]. In addition, the hybridization between the η̂0 and
η̂γ Majorana fermions results in a ringlike gap feature around
the K points. All bands are topologically nontrivial and carry
nonzero Chern numbers. Previously, it was demonstrated that
the [111] field leads to a topological gap opening of the
η̂0 Dirac mode in third-order perturbation theory [1]. Ignor-
ing hybridization effects, this then results in Chern numbers
C = ±1 of the gapped low-energy η̂0 mode. While the Chern
numbers of all four positive bands still add up to Ctot = −1,
the formation of hybridization gaps is responsible for a re-
distribution of Chern numbers between bands, resulting in
C = −3 for the low-energy band.

Increasing the field further to h = 1, the gap at the K points
increases, and a softening of the dispersion at the M points is
observed [see Fig. 2(c)]. At the critical field hc ≈ 1.43, the
gap closes at the three M points, as shown in Fig. 2(d), which
have massless Dirac low-energy quasiparticles. As pointed out
earlier, an odd number of Dirac points is unusual and only
possible if additional Berry curvature is located elsewhere
in the Brillouin zone. We address in detail the evolution of
the distribution of Berry curvature in the low-energy band in
Appendix A.

Beyond the critical field h > hc ≈ 1.43, the gap reopens,
and the Chern number of the low-energy band changes to
C = 0 [see Fig. 2(e)], indicating the presence of a topolog-
ical phase transition of the low-energy band at h = hc. This
results in a total Chern number for the positive energy bands
Ctot = +2. This critical field value and the total Chern num-
bers around the phase transition are consistent with values
reported in the literature [17,18], noting that, since we mea-
sure spins in units of h̄/2, our field values are rescaled by a
factor of two. The bond-expectation values A and B, the mag-
netization m, and the Lagrange multiplier λ evolve smoothly
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FIG. 3. Edge states calculated from an armchair ribbon at (a) h = 1.3 and (b) h = 1.5. Bands in blue (red) correspond to the edge states at
the left (right) edge. There is one chiral mode per edge for h < hc and two chiral modes per edge for h > hc, corresponding to the change of
total Chern number from −1 to +2.

across hc, suggesting that the transition is purely topological
and not associated with a change of symmetry.

The change in total Chern number reflects a change in
the number of chiral Majorana edge states due to the bulk-
boundary correspondence. The edge modes of an armchair
ribbon at h = 1.3 and 1.5 are shown in Fig. 3. For h < hc, one
chiral mode exists on each edge, with chiral central charge
of −1/2, indicative of non-Abelian anyons with topological
spin −π/8. For h > hc, the total Chern number Ctot = +2
corresponds to two chiral Majorana modes per edge, with
central charge +1. According to Kitaev’s 16-fold way [1], the
topological order can be described by a chiral U (1) theory
with Abelian fermion excitations. Therefore, the ground state
changes from a gapped Z2 spin liquid to an Abelian U (1)
chiral spin liquid across hc.

IV. FIELD THEORETICAL ANALYSIS OF TOPOLOGICAL
PHASE TRANSITION

A. Effective field theory

At the topological phase transition, the gap closes at the
three M points in the Brillouin zone, which we will label by
Mi (i = 1, 2, 3) in the following, as illustrated in Fig. 1(b). In
a small momentum region around these points and for fields h
close to hc, the low-energy Hamiltonian around Mi will have
the conventional 2 × 2 spinor matrix structure of a gapped
Dirac point, where the gap � ∼ (h − hc) is the same at all
M points. By symmetry, one would further expect that the
Hamiltonians Ĥi at each Mi are identical when expressed in
the local coordinate frame relative to the edge of the Brillouin
zone with normal vector n̂i (Fig. 1). The Hamiltonian matrices
should therefore take the form

Hi(k) = v‖[(n̂i × êz ) · k]τx + v⊥(n̂i · k)τy + �τz, (8)

where τγ are Pauli matrices in pseudospin space. We con-
firmed this expected form numerically by projecting the full

mean-field Hamiltonian onto the low-energy sector, using the
set of eigenvectors at each Mi and treating (h − hc) and the
momentum shifts kx, ky away from Mi as small perturbations.

