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Abstract

This thesis investigates the nature of reasoning in large language models (LLMs)
within the context of the compute scaling paradigm. I define reasoning as the
process of deriving novel information from existing knowledge, an ability that

is difficult to evaluate when models train on trillions of tokens of data.

Across four studies, I progressively develop a characterisation of LLM reasoning.
First, I empirically demarcate LLM reasoning from memorisation by showing
that models learn distinct strategies from pre-training data for mathematical
and factual retrieval tasks. Reasoning involves generalising from shared patterns
across questions, while factual retrieval relies on specific instances. The second
study situates LLM reasoning further yet from memorised patterns. When
LLMs are fine-tuned to auto-regressively predict source code tokens for previ-
ously unseen programs, they also develop the ability to evaluate these programs
for inputs. This emergence demonstrates that models extract computational
principles during training that abstract away from specific inputs and generalise
beyond their original context. Turning my attention away from reasoning
that follows strict axioms, in the third study I show LLMs also acquire social
reasoning abilities during large-scale training. Models demonstrate human-level
performance in inferring implicit communicative intentions from ambiguous
text, suggesting pragmatic understanding. This ability emerges during large-
scale next-token prediction, strengthens with model scale, and is most improved
during post-training. However, my final study reveals that the socio-cognitive
mechanisms that underpin such human pragmatic understanding may not have
conclusively emerged. This underscores how machine reasoning may differ from
human reasoning. Taken together, these findings characterise LLM reasoning
as a versatile computational process that emerges with scale and generalises
beyond training data to novel contexts, highlighting the broader potential of

the compute scaling paradigm.






Impact Statement

The current economy is strongly oriented toward investment in artificial in-
telligence [NYT25]. In equity markets, the performance of the S&P 500 has
been disproportionately driven by a small group of technology companies, often
referred to as the “Magnificent Seven” (including Apple, Microsoft, Alphabet,
Amazon, Meta, Tesla, and NVIDIA) [FT25]. This concentration reflects an
underlying bet that continued advances in the compute scaling paradigm will
ultimately yield artificial intelligence with high return on investment. The
realisation of these returns hinges critically on whether large language models
(LLMs) — the central manifestation of the scaling approach — are capable of
reasoning, understood here as the ability to generate novel conclusions from

existing knowledge.

This thesis takes important initial steps toward addressing this fundamental
question by developing methods to characterise the nature and boundaries of
LLM reasoning capabilities. While these findings contribute to understanding
LLM capabilities, they represent early progress on a complex question that will
require extensive further research to fully resolve. The emergence of reasoning
abilities in constrained domains suggests promise for the scaling paradigm, but
the distinct nature of machine reasoning processes and the limited scope of
current investigations leave substantial uncertainty about whether and how
these capabilities will translate to the broad, robust reasoning required for

transformative economic impact.
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Chapter 1

Introduction

We alone among Earth’s creatures inhabit a world of abstractions
and impossibilities, brooding over what never was, musing over
what might have been, and pondering what it will be like not to be.
We tell stories about our real experiences and invent stories about
imagined ones, and we use these stories to organize our lives.
Living our life in this virtual world, we slowly realized that no

other species can follow us here.

Terrence Deacon, The Symbolic Species (1997)

For decades, language production and comprehension was considered a uniquely
human behaviour [HCF02; PJ05; Fril7; TER19, inter alia.]. Today, large
language models (LLMs) challenge this assumption. In the four years spanning
my doctoral studies, LLMs evolved from experimental systems producing
syntactically correct but often incoherent text into sophisticated models ca-
pable of generating contextually appropriate, semantically rich text. Most
strikingly, they have become general-purpose tools integrated in millions of
daily workflows', handling complex cognitive tasks that seemingly require
reasoning and understanding [WHL23; WHL24; McL+24; Dub+24; Gem+25;
Coh+25; Qwe+25, inter alia).

Much of these advancements are driven by scaling up computational resources
during development, such as model and training data size [Kap+20; Hof+22].
If we define reasoning as the process of deriving new information from existing
knowledge, the strong performance LLMs demonstrate on reasoning tasks alone

is insufficient evidence of genuine reasoning capability. After all, we cannot

1ChatGPT had 800 million weekly active users in April 2025 according to https://www.
demandsage.com/chatgpt-statistics/.
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determine how closely these evaluation tasks resemble the training data. Do
LLMs extract reasoning principles implicit in the data, developing capabilities
that can generalise to novel problems, or does their apparent reasoning result
from similar sequences encountered during training? The distinction is crucial:
the former suggests a type of machine reasoning, while the latter implies a

more limited process unlikely to contribute meaningfully to existing knowledge.

In this thesis, I aim to characterise LLM reasoning within the context of the
compute scaling paradigm. I begin with a basic premise: the approach to
reasoning must differ qualitatively from the memorisation of facts if it is to
generalise beyond training data. Chapter 3 examines this distinction by con-
trasting how models learn mathematical reasoning with how they learn factual
retrieval. In a large-scale experiment, my collaborators and me trace model
predictions back to their origins in pre-training data, identifying which training
examples contribute most strongly to specific responses. The analysis reveals
a clear distinction: while factual responses draw on question-specific data,
mathematical reasoning responses consistently rely on task-specific pre-training
data, where the same underlying data influence multiple questions within a
reasoning task. This pattern suggests models rely on what I term procedural
knowledge for reasoning: knowledge patterns that transfer across multiple
examples. For example, when solving for z in 5 = 3z + 2 and 12 = 4x — 6,
models draw on similar data, indicating they acquire generalisable strategies

rather than memorise individual solutions.

Having established that LLM reasoning differs from the memorisation of facts,
in Chapter 4 I investigate the level of abstraction at which models acquire
procedural knowledge. Can LLMs learn computational principles that abstract
away from specific inputs? The previous chapter provides a clue: the most
influential training sequences for reasoning contain not only worked examples
with implicit procedural knowledge, but also explicit procedures: abstract, input-
general representations of the task solution, such as code implementations or
analytical formulas. An illustrative example of explicit procedural knowledge

is the following program for solving linear equations:

def solve_linear(a, b, c):
"""Solve ax + b = ¢ for x"""

return (c - b) / a
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However, the influence-based analysis in Chapter 3 identifies which training
examples matter most without explaining why they are influential. In Chap-
ter 4, we test whether LLMs can learn to apply procedures to novel inputs
from abstract procedural representations alone. Specifically, when an LLM is
fine-tuned by auto-regressively predicting the tokens of an unseen program’s
source code, does it also acquire the ability to evaluate the program for
inputs, without ever seeing input-output pairs for that specific program? The
results confirm models indeed to some extent learn to evaluate programs from
generative training on their source code alone, provided they receive separate
training on input-output pairs for programs implementing different procedures.
Although their performance is far from perfect, they generalise uniformly
across inputs from a single piece of code, and are able to evaluate compositions
of programs encountered separately during training. The findings in this
chapter confirm that LLMs extract abstract procedural knowledge from sym-

bolic representations and apply these procedures to novel cases at inference time.

The previous two chapters characterise LLM reasoning as distinctly different
from memorising patterns in pre-training data, showing how models extract
generalisable strategies from worked examples and symbolic representations
like code and mathematical formulas that can be applied in novel context.
However, the analysis so far has focused exclusively on domains with clear rules
and objective solutions: mathematics and logic follow strict axioms that make
correct reasoning unambiguous. Human reasoning, however, extends beyond
formal systems. Much of our cognitive work involves navigating the messy,
context-dependent world of social interaction, where success depends on implicit
knowledge of social norms, cultural conventions, and shared understanding.
Social reasoning requires inferring unstated assumptions, interpreting commu-
nicative intent, and modelling the mental states of other agents; capabilities
that seem to demand experiential learning rather than pattern extraction from
text. The final chapters extend the characterisation of LLM reasoning to the

social domain through two case studies.

I start by examining LLMs’ ability to understand language pragmatics, the
principle that utterances derive meaning not just from the literal words, but
from contextual factors like conventions, shared beliefs, and background knowl-
edge (Chapter 5). Consider Wittgenstein’s famous example: the exclamation

“water!” [Wit53]. Without context, it could signal a person lost in the desert



4 Chapter 1. Introduction

finally seeing water in the distance, a homeowner’s alarm at discovering a
leak, or an environmental activist identifying humanity’s greatest challenge.
Can models interpret communicative intent, even when the relevant context is
not explicitly given in the text? Testing a range of LLMs on tasks requiring
interpretation of ambiguous language that humans readily understand, we find
that certain models do possess this capability. The ability emerges in base
models and strengthens with increased parameters, but the most significant im-
provement can be attributed to specific post-training methods designed to align
LLMs with human values. Taken together, the findings suggest that the abil-

ity to infer contextual meaning can be learned from passive, mostly textual data.

Human understanding of implicit communicative intent is thought to depend
on our ability to reason about other agents’ mental states, a capacity known as
theory of mind (ToM). In developmental psychology, children who successfully
interpret the types of ambiguous language studied in Chapter 5 have typically
reached key theory of mind milestones first. This raises a question: have LLMs
similarly reached the milestones thought to precede pragmatic understanding?
Chapter 6 presents a preliminary investigation into whether LLMs develop
one of the earliest manifestations of theory of mind: infants’ propensity to
encode agent’s goal-directed actions. In her seminal study, Woodward [Wo098|
demonstrates that infants as young as 6-9 months encode the goal object of
an agent’s reaching event. When an agent repeatedly reaches for one object
(a teddy bear) over another (a ball), infants exhibit surprise when the agent
subsequently grasps the ball, suggesting they have formed expectations about
the agent’s object preferences. Crucially, when identical reaching motions are
performed by an inanimate rod rather than a human hand, infants form no
such expectations. This indicates they encode events differently based on agent

animacy.

In Chapter 6, we investigate whether LLMs similarly demonstrate differential
encoding of textual descriptions involving animate versus inanimate agents.
We extend Woodward’s original design by introducing an experimental control:
scenarios where agents act accidentally rather than intentionally. This control
condition tests whether models truly understand goal-directed behaviour or
simply respond differently to animate versus inanimate actors regardless of
intentionality. Our results prove inconclusive regarding a consistent machine

theory of mind. While state-of-the-art models do show differential encoding for
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animate versus inanimate actors in some cases, they often respond similarly
to both intentional and accidental actions by animate agents. This finding
undermines the conclusion that models expect object preferences from animate
agents. The study serves as a cautionary example for the field. In light of recent
literature claiming that LLMs exhibit human-like theory of mind [Kos24], our
findings highlight the importance of employing experimental controls when

adapting human psychological tests for artificial intelligence.

