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ABSTRACT

Microvascular dysfunction plays an early and potentially independent role in coronary artery disease, yet remains difficult to assess due to
limitations in current imaging resolutions and diagnostic tools. To address this gap, we present an integrated computational workflow for
subject-specific myocardial perfusion modeling based on the multiple-network poroelastic theory (MPET). The myocardium is represented
as a poroelastic medium containing three interacting fluid networks: arterial, arteriole/capillary, and venous, to capture the multiscale dynam-
ics of myocardial perfusion. Specifically, the workflow integrates realistic left ventricular morphology and physiologically informed coronary
inflow patterns derived from routine magnetic resonance (MR) imaging into the MPET framework. Sensitivity analysis guided parameter cal-
ibration to ensure physiological relevance of the myocardial perfusion model. The simulation results showed that the model reproduced phys-
iologically realistic myocardial blood flow patterns and transmural perfusion gradients, in agreement with clinical MR perfusion imaging.
Notably, the model demonstrated sensitivity to myocardial wall thickness, highlighting its potential for assessing structural-functional
relationships.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0300204

I. INTRODUCTION positron emission tomography (PET), computed tomography (CT), or

Myocardial perfusion is the process by which oxygen and
nutrients are delivered to cardiac tissue through the coronary micro-
vasculature. Perfusion impairment is a key manifestation of coronary
artery disease (CAD), and increasing evidence suggests that microvas-
cular dysfunction may precede and even occur independently of epi-
cardial coronary stenosis." However, compared with the extensively
studied epicardial coronary arteries, current methods for assessing
microvascular function remain limited.” Myocardial blood flow (MBF)
is a key quantitative indicator of perfusion, commonly assessed using

cardiovascular magnetic resonance (CMR) perfusion imaging. Despite
their routine clinical use, these imaging modalities remain limited in
accurately characterizing microvascular function due to low spatial res-
olution, elevated scanning cost, and reliance on contrast agents.
Computational models can provide a flexible framework for sim-
ulating myocardial perfusion in different physiological and pathologi-
cal scenarios, which can be used as virtual diagnostic and treatment
planning tools. However, coronary perfusion spans more than four
orders of magnitude in spatial scale, and microvessels with diameters
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less than 200 ym constitute more than 95% of the vascular network.’
Explicit vascular modeling is constrained by both anatomical data
availability and computational cost.* Therefore, homogenized porous
media models provide a practical and physiologically justified strategy
for myocardial perfusion modeling.

Terzaghi’ and Biot” first described the mechanical behavior of
porous media using the elastic theory and Darcy’s law. Earlier
modeling of myocardium typically idealized the left ventricle as an
axisymmetric structure’ '' whereas representing the coronary vas-
culature using a single compartment.” '’ However, coronary flow
exhibits distinct behaviors across different scales, which single-
compartment models fail to capture adequately. One strategy
addresses this by generating vascular structures from imaging or
algorithmic approaches, which are solved using 1D or 3D fluid
dynamics equations and coupled with homogenized capillary models
to simulate multiscale myocardial perfusion.'”'” Alternatively, mul-
ticompartment models have been employed to capture scale-specific
flow dynamics.”'®'” Both approaches emphasize the increasing
need for anatomically accurate and physiologically realistic modeling
of perfusion.

Myocardial perfusion is strongly modulated by cardiac contrac-
tion, with flow primarily occurring during diastole, a phenomenon
referred to as systolic inhibition.” Furthermore, perfusion is regionally
organized, reflecting distinct coronary supply territories,''® which is
critical for local disease assessment. While incorporating these factors
enhances realism, it has often led to computationally intensive models
that rely on excessive assumptions and parameters not readily measur-
able in routine clinical settings.'” Consequently, a practical need exists
for tractable, clinically-oriented workflows that can integrate multi-
scale physiological modeling with standard and readily available clini-
cal data.

In this study, we propose an integrated computational workflow
to combine the multiple-network poroelastic theory (MPET) and the
clinical data for myocardial perfusion modeling. MPET was previously
applied and clinically validated in brain perfusion studies.”” ** The
central novelty of this work lies in the integration of patient-specific
LV morphology and image-derived coronary perfusion flow as inputs
to a multiple-network poroelastic model to estimate diastolic MBF dis-
tribution. This work provides a computational model built from rou-
tine clinical inputs to connect patient-specific anatomy with functional
perfusion metrics.