Our numerical results show a small anisotropy of Fermi
velocities (v‖ − v⊥)/v⊥ ≈ 0.05. In the following, we will ne-
glect this anisotropy and absorb the velocity v = v‖ = v⊥ in
a redefinition of k. Our RG analysis will indeed confirm that
v‖ = v⊥ at the critical fixed point.

The three Dirac Hamiltonians shown in Eq. (8) have
the topological charge sgn(�)/2. The additional topological
charge of −3/2 associated with the nodal line gap around
� is located at the top of the low-energy band and remains
unchanged across the transition. This feature has no direct
effect on the nature of the topological phase transition, other
than permitting the emergence of an odd number of Dirac
cones in the IR via UV compensation. In the following, we
focus on the bulk properties in the thermodynamic limit, in
the absence of zero-energy edge modes.

Writing the partition function as a Grassmann path integral
over Majorana fermion fields, the low-energy free fermion
action at the critical point (� = 0) is given by

S0[ψ̄,ψ] =
3∑

i=1

N∑
ν=1

∫
�k=(k0,k)

ψ̄iν (�k)

× {−ik0 + [(n̂i × êz ) · k]τx + (n̂i · k)τy}ψiν (�k),

(9)

where we have introduced the frequency momentum three-
vector �k = (k0, k), i = 1, 2, 3 labels the three M-point Dirac
valleys, and we have generalized to ν = 1, . . . , N replicas of
the theory, enabling a systematic expansion in 1/(3N ). The
resulting fermion Green function at Mi is given by

Gi(�k) = ik0 + [(n̂i × êz ) · k]τx + (n̂i · k)τy

�k2
. (10)
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To understand the critical behavior, we need to include
fluctuations beyond mean-field theory. The starting point
would be a Hubbard-Stratonovich decoupling of the interac-
tion terms in the initial lattice model, which at saddle-point
level reproduces the mean-field theory, while the initial fluc-
tuation fields couple to bond operators iη̂γ

a (r)η̂γ

b (r + δγ ) and
iη̂0

a(r)η̂0
b(r + δγ ), which corresponds to a Yukawa coupling in

the sublattice channel σy, as discussed in Ref. [37].
To obtain the effective Yukawa couplings in the low-energy

field theory, the fermion bond operators need to be trans-
formed to the new basis, using the unitary transformation that
diagonalizes the mean-field Hamiltonian at h = hc, followed
by a projection onto the low-energy Dirac fermion sector
described by the Grassmann fields ψ̄,ψ. Since Majorana
fermions of different flavors and on different sublattices mix
under the unitary transformation, we obtain fluctuations in
all channels τγ of the new low-energy pseudospin space. For
simplicity and to reduce the complexity of the consecutive RG
analysis, we will focus on the τz channel, corresponding to
dynamical fluctuations of the mass gap �. We stress that the
corresponding bosonic fluctuation fields are not related to a
physical order parameter. Similar GNY analyses were used in
the context of topological phase transitions where two Dirac
points merge and a mass gap opens [37,38].

Since the interactions are short ranged, both intervalley
and intravalley fluctuations will be important. On the full
two-dimensional Brillouin zone, the fluctuations in the mass
channel are of the form �(Q)ψ̄(K)τzψ(K + Q), where we
have dropped the dependence on frequencies, for brevity. In
the low-energy theory, we only consider momentum patches
close to the M points K = Mi + k and define ψ(K) =
ψ(Mi + k) ≡ ψi(k). For the momentum transfer, we write
Q = Qi j + q, where Qi j = M j − Mi, and q is small. Defin-
ing the intravalley fluctuation fields (i = j) as �(Qii + q) =
�(q) = φ(q) and the intervalley fluctuation fields (i 
= j) as
�(Qi j + q) = ϕi j (q), the Yukawa couplings can be written as

