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The major anxiety disorders (ANX; including generalized anxiety disorder,
panic disorder and phobias) are highly prevalent, often onset early and cause
substantial global disability. Although distinct in their clinical presentations,

they probably represent differential expressions of a dysregulated threat-
response system. Here, we present a genome-wide association meta-analysis
comprising 122,341 European ancestry ANX cases and 729,881 controls.
Weidentified 58 independent genome-wide significant risk variants and

66 genes with robust biological support. Inanindependent sample of
1,175,012 self-report ANX cases and 1,956,379 controls, 51 out of the 58
associations replicated. As predicted by twin studies, we found substantial
genetic correlation between ANX and depression, neuroticism and other
internalizing phenotypes. Follow-up analyses demonstrated enrichmentin
allmajor brainregions and highlighted GABAergic signaling as one potential
mechanismimplicated in ANX genetic risk. These results advance our
understanding of the genetic architecture of ANX and prioritize genes for
functional follow-up studies.

Fear and anxiety are critical survival responses; thus, ANX may result
from dysregulation of the brain’s threat-response circuits. Although
perturbations in various neurotransmitter systems, such as serotonin
or gamma-aminobutyric acid (GABA), have been proposed as a basis
of their etiology, no reliable biomarkers have yet been identified'. The
major ANX, including generalized anxiety disorder (GAD), panic dis-
order and phobias (specific phobia, social phobia and agoraphobia),
represent different clinical presentations of that underlying common
diathesis?™*. Up to 25% of the population will develop an ANX at some
point during their lifetime®”. These disorders tend to onset early inlife,
are persistent and are highly comorbid with other psychiatric conditions
forwhichthey often present as a predisposingrisk factor; for example,
major depressive disorder (MDD) and substance-use disorders®* %, ANX
arealsoassociated with other medical conditions, such as neurological,
cardiovascular and gastrointestinal disorders as well as cancers™ ™.
These features make ANX a leading source of worldwide disability™*¢.

Each ANX aggregatesin families (odds ratio, 4-6) primarily owing
togeneticrisk factors"”. Estimates from twin studies indicate that ANX

are moderately heritable (h*=30-50%)>", similar to other common psy-
chiatric disorders like MDD but lower than less prevalent disorders like
schizophreniaandbipolar disorder. Different ANX exhibit overlapping
clinical features and strong comorbidity, which may be aresult of shared
genetic susceptibility” ™ and environmental risk factors?***. Research
implicates mechanisms that affect the structure and functional capacity
of brain networks involved in emotion and cognition” . Twin stud-
ies report substantial genetic correlations between ANX and other
psychiatric conditions, particularly MDD, helping to explain their
high comorbidity. Inaddition, ANX and depression both share genetic
risk with heritable personality traits such as neuroticism®?, Anxiety
symptoms often precede suicidal behaviors®, with possible causal
implications®. Therefore, examining the genetic relationship between
ANXand related phenotypes on theinternalizing spectrum s essential.

The combination of high prevalence, extensive comorbidity and
high polygenicity makes it particularly difficult to identify genetic
variants underlying risk for ANX. Prior genome-wide association stud-
ies (GWAS) have identified a handful of genetic loci with inconsistent
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Fig.1|Manhattan plot of the main ANX GWAS showing 58 GWS loci. The x axis
shows the positionin the genome (chromosomes1to022), and the y axis represents
-log,o(Pvalues) (two-sided, not adjusted for multiple testing) for the association of
variants with ANX using an inverse-variance weighted fixed effects model (122,341

ANX cases and 729,881 unaffected controls). The horizontal red line shows the
threshold for GWS (P=5 x107®). Dots represent each SNP that was tested in the
GWAS, with agreen diamond indicating the lead SNP of a GWS locus and green dots
below representing SNPs within the locus with high levels of LD with the lead SNP.

results® %, Arecent meta-analysis using five publicly available datasets
reported ten additional novel associations”. Genome-wide single
nucleotide polymorphism (SNP)-based heritability estimates range
from 10-28%, supporting that ANX have a polygenic basis. Consist-
ent with twin studies, previous psychiatric GWAS have demonstrated
that ANX polygenic risk is highly correlated with that of MDD and
neuroticism>*2, Similar to other complex genetic phenotypes, suf-
ficiently large samples arerequired to achieve the necessary power to
detect the small effects of common variants.

Here, we present a GWAS meta-analysis from the Anxiety Disorders
Working Group of the Psychiatric Genomics Consortium (PGC-ANX),
consisting 0of 122,341 individuals diagnosed with any ANX and 729,881
controls, all of European (EUR) ancestry. We analyzed the dataat the level
of variant, gene, pathway/gene set and tissue by using both function-
allyinformed and functionally agnostic methods. Subsequently, these
results were compared with those of other phenotypes and investigated
for possible molecular mechanisms and avenues for drug repurposing.

Results

GWAS meta-analysis

We performed a GWAS meta-analysis of 36 case-control cohorts
(122,341 ANX cases and 729,881 controls; Supplementary Table 1).
Details about phenotype, quality control and GWAS analysis for each
individual cohort are provided in Supplementary Note 2. Among the
7.2 million autosomal SNPs analyzed, we identified 58 independent,
genome-wide significant (GWS) SNPs associated with ANX (Fig.1and
Table 1; further information is provided in Supplementary Table 2,
Supplementary Fig. 1 (quantile-quantile plot) and Supplementary
Figs.2-56 (regional association plots of each significant SNP and forest
plotsindicating each cohort’s effect size)). Estimates of the genomic
inflation factor (1 =1.41, 1,999 = 1.00), linkage disequilibrium (LD)
score regression (LDSC) intercept (1.05, standard error (s.e.) = 0.01),
and attenuation ratio (0.082, s.e. = 0.014) suggest that inflation was
probably caused by polygenicity and not by cryptic population struc-
ture. LDSC estimates a SNP-based heritability of 10.1% (s.e. = 0.004),
assuminga 20% population prevalence.

A series of sensitivity analyses, including GWAS Cochran’s Q
(Supplementary Fig.57)and Pstatistics (forest plotsinSupplementary Figs.2-
56), revealed no substantial genome-wide heterogeneity across the 36
cohorts. Furthermore, we performed subgroup-specific meta-analyses,
subdividing our study cohorts based on (1) their ascertainment strat-
egy (five subgroups: clinical, comorbidity, community, biobanks and
self-reported professional diagnosis (SRPD); Manhattan and quantile-
quantile plotsinSupplementary Figs. 58-62) and (2) their assessment
strategy (three subgroups:interview, ICD-10 codes and SRPD; Manhat-
tanand quantile-quantile plotsin Supplementary Figs. 63-66). We then
used confirmatory factor analysis in GenomicSEM* to test whether
these subgroups fit a one-factor model. In both cases, a single latent
factor best explained the genetic covariance between the subgroups
(ascertainment fit statistics: CF1=1, SRMR = 0.04; assessment fit sta-
tistics: CFI=1,SRMR =3.67 x 10°). The factor loadings across both sub-
group models were high (0.75-1), with the factor explaining 81.8% and
95.6% of the total genomic variance in the ascertainment and assess-
ment models, respectively (see Supplementary Note 3 for detailsonthe
subgrouping and Supplementary Table 5and Supplementary Fig. 67a,b
for GenomicSEM results). Using parallel analysis based on multivari-
ate LDSC (paLDSC**), we identified one non-spurious dimension in
exploratory genomic factor analysis, including 14 cohorts with more
than10,000individuals and atleast 1,000 cases. This finding supports
our hypothesis that the genetic association signals were generally con-
sistent across samples and study designs and tapped into acommon
underlying ANX genetic vulnerability.