The four studies in this thesis position LLMs as sophisticated systems in which
machine reasoning has emerged across both mathematical and social domains.
Their mathematical reasoning capabilities stem from extracting transferable
procedures from sequential text and code data, enabling generalisation to
novel problems and different levels of abstraction. Beyond formal domains
with objectively correct solutions, LLMs acquire social reasoning abilities
during large-scale training, allowing them to infer communicative intent in
pragmatically ambiguous language. However, investigations into whether
the foundational socio-cognitive mechanisms that underpin human pragmatic
understanding have similarly emerged in LLMs yield inconclusive results. This
underscores how machine reasoning may follow different pathways than human
cognition while still achieving comparable performance on complex reasoning
tasks.

The work presented here represents only initial steps towards uncovering the
types of generalisations LLMs can achieve, and many questions remain unan-
swered. My findings demonstrate reasoning that generalises across different
instances of mathematical tasks and from abstract symbolic representations to
concrete applications. An obvious next question is: can models learn reasoning
patterns that transfer across different tasks or fundamentally different forms
of reasoning? For example, can the procedural knowledge we observe in
formal, verifiable mathematical reasoning extend to the inductive reasoning
that underpins empirical science, where evidence must be weighed, hypotheses
formed, and conclusions drawn about questions with no directly verifiable

answers?

If LLMs can indeed bridge the gap between deductive and inductive reasoning,
then scaling up the current paradigm might enable far more ambitious appli-

cations than studied here. LLMs, having trained on much of the knowledge
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humans have produced, could potentially propose novel theorems, generate
testable hypotheses, and contribute meaningfully to discovery in experimental
domains like biology and physics, sciences where knowledge emerges through

iterative experimentation rather than logical proof.

I started my doctoral studies in a pre-LLM era, where deep learning models
failed to classify cows when these stepped onto a beach instead of their usual
pastoral settings [BVP18], and more generally struggled to generalise out-of-
distribution [LB18]. Within this context, it took me several years of research
to accept that fundamentally different generalisation patterns emerge when
models are trained at scale. Given the remarkable generalisations LLMs already
make from simple self-supervised objectives, I remain cautiously optimistic
that the current compute scaling paradigm can lead to systems capable of
contributing genuinely new knowledge. After all, predicting the next token in
an infinite stream of sequential data generated by the natural world can most

efficiently be done by inferring the causal model underlying it.

1.1 Outline

The rest of this work is organised as follows. Chapter 2 provides comprehensive
background on each of the concepts required to understand the contributions
of this thesis, covering reasoning, LLM development, scaling laws, and influ-
ence functions. Chapter 3-6 present the core contributions introduced above.
Chapter 7 briefly summarises these contributions, reflects on the wider impact
of this work and the directions it opens for continued exploration beyond my

doctoral studies.
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Chapter 2

Background

This chapter establishes the concepts required for understanding the thesis’
contributions. I start with a brief note on reasoning, a sometimes controversial
topic that humans have been thinking about since Aristotle. While I assume
familiarity with the mathematical reasoning tasks discussed in Chapters 3
and 4 (arithmetic and basic control flow), I focus here on the social reasoning
capabilities central to Chapters 5 and 6: pragmatic inference and theory of mind.
I then discuss the basics of LLM development, covering pre-training, several
post-training methods, and compute scaling. Finally, I provide background to
understand influence functions, the method used in Chapter 3 to trace model

responses back to their pre-training data.

2.1 Reasoning

Reasoning may be loosely defined as the process of drawing conclusions about
unknown information based on what is already known. Contemporary dual
process theory would modify this definition to emphasise conscious inference,
distinguishing reasoning from unconscious processes like intuition [WE74;
Kah03]. Some scholars challenge the conscious-unconscious distinction [MS18]
and others propose alternative frameworks entirely [SW86; GCT24, inter
alia]. Rather than adjudicating between these theoretical positions, this
thesis adopts the broader definition outlined above for pragmatic reasons.
Whether Al systems engage in conscious processing remains an open — and
perhaps unanswerable — question. More immediately relevant is distinguishing
reasoning from the retrieval of memorised patterns from training data. The
distinction between a model that simply reproduces previously encountered
information and one capable of generating genuinely novel knowledge is crucial

for understanding Al capabilities. Under this definition, reasoning encompasses
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both deliberate logical inference and intuitive processes, making it functionally
equivalent to ‘inference’ more broadly. I retain the term ‘reasoning’ because
the tasks examined in this thesis are conventionally classified as reasoning
problems when performed by humans. While I do not claim to definitively
resolve whether current Al systems can reason under this definition, I aim to

advance our understanding of the question.

2.1.1 Social Reasoning

Humans are pre-eminently social beings. Our capacity for social reasoning
is thought to be intimately linked and sometimes even causally related to
cognition [Tom99; VYG78; MADO07]. More directly, social reasoning enables
us to navigate interpersonal interactions: understanding the mental states of
others, inferring communicative intentions, and recognising the implicit rules
that govern social behaviour. This multifaceted capacity develops through
years of embodied social experience, beginning in infancy when children learn
to follow gaze, respond to pointing, and engage in joint attention [TCLO7].
By early childhood, humans demonstrate sophisticated abilities to understand
that others may hold beliefs different from their own, anticipate how social
context shapes meaning, and navigate the unspoken conventions that structure

communication [reviewed in Wel90].

In this thesis, I investigate two components of social reasoning that are par-
ticularly relevant to language understanding. Firstly, pragmatic reasoning
enables us to derive meaning that goes beyond the literal content of utterances,
drawing on context, beliefs, and social institutions [Wit53; Gri75; Hual7|. A
well-studied form of pragmatic language is conversational implicature, utter-
ances that convey something other than their literal meaning. Consider an
exchange where Esther asks her friend Juan “Can you come to my party on
Friday?” and Juan responds “I have to work”. We resolve Juan’s response as
him declining the invitation by using the contextual common-sense knowledge
that having to work on a Friday night precludes attendance. This is an
example of a conversational implicature, illustrating how unstated context
contributes to meaning. In Appendix D.1, I present a brief literature review on
implicature, covering the Gricean cooperative principle as well as other theories

of pragmatics.
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Secondly, theory of mind represents our ability to attribute mental states to
others and understand how these states guide behaviour. This capacity follows
a developmental trajectory beginning with basic goal attribution in infancy.
Woodward [Woo098| demonstrates that 6- and 9-month-old infants can distin-
guish goal-directed from non-goal-directed actions, selectively encoding aspects
of human actions that are relevant to the actor’s goal object rather than other
salient features of the event. Based on agents’ reaching behaviour, infants form
expectations about their object preferences, suggesting early understanding of
goal-directed action. Studies of pre-linguistic infants such as these rely heavily
on the looking-time paradigm, which exploits infants’ tendency to look longer
at novel or unexpected stimuli [Fan64]. This methodology has revolutionised
developmental psychology, allowing researchers to build theories of infant
cognition. In this paradigm, researchers first familiarise groups of infants with
stimuli until their looking time decreases (i.e. habituation), indicating reduced
interest. Subsequently, different test stimuli are presented to different groups of
infants, and looking times are compared across conditions. When infants look
longer at one test stimulus than another, this reveals how they represented
and processed the original habituation stimuli, providing insights into early

cognitive abilities.

Woodward [Woo098] uses the looking-time paradigm to study how infants
represent goal-direct reaching motions. She habituates infants to reaching
actions of a demonstrator that always reaches to the same object on the same
location (e.g. a teddy bear on the left) over another object in another location
(a ball on the right). The objects then switch positions, and infants looking
time in two different test conditions is compared. In one condition, the actor
reaches to the same object from habituation that is now in a different location
(the teddy bear on the right), which would represent an object bias. In the
other condition, the actor reaches to the other object in the same location
from habituation (the ball on the left), demonstrating a location bias. Infants
look longer for the location bias case, suggesting that this condition is more
unexpected to them, which in turn suggests they expect the actor to reach for
the teddy bear regardless of location. Woodward interprets this to mean they
selectively encode the goal object of the actor’s reach and not the location.
Moreover, they do not show this behaviour when the actor is replaced by an
inanimate rod that is moved to the object (the infants only see the rod and

not whatever moves it). When they are habituated with a rod, the looking
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times in the object and location bias test cases are comparable.

Theory of mind abilities become increasingly sophisticated throughout child-
hood, culminating in the understanding of false beliefs: the recognition that
others can hold beliefs about the world that differ from reality and from
one’s own knowledge [WP83]. Classic false-belief tasks reveal that by age 4-5,
children understand that someone who has not witnessed a change in object
location will continue to believe the object remains in its original position, even
when this belief is objectively false. This developmental progression from goal
attribution to false-belief understanding reflects the gradual emergence of our

capacity to model the complex mental worlds of other agents.

2.2 Large Language Models

Language models came to be colloquially considered ‘large’ around GPT-3
[Bro+20al, but their foundational principles have deeper historical roots. The
core self-supervised objective that drives both pre-training and types of post-
training, next-token prediction, was pioneered decades earlier by Elman [EIm90]
in his seminal work on recurrent neural networks. Elman demonstrates that
by implicitly representing ‘time’ (i.e. temporal information) through its effect
on processing (by maintaining a dynamic state), simple predictive objectives
enable models to discover sophisticated linguistic structures, including word
boundaries in character sequences and context-dependent lexical categories
emerging from word order patterns. Beyond next-token prediction, many other
foundational techniques in contemporary LLMs trace back longer, including
dense word representations [Ben+03], sub-word tokenisation methods [Boj+17],
and attention mechanisms for contextual processing [BCB15; LPM15]. In
the following, I will briefly describe the stages of LLM development that are
relevant for this thesis’ contributions: pre-training, supervised post-training,
and post-training with reinforcement learning. I will end with a note on the
main approach driving progress and how it impacts the research presented here:

scaling compute.