SY = g√
3N

∑
i

∑
ν

∫
�k,�q

φ(�q)ψ̄iν (�k)τzψiν (�k + �q)

+ g̃√
6N

i 
= j∑
i, j

∑
ν

∫
�k,�q

ϕi j (�q)ψ̄iν (�k)τzψ jν (�k + �q), (11)

where g and g̃ are the strengths of the intravalley and in-
tervalley Yukawa couplings, respectively. Note that ϕ∗

i j (�q) =
ϕ ji(−�q). Finally, the quadratic actions for the fluctuation fields
are given by

S0[φ] = 1

2

∫
�q
D−1(�q)|φ(�q)|2, (12)

S0[ϕ] = 1

2

i< j∑
i, j

∫
�q
D̃−1(�q)|ϕi j (�q)|2, (13)

where the inverse boson propagators are given by the usual
quadratic gradient and mass terms and a self-energy correc-
tion D−1(�q) = q2

0 + c2q2 + m2 + �(�q) and D̃−1(�q) = q2
0 +

c̃2q2 + m̃2 + �̃(�q).

FIG. 4. Self-energy diagrams of the GNY model. Top row:
Bosonic self-energy diagrams. Fermionic polarization bubble di-
agrams give nonanalytic IR corrections to boson propagators of
(a) intravalley and (b) intervalley fluctuation fields (i 
= j). Bottom
row: Fermionic self-energy corrections, leading to a renormalization
of the free fermion action. (c) shows the contribution d�(�k) from
intravalley fluctuations and (d) the contribution d�̃(�k) from fluctua-
tions between different valleys, i 
= j.

B. Self-energy corrections and IR boson propagators

The self-energy corrections to the boson propagators cor-
respond to the diagrams shown in Figs. 4(a) and 4(b) and are
given by �(�q) = g2[ fii(�q) − fii(�0)] and �̃(�q) = g̃2

3 [ fi j (�q) −
fi j (�0)] for i 
= j, where

fi j (�q) =
∫

�k
Tr{Gi(�k)τzG j (�k + �q)τz}. (14)

The polarization diagrams can be computed analytically,
see Appendix B, resulting in

fi j (�q) − fi j (�0) = 2(1 + cos βi j )q2
0 + (1 + 3 cos βi j )q2

32| �q| ,

(15)

where βi j is the angle between the unit vectors n̂i and n̂ j at
valleys Mi and Mj , cos βi j = n̂i · n̂ j . Using cos βi j = 1 for
the intravalley (i = j) and cos βi j = cos(±π/3) = 1/2 for the
intervalley terms (i 
= j), we obtain the boson self-energy
corrections

�(�q) = g2

8
| �q|, (16)

�̃(�q) = g̃2

32
| �q|

(
1 − 1

6

q2

�q2

)
, (17)

for intravalley and intervalley fluctuation channels, respec-
tively. The intravalley correction in Eq. (16) is the standard
result, as shown in Ref. [39].

The self-energy corrections of both channels scale as

∼|�q| =
√

q2
0 + q2 and hence dominate over the conventional

quadratic gradient terms in the IR limit. To understand the
universality of the transition, it is sufficient to keep the lead-
ing frequency and momentum dependence and use D−1(�q) =
�(�q) and D̃−1(�q) = �̃(�q) as inverse IR propagators.

C. RG analysis

We proceed to analyze the GNY action S0[ψ̄,ψ] +
S0[φ] + S0[ϕ] + SY [ψ̄,ψ, φ, ϕ] using a RG approach. Since
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FIG. 5. Diagrams that renormalize (a) and (b) the intravalley
Yukawa coupling g and (c) and (d) the Yukawa coupling g̃ between
different valleys i 
= j.

our aim is to understand the effects of critical intravalley and
intervalley fluctuations at � = 0 (h = hc), the different band
topologies on the two sides of the quantum phase transition
are not relevant to the following analysis.

