

Mapping Regional Brain Aging in Huntington's Disease Using Structural MRI and Machine Learning

Mohsen Ghofrani-Jahromi, MSc¹, Yalda Amirmoezzi, MSc², Pubu M. Abeyasinghe, PhD¹, Govinda R. Poudel, PhD³, Adeel Razi, PhD¹, Jane S. Paulsen, PhD⁴, Nicola Z. Hobbs, PhD⁵, Rachael I. Scahill, PhD⁵, Sarah J. Tabrizi, PhD⁵, Nellie Georgiou-Karistianis, PhD¹, Susmita Saha, PhD¹

Author affiliations:

1 Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC3800, Australia

2 Department of Psychiatry, The University of Melbourne, Parkville, VIC3010, Australia

3 Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC3000, Australia

4 Department of Neurology, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin, USA

5 UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK

Corresponding author: Nellie Georgiou-Karistianis

Turner Institute for Brain and Mental Health, 18 Innovation Walk, Monash University, Clayton, VIC3800, Australia

E-mail: nellie.georgiou-karistianis@monash.edu

Running title: Brain Aging in Huntington's Disease

Conflict of Interest: None

Funding sources: Monash University, Australia via N.G-K (internal grant).

Main text word count: 2682

ABSTRACT

Background: Huntington's disease (HD) is a progressive neurodegenerative disorder. Models of brain biological age have shown evidence of accelerated aging relative to chronological age, but they typically rely on a single whole-brain measure. While studies in other neurodegenerative diseases suggest region-specific brain age models can provide deeper insights, this approach remains underexplored in HD. Such regional models could benefit clinical trials, which depend on sensitive biomarkers to monitor therapeutic effects.

Objectives: This study aimed to characterise region-specific patterns of brain aging across HD-ISS stages and evaluate their associations with cognitive, motor, and functional scores.

Methods: We employed machine learning to train brain age models on structural MRI data from 1,936 controls. These models were applied to 531 persons with HD. Associations between regional brain age gap, HD-ISS stages, and clinical scores were assessed.

Results: Whole-brain aging increased progressively at HD-ISS stages 2 and 3. Region-specific analyses revealed the dominance of subcortical, temporal, and parietal aging trajectories, which exhibited significant stage-wise increases in brain age gap. A higher brain age gap in these regions was associated with declines in cognitive, motor, and functional performance. In contrast, insular and frontal regions showed flatter patterns and no significant associations with clinical measures.

Conclusion: This study highlights distinct region-specific components of brain aging in HD. Regional analysis provides deeper insights into HD progression and could be employed as a sensitive biomarker for monitoring therapeutic effects in clinical trials. Future work should explore these findings in younger cohorts and investigate network-specific aging with multimodal imaging.

Key Words: Huntington's Disease; Neuroimaging; Regional Brain Aging; Biomarkers; Clinical Trials; Machine Learning

1. Introduction

Disease-modifying clinical trials in Huntington's Disease (HD) rely on sensitive monitoring biomarkers¹ to screen for intervention effects, especially in the early stages when detectable clinical symptoms are absent.² This is crucial as a shift has emerged toward conducting preventive interventions even before the onset of clinical symptoms.³ To date, various imaging biomarkers have been proposed that characterise the underlying mechanisms of HD progression.⁴ For example, volume loss in the caudate and putamen, as early indicators of pathogenesis caused by the mutant huntingtin protein (mHTT), are incorporated into the Huntington's Disease Integrated Staging System (HD-ISS). This paves the way for early-stage trials by providing a comprehensive framework for classifying the entire HD course, including all persons with HD (PwHD).⁵

However, neurodegeneration in HD is not limited to the striatum; it spreads through the brain's connectome to other subcortical and cortical regions.⁶ Therefore, enhanced metrics that encompass the brain in its entirety may be more effective in tracking disease progression.⁷ In recent years, the concept of biological age has gained attention, offering a way to quantify how an organ's health deviates from the norm for individuals of the same chronological age. In this context, machine learning models leverage structural or functional brain features to estimate an individual's age.^{8,9} The gap between the estimated age and the actual chronological age reflects deviations from normal brain aging patterns, seen in various neurological conditions.^{10–}