Il. METHODS
A. Clinical data collection and processing

Two subjects with no known myocardial perfusion-related dis-
eases gave informed consent before participation: a 25-year-old female
(S1) and a 64-year-old male (S2). High-resolution myocardial struc-
tural sequences and first-pass perfusion sequences were acquired, and
the detailed parameters are provided in the supplementary material
(Sec. ).

For the structural images, a semi-automated reconstruction was
performed using threshold-based and manual segmentation. The
reconstructed geometry encompassed the entire left ventricular (LV)
myocardium and was verified by a senior clinician with over a decade
of experience in cardiac image interpretation and anatomical delinea-
tion. The pericardium and papillary muscles were excluded, consistent
with similar clinical analyses."” The geometric models were discretized
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into surface triangular and volumetric tetrahedral elements using
ANSYS ICEM CFD (ANSYS Inc.). The mesh resolution satisfied the
convergence criteria provided in the supplementary material (Sec. II).
The final LV myocardial mesh contained approximately 200 000 ele-
ments and was further extracted with endocardial (inner surface) and
epicardial (outer surface) grids as boundaries, as shown in Fig. 1(b).
Subsequently, the model was divided into 17 segments based on the
American Heart Association (AHA) standard for boundary condition
setup. For data analysis, the apical segment (17) was excluded follow-
ing common clinical practice,”” and analysis focused on the remaining
segments (6 = 1,...,16).

For the first-pass perfusion sequences, the post-processing
involved both semi-quantitative and quantitative analyses performed
using CVI42 (circle cardiovascular inc.). In the semi-quantitative anal-
ysis of normal-dose sequences, myocardial signal intensity (SI) was
extracted from both the endocardial and epicardial borders of each
segment to quantify transmural perfusion gradients (TPG), as defined
in the following equations:

(Slae(t)) = %ZSIQ‘g(t)(n), Q € {endo, epi}, (1)

<SIendo7U(t)>
<SIepi,o' (t)> .

The average signal intensity (Sl s(t)) was computed for each
myocardial segment ¢ (¢ = 1, ..., 16) and region Q (endocardial or
epicardial), by averaging signals from sampling regions #n at 0%
(n=0), 5% (n=1), and 10% (n=2) inwards from the respective
boundary [Fig. 1(e)], over a steady enhancement period ¢ (frames
30-50) following the first-pass peak. This sampling approach,
common in clinical and quantitative analysis, was adopted to
enhance signal robustness and mitigate artifacts from partial-
volume effects and blood-pool contamination.”® The TPG in a
specific segment ¢ was then defined as the ratio of endocardial to
epicardial average signal intensity.”” This clinical TPG derived
from image SI served as the benchmark. In contrast, the model
derived TPG was calculated from a different quantity: the ratio of
endocardial to epicardial MBF. For quantitative analysis, low-dose
acquisitions were used to derive the arterial input function (AIF),
which was then combined with myocardial SI data to compute
MBF. Voxel-wise MBF maps were generated and extracted using a
custom script for further analysis.

TPG, = (2)

B. Multiple-network poroelastic theory for myocardial
perfusion

The MPET framework is a computational tool for modeling the
transport mechanisms of multiple fluid networks through a poroelastic
medium, especially the interaction between different fluid networks
and fluid-structure interaction at different scales, all at the same time
in one integrated framework. This overcomes the limitation of analyz-
ing fluid compartments separately, which is particularly important for
perfused tissue. The MPET framework has been preliminarily applied
in myocardial perfusion assessment,”’ demonstrating promising capa-
bility due to its flexibility and scalability.