2.2.1 Pre-training
Nearly three decades after Elman’s foundational study, Radford et al. [Rad+18]

demonstrate that next-token prediction at scale can produce models that
serve as powerful general-purpose representations, readily adaptable to di-

verse downstream tasks through fine-tuning. This breakthrough establishes
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the pre-training paradigm that now dominates natural language processing.
Building on this foundation, Radford et al. [Rad+19] make another significant
discovery: when scaling up the parameters and training set size of base genera-
tive models, they learn to perform zero-shot task generalisation directly from
natural language prompts, without any fine-tuning. Specifically, a task can
be specified by conditioning the model on a prompt y, = (v, ..., Y, ), and
the model performs the task by generating a completion y. = (Yi,.,1s-- -, Ut )
where v, € Z, 0 <1y, <V are tokens from the model’s vocabulary. Radford
et al. validate this across multiple benchmarks spanning reading comprehension,
translation, summarization, and question answering. Brown et al. [Bro+20a]
subsequently show that this generalisation can be further enhanced by provid-
ing task examples within the input context itself, a technique now known as
in-context learning. This capability has since spawned an active research field,
with investigators exploring both the origins of in-context learning [Cha+22;
Wur+25], what algorithm it implements [Aky+23; Von+23; ZFEM25], and its
practical applications for improving downstream task performance [Wei+22a].
In this thesis, we call generative pre-trained models simply base models, denoted
by Mpase. We denote the model parameters by € R”, where D in this thesis
ranges from millions (M) to billions (B) of parameters, and the distribution

over next token it parametrises is denoted by:

po(Ye | yp) =
i=m+1
The parameters are typically found through next-token prediction using the

negative log-likelihood:

0* = arg min — Z Z log po (s, | x¢_,) (2.1)

perRD N
zeD i=1

(2.2)

Where N is the training set size |D| and = = (x¢,,...,2;,) € D training
sequences of tokens x;, € Z. The parameters are typically found by performing
a gradient-based iterative algorithm on the above objective that is stopped
according to some criterion, which need not mean they minimise the objective

or are converged.
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2.2.2 Post-training

Pre-training enables LLMs to develop broad capabilities across diverse tasks,
but base models often fail to align with user intentions. When prompted with
“explain the moon landing to a 6 year old in a few sentences,” base GPT-3
completes this with similar instruction patterns like “explain the theory of
gravity to a 6 year old” rather than actually explaining the moon landing
[Ouy+22]. To adress this, Ouyang et al. [Ouy+22] introduce a multiple stage
post-training method. The first stage involves supervised fine-tuning (SFT),
where the model learns from human-written instruction-completion pairs using
standard next-token prediction. In subsequent stages, human evaluators rank
multiple model outputs for various prompts, generating preference data that
can be used to train the model through reinforcement learning from human
feedback (RLHF). The resulting model is more aligned with human intent and
vastly preferred by human evaluators, now completing the above prompt with
“people went to the moon, and they took pictures of what they saw, and sent

them back to the earth so we could all see them.”

The alignment techniques pioneered by Ouyang et al. spurred extensive research
into post-training methods. The field now encompasses a variety of training ap-
proaches and specialised instruction datasets spanning multiple domains. This
thesis uses several of these advances: in Chapter 4, we incorporate MathInstruct
[Tos+24] alongside our task-specific data when fine-tuning instruction-tuned
models for code execution. This practice of mixing general instruction data
with specialised training has become standard for preventing forgetting of
instruction-following capabilities during domain-specific fine-tuning. The fol-
lowing outlines the three post-training methods used in this thesis: supervised
fine-tuning (SFT), direct preference optimisation (DPO) [Raf+23], and group
relative policy optimisation (GRPO) [Sha+24].

Supervised fine-tuning (SFT) is the most straightforward approach to
adapting base models for specific behaviours, simply applying only the first
stage of the alignment technique described above [Ouy+22]. SFT involves
collecting relevant data and continuing model training with next-token pre-
diction. Compared to pre-training, SF'T typically requires substantially less
data and computational resources. Research indicates this stage serves pri-

marily to enhance existing capabilities acquired during pre-training rather
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than teaching fundamentally new skills [Jai+24; KSR24; Pra+24]. However, a
growing body of work demonstrates that SF'T has limitations in generalisation.
Besides showing improved performance on top of SFT [Ouy+22], evidence

suggests that models fine-tuned with reinforcement learning generalise better
out-of-distribution [Kir+24; Chu+25; Sha+24].

Reinforcement learning from human feedback (RLHF), as described earlier,
represents one prominent RL-based approach. In RLHF, a reward model
is first trained using human preference data and then used to fine-tune the
‘policy’ (i.e. the model, typically following an SFT stage) via reinforcement
learning objectives such as proximal policy optimisation (PPO) [Sch+17].
However, RLHF with PPO can be unstable and difficult to implement in
practice. Rafailov et al. [Raf+23] propose a simpler alternative called direct
preference optimisation (DPO), which reformulates the two-stage RLHF
process into a single-stage supervised training objective. The key insight in
DPO is that, given a human preference pair (y.., is preferred over y.,; for a
given prompt y,), one can analytically infer the optimal policy consistent with
those preferences, eliminating the need for an explicit reward model. Using
this insight, the DPO objective derives a logistic regression loss starting from
the full RLHF objective. In the resulting objective, the logit is the difference
in log-probabilities between the preferred and dispreferred response, and the

target is 1 for the preferred sample, and 0 for the non-preferred one.

While DPO eliminates many of RLHF’s implementation challenges, the field
continues to develop more specialised approaches for particular domains.
Group relative policy optimisation (GRPO) [Sha+24] is one of those
methods, targeting mathematical reasoning tasks while significantly reducing
PPO’s computational overhead. The efficiency gains stem from eliminating
PPO’s value function requirement. As an actor-critic method, PPO must
train a separate value function to estimate expected future rewards from
each state. This is typically implemented with a copy of the base model,
effectively doubling memory requirements. GRPO circumvents this by using
a simpler baseline to estimate expected reward: the average reward across
multiple sampled responses to the same prompt (where GG represents the group
size). This group-based baseline serves the same reward variance reduction
purpose as a learned value function but requires no additional parameters.

GRPO supports both outcome supervision, where rewards are assigned only
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at sequence completion, and process supervision, where intermediate rewards
guide reasoning at each step. This flexibility makes it particularly well-suited

for mathematical domains where step-by-step verification is valuable.

A key distinction among RL-based post-training methods is whether they
operate on-policy or off-policy. On-policy methods learn from data generated
by the current policy being optimised, requiring fresh samples at each training
step. Off-policy methods can learn from data generated by any policy, including
older model versions or entirely different models. This enables efficient reuse
of existing datasets. DPO operates off-policy, allowing training on static
preference datasets without generating new model responses during optimisa-
tion. GRPO and RLHF are on-policy methods that sample fresh responses
from the current policy at each update step. However, RLHF introduces
complexity through its reward model, which is typically trained on preference
data collected from an earlier policy (usually post-SFT), creating a subtle
distribution mismatch. These distinctions have practical implications for
generalisation. In Chapter 4, we contribute to the literature demonstrating
that RL has generalisation benefits, demonstrating that GRPO outperforms
both DPO and SFT in generalisation. This suggests that the combination of

negative sampling and on-policy training provides benefits for generalisation.

We denote post-trained models by M., Where stage can be replaced by
SFT, GRPO, or DPO, to denote which post-training method is used.

2.2.3 Compute scaling

The unifying perspective that abstracts away from the above underlying
methodological details is provided by scaling laws [Kap+20; Hof+22]. These
empirically-derived power laws describe how model loss decreases predictably
as parameter count and dataset size increase. Crucially, scaling laws suggest
that performance gains can continue indefinitely through optimal allocation
of computational resources (ensuring neither resource becomes a bottleneck),
and reveal that compute has been the primary catalyst for transforming these
decades-old foundational principles into today’s capable systems. See Figure

2.1 for an example of a scaling law.
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A B
— — = L(D,T) = Lo+ — + —

D~ 5

Figure 2.1: A Chinchilla scaling law [Hof+22], where T" is the number of tokens,
and £(D,T) is the estimated loss of a model with D parameters and T
tokens. The parameters Lg, A, B, a and [ are empirically fitted across
multiple model and token sizes (shown here for four model sizes D; to
D,). Using Chinchilla scaling laws, the compute-optimal model and
token size can be obtained by minimising £(D,T') subject to compute
constraints.

The scaling paradigm has two critical implications for the research in this
thesis. First, the massive scale of training data (ranging from billions to
trillions of tokens) makes it impossible to guarantee clean separation between
training and evaluation data. Each chapter addresses this challenge differently:
explicitly linking model responses to training data (Chapter 3), designing tasks
unlikely to appear in pre-training (Chapter 4), testing for memorisation of
evaluation data (Chapter 5), or employing control tasks (Chapter 6). Second,
any observed effect or capability must be examined across different model and
data scales, as phenomena that appear robust at one scale may diminish or

disappear entirely as models or datasets grow larger.

2.3 Influence Functions

In response to the scaling paradigm, a field that is growing in importance is
training data attribution (TDA): tracing back model behaviour to the training

data. TDA aims to estimate the impact of data points on the trained model
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parameters and outputs. A naive way to calculate the influence of a particular
training data point z = (zy,,...,2,) (called ‘document’ in the context of
TDA) on a model completion y. given a prompt y, (called ‘query’) is the
following: train a model with x and without x in the training set D, resulting
in parameters 0;,) and 0, respectively. The influence of z is then given by
the difference in likelihood assigned by the models to the completion given the
prompt: po,,, (Ye | Yp) — Pog,ye (Ve | Yp). However, this so-called leave-one-out

(LOO) retraining is intractable for large language models.

In this section, I present the relevant background material for understanding
the method used in Chapter 3 for tracing model behaviour back to pre-training
data. I start by demonstrating in detail how Koh and Liang [KL17] estimate
influence by repurposing a tool from robust statistics called influence functions
[Ham74]. Then, I discuss how computational instabilities lead to changes in
the influence function formulation [Tes+21], which in turns leads to them
estimating a slightly different ground-truth than LOO retraining [Bae+22].
Finally, I briefly cover efficient estimation of the second-order terms in influence

functions, which is required for modern-scale LLMs.

Classical influence functions. To estimate the influence of documents on
queries, Koh and Liang [KL17] propose to use influence functions [Ham74].
Recall we want to calculate the influence of document x on the likelihood
the model assigns to a query pp(y. | yp). Let us consider how Koh and
Liang do this for the optimal parameters #* that minimise the empirical risk
J(0,D) =+ le\il L(x;,0) (where L(x,0) is some scalar-valued loss function).
We assume throughout that

1. J(0) and L(z, ) are twice continuously differentiable in a neighbourhood
of 6%,

2. the Hessian Hy. := V27 (0*) is non-singular (invertible).