A study on participants in the GENERATION-HD1 tominersen trial (NCT03761849) revealed that their brain age was, on average, more than a decade older than their chronological age. Moreover, brain age significantly predicted clinical status, showing a strong correlation with disease severity, as measured by the composite Unified Huntington's Disease Rating Scale (cUHDRS), and outperformed chronological age, CAG repeats, and the CAG-age product (CAP) score.¹⁴ Using brain age gap, as a measure of HD progression, five distinct states were identified,¹⁵ as compared to the three common CAP score groups used for stratification (far, medium, and near to motor diagnosis).¹⁶

Brain age serves as a ‘reverse’ normative model that captures complex interactions between imaging-derived phenotypes. However, summarising these measurements into a single metric may oversimplify brain aging complexity.¹⁷ A study highlighted this limitation, reporting that brain aging may involve up to 62 distinct aspects.¹⁸ To address this limitation, localised brain age have emerged, where input features are segregated based on anatomical regions or functional networks.^{19–21} This approach avoids oversimplifying brain aging dynamics by training multiple models, each capturing a specific feature of normal or neuropathologic brain aging.²² Nonetheless, region-specific decomposition of brain age modelling remains unexplored in HD. Moreover, given the growing importance of HD-ISS as a standard framework in clinical trials, its integration with brain age modelling is critical.

Therefore, the present study: 1) investigates how brain age gap changes across HD-ISS stages; 2) provides a mapping of its regional trajectories; and 3) shows how they are associated with common HD motor, cognitive, and functional biomarkers. Findings from this research could potentially aid future HD trials by offering insights into expected neurodegeneration at each stage, enabling more efficient targeting of intervention endpoints and monitoring strategies.

2. Materials and methods

2.1. Datasets and participants

We used 3 Tesla T1-weighted MRI scans from non-huntingtin gene expansion carriers (non-HGEC) to train brain age models and applied them to data from PwHD. The datasets consisted of longitudinal observational studies including TRACK-HD,^{7,23} TrackON-HD,²⁴ PREDICT-HD,^{25,26} and IMAGE-HD^{27,28} as well as cross-sectional studies including IXI, AOMIC,²⁹ SALD,³⁰ and NARPS.³¹ The pooled datasets comprised 3,562 images from a total of 1,936 non-HGECs (1,087 females, age range: 18-82 years, mean age: 33.1) and 2,429 images from 531 PwHD (317 females, age range: 18.6-73.5 years, mean age: 43.1). Detailed demographic information is summarised in Table 1. Supplementary Figures S1 and S2 show the distribution of the number of scans per individual, where a single stage is presumed for PwHD who progress to a more advanced stage. For cross-sectional datasets, each participant contributed a single scan, so the number of scans equalled the number of individuals. For a description of the clinical measures in Table 1, see Supplementary Materials.

2.2. Brain imaging-derived phenotypes

All the images in the datasets (Section 2.1) were processed using FreeSurfer v6.0 to extract a total of 354 morphological features related to both grey matter and white matter. From segmented subcortical structures, bilateral volumes (mm^3) were measured. Features derived from parcellated cortical regions included bilateral volumes (mm^3), thicknesses (mm), surface area (mm^2), mean curvature (mm^{-1}), and white matter volumes (mm^3). Supplementary Table S1 details specific scanner and acquisition protocol for each cohort. Although scanner parameters varied slightly across sites, all T1-weighted images were pre-processed using the same pipeline and quality-controlled to ensure comparable measures. The quality control

procedure is detailed in our previous work.³² We applied neuroCombat harmonization³³ to the derived morphometric measures in the non-HGECs. Sex was included as a covariate to preserve biological variability, and harmonization was performed using empirical Bayes estimates with cohort as the batch variable. This approach removes scanner-related additive effects while retaining variance related to biological covariates.

2.3. Brain age models: training, validation, and utilisation

To train brain age models for the whole brain as well as the six segregated regions of interest (ROIs), we used Light Gradient-Boosting Machines (LightGBM).^{34,35} The chronological age of non-HGECs at the time of the scan was used as the target output and imaging-derived features as inputs. To correct for the inherent bias toward the mean age of the aggregated training datasets, chronological age was regressed out from the predicted age gaps.³⁶ To evaluate the performance of the models, we used 10-fold cross-validation, with accuracy being assessed using Pearson's correlation coefficient (r) and mean absolute error (ε) between estimated and chronological age in non-HGECs,

For regional brain age models, we restricted the focus to the subcortex and to individual lobes defined by the Desikan-Killiany atlas: frontal, parietal, occipital, insular, or temporal.³⁷ Supplementary Table S2 enlists the sub-regional features for each segregated ROI. Sex was included as a covariate in all the models.