The MPET myocardial model considers the myocardium as a
deformable porous medium, with three coupled fluid networks: the
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FIG. 1. Workflow of model reconstruction and quantitative perfusion analysis from clinical magnetic resonance (MR) imaging. Structural images were used to reconstruct the left ven-
tricular (LV) and right ventricular (RV) models (a), define endocardial and epicardial surfaces and generate meshes (b), and segment the myocardium into 17 American Heart
Association (AHA) segments (c). The red line denotes the basal epicardial region where displacement constraints were imposed. Perfusion images supported model validation
(d)~(g): dual-bolus scans provided low- and high-dose slices (d); myocardial regions were segmented (with o denoting a specific segment) and shifted inwards to extract signals
across the myocardial wall (e) [see definitions in Eq. (1)]; signal intensities were extracted to compute transmural gradients (f); and to generate voxel-wise MBF maps (g).
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arterial network (a), the arteriole/capillary network (c), and the venous GV*u + (G + 1)Ve = 0,Vp, + o.Vp, + o, Vp,, 3)
network (v). Figure 2(c) illustrates the directional flows between net- Opa e ke,
works, where networks are connected with each other. Sa ot + g ot = IT Vopa + Scas 4)
a
19) Oe k
C. Governing equations ch + Yy = M—Cvzpc + (Sac + Swe), (5)
The governing equations for the multiple-network poroelastic ap e ‘ k
model have been described in detail in previous studies.”>*” Here, we Sy P tv + oy % =— Vzpv + Sey- (6)
adapt them to the three-fluid-network model used in this paper. v
The governing equations of the 3-MPET myocardial model are The equilibrium equation, Eq. (3), describes the momentum bal-
described below. ance of the porous medium, where G is the shear modulus; u is the
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tissue displacement; 4 is the Lamé’s constant; ¢ is the dilatational
strain; p; (i = a, ¢, and v) represent the pressure of each blood net-
work. The Biot-Willis coefficient o; (i = a, ¢, and v) for each fluid
network satisfy the relation with the total porosity ¢ (¢ < o, + o
+a, < 1).”” Body forces (such as gravity) and inertia terms are
neglected under the assumption of low acceleration frequencies.”’ The
continuity equations, Eqs. (4)-(6), are used to describe mass conserva-
tion and fluid flow in the 3-MPET myocardial model. The specific stor-
age S; (i = a,c, and v) represents the measurement of the released
fluid volume per unit pressure in the control volume under constant
strain for each fluid compartment. The cross-porosity storage effect
(Sj,i=a,c,v,j=a,c,v, i#j), which means the microscopic cou-
pling effect between the volumetric deformation of different pore sys-
tems, is not considered in this study, due to the lack of accurate
experimental data to quantify the coupling terms between different fluid
networks in a physiological sense. The viscosity of each blood network
is denoted by y; (i = a, c,v). The permeability k; (i = a, ¢, and v) of
each blood network is defined as the ability of fluid to permeate through
a porous medium, and it is assumed to be isotropic in this study.”

In Egs. (4)-(6), the source (s; > 0) or sink (s; < 0) term’ is
driven by a hydrostatic pressure gradient s; = w;(p; — p;) and is
scaled by the transfer coefficient w;;, which determines the blood flow
from network i to network j. The directionality between blood

495 496 497 498 499 500
Time step

compartments is derived from physiological considerations and
required to follow the law of continuity.” Finally, Egs. (7) and (8)
describe the blood going from the arterial network into the arteriole/
capillary network and then into the venous network.

Sac = —Sca = |5uc| >0, (7)
Sev = —Sve = |scv| > 0. (8)
Vpan = Q, )
Vpen =0 (10)

pv = pcs (11)

Vpen = 0 (12)
Kcvpcn = _ﬁQa (13)
Vp,n=0 (14)

In this study, the computational domain is the LV myocardium,
which has been established as the primary region of interest for perfusion
analysis in clinical practice and in computational modeling studies.”’

D. Boundary conditions and material properties

The myocardium accounts for most of the LV wall thickness and
is primarily responsible for its mechanical behavior.” The epicardium
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TABLE 1. Boundary conditions used in the 3-MPET modeling.

Epicardium Endocardium
Displacement No displacement No displacement

constraints constraints
Arterial blood Eq. (9) Eq. (12)
Arteriole/Capillary blood Eq. (10) Eq. (13)
Venous blood Eq. (11) Eq. (14)

and endocardium are the outer and inner surfaces of the myocardium,
respectively, and serve as boundaries of the computational domain.
The pericardium was excluded from our perfusion analysis, as the
lubricating serous fluid minimizes friction, and perfusion-induced
deformations were considered too small to generate significant con-
straint forces. The 3-MPET framework enables flexible definition of
solid and fluid phase boundary conditions based on physiological
requirements. The heart-specific fluid and solid boundary conditions
implemented in 3-MPET are detailed in Table I.