Influence functions compute the change in optimal parameters if x were up-

weighted by some small ¢:

0F , = arg min (J(0,D) + eL(x,0)) (2.3)

0cRP
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Equation 2.3 is called a response function. We want to know how 67, changes
with e, described by %L . Since 07, is defined by a minimisation, we need
to use implicit differentiation using the first-order optimality condition (FOC)
to obtain Zi’“” L
in [Bae+22]. Here, we instead follow the approach by Koh and Liang [KL17]

who first take a Taylor expansion of the FOC, leading to the same result in

. This is possible to do directly, as shown in Appendix B

a slightly more intuitive way. Given 67, is a minimiser of J (0, D) + eL(z,0),
the FOC is:

0=VJ(0) +eVL(x,07)

Where we drop the dependence of the empirical risk on D and of #*  on x

e
to avoid clutter, and we write V in place of Vy to further lighten notation
(all gradients are w.r.t. € unless otherwise specified). Now that we have an
explicit expression, and since % — * as ¢ — 0, we can use a first-order Taylor
expansion of the FOC around 6* to reason about how the optimal parameters

may change when up-weighting x by ¢.
0~ [VT(0") +eVL(x,0")] + [V2T(0*) + eV L(z,07)] (6 — 6%) (2.4)
How 0} changes with ¢ (i.e. the quantity we are after) is the same as asking

how 0% — 6* changes with ¢, as 8* does not depend on . Therefore, we rewrite

Equation 2.4 in terms of 6% — 6*:

0 — 0" ~ —[V2T(0") + eV2L(x,0M)] " [VT(6%) + eV L(x,0%)]
We further note that V.7 (6*) = 0, use the Woodbury matrix identity to expand
the inverse, and only keep O(e) terms:
0F — 0" ~ -V J(0*) 'VL(x,0%)e

Now, we take the derivative w.r.t. € to obtain the influence of x on 6* as defined

by influence functions:
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dox
Ty« (x) = o

~ VAT (0%) 'VL(x,0%) = —H,'VL(z,0%)

e=0

An application of the chain rule then leads to the influence on the completion

Y. given a prompt y, as measured by any continuously differentiable quantity
f(6*) such as the loss or the likelihood pg« (v, | yp)-

* d@; * — *
Loy (z) = . = V£(07) de = —V(E) Hy VL, 07)
=0 e=0

To provide an intuitive sense of what influence computed in this way measures,

I discuss each term below. I refer to H,,'VL(z,0*) as the inverse-Hessian-

conditioned document gradient and V f(6*) as the query gradient.

o VL(z,0%) € RP*L: the sensitivity of the model’s loss on x to small

parameter changes, indicating the first-order direction that up-weighting
document = would push the model parameters (in the opposite direction

of the greatest increase in the loss given by the gradient).

H (;1 € RP*P: modulates the effective magnitude of parameter changes
when z is up-weighted based on the loss landscape’s curvature at 6*.
Because of the inverse, document gradients aligning with low-curvature
directions are amplified (flat directions on the loss surface), while those
aligning with high-curvature directions are suppressed (sharp directions).
Intuitively, during optimisation model parameters move more easily in
flat regions of the loss than on sharp regions, meaning up-weighting x
will be less “resisted” by the overall training dataset and lead to a higher

influence of x on the parameters.

Vf(0*) € R™D: the sensitivity of the target quantity f (evaluated
on the query) to small parameter changes. Influence is the dot product
between this query gradient and the inverse-Hessian-conditioned document
gradient from the previous terms. If these two align in direction, then
because of the leading minus sign influence is negative (indicating a
decrease in loss or increase in likelihood when up-weighting z), and
vice-versa. Intuitively, the interpretation on choosing f as the loss or
likelihood is reversed because the loss equals the negative likelihood. The

dot product encodes both directional alignment and magnitude; if either
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the query gradient or the Hessian-conditioned document gradient is close

to zero, the influence will be small even if their directions align.

The above intuition demonstrates why introducing the expensive second-order
Hessian term over first-order TDA methods such as TracIn [Pru+20] has
benefits. The influence is not only determined by the document’s gradient-
similarity to the query, but also by how its gradient direction interacts with the
global geometry of the loss surface shaped by the entire dataset. In Appendix
B.1, we empirically demonstrate benefits of second-order information for data

attribution in large language model fine-tuning.

Computational instabilities. Classical influence functions assume that
the empirical risk is strictly convex in #, ensuring a unique minimiser and an
invertible Hessian H. However, this assumption fails in overparameterised
neural networks, where many parameter vectors can achieve the same loss,
leading to singular or nearly-singular Hessians. Basu, Pope, and Feizi [BPF21]
and Bae et al. [Bae+22] empirically demonstrate that classical influence func-
tions poorly approximate leave-one-out (LOO) retraining, tracing this failure
to two core issues: non-unique optima due to overparameterisation, and the
unrealistic assumption that models are trained to convergence. To address
computational instability, researchers have proposed replacing the Hessian
with more stable approximations. Koh and Liang [KL17] add damping terms
(H + M), while Teso et al. [Tes+21] use the Fisher Information Matrix (FIM)
instead of the Hessian, which is positive semi-definite by construction. However,
using the FIM comes at the cost of ignoring negative eigenvalues present in
the true Hessian, corresponding to directions of negative curvature in the
loss landscape. This omission can bias influence estimates by overestimating
curvature magnitudes. Damping terms do not correct this bias, but they
mitigate a separate numerical issue: instability when inverting nearly singular
curvature matrices. For common loss functions like cross-entropy, the FIM is
equivalent to the Gauss-Newton matrix G = J* H;.J, where J is the Jacobian
of network outputs with respect to parameters and Hj is the Hessian of the

loss with respect to outputs.

The true ground-truth estimated by influence functions for uncon-
verged parameters. Bae et al. [Bae+22] argue that these modifications

change what influence functions actually estimate. Rather than approximating
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LOO retraining, damped influence functions with FIM/Gauss-Newton approxi-
mations actually estimate a different counterfactual: the proximal Bregman
response function (PBRF). The PBRF measures how removing a data point af-
fects model predictions while maintaining consistency with the original trained
model, without requiring training to convergence. Starting from the proximal
Bregman objective rather than classical empirical risk minimisation and using

a linearisation of the PBRF, influence functions take the form:

Tron(z) = =V f(0") (G + X)) 'VL(x,0") (2.5)

where 6" represents the unconverged parameters from actual training, GG is the
Gauss-Newton matrix, and A is the damping parameter. Bae et al. show that
influence functions for modern neural network applications correlate better
with the PBRF than LOO retraining. The PBRF formulation is therefore a
more relevant counterfactual that accounts for the realities of modern neural
network training. We adopt this PBRF-based formulation throughout our work,
as it provides both computational stability and a more appropriate theoretical
foundation for influence estimation in overparameterised models. For readers
interested in the mathematical derivation connecting the PBRF to this influence

function formulation, we refer to Appendices B.2 and B.3 of Bae et al. [Bae+22].

Efficient estimation of second-order information in influence functions.
Computing Equation 2.5 requires an inverse-Hessian-vector product (IHVP).
Following Grosse et al. [Gro+23|, we use this terminology even though the
computation involves the Gauss-Newton Hessian G (GNH) rather than the full
Hessian H. While the IHVP can be computed more efficiently than explicitly
forming G, it remains intractable for large language models with billions of
parameters. To address this computational challenge, Grosse et al. [Gro+23|
propose using eigenvalue-corrected Kronecker-factored approximate curvature
(EKFAC) [Geo+18], which provides a tractable approximation to G based
on the Kronecker-factored approximation to the curvature (K-FAC) method
[MG15]. The FIM, equivalent to G in our case, is defined as follows:

F = Barpguniopy @[V 102p(3 | 0,2)Vlogp(j | 0,2)7]

where pqata is the data distribution and py,(€) is the model’s predictive distri-

bution. K-FAC approximates G by making two key independence assumptions:
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the activations and pre-activations of each layer are independent, and dif-
ferent layers are independent of each other. These assumptions lead to a
block-diagonal approximation where each block corresponds to a layer and
can be factored as a Kronecker product, dramatically reducing computational
complexity. EKFAC improves upon K-FAC by leveraging the insight that the
Kronecker-factored blocks admit efficient eigendecomposition. This enables a
more accurate approximation of G while maintaining computational tractability
[Geo+18]. For detailed derivations of the EKFAC approximation, we refer
readers to Grosse et al. [Gro+23], Section 2.2.2 and 2.2.3.






Chapter 3

How Models Learn to Reason

from Pre-training Data

3.1 Overview

Having covered the topics needed to understand the content of this thesis, let
us recall the overarching goal of this work: to characterise LLM reasoning in
the context of the compute scaling paradigm. Most recent progress is driven by
increased compute during development, with token budgets reaching trillions
of tokens. At this scale, the boundary between training and evaluation data
has effectively collapsed: we can no longer reasonably assume that benchmark
problems are unseen during pre-training. This raises a question: to what
extent does LLM reasoning depend on similar sequences encountered during
pre-training? This question is particularly pressing given the conflicting
evidence about LLM capabilities. Their well-documented versatile reasoning
abilities [WHL23; WHL24; McL+-24, inter alia] sharply contrast with the line of
work highlighting the brittleness of their reasoning [Raz+22; McC+23; Ull23a;
Wu+24; Mah+24]. A finding common to the latter is that LLM reasoning
depends on the frequency of similar problems in the training data, meaning
benchmark saturation on its own can not be taken at face value. Recent works
have documented the extent of the contamination issue [Bro+20b; Tou+23;
Gun-+23; Yan+23; Den+24|, showing that many common benchmarks have a
high percentage of contaminated data. Yang et al. [Yan+23| show that even
rephrased benchmark data that elude N-gram-based detection methods can
impact performance, further complicating the issue. However, it is unclear
how and when state-of-the-art LLMs rely on contaminated data to perform

reasoning.
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Figure 3.1: A summary of our most important findings towards answering the

question “how do LLMs learn to reason from pre-training data?” We
rank 5 million pre-training documents according to their influence on the
likelihood of completions of two models, Cohere’s Command R 7B and
35B, for 40 factual and 40 reasoning queries. We find that procedural
knowledge drives influence on reasoning traces: a document’s influence
on the reasoning traces of one query is strongly predictive of that
document’s influence on another query with the same mathematical
task, in 3 of the 4 tasks. We show this on the left through arrows
indicating influence, and on the right through correlations of all 5M
document influences between a random sample of 10 queries per task
(a plot with all queries can be found in Figure B.8 in Appendix B.9.1).
Further, we find that the answers to factual queries often show up in
the top 0.01% of pre-training documents (see text in bottom row of
documents), but not for the reasoning questions. Finally, individual
documents influence reasoning traces much less strongly than factual
answer generations, indicating models rely on documents less when
reasoning. All documents and queries shown are redacted versions of
real data, and the relations are based on documents found in the top
50 for the queries.

In this chapter, we investigate which pre-training data influence model’s reason-

ing traces and how those data relate to the specific problems being addressed,

contrasting it to the data that influence factual question answering. We use

influence functions (as detailed in the previous Section 2.3) to compute the

influence of pre-training documents on the likelihood of prompt-completions

pairs under a trained model. In the extreme case, a language model answering

reasoning questions may rely heavily on retrieval from parametric knowledge
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influenced by a limited set of documents within its pre-training data. In this
scenario, specific documents containing the information to be retrieved (i.e. the
reasoning traces) contribute significantly to the model’s output, while many
other documents play a minimal role. Conversely, at the other end of the
spectrum, the model may draw from a broad range of documents that are
more abstractly related to the question, with each document influencing many
different questions similarly, but contributing a relatively small amount to the
final output. We propose generalisable reasoning should look like the latter

strategy.

