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Genome-wide association study of major 
anxiety disorders in 122,341 European-
ancestry cases identifies 58 loci and 
highlights GABAergic signaling

The major anxiety disorders (ANX; including generalized anxiety disorder, 
panic disorder and phobias) are highly prevalent, often onset early and cause 
substantial global disability. Although distinct in their clinical presentations, 
they probably represent differential expressions of a dysregulated threat–
response system. Here, we present a genome-wide association meta-analysis 
comprising 122,341 European ancestry ANX cases and 729,881 controls. 
We identified 58 independent genome-wide significant risk variants and 
66 genes with robust biological support. In an independent sample of 
1,175,012 self-report ANX cases and 1,956,379 controls, 51 out of the 58 
associations replicated. As predicted by twin studies, we found substantial 
genetic correlation between ANX and depression, neuroticism and other 
internalizing phenotypes. Follow-up analyses demonstrated enrichment in 
all major brain regions and highlighted GABAergic signaling as one potential 
mechanism implicated in ANX genetic risk. These results advance our 
understanding of the genetic architecture of ANX and prioritize genes for 
functional follow-up studies.

Fear and anxiety are critical survival responses; thus, ANX may result 
from dysregulation of the brain’s threat–response circuits. Although 
perturbations in various neurotransmitter systems, such as serotonin 
or gamma-aminobutyric acid (GABA), have been proposed as a basis 
of their etiology, no reliable biomarkers have yet been identified1. The 
major ANX, including generalized anxiety disorder (GAD), panic dis-
order and phobias (specific phobia, social phobia and agoraphobia), 
represent different clinical presentations of that underlying common 
diathesis2–4. Up to 25% of the population will develop an ANX at some 
point during their lifetime5–7. These disorders tend to onset early in life, 
are persistent and are highly comorbid with other psychiatric conditions 
for which they often present as a predisposing risk factor; for example, 
major depressive disorder (MDD) and substance-use disorders6,8–10. ANX 
are also associated with other medical conditions, such as neurological, 
cardiovascular and gastrointestinal disorders as well as cancers11–14. 
These features make ANX a leading source of worldwide disability15,16.

Each ANX aggregates in families (odds ratio, 4–6) primarily owing 
to genetic risk factors17. Estimates from twin studies indicate that ANX 

are moderately heritable (h2 = 30–50%)2,17, similar to other common psy-
chiatric disorders like MDD but lower than less prevalent disorders like 
schizophrenia and bipolar disorder. Different ANX exhibit overlapping 
clinical features and strong comorbidity, which may be a result of shared 
genetic susceptibility17–19 and environmental risk factors20–22. Research 
implicates mechanisms that affect the structure and functional capacity 
of brain networks involved in emotion and cognition23–25. Twin stud-
ies report substantial genetic correlations between ANX and other 
psychiatric conditions, particularly MDD26, helping to explain their 
high comorbidity. In addition, ANX and depression both share genetic 
risk with heritable personality traits such as neuroticism27,28. Anxiety 
symptoms often precede suicidal behaviors29, with possible causal 
implications30. Therefore, examining the genetic relationship between 
ANX and related phenotypes on the internalizing spectrum is essential.

The combination of high prevalence, extensive comorbidity and 
high polygenicity makes it particularly difficult to identify genetic 
variants underlying risk for ANX. Prior genome-wide association stud-
ies (GWAS) have identified a handful of genetic loci with inconsistent 
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A series of sensitivity analyses, including GWAS Cochran’s Q 
(Supplementary Fig. 57) and I² statistics (forest plots in Supplementary Figs. 2–
56), revealed no substantial genome-wide heterogeneity across the 36 
cohorts. Furthermore, we performed subgroup-specific meta-analyses, 
subdividing our study cohorts based on (1) their ascertainment strat-
egy (five subgroups: clinical, comorbidity, community, biobanks and 
self-reported professional diagnosis (SRPD); Manhattan and quantile–
quantile plots in Supplementary Figs. 58–62) and (2) their assessment 
strategy (three subgroups: interview, ICD-10 codes and SRPD; Manhat-
tan and quantile–quantile plots in Supplementary Figs. 63–66). We then 
used confirmatory factor analysis in GenomicSEM43 to test whether 
these subgroups fit a one-factor model. In both cases, a single latent 
factor best explained the genetic covariance between the subgroups 
(ascertainment fit statistics: CFI = 1, SRMR = 0.04; assessment fit sta-
tistics: CFI = 1, SRMR = 3.67 × 10−9). The factor loadings across both sub-
group models were high (0.75–1), with the factor explaining 81.8% and 
95.6% of the total genomic variance in the ascertainment and assess-
ment models, respectively (see Supplementary Note 3 for details on the 
subgrouping and Supplementary Table 5 and Supplementary Fig. 67a,b 
for GenomicSEM results). Using parallel analysis based on multivari-
ate LDSC (paLDSC44), we identified one non-spurious dimension in 
exploratory genomic factor analysis, including 14 cohorts with more 
than 10,000 individuals and at least 1,000 cases. This finding supports 
our hypothesis that the genetic association signals were generally con-
sistent across samples and study designs and tapped into a common 
underlying ANX genetic vulnerability.

Replication and validation of GWAS SNPs
We conducted two replication analyses of the 58 significant loci: one 
in a large independent EUR ANX GWAS from 23andMe, and the other 
in an African-American (AFR) ancestry ANX GWAS from the Veterans 
Affairs Million Veteran Program (MVP). The 23andMe sample con-
sisted of 1,175,012 ANX self-report cases and 1,956,379 controls (see 
Methods for details). Among the 58 SNPs identified in the discovery 
GWAS, all but one (rs7121169) were available for replication testing in 
the 23andMe genotype platform. Two additional variants failed quality 

results31–36. A recent meta-analysis using five publicly available datasets 
reported ten additional novel associations37. Genome-wide single 
nucleotide polymorphism (SNP)-based heritability estimates range 
from 10–28%, supporting that ANX have a polygenic basis. Consist-
ent with twin studies, previous psychiatric GWAS have demonstrated 
that ANX polygenic risk is highly correlated with that of MDD and 
neuroticism38–42. Similar to other complex genetic phenotypes, suf-
ficiently large samples are required to achieve the necessary power to 
detect the small effects of common variants.

Here, we present a GWAS meta-analysis from the Anxiety Disorders 
Working Group of the Psychiatric Genomics Consortium (PGC-ANX), 
consisting of 122,341 individuals diagnosed with any ANX and 729,881 
controls, all of European (EUR) ancestry. We analyzed the data at the level 
of variant, gene, pathway/gene set and tissue by using both function-
ally informed and functionally agnostic methods. Subsequently, these 
results were compared with those of other phenotypes and investigated 
for possible molecular mechanisms and avenues for drug repurposing.