Table I specifies the displacements required for modeling, with
no restriction to the possible movement of the endocardium and epi-
cardium. However, to avoid free body movement and unphysiological
results, we followed an approach similar to that of Lee et al.,”” fixing
nodes at the superior edge of the basal epicardium of the LV
[Fig. 1(c)]. The arterial blood flow on the epicardial surface is simpli-
fied into a flux boundary condition [Neumann boundary condition,
Fig. 2(a)] Qq, supplied by the left coronary artery (LCA) and right cor-
onary artery (RCA). The pulsatile waveform and coronary flow frac-
tions — 2.67% of stroke volume (SV) for the LCA and 1.33% for the
RCA - were derived from Doppler ultrasound data,” then scaled to
each subject’s SV (Table II), which was measured from clinical imag-
ing. Based on the AHA segmentation model, the myocardium is
divided into 17 segments and supplied by different coronary arteries.”*
The myocardial segmentation and corresponding coronary artery sup-
ply segments in this study are shown in Fig. 2(b).

For the arteriole/capillary compartment, the right-hand side
of Eq. (13) represents the decrease in arteriole/capillary pressure
resulting from blood flow to the venous network, where k. denotes
the capillary-to-venous resistance. The coefficient f (0 < f <1)
defines the proportion of capillary outflow that exits directly
through the endocardial surface via the besian veins or the suben-
docardial venous plexus, which typically accounts for only a small

TABLE Il. Poroelastic parameters used in the 3-MPET myocardial modeling.

ARTICLE pubs.aip.org/aip/pof

fraction of total venous drainage.”” The majority of blood returns
through the epicardial veins into the coronary sinus and subse-
quently into the right atrium. Accordingly, the venous boundary
condition at the epicardial surface was set to the coronary sinus
pressure (pcs), taken as 665 Pa (5 mm Hg) based on previous stud-
ies.”® In this manner, the model’s boundary conditions for both
arterial supply and venous drainage are defined by key anatomical
locations and physiological flow directions.

Table II lists the poroelastic parameters and corresponding val-
ues applied in the 3-MPET myocardial modeling. The shear modulus
G and the Lamé’s constant A were deduced from Young’s modulus
(E) and Poisson’s ratio (v). The MPET model includes predefined
initial values from our previous work.”’ When adapted to myocardial
tissue, a sensitivity analysis was performed to evaluate the influence
of these parameters. The results, provided in the supplementary
material (Sec. IIT), showed that not all parameters had a significant
impact on the outputs of interest. Specifically, the parameters o;, g,
¢y, and k. showed low sensitivity, suggesting a limited role for fluid
perfusion in the myocardium, consistent with the expectations in a
physiological sense. The insensitive behavior of these parameters
enhanced model flexibility and scalability, allowing cross-scenario
applicability without requiring extensive experimental datasets. In
contrast, permeability (k) and Young’s modulus (E) were identified
as key parameters, directly associated with mechanical properties
and measurable through clinical techniques, such as magnetic reso-
nance elastography (MRE). In this initial study, both were assumed
isotropic and homogeneous to validate the subject-specific workflow
and assess the physiological plausibility of the results. Based on the
modeling assumptions and the diastolic phase, Young’s modulus was
set to be 20 kPa as it yields physiologically realistic passive deforma-
tions in the millimeter range (see supplementary material, Fig. S3).
Sensitivity analysis further showed that variations in Young’s modu-
lus introduced only mild changes in the flow magnitude, while the
spatial perfusion pattern remained essentially unchanged. This
behavior is consistent with the expected weak solid—fluid coupling
under late-diastolic small-strain conditions. Permeability (k= 1.0
x 107" m?) was determined through a sensitivity analysis (see
supplementary material, Fig. S4), achieving a balance between physi-
ological considerations and numerical stability. Poisson’s ratio was
assigned a value of 0.35 (Ref. 37) to accommodate ventricular dilata-
tion. To ensure generalizability and facilitate practical applications,
these critical parameters are encapsulated as independent modules
for streamlined calibration.