Replication and validation of GWAS SNPs

We conducted two replication analyses of the 58 significant loci: one
inalarge independent EUR ANX GWAS from 23andMe, and the other
inan African-American (AFR) ancestry ANX GWAS from the Veterans
Affairs Million Veteran Program (MVP). The 23andMe sample con-
sisted 0f 1,175,012 ANX self-report cases and 1,956,379 controls (see
Methods for details). Among the 58 SNPs identified in the discovery
GWAS, all but one (rs7121169) were available for replication testing in
the 23andMe genotype platform. Two additional variants failed quality
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Table 1] List of the 58 independent GWS SNPs of the main ANX GWAS meta-analysis

Locus Index SNP CHR Position(bp) Pvalue OR s.e. A1/A2 Freq.cases Freq.controls Closest genes (distance kb)

1 rs34579341 1 72,745,962 4.01x10°° 0.964 0.006 G/A 0.18 0.17 NEGR1

2 rs11580539 1 73,896,218 8.55x10™  0.971 0.005 G/A 0.60 0.61 LINCO1360 (-417)

3 rs5015511 2 22,546,852 1.61x107° 0.032 0.005 A/G 0.52 0.54 -

4 rs79556790 2 63,480,537 3.87x107® 0.881 0.023 A/C 0.98 0.98 WDPCP

5 rs7570682 2 104,983,267 4.31x10™7° 0.036 0.006 A/G 0.23 0.23 LOC100287010

6 rs2165077 2 124,932,847 3.77x107° 0.032 0.005 T/C 0.48 0.47 CNTNAPS

7 rs17407658 2 145,703,652 1.09x10°° 0.972 0.005 G/A 0.50 0.52 TEX41

8 rs9867083 3 18,804,734 1.22x10™ 0.034 0005 C/T 0.70 0.69 SATBI1-AST(-183.1)

9 12888367 3 44,242,929 8.67x10  0.032 0005 A/G 0.33 0.34 TOPAZ1

10 rs2710323 3 52,815,905 1.91x10™ 0.971 0.005 C/T 0.48 0.49 NEK4, ITIH1, ITIH3, ITIH4, ITIH4-AS1

1 rs4856929 3 68,030,736 2.59%x1078 0.047 0.008 T/C 0.87 0.88 SUCLG2-AST1, TAFA1

12 rs72704544 4 176,853,286 4.37x10™° 0.043 0.007 G/A 0.21 0.21 GPMG6A

13 rs2066928 5 30,843,787 4.92x10® 0974 0005 A/G 0.49 0.51 -

14 rs77960 5 103,964,585  1.47x10™ 0.037 0.005 A/G 0.32 0.31 -

15 rs288160 5 107,364,269 2.58x10°® 0.973 0.005 T/C 0.32 0.33 FBXL17

16 rs11241568 5 120,140,556 8.77x10™ 0.037 0.005 C/T 0.33 0.34 PRR16 (-67.5)

17 rs10476497 5 164,588,817 1.36x10™ 0.034 0.005 A/G 0.54 0.55 -

18 rs58825580 6 26,365,679 6.64x10™ 0943 0008 G/T 0.12 om BTN3A2, BTN2A2, BTN3A1

19 rs9373363 6 143,150,043 157x10°® 0.969 0.006 G/A 0.26 0.28 HIVEP2

20 rs12699332 7 12,269,762 575x107° 0.028 0.005 T/G 0.41 0.39 TMEM106B

21 rs2371365 7 82,506,898 1.77x10°® 0.028 0.005 C/T 0.38 0.37 PCLO

22 rs4395923 8 65,569,387 4.34x10™ 0.031 0.005 A/G 0.59 0.61 CYP7B1

23 rs4976976 8 143,311,653 1.20x10™ 0965 0.005 A/G 0.40 0.4 LINCOOO51, TSNARET

24 rs10959883 9 11,519,984 6.21x10™" 0.959 0.006 C/T 0.20 0.20 -

25 rs10961649 9 14,670,949 1.24x107° 0.033 0.005 T/C 0.32 0.31 ZDHHC21

26 rs13287777 9 26,719,411 8.74x107° 0.960 0.007 T/G 0.18 0.18 -

27 rs28474857 9 98,247,204 1.29x107° 0.048 0.008 T/C 0.10 on PTCH1, LOC100507346

28 rs11599236 10 106,454,672 7.99x10™ 0.968 0.005 C/T 0.4 0.42 SORCS3, SORCS3-AS1

29 rs2071754 " 31,812,582 2.65%x107® 0.968 0.006 T/C 0.78 0.79 ELP4, PAX6, PAX6-AS1, PAUPAR

30 rs7121169 n 57,452,543 2.84x107° 0.034 0.006 A/G 0.33 0.34 MIR130A, YPEL4, CLP1, ZDHHCS5,
MED19, TMX2, TMX2-CTNND1

31 rs174560 n 61,581,764 215x10® 0.033 0.006 C/T 0.32 0.34 TMEM258, MIR611, FEN1, FADST1,
MIR1908, FADS2

32 rs7110863 n 112,843,138 210x10™ 0.039 0.005 G/A 0.44 0.49 LOC101928847, NCAM1

33 rs73034295 N 133,822,133 3.84x10™ 0.963 0.006 A/G 0.22 0.24 IGSF9B

34 rs78120929 12 24,139,063 6.84x107° 0.955 0.008 C/T on on SOX5

35 rs989657 12 24,166,426 2.95x10™  0.031 0.005 C/T 0.56 0.56 SOX5

36 rs61928096 12 53,780,633 3.60x10™ 0100 0015 A/G 0.04 0.03 SP7, SP1, AMHR2

37 rs4382947 12 60,475,057 3.94x107 0.969 0.005 A/G 0.42 0.41 -

38 rs6539062 12 103,552,910 2.04x107® 0.027 0.005 A/C 0.51 0.54 LOC101929058 (also known as
C120rf42-AS1)

39 rs3847960 12 120,271,100 1.02x107° 0.036 0.006 A/T 0.63 0.64 CIT

40 rsb44271348 12 120,320,793 2.09x10°® 0.930 0.013 T/G 0.96 0.97 CIT

4 rs9534593 13 47,879,549 8.23x10°° 0.973 0.005 G/A 0.44 0.44 -

42 rs7997746 13 54,020,455 1.31x107® 0.973 0.005 A/C 0.46 0.46 -

43 rs36119415 13 69,579,612 6.62x107° 0.954 0.008 T/G 0.0 0.0 -

44 rs870764 13 84,973,006 2.08x10® 0.031 0.006 A/G 0.73 0.74 LINC00333 (non-coding)

45 rs9556979 13 99,241,507 6.38x107° 0.032 0.005 G/T 0.32 0.32 STK24, STK24-AS1

46 rs61990288 14 42,074,726 8.70x107° 0.973 0.005 A/G 0.50 0.49 LRFN5

47 rs3007061 14 47,238,606 1.51x107° 0.031 0.005 C/T 0.62 0.63 -
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Locus Index SNP CHR Position(bp) Pvalue OR s.e. A1/A2 Freq.cases Freq.controls Closest genes (distance kb)

48 rs12588874 14 75,254,073 7.26x107° 0.029 0.005 A/G 0.53 0.51 FCF1, YLPM1

49 rs6574271 14 76,580,655 277x1078 0.973 0.005 C/T 0.45 0.46 IFT43, GPATCH2L

50 rs616695 16 77105,587 9.03x107° 0.973 0.005 T/G 0.43 0.44 -

51 rs2289590 17 8,110,764 6.95x10° 0.029 0005 A/C 0.59 0.61 VAMP2, TMEM107, SNORDT118,
MIR4521, BORCS6, AURKB,
LINC00324, CTC1, PFAS