We integrate out UV modes from the infinitesimal three-
dimensional frequency-momentum shell

� exp(−d�) � |�k| � �, (18)

where � denotes the original cutoff of the theory. The dia-
grams that renormalize the free fermion action and Yukawa
couplings are shown in Fig. 4 (bottom row) and Fig. 5, respec-
tively. Note that the IR boson propagators are nonanalytic and
do not renormalize under the perturbative shell RG scheme.
The shell integration is followed by a rescaling of frequency
and momentum

k0 → k0 exp(−zd�), k → k exp(−d�), (19)

and fields

ψ → ψ exp(−�ψ/2 d�), φ

→ φ exp(−�φ/2 d�), ϕ → ϕ exp(−�ϕ/2 d�). (20)

We start by analyzing the shell corrections to the free
fermion action, corresponding to the diagrams in Figs. 4(c)
and 4(d), and given by

dS0[ψ̄,ψ] =
∑
i,ν

∫ <

�k
ψ̄iν (�k)[d�i(�k) + d�̃i(�k)]ψiν (�k), (21)

with

d�i(�k) = − g2

3N

∫ >

�q
D(�q)τzGi(�k + �q)τz, (22)

d�̃i(�k) = − g̃2

6N

∑
j( 
=i)

∫ >

�q
D̃(�q)τzG j (�k + �q)τz, (23)

for the infinitesimal intravalley and intervalley fermion self-
energy corrections. In the above and the following, > denotes
integration over the infinitesimal shell in Eq. (18), < over
modes up to the reduced cutoff |�k| � � exp(−d�).

Expanding Eqs. (22) and (23) to linear order in outer fre-
quency k0 and momenta k,

d�i(�k) + d�̃i(�k) = − ik0(�0 + �̃0)d�

+ [(n̂i × êz ) · k]τx(�x + �̃x )d�

+ (n̂i · k)τy(�y + �̃y)d�, (24)

and carrying out the resulting shell integrals over �q for the
coefficients �nd� and �̃nd� (n = 0, x, y), we obtain

�0 = �x = �y = 1

3N

4

3π2
, (25)

for the intravalley contributions and

�̃0 = 1

3N

96(11κ − 2)

π2
, �̃x,y = 1

3N

48(1 − 5κ )

π2
, (26)

for the intervalley terms, where we have defined κ =
(1/

√
5) arctan(1/

√
5). Details of the calculation can be

found in Appendix C. Combining the loop corrections with
the rescaling contributions and demanding that the inverse
fermion propagator remains invariant under RG, we obtain the
conditions

−2 − 2z − �ψ + �0 + �̃0 = 0, (27)

−3 − z − �ψ + �x,y + �̃x,y = 0, (28)

from the scale invariance of the frequency and spatial mo-
mentum coefficients, respectively. These equations allow us
to determine the dynamical exponent

z = 1 + �̃0 − �̃x,y

= 1 + 1

3N

48(27κ − 5)

π2
≈ 1 + 0.379

3N
, (29)

and the fermion anomalous dimension

ηψ = �0 − �̃0 + 2�̃x,y

= 1

3N

4(217 − 1152κ )

3π2
≈ 0.047

3N
, (30)

which measures the deviation of �ψ from tree-level scaling
�ψ = −4 + ηψ .

Finally, we compute the renormalization of the Yukawa
couplings g and g̃. The corresponding one-loop diagrams in-
volve contractions of three Yukawa vertices and are shown in
Fig. 5. Note that, since g2D(�q) ∼ g0 and g̃2D̃(�q) ∼ g̃0, the RG
equations for g and g̃ decouple and take the simple linear form

dg

d�
=

(
−4 − 2z − �ψ − �φ

2
+ �g + �̃g

)
g, (31)

dg̃

d�
=

(
−4 − 2z − �ψ − �ϕ

2
+ �g̃ + �̃g̃

)
g̃, (32)

where we have included the rescaling contributions. The
one-loop corrections d�g = �gd� and d�̃g = �̃gd� that con-
tribute to the renormalization of the intravalley coupling g are
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given by the shell integrals