Results
GWAS meta-analysis
We performed a GWAS meta-analysis of 36 case–control cohorts 
(122,341 ANX cases and 729,881 controls; Supplementary Table 1). 
Details about phenotype, quality control and GWAS analysis for each 
individual cohort are provided in Supplementary Note 2. Among the 
7.2 million autosomal SNPs analyzed, we identified 58 independent, 
genome-wide significant (GWS) SNPs associated with ANX (Fig. 1 and 
Table 1; further information is provided in Supplementary Table 2, 
Supplementary Fig. 1 (quantile–quantile plot) and Supplementary  
Figs. 2–56 (regional association plots of each significant SNP and forest 
plots indicating each cohort’s effect size)). Estimates of the genomic 
inflation factor (λ = 1.41, λ1000 = 1.00 ), linkage disequilibrium (LD) 
score regression (LDSC) intercept (1.05, standard error (s.e.) = 0.01), 
and attenuation ratio (0.082, s.e. = 0.014) suggest that inflation was 
probably caused by polygenicity and not by cryptic population struc-
ture. LDSC estimates a SNP-based heritability of 10.1% (s.e. = 0.004), 
assuming a 20% population prevalence.
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Fig. 1 | Manhattan plot of the main ANX GWAS showing 58 GWS loci. The x axis 
shows the position in the genome (chromosomes 1 to 22), and the y axis represents 
−log10(P values) (two-sided, not adjusted for multiple testing) for the association of 
variants with ANX using an inverse-variance weighted fixed effects model (122,341 

ANX cases and 729,881 unaffected controls). The horizontal red line shows the 
threshold for GWS (P = 5 × 10−8). Dots represent each SNP that was tested in the 
GWAS, with a green diamond indicating the lead SNP of a GWS locus and green dots 
below representing SNPs within the locus with high levels of LD with the lead SNP.
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Table 1 | List of the 58 independent GWS SNPs of the main ANX GWAS meta-analysis

Locus Index SNP CHR Position (bp) P value OR s.e. A1/A2 Freq. cases Freq. controls Closest genes (distance kb)

1 rs34579341 1 72,745,962 4.01 × 10−9 0.964 0.006 G/A 0.18 0.17 NEGR1

2 rs11580539 1 73,896,218 8.55 × 10−10 0.971 0.005 G/A 0.60 0.61 LINC01360 (−41.7)

3 rs5015511 2 22,546,852 1.61 × 10−10 0.032 0.005 A/G 0.52 0.54 –

4 rs79556790 2 63,480,537 3.87 × 10−8 0.881 0.023 A/C 0.98 0.98 WDPCP

5 rs7570682 2 104,983,267 4.31 × 10−10 0.036 0.006 A/G 0.23 0.23 LOC100287010

6 rs2165077 2 124,932,847 3.77 × 10−10 0.032 0.005 T/C 0.48 0.47 CNTNAP5

7 rs17407658 2 145,703,652 1.09 × 10−9 0.972 0.005 G/A 0.50 0.52 TEX41

8 rs9867083 3 18,804,734 1.22 × 10−10 0.034 0.005 C/T 0.70 0.69 SATB1-AS1 (−183.1)

9 rs2888367 3 44,242,929 8.67 × 10−10 0.032 0.005 A/G 0.33 0.34 TOPAZ1

10 rs2710323 3 52,815,905 1.91 × 10−10 0.971 0.005 C/T 0.48 0.49 NEK4, ITIH1, ITIH3, ITIH4, ITIH4-AS1

11 rs4856929 3 68,030,736 2.59 × 10−8 0.047 0.008 T/C 0.87 0.88 SUCLG2-AS1, TAFA1

12 rs72704544 4 176,853,286 4.37 × 10−10 0.043 0.007 G/A 0.21 0.21 GPM6A

13 rs2066928 5 30,843,787 4.92 × 10−8 0.974 0.005 A/G 0.49 0.51 –

14 rs77960 5 103,964,585 1.47 × 10−12 0.037 0.005 A/G 0.32 0.31 –

15 rs288160 5 107,364,269 2.58 × 10−8 0.973 0.005 T/C 0.32 0.33 FBXL17

16 rs11241568 5 120,140,556 8.77 × 10−13 0.037 0.005 C/T 0.33 0.34 PRR16 (−67.5)

17 rs10476497 5 164,588,817 1.36 × 10−12 0.034 0.005 A/G 0.54 0.55 –

18 rs58825580 6 26,365,679 6.64 × 10−15 0.943 0.008 G/T 0.12 0.11 BTN3A2, BTN2A2, BTN3A1

19 rs9373363 6 143,150,043 1.57 × 10−8 0.969 0.006 G/A 0.26 0.28 HIVEP2

20 rs12699332 7 12,269,762 5.75 × 10−9 0.028 0.005 T/G 0.41 0.39 TMEM106B

21 rs2371365 7 82,506,898 1.77 × 10−8 0.028 0.005 C/T 0.38 0.37 PCLO

22 rs4395923 8 65,569,387 4.34 × 10−10 0.031 0.005 A/G 0.59 0.61 CYP7B1

23 rs4976976 8 143,311,653 1.20 × 10−12 0.965 0.005 A/G 0.40 0.41 LINC00051, TSNARE1

24 rs10959883 9 11,519,984 6.21 × 10−13 0.959 0.006 C/T 0.20 0.20 –

25 rs10961649 9 14,670,949 1.24 × 10−10 0.033 0.005 T/C 0.32 0.31 ZDHHC21

26 rs13287777 9 26,719,411 8.74 × 10−9 0.960 0.007 T/G 0.18 0.18 –

27 rs28474857 9 98,247,204 1.29 × 10−9 0.048 0.008 T/C 0.10 0.11 PTCH1, LOC100507346

28 rs11599236 10 106,454,672 7.99 × 10−11 0.968 0.005 C/T 0.41 0.42 SORCS3, SORCS3-AS1

29 rs2071754 11 31,812,582 2.65 × 10−8 0.968 0.006 T/C 0.78 0.79 ELP4, PAX6, PAX6-AS1, PAUPAR

30 rs7121169 11 57,452,543 2.84 × 10−9 0.034 0.006 A/G 0.33 0.34 MIR130A, YPEL4, CLP1, ZDHHC5, 
MED19, TMX2, TMX2-CTNND1

31 rs174560 11 61,581,764 2.15 × 10−8 0.033 0.006 C/T 0.32 0.34 TMEM258, MIR611, FEN1, FADS1, 
MIR1908, FADS2

32 rs7110863 11 112,843,138 2.10 × 10−14 0.039 0.005 G/A 0.44 0.49 LOC101928847, NCAM1

33 rs73034295 11 133,822,133 3.84 × 10−10 0.963 0.006 A/G 0.22 0.24 IGSF9B

34 rs78120929 12 24,139,063 6.84 × 10−10 0.955 0.008 C/T 0.11 0.11 SOX5

35 rs989657 12 24,166,426 2.95 × 10−10 0.031 0.005 C/T 0.56 0.56 SOX5

36 rs61928096 12 53,780,633 3.60 × 10−10 0.100 0.015 A/G 0.04 0.03 SP7, SP1, AMHR2

37 rs4382947 12 60,475,057 3.94 × 10−10 0.969 0.005 A/G 0.42 0.41 –

38 rs6539062 12 103,552,910 2.04 × 10−8 0.027 0.005 A/C 0.51 0.54 LOC101929058 (also known as 
C12orf42-AS1)

39 rs3847960 12 120,271,100 1.02 × 10−9 0.036 0.006 A/T 0.63 0.64 CIT

40 rs544271348 12 120,320,793 2.09 × 10−8 0.930 0.013 T/G 0.96 0.97 CIT

41 rs9534593 13 47,879,549 8.23 × 10−9 0.973 0.005 G/A 0.44 0.44 –

42 rs7997746 13 54,020,455 1.31 × 10−8 0.973 0.005 A/C 0.46 0.46 –

43 rs36119415 13 69,579,612 6.62 × 10−9 0.954 0.008 T/G 0.10 0.10 –

44 rs870764 13 84,973,006 2.08 × 10−8 0.031 0.006 A/G 0.73 0.74 LINC00333 (non-coding)

45 rs9556979 13 99,241,507 6.38 × 10−9 0.032 0.005 G/T 0.32 0.32 STK24, STK24-AS1

46 rs61990288 14 42,074,726 8.70 × 10−9 0.973 0.005 A/G 0.50 0.49 LRFN5

47 rs3007061 14 47,238,606 1.51 × 10−9 0.031 0.005 C/T 0.62 0.63 –
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control procedures (rs72704544 and rs11599236). Considering the 
remaining 55 loci tested, all showed the same direction of effect as 
the primary GWAS, and 51 were significant at a Bonferroni-corrected 
P value of P = 0.0009 (0.05 / 55) (Supplementary Table 6). At the time of 
this analysis, only the MVP had published an ANX GWAS in a reasonably 
sized non-EUR sample (MVP-AFR: military ascertainment, AFR ancestry; 
5,664 cases and 26,410 controls)34. Analyzing those data, we compared 
the direction of effect and P values of association for our 58 lead SNPs 
to examine consistency with our EUR results (Supplementary Table 7). 
Among the 53 SNPs available in MVP-AFR, only 27 (50.9%) showed the 
same sign. Given differences in LD and allele frequency between EUR 
and AFR genomes, we also searched for the most significant SNP in a 
50-kb window around each lead SNP in the MVP-AFR cohort. A total of 
36 of these SNPs were nominally associated, but only two were signifi-
cantly associated after adjustment for multiple testing.