52 rs8091977 18 31,359,414 918x107° 0.029 0005 C/T 0.46 0.47 ASXL3

53 rs4801024 18 52,396,321 5.90x10™ 0.038 0.006 G/T 0.75 0.74 RAB27B (49.4)

54 rs6047130 20 20,868,094 474x107° 0.958 0.007 T/C 0.12 013 -

55 1512624433 20 44,680,853 9.43x10°° 0.033 0.006 A/G 0.26 0.25 MMP9, SLC12A5-AS1, SLC12A5,
NCOA5

56 rs2070865 21 40,715,519 9.93x107° 0.972 0.005 T/C 0.47 0.50 BRWD1, BRWD1-AS2, BRWD1-AST1,
HMGN1, GET1, WRB-SH3BGR

57 rs7290074 22 30,922,642 3.19x10°® 0.095 0.016 A/G 0.02 0.03 SDCA4P, SEC14L4, SEC14L6,
GAL3ST1, PEST

58 rs13056300 22 41,408,754 1.28x107® 0.032 0.006 C/T 0.27 0.28 RBX1, SNORD140 (10.9)

Index SNP, rs number of variant; CHR, chromosome; BP, base pair position (hg19); OR, odds ratio for allele 1; s.e., standard error; A1/A2, allele 1and allele 2; Freq. cases, frequency of Alin cases;
Freq. controls, frequency of Alin controls; Closest genes (distance kb), closest genes to the SNP with distance in kilobases in parentheses (if the SNP lies within the gene, no distance is given).

control procedures (rs72704544 and rs11599236). Considering the
remaining 55 loci tested, all showed the same direction of effect as
the primary GWAS, and 51 were significant at a Bonferroni-corrected
Pvalue of P=0.0009 (0.05/55) (Supplementary Table 6). At the time of
this analysis, only the MVP had published an ANX GWAS in areasonably
sized non-EUR sample (MVP-AFR: military ascertainment, AFR ancestry;
5,664 cases and 26,410 controls)**. Analyzing those data, we compared
the direction of effect and P values of association for our 58 lead SNPs
to examine consistency with our EUR results (Supplementary Table 7).
Among the 53 SNPs available in MVP-AFR, only 27 (50.9%) showed the
same sign. Given differences in LD and allele frequency between EUR
and AFR genomes, we also searched for the most significant SNPin a
50-kbwindow around each lead SNPin the MVP-AFR cohort. A total of
36 of these SNPs were nominally associated, but only two were signifi-
cantly associated after adjustment for multiple testing.

We further compared our associations with those reportedin pre-
vious ANX case-control GWAS***¥ (Supplementary Table 8). Arecent
GWAS usingbroader anxiety-related case-control and symptom-based
phenotypes reported 40 EUR-ancestry significant SNPs*’; all but
one showed the same direction of effect, while ten were also GWS
in our analysis. Importantly, most of the associations in our GWAS
are novel discoveries, with only 15 reported in prior ANX GWAS. We
note that some of the previously identified SNPs are in LD with each
other, and all previously published ANX GWAS partially overlap with
our samples. Therefore, these are not independent replications but
demonstrate the consistency of results when additional samples
areincorporated.

Tostudy the generalizability of our results across different ances-
tral groups, we tested the extent to which polygenic risk scores (PRS)
derived from our GWAS (excluding UK datasets) predicted ANX in the
UK Biobank for participants of EUR, AFR and South Asian ancestry
(seeSupplementary Table 9). The PRS predicted 2.27% of the variance
(P<2.0x107) in ANX liability for those of EUR ancestry, assuming a
prevalence of 20%. The variance explained for those of South Asian
and AFR ancestries was 1.94% (P = 6.37 x10°) and 0.54% (P = 0.051),
respectively, revealing significant polygenic overlap across EUR and
South Asian ancestries.

Characterization and functional annotation of GWAS SNPs

Toidentify potential causal variants, we conducted statistical fine map-
ping of our GWS loci using FINEMAP (v.1.3.1) with stringent inclusion
thresholds*. This processidentified six credible SNP sets defined as hav-
ingaposterior probability of >0.95 and five or fewer SNPs per credible

set to avoid excessive false positive rates (Supplementary Table 10).
Thelead SNPs of these credible sets were located at the following chro-
mosomal positions: 3:67,895,104 (within SUCLG2-GT),10:104,654,873
(within SORCS3), 17:8,187,590 (near TRI-AAT-5) and 20:20,876,379
(near K12); and two within the major histocompatibility complex
(MHC) region: 6:28,329,086 (within ZSCAN31) and 6:30,170,699
(within TRIM15).

To examine the biological relevance of our GWS SNPs, we per-
formed functional annotation in FUMA (v.1.6.1) to link our GWS SNPs
with expression quantitative trait loci (eQTL) and brain chromatin
interaction (Hi-C) data. Theresults suggest that most of the identified
loci were associated with established gene regulatory mechanisms
(circos plotsinSupplementary Figs. 68-87). Although these results on
theirowndo not provide enough evidence for involvement of respec-
tive genes in the etiology of ANX, they add to a broader picture that
includes our summary-data-based Mendelian randomization (SMR)
and other analyses (Supplementary Table 20).

We conducted stratified LDSC to partition the heritability into
different functional genetic annotations and cell types. As noted in
Supplementary Table 11, the association signal is highly conserved
across species and significantly enriched for introns, monomethylated
and polyacetylated histone marks (H3K4meland H3K4ac) and DNase
I hypersensitivity sites in both adult and fetal tissues. Similar to other
psychiatric GWAS, our findings are enriched for certain non-coding
featuresrather than codingregions. Cell-type-specificenrichment was
observed for central nervous system structures, including multiple
cortical and subcortical areas, as well as cervical spine.

We also examined whether genetic associations with ANX were
enriched among transcriptomic profiles of human tissues and/
or individual cell types, using FUMA (v1.6.1)*. Tissue-enrichment
analyses for general tissue types using data from the GTEx (v.8)
consortium suggested that the expression patterns related to
brain and pituitary tissues were significantly associated with the
genetic risk of ANX (P=1.18 x 102 and P=6.50 x 1075, respectively;
Supplementary Table 12a and Supplementary Fig. 88). All individual
braintissues showedsignificantenrichment (Supplementary Table12b
and Supplementary Fig. 89), with cortex overall (P=2.62 x10™) as
well as frontal and anterior cingulate cortices and nucleus accumbens
as most significant. At the level of individual cell types, we found
a consistent association of GABAergic neurons with genetic varia-
tion associated with ANX (Supplementary Fig. 90). Our strongest
association (P=3.24 x10®) was found with GABAergic neuroblasts
(via GSE76381)*.
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Fig. 2| List of 66 most highly supported ANX genes. Genes that were implicated
inatleast three of the six SNP-based (eQTL, Hi-C) or gene-based (MAGMA,
M-SMR, P-SMR, T-SMR) tests. The left side indicates the position of the gene
inthe genome. Significance isindicated by a colored dot. eQTL (blue dots)
compares results from brain-related eQTL studies for overlap in significance
between our GWAS and the eQTL studies. Hi-C (green dots) uses brain-related
Hi-Cinformation available through FUMA to functionally annotate our results.
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MAGMA (gray dots) tests genetic associations at the gene level for the combined
effect of SNPsin or near protein-coding genes. M-SMR, P-SMR and T-SMR (yellow,
red and pink dots, respectively) refer to transcriptome-wide, proteome-wide

and methylome-wide analyses that assessed likely causal associations between
traits and genes, proteins and genomic regions by inferring the association
between the trait and gene expression, protein concentration and methylation,
as predicted from genomic data.