�gd� = g2

3N

∫ >

�q
D(�q)Gi(�q)τzGi(�q)τz = − d�

3N

4

π2
, (33)

�̃gd� = g̃2

3N

∫ >

�q
D̃(�q)Gi(�q)τzGi(�q)τz = − d�

3N

96κ

π2
,

(34)

which correspond to the diagrams in Figs. 5(a) and 5(b). In
the same way, the diagrammatic contributions that contribute
to the renormalization of the intervalley Yukawa coupling g̃
are given by

�g̃d� = g2

3N

∫ >

�q
D(�q)Gi(�q)τzG j (�q)τz = − d�

3N

8

3π2
, (35)

�̃g̃d� = g̃2

6N

∫ >

�q
D̃(�q)Gi(�q)τzG j (�q)τz

= − d�

3N

24(1 − 4κ )

π2
, (36)

and correspond to the diagrams in Figs. 5(c) and 5(d). Detail
on the calculation of the above one-loop diagrams can be
found in Appendix D.

Since it is possible to scale g and g̃ out of the large-
N IR theory by a simple rescaling of the fluctuation fields
gφ → φ and g̃ϕi j → ϕi j , we need to postulate that both
Yukawa couplings are scale invariant dg

d�
= dg̃

d�
= 0. From

Eqs. (31) and (32) and using our results for z and �ψ , we ob-
tain the scaling dimensions �φ = −4 + ηφ and �ϕ = −4 +
ηϕ of the fluctuation fields, where their resulting anomalous
dimensions are

ηφ = 2
(
�g + �̃g − �0 − �̃0

)
= − 1

3N

32(216κ − 35)

3π2
≈ −6.077

3N
, (37)

ηϕ = 2
(
�g̃ + �̃g̃ − �0 − �̃0

)
= − 1

3N

8(240κ − 41)

π2
≈ −3.353

3N
. (38)

To summarize, we have obtained the dynamical critical
exponent z in Eq. (29), the fermion anomalous dimension ηψ

in Eq. (30), and the anomalous dimensions ηφ in Eq. (37)
and ηϕ in Eq. (38) of the intravalley and intervalley fluctua-
tion fields at one-loop order, which systematically accounts
for contributions of order 1/(3N ). At the topological phase
transition, the mass gap of the 3N Dirac fermions closes,
and we considered a GNY theory where both the dynamical
intravalley and intervalley mass fluctuations are critical.

Let us compare with the case where the intervalley fluc-
tuations are absent g̃ = 0. This would simply mean that the
intervalley fluctuations are gapped and short ranged. One
would therefore expect to see a crossover from the universal
behavior with the set of critical exponents computed above to
the universality of a GNY theory with g̃ = 0. We can obtain
the critical exponents without intervalley coupling by setting
�̃0 = �̃x,y = �g̃ = �̃g = �̃g̃ = 0, resulting in

z = 1, ηψ = 1

3N

4

3π2
, ηφ = − 1

3N

32

3π2
, (39)

which are the known critical exponents of the Ising-GNY
theory in 2 + 1 dimensions in the limit of a large number of
decoupled 3N copies of two-component Dirac fermion fields
[40–43].

The comparison shows that the presence of critical or at
least very soft intervalley fluctuations has important conse-
quences for the universal critical behavior. Most importantly,
it leads to a breaking of Lorentz invariance (z > 1). While the
changes of the fermion anomalous dimension are small, the
anomalous dimensions of the bosonic fluctuation fields are
significantly larger than that of the conventional GNY theory.

We reiterate that we only considered fluctuations in the
mass channel τz, for simplicity. The additional fluctuations in
other channels, e.g., in the bond channel τy, can be analyzed in
a completely analogous way, and they would give additional
contributions to the anomalous dimensions ηψ and ηφ as well
as to the dynamical exponent z if such fluctuations are be-
tween valleys. However, the main conclusion of our analysis
that intervalley fluctuations break Lorentz invariance will still
hold.