We further compared our associations with those reported in pre-
vious ANX case–control GWAS31–34,37 (Supplementary Table 8). A recent 
GWAS using broader anxiety-related case–control and symptom-based 
phenotypes reported 40 EUR-ancestry significant SNPs45; all but 
one showed the same direction of effect, while ten were also GWS 
in our analysis. Importantly, most of the associations in our GWAS 
are novel discoveries, with only 15 reported in prior ANX GWAS. We 
note that some of the previously identified SNPs are in LD with each 
other, and all previously published ANX GWAS partially overlap with 
our samples. Therefore, these are not independent replications but 
demonstrate the consistency of results when additional samples 
are incorporated.

To study the generalizability of our results across different ances-
tral groups, we tested the extent to which polygenic risk scores (PRS) 
derived from our GWAS (excluding UK datasets) predicted ANX in the 
UK Biobank for participants of EUR, AFR and South Asian ancestry 
(see Supplementary Table 9). The PRS predicted 2.27% of the variance 
(P < 2.0 × 10−16) in ANX liability for those of EUR ancestry, assuming a 
prevalence of 20%. The variance explained for those of South Asian 
and AFR ancestries was 1.94% (P = 6.37 × 10−5) and 0.54% (P = 0.051), 
respectively, revealing significant polygenic overlap across EUR and 
South Asian ancestries.

Characterization and functional annotation of GWAS SNPs
To identify potential causal variants, we conducted statistical fine map-
ping of our GWS loci using FINEMAP (v.1.3.1) with stringent inclusion 
thresholds46. This process identified six credible SNP sets defined as hav-
ing a posterior probability of >0.95 and five or fewer SNPs per credible 

set to avoid excessive false positive rates (Supplementary Table 10). 
The lead SNPs of these credible sets were located at the following chro-
mosomal positions: 3:67,895,104 (within SUCLG2-GT), 10:104,654,873 
(within SORCS3), 17:8,187,590 (near TRI-AAT-5) and 20:20,876,379 
(near KIZ); and two within the major histocompatibility complex 
(MHC) region: 6:28,329,086 (within ZSCAN31) and 6:30,170,699 
(within TRIM15).

To examine the biological relevance of our GWS SNPs, we per-
formed functional annotation in FUMA (v.1.6.1) to link our GWS SNPs 
with expression quantitative trait loci (eQTL) and brain chromatin 
interaction (Hi-C) data. The results suggest that most of the identified 
loci were associated with established gene regulatory mechanisms 
(circos plots in Supplementary Figs. 68–87). Although these results on 
their own do not provide enough evidence for involvement of respec-
tive genes in the etiology of ANX, they add to a broader picture that 
includes our summary-data-based Mendelian randomization (SMR) 
and other analyses (Supplementary Table 20).

We conducted stratified LDSC to partition the heritability into 
different functional genetic annotations and cell types. As noted in 
Supplementary Table 11, the association signal is highly conserved 
across species and significantly enriched for introns, monomethylated 
and polyacetylated histone marks (H3K4me1 and H3K4ac) and DNase 
I hypersensitivity sites in both adult and fetal tissues. Similar to other 
psychiatric GWAS, our findings are enriched for certain non-coding 
features rather than coding regions. Cell-type-specific enrichment was 
observed for central nervous system structures, including multiple 
cortical and subcortical areas, as well as cervical spine.

We also examined whether genetic associations with ANX were 
enriched among transcriptomic profiles of human tissues and/
or individual cell types, using FUMA (v1.6.1)47. Tissue-enrichment 
analyses for general tissue types using data from the GTEx (v.8) 
consortium suggested that the expression patterns related to 
brain and pituitary tissues were significantly associated with the 
genetic risk of ANX (P = 1.18 × 10−13 and P = 6.50 × 10−5, respectively; 
Supplementary Table 12a and Supplementary Fig. 88). All individual 
brain tissues showed significant enrichment (Supplementary Table 12b 
and Supplementary Fig. 89), with cortex overall (P = 2.62 × 10−12) as 
well as frontal and anterior cingulate cortices and nucleus accumbens 
as most significant. At the level of individual cell types, we found 
a consistent association of GABAergic neurons with genetic varia-
tion associated with ANX (Supplementary Fig. 90). Our strongest 
association (P = 3.24 × 10−8) was found with GABAergic neuroblasts 
(via GSE76381)48.

Locus Index SNP CHR Position (bp) P value OR s.e. A1/A2 Freq. cases Freq. controls Closest genes (distance kb)

48 rs12588874 14 75,254,073 7.26 × 10−10 0.029 0.005 A/G 0.53 0.51 FCF1, YLPM1

49 rs6574271 14 76,580,655 2.77 × 10−8 0.973 0.005 C/T 0.45 0.46 IFT43, GPATCH2L

50 rs616695 16 77,105,587 9.03 × 10−9 0.973 0.005 T/G 0.43 0.44 –

51 rs2289590 17 8,110,764 6.95 × 10−9 0.029 0.005 A/C 0.59 0.61 VAMP2, TMEM107, SNORD118, 
MIR4521, BORCS6, AURKB, 
LINC00324, CTC1, PFAS

52 rs8091977 18 31,359,414 9.18 × 10−9 0.029 0.005 C/T 0.46 0.47 ASXL3

53 rs4801024 18 52,396,321 5.90 × 10−11 0.038 0.006 G/T 0.75 0.74 RAB27B (49.4)

54 rs6047130 20 20,868,094 4.74 × 10−9 0.958 0.007 T/C 0.12 0.13 –

55 rs12624433 20 44,680,853 9.43 × 10−9 0.033 0.006 A/G 0.26 0.25 MMP9, SLC12A5-AS1, SLC12A5, 
NCOA5

56 rs2070865 21 40,715,519 9.93 × 10−10 0.972 0.005 T/C 0.47 0.50 BRWD1, BRWD1-AS2, BRWD1-AS1, 
HMGN1, GET1, WRB-SH3BGR

57 rs7290074 22 30,922,642 3.19 × 10−8 0.095 0.016 A/G 0.02 0.03 SDC4P, SEC14L4, SEC14L6, 
GAL3ST1, PES1

58 rs13056300 22 41,408,754 1.28 × 10−8 0.032 0.006 C/T 0.27 0.28 RBX1, SNORD140 (10.9)

Index SNP, rs number of variant; CHR, chromosome; BP, base pair position (hg19); OR, odds ratio for allele 1; s.e., standard error; A1/A2, allele 1 and allele 2; Freq. cases, frequency of A1 in cases; 
Freq. controls, frequency of A1 in controls; Closest genes (distance kb), closest genes to the SNP with distance in kilobases in parentheses (if the SNP lies within the gene, no distance is given).
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Gene-based association and enrichment
Using MAGMA (v.1.08)49, we identified 91 significantly associated genes 
(adjusted P < 0.05 / 18,490 = 2.7 × 10−6; Supplementary Table 13). Historically 
interesting candidates include CLOCK, GABBR1, PCLO, NCAM1 and DRD2.