Gene-based association and enrichment

Using MAGMA (v.1.08)*’, we identified 91 significantly associated genes
(adjusted P<0.05/18,490 =2.7 x107%; Supplementary Table 13). Historically
interesting candidates include CLOCK, GABBR1, PCLO, NCAMI and DRD2.

To test whether our loci significantly co-localize with known func-
tional QTLs, we used SMR*’ to conduct transcriptome-wide, proteome-
wide and methylome-wide analyses (T-SMR, P-SMR and M-SMR,
respectively). We used the largest available eQTL, protein QTL and
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methylation QTL reference datasets, respectively, for both brainand
blood tissues (Supplementary Table 14). By using the conservative
Pvalues adjusted for the HEIDI test (see Methods), we detected 27
Bonferroni-corrected significant genes or isoformsin the brain asso-
ciated with changes in the methylome, 16 in the transcriptome and
seven in the proteome (Supplementary Tables 15-17). To improve
signal detectioninbrain transcriptome and methylome data, we used
Primo® to jointly analyze blood and brain statistics (see ref. 52). We
did not jointly analyze proteome data because of the low number of
brain probes. These between-tissue concordance analyses yielded 22
significant ANX signals (posterior probability of >0.95) for the tran-
scriptome and 133 for the methylome (Supplementary Tables 18 and
19). BTN3A2remains aleading signal inboth analyses, and interesting
sub-threshold genes from single-tissue analyses become strong find-
ingsin thejoint T-SMR (ZDHHCS, FURIN and NEGRI).

To highlight genes for which there was the strongest support, we
summarized the findings across multiple (equally weighted) analysesin
Supplementary Table 20, which includes an expanded set of 151 genes
associated with ANX susceptibility. Starting with the 91significant asso-
ciations from MAGMA, we added genes supported by joint T-SMR or
joint M-SMR with a posterior probability of >0.95. We annotated these
using additional support from P-SMR, eQTL and Hi-C data. Figure 2 lists
the 66 genes withthree or more sources of support (score of >3). Most
ofthese have prior reported associations with one or more psychiatric
phenotypes, possibly suggesting gene-based pleiotropy, while asmall
proportion appear specific to ANX risk (reviewed in the Discussion).

To test whether pre-existing gene sets are enriched for our ANX
risk loci, we examined 10,894 gene sets obtained from MsigDB (v.5.2)
(curated gene sets, 4,728; Gene Ontology terms, 6,166). Specifi-
cally, we used MAGMA to test for enrichment of our ANX signals (see
Supplementary Table 21). Overall, one gene set was significant after
correction for multiple testing: dawson_methylated_in_lymphoma_tcll
(P=1.71x107°), including 57 genes that are hypermethylated in at
least one of the lymphoma tumors in transgenic mice overexpress-
ing TCLIin germinal center B lymphocytes; the top three genes were
also supported by T-SMR or M-SMR (NCAM1, HMGN1 and ZDHHCS).
On the surface, it is difficult to appreciate the relevance of this can-
cer gene pathway for anxiety etiology. We also note that the overlap
between this gene set and MAGMA gene signals is small (three out of
54; namely, NCAM1, HMGN1 and ZDHHCS). Among the next highly asso-
ciated sets were genes related to commissural neuron axon guidance
(P=5.24 x107%) and GABAergic synapse (P=9.67 x 107), the latter with
66 genes, including GABBR1, DRD2, CDH13 and LRFN5.

Gene-drug associations

To reveal possible drug repurposing opportunities for ANX, we used
DrugTargetor™ (v.1.3) with our main ANX summary statistics. Among
the 161 drug classes analyzed, several that are already successfully
being used for ANX treatment demonstrated significant associations
(g valueg < 0.05; Supplementary Table 22): psycholeptics (drugs with
a calming effect) and psychoanaleptics (mostly antidepressants), as
well as other sedating drugs like antihistamines, antipsychotics, gen-
eral anesthetics and opioids. However, none of the more than 1,500
individual compounds cataloged in ChREMBL** and DgiDB* yielded a
significant signal (Supplementary Table 23), possibly because of the
moderate power of this GWAS.

Genetic overlap between ANX and other phenotypes

To examine the overlap between our ANX association signals and
other phenotypes, we conducted a phenome-wide association study
(PheWAS). Of the 58 SNPs significantly associated with ANX, 15 were
deemed ANX-specific (red diamonds in Fig. 3); that is, variants not
reported as GWSin other extant GWAS. A total of 43 variants were asso-
ciated with atleast one other phenotype. We note that the higher num-
ber of overlapping associations with cardiometabolic, hematological

and immunological outcomes reflects both the robust genetic archi-
tectures of these phenotypes and the number of GWAS that have been
published in these domains. Overlap of ANX-related SNPs with car-
diometabolic and hematological traits was heavily skewed towards
asubset of variants (rs2710323, rs58825580 and rs174560). Figure 4
depicts a dendrogram-based heatmap showing the association with
psychiatric or personality traits among 24 possibly pleiotropic SNPs
(other heatmaps for cognitive and behavioral domains are found in
Supplementary Figs. 91and 92). Not surprisingly, more ANX SNPs over-
lap withinternalizing phenotypes (neuroticism, depression) than with
psychotic disorders (schizophrenia, bipolar disorder).

We used bivariate LDSC to estimate the genetic correlations
between ANX and awide variety of other traits. We included 112 previ-
ously published GWAS on various traits, including psychiatric, sub-
stance use, cognition or socioeconomic status, personality,
psychological, neurological, autoimmune, cardiovascular, anthropo-
morphic, dietary and fertility phenotypes. After false discovery rate
correction, we found that 82 traits showed significant genetic correla-
tionwith ANX (Fig. 5 and Supplementary Table 24). Among the psychi-
atricdisorders and traits, ANX showed the strongest correlations with
MDD (r, = 0.91), followed by childhood internalizing symptoms
(ry=0.76), mood disturbance (r, = 0.76), symptoms of depression
(ry="0.71), post-traumaticstress disorder (PTSD) (rg= 0.71), psychosis
(ry = 0.68), mania (r, = 0.66), suicide attempt (ry=0.58) and obses-
sive-compulsive disorder (ry = 0.41). Genetic correlations were also
high with total neuroticism score (r,=10.70) and its various clusters
and items. We found somewhat lower correlations with other psychi-
atricand substance-use disorders. ANX genetic risk was also modestly
correlated with that of several neurological disorders, as well as
adult-onset asthma and heart disease (positive) and inflammatory
bowel diseases (negative). As shownin Supplementary Figs. 93 and 94
and Supplementary Table 24, the different ANX data subgroups show
avariable but overall similar pattern of correlations.

These results highlight the complex interrelations between the
three internalizing phenotypes that also have the highest genetic
correlations with ANX: MDD*¢, PTSD* and neuroticism®. To exam-
ine potential directional effects underlying these correlations, we
applied bi-directional generalized SMR (GSMR)** with the latest avail-
able GWAS summary statistics. These results (Supplementary Table 25)
indicate a highly significantbi-directional effect between ANX and each
of these phenotypes. Based on beta-values, the strength of reverse
(MDD > ANX = 0.657) and forward (ANX > MDD = 0.545) effects are sim-
ilar between ANX and MDD. However, both PTSD (PTSD > ANX = 0.891
vs ANX - PTSD = 0.239) and neuroticism (neuroticism > ANX=1.25vs
ANX - neuroticism = 0.17) effects on ANX are stronger than the reverse.