V. DISCUSSION

In conclusion, we have addressed the nature of the field-
driven topological phase transition of the Kitaev QSL. Our
mean-field results clarify the closing of the low-energy band
gap of the intermediate phase at the three M points in the
Brillouin zone and the necessity to incorporate the hybridiza-
tion with the high-energy bands to account for the absence of
fermion doubling in the IR, which is manifested through the
presence of an odd number of Dirac cones. The hybridization
makes the high-energy bands topological while permitting a
redistribution of Berry curvature from UV to IR.

We then performed a Wilson momentum shell RG cal-
culation in the GNY model to describe the nature of the
quantum phase transition beyond mean field. We showed that
the intervalley fluctuation channel among different M points
breaks Lorentz invariance and produces a dynamical exponent
z > 1. Intervalley fluctuations produce small corrections to
the mean-field critical exponents, with the exception of the
anomalous dimension of the bosonic fields, where the effect is
significant. The conclusion is that the intermediate topological
phase transition of the Kitaev QSL at finite [111] field belongs
to a different universality class than the standard Ising GNY
one.
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APPENDIX A: LOW-ENERGY BAND BERRY CURVATURE

In Fig. 6 we analyze the evolution of the low-energy band
Berry curvature �(k) for different field values. At very small
field, h = 0.006 [see Fig. 6(a)], we find negative spikes with
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FIG. 6. Berry curvature �(k) of the low-energy band for different values of magnetic field. (a) At small field (h = 0.006) negative Berry
curvature is concentrated at each K point as well as around the nodal line gap around K from hybridization with the flat bands. (b) and (c) show
the change of topological charge at the M points from −1/2 to 1/2 across the topological phase transition. The missing Berry curvature of
−3/2 is concentrated at a nodal line gap around �. (d) At h = 1.6 Berry curvature is delocalized along the �-M high-symmetry directions and
the nodal-line gap around � starts to contract.

topological charge of −1/2 at the K points, as expected. In
addition, there is a ring-like feature in the UV with �(k) < 0
around each K point. This feature coincides with the hy-
bridization gap forming at the intersection line between the
Dirac mode and the flat bands, see Fig. 2. Each ring constitutes
a topological charge of −1, resulting in a Chern number of
C = 2 × (−1/2) + 2 × (−1) = −3 of the low-energy band.

Figures 6(b) and 6(c) show the Berry curvature �(k) at
fields slightly below (h = 1.38) and above (h = 1.45) the
critical value hc ≈ 1.43, where there is a topological phase
transition. As anticipated, the topological charge changes
from −1/2 to +1/2 at each M point, resulting in a Chern
number change �C = 3 across the transition. The missing
Berry curvature of −3/2 is centered around a nodal line
gap around � between the low-energy and first exited bands.
This nodal line gap remains intact across the transition and
is clearly visible in the spectrum at hc, shown in Fig. 2(d).
Increasing the field to h = 1.6 [see Fig. 6(d)], the topolog-
ical charge from the M points seems to delocalise along
the �-M high-symmetry lines, along which the low-energy
dispersion is practically flat [see Fig. 2(e)]. Moreover, the
nodal line gap around � seems to contract and move to lower
energies.

Since the ground state remains topological at h = 1.6, there
needs to be at least one additional topological phase transition
before the topologically trivial field polarized state is obtained
at large h. Unfortunately, the numerics becomes unstable in
this field range, which might be in part due to the confinement
of Majorana fermions, which is not captured in the mean-field
treatment.