The whole-brain and region-specific models were applied to cross-sectional data in PwHD to compute brain age gap. For each HD-ISS stage, an age- and sex-matched non-HGEC group from TRACK, PREDICT, or IMAGE, unseen during training, was used for within-stage comparison. Spearman's correlation between age gaps and HD-ISS was calculated.

Additionally, Pearson's correlations between age gaps and cognitive, motor, and functional biomarkers were computed.

Using longitudinal scans from PwHD, regional brain age gaps were computed for all time points. Linear mixed-effect models (LMMs) were then fit to these gaps, adjusting for CAG repeat length and chronological age and assuming random intercepts for subjects.

3. Results

3.1. Whole-brain age model

Figure 1(A) illustrates predicted age versus chronological for non-HGECs. Utilising the trained model, age gaps for PwHD at baseline are estimated and shown in Figure 1(B), with stages stratified. The average age gap was positive at all HD-ISS stages, with between-stage differences significantly observed at stages 2 and 3. Within-stage comparison against matched non-HGECs revealed significant differences at all stages.

3.2. Associations between regional age gap and HD-ISS: cross-sectional analysis

Figure 2 shows how the distributions of region-specific age gaps differ from the whole-brain model. The strength of accelerated brain aging was quantified by measuring the Spearman's correlation (ρ) between age gaps and HD-ISS stages.

For the subcortex, temporal and parietal lobes, a progressive stage-wise increase in age gap was observed. Conversely, the occipital, insula, and frontal age gaps did not strongly associate with disease stages (non-significant or negative ρ). It is noteworthy that breaking down the set of input features when training the regional brain age models led to a loss of accuracy (compare

r and ε for the whole-brain and regional models in Figure 2). Supplementary Tables S3 and S4 compare the accuracy metrics of regression models other than LightGBM.

3.3. Cognitive, motor, and functional correlates of brain aging components

Using baseline data, associations between regional components of brain aging and cognitive, motor, and functional scores were measured. Significant results are shown in Table 2. All p-values were adjusted for multiple testing using the False Discovery Rate (FDR) method. The occipital region was not included in this analysis, since its model reliability was notably limited (see Figure 2: $r = 0.64$, $\varepsilon = 9.6$).

3.4. Trajectories of regional components of brain aging: longitudinal analysis

Figure 3 shows the LMM-predicted age gaps through HD-ISS stages at the median age (44.4 years) and median CAG (43), revealing region-specific trajectories of accelerated brain aging. The subcortical component exhibited the most pronounced stage-related increases, suggesting it was the primary driver of whole-brain aging effects. Significant stage effects were also observed in the temporal and parietal regions.

4. Discussion

In the present study, we employed the concept of brain biological aging to investigate how its trajectory, throughout HD-ISS stages, deviates from healthy cohorts. Most importantly, we focused on region-specific brain aging, predicted by anatomically segregated imaging-derived input features to gain a deeper understanding of how accelerated aging in HD can be disentangled into spatial components.

Our results revealed that, on average, all regions had older-appearing structure across all stages. While the whole-brain age gap progressively increased at HD-ISS stages 2 and 3, its trajectory was largely driven by the subcortical component, followed by temporal, and parietal. In contrast, the frontal and insular lobes exhibited relatively flatter trajectories. With respect to insular cortex volumetry, the measurements in the present study align with the findings of Douaud et al.³⁸ and Peinemann et al.,³⁹ where the insula showed atrophy compared with matched controls (see Supplementary Figures S9–S12). However, unlike the subcortical volumes, the insular cortex does not exhibit a consistent trajectory of decreasing volume across HD-ISS stages 0 to 3. Specifically, while significant differences from matched non-HGECs are evident in HD-ISS stages 2 and 3 for PwHD, the trajectory of insular cortical volume across all stages does not appear to reflect the same pattern of “accelerated aging” observed in the subcortex (compare $p = 0.54$ for the subcortical and $p = 0.01$ for the insular age gaps in Figure 2).