To test whether our loci significantly co-localize with known func-
tional QTLs, we used SMR50 to conduct transcriptome-wide, proteome- 
wide and methylome-wide analyses (T-SMR, P-SMR and M-SMR, 
respectively). We used the largest available eQTL, protein QTL and 
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in at least three of the six SNP-based (eQTL, Hi-C) or gene-based (MAGMA, 
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in the genome. Significance is indicated by a colored dot. eQTL (blue dots) 
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Hi-C information available through FUMA to functionally annotate our results. 

MAGMA (gray dots) tests genetic associations at the gene level for the combined 
effect of SNPs in or near protein-coding genes. M-SMR, P-SMR and T-SMR (yellow, 
red and pink dots, respectively) refer to transcriptome-wide, proteome-wide 
and methylome-wide analyses that assessed likely causal associations between 
traits and genes, proteins and genomic regions by inferring the association 
between the trait and gene expression, protein concentration and methylation, 
as predicted from genomic data.
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methylation QTL reference datasets, respectively, for both brain and 
blood tissues (Supplementary Table 14). By using the conservative 
P values adjusted for the HEIDI test (see Methods), we detected 27 
Bonferroni-corrected significant genes or isoforms in the brain asso-
ciated with changes in the methylome, 16 in the transcriptome and 
seven in the proteome (Supplementary Tables 15–17). To improve 
signal detection in brain transcriptome and methylome data, we used 
Primo51 to jointly analyze blood and brain statistics (see ref. 52). We 
did not jointly analyze proteome data because of the low number of 
brain probes. These between-tissue concordance analyses yielded 22 
significant ANX signals (posterior probability of >0.95) for the tran-
scriptome and 133 for the methylome (Supplementary Tables 18 and 
19). BTN3A2 remains a leading signal in both analyses, and interesting 
sub-threshold genes from single-tissue analyses become strong find-
ings in the joint T-SMR (ZDHHC5, FURIN and NEGR1).

To highlight genes for which there was the strongest support, we 
summarized the findings across multiple (equally weighted) analyses in 
Supplementary Table 20, which includes an expanded set of 151 genes 
associated with ANX susceptibility. Starting with the 91 significant asso-
ciations from MAGMA, we added genes supported by joint T-SMR or 
joint M-SMR with a posterior probability of >0.95. We annotated these 
using additional support from P-SMR, eQTL and Hi-C data. Figure 2 lists 
the 66 genes with three or more sources of support (score of ≥3). Most 
of these have prior reported associations with one or more psychiatric 
phenotypes, possibly suggesting gene-based pleiotropy, while a small 
proportion appear specific to ANX risk (reviewed in the Discussion).

To test whether pre-existing gene sets are enriched for our ANX 
risk loci, we examined 10,894 gene sets obtained from MsigDB (v.5.2) 
(curated gene sets, 4,728; Gene Ontology terms, 6,166). Specifi-
cally, we used MAGMA to test for enrichment of our ANX signals (see 
Supplementary Table 21). Overall, one gene set was significant after 
correction for multiple testing: dawson_methylated_in_lymphoma_tcl1 
(P = 1.71 × 10−6), including 57 genes that are hypermethylated in at 
least one of the lymphoma tumors in transgenic mice overexpress-
ing TCL1 in germinal center B lymphocytes; the top three genes were 
also supported by T-SMR or M-SMR (NCAM1, HMGN1 and ZDHHC5). 
On the surface, it is difficult to appreciate the relevance of this can-
cer gene pathway for anxiety etiology. We also note that the overlap 
between this gene set and MAGMA gene signals is small (three out of 
54; namely, NCAM1, HMGN1 and ZDHHC5). Among the next highly asso-
ciated sets were genes related to commissural neuron axon guidance 
(P = 5.24 × 10−5) and GABAergic synapse (P = 9.67 × 10−5), the latter with 
66 genes, including GABBR1, DRD2, CDH13 and LRFN5.

Gene–drug associations
To reveal possible drug repurposing opportunities for ANX, we used 
DrugTargetor53 (v.1.3) with our main ANX summary statistics. Among 
the 161 drug classes analyzed, several that are already successfully 
being used for ANX treatment demonstrated significant associations 
(q valueBF < 0.05; Supplementary Table 22): psycholeptics (drugs with 
a calming effect) and psychoanaleptics (mostly antidepressants), as 
well as other sedating drugs like antihistamines, antipsychotics, gen-
eral anesthetics and opioids. However, none of the more than 1,500 
individual compounds cataloged in ChEMBL54 and DgiDB55 yielded a 
significant signal (Supplementary Table 23), possibly because of the 
moderate power of this GWAS.

Genetic overlap between ANX and other phenotypes
To examine the overlap between our ANX association signals and 
other phenotypes, we conducted a phenome-wide association study 
(PheWAS). Of the 58 SNPs significantly associated with ANX, 15 were 
deemed ANX-specific (red diamonds in Fig. 3); that is, variants not 
reported as GWS in other extant GWAS. A total of 43 variants were asso-
ciated with at least one other phenotype. We note that the higher num-
ber of overlapping associations with cardiometabolic, hematological 

and immunological outcomes reflects both the robust genetic archi-
tectures of these phenotypes and the number of GWAS that have been 
published in these domains. Overlap of ANX-related SNPs with car-
diometabolic and hematological traits was heavily skewed towards 
a subset of variants (rs2710323, rs58825580 and rs174560). Figure 4 
depicts a dendrogram-based heatmap showing the association with 
psychiatric or personality traits among 24 possibly pleiotropic SNPs 
(other heatmaps for cognitive and behavioral domains are found in 
Supplementary Figs. 91 and 92). Not surprisingly, more ANX SNPs over-
lap with internalizing phenotypes (neuroticism, depression) than with 
psychotic disorders (schizophrenia, bipolar disorder).

We used bivariate LDSC to estimate the genetic correlations 
between ANX and a wide variety of other traits. We included 112 previ-
ously published GWAS on various traits, including psychiatric, sub-
stance use, cognition or socioeconomic status, personality, 
psychological, neurological, autoimmune, cardiovascular, anthropo-
morphic, dietary and fertility phenotypes. After false discovery rate 
correction, we found that 82 traits showed significant genetic correla-
tion with ANX (Fig. 5 and Supplementary Table 24). Among the psychi-
atric disorders and traits, ANX showed the strongest correlations with 
MDD (rg = 0.91) , followed by childhood internalizing symptoms 
(rg = 0.76), mood disturbance (rg = 0.76), symptoms of depression 
(rg = 0.71), post-traumatic stress disorder (PTSD) (rg = 0.71), psychosis 
(rg = 0.68), mania (rg = 0.66), suicide attempt (rg = 0.58) and obses-
sive–compulsive disorder (rg = 0.41). Genetic correlations were also 
high with total neuroticism score (rg = 0.70) and its various clusters 
and items. We found somewhat lower correlations with other psychi-
atric and substance-use disorders. ANX genetic risk was also modestly 
correlated with that of several neurological disorders, as well as 
adult-onset asthma and heart disease (positive) and inflammatory 
bowel diseases (negative). As shown in Supplementary Figs. 93 and 94 
and Supplementary Table 24, the different ANX data subgroups show 
a variable but overall similar pattern of correlations.

These results highlight the complex interrelations between the 
three internalizing phenotypes that also have the highest genetic 
correlations with ANX: MDD56, PTSD57 and neuroticism39. To exam-
ine potential directional effects underlying these correlations, we 
applied bi-directional generalized SMR (GSMR)58 with the latest avail-
able GWAS summary statistics. These results (Supplementary Table 25) 
indicate a highly significant bi-directional effect between ANX and each 
of these phenotypes. Based on beta-values, the strength of reverse 
(MDD → ANX = 0.657) and forward (ANX → MDD = 0.545) effects are sim-
ilar between ANX and MDD. However, both PTSD (PTSD → ANX = 0.891 
vs ANX → PTSD = 0.239) and neuroticism (neuroticism → ANX = 1.25 vs 
ANX → neuroticism = 0.17) effects on ANX are stronger than the reverse.