Our findings, summarised in Figure 3.1, suggest a generalisation strategy for
reasoning that is unlike retrieval from the parametric knowledge formed during
pre-training. Instead, the models learn to apply procedural knowledge extracted
from documents involving similar reasoning processes, either in the form of

general descriptions of procedures, or applications of similar procedures.

3.2 Method

Given a pre-trained model §* € RP that parametrises a distribution over next
tokens conditioned on a prompt pgu(y. | y,), we are interested in finding data
from the pre-training set D = {z;}¥, that influence the completion. Put
differently, we want to know which examples in the pre-training set ‘caused’
a completion. To this end, we use EKFAC influence functions for large-scale
transformers as proposed by Grosse et al. [Gro+23]. Recall that the influence
of a training document x € D on a continuous differentiable function f of the

parameters 0" is given by Equation 2.5 in Section 2.3, copied here:
Tyom (@) = =V (6")T(G + M) ' VL (z,6%)

Since we are investigating models with billions of parameters D, computing G is
intractable, and we estimate it using EKFAC estimation (introduced in Section
2.3). To make this estimation tractable we make a number of simplifying
assumptions across all our estimations, like independence between layers and
we only take into account MLP parameters of the transformer layers [Gro+23].

A full list of approximations can be found in Appendix B.7.

What we measure influence on (i.e. choosing f). Prior work has shown

that EKFAC influence functions more accurately estimate the counterfactual
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given by the response function (Equation 2.3) than other types of influence
functions [Gro+23]. However, besides influence on language model completions,
we are also interested in influence on the accuracy of a trained language model
when answering questions. We can only calculate the influence on a continuous
differentiable function, and to the best of our knowledge, no work has shown
that influence functions also estimate effect on the underlying accuracy of
text produced by next-token prediction. As a proxy for accuracy, we take
as a continuous differentiable function the cross-entropy loss function (f in
Equation 2.5). In Appendix B.1 we show that the influence calculated in this
way surfaces documents that have a causal effect on the accuracy of a 7B model
fine-tuned to do reasoning and reading comprehension tasks. Namely, if we
remove documents from the fine-tuning data according to their influence and
re-train the model, the accuracy drops significantly more than if we take out the
same amount of documents randomly, or the same amount of documents using
gradient similarity. In parallel, we motivate the use of EKFAC estimations
of the GNH, by showing it significantly improves over a method using only

first-order information.

Making the computation tractable. Besides the EKFAC estimation of G
(for which we mostly follow prior work [Gro+23] and describe deviations in
Appendix B.2), each influence score requires a document and query gradient.
This means that if we would compute influence for the entire pre-training
set it would be at least B times more expensive than pre-training the model
itself (where B is the batch size). For this reason, we sample documents
i.i.d. from the pre-training distribution. Still, it is only reasonably possible
to loop over this sample once, and to store more than a single query gradient
in memory (which has the same memory complexity as the model itself),
Grosse et al. [Gro+23] use singular-value decomposition (SVD). Instead of
SVD, we use approximate SVD with a probabilistic algorithm [HMT11], which
significantly speeds up the computation of the query gradients. We justify each
approximation in Appendix B.2.1.

Interpreting the influence score. We approximate Equation 2.5 to get scores
for documents from the pre-training data D that represent the influence they
have on a completion y. given a prompt y,. Given the counterfactual question
approximated by the response function used to derive influence functions, an

influence score of -1 for x implies the loss of the sequence vy, is decreased by
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Figure 3.2: The pipeline for creating rankings of the most influential pre-training
documents for a question-completion pair (query) using influence func-
tions. The documents at the top of the ranking influence the likelihood
of the completion positively, and the bottom negatively. We create
rankings for a set of 40 reasoning, 40 factual, and 20 control queries
over 5 million pre-training documents (2.5B tokens) for two models of
different sizes (Cohere’s Command R series, 7B and 35B).

1 due to its inclusion in the training set. To compare influence scores across
different completions (and token lengths), we normalise the scores for each
query by the information content of its completion y,., measured in nats. The
information content of a query is defined as [(y.) = —log (pgu(y. | y»)). The
influence scores induce a ranking over documents from most positively to most
negatively influential, where a score can be interpreted as the decrease (or
increase) in loss per nat of query information. Note that we choose to use the
terms ‘positive’ and ‘negative’ here colloquially to make the discussion of the
results less confusing, where positive influence means a positive effect on the
loss (by decreasing it). Similarly, in the rest of this chapter a positive total

influence decreases the loss. The full pipeline is shown in Figure 3.2.

3.3 Experimental Setup

Query sets. We collect query sets with different types of questions, of which
40 are reasoning questions and 40 factual questions. Note that it is only
tractable to loop over the pre-training sample we look at once, so we need to
be able to store all query gradients in memory and cannot go beyond about

100 questions. For the remaining 20 queries that fit in memory, we design 10
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Table 3.1: Example from the reason-
ing set that involves sim-
ple two-step arithmetic.
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Table 3.2: Example from the factual
set that requires retriev-
ing the right answer.

Reasoning query set (arithmetic)

Factual query set

Prompt

Prompt

Calculate the answer: (7-4) * 7
Think step-by-step.

What is the tallest mountain
in the world and how tall is it?

Completion (by 7B)

Completion (by 7B)

First, let’s evaluate the expression
inside the parentheses:

7-4=3

Now, let’s multiply the result by 7:

The tallest mountain in the world is
Mount Everest, which is located

in the Himalayas.

It is 29,029 feet tall.

3*7 =21
Therefore, the answer is 21.

control questions for each query set (reasoning control and factual control).
These control questions are superficially similar to reasoning or factual queries,
but do not require reasoning or factual retrieval to be completed accurately
(examples given in Appendix B.3). For the reasoning questions, we identify two
types of mathematical reasoning each model can do robustly with zero-shot
chain-of-thought [Wei+22b]. We do this by evaluating the models on larger
sets of 100 questions for each type of reasoning, and selecting tasks where it
gets at least 80% correct. This surfaces simple two-step arithmetic for the
7B model (Table 3.1), calculating the slope between two numbers for both
models (of which two redacted examples are shown in Figure 3.1), and solving
for x in linear equations for the 35B model (see Table B.7 in Appendix B.3
for prompt-completion pairs of the linear equations task). We ensure no query
ever requires outputting a fraction. To make the results between 7B and 35B
more comparable, we use the same slope questions for both models. For the
40 factual questions, we make sure the model gets half right and half wrong,
allowing us to identify failures of retrieving facts from parametric knowledge,
and we also ensure 16 of 40 overlap between models. We calculate influence
over the full completion, which includes the chain-of-thought in the reasoning

case. The full query sets are provided in the supplement.'

'Which can be found at https://openreview.net/forum?id=1hQKHHUsMx.
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Documents set. We want to compare the influence of pre-training data on
reasoning by differently sized models (7B and 35B), so we select two models
that are trained on the same data. The EKFAC estimation of the GNH only
needs to be done once per model, but the other terms in Equation 2.5 require
two forward- and backward-passes through the model per document-query pair.
This means that obtaining a ranking over pre-training data for a single query
has a computational complexity similar to pre-training itself. To overcome this
issue, we sample a set of documents from the pre-training data that covers
multiple examples from each batch seen during pre-training, giving a total
of 5 million documents (approximately 2.5B tokens) distributed similary as
the training distribution. We batch queries and obtain the influence scores in

parallel. Each document contains 512 tokens.”

EKFAC estimation. To estimate the GNH for the 7B and 35B models we
need to estimate two expectations w.r.t. the data distribution (see Section 2.2.2
and 2.2.3 in [Gro+23]). To this end, we randomly sample 100000 documents
equally spread-out through pre-training for both models. Details on how
exactly we approximate the GNH are in Appendix B.2. We note here that
although this aspect of the pipeline requires estimating over 300B parameters
representing second-order information, the bottleneck remains calculating

document gradients.

Models. We look at two models of different sizes: 7B and 35B (Cohere’s
Command R series).? For each model, we use both base and supervised fine-
tuned versions, where the former is trained on trillions of tokens and the latter
is subsequently fine-tuned on a few thousand instruction-completion pairs. We
estimate the second order information and calculate document gradients using
the base models, and generate completions and calculate the query gradients
using the models fine-tuned with supervised instruction-tuning. The reason for
choosing this setup is that the fine-tuned models are much better at instruction
following. This means we are assuming the EKFAC for the fine-tuning phase
is the identity [Bae+24|, and we are focusing only on the influence of the

pre-training data and ignoring the fine-tuning data.

2We choose 512 tokens because qualitatively interpreting more is hard (usually spanning
multiple topics).

3The specific stages of models we use are not publicly available, but the final checkpoints
are: https://huggingface.co/CoherelLabs/c4ai-command-r-vO01.
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3.4 Experiments and Results

We compare the rankings (from most positively to most negatively influential)
over pre-training data produced by influence functions for reasoning questions
to the rankings for factual questions (which can only be answered by retrieving
parametric knowledge). We first analyse the rankings quantitatively by looking
at the influence of different documents per nat of generated query information
(Section 3.4.1). We aim to elucidate how generalisable the information in the
influential documents is, and how many documents the model is relying on when
doing reasoning compared to retrieval. Then, in Section 3.4.2 we investigate

how the documents relate to the queries qualitatively.

3.4.1 Quantitative analysis

Finding 1: There is a significant positive correlation between the
influence scores of documents for queries with the same underlying
reasoning task, indicating that these documents are relevant for
questions requiring the same procedure applied to different numbers.
If models are relying on documents that contain ‘general’ knowledge that is
applicable to any query with the same task (e.g. queries that require finding
the slope between two points for many different points), we would expect
there to be a significant correlation in the influence scores for these queries.
We calculate the Pearson’s R correlation of all 5 million document scores for
all query combinations (leading to 100? correlations per model). The results
can be seen in the right panel of Figure 3.1 for a subsample of 10 queries per
task, and all query correlations can be found in Figure B.8 in Appendix B.9.1.
We find a strongly significant (p-values all below 4e — 8) positive correlation
between many queries of the same reasoning type, and a strongly significant
absence of correlation (p-values all around 4e — 3) for most (but not all) factual
queries or other combinations (e.g. reasoning queries of different types). This
means that many documents have a similar influence on the same type of
reasoning. Put differently; the model learns from the same data for different
instances of a reasoning task. Given that each type of reasoning query requires
applying the same procedure to different numbers, the positive correlation
indicates that the influence scores for reasoning queries pick up on procedural
knowledge. The correlations are strongest for the slope queries by the 35B
model, and this is also the type of reasoning the model can do most robustly
compared to solving linear equations. For the model to be able to solve linear

equations with an accuracy of more than 80%, we restrict the calculations to
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lead to positive x, whereas for the slopes questions the answers can be positive
or negative. In Appendix B.9.1 we falsify the hypothesis that the correlations
are caused by the fact that the reasoning questions are superficially similar to
each other, by using the set of control queries that is also superficially similar
but does not require any reasoning and repeating the entire experiment. For
the control queries we mostly do not observe a correlation. In Appendix B.9.1
we highlight examples of queries with high or low correlation for different
query sets, finding that some of the correlation seems driven by formatting
of reasoning steps, and most by reasoning procedure. For example, we find
correlations are not driven by superficial similarities between queries like
“think step-by-step” or the word “slope”: when these phrases co-occur in con-

trol queries, there is usually not a significant correlation of their influence scores.