Parameters Values Units Parameters Values Units

g 0.25 22 S, 29x107* m’N~! 22

ol 0.25 22 Se 29x107* m*N! 22

o, 0.01 22 S, 1.5%x107° m*N™! 22

v 0.35 Kacy 1.0x 1071 m?> 22

E 20 kPa Dae 1.5 x 1077 m>N~ls™! 30
0.01 o 1.5 %1077 m*N~ 157! 30

B

SV1 57.7 ml Pes 665 Pa 36

SV2 75.0 ml Ke 6.0x107* m°N~"ls7! 21
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E. Numerical implementation

MPET simulations were performed for two subjects. The govern-
ing equations are discretized by the finite element method and imple-
mented in an in-house Fortran code. The displacement field u and the
pressures p; (i = a, ¢, and v) of the three fluid networks are calculated
in the space of continuous piecewise linear polynomials. The discrete
equilibrium equation is derived from the principle of minimum poten-
tial energy. The continuity equations of the fluid networks are discre-
tized using the weighted residuals method and the continuous
Galerkin formulation. The temporal discretization of the governing
equations is implemented using the implicit backward Euler scheme.
In this paper, one cardiac cycle was divided into 10 time-steps and the
same cycle was repeated 50 times to reach a steady state. More specifi-
cally, for each time step, the pressure and displacement solutions of the
discretized equations are solved in a tightly coupled manner until sub-
sequent cycles only generate negligible differences. Convergence is
achieved when residuals fall below 10>, More detailed description of
this in-house solver was specified in our previous work.””

The MPET model is formulated using displacements and fluid
pressures as primitive variables, with all other quantities obtained
through post-processing. In this study, the Darcy’s law is used to calcu-
late the velocity for the three fluid networks at the end of each time step.

k
vi = —-Vp, (15)
VP

where v; is the Darcy velocity for each fluid network (i = a, ¢, and v)
and represents the volume of fluid passing a unit area per unit time.
Considering the inhibition during systole, myocardial perfusion pre-
dominantly occurs during diastole.” Therefore, the analyses in this
paper focused on the diastolic peak of the final cardiac cycle [time step
498, Fig. 2(d)] to represent steady-state perfusion.

Ill. RESULTS

The MPET framework can output multiple variables for fluid
and solid phases. This study focuses on clinically relevant outputs.
More specifically, the Darcy velocity of the arteriole/capillary network,
also known as the filtration velocity, can be used to represent the MBF.
MBF is typically measured in ml/g/min, whereas filtration velocity is
measured in m/s. To enable direct comparison, the filtration velocity
can be converted into MBF by being divided by the density of myocar-
dial tissue (1.05 g/cm®)* and a characteristic length scale of the myo-
cardial tissue thickness. The following results correspond to the
diastolic phase and reflect the primary myocardial perfusion under
zero left ventricular pressure, as assumed in the simplified model.

MBEF for the two models were 0.95 = 0.28 ml/g/min for S1 and
1.01 = 0.29ml/g/min for S2, respectively, both within the normal
physiologic range. Fairbairn et al.”” reported resting MBF values of
0.97 = 0.40 ml/g/min in 19 healthy nonsmokers, and Hughes et al."’
reported 0.87 ml/g/min (95% CI: 0.80-1.00) in 32 healthy volunteers.
Relatively lower MBF values were observed at the basal and apical
regions [Fig. 3(a)], which may reflect the influence of imposed dis-
placement constraints [red line in Fig. 1(c)]. The 17-segment model of
AHA was used to create a bullseye map in Fig. 3(b), which shows the
mean MBF for each individual segment. Additionally, Fig. 3(c) shows
the bullseye map of diastole wall thickness measured from structural
imaging. Due to the limitations in scan time and spatial resolution,
clinical CMR perfusion imaging typically acquires only three key
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short-axis slices. S1 obtained only standard-dose perfusion imaging,
which is prone to signal saturation’' and therefore unsuitable for accu-
rate MBF quantification and not presented in Fig. 3(c).

For S2, voxel-wise MBF was calculated from perfusion images
[Fig. 1(g)], and the color bar was adjusted to match the model output
for more direct comparison. Partial agreement in regional perfusion
distribution is observed, especially regarding the spatial alignment of
perfusion zones (red arrows). However, since the subject did not
exhibit apparent perfusion defects and the spatial resolution of the
clinical images was limited, the overall contrast between the two
modalities is relatively subtle. By comparison, the simulated results
show a larger difference between high and low perfusion regions, indi-
cating greater sensitivity of the model to local perfusion heterogeneity.
Clinical quantitative MBF values may vary with imaging resolution
and post-processing steps; hence, the comparison here mainly focuses
on the spatial distribution pattern."”