Discussion
In this GWAS meta-analysis, we identified 58 independent genome-wide 
loci associated with anxiety risk by including data from a composite 
phenotype created from five lifetime anxiety disorders (36 cohorts 
including 122,341 ANX cases and 729,881 controls; neffective = 390,560). 
Three-quarters of the identified variants are novel, with only 15 reported 
in prior anxiety GWAS. A total of 51 of these SNPs were replicated in 
an independent EUR-ancestry sample from 23andMe, strengthening 
their relevance. These results represent a major advance in identifying 
validated susceptibility loci for anxiety disorders.

The SNP-based heritability estimated at 10.1% captures approxi-
mately one-quarter of the broad-sense heritability from twin studies of 
adult ANX17, similar to other complex traits like MDD40. We divided the 
cohorts into subgroups based on ascertainment and assessment strate-
gies and conducted separate GWAS as a sensitivity test. We observed 
moderate to high genetic correlations between these subgroups, sup-
porting our decision to combine all samples into a single meta-analysis. 
SNP-based heritability varied from 23.7% in the clinical subgroup to 
6.9% in the community subgroup (ascertainment) and from 7.7% in 
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the interview subgroup to 13.2% in the ICD-10 subgroup (assessment), 
consistent with the hypothesis that more severe syndromes have higher 
heritability59–61. The overall meta-analytic SNP heritability is probably 
diminished by the effects of heterogeneity across these subgroups.

Along with replication in an independent EUR cohort from 
23andMe (51 loci replicated at a Bonferroni-corrected P value), we 
tested the transferability of our results. First, we examined replication 
in the MVP-AFR ancestry sample, in which nominally significant proxy 
loci were identified for 36 lead SNPs, but only two showed significant 
association after Bonferroni adjustment. This is not surprising given 
both ancestry and ascertainment differences. Second, we applied PRS 
to estimate the variance explained in ANX liability. The PRS explained 
2.27% of the variance in EUR individuals, which is comparable to PRS 
reports of MDD40. We then tested whether our findings would generalize 
to non-EUR samples. The EUR-ANX PRS explained 1.94% of the variance 
in the South Asian subsample of UK Biobank (significant) but only 0.54% 
for the AFR subsample (non-significant), in line with the low replication 
in the MVP-AFR ancestry cohort. This shows that for anxiety, as for 
other phenotypes, genetic liability estimated from EUR samples more 
closely reflects that of South Asian than AFR ancestry31. These findings 
stress the need for more diverse ancestry inclusion in future ANX GWAS.

Using LDSC, we found that, consistent with prior twin studies 
and extant GWAS, ANX shares the largest genetic overlap with MDD 

(rg = 0.91), with which it has the highest lifetime comorbidity. This is 
followed by PTSD (rg = 0.71), which is expected given their high comor-
bidity and the prior classification of PTSD among anxiety disorders62; 
however, this correlation is over twice that estimated in an early twin 
study28. The genetic correlation with neuroticism was similarly high 
(rg = 0.7), reflecting that neuroticism is an important predisposing 
personality trait for both ANX and MDD. In addition, ANX shows moder-
ate genetic correlations with ADHD (rg = 0.42), obsessive–compulsive 
disorder (rg = 0.41), schizophrenia (rg = 0.41), bipolar disorder (rg = 0.34) 
and anorexia nervosa (rg = 0.33). ANX also correlates with childhood 
internalizing symptoms (rg = 0.76), reflecting genetic continuity across 
development63,64. Noteably, ANX shows a substantial genetic correlation 
with suicide attempt (rg = 0.58). This may be partly driven by comorbid 
depression, although ANX also independently increases suicide risk65.

Follow-up Mendelian randomization (MR) analyses suggest 
bi-directional genetic effects between ANX and its strongest correlates: 
MDD, PTSD and neuroticism. Although ANX onset tends to precede 
MDD66,67, some studies show mutual prediction over time68,69. Our 
MR analyses support a stronger genetic causation of neuroticism on 
ANX, reflecting the stability of this personality trait70 and its persistent 
relationship with psychiatric disorders71. Unexpectedly, MR suggests 
that PTSD is more likely to cause ANX, potentially owing to confound-
ing (for example, diagnostic misclassification), ascertainment bias 
(PTSD presents with more severe symptoms) or because trauma can 
impact both disorders. These findings align with clinical experience 
that comorbid internalizing disorders exacerbate each other.

Gene-set and single-cell RNA expression analyses support GABAe-
rgic signaling as one potential mechanism underlying ANX genetic 
risk, supported by the efficacy of drugs like barbiturates and benzo-
diazepines in enhancing GABA neurotransmission. Indeed, the results 
of our gene–drug analysis included several classes of drugs that are 
already successfully used to relieve anxiety.

The PheWAS revealed that 43 SNPs identified in prior GWAS of 
other phenotypes overlap with ANX, highlighting extensive genetic 
sharing. The loci clustered into three categories: those affecting mul-
tiple medical, physiological and behavioral outcomes; those linked 
to psychiatric and behavioral phenotypes; and a small set specific to 
anxiety. Given the high comorbidity and genetic overlap of ANX with 
phenotypes like MDD or neuroticism, it is unsurprising that many of our 
loci have been reported in prior GWAS. However, most prior psychiatric 
GWAS did not exclude ANX, which may have influenced their findings. 
Notably, several loci—including four genes (PAX6, PROX2, VAMP2 and 
HMGN1)—show strong evidence of association in our study but have 
not been reported in prior psychiatric GWAS (further discussed in 
Supplementary Note 4).

Seven of the 66 protein-coding genes associated with ANX risk 
(ZNF502, ZNF501, STAB1, NT5DC2, GNL3, GLT8D1 and NEK4) are located 
on chromosome 3p21, a region previously linked to depression56, 
schizophrenia72, bipolar disorder73, suicide74, amyotrophic lateral sclero-
sis75 and neuroticism39, making it a ‘hot spot’ for overall neuropsychiatric 
susceptibility. Although little is known about these seven genes in addi-
tion to their basic cellular functions, some are implicated in anxiety-like 
behaviors in rodents76. Three genes (TAPBP, ZBTB22 and DAXX) of the 
MHC region (chromosomal band 6p21.32) were also associated with 
ANX. These findings do not represent a definitive set of anxiety risk genes 
but instead provide a high-level summary of findings from multiple 
post-GWAS approaches, serving as a starting point for future studies.

Given similarly high lifetime prevalence, moderate twin-based her-
itability and extensive comorbidity, our ANX genetic results should be 
most comparable to those for MDD among all psychiatric diagnoses. 
Indeed, the authors of a previous publication40 describe results from their 
PGC-MDD2 analyses that are highly similar to ours regarding the number 
of GWS SNPs identified per effective sample size, SNP-based heritability, 
enrichment of non-exonic classes of variants and proportion of variance 
explained by PRS. These highly polygenic internalizing disorders require 
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massive sample sizes to detect association signals from the small effects 
of many common SNPs. From what we have learned about MDD and other 
complex psychiatric phenotypes, the 58 loci we report herein are prob-
ably ‘the tip of the iceberg’ among the many hundreds of loci presumed 
to underlie individual differences in ANX risk. Therefore, further genomic 
discovery efforts for ANX will demand even larger sample sizes.

This study has several potential limitations. First, heterogeneity 
in ANX case phenotype assessments—from structured psychiatric 
interviews to ICD clinical assignments to self-report diagnoses—lim-
its the validity and power to detect susceptibility variants. There is 
often a trade-off between clinical validity and sample size61,77, as seen 
in our largest samples, which had the lowest depth of phenotyping. 
Second, by collapsing across all five of the adult anxiety diagnoses, we 
increased phenotypic heterogeneity, making it impossible to pinpoint 
the genetic signals specific to any particular disorder. Future stud-
ies with large, well-phenotyped samples of individual diagnoses are 
needed to address this limitation. Additionally, genetic contributions 
to ANX may change over the lifespan, highlighting the importance of 
longitudinal studies. We allowed comorbid mood disorders in ANX 
cases but excluded them from controls. Although this was justifiable 
because of the strong genetic sharing between ANX and depression, 
it could indirectly inflate their genetic associations and complicate 
inferences of pleiotropy. Finally, limiting our meta-analysis to EUR 

data reduces generalizability. We are working to aggregate data across 
ancestries for future multi-ancestry GWAS.