Finding 2: When reasoning, the model on average relies on each
individual document less per generated nat of information than
when answering factual questions, and the total magnitude of
influence is less volatile, indicating it is generalising from a more
general set of documents. The effect is more pronounced for the
larger model.

In Figure 3.3 we show the total influence for different percentiles of the
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Figure 3.3: The total influence per nat of query completion information for different
portions of the positive ranking over documents, left for the 7B model,
right for the 35B. The total influence per nat is usually lower for
reasoning questions than for factual questions, and the influence per
document varies more for factual questions than for reasoning questions,
especially for the 35B model.

positive parts of the rankings. The results depict the total amount of influence

contained in the top-k percentile of the positively ranked documents: e.g. the
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20th percentile contains 20% of the positive documents for a query, and the
amount of total influence shown is the sum of all document influences up to
that part of the ranking. The equivalent for the negative portions looks similar
(Figure B.11 in Appendix B.9.2) and the discussion below applies similarly
to the negative ranking. We observe two things for both models. Firstly, the
amount of total influence for most factual questions at any part of the ranking
is higher than for reasoning questions. Secondly, there is more variation in the
influence of documents at the same rank across different factual queries (and for
a few factual queries the amount of influence is actually lower than for the rea-
soning queries, seen more clearly in Figure B.16 in Appendix B.9.3). The first
result means that, on average, the models rely on individual documents within
our set less for generating reasoning traces than for answering factual questions.
The second result indicates that for the factual questions the model relies on
more ‘specific’ and infrequent documents: for a factual question it is more up
to chance whether relatively highly influential documents (w.r.t. influence of

documents for other factual questions) are part of the pre-training sample or not.

Influence spread. Another way to analyse the magnitude of influence is
to look at the dispersion of influence across the ranking: how much of total
influence for each query is contained at the top and bottom parts of the ranking?
Similarly to what Grosse et al. [Gro+23] report, we observe that the top parts
of the rankings over documents follow a power law characterised by a linear
relation between rank and influence per nat in log-log space (shown in Figure
B.16 in Appendix B.9.3). We find that the slopes for the reasoning questions
by the 35B are slightly steeper than for the factual questions, and therefore the
percentage of positive influence contained in the top portions of the rankings
for the 35B reasoning questions increases faster with rank than for the factual
questions (shown in Figure B.18 in Appendix B.9.3). For the 7B, the slopes for
the reasoning questions the model gets right are on average also a bit steeper
than for the factual questions, but the effect goes away when comparing slopes
for all factual vs. reasoning queries. This means that the percentage of the
total positive influence the top sequences cover is higher for the reasoning
questions than for the factual questions for the 35B model (and similarly for
the bottom sequences, see Figure B.11). There is a chance this finding is caused
by noise for the 35B model and we discuss this possibility more in Appendix
B.9.3, where we note that for the reasoning query with the steepest power law,

the top 1 document is qualitatively entirely unrelated to the prompt.
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If we compare the result between models, we find that the difference in mag-
nitude and volatility are more pronounced for the 35B model across the full
rankings. We look into this in Appendix B.9.2, and find that the effect remains
even if we only look at queries that are the same for both models, which points

to higher data efficiency for the larger model.

3.4.2 Qualitative analysis

We perform three qualitative analyses on the top portions of the rankings for
each query; we search for the answer, we characterise the documents’ relation
to the reasoning queries, and we investigate what source datasets they are from
(for both the top and bottom parts of the ranking, e.g. code, Wikipedia, etc).
To filter some of the noise, we divide the influence scores by the document
gradient norm and re-rank them, which has empirically been found to help
[Cho+24].

Finding 3: The answer to the factual questions shows up relatively
often in the top influential documents for the factual questions,
and almost never for the reasoning questions.

To find the answer to the questions in the queries in the top documents

I Reasoning correct #7% Reasoning wrong Factual correct £ Factual wrong

100%

80% 1
60%

40% 1

Answer in Top 500

20%

0, DS | ‘ | v '
Reasoning Factual Reasoning Factual

7B 35B

Figure 3.4: We search for the answer in the top 500 (top 0.01%) documents, and
find it relatively frequently for the factual questions. For the reasoning
questions, we find the answer twice for the 7B, and never for the 35B.
Both those times, the answers to the steps occur in separate documents.

manually, we construct keywords for each query that should be in the document
if the answer is there. For example, for the factual query in Table 3.2, the
keywords are “tallest”, “highest”, “Mount Everest”, “29029”, “8848”. For
the reasoning queries, we construct many more keywords per query, but some

examples for the example in Table 3.2 are 7 — 4, 3, 21, 3 x 7, as well as
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replacing the operations with words like ‘minus’ and ‘times’, and different ways
of representing the content in this query. For details on which keywords we
use for each query, see Appendix B.4. We determine the occurrence of each
of these keywords independently in the top 100 documents for each query
(meaning even if just the keyword ‘7’ is present it would be a hit), resulting
in many false-positives. We manually look over the hits to find the answer.
On top of that, we craft a prompt for Command R+ (a more capable 100B
model) to find the answer in a query-document pair, and use it to find the
answer in the top 500 documents for each query independent of keyword
overlap (the prompt is given in Appendix B.5). Then, we manually look over
the hits and keep track of documents that have the answer to a query. We
verify that Command R+ finds all, and more, of the answers we have identified
manually. We look for the full answer in a single document. For the reasoning
queries, we also count partial answers in separate documents if they combine
to the full answer. For example, if one document contains 7 — 4 = 3, and
another 3 x 7 = 21, we consider that an answer. Finally, we apply the keyword
overlap search combined with prompting Command R+ to a subset of the
broader 2.5B pre-training tokens to verify that the answer to the questions are

in the entire set even if they do not show up in the top 500 documents for queries.

The results are shown in Figure 3.4. For the 7B model, we find the answer in
the top 500 documents for 55% of the factual queries, compared to 7.4% of the
reasoning queries. For the 35B model, the answer to the factual queries shows
up in the top influential documents 30% of the time, and never for the reasoning
set. We expect the answer shows up less frequently for the 35B model simply
because the factual questions are much more ‘niche’. For example, one of the
questions the model gets correct is “In which year did the Beinecke Library
open?”. Moreover, in certain cases, the answer shows up multiple times in the
top 500 documents. If we count all these separately, as opposed to a binary
‘yes’ or ‘no’ per query on which the results in Figure 3.4 are based, answers to
questions show up 30 times for the factual questions in the 7B rankings, and
twice for the reasoning questions. For the 35B, the same result is 15 times
for the factual questions, and never for the reasoning questions. Interestingly,
the answer to the factual questions often shows up in different languages, like
Spanish or Portuguese. We give two examples in Appendix B.8.2. To falsify the
hypothesis that the answers to reasoning questions are not showing up because

they are not present in the set of 5M documents, we repeat the above keyword
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search over a random subset of the 5M documents. We identify answers to
reasoning steps in documents that do not show up in the top 500 documents
for 13 of 20 arithmetic queries and a full answer for 1 of 20, and expect more
to be there that elude the keyword search. For the slopes and linear equation
queries, we find answers to 3 reasoning steps which do not show up in the

top 0.01%. In Appendix B.8.1 we show some of these documents and their ranks.

Finding 4: We find that influential documents for the reasoning
queries are often doing a similar form of step-by-step reasoning,
e.g. also arithmetic. Further, we find that the influential documents
often implement a solution to reasoning questions in code or general
math.

For the slope queries (of which we have 20 which are the same for both
models), many different documents surface as highly influential that show how
to calculate the slope between two points in code or math. For the 7B model,
documents that present explicit procedural knowledge on how to calculate
the slope in either code or math show up in the top 100 documents for 16,/20
queries (38 times), and for the 35B model they show up for all queries (51
times). All together, we manually find 7 unique documents that implement
the slope in code in the top 100 documents, and 13 that present equations for
calculating the slope. The 7B model relies on 18 of these documents for its
completions (meaning 18 different ones appear in the top 100 documents for
all queries), and the 35B on 8. An example of a highly influential document

implementing the solution in JavaScript (left) and in maths (right):

function eqOfLine(x1, yi, x2, y2) { If a straight line passing through the points
if (x1 === x2) { P(z1,v1), Q(x2,y2) is making an angle 6 with the
// Handle a vertical line positive X-axis, then the slope of the straight line is:
return ‘x = ${x1}‘;
} else { (A) %
// Calculate the slope (B) 6
const m = (y2 - y1) / (x2 - x1); (C) %
const b =yl - m * x1; (D) sin @
// Return y = mx + b
return ‘y = ${m}x + ${b}‘; Solution:
} Correct answer: (C)

We prompt Command R+ to further characterise the top 500 documents for
each query by choosing from a set of provided keywords, and find that often the
documents are doing similar arithmetic on other numbers (e.g. much larger or

smaller), doing similar arithmetic on similar numbers (for the slope questions),



38 Chapter 3. How Models Learn to Reason from Pre-training Data

or similar algebraic operations on similar numbers (for solving linear equations).

We present the detailed results and prompt for this analysis in Appendix B.8.3.

Finding 5: For factual queries, the most influential data sources
include Wikipedia and trivia, while for reasoning, key sources con-
sist of maths, StackExchange, ArXiv, and code.

We look at the type of source datasets that represent the most influential
documents. Specifically, we count the source datasets of the top and bottom &
documents with & € {50, 500, 5000, 50000, 500000}, and compare the count to
the pre-training distribution. We present the details in Appendix B.8.4, but
mention here that code data is highly influential for reasoning. StackExchange
as a source has ten times more influential data in the top portions of the
rankings than expected if the influential data was randomly sampled from
the pre-training distribution. Other code sources are twice as influential as
expected when drawing randomly from the pre-training distribution for & = 50

up to k = 50000. Similar patterns hold for the bottom portions of the rankings.