Evidence from molecular, cellular, animal, and system-level studies suggest abnormal cortical development in HD.^{40–44} According to this hypothesis, the mHTT protein influences neurodevelopment long before striatal neurodegeneration becomes evident.⁴⁵ Kubera et al. found that cortical folding complexity for motor and visual areas of the cortex differed in pre-HD, compared to controls. However, the difference did not associate with putamen atrophy, suggesting that the cortical irregularity originated from a neurodevelopmental factor independent of the striatal neurodegeneration process.⁴⁶ Kids-HD⁴⁷ is an observational study focusing on participants aged 6–20 years, significantly younger than HD individuals in our study.⁴⁸ In this younger group, PwHD far from motor onset displayed larger brain volumes and distinct cortical morphometric patterns compared to non-HGECs. These differences were accompanied by better cognitive and behavioural performance.^{49,50} Based on these findings, Kids-HD investigators suggested that mHTT may cause brain development in HD to involve

an atypical phase of advantageous brain growth and maturation that precedes the accelerated aging.⁵¹ Similarly, among Enroll-HD participants in the neurodevelopmental phase of HD and far from their predicted motor onset, higher number of CAG repeats were associated with better cognitive scores.⁵² Similarly, our analyses showed that brain aging in the frontal and insular lobes followed trajectories distinct from subcortical accelerated aging; however, we did not observe superior cognitive patterns. Nonetheless, it is crucial to apply brain age modelling to cohorts at HD-ISS stage 0 who are younger than those included in this study. Notably, as opposed to Kids-HD, the HD-YAS study did not report a cognitive advantage in pre-HD individuals far from motor onset.⁵³

One of the limitations of the present study is the size of the normative population (non-HGECs) used for model training, especially when compared to the brain age literature.⁵⁴ This limitation is more critical for regional models, as their applicability becomes restricted due to reduced accuracy. For instance, despite substantial evidence that the occipital lobe is severely affected in HD,⁵⁵⁻⁵⁷ and is associated with poorer cognitive and motor performance,⁵⁸ a flat trajectory was observed for this region in the current study, which should be interpreted with caution. Future studies should integrate finer features such as cortical gyration⁵⁹ and explore advanced modelling approaches such as ensembled ML techniques or deep learning¹³ that account for disease-specific brain changes during training,⁶⁰ not solely during deployment.

In summary, this study for the first time investigated region-specific and stage-wise brain biological aging in HD. We observed stage-related accelerated aging in the subcortical, temporal, and parietal regions. These findings underscore the importance of utilising region-specific brain age models, which provide greater insight into HD progression compared to whole-brain models. This could potentially inform future HD trials by enabling improved monitoring strategies for therapeutic effects. To translate the findings of this study, further

research with larger, more diverse cohorts is essential, along with the integration of advanced ML techniques to refine normative models and enhance prediction accuracy.

Ethics Statement

PREDICT-HD procedures were approved by the institutional review boards at each site (32 sites across the United States, Canada, Australia, and Europe). TRACK-HD and TrackON-HD were approved by the local ethics committees at each study site in the Netherlands, United Kingdom, France, and Canada. IMAGE-HD was approved by the Monash University and Melbourne Health Human Research Ethics Committees as a single site study in Melbourne, Australia. For all studies, each participant provided written informed consent. We also used publicly available datasets that were collected and shared under institutional ethical approval with informed consent for secondary data use: the Amsterdam Open MRI Collection, the Southwest University Adult Lifespan Dataset the Neuroimaging Analysis Replication and Prediction Study, and the IXI dataset.

Acknowledgments

IMAGE-HD was supported by CHDI Foundation research agreement A-3433 and the National Health and Medical Research Council Australia grant 606650. IMAGE-HD data used in this work were generously provided by the participants and made available by Prof. Nellie Georgiou-Karistianis, principal investigator. TRACK-HD data used in this work were generously provided by the participants in the TRACK-HD study and were made available by Prof. Sarah J. Tabrizi, principal investigator, University College London. PREDICT-HD data used in this work were generously provided by the participants in PREDICT-HD study and were made available by the PREDICT-HD investigators and coordinators of the Huntington Study Group; Prof. Jane S. Paulsen's work, principal investigator (PREDICT-HD), was funded by the National Institute of Neurological Diseases and Stroke of the NIH (grants NS082089, NS040068, NS103475, and NS105509) and CHDI. Open access publishing facilitated by Monash University, as part of the Wiley-Monash University agreement via the Council of Australian University Librarians. We acknowledge the use of open-access neuroimaging datasets that made this work possible: the Amsterdam Open MRI Collection (AOMIC) (Snoek

et al., 2021), the Southwest University Adult Lifespan Dataset (SALD) (Wei et al., 2018), the Neuroimaging Analysis Replication and Prediction Study (NARPS) (Botvinik-Nezer et al., 2019), and the IXI dataset (available at brain-development.org). We gratefully acknowledge the investigators and participants who contributed to these projects and made the data publicly available.