In summary, this study advances our understanding of the genetic 
basis of ANX by providing a foundation for future research into the bio-
logical mechanisms behind anxiety syndromes. It is our sincere hope 
that this opens new lines of investigation for expanding the clinical 
armamentarium of the next generation of clinicians who treat individu-
als affected by these conditions.
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Methods
Ethics
All relevant ethics approvals have been obtained by the respective 
cohort’s institutions, and a list of all respective approvals can be found 
in Supplementary Note 1.

Samples
To maximize sample size and power, we assigned the composite Any 
Anxiety case status if a participant had at least one of five core adult ANX 
across their lifetime: GAD, panic disorder, social phobia, agoraphobia 
or specific phobias. This amounts to identifying common genetic 
effects shared across these disorders. We did not exclude comorbid 
mood or other anxiety-related disorders in the cases. Controls had 
no lifetime anxiety disorder. Owing to the genetic overlap between 
ANX and depression78,79, we excluded controls if they had a lifetime 
comorbid mood disorder like MDD or bipolar disorder. We excluded 
individuals with a diagnosis of severe mental health conditions such as 
schizophrenia, autism or intellectual disability. As much as possible, we 
uniformly applied these criteria across the 36 samples included in this 
study (Supplementary Table 1). However, like most large-scale psychi-
atric GWAS, these samples were ascertained and assessed with variable 
approaches that introduce known and cryptic sources of heterogeneity 
(see Supplementary Note 2 for details of each study). With the aim to 
address phenotypic heterogeneity, we classified each of the 36 cohorts 
into five ascertainment subgroups (clinical, biobank, community, SRPD 
and comorbid) and three assessment subgroups (interview, ICD-10, 
biobank); see Supplementary Table 1 and Supplementary Note 3.

Our subsequent analyses fall into six categories, which are 
described in detail below. These include (1) core GWAS, SNP herit-
ability and sensitivity analyses including differences between ascer-
tainment and assessment groups; (2) replication and validation of 
the GWAS SNPs; (3) characterization and functional annotation of 
the significant SNPs, (4) gene-based associations and enrichment; (5) 
gene–drug associations; and (6) genetic associations and pleiotropy 
shared with other traits.

GWAS, SNP-based heritability and sensitivity analyses
Genetic data processing and individual GWAS analyses. Each data-
set was imputed using either the Haplotype Reference Consortium80 
or the 1000 Genomes Project Phase 3 (ref. 81) reference panels, and 
a GWAS was conducted for each (Supplementary Note 2 for details). 
The results from the individual GWAS were then harmonized and 
transformed to ‘daner’ file format following Rapid Imputation and 
COmpuational PIpeLIne for GWAS (RICOPILI)82 specifications. Details 
of harmonization, alignment and filtering can be found at the end of 
Supplementary Note 2. Sumstats further used DENTIST as a quality 
control measure83.

GWAS meta-analysis. The GWAS meta-analysis was performed on 
over 7.2 million autosomal SNPs across the 36 cohorts using 
inverse-variance weighting in METAL84 within RICOPILI. Heterogeneity 
between the studies was evaluated using Cochran’s Q and I² statistics 
(see Supplementary Note 2). To distinguish polygenicity from other 
causes of genomic inflation, we calculated the LDSC85 intercept using 
the summary statistics for the high-quality common SNPs (INFO score 
of >0.9) from the meta-analysis. The GWS threshold for association 
was set at P < 5 × 10−8. Automated LD-based ‘clumping’ of GWS SNPs 
was conducted in RICOPILI using PLINK to facilitate identification of 
independently associated loci. We defined LD-independent SNPs as 
those with low LD (r2 < 0.1) to a more significantly associated SNP within 
a 500-kb window. When loci contained several significant SNPs, the 
SNP with the lowest P value in each locus was selected as the lead SNP 
reported here. In addition to the main meta-analysis, we meta-analyzed 
similar datasets together according to the subgroup assignments 
described above.

Internal consistency of the ANX phenotype—sensitivity analyses of 
ANX ascertainment and assessment subgroups. SNP-based heritabil-
ity estimation and genetic correlations. We used LDSC86 to calculate the 
SNP-based heritability of the overall meta-analysis and the subgroup 
meta-analyses. Additionally, we used cross-trait LDSC to compute 
pairwise genetic correlations among the subgroups. SNP-based herit-
ability was estimated from the slope of the LDSC on the liability scale, 
assuming a 20% population prevalence of ANX. To avoid a downward 
bias in our liability scale heritability estimates, the effective sample 
size across the contributing cohorts was calculated and used as the 
input sample size for LDSC87. The sample prevalence was then speci-
fied as 0.5 for the conversion to the liability scale. Genetic correlation 
is calculated by estimating the slope from regressing the product of 
the Z-scores from two separate GWAS onto the LD score. It reflects 
the genetic covariation between two traits that is captured by all SNPs 
included in the GWAS. For both heritability estimation and genetic 
correlation analysis, we used pre-calculated LD scores from samples of 
EUR in the 1000 Genomes Project, which were filtered for SNPs present 
in the HapMap3 reference panel.

paLDSC. The paLDSC function44 in GenomicSEM was used to determine 
the number of non-spurious dimensions in exploratory genomic fac-
tor analysis. This is achieved by comparing the eigenvalues obtained 
from the eigendecomposition of the LDSC genetic correlation matrix 
to those derived from a Monte Carlo-simulated null correlation matrix, 
whereby random noise is drawn from the multivariate LDSC sampling 
distribution. The suggested number of factors to be extracted corre-
sponds with an eigenvalue exceeding a pre-specified percentile from 
the corresponding distribution of eigenvalues generated under the null.

GenomicSEM 1-factor model. To extend the genetic correlation analysis, 
we used genomic structural equation modeling (GenomicSEM)43 to 
model the genetic architecture of the ascertainment and assessment 
subgroups. We conducted an exploratory factor analysis first, fol-
lowed by a confirmatory factor analysis. To conduct these analyses, 
first, the summary statistics were harmonized and filtered (with the 
munge-function) using HapMap3 as the reference file, with the effective 
sample size as the input sample size and SNPs filtered to INFO > 0.9 and 
MAF > 0.01. Second, multivariable LDSC was run to obtain the genetic 
covariance matrix and corresponding sampling covariance matrix 
using pre-computed EUR-ancestry LD scores. Third, we conducted 
exploratory factor analysis followed by confirmatory factor analysis 
using the pre-packaged common factor model in GenomicSEM using 
diagonally weighted least squares estimation.