APPENDIX B: BOSONIC SELF-ENERGY CORRECTIONS

We will evaluate the regularized polarization bubble di-
agram fi j (�q) − fi j (�0) defined in Eq. (14). Inserting the
expressions for the fermion Green function (10), using that
τ2

z = 1, τzτxτz = −τx, and τzτyτz = −τy and taking the
trace over pseudo-spin space, using that Tr(τατβ ) = 2δαβ , we

obtain

fi j (�q) = −2
∫

�k

Fi j (�k, �q)

�k2(�k + �q)2
, (B1)

where

Fi j (�k, �q) = k0(k0 + q0) + cos βi jk(k + q)

− sin βi j (kxqy − kyqx ). (B2)

Here, βi j denotes the angle between the unit vectors n̂i and
n̂ j . Subtracting

fi j (�0) = −2
∫

�k

k2
0 + cos βi jk2

�k4
= −2

3

∫
�k

1 + 2 cos βi j

�k2
(B3)

results in

f̃i j (�q) = fi j (�q) − fi j (�0) = 2
∫

�k

F̃i j (�k, �q)

�k2(�k + �q)2
, (B4)

with F̃i j (�k, �q) = 1
3 (1 + 2 cos βi j )(�k + �q)2 − Fi j (�k, �q). The IR

behavior of f̃i j (�q) is dominated by the small �k contributions to
the integral. We can therefore send the UV cut-off to infinity,
what enables us to use the standard Feynman parametrization
trick.

We first introduce a dummy integration variable using the
formula 1/(ab) = ∫ 1

0 dt/[ta + (1 − t )b]2 with a = (�k + �q)2

and b = �k2, followed by a shift of the frequency-momentum
vector, �p = �k + t �q, to obtain

f̃i j (�q) = 2
∫ 1

0
dt

∫
�p

F̃i j ( �p − t �q, �q)

[ �p2 + t (1 − t )�q2]2
. (B5)

The denominator is now rotationally symmetric in �p and, as
a result, the terms in F̃i j ( �p − t �q, �q) that are linear in �p vanish
under integration. Moreover, the terms that are quadratic in the
components of �p cancel each other under integration, leaving
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the remaining integral

f̃i j (�q) = 2
∫ 1

0
dt

{
(1 − t )2 1 + 2 cos βi j

3
�q2

+ t (1 − t )
(
q2

0 + cos βi jq2
)} ∫

�p

1

[ �p2 + t (1 − t )�q2]2
.

(B6)

After carrying out the radially symmetric, three dimensional
�p integral we obtain

f̃i j (�q) = 1

4π | �q|
∫ 1

0

dt√
t (1 − t )

{
(1 − t )2 1 + 2 cos βi j

3
�q2

+ t (1 − t )(q2
0 + cos βi jq2)

}
. (B7)

The integrals over t are elementary,∫ 1

0
dt

(1 − t )2

√
t (1 − t )

= 3π

8
and

∫ 1

0
dt

t (1 − t )√
t (1 − t )

= π

8
, (B8)

resulting in Eq. (15).

APPENDIX C: FERMION SELF ENERGY CORRECTIONS

Let us first evaluate the fermion self energy correction
d�i(�k) in Eq. (22) from the intra-valley fluctuations. After
Taylor expansion in external frequencies and momenta to
linear order, the coefficients �nd� in Eq. (24) are obtained
as the following shell integrals,

�0d� = g2

3N

∫ >

�q

D(�q)

�q2

(
1 − 2

q2
0

�q2

)
(C1)

�xd� = g2

3N

∫ >

�q

D(�q)

�q2

(
1 − 2

[(n̂i × êz ) · q]2

�q2

)
(C2)

�yd� = g2

3N

∫ >

�q

D(�q)

�q2

(
1 − 2

(n̂i · q)2

�q2

)
. (C3)

Since D(�q) is rotationally symmetric it follows that �0 =
�x = �y and

�nd� = g2

3N

∫ >

�q

D(�q)

�q2
×

(
1 − 2

3

)
= 1

3N

8

3

∫ >

�q

1

| �q|3

= 1

3N

4

3π2

∫ �

�e−d�

dq

q
= 1

3N

4

3π2
d�. (C4)

In the case of the inter-valley contributions an additional
complication arises from the fact that d�̃i(�k) in Eq. (23)
involves a sum over Green functions G j from neighboring
valleys. However, using that

∑
j( 
=i) n̂ j = n̂i we obtain

−
∑
j( 
=i)

τzG j (�k + �q)τz

= −2i(k0 + q0) + (n̂i × êz ) · (k + q)τx + n̂i · (k + q)τy

(�k + �q)2
.