To quantify the relationship between local myocardial wall thick-
ness and MBF, the left ventricular myocardium was sampled at high
spatial density by dividing the model into angular sectors circumferen-
tially and longitudinal segments from apex to base. At each sampling
location, wall thickness was defined as the shortest Euclidean distance
from a point on the endocardial surface to the nearest corresponding
point on the epicardial surface. The MBF at the same location was cal-
culated as the transmural average across all nodes between the endo-
cardium and epicardium, yielding approximately 800 paired
measurements.

Correlation analysis [Fig. 5(a)] revealed a statistically significant
but weak negative association between myocardial wall thickness and
MBF in both subjects (S1: r=—0.1786; S2: r=—0.1363; both
P < 0.0001). The robustness of this trend was confirmed through sen-
sitivity analyses with varying sampling densities and outlier exclusion
criteria (0%-5%). Analysis using 95% prediction bands showed that
no regional values fell below the lower bound, indicating a defined
lower limit of perfusion and the absence of abnormally low-perfusion
regions. All mid-ventricular data points were contained within the pre-
diction bands, demonstrating consistent model performance in this
central functional region of the heart.

Myocardial perfusion typically exhibits a transmural gradient,
with an endocardial MBF slightly higher than that of the epicardium.
This physiological perfusion heterogeneity was also observed in our
simulation results [Figs. 3(a), 4(a), and 4(b)]. To further examine
whether the model captured this physiological feature, the TPG was
calculated as an auxiliary validation metric. In the simulation, TPG
was defined as the ratio of endocardial to epicardial MBF, whereas for
clinical perfusion images, the TPG was derived based on SI signal
intensity as described in Sec. II A. Due to these methodological differ-
ences, the relative distribution and directional trends of TPG are more
meaningful for interpretation than direct numerical comparison. As
shown in Fig. 5, all segments exhibited TPG > 1, indicating that the
model reproduced the expected transmural perfusion gradient. While
several segments showed similar regional patterns between simulations
and clinical images [Fig. 5(b)], the overall correspondence was modest,
likely reflecting both the differences in perfusion-signal extraction and
the simplified physiological representation in the current model.

During diastole, the myocardium remains mechanically passive,
with the arterial inflow and the negligible venous outflow. Since S1 was
used for parameter testing and showed numerically similar results to
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FIG. 3. Simulated and measured myocardial blood flow (MBF) at rest during diastole and myocardial wall thickness. (a) Simulated MBF for S1 and S2; (b) bullseye maps show-
ing average simulated MBF across 16 segments (excluding the apex); and (c) bullseye maps of segmental average wall thickness from structural imaging (S1 and S2), and

MBF from perfusion imaging (S2).

S2, only S2 is presented here. As shown in Figs. 6(a) and 6(c), arterial
pressure (~58 mm Hg) is slightly higher at the apex compared to the
base. In contrast, arteriolar/capillary pressures (~47 mm Hg) exhibit
an inverse spatial pattern, ie., higher at the base. Venous pressure was
approximately 675 Pa (~5mm Hg), showing a gradual radial gradient
from endocardium to epicardium, consistent with the direction of
venous drainage. The computed coronary perfusion pressure, defined
as the gradient between coronary inflow and outflow, is 110 mm Hg,
well within the physiological range of 46-124 mm Hg."’ The pressure
outputs in the simulation results can be justified by previously pub-
lished data, which report typical arteriole/capillary pressures of
20-30 mm Hg, and venous pressures around 10 mm Hg.” Figure 6(d)

shows myocardial deformation induced by perfusion rather than con-
traction in the MPET myocardial model, with maximal deformation of
5.5mm at the apex and negligible deformation at the base. For tissue
deformation, although direct validation remains limited, the observed
distribution and magnitude of displacement are anatomically reason-
able and consistent with previous findings from ex vivo heart
models.***”

IV. DISCUSSION

This study applies the MPET framework to simulate myocar-
dial perfusion, establishing a workflow that is capable of integrat-
ing clinical imaging data and deriving clinically interpretable
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perfusion indices. The model assumes the myocardium as a
deformable tissue containing three interacting fluid networks
(arterial, arteriole/capillary, and venous). The framework incorpo-
rates physiologically informed flow boundary conditions that

reflect the distinct inflow and outflow characteristics of coronary
circulation, ensuring a realistic representation of myocardial blood
distribution and directional exchange across the tissue. This model
provides a workflow that translates anatomical data into functional
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perfusion measures, which were preliminarily validated against
clinical imaging data.