Data Availability Statement

AOMIC, SALD, and NARPS are open-access datasets that can be obtained from the OpenNeuro platform. IXI is publicly available from brain-development.org. TRACK-HD, TrackON-HD, IMAGE-HD, and PREDICT-HD datasets can be accessed upon request and subject to agreement with the CHDI Foundation through enroll-hd.org.

Author Roles:

- (1) Research project: A. Conception, B. Organization, C. Execution;
- (2) Statistical analysis: A. Design, B. Execution, C. Review and critique;
- (3) Manuscript preparation: A. Writing of the first draft, B. Review and critique;

M.G.J: A: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B

Y.A.: 1A, 1C, 2A, 2B, 2C, 3A, 3B

P. M. A.: 1A, 1B, 1C, 2C, 3B

G. R. P.: 1A, 1B, 2C, 3B

A. R.: 1A, 1B, 2C, 3B

J. S. P.: 2C, 3B

N.Z.H.: 2C, 3B

R.I.S.: 2C, 3B

S. J. T.: 2C, 3B

N. G. K.: 1A, 1B, 2A, 2C, 3B

S.S.: 1A, 1B, 2C, 3B

Full financial disclosures of all authors for the previous 12 months:

AR is supported by the Australian Research Council (Ref: FT250100563), and Australian National Health and Medical Research Council Investigator Grant (Ref: 1194910). AR is a CIFAR Azrieli Global Scholar in the Brain, Mind & Consciousness Program. SJT reports research grant funding over the past 12 months from the CHDI Foundation, the NIHR Clinical Research Network, UK Medical Research Council (MR/X008029/1), UK Dementia Research Institute (principally funded by the UK Medical Research Council), and the Wellcome Trust (223082/Z/21/Z). SJT reports that over the past 12 months consultancy fees for advisory services were paid to University College London Consultants, a wholly-owned subsidiary of University College London from the following companies: Alnylam Pharmaceuticals, Atlanta Therapeutics, EcoR 1, Evox Therapeutics, F. Hoffman-La Roche, Iris Medicine, Latus Bio, LifeLink, Novartis Pharma, PTC Therapeutics, Rgenta Therapeutics, SkyHawk, Takeda Pharmaceuticals, UniQure Biopharma and Vico Therapeutics. SJT has also consulted for, EQT, Globe Life Sciences, Guggenheim Partners, FunctionRX, and RTW Investments through the office of Celtic Phenomenon. In the past 12 months, University College London Hospitals NHS Foundation Trust, Professor Tabrizi's host clinical institution, received funding to run clinical trials for Alnylam Pharmaceuticals, F. Hoffman-La Roche, PTC Therapeutics, and UniQure Biopharma. Nicola Hobbs is funded through a Wellcome Collaborative Award (223082/Z/21/Z). Rachael Scahill is funded through a Wellcome Collaborative Award (223082/Z/21/Z).

Figure Captions

Figure 1. Brain age model training and utilisation: **(A)** 10-fold cross validation was used to measure accuracy metrics for a model fed with ‘whole brain’ features. r = Pearson’s correlation coefficient and ε = mean absolute error between brain-predicted and actual chronological age. The identity line after bias correction is shown in green. **(B)** Brain age gap in PwHD compared against non-HGECs across HD-ISS stages.

Figure 2. Top: Stage-wise comparison of brain age gap distributions in PwHD for the whole-brain and regional models. **Middle:** ρ = Spearman’s correlation between age gap and HD-ISS stage with corresponding p-values. significance: $p < 0.05$ (*), < 0.01 (**), < 0.001 (***); ns = not significant. **Bottom:** Metrics of model reliability, including r = Pearson’s correlation coefficient and ε = mean absolute error between brain-predicted and actual chronological age in non-HGECs.

Figure 3. Linear mixed-effect models (LMMs) for mapping whole-brain and region-specific aging trajectories across HD-ISS stages. Accelerated aging was most prominent in the subcortical region.