Discussion

Inthis GWAS meta-analysis, we identified 58 independent genome-wide
loci associated with anxiety risk by including data from a composite
phenotype created from five lifetime anxiety disorders (36 cohorts
including 122,341 ANX cases and 729,881 controls; Rggecrive = 390,560).
Three-quarters of the identified variants are novel, with only 15reported
in prior anxiety GWAS. A total of 51 of these SNPs were replicated in
anindependent EUR-ancestry sample from 23andMe, strengthening
theirrelevance. Theseresults represent amajor advance inidentifying
validated susceptibility loci for anxiety disorders.

The SNP-based heritability estimated at 10.1% captures approxi-
mately one-quarter of the broad-sense heritability from twin studies of
adult ANXY, similar to other complex traits like MDD*°. We divided the
cohortsintosubgroupsbased on ascertainment and assessment strate-
gies and conducted separate GWAS as a sensitivity test. We observed
moderate to high genetic correlations between these subgroups, sup-
porting our decisionto combine allsamples into a single meta-analysis.
SNP-based heritability varied from 23.7% in the clinical subgroup to
6.9% in the community subgroup (ascertainment) and from 7.7% in
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of GWAS reporting associations between a specific SNP and the outcomes.
Symptom dimensions (mood disturbance, mania, psychosis) and self-reported
professional diagnoses (depression, anxiety, distress) are from the UK Biobank.

theinterview subgroup to13.2% in the ICD-10 subgroup (assessment),
consistent with the hypothesis that more severe syndromes have higher
heritability*®-*". The overall meta-analytic SNP heritability is probably
diminished by the effects of heterogeneity across these subgroups.
Along with replication in an independent EUR cohort from
23andMe (51 loci replicated at a Bonferroni-corrected P value), we
tested the transferability of our results. First, we examined replication
inthe MVP-AFR ancestry sample, in which nominally significant proxy
loci were identified for 36 lead SNPs, but only two showed significant
association after Bonferroni adjustment. This is not surprising given
bothancestry and ascertainment differences. Second, we applied PRS
to estimate the variance explained in ANX liability. The PRS explained
2.27% of the variance in EUR individuals, which is comparable to PRS
reports of MDD*’, We then tested whether our findings would generalize
tonon-EUR samples. The EUR-ANX PRS explained1.94% of the variance
inthe South Asian subsample of UK Biobank (significant) but only 0.54%
for the AFR subsample (non-significant), inline with the low replication
in the MVP-AFR ancestry cohort. This shows that for anxiety, as for
other phenotypes, geneticliability estimated from EUR samples more
closely reflects that of South Asian than AFR ancestry®. These findings
stressthe need for more diverse ancestry inclusionin future ANX GWAS.
Using LDSC, we found that, consistent with prior twin studies
and extant GWAS, ANX shares the largest genetic overlap with MDD

(r;=0.91), with which it has the highest lifetime comorbidity. This is
followed by PTSD (r, = 0.71), whichis expected given their high comor-
bidity and the prior classification of PTSD among anxiety disorders®’;
however, this correlation is over twice that estimated in an early twin
study?®. The genetic correlation with neuroticism was similarly high
(ry=0.7), reflecting that neuroticism is an important predisposing
personality trait for both ANX and MDD. In addition, ANX shows moder-
ate genetic correlations with ADHD (r, = 0.42), obsessive-compulsive
disorder (r,=0.41), schizophrenia (r,= 0.41), bipolar disorder (r,= 0.34)
and anorexia nervosa (r,= 0.33). ANX also correlates with childhood
internalizing symptoms (r,= 0.76), reflecting genetic continuity across
development®***, Noteably, ANX shows asubstantial genetic correlation
with suicideattempt (r, = 0.58). This may be partly driven by comorbid
depression, although ANX also independently increases suicide risk®.

Follow-up Mendelian randomization (MR) analyses suggest
bi-directional genetic effects between ANX and its strongest correlates:
MDD, PTSD and neuroticism. Although ANX onset tends to precede
MDD®*’, some studies show mutual prediction over time®**’. Our
MR analyses support a stronger genetic causation of neuroticism on
ANX, reflecting the stability of this personality trait’® and its persistent
relationship with psychiatric disorders”. Unexpectedly, MR suggests
that PTSD is more likely to cause ANX, potentially owing to confound-
ing (for example, diagnostic misclassification), ascertainment bias
(PTSD presents with more severe symptoms) or because trauma can
impact both disorders. These findings align with clinical experience
that comorbid internalizing disorders exacerbate each other.

Gene-set and single-cell RNA expression analyses support GABAe-
rgic signaling as one potential mechanism underlying ANX genetic
risk, supported by the efficacy of drugs like barbiturates and benzo-
diazepinesinenhancing GABA neurotransmission. Indeed, the results
of our gene-drug analysis included several classes of drugs that are
already successfully used to relieve anxiety.

The PheWAS revealed that 43 SNPs identified in prior GWAS of
other phenotypes overlap with ANX, highlighting extensive genetic
sharing. The loci clustered into three categories: those affecting mul-
tiple medical, physiological and behavioral outcomes; those linked
to psychiatric and behavioral phenotypes; and a small set specific to
anxiety. Given the high comorbidity and genetic overlap of ANX with
phenotypeslike MDD or neuroticism, itis unsurprising that many of our
locihave beenreportedin prior GWAS. However, most prior psychiatric
GWAS did not exclude ANX, which may have influenced their findings.
Notably, several loci—including four genes (PAX6, PROX2, VAMP2 and
HMGNI)—show strong evidence of association in our study but have
not been reported in prior psychiatric GWAS (further discussed in
Supplementary Note 4).

Seven of the 66 protein-coding genes associated with ANX risk
(ZNF502,ZNF501, STAB1,NT5DC2, GNL3, GLT8DI and NEK4) are located
on chromosome 3p21, a region previously linked to depression®,
schizophrenia’, bipolar disorder”, suicide™, amyotrophic lateral sclero-
sis” and neuroticism®’, makingita‘hotspot’ for overall neuropsychiatric
susceptibility. Althoughlittleisknown about these seven genesin addi-
tionto their basic cellular functions, some are implicated inanxiety-like
behaviors in rodents™. Three genes (TAPBP, ZBTB22 and DAXX) of the
MHC region (chromosomal band 6p21.32) were also associated with
ANX. These findings do not represent adefinitive set of anxiety risk genes
but instead provide a high-level summary of findings from multiple
post-GWAS approaches, serving as a starting point for future studies.

Givensimilarly high lifetime prevalence, moderate twin-based her-
itability and extensive comorbidity, our ANX genetic results should be
most comparable to those for MDD among all psychiatric diagnoses.
Indeed, theauthors of a previous publication*° describe results from their
PGC-MDD2analyses that are highly similar to ours regarding the number
of GWS SNPsidentified per effective sample size, SNP-based heritability,
enrichment of non-exonic classes of variants and proportion of variance
explained by PRS. These highly polygenicinternalizing disorders require
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massive sample sizes to detect association signals from the small effects
of many common SNPs. From what we have learned about MDD and other
complex psychiatric phenotypes, the 58 loci we report herein are prob-
ably ‘the tip of the iceberg’ among the many hundreds of loci presumed
tounderlieindividual differencesin ANXrisk. Therefore, further genomic
discovery efforts for ANX will demand even larger sample sizes.

This study has several potential limitations. First, heterogeneity
in ANX case phenotype assessments—from structured psychiatric
interviews to ICD clinical assignments to self-report diagnoses—Ilim-
its the validity and power to detect susceptibility variants. There is
often a trade-off between clinical validity and sample size®”, as seen
in our largest samples, which had the lowest depth of phenotyping.
Second, by collapsing across all five of the adult anxiety diagnoses, we
increased phenotypic heterogeneity, making itimpossible to pinpoint
the genetic signals specific to any particular disorder. Future stud-
ies with large, well-phenotyped samples of individual diagnoses are
needed to address this limitation. Additionally, genetic contributions
to ANX may change over the lifespan, highlighting the importance of
longitudinal studies. We allowed comorbid mood disorders in ANX
cases but excluded them from controls. Although this was justifiable
because of the strong genetic sharing between ANX and depression,
it could indirectly inflate their genetic associations and complicate
inferences of pleiotropy. Finally, limiting our meta-analysis to EUR

datareduces generalizability. We are working to aggregate dataacross
ancestries for future multi-ancestry GWAS.