The proposed model generates clinically relevant myocardial per-
fusion metrics using subject-specific inputs, including myocardial
geometry and stroke volume, which are readily available from standard
clinical imaging. This workflow translates anatomical structure into
functional output without the need for contrast agents, while delivering
high spatial resolution and comprehensive three-dimensional perfu-
sion mapping. High-fidelity frameworks, such as those by Lee et al."”’
and Cookson et al.,'® incorporate finite-strain mechanics and active
contraction, enabling comprehensive analysis of whole-cycle coronary
hemodynamics and wave propagation. In parallel, multiscale studies
(e.g, Papamanolis et al,'” Di Gregorio et al") emphasize patient-
specific vascular anatomy, which typically employ porous-media for-
mulations (ranging from single- to multi-compartment models) where
the myocardium is simplified as a rigid matrix to prioritize vascular
topology over tissue mechanics. The present study focuses specifically
on the diastolic myocardial perfusion, where the interplay between tis-
sue deformation and multi-compartment fluid exchange is retained.
This rationale emphasizes the mechanical link between passive myo-
cardial properties and perfusion as disease processes, such as fibrosis,
primarily manifest through alterations in tissue stiffness, which cannot
be directly reflected in rigid porous media formulations. Although not
fully investigated in diseased states, this workflow provides a potential
computational tool for studying such pathological conditions. This
capability allows for a more comprehensive characterization of the

spatial heterogeneity of perfusion than conventional slice-based imag-
ing." In addition to standard indices, the model yields compartmental
pressure and velocity distributions, which are rarely accessible in clini-
cal practice yet could provide supplementary diagnostic insights. With
further optimization and validation, these computationally derived
indices may provide additional insights that could support clinical
interpretation in future applications.

Our quantitative analysis establishes a consistent and statistically
significant negative correlation between local myocardial wall thick-
ness and MBF. Within the MPET framework, this is mechanistically
plausible, as thicker myocardial segments increase local hydraulic resis-
tance. The relative weakness of this correlation is also physiologically
insightful, since regional perfusion is multifactorial and not solely
determined by morphology.”** This specific characteristic makes the
model clinically meaningful for assessing conditions involving mor-
phological remodeling, such as hypertrophic cardiomyopathy (HCM).
It provides a quantitative pathway to distinguish perfusion reductions
attributable to the mechanical effects of hypertrophy from those indi-
cating a superimposed, and potentially more severe, microvascular
dysfunction."”** Furthermore, the framework enables direct quantifi-
cation of TPG with full-heart, high-resolution coverage. TPG holds
recognized clinical value as an early marker of coronary artery disease
and is relevant to the heightened vulnerability of the subendocardium,
which is more prone to perfusion deficits under structural remodeling
or functional impairment.*’ The ability to facilitate earlier detection of
pathological perfusion changes and enhance risk stratification is a key
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advantage of the proposed framework, aligning closely with pressing
dlinical needs."’

While this study demonstrates the potential of the MPET frame-
work, several limitations must be acknowledged. First, due to the need
for contrast agent administration in clinical CMR perfusion, this study
was limited to a small cohort of two healthy subjects, thereby restrict-
ing the generalizability of our findings. Some discrepancies were
observed between the model results and the clinical imaging data,
which may be partly attributable to the simplified physiological
assumptions used in the current model, as well as variation in quanti-
tative MBF estimation from perfusion CMR. To further capture patho-
logical results, these assumptions would need refinement, and the
outputs would require more quantitative and rigorous validation. In
this initial implementation, only a subset of the model’s output varia-
bles was directly validated. Future studies involving larger and more
diverse cohorts, including patients with pathological conditions, are
essential to fully assess model robustness and clinical utility.

It should be emphasized that the primary goal of the present study
is to validate a subject-specific workflow using a simplified MPET-
based poroelastic model, rather than to provide a fully physiological,
full-cycle cardiac mechanics simulation. From a modeling perspective,
while the integrated MPET framework is well-suited for capturing
cross-scale fluid transport within the myocardium, the current imple-
mentation focuses only on the intramyocardial domain. To further
enhance physiological realism, future work should account for the influ-
ence of the upstream epicardial network. Previous studies have shown
that coupling coronary simulations with microvascular compartments
yields more patient-specific inlet boundary conditions,*'” which can
substantially affect downstream microvascular perfusion and therefore
represent an important direction for improvement.