Replication and validation of GWAS SNPs
Replications. Lead SNPs from the primary GWAS were tested for 
replication in the 23andMe commercial database using 1,175,012 
self-reported ANX cases and 1,956,379 controls. Self-reported ANX 
cases were individuals who checked ‘anxiety’ in response to either of 
the following survey questions: “Have you ever been diagnosed with 
any of the following…” or “What mental health problems have you 
had? Please check all that apply”. This GWAS excluded close relatives 
(excluded cases, 13,801; excluded controls, 21,454) and an additional 
35,255 samples (1.1%) because of consent restrictions (as of June 9, 
2023). We performed logistic regression, assuming an additive model 
for allelic effects after covarying for age, sex, the first five principal 
components and genotyping platform. Previous work has demon-
strated that the first five principal components in the 23andMe data-
set explain more variance than the first ten principal components 
from the UK BioBank86. The P values were adjusted using the standard 
genomic control procedure88 in which the chi-squared test statistic 
is divided by the genome-wide estimated lambda inflation factor, 
λ = 1.491 (s.e. = 0.024). The estimated SNP heritability was h2 = 0.088 
(s.e. = 0.002), consistent with the estimate from our discovery GWAS.
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Furthermore, we conducted a replication analysis of our 58 
ANX-associated SNPs in an independent AFR sample from MVP com-
prising 5,664 ANX cases and 26,410 controls. Initially, we assessed the 
association results of the same 58 SNPs that reached significance in 
our main EUR-ancestry GWAS. Recognizing that the lead SNP might 
not necessarily be the causal SNP in this region and considering the 
differing LD structures between the EUR and AFR ancestry groups, we 
anticipated that the same SNP might not exhibit significant associa-
tion. However, the genomic region might still be associated in AFR 
samples. Therefore, we performed a second look-up to identify the 
most significant SNP within a 50-kb window (±25 kb) to accommodate 
potential differences in LD across EUR and AFR ancestries (proxy loci). 
LD between AFR and EUR populations was evaluated using r² and D’ 
metrics (as reported on https://ldlink.nih.gov). We considered repli-
cation significant at a Bonferroni-corrected significance threshold 
of 8.62 × 10−4 (0.05 / 58).

To evaluate the consistency of previously reported ANX-associated 
SNPs, we performed a look-up of those SNPs in our main GWAS 
meta-analysis. We restricted the look-up to prior findings from case–
control GWAS (as opposed to dimensional, symptom-based GWAS). Of 
note is that none of the previously published ANX GWAS are completely 
independent of our sample but are partially overlapping.

PRS analyses. We validated our results with PRS analyses in inde-
pendent UK Biobank samples after removing all UK-based samples 
(UK Biobank and Generation Scotland) from the primary GWAS. We 
defined ANX cases as meeting one of the following three criteria: (1) 
a likely lifetime DSM-IV GAD diagnosis based on the anxiety-related 
questions from the Composite International Diagnostic Interview 
short-form questionnaire89 and the first UK Biobank Mental Health 
Questionnaire90; (2) SRPD of one of the five core anxiety disorders 
(GAD, panic disorder, social phobia, agoraphobia, specific phobia; first 
and second UK Biobank Mental Health Questionnaires); or (3) having a 
GAD-7 score91 of ≥10, reflecting anxiety symptoms over the past 2 weeks 
(first and second UK Biobank Mental Health Questionnaires). Controls 
were defined in the same ways as the primary GWAS. We grouped indi-
viduals into three ancestry groups: EUR, AFR and South Asian.

We calculated PRS using MegaPRS92 within the GenoPred93 pipe-
line, which implements polygenic scoring approaches using the 
LDAK heritability model, whereby the variance explained by each SNP 
depends on its allele frequency, LD and functional annotations. Logis-
tic regression was run to estimate the PRS prediction effect for ANX, 
adjusting for genotyping batch, assessment center and ten genetic 
principal components.

Characterization and functional annotation of GWAS SNPs
We conducted variant fine-mapping and functional annotation 
(described in detail below). Note that although some gene prioritiza-
tion approaches (for example, MAGMA, eQTL-based analyses, T-SMR) 
use different underlying statistical algorithms, they rely on overlap-
ping expression datasets such as GTEx and PsychENCODE. Although 
eQTL uses only significant functional signals, T-SMR also incorporates 
sub-threshold functional signals that can better inform causal infer-
ence. These shared data sources mean that significant findings across 
methods are not fully independent. Given the challenges and biases 
associated with weighting schemes94, we chose to prioritize genes sup-
ported by three or more analyses, acknowledging the varying strengths 
of evidence but avoiding arbitrary weighting.

Variant fine mapping. We conducted statistical fine mapping using 
FINEMAP (v.1.3.1)46. Only variants located in a region of 1 Mb around 
index variants were included in the analyses. We used the default k = 5 
maximum number of SNPs in credible sets, and the significant (sug-
gestive) threshold for signals was set at 95% (50%) total posterior prob-
ability for the variants in credible sets (see Supplementary Table 10).

FUMA: functional annotation (eQTL/Hi-C). We used FUMA (v.1.6.1) 
to examine the functional significance of our GWS loci. We compared 
results from brain-related eQTL studies to identify overlap in signifi-
cance between our GWAS SNPs and the eQTL results. Furthermore, we 
used brain-related Hi-C information available through FUMA to func-
tionally annotate our results. Standard settings were applied and results 
visualized using FUMA’s built-in circos plot routine. More information 
about the individual third-party datasets (available through the FUMA 
website) included in the analyses can be found in the Code Availability 
section or online in FUMA’s tutorial (https://fuma.ctglab.nl/tutorial).

Stratified LDSC. Two stratified LDSC analyses were conducted. First, 
the overall SNP heritability was partitioned into 53 overlapping func-
tional genomic categories95. Second, SNP heritability was partitioned 
into 220 cell-type-specific regulatory elements based on GTEx data and 
data from the Franke Lab96. In both partitioned heritability analyses, 
we regressed the χ2 from the meta-analysis summary statistics onto 
LD scores downloaded from https://console.cloud.google.com/stor-
age/browser/broad-alkesgroup-public-requester-pays. EUR allele 
frequencies derived from the 1000 Genome Project data were used 
as the reference genomes in both analyses. The enrichment of a func-
tional or cell-type-specific category was defined as the proportion of 
SNP heritability in the category divided by the proportion of SNPs in 
that category.

FUMA: cell-type and tissue enrichment. We used MAGMA (v.1.08)49 
as implemented in FUMA (v.1.6.1)47 to perform tissue-enrichment and 
cell-type-enrichment analyses. For tissue-enrichment analyses, we 
considered a set of 30 tissue groupings (average enrichment across 
all tissues in these groups) and 54 individual tissues (with 13 individual 
tissues from the ‘Brain’ group). Default settings were applied for all 
above-mentioned analyses. More information about the individual 
third-party datasets (available through the FUMA website) included 
in the analyses can be found in the Code Availability section or online 
in FUMA’s tutorial (https://fuma.ctglab.nl/tutorial).

Gene-based associations and enrichment
MAGMA: gene-based GWAS and gene-set analysis. We performed 
gene-based and gene-set analyses using MAGMA49 (v.1.08) as imple-
mented in FUMA47 (v.1.6.1). To test genetic associations at the gene 
level for the combined effect of SNPs in or near protein-coding genes, 
we applied default settings (SNP-wise model for gene-based analysis 
and competitive model for gene-set analysis). Gene-based P values were 
computed by mapping SNPs to their corresponding gene(s) based on 
their position in the genome. Positional mapping was based on ANNO-
VAR annotations, and the maximum distance between SNPs and genes 
was set to 10 kb (default). A multiple regression model was used while 
accounting for LD between the markers. The 1000 Genomes phase 3 
reference panel81, excluding the MHC region, was used to adjust for 
gene size and LD across SNPs. Using the result of the gene-based analy-
sis (gene-level P values), competitive gene-set analysis was performed 
with default parameters: 15,496 gene sets were tested for association. 
Gene sets were obtained from MSigDB (v.7.0) (see www.gsea-msigdb.
org for details), including ‘Curated gene sets’ consisting of nine data 
resources, including KEGG, Reactome and BioCarta, and ‘GO terms’ 
consisting of three categories (biological processes, cellular compo-
nents and molecular functions).

T-SMR, P-SMR and M-SMR. SMR methods are MR tests for assessing 
(causal) colocalization between significant trait association signals and 
significantly accurate predictions of molecular mediators or regulators 
(transcriptomic, proteomic and methylomic) that often use multi-
ple variants, some of which, unlike classical colocalization methods, 
might possess only suggestive signals. If both trait and molecular 
mediator QTL signals are statistically significant, the SMR and classical 
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colocalization methods are equivalent. However, the SMR methods 
accommodate (combinations of) non-significant QTLs that accu-
rately predict molecular mediators, a situation still encountered for 
many genes owing to the low sample sizes for the reference molecular 
mediator-genetic data97.

