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ABSTRACT  

Background: Huntington’s disease (HD) is a progressive neurodegenerative disorder. Models 

of brain biological age have shown evidence of accelerated aging relative to chronological age, 

but they typically rely on a single whole-brain measure. While studies in other 

neurodegenerative diseases suggest region-specific brain age models can provide deeper 

insights, this approach remains underexplored in HD. Such regional models could benefit 

clinical trials, which depend on sensitive biomarkers to monitor therapeutic effects. 

Objectives: This study aimed to characterise region-specific patterns of brain aging across HD-

ISS stages and evaluate their associations with cognitive, motor, and functional scores. 

Methods: We employed machine learning to train brain age models on structural MRI data 

from 1,936 controls. These models were applied to 531 persons with HD. Associations between 

regional brain age gap, HD-ISS stages, and clinical scores were assessed. 

Results: Whole-brain aging increased progressively at HD-ISS stages 2 and 3. Region-specific 

analyses revealed the dominance of subcortical, temporal, and parietal aging trajectories, which 

exhibited significant stage-wise increases in brain age gap. A higher brain age gap in these 

regions was associated with declines in cognitive, motor, and functional performance. In 

contrast, insular and frontal regions showed flatter patterns and no significant associations with 

clinical measures. 

Conclusion: This study highlights distinct region-specific components of brain aging in HD. 

Regional analysis provides deeper insights into HD progression and could be employed as a 

sensitive biomarker for monitoring therapeutic effects in clinical trials. Future work should 

explore these findings in younger cohorts and investigate network-specific aging with 

multimodal imaging. 
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1. Introduction  

Disease-modifying clinical trials in Huntington's Disease (HD) rely on sensitive monitoring 

biomarkers1 to screen for intervention effects, especially in the early stages when detectable 

clinical symptoms are absent.2 This is crucial as a shift has emerged toward conducting 

preventive interventions even before the onset of clinical symptoms.3 To date, various imaging 

biomarkers have been proposed that characterise the underlying mechanisms of HD 

progression.4 For example, volume loss in the caudate and putamen, as early indicators of 

pathogenesis caused by the mutant huntingtin protein (mHTT), are incorporated into the 

Huntington’s Disease Integrated Staging System (HD-ISS). This paves the way for early-stage 

trials by providing a comprehensive framework for classifying the entire HD course, including 

all persons with HD (PwHD).5 

However, neurodegeneration in HD is not limited to the striatum; it spreads through the brain’s 

connectome to other subcortical and cortical regions.6 Therefore, enhanced metrics that 

encompass the brain in its entirety may be more effective in tracking disease progression.7 In 

recent years, the concept of biological age has gained attention, offering a way to quantify how 

an organ's health deviates from the norm for individuals of the same chronological age. In this 

context, machine learning models leverage structural or functional brain features to estimate 

an individual’s age.8,9 The gap between the estimated age and the actual chronological age 

reflects deviations from normal brain aging patterns, seen in various neurological conditions.10–

13 
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A study on participants in the GENERATION-HD1 tominersen trial (NCT03761849) revealed 

that their brain age was, on average, more than a decade older than their chronological age. 

Moreover, brain age significantly predicted clinical status, showing a strong correlation with 

disease severity, as measured by the composite Unified Huntington’s Disease Rating Scale 

(cUHDRS), and outperformed chronological age, CAG repeats, and the CAG-age product 

(CAP) score.14 Using brain age gap, as a measure of HD progression, five distinct states were 

identified,15 as compared to the three common CAP score groups used for stratification (far, 

medium, and near to motor diagnosis).16 

Brain age serves as a ‘reverse’ normative model that captures complex interactions between 

imaging-derived phenotypes. However, summarising these measurements into a single metric 

may oversimplify brain aging complexity.17 A study highlighted this limitation, reporting that 

brain aging may involve up to 62 distinct aspects.18 To address this limitation, localised brain 

age have emerged, where input features are segregated based on anatomical regions or 

functional networks.19–21 This approach avoids oversimplifying brain aging dynamics by 

training multiple models, each capturing a specific feature of normal or neuropathologic brain 

aging.22 Nonetheless, region-specific decomposition of brain age modelling remains 

unexplored in HD. Moreover, given the growing importance of HD-ISS as a standard 

framework in clinical trials, its integration with brain age modelling is critical.  