At present, the model analysis is limited to the diastolic phase, as
approximately 85% of left ventricular perfusion occurs during this
period. Nevertheless, such a simplification inevitably overlooks the
dynamic effects of systolic-diastolic coupling, including variations in
left ventricular pressure (LVP), intramyocardial pressure (IMP), and
the time-dependent changes in myocardial material properties. During
the cardiac cycle, the myocardium undergoes a rapid transition from
the systolic state, characterized by high LVP (~120 mm Hg), elevated
IMP, and increased active stiffness, to a relaxed and compliant diastolic
state with low LVP (~10mm Hg).” This rapid unloading facilitates
microvascular reopening and induces a suction effect within the
microcirculation, which serves as a key driving force for early diastolic
perfusion.”’ Therefore, the current implementation represents a sim-
plified diastolic condition that decouples the perfusion process from
these complex interactions by directly prescribing the measured,
diastolic-dominant coronary flow waveform as the inflow boundary
condition. This simplification was adopted because the present stage of
this work is primarily aimed at establishing a subject-specific workflow
that translates clinical imaging data into baseline perfusion parameters.
Extending the framework to incorporate these coupled effects, such as
LVP dynamics and finite-strain mechanics, represents a critical next
step. This advancement will involve addressing the common challenge
of balancing physiological fidelity, computational complexity, and clin-
ical applicability,”” which remains a key consideration in our future
developments.

Finally, the current implementation assumes isotropic material
properties, particularly for permeability. Physiologically, myocardial

ARTICLE pubs.aip.org/aip/pof

fibers form a helical arrangement that varies transmurally. The micro-
vascular network trends to align with this fiber orientation, implying
that microvascular flow is anisotropic,” with potentially enhanced
flow along fiber directions and impeded flow perpendicular to them.
Consequently, this simplification likely results in discrepancies
between the simulated MBF distribution and the true anisotropic flow
patterns, particularly at small scales. While the model reproduces the
physiological trend of higher endocardial perfusion, incorporating
anisotropy could further refine this distribution. Another key simplifi-
cation is the adoption of a linear elastic material model, even though
cardiac tissue is inherently nonlinear.'' This assumption is reasonable
for the passive diastolic phase, where perfusion-induced deformations
are expected to be small. Crucially, retaining the poroelastic coupling
remains essential, as it links tissue properties with microvascular flow.
These simplifications only reflect a limitation of the current implemen-
tation rather than inherent constraints of the framework itself. A major
advantage of the MPET framework is its proven adaptability for multi-
modal data incorporation. Prior applications in cerebral perfusion suc-
cessfully integrated patient-specific fiber orientations, heterogeneous
and anisotropic permeability, and pathology-specific perfusion territo-
ries.”””"** Building on this capability, future work could focus on
implementing more subject-specific features into the myocardial
model, such as fiber orientations from MR diffusion tensor imaging or
tissue properties from MRE and T1 mapping, to improve physiological
realism and disease-state prediction.

V. CONCLUSIONS

In conclusion, this study introduces a computational workflow
for developing subject-specific myocardial perfusion models by inte-
grating routine CMR imaging data with the multiple-network poroe-
lastic theory. The integrated model captured key physiological
characteristics of myocardial tissue and fluid networks, providing
detailed quantification of flow, transport phenomena, transmural gra-
dients, and tissue deformation. The core output MBF was preliminarily
validated against CMR perfusion imaging data. This work represents
an initial step toward a virtual evaluation platform, with the potential
to reduce reliance on contrast agents or pharmacological stress testing.
The framework allows for simulating diverse scenarios, such as stress
test via adjusted boundary conditions, or the perfusion impact of mor-
phological remodeling. This ability to computationally explore the
heart’s structure-function relationship suggests a promising pathway
toward improved early disease detection and risk stratification.

SUPPLEMENTARY MATERIAL

See the supplementary material for cardiac MRI protocols for
structural and perfusion imaging, mesh independence tests, parameter
sensitivity tests, and references.
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