Insummary, this study advances our understanding of the genetic
basis of ANX by providing afoundation for future researchinto the bio-
logical mechanisms behind anxiety syndromes. It is our sincere hope
that this opens new lines of investigation for expanding the clinical
armamentarium of the next generation of clinicians who treatindividu-
als affected by these conditions.
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Methods

Ethics

All relevant ethics approvals have been obtained by the respective
cohort’sinstitutions,andalist of all respective approvals canbe found
inSupplementary Note 1.

Samples
To maximize sample size and power, we assigned the composite Any
Anxiety case statusif a participant had atleast one of five core adult ANX
across their lifetime: GAD, panic disorder, social phobia, agoraphobia
or specific phobias. This amounts to identifying common genetic
effects shared across these disorders. We did not exclude comorbid
mood or other anxiety-related disorders in the cases. Controls had
no lifetime anxiety disorder. Owing to the genetic overlap between
ANX and depression’”’, we excluded controls if they had a lifetime
comorbid mood disorder like MDD or bipolar disorder. We excluded
individuals with a diagnosis of severe mental health conditions such as
schizophrenia, autism or intellectual disability. As much as possible, we
uniformly applied these criteria across the 36 samplesincluded in this
study (Supplementary Table1). However, like most large-scale psychi-
atric GWAS, these samples were ascertained and assessed with variable
approachesthatintroduce knownand cryptic sources of heterogeneity
(see Supplementary Note 2 for details of each study). With the aim to
address phenotypicheterogeneity, we classified each of the 36 cohorts
into five ascertainment subgroups (clinical, biobank, community, SRPD
and comorbid) and three assessment subgroups (interview, ICD-10,
biobank); see Supplementary Table 1and Supplementary Note 3.
Our subsequent analyses fall into six categories, which are
described in detail below. These include (1) core GWAS, SNP herit-
ability and sensitivity analyses including differences between ascer-
tainment and assessment groups; (2) replication and validation of
the GWAS SNPs; (3) characterization and functional annotation of
the significant SNPs, (4) gene-based associations and enrichment; (5)
gene-drug associations; and (6) genetic associations and pleiotropy
shared with other traits.

GWAS, SNP-based heritability and sensitivity analyses

Genetic data processing and individual GWAS analyses. Each data-
set was imputed using either the Haplotype Reference Consortium®
or the 1000 Genomes Project Phase 3 (ref. 81) reference panels, and
a GWAS was conducted for each (Supplementary Note 2 for details).
The results from the individual GWAS were then harmonized and
transformed to ‘daner’ file format following Rapid Imputation and
COmpuational PlpeLIne for GWAS (RICOPILI)* specifications. Details
of harmonization, alignment and filtering can be found at the end of
Supplementary Note 2. Sumstats further used DENTIST as a quality
control measure®,

GWAS meta-analysis. The GWAS meta-analysis was performed on
over 7.2 million autosomal SNPs across the 36 cohorts using
inverse-variance weighting in METAL®* within RICOPILI. Heterogeneity
between the studies was evaluated using Cochran’s Q and /? statistics
(see Supplementary Note 2). To distinguish polygenicity from other
causes of genomicinflation, we calculated the LDSC® intercept using
the summary statistics for the high-quality common SNPs (INFO score
of >0.9) from the meta-analysis. The GWS threshold for association
was set at P < 5 x 10~°. Automated LD-based ‘clumping’ of GWS SNPs
was conducted in RICOPILI using PLINK to facilitate identification of
independently associated loci. We defined LD-independent SNPs as
thosewithlow LD (% < 0.1) to amore significantly associated SNP within
a 500-kb window. When loci contained several significant SNPs, the
SNP with the lowest P value in each locus was selected as the lead SNP
reported here. Inaddition to the main meta-analysis, we meta-analyzed
similar datasets together according to the subgroup assignments
described above.

Internal consistency of the ANX phenotype—sensitivity analyses of
ANX ascertainment and assessment subgroups. SNP-based heritabil-
ity estimation and genetic correlations. We used LDSC* to calculate the
SNP-based heritability of the overall meta-analysis and the subgroup
meta-analyses. Additionally, we used cross-trait LDSC to compute
pairwise genetic correlations among the subgroups. SNP-based herit-
ability was estimated from the slope of the LDSC on the liability scale,
assuming a 20% population prevalence of ANX. To avoid a downward
bias in our liability scale heritability estimates, the effective sample
size across the contributing cohorts was calculated and used as the
input sample size for LDSC®¥. The sample prevalence was then speci-
fied as 0.5 for the conversion to the liability scale. Genetic correlation
is calculated by estimating the slope from regressing the product of
the Z-scores from two separate GWAS onto the LD score. It reflects
the genetic covariation between two traits thatis captured by all SNPs
included in the GWAS. For both heritability estimation and genetic
correlation analysis, we used pre-calculated LD scores from samples of
EURinthe 1000 Genomes Project, which werefiltered for SNPs present
inthe HapMap3 reference panel.

pal DSC. The paLDSC function**in GenomicSEM was used to determine
the number of non-spurious dimensions in exploratory genomic fac-
tor analysis. This is achieved by comparing the eigenvalues obtained
from the eigendecomposition of the LDSC genetic correlation matrix
tothose derived from aMonte Carlo-simulated null correlation matrix,
whereby random noise is drawn from the multivariate LDSC sampling
distribution. The suggested number of factors to be extracted corre-
sponds with an eigenvalue exceeding a pre-specified percentile from
the corresponding distribution of eigenvalues generated under the null.

GenomicSEM I-factor model. To extend the genetic correlation analysis,
we used genomic structural equation modeling (GenomicSEM)* to
model the genetic architecture of the ascertainment and assessment
subgroups. We conducted an exploratory factor analysis first, fol-
lowed by a confirmatory factor analysis. To conduct these analyses,
first, the summary statistics were harmonized and filtered (with the
munge-function) using HapMap3 asthe referencefile, with the effective
samplesize as the input sample size and SNPs filtered to INFO > 0.9 and
MAF > 0.01. Second, multivariable LDSC was run to obtain the genetic
covariance matrix and corresponding sampling covariance matrix
using pre-computed EUR-ancestry LD scores. Third, we conducted
exploratory factor analysis followed by confirmatory factor analysis
using the pre-packaged common factor model in GenomicSEM using
diagonally weighted least squares estimation.