Therefore, the present study: 1) investigates how brain age gap changes across HD-ISS stages; 

2) provides a mapping of its regional trajectories; and 3) shows how they are associated with 

common HD motor, cognitive, and functional biomarkers. Findings from this research could 

potentially aid future HD trials by offering insights into expected neurodegeneration at each 

stage, enabling more efficient targeting of intervention endpoints and monitoring strategies. 

 



6 

 

2. Materials and methods 

2.1. Datasets and participants 

We used 3 Tesla T1-weighted MRI scans from non-huntingtin gene expansion carriers (non-

HGEC) to train brain age models and applied them to data from PwHD. The datasets consisted 

of longitudinal observational studies including TRACK-HD,7,23 TrackON-HD,24 PREDICT-

HD,25,26 and IMAGE-HD27,28 as well as cross-sectional studies including IXI, AOMIC,29 

SALD,30 and NARPS.31 The pooled datasets comprised 3,562 images from a total of 1,936 

non-HGECs (1,087 females, age range: 18-82 years, mean age: 33.1) and 2,429 images from 

531 PwHD (317 females, age range: 18.6-73.5 years, mean age: 43.1). Detailed demographic 

information is summarised in Table 1. Supplementary Figures S1 and S2 show the distribution 

of the number of scans per individual, where a single stage is presumed for PwHD who progress 

to a more advanced stage. For cross-sectional datasets, each participant contributed a single 

scan, so the number of scans equalled the number of individuals. For a description of the 

clinical measures in Table 1, see Supplementary Materials. 

 

2.2. Brain imaging-derived phenotypes 

All the images in the datasets (Section 2.1) were processed using FreeSurfer v6.0 to extract a 

total of 354 morphological features related to both grey matter and white matter. From 

segmented subcortical structures, bilateral volumes (𝑚𝑚3) were measured. Features derived 

from parcellated cortical regions included bilateral volumes (𝑚𝑚3), thicknesses (𝑚𝑚), surface 

area (𝑚𝑚2), mean curvature (𝑚𝑚−1), and white matter volumes (𝑚𝑚3). Supplementary 

Table S1 details specific scanner and acquisition protocol for each cohort. Although scanner 

parameters varied slightly across sites, all T1-weighted images were pre-processed using the 

same pipeline and quality-controlled to ensure comparable measures. The quality control 
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procedure is detailed in our previous work.32 We applied neuroCombat harmonization33 to the 

derived morphometric measures in the non-HGECs. Sex was included as a covariate to 

preserve biological variability, and harmonization was performed using empirical Bayes 

estimates with cohort as the batch variable. This approach removes scanner-related additive 

effects while retaining variance related to biological covariates. 

 

2.3. Brain age models: training, validation, and utilisation 

To train brain age models for the whole brain as well as the six segregated regions of interest 

(ROIs), we used Light Gradient-Boosting Machines (LightGBM).34,35 The chronological age 

of non-HGECs at the time of the scan was used as the target output and imaging-derived 

features as inputs. To correct for the inherent bias toward the mean age of the aggregated 

training datasets, chronological age was regressed out from the predicted age gaps.36 To 

evaluate the performance of the models, we used 10-fold cross-validation, with accuracy being 

assessed using Pearson’s correlation coefficient (𝑟) and mean absolute error (𝜀) between 

estimated and chronological age in non-HGECs,  

For regional brain age models, we restricted the focus to the subcortex and to individual lobes 

defined by the Desikan-Killiany atlas: frontal, parietal, occipital, insular, or temporal.37 

Supplementary Table S2 enlists the sub-regional features for each segregated ROI. Sex was 

included as a covariate in all the models.  