3.5 Related work

The subfield with the aim of understanding how large language models generalise
is growing rapidly. This question can be approached in different ways, and
many recent works interpret weights of smaller models on synthetic tasks to
explain particular phenomena that we observe in language models at scale such
as grokking [Wan+24al, in-context learning [Ols422; Sin+24], or superposition
[Elh+22; Bri4-23]. Scaling interpretability methods to modern-sized LLMs
is challenging for many reasons, of which one is computational tractability.
Nonetheless, there are a few works that apply techniques from interpretability
to language models at scale. Templeton et al. [Tem+24] use sparse autoencoders
to extract interpretable features from Claude 3 Sonnet, and demonstrate how
to use these features to control model outputs. Grosse et al. [Gro+23] adapt
EKFAC influence functions [Geo+18] to large-scale Transformers, and use them
to understand what kind of pre-training data influence completions of models
up to H0B parameters. The authors show, among many other things, that
larger models rely on pre-training data that are more abstractly related to
the completion than smaller models. In this chapter, we build on the results
of Grosse et al. [Gro+23], leaning heavily on their efforts to make influence
functions tractable at scale, but focus instead on understanding reasoning

specifically.
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3.6 Discussion, Limitations, and Future Work

From the findings in this chapter, we conclude that the generalisation strategy
for reasoning LLMs employ is unlike retrieval. More often than not, even if
the answer is part of the set of pre-training documents we look at, it does
not show up as highly influential as the answers to factual questions do. We
find that instead, the positively influential documents often contain explicit
procedural knowledge on how to get to a solution. Further, the models rely
less on individual documents when reasoning than when answering factual
questions, and the set of documents they rely on is more general. Finally,
documents often have a similar influence on reasoning queries that require

applying the same procedure to different numbers.

One of the quantitative findings is counter to our initial expectations: we
find that the distribution of influence is less spread out for reasoning than for
factual questions, characterised by steeper power laws. The distribution of
influence over documents tells us something about the type of generalisation
strategy the model is using; the more documents that contribute to each nat
of query information (i.e. the more spread out the total influence), the more
documents the model is relying on to produce the completion. One would
perhaps expect a steeper power law for factual questions than for reasoning
(meaning more of the total positive influence contained at the top parts of
the ranking), but our results show evidence for the opposite. Perhaps a
model needs to generalise from a broader set of documents for factual retrieval
than for reasoning because it needs to see the same information more often
to memorise it. This is supported by the finding that for factual questions

the answer often shows up multiple times in the top 0.01% most influential data.

There are important limitations to our approach, most notably that we do
not calculate influence on the entire training set, which is intractable. An
alternative explanation of our results is then the opposite conclusion: the model
is relying on data for reasoning that are so infrequent that a random sample of
2.5B tokens does not surface relatively highly influential samples for any of the
60 unique reasoning queries. This would result in the conclusion that LLMs
rely on sparse and infrequent documents for reasoning. That means we are
effectively looking at a set of relatively uninfluential documents for reasoning,

and that perhaps the answers to reasoning traces would be highly influential
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when looking at the entire pre-training data. We would argue that this is
the more unlikely explanation for three reasons: (1) the qualitative analysis
shows that the influential data for the reasoning questions are intuitively highly
relevant, and that the answers to many reasoning traces are part of the 2.5B
tokens, they are just not highly influential for reasoning, (2) the correlation of
influence scores for the different reasoning tasks is highly significant, and (3)
we confirm that these results do not hold for control queries that look similar
to the reasoning queries superficially, but do not require step-by-step reasoning.
Moreover, it seems unlikely that the model is learning to do retrieval from
such infrequent data for one of the simplest forms of mathematical reasoning,
namely subtraction and multiplication on small numbers. Taken together we
argue the results indicate a generalisation strategy that relies on procedural
knowledge. Regardless, the nature of interpretability research such as the work

presented here is that all we can do is provide evidence, and not proof.

Another limitation is that we do not look at the supervised fine-tuning stage.
The reason we only look at the pre-training data is because the fine-tuning
stage is targeted at making the models more aligned and ‘instructable’; and
prior work has shown that SF'T serves primarily to enhance existing model
capabilities [Jai+24; KSR24; Pra+24]. Nonetheless, an interesting direction for

future work is applying the same method used here to the fine-tuning data.

With this work, we do not claim to say contamination is not an issue, or that
LLM reasoning is not brittle and reliant on pre-training statistics. What we
demonstrate is that, in principle, it appears possible for LLMs to produce
reasoning traces using a generalisation strategy that combines information
from procedurally related documents, as opposed to doing a form of retrieval.
This is not to say that there are no cases of LLM reasoning where the model is
in fact doing retrieval, on the contrary, models can be overfit to contaminated

data if it appears often enough in the training data.

The work in this chapter spurs further avenues for future work. Firstly, as
previously discussed, identifying data types that are similarly influential across
reasoning types could provide additional insight into data selection techniques
for improved reasoning. Relatedly, what properties of code data makes it
influential for reasoning” What kind is positively influential, and what kind

negatively? Further, since we only take into account the feed-forward layers
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and treat the attention as fixed, an interesting avenue for future work would
be to investigate how the relatively low magnitude of influence of pre-training
data on feed-forward parameters for reasoning traces interacts with attention,
connecting to a finding from literature that certain forms of reasoning happen in
the attention heads [Ols+22]. Finally, in this work we investigate mathematical
reasoning. Future work should verify whether similar results hold for other

types of reasoning, such as inductive reasoning.

The central finding of this chapter is that LLMs depend on procedural knowledge
in pre-training for reasoning, demonstrated quantitatively by showing how a
pre-training document’s influence for one reasoning query is predictive of its
influence on another query with the same task. Qualitatively, we identify explicit
symbolic procedures that frequently prove highly influential for reasoning
performance (Finding 4). However, the latter does not tell us why these explicit
procedures are useful. While influence functions reveal that models consistently
draw on abstract code implementations and analytical formulas, they cannot
determine at what level of abstraction models process and use these data.
The next chapter investigates whether models truly extract input-independent

computational principles that can be applied to novel contexts.






Chapter 4

How Models Learn to Reason
from Code Data

4.1 Overview

In the previous chapter, we discover that LLM reasoning is unlike retrieval
from parametric knowledge and relies on procedural knowledge extracted from
pre-training data. In this chapter, we go one step further and investigate at
what level of abstraction models can acquire knowledge from training data.
Specifically, we ask whether models learn to execute procedures on novel
inputs from exposure to abstract procedural representations alone, without ever
seeing input-output examples for those specific procedures. This would clearly
demonstrate generalisation from explicit procedural knowledge encountered in
the training data — i.e. abstract, input-independent instructions such as code
and mathematical formulas — to implicit use of this procedural knowledge at

inference time, when these procedures are applied in specific contexts.

Code provides an ideal domain for studying this type of generalisation, as it
naturally distinguishes between explicit and implicit procedural knowledge:
source code represents input-general procedures, while program evaluations (i.e.
execution traces) reveal how these procedures unfold step-by-step for specific
inputs. Moreover, exposure to code has been increasingly recognised as a key
driver of LLMs’ reasoning abilities [Ary+24; PPF25]. Yet, a fundamental
question remains unresolved: does code allow LLMs to internalise algorithmic
abstractions that can be reused for reasoning across tasks, or does it simply
offer a more concentrated form of logical reasoning compared to other forms of
data?
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Figure 4.1: When LLMs are fine-tuned to auto-regressively predict source tokens for

previously unseen programs, the ability to evaluate these programs for
inputs also emerges, provided they are separately trained on I1/O pairs
for different programs. We call this Programming by Backprop (PBB),
and demonstrate it on three datasets: random arithmetic programs,
Leetcode programs, and custom ciphers. Models can learn to evaluate
programs implicitly, executing multiple lines of code in the forward
pass, as well as by using chain-of-thought reasoning. Generalisation
happens to later seen code (Proactive-PBB) as well as earlier seen code
(Retroactive-PBB), but the latter mainly if reinforcement learning is
used. In this Figure, we use ‘Group A’ to refer to w/ IO programs
(trained on as both code and 1/0O pairs), and ‘Group B’ to refer to w/o
IO programs (trained on only as code, before testing on I/O pairs).

Our findings, summarised in Figure 4.1, demonstrate that training LLMs to

evaluate programs, either a-priori through an SFT stage with programs and
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evaluations, or a-posterior: through RL on program evaluations, allows LLMs
to evaluate programs they have only seen presented as source code, even when
they are from a different domain. These findings reveal a generalisation from
abstract source code to concrete applications, indicating a more sophisticated

form of computational abstraction than previously documented.

4.2 LLMs as Interpreters: Programming LLMs
by Training on Code

We study the extent to which LLMs behave as interpreters, evaluating programs
that appear in their training data without 1/O examples. To do so, the LLM
must learn to perform input-specific execution of input-general procedures
that are learned via next-token prediction — a process we call Programming
by Backprop (PBB). Successful PBB implies that an LLM has not simply
memorised the program’s source code, but learned generalisable representations
of the procedure it encodes at different levels of abstraction. We investigate

PBB in the context of controlled fine-tuning experiments on pre-trained LLMs.

Consider a dataset of programs Deyge = (Dw/ 10 puw/e IO). We also define a

code 1’ ~code

dataset of 1/O pairs Degee = (DZ2M D) associated with the functions in

exec ) exec

Deode- DS is the subset of 1/O pairs we hold out and on which we test an

exec

LLM’s ability to evaluate the programs in D:(I)/d(; 10, D:é)/delo and DTN therefore
facilitate learning a correspondence between program source code and program
evaluations that may transfer to other programs the LLM has previously been

or will later be trained on. Depending on whether or not chain-of-thought is

train
exec

used for inference, D can feature outputs that include a chain-of-thought

reflecting the entire program evaluation or simply the final output.

With this setup, we propose two approaches to eliciting PBB. The first, called
Proactive-PBB, is a two-stage SF'T pipeline (Algorithm 1). The first stage
uses a mixture of programs and corresponding I/O pairs, priming the model to
implicitly learn to evaluate programs seen in future training data. In the sec-

ond stage, the resulting model is trained on other programs as source code alone.