References

1. Cagney DN, Sul J, Huang RY, Ligon KL, Wen PY, Alexander BM. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. *Neuro Oncol.* 2018;20(9):1162-1172. doi:10.1093/neuonc/nox242
2. Thomas EA. The Utility of Biomarkers for Huntington's Disease. In: *Contemporary Clinical Neuroscience*. Vol Part F1569.; 2023:3-15. doi:10.1007/978-3-031-32815-2_1
3. Scahill RI, Zeun P, Osborne-Crowley K, et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. *Lancet Neurol.* 2020;19(6):502-512. doi:10.1016/S1474-4422(20)30143-5
4. Hobbs NZ, Papoutsi M, Delva A, et al. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. *J Huntington's Dis.* 2024;13(2):163-199. doi:10.3233/JHD-240016
5. Tabrizi SJ, Schobel S, Gantman EC, et al. A biological classification of Huntington's disease: the Integrated Staging System. *Lancet Neurol.* 2022;21(7):632-644. doi:10.1016/S1474-4422(22)00120-X
6. Poudel GR, Harding IH, Egan GF, Georgiou-Karistianis N. Network spread determines severity of degeneration and disconnection in Huntington's disease. *Hum Brain Mapp.* 2019;40(14):4192-4201. doi:10.1002/hbm.24695
7. Liu CF, Younes L, Tong XJ, et al. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease. *Brain Commun.* 2023;5(5):1-16. doi:10.1093/braincomms/fcad214

8. Franke K, Ziegler G, Klöppel S, Gaser C, Initiative ADN. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. *Neuroimage*. 2010;50(3):883-892.
9. Gaser C, Kalc P, Cole JH. A perspective on brain-age estimation and its clinical promise. *Nat Comput Sci*. Published online July 24, 2024. doi:10.1038/s43588-024-00659-8
10. Brier MR, Li Z, Ly M, et al. “Brain age” predicts disability accumulation in multiple sclerosis. *Ann Clin Transl Neurol*. 2023;10(6):990-1001. doi:10.1002/acn3.51782
11. Chen YS, Kuo CY, Lu CH, Wang YW, Chou KH, Lin WC. Multiscale brain age prediction reveals region-specific accelerated brain aging in Parkinson’s disease. *Neurobiol Aging*. 2024;140:122-129. doi:<https://doi.org/10.1016/j.neurobiolaging.2024.05.003>
12. Hermann A, Tarakdjian GN, Temp AGM, et al. Cognitive and behavioural but not motor impairment increases brain age in amyotrophic lateral sclerosis. *Brain Commun*. 2022;4(5):fcac239. doi:10.1093/braincomms/fcac239
13. Saha S, Pagnozzi A, George J, et al. Investigating brain age deviation in preterm infants: a deep learning approach. In: *International Workshop on Preterm, Perinatal and Paediatric Image Analysis*. Springer; 2018:87-96.
14. Hawellek DJ, Engemann DA, Holiga S, Napolitano A, Abaei M, McColgan P. E10 Cross-sectional exploration of the clinical utility of brain age as an imaging-based marker of disease pathology in Huntington’s disease (HD) based on the tominersen phase III trial generation HD 1. In: *E: Imaging*. Vol 93. BMJ Publishing Group Ltd; 2022:A35.1-A35. doi:10.1136/jnnp-2022-ehdn.86
15. Abeyasinghe PM, Cole JH, Razi A, et al. Brain Age as a New Measure of Disease

Stratification in Huntington's Disease. *Mov Disord*. Published online 2025.