We performed T-SMR, P-SMR and M-SMR studies using SMR 
(v.1.03)50 in conjunction with the largest available external blood and 
brain xQTL reference datasets (Supplementary Table 16). When pro-
tein QTL summary statistics from reference data were not available 
(blood and brain protein QTL) in the SMR-required input binary file 
format (that is, .besd), we processed them into the required format. 
One advantage of SMR over competing tools is the inclusion of the 
HEterogeneity In Dependent Instruments (HEIDI) test, which can be 
used as a proxy for likely causality.

SMR analyses were based on cis-xQTLs (SNPs with P < 5 × 10−8 within 
2 Mb of the probe). We also used the default maximum (20) and mini-
mum (3) number of xQTLs selected for the HEIDI test. We set the signifi-
cance threshold as P < 1.57 × 10−3 for xQTL and the mismatch of minimum 
allele frequency among input files as <15%. For the HEIDI test, SNPs with 
LD > 0.9 and <0.05 with the top associated xQTL SNP were pruned.

To prioritize genes and perform pathway analyses, we adjusted 
probe (RNA, protein, CpG) SMR P value (PSMR) for the HEIDI test P value 
(PHEIDI) by combining the two P values into a single one by requiring 
that PSMR was not penalized when PHEIDI was above 0.01 and PSMR was 
penalized by the amount PHEIDI  fell below 0.01. Consequently, we 
adjusted PSMR  to P′SMR =

PSMR
min( PHEIDI

0.01
,1)

. We used this approach instead of 

filtering by PHEIDI < 0.01  because a misalignment between the GWAS 
cohort population and the EUR LD reference panel used by SMR might 
yield very low PHEIDI. We previously arrived at this compromise between 
the two types of SMR P values when applying this approach to many 
psychiatric disorders52, for example, the well-known SCZ C4A signal 
yielded a T-SMR PHEIDI = 5.94 × 10−4 but a much lower PSMR. However, 
for researchers who prefer to use the more conservative approach 
based on strict PHEIDI thresholds described in the SMR paper50, we also 
provide gene PHEIDI  values for all SMR analyses, as documented in 
Supplementary Tables 15–17.

Gene–drug associations
To uncover potential repurposing of existing drugs to ANX, we con-
ducted gene–drug interaction analyses by applying the DrugTargetor53 
method (v.1.3) to ANX summary statistics. DrugTargetor assesses the 
association of individual drugs or small-molecule-related gene sets and 
drug class enrichment. The method used two drug–gene interaction 
databases: ChEMB54,98 and DgiDB55. The analysis used the following set-
tings: (1) hypothesized action for the nervous system; (2) both drug class 
and single drug; and (3) 1,500 maximum number of unique drugs and 
200 maximum classes of drugs. Please see Supplementary Tables 22 and 
23 and the README tab for the source databases used to accumulate the 
gene sets. Analyses were run using MAGMA (v.1.10)49 using gene flanks 
of −35 kb 5′ and +10 kb 3′ (ref. 99). Drug class enrichment was calculated 
using the area under the curve defined by the percent of drug class gene 
sets versus their rank in all the gene sets100.

Genetic overlap between ANX and other phenotypes
PheWAS. Using the identified 58 GWS SNPs, we conducted a PheWAS 
to identify the variants that have been significantly associated with 
other psychiatric, physiological, medical and behavioral traits in prior 
GWAS, using the phewas function from the R packages ieugwasr101. The 
R package uses publicly available GWAS data from over 10,000 studies 
compiled by the IEU Open GWAS Project101,102. The PheWAS used the 
following databases:

•	 ebi-a: datasets that satisfy minimum requirements imported 
from the EBI database of complete GWAS summary data;

•	 finn-b: FinnGen study Data Freeze 5;

•	 ieu-a: GWAS summary datasets generated by many different con-
sortia that have been manually collected and curated, initially 
developed for MR-Base;

•	 ieu-b: GWAS summary datasets generated by many different 
consortia that have been manually collected and curated, ini-
tially developed for MR-Base (round 2);

•	 ubm-a: complete GWAS summary data on brain region volumes 
as described by Elliott et al.103;

•	 ukb-d: Neale lab analysis of UK Biobank phenotypes, round 2.

This combination of databases provides the maximum cover-
age of published GWAS summary statistics that could be used for the 
PheWAS while minimizing duplication. To increase the accuracy of the 
PheWAS and consistency of the results across analyses for psychiatric 
disorders and related behavioral phenotypes, we supplemented the 
default GWAS summary statistics from the IEU Open GWAS Project 
for the traits we curated for the genetic correlation analyses. Curating 
the primary psychiatric and behavioral studies removed duplication 
from sequential GWAS analyses of the key disorders. We required that 
a SNP’s P value was GWS in both the current ANX GWAS and the alter-
native GWAS. Figure 2a was constructed using edited combinations 
of the following packages in R: alluvial104, qqman105 and pheatmap106.

Cross-trait genetic correlations. We used cross-trait LDSC to com-
pute genetic correlations between the ANX meta-analysis and 112 
selected disorders and traits with publicly available summary sta-
tistics. The sources of GWAS summary statistics can be found in 
Supplementary Table 24. Details of cross-trait LDSC can be found in 
the section “SNP-based heritability estimation and genetic correla-
tions” (Methods). As a follow-up, we also calculated genetic correla-
tions between the 112 phenotypes and each ascertainment-specific 
sub-cohort and compared the genetic correlation patterns between 
the four groups.

GSMR. We performed bi-directional GSMR58 analyses for trait pairs 
(ANX with MDD107, PTSD57 and neuroticism39) using GSMR (v.1.1.1), avail-
able in the GSMR R package. We used commonly applied parameters: 
(1) a 5 × 10−8 threshold for GWS signals; (2) the original HEIDI outlier 
method; (3) single-SNP and multi-SNP HEIDI outlier P = 0.01; (4) LD 
threshold for selecting MR SNP instruments of 0.05; and (5) false dis-
covery rate threshold of 0.05. LD between SNPs with significant signals 
in at least one trait were computed using GCTA108 (v.1.94.1) based on the 
1000 Genome Project81 EUR genetic data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics excluding 23andMe are made available on the PGC 
data-download page (https://pgc.unc.edu/for-researchers/download-
results). The replication GWAS summary statistics for the 23andMe data 
will be made available through 23andMe to qualified researchers under 
an agreement with 23andMe that protects the privacy of the 23andMe 
participants. Datasets will be made available at no cost for academic 
use. Please visit https://research.23andme.com/research-innovation-
collaborations for more information and to apply to access the data.

Code availability
Core analysis code for RICOPILI can be found at https://sites.google.
com/a/broadinstitute.org/ricopili. This includes PLINK (https://www.
cog-genomics.org/plink2), EIGENSOFT (https://www.hsph.harvard.
edu/alkes-price/software), Eagle2 (https://alkesgroup.broadinstitute.
org/Eagle), Minimac3 (https://genome.sph.umich.edu/wiki/Mini-
mac3), SHAPEIT3 (https://mathgen.stats.ox.ac.uk/genetics_software/
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shapeit/shapeit.html), METAL (https://genome.sph.umich.edu/wiki/
METAL_Documentation) and LDSC (https://github.com/bulik/ldsc). 
MAGMA can be found at https://ctg.cncr.nl/software/magma. Genom-
icSEM, specifically the tutorial ‘Models without Individual SNP effects’, 
can be found at https://github.com/GenomicSEM/GenomicSEM/
wiki/3.-Models-without-Individual-SNP-effects. Additional code for 
data processing (for example, harmonization of summary statistics) 
can be found at https://zenodo.org/records/17478061.
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