Replication and validation of GWAS SNPs

Replications. Lead SNPs from the primary GWAS were tested for
replication in the 23andMe commercial database using 1,175,012
self-reported ANX cases and 1,956,379 controls. Self-reported ANX
cases were individuals who checked ‘anxiety’ in response to either of
the following survey questions: “Have you ever been diagnosed with
any of the following...” or “What mental health problems have you
had? Please check all that apply”. This GWAS excluded close relatives
(excluded cases, 13,801; excluded controls, 21,454) and an additional
35,255 samples (1.1%) because of consent restrictions (as of June 9,
2023). We performed logistic regression, assuming an additive model
for allelic effects after covarying for age, sex, the first five principal
components and genotyping platform. Previous work has demon-
strated that the first five principal components in the 23andMe data-
set explain more variance than the first ten principal components
from the UK BioBank®®. The P values were adjusted using the standard
genomic control procedure®® in which the chi-squared test statistic
is divided by the genome-wide estimated lambda inflation factor,
A=1.491 (s.e. = 0.024). The estimated SNP heritability was #*>=0.088
(s.e.=0.002), consistent with the estimate from our discovery GWAS.
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Furthermore, we conducted a replication analysis of our 58
ANX-associated SNPs in anindependent AFR sample from MVP com-
prising 5,664 ANX cases and 26,410 controls. Initially, we assessed the
association results of the same 58 SNPs that reached significance in
our main EUR-ancestry GWAS. Recognizing that the lead SNP might
not necessarily be the causal SNP in this region and considering the
differing LD structures betweenthe EUR and AFR ancestry groups, we
anticipated that the same SNP might not exhibit significant associa-
tion. However, the genomic region might still be associated in AFR
samples. Therefore, we performed a second look-up to identify the
most significant SNP within a 50-kb window (+25 kb) to accommodate
potential differencesin LD across EUR and AFR ancestries (proxy loci).
LD between AFR and EUR populations was evaluated using r> and D’
metrics (as reported on https://ldlink.nih.gov). We considered repli-
cation significant at a Bonferroni-corrected significance threshold
0f 8.62x107*(0.05/58).

Toevaluate the consistency of previously reported ANX-associated
SNPs, we performed a look-up of those SNPs in our main GWAS
meta-analysis. We restricted the look-up to prior findings from case-
control GWAS (as opposed to dimensional, symptom-based GWAS). Of
noteisthat none of the previously published ANX GWAS are completely
independent of our sample but are partially overlapping.

PRS analyses. We validated our results with PRS analyses in inde-
pendent UK Biobank samples after removing all UK-based samples
(UK Biobank and Generation Scotland) from the primary GWAS. We
defined ANX cases as meeting one of the following three criteria: (1)
alikely lifetime DSM-IV GAD diagnosis based on the anxiety-related
questions from the Composite International Diagnostic Interview
short-form questionnaire®” and the first UK Biobank Mental Health
Questionnaire®; (2) SRPD of one of the five core anxiety disorders
(GAD, panicdisorder, social phobia, agoraphobia, specific phobia; first
and second UK Biobank Mental Health Questionnaires); or (3) having a
GAD-7score” of 210, reflecting anxiety symptoms over the past 2 weeks
(firstand second UK Biobank Mental Health Questionnaires). Controls
were defined inthe same ways as the primary GWAS. We grouped indi-
vidualsinto three ancestry groups: EUR, AFR and South Asian.

We calculated PRS using MegaPRS’* within the GenoPred® pipe-
line, which implements polygenic scoring approaches using the
LDAK heritability model, whereby the variance explained by each SNP
dependsonitsallele frequency, LD and functional annotations. Logis-
tic regression was run to estimate the PRS prediction effect for ANX,
adjusting for genotyping batch, assessment center and ten genetic
principal components.

Characterization and functional annotation of GWAS SNPs

We conducted variant fine-mapping and functional annotation
(described in detail below). Note that although some gene prioritiza-
tionapproaches (for example, MAGMA, eQTL-based analyses, T-SMR)
use different underlying statistical algorithms, they rely on overlap-
ping expression datasets such as GTEx and PsychENCODE. Although
eQTL uses only significant functional signals, T-SMR also incorporates
sub-threshold functional signals that can better inform causal infer-
ence. These shared datasources mean that significant findings across
methods are not fully independent. Given the challenges and biases
associated with weighting schemes®, we chose to prioritize genes sup-
ported by three or more analyses, acknowledging the varying strengths
of evidence but avoiding arbitrary weighting.

Variant fine mapping. We conducted statistical fine mapping using
FINEMAP (v.1.3.1)*°. Only variants located in a region of 1 Mb around
index variants were included in the analyses. We used the default k = 5
maximum number of SNPs in credible sets, and the significant (sug-
gestive) threshold for signals was set at 95% (50%) total posterior prob-
ability for the variants in credible sets (see Supplementary Table 10).

FUMA: functional annotation (eQTL/Hi-C). We used FUMA (v.1.6.1)
to examine the functional significance of our GWS loci. We compared
results from brain-related eQTL studies to identify overlap in signifi-
cance between our GWAS SNPs and the eQTL results. Furthermore, we
used brain-related Hi-C information available through FUMA to func-
tionally annotate our results. Standard settings were applied and results
visualized using FUMA’s built-in circos plot routine. More information
about theindividual third-party datasets (available through the FUMA
website) includedin the analyses can be foundin the Code Availability
section or online in FUMA’s tutorial (https://fuma.ctglab.nl/tutorial).

Stratified LDSC. Two stratified LDSC analyses were conducted. First,
the overall SNP heritability was partitioned into 53 overlapping func-
tional genomic categories®. Second, SNP heritability was partitioned
into 220 cell-type-specific regulatory elements based on GTEx dataand
data from the Franke Lab®. In both partitioned heritability analyses,
we regressed the x? from the meta-analysis summary statistics onto
LD scores downloaded from https://console.cloud.google.com/stor-
age/browser/broad-alkesgroup-public-requester-pays. EUR allele
frequencies derived from the 1000 Genome Project data were used
as the reference genomes in both analyses. The enrichment of a func-
tional or cell-type-specific category was defined as the proportion of
SNP heritability in the category divided by the proportion of SNPs in
that category.

FUMA: cell-type and tissue enrichment. We used MAGMA (v.1.08)*
asimplemented in FUMA (v.1.6.1)*” to perform tissue-enrichment and
cell-type-enrichment analyses. For tissue-enrichment analyses, we
considered a set of 30 tissue groupings (average enrichment across
alltissuesin these groups) and 54 individual tissues (with 13 individual
tissues from the ‘Brain’ group). Default settings were applied for all
above-mentioned analyses. More information about the individual
third-party datasets (available through the FUMA website) included
inthe analyses can be found in the Code Availability section or online
in FUMA'’s tutorial (https://fuma.ctglab.nl/tutorial).

Gene-based associations and enrichment

MAGMA: gene-based GWAS and gene-set analysis. We performed
gene-based and gene-set analyses using MAGMA* (v.1.08) as imple-
mented in FUMA" (v.1.6.1). To test genetic associations at the gene
level for the combined effect of SNPsin or near protein-coding genes,
we applied default settings (SNP-wise model for gene-based analysis
and competitive model for gene-set analysis). Gene-based P values were
computed by mapping SNPs to their corresponding gene(s) based on
their positionin the genome. Positional mapping was based on ANNO-
VAR annotations, and the maximum distance between SNPs and genes
was set to10 kb (default). A multiple regression model was used while
accounting for LD between the markers. The 1000 Genomes phase 3
reference panel®, excluding the MHC region, was used to adjust for
genesize and LD across SNPs. Using the result of the gene-based analy-
sis (gene-level P values), competitive gene-set analysis was performed
with default parameters: 15,496 gene sets were tested for association.
Gene sets were obtained from MSigDB (v.7.0) (see www.gsea-msigdb.
org for details), including ‘Curated gene sets’ consisting of nine data
resources, including KEGG, Reactome and BioCarta, and ‘GO terms’
consisting of three categories (biological processes, cellular compo-
nents and molecular functions).

T-SMR, P-SMR and M-SMR. SMR methods are MR tests for assessing
(causal) colocalizationbetween significant trait association signals and
significantly accurate predictions of molecular mediators or regulators
(transcriptomic, proteomic and methylomic) that often use multi-
ple variants, some of which, unlike classical colocalization methods,
might possess only suggestive signals. If both trait and molecular
mediator QTL signals are statistically significant, the SMR and classical
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colocalization methods are equivalent. However, the SMR methods
accommodate (combinations of) non-significant QTLs that accu-
rately predict molecular mediators, a situation still encountered for
many genes owingto the low sample sizes for the reference molecular
mediator-genetic data”.