(C5)

Proceeding with the Taylor expansion as in the intravalley
case, this results in

�̃0d� = g̃2

3N

∫ >

�q

D̃(�q)

�q2

(
1 − 2

q2
0

�q2

)
(C6)

�̃xd� = g̃2

6N

∫ >

�q

D̃(�q)

�q2

(
1 − 2

[(n̂i × êz ) · q]2

�q2

)
(C7)

�̃yd� = g̃2

6N

∫ >

�q

D̃(�q)

�q2

(
1 − 2

(n̂i · q)2

�q2

)
. (C8)

Inserting D̃(�q) and using spherical coordinates we obtain

�̃0d� = 32

3N

∫ >

�q

1

| �q]3

1 − 2 q2
0

�q2

1 − 1
6

q2

�q2

= 1

3N

8

π2
d�

∫ π

0
dθ sin θ

1 − 2 cos2 θ

1 − 1
6 sin2 θ

= 1

3N

96

π2

[
11√

5
arctan

(
1√
5

)
− 2

]
d� (C9)

= 1

3N

96(11κ − 2)

π2
d� (C10)

for the frequency coefficient, where we have defined

κ = 1√
5

arctan

(
1√
5

)
. (C11)

Likewise, for the coefficients of the spatial momentum terms
we obtain

�̃x,yd� = 32

6N

∫ >

�q

1

| �q]3

1 − q2

�q2

1 − 1
6

q2

�q2

= 1

3N

4

π2
d�

∫ π

0
dθ sin θ

1 − sin2 θ

1 − 1
6 sin2 θ

= 1

3N

48(1 − 5κ )

π2
d�. (C12)

APPENDIX D: CORRECTIONS TO YUKAWA COUPLINGS

The loop corrections to the Yukawa couplings can be writ-
ten as �gd� = 1

3N giid�, �̃gd� = 1
3N g̃iid�, �g̃d� = 1

3N gi 
= jd�,
and �̃g̃d� = 1

6N g̃i 
= jd�, where

gi jd� = g2
∫ >

�q
D(�q)Gi(�q)τzG j (�q)τz (D1)

g̃i jd� = g̃2
∫ >

�q
D̃(�q)Gi(�q)τzG j (�q)τz. (D2)

Using that

Gi(�q)τzG j (�q)τz = − 1

�q2

[
1 − (1 − cos βi j )

q2

�q2

]
+ terms that vanish under int., (D3)
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where cos βi j = n̂i · n̂ j , we can use the spherical symmetry of
D(�q) to compute gi jd�,

gi jd� = −8
∫ >

�q

1

| �q|3
[

1 − 2

3
(1 − cos βi j )

]

= − 4

π

2[
1 − 2

3
(1 − cos βi j )

]
d�. (D4)

Using that cos βii = 1 and cos βi 
= j = 1/2, this results in
the expressions in Eqs. (33) and (35) for �gd� and �g̃d�. For

the integrals involving D̃(�q), we obtain

g̃i jd� = −32
∫ >

�q

1

| �q|3
1 − (1 − cos βi j )

q2

�q2

1 − 1
6

q2

�q2

= − 8

π2
d�

∫ π

0
dθ sin θ

1 − (1 − cos βi j ) sin2 θ

1 − 1
6 sin2 θ

= − 8

π2
d�

{
12κ (i = j)

6(1 − 4κ ) (i 
= j) , (D5)

which reproduces Eqs. (34) and (36) for �̃gd�

and �̃g̃d�.
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