16. Lee JK, Conrad A, Epping E, et al. Effect of Trinucleotide Repeats in the Huntington's Gene on Intelligence. *EBioMedicine*. 2018;31:47-53. doi:10.1016/j.ebiom.2018.03.031
17. Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as deviations from normative functioning. *Mol Psychiatry*. 2019;24(10):1415-1424. doi:10.1038/s41380-019-0441-1
18. Smith SM, Elliott LT, Alfaro-Almagro F, et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. *eLife*. 2020;9. doi:10.7554/eLife.52677
19. Amirmoezzi Y, Cropley V, Seguin C, Zalesky A, Tian YE. Characterizing Brain–Cardiovascular Aging Using Multiorgan Imaging and Machine Learning. *J Neurosci*. 2025;45(8).
20. Popescu SG, Glocker B, Sharp DJ, Cole JH. Local Brain-Age: A U-Net Model. *Front Aging Neurosci*. 2021;13(December):1-17. doi:10.3389/fnagi.2021.761954
21. Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer's Disease Progression with Multi-Information Generative Adversarial Network. *IEEE J Biomed Heal Informatics*. 2021;25(3):711-719. doi:10.1109/JBHI.2020.3006925
22. Kaufmann T, van der Meer D, Doan NT, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. *Nat Neurosci*. 2019;22(10):1617-1623. doi:10.1038/s41593-019-0471-7
23. Tabrizi SJ, Scahill RI, Owen G, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. *Lancet Neurol*. 2013;12(7):637-649.

doi:10.1016/S1474-4422(13)70088-7

24. Klöppel S, Gregory S, Scheller E, et al. Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. *EBioMedicine*. 2015;2(10):1420-1429. doi:10.1016/j.ebiom.2015.08.002
25. Lobanov S V, McAllister B, McDade-Kumar M, et al. Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. *npj Genomic Med*. 2022;7(1):53. doi:10.1038/s41525-022-00317-w
26. Paulsen JS, Long JD, Johnson HJ, et al. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. *Front Aging Neurosci*. 2014;6(APR):1-11. doi:10.3389/fnagi.2014.00078
27. Georgiou-Karistianis N, Stout JC, Domínguez D JF, et al. Functional magnetic resonance imaging of working memory in Huntington's disease: Cross-sectional data from the IMAGE-HD study. *Hum Brain Mapp*. 2014;35(5):1847-1864. doi:10.1002/hbm.22296
28. Poudel GR, Stout JC, Domínguez D JF, et al. Longitudinal change in white matter microstructure in Huntington's disease: The IMAGE-HD study. *Neurobiol Dis*. 2015;74:406-412. doi:10.1016/j.nbd.2014.12.009
29. Snoek L, van der Miesen MM, Beemsterboer T, van der Leij A, Eigenhuis A, Steven Scholte H. The Amsterdam Open MRI Collection, a set of multimodal MRI datasets for individual difference analyses. *Sci Data*. 2021;8(1):85. doi:10.1038/s41597-021-00870-6
30. Wei D, Zhuang K, Ai L, et al. Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset. *Sci Data*. 2018;5(1):180134.

doi:10.1038/sdata.2018.134

31. Botvinik-Nezer R, Iwanir R, Holzmeister F, et al. fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study. *Sci Data*. 2019;6(1):106. doi:10.1038/s41597-019-0113-7
32. Abeyasinghe PM, Long JD, Razi A, et al. Tracking Huntington's Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. *Mov Disord*. 2021;36(10):2282-2292. doi:10.1002/mds.28650
33. Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness measurements across scanners and sites. *Neuroimage*. 2018;167(November 2017):104-120. doi:10.1016/j.neuroimage.2017.11.024
34. Han J, Kim SY, Lee J, Lee WH. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. *Sensors (Basel)*. 2022;22(20). doi:10.3390/s22208077
35. Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree. *Adv Neural Inf Process Syst*. 2017;2017-Decem(Nips):3147-3155.
36. Beheshti I, Nugent S, Potvin O, Duchesne S. Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. *NeuroImage Clin*. 2019;24(July):102063. doi:10.1016/j.nicl.2019.102063
37. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage*. 2006;31(3):968-980. doi:10.1016/j.neuroimage.2006.01.021
38. Douaud G, Gaura V, Ribeiro MJ, et al. Distribution of grey matter atrophy in Huntington's disease patients: a combined ROI-based and voxel-based morphometric

study. *Neuroimage*. 2006;32(4):1562-1575. doi:10.1016/j.neuroimage.2006.05.057

39. Peinemann A, Schuller S, Pohl C, Jahn T, Weindl A, Kassubek J. Executive dysfunction in early stages of Huntington's disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. *J Neurol Sci*. 2005;239(1):11-19. doi:10.1016/j.jns.2005.07.007

40. Barnat M, Capizzi M, Aparicio E, et al. Huntington's disease alters human neurodevelopment. *Science* (80-). 2020;369(6505):787-793. doi:10.1126/science.aax3338