We performed T-SMR, P-SMR and M-SMR studies using SMR
(v.1.03)*%in conjunction with the largest available external blood and
brain XQTL reference datasets (Supplementary Table 16). When pro-
tein QTL summary statistics from reference data were not available
(blood and brain protein QTL) in the SMR-required input binary file
format (that is, .besd), we processed them into the required format.
One advantage of SMR over competing tools is the inclusion of the
HEterogeneity In Dependent Instruments (HEIDI) test, which can be
used as a proxy for likely causality.

SMRanalyses were based on cis-xQTLs (SNPswith P < 5 x 10 ® within
2 Mb of the probe). We also used the default maximum (20) and mini-
mum (3) number of xQTLs selected for the HEIDI test. We set the signifi-
cancethresholdasP<1.57 x 1073 for xQTL and the mismatch of minimum
allele frequency amonginput files as <15%. For the HEIDI test, SNPs with
LD > 0.9 and <0.05 with the top associated xQTL SNP were pruned.

To prioritize genes and perform pathway analyses, we adjusted
probe (RNA, protein, CpG) SMR P value (Psyr) for the HEIDI test P value
(Pyep)) by combining the two P values into a single one by requiring
that Py was not penalized when Py was above 0.01 and Pgyr Was
penalized by the amount Py, fell below 0.01. Consequently, we
adjusted Pgyr to P __Par__ we used this approach instead of

SMR min(m,l)
filtering by Pygp < 0.01 because a misalignment between the GWAS
cohortpopulation and the EURLD reference panel used by SMR might
yield very low Pygp.. We previously arrived at this compromise between
the two types of SMR P values when applying this approach to many
psychiatric disorders®, for example, the well-known SCZ C4A signal
yielded a T-SMR Pyep; = 5.94 x 10~* but a much lower Pgyz. However,
for researchers who prefer to use the more conservative approach
based onstrict Py thresholds described in the SMR paper®®, we also
provide gene Py Values for all SMR analyses, as documented in
Supplementary Tables 15-17.

Gene-drug associations

To uncover potential repurposing of existing drugs to ANX, we con-
ducted gene-druginteraction analyses by applying the DrugTargetor™
method (v.1.3) to ANX summary statistics. DrugTargetor assesses the
association ofindividual drugs or small-molecule-related gene sets and
drug class enrichment. The method used two drug-gene interaction
databases: ChEMB>**® and DgiDB*>. The analysis used the following set-
tings: (1) hypothesized action for the nervous system; (2) both drug class
and single drug; and (3) 1,500 maximum number of unique drugs and
200 maximum classes of drugs. Please see Supplementary Tables 22 and
23 and theREADME tab for the source databases used to accumulate the
gene sets. Analyses were run using MAGMA (v.1.10)* using gene flanks
of-35 kb5’ and +10 kb 3’ (ref. 99). Drug class enrichment was calculated
usingthe areaunder the curve defined by the percent of drug class gene
sets versus their rank in all the gene sets'*°.

Genetic overlap between ANX and other phenotypes
PheWAS. Using the identified 58 GWS SNPs, we conducted a PheWAS
to identify the variants that have been significantly associated with
other psychiatric, physiological, medical and behavioral traitsin prior
GWAS, using the phewas function from the R packages ieugwasr'”. The
R package uses publicly available GWAS data from over 10,000 studies
compiled by the IEU Open GWAS Project'®'%2, The PheWAS used the
following databases:

- ebi-a: datasets that satisfy minimum requirements imported

from the EBI database of complete GWAS summary data;
« finn-b: FinnGen study Data Freeze 5;

- ieu-a: GWAS summary datasets generated by many different con-
sortia that have been manually collected and curated, initially
developed for MR-Base;

« ieu-b: GWAS summary datasets generated by many different
consortia that have been manually collected and curated, ini-
tially developed for MR-Base (round 2);

« ubm-a: complete GWAS summary data on brain region volumes
as described by Elliott et al.'%;

« ukb-d: Neale lab analysis of UK Biobank phenotypes, round 2.

This combination of databases provides the maximum cover-
age of published GWAS summary statistics that could be used for the
PheWAS while minimizing duplication. Toincrease the accuracy of the
PheWAS and consistency of the results across analyses for psychiatric
disorders and related behavioral phenotypes, we supplemented the
default GWAS summary statistics from the IEU Open GWAS Project
forthe traits we curated for the genetic correlation analyses. Curating
the primary psychiatric and behavioral studies removed duplication
fromsequential GWAS analyses of the key disorders. We required that
aSNP’s Pvalue was GWS in both the current ANX GWAS and the alter-
native GWAS. Figure 2a was constructed using edited combinations
of the following packages in R: alluvial'®*, qgqman'® and pheatmap'®.

Cross-trait genetic correlations. We used cross-trait LDSC to com-
pute genetic correlations between the ANX meta-analysis and 112
selected disorders and traits with publicly available summary sta-
tistics. The sources of GWAS summary statistics can be found in
Supplementary Table 24. Details of cross-trait LDSC can be found in
the section “SNP-based heritability estimation and genetic correla-
tions” (Methods). As a follow-up, we also calculated genetic correla-
tions between the 112 phenotypes and each ascertainment-specific
sub-cohort and compared the genetic correlation patterns between
the four groups.

GSMR. We performed bi-directional GSMR*® analyses for trait pairs
(ANXwithMDD'?’, PTSD*” and neuroticism®’) using GSMR (v.1.1.1), avail-
able inthe GSMRR package. We used commonly applied parameters:
(1) a5 x 1078 threshold for GWS signals; (2) the original HEIDI outlier
method; (3) single-SNP and multi-SNP HEIDI outlier P=0.01; (4) LD
threshold for selecting MR SNP instruments of 0.05; and (5) false dis-
coveryrate threshold of 0.05. LD between SNPs with significant signals
inatleast one trait were computed using GCTA'*® (v.1.94.1) based on the
1000 Genome Project® EUR genetic data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics excluding 23andMe are made available on the PGC
data-download page (https://pgc.unc.edu/for-researchers/download-
results). Thereplication GWAS summary statistics for the23andMe data
willbe made available through 23andMe to qualified researchers under
anagreement with 23andMe that protects the privacy of the 23andMe
participants. Datasets will be made available at no cost for academic
use. Please visit https://research.23andme.com/research-innovation-
collaborations for more information and to apply to access the data.

Code availability

Core analysis code for RICOPILI can be found at https://sites.google.
com/a/broadinstitute.org/ricopili. Thisincludes PLINK (https://www.
cog-genomics.org/plink2), EIGENSOFT (https://www.hsph.harvard.
edu/alkes-price/software), Eagle2 (https://alkesgroup.broadinstitute.
org/Eagle), Minimac3 (https://genome.sph.umich.edu/wiki/Mini-
mac3), SHAPEIT3 (https://mathgen.stats.ox.ac.uk/genetics_software/
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shapeit/shapeit.html), METAL (https://genome.sph.umich.edu/wiki/
METAL Documentation) and LDSC (https://github.com/bulik/ldsc).
MAGMA canbe found at https://ctg.cncr.nl/software/magma. Genom-
icSEM, specifically the tutorial ‘Models without Individual SNP effects’,
can be found at https://github.com/GenomicSEM/GenomicSEM/
wiki/3.-Models-without-Individual-SNP-effects. Additional code for
data processing (for example, harmonization of summary statistics)
canbefound at https://zenodo.org/records/17478061.
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