The whole-brain and region-specific models were applied to cross-sectional data in PwHD to 

compute brain age gap. For each HD-ISS stage, an age- and sex-matched non-HGEC group 

from TRACK, PREDICT, or IMAGE, unseen during training, was used for within-stage 

comparison. Spearman’s correlation between age gaps and HD-ISS was calculated. 



8 

 

Additionally, Pearson’s correlations between age gaps and cognitive, motor, and functional 

biomarkers were computed.  

Using longitudinal scans from PwHD, regional brain age gaps were computed for all time 

points. Linear mixed-effect models (LMMs) were then fit to these gaps, adjusting for CAG 

repeat length and chronological age and assuming random intercepts for subjects.  

 

3. Results 

3.1. Whole-brain age model 

Figure 1(A) illustrates predicted age versus chronological for non-HGECs. Utilising the trained 

model, age gaps for PwHD at baseline are estimated and shown in Figure 1(B), with stages 

stratified. The average age gap was positive at all HD-ISS stages, with between-stage 

differences significantly observed at stages 2 and 3. Within-stage comparison against matched 

non-HGECs revealed significant differences at all stages. 

 

3.2. Associations between regional age gap and HD-ISS: cross-sectional analysis 

Figure 2 shows how the distributions of region-specific age gaps differ from the whole-brain 

model. The strength of accelerated brain aging was quantified by measuring the Spearman’s 

correlation (𝜌) between age gaps and HD-ISS stages.  

For the subcortex, temporal and parietal lobes, a progressive stage-wise increase in age gap 

was observed. Conversely, the occipital, insula, and frontal age gaps did not strongly associate 

with disease stages (non-significant or negative 𝜌). It is noteworthy that breaking down the set 

of input features when training the regional brain age models led to a loss of accuracy (compare 
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𝑟 and 𝜀 for the whole-brain and regional models in Figure 2). Supplementary Tables S3 and S4 

compare the accuracy metrics of regression models other than LightGBM. 

 

3.3. Cognitive, motor, and functional correlates of brain aging components 

Using baseline data, associations between regional components of brain aging and cognitive, 

motor, and functional scores were measured. Significant results are shown in Table 2. All p-

values were adjusted for multiple testing using the False Discovery Rate (FDR) method. The 

occipital region was not included in this analysis, since its model reliability was notably limited 

(see Figure 2: 𝑟 = 0.64, 𝜀 = 9.6). 

 

3.4. Trajectories of regional components of brain aging: longitudinal analysis 

Figure 3 shows the LMM-predicted age gaps through HD-ISS stages at the median age (44.4 

years) and median CAG (43), revealing region-specific trajectories of accelerated brain aging. 

The subcortical component exhibited the most pronounced stage-related increases, suggesting 

it was the primary driver of whole-brain aging effects. Significant stage effects were also 

observed in the temporal and parietal regions.  

 

4. Discussion 

In the present study, we employed the concept of brain biological aging to investigate how its 

trajectory, throughout HD-ISS stages, deviates from healthy cohorts. Most importantly, we 

focused on region-specific brain aging, predicted by anatomically segregated imaging-derived 

input features to gain a deeper understanding of how accelerated aging in HD can be 

disentangled into spatial components. 
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Our results revealed that, on average, all regions had older-appearing structure across all stages. 

While the whole-brain age gap progressively increased at HD-ISS stages 2 and 3, its trajectory 

was largely driven by the subcortical component, followed by temporal, and parietal. In 

contrast, the frontal and insular lobes exhibited relatively flatter trajectories. With respect to 

insular cortex volumetry, the measurements in the present study align with the findings of 

Douaud et al.38 and Peinemann et al.,39 where the insula showed atrophy compared with 

matched controls (see Supplementary Figures S9–S12). However, unlike the subcortical 

volumes, the insular cortex does not exhibit a consistent trajectory of decreasing volume across 

HD-ISS stages 0 to 3. Specifically, while significant differences from matched non-HGECs are 

evident in HD-ISS stages 2 and 3 for PwHD, the trajectory of insular cortical volume across 

all stages does not appear to reflect the same pattern of “accelerated aging” observed in the 

subcortex (compare ρ = 0.54 for the subcortical and ρ = 0.01 for the insular age gaps in Figure 

2). 