41. Braz BY, Wennagel D, Ratié L, et al. Treating early postnatal circuit defect delays Huntington's disease onset and pathology in mice. *Science* (80-). 2022;377(6613). doi:10.1126/science.abq5011

42. Cepeda C, Oikonomou KD, Cummings D, et al. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. *J Neurosci Res*. 2019;97(12):1624-1635. doi:10.1002/jnr.24503

43. Mangin JF, Rivière D, Duchesnay E, et al. Neocortical morphometry in Huntington's disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes. *NeuroImage Clin*. 2020;26(February):102211. doi:10.1016/j.nicl.2020.102211

44. Ratié L, Humbert S. A developmental component to Huntington's disease. *Rev Neurol (Paris)*. 2024;180(5):357-362. doi:10.1016/j.neurol.2024.04.001

45. Van Der Plas E, Schultz JL, Nopoulos PC. The Neurodevelopmental Hypothesis of Huntington's Disease. *J Huntingtons Dis*. 2020;9(3):217-229. doi:10.3233/JHD-200394

46. Kubera KM, Schmitgen MM, Hirjak D, Wolf RC, Orth M. Cortical neurodevelopment

in pre-manifest Huntington's disease. *NeuroImage Clin.* 2019;23(November 2018):101913. doi:10.1016/j.nicl.2019.101913

47. Nopoulos P, Lee J, Epping E, Mathews K, Magnotta V, Dawson J. D17 Effects of the huntingtin gene (HTT) on brain development. Published online 2016.

48. Tereshchenko A V., Schultz JL, Bruss JE, Magnotta VA, Epping EA, Nopoulos PC. Abnormal development of cerebellar-striatal circuitry in Huntington disease. *Neurology*. 2020;94(18):e1908-e1915. doi:10.1212/WNL.0000000000009364

49. Neema M, Schultz JL, Langbehn DR, et al. Mutant Huntington Drives Development of an Advantageous Brain Early in Life: Evidence in Support of Antagonistic Pleiotropy. *Ann Neurol*. Published online 2024. doi:10.1002/ana.27046

50. Schultz JL, Golden LE, Harshman LA, Nopoulos PC. Increased Neuronal Activity in Children and Young Adults with the HD Gene Mutation. *Huntingt Study Group® Novemb* 7-9, 2024. 2024;13:36.

51. Schultz JL, Neema M, Nopoulos PC. Unravelling the role of huntingtin: from neurodevelopment to neurodegeneration. *Brain*. 2023;146(11):4408-4410. doi:10.1093/brain/awad353

52. Schultz JL, Saft C, Nopoulos PC. Association of CAG Repeat Length in the Huntington Gene With Cognitive Performance in Young Adults. *Neurology*. 2021;96(19):E2407-E2413. doi:10.1212/WNL.00000000000011823

53. Scahill RI, Farag M, Murphy MJ, et al. Somatic CAG repeat expansion in blood associates with biomarkers of neurodegeneration in Huntington's disease decades before clinical motor diagnosis. *Nat Med*. Published online 2025. doi:10.1038/s41591-024-03424-6

54. Cumplido-Mayoral I, García-Prat M, Operto G, et al. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. *Elife*. 2023;12:1-37. doi:10.7554/eLife.81067

55. Tan B, Shishegar R, Fornito A, Poudel G, Georgiou-Karistianis N. Longitudinal mapping of cortical surface changes in Huntington's Disease. *Brain Imaging Behav*. 2022;16(3):1381-1391. doi:10.1007/s11682-021-00625-2

56. Ghofrani-Jahromi M, Poudel GR, Razi A, et al. Prognostic enrichment for early-stage Huntington's disease: An explainable machine learning approach for clinical trial. *NeuroImage Clin*. 2024;43(August):103650. doi:10.1016/j.nicl.2024.103650

57. Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. *J Neurosci Res*. 2024;102(7):e25366. doi:10.1002/jnr.25366

58. Johnson EB, Ziegler G, Penny W, et al. Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. *Biol Psychiatry*. 2021;89(8):807-816. doi:10.1016/j.biopsych.2020.11.009

59. Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA. A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. *Neuroimage*. 2021;229:117751.

60. Kim H, Karaman BK, Zhao Q, Wang AQ, Sabuncu MR, Initiative ADN. Learning-based inference of longitudinal image changes: Applications in embryo development, wound healing, and aging brain. *Proc Natl Acad Sci*. 2025;122(8):e2411492122.