Evidence from molecular, cellular, animal, and system-level studies suggest abnormal cortical 

development in HD.40–44 According to this hypothesis, the mHTT protein influences 

neurodevelopment long before striatal neurodegeneration becomes evident.45 Kubera et al. 

found that cortical folding complexity for motor and visual areas of the cortex differed in pre-

HD, compared to controls. However, the difference did not associate with putamen atrophy, 

suggesting that the cortical irregularity originated from a neurodevelopmental factor 

independent of the striatal neurodegeneration process.46 Kids-HD47 is an observational study 

focusing on participants aged 6–20 years, significantly younger than HD individuals in our 

study.48 In this younger group, PwHD far from motor onset displayed larger brain volumes and 

distinct cortical morphometric patterns compared to non-HGECs. These differences were 

accompanied by better cognitive and behavioural performance.49,50 Based on these findings, 

Kids-HD investigators suggested that mHTT may cause brain development in HD to involve 
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an atypical phase of advantageous brain growth and maturation that precedes the accelerated 

aging.51 Similarly, among Enroll-HD participants in the neurodevelopmental phase of HD and 

far from their predicted motor onset, higher number of CAG repeats were associated with better 

cognitive scores.52 Similarly, our analyses showed that brain aging in the frontal and insular 

lobes followed trajectories distinct from subcortical accelerated aging; however, we did not 

observe superior cognitive patterns. Nonetheless, it is crucial to apply brain age modelling to 

cohorts at HD-ISS stage 0 who are younger than those included in this study. Notably, as 

opposed to Kids-HD, the HD-YAS study did not report a cognitive advantage in pre-HD 

individuals far from motor onset.53 

One of the limitations of the present study is the size of the normative population (non-HGECs) 

used for model training, especially when compared to the brain age literature.54 This limitation 

is more critical for regional models, as their applicability becomes restricted due to reduced 

accuracy. For instance, despite substantial evidence that the occipital lobe is severely affected 

in HD,55–57 and is associated with poorer cognitive and motor performance,58 a flat trajectory 

was observed for this region in the current study, which should be interpreted with caution. 

Future studies should integrate finer features such as cortical gyrification59 and explore 

advanced modelling approaches such as ensembled ML techniques or deep learning13 that 

account for disease-specific brain changes during training,60 not solely during deployment.  

In summary, this study for the first time investigated region-specific and stage-wise brain 

biological aging in HD. We observed stage-related accelerated aging in the subcortical, 

temporal, and parietal regions. These findings underscore the importance of utilising region-

specific brain age models, which provide greater insight into HD progression compared to 

whole-brain models. This could potentially inform future HD trials by enabling improved 

monitoring strategies for therapeutic effects. To translate the findings of this study, further 
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research with larger, more diverse cohorts is essential, along with the integration of advanced 

ML techniques to refine normative models and enhance prediction accuracy. 
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Figure Captions 

 

Figure 1. Brain age model training and utilisation: (A) 10-fold cross validation was used to 

measure accuracy metrics for a model fed with ‘whole brain’ features. 𝑟 = Pearson’s correlation 

coefficient and 𝜀 = mean absolute error between brain-predicted and actual chronological age. 

The identity line after bias correction is shown in green. (B) Brain age gap in PwHD compared 

against non-HGECs across HD-ISS stages. 

 

 

Figure 2. Top: Stage-wise comparison of brain age gap distributions in PwHD for the whole-

brain and regional models. Middle: 𝜌 = Spearman’s correlation between age gap and HD-ISS 

stage with corresponding p-values. significance: p < 0.05 (*), < 0.01 (**), < 0.001 (***); ns = 

not significant. Bottom: Metrics of model reliability, including 𝑟 = Pearson’s correlation 

coefficient and 𝜀 = mean absolute error between brain-predicted and actual chronological age 

in non-HGECs. 

 

 

Figure 3. Linear mixed-effect models (LMMs) for mapping whole-brain and region-specific 

aging trajectories across HD-ISS stages. Accelerated aging was most prominent in the 

subcortical region. 
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