The second approach, which we call Retroactive-PBB, is summarised in Al-
gorithm 2. It consists of a first stage in which the model is trained via SF'T

on program source code alone, followed by a second stage of RL for program
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Algorithm 1 Proactive-PBB

1: Deode = (Dw/ 10 pu/o IO) := Dataset of program source code

code 7 “code
2: Deyec = (DN D) .= Dataset of I/O pairs

3: Mypase := pre-trained LLM
4 Mager = SFT(Mupase, (D210, Dixein)y - // - Proactively learn code-1/O

code  “exec
relationship
5 Mgtage-2 = SET(Mgtage1, D:f(})/doelo) // Implicitly learn I/O mapping for
new code

6: Metric = Accuracy(Mstage2, DEE!)

exec

w/ 10

code

stage enables the model to retroactively learn a general correspondence between

evaluation on the programs from D via chain-of-thought'. This second
learned code and input-specific problems. As demonstrated in Section 4.4, we

find that RL is able to elicit this retroactive generalisation much better than
SET.

Algorithm 2 Retroactive-PBB
L Mgage1 = SFT(Mbpase; Deode) // Learn new code

2 Mtage2 = RL(Mggage 1, DY) /) Retroactively learn code-I/O relation-

exec

ship
3: Metric = Accuracy(Mstage2, DEE!)

exec

4.3 Experimental Setup
4.3.1 Datasets

To empirically investigate PBB with LLMs, we generate several synthetic
datasets ranging from arbitrary Python programs to real-world algorithmic
reasoning problems. We create the following three datasets, each of which we

open-source to facilitate future research:

e Random Arithmetic: randomly generated programs of varying length

involving standard arithmetic and control flow.

'We do not test Retroactive-PBB without chain-of-thought inference, as we use RL
fine-tuning.
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e Leetcode: common algorithmic challenges found on competitive pro-
gramming platforms, taken from an open-source dataset of Leetcode

problems [HFg].
e Ciphers: custom encryption algorithms.

Each dataset includes programs as source code with a series of associated word
problems representing the input/output pairs that assess the ability to evaluate
the relevant program. Our focus is on generalisation from code, learned via
SFT, to the word problems. At test time, the model needs to parametrically
‘retrieve’ the program learned via SF'T and evaluate it step-by-step for inputs.
Across all datasets, each word problem features a direct and chain-of-thought
solution. Chain-of-thought reasoning is generated in a post-rationalised manner,
using GPT-4o conditioned on the respective algorithm and the answer itself.
All training datapoints are formatted as prompt-response pairs, meaning
that program source code appears as a response to a prompt requesting an

implementation of the program. Detailed descriptions of each dataset follow.

Random Arithmetic. This dataset includes 1000 unique Python programs
synthetically generated to map integer inputs to integer outputs. Programs
are constructed by composing fundamental Python control flow structures (e.g.
for loops, if / else conditionals) with a set of standard algebraic operators
(addition +, subtraction -, multiplication *, integer division //, modulo %,
comparison >, <, exponentiation exp, and absolute value abs). Each program
is categorised by its length, measured as the maximum number of operations
executed for any input within the specified range. The dataset maintains a
uniform distribution of programs across lengths. For each program, we provide
100 I/O word problems, 10 of which are reserved for test, with inputs spanning

the integer range [—50, 50).

Leetcode. This dataset consists of 702 Leetcode problems and their Python
solutions. Problems range from easy to hard and have been filtered to ensure
that each solution is a single function. For each Leetcode problem, we use
GPT-40 to generate 20 word problems, 10 of which are reserved for test. The
ground truth final solutions to these word problems are procedurally generated

by running the relevant source code on the correct inputs.
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Ciphers. To construct this dataset, we first take three common ciphers: Caesar,
Atbash, and Vigenere. We then augment each real cipher, forming three custom

ciphers:

e Alice: Similar to a Caesar cipher, but the index of each letter in the
plaintext is added to the shift for that letter.

e Bob: Similar to an Atbash cipher, but each letter in the plaintext is
replaced by its opposite letter in a shifted alphabet.

e Kevin: Similar to a Vigenere cipher, but the shift associated with a letter
in the key is added to the corresponding plaintext letter if that shift is

even and subtracted if it is odd.

Each cipher is parameterised by an integer shift and the Kevin cipher addi-
tionally takes a text key parameter. These custom ciphers allow us to perform
controlled evaluation of an LLM’s ability to do encryption for a cipher that we
can reasonably assume is not within its pre-training data. For each cipher, we
generate 400 encryption problems, 300 of which are reserved for test. The test

split for this dataset is much larger because there are far fewer programs.

4.3.2 Training Details

Below, we provide the main training details for experiments on each dataset.
Further implementation details and hyperparameters are included in Appendix
C.1. For each experiment, we perform evaluation across 16 generations per
problem, sampled with temperature 0.8, and we report 95% confidence intervals
over these. Due to computational constraints, all training is done for a single

seed.

Random Arithmetic. For our main experiment, each group of programs
(w/ IO and w/o 10) consists of 100 functions, but we also explore the im-
pact of data scaling in Appendix C.2. The 10 test word problems for each
w/o IO program are used for final evaluation. We use the 1B, 3B, and 8B

instruction-tuned models from the Llama 3 series [Dub+24] as the base models.

For Proactive-PBB, each of the 90 train word problems for w/ IO programs
are used in stage 1 training. Each function definition appears in the training
data 30 times, with different augmentations being applied to the prompt (e.g.

“Provide a Python function that applies <program name> to a number.”) and
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response preamble (e.g. “Here is a function that accomplishes that: <source
code>"). These augmentations ensure that the same code appears as a number
of distinct datapoints, which we find is crucial for eliciting program distillation
(Figure 4.2 left). To preserve instruction-following capabilities during stage
2 (code-only fine-tuning) we mixed in 1000 MathInstruct samples [Tos+24],
which proves crucial for eliciting successful program evaluation. Each SFT

stage involves a single epoch over the appropriate data.

For Retroactive-PBB, given that stage 2 is done with RL, we only consider
chain-of-thought program evaluation. For the RL stage, we use GRPO [Sha+24]
with a group size of 6 and batch size of 6, meaning that each batch consists of
a single group. We therefore use only 15 I/O pairs (90/6) per w/ IO program
for RL training. This is so that we can make a fair comparison to instead

using SE'T for stage 2, where we only train on a single chain-of-thought per input.

Leetcode. For Leetcode experiments, 500 randomly selected programs are
used as the w/ 10 group and 100 as the w/o IO group. Other aspects of the

training setup are the same as above.

Ciphers. We use the ciphers dataset to evaluate transfer of the ability to
evaluate programs for inputs across different algorithmic domains. We perform
stage 1 of Proactive-PBB on Leetcode data (w/ I0) and then perform stage 2
on the cipher source code (w/ I0).

Our use of ciphers is motivated by McCoy et al. [McC+24], who show that
LLMs, having learned to use ciphers to encrypt text from naturally occurring
examples in pre-training data, are biased by the uneven distribution of algo-
rithmic parameters in these examples — a phenomenon termed the ‘embers
of autoregression’. Given that program distillation opens the door to learning
programs such as ciphers from their source code alone, we investigate whether
it can overcome these embers. We therefore also create a dataset of encryption
problems and correct chain-of-thought responses, where the shift parameter
used in each cipher is drawn from a Gaussian distribution with mean 13 and
standard deviation 2 (mirroring the fact that ROT13 is a far more frequently oc-
curring shift in real-world data). The frequencies of sampled shifts are reported
in Appendix C.5. We then perform SFT on this biased dataset of examples and

compare the test execution accuracy to that obtained by Proactive-PBB (stage
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1 on Leetcode, stage 2 on Ciphers). For this experiment, we fine-tune GPT-40
via the OpenAl fine-tuning API, as we find that L1ama-3.1-8B-Instruct is
unable to perform accurate encryption for the ciphers we consider, even when

trained on many examples.

4.4 Results

In this section, we discuss the results of our experiments. The main overarching
finding is that generalisation from autoregressive next-token prediction on
abstract source code to concrete applications of these programs for input-output
pairs happens, provided models are separately trained on concrete applications
of a different set of program source codes (which may be of a different domain).
We start by discussing the results on the random arithmetic dataset, followed
by experiments testing generalisation from evaluating Leetcode programs to

cipher algorithms.

4.4.1 Random Arithmetic Results

Finding 1: Generalisation from abstract source code to concrete
applications improves with model scale, and drops off with program
length.

We first evaluate how well models of different scales use Proactive-PBB to
learn to evaluate the random arithmetic programs for which no word problems
(and hence, no input-output pairs) have appeared in training. These results

are in Figure 4.1 (bottom left). We observe that the ability to solve problems
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Figure 4.2: Left: Accuracy of Llama-3.1-8B-Instruct following Proactive-PBB
on evaluating w/o IO random arithmetic programs represented as
natural language or code. The use of data augmentation is also ablated.
Right: Accuracy of different models following Proactive-PBB for
compositions of two programs that have been trained on independently.



4.4. Results 51

by evaluating these programs improves with model scale. This is the case
both when the model can do so in-context via chain-of-thought and when the
model has to directly output the answer, implicitly evaluating the program
in the forward pass. For both forms of inference, shorter programs are easier
to program into the model. At the 1B model scale, there is little to no
capacity for implicit program evaluation. For the 3B and 8B models, the
accuracy—program length curves are flatter for chain-of-thought evaluation,
indicating that explicit reasoning increases the capacity for these models to
handle successive computational operations. In Appendix C.3, we show that
the two-stage approach of Proactive-PBB means that the same piece of code
from D;“';/d‘; 10" can appear fewer times in the training data than if the data
is mixed in a single fine-tuning stage. This suggests that a data curriculum
encouraging a general code-1/0 relationship to be learned proactively enables
more efficient learning of program evaluation for programs seen only as source

code.

Finding 2: Generalisation from abstract programs to concrete
applications works better if programs are represented in code rather
than equivalent natural language descriptions.

We next investigate the impact of how programs are represented in train-
ing data on the effectiveness of Proactive-PBB. We do so by training on
semantically equivalent natural language program descriptions instead of code
functions (example included in Appendix C.6). In Figure 4.2 (left), we see that
Llama-3.1-8B-Instruct is much better at being programmed with code than
with natural language descriptions, despite the fact that the programs are also
perfectly described in natural language. This could indicate that the structure
and syntax of code enables LLMs to more easily internalise the algorithmic
abstractions it represents. However, given that we only investigate PBB at the
fine-tuning stage, it is unclear to what extent this result is due to an emphasis

on code training in the construction of the base model.

Finding 3: Presenting the same piece of code with multiple prompt
augmentations is crucial for the generalisation from source code to
applications to happen.

We also ablate the use of prompt and response preamble augmentations,
shown in Figure 4.2 (left). We find that the augmentations used to create

multiple distinct datapoints with the same program source code is essential.
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Figure 4.3: Left: Accuracy of Llama-3.1-8B-Instruct following each stage of
Proactive-PBB on evaluating w/o IO Leetcode programs. Right:
Accuracy of different models at evaluating w/o IO Leetcode programs
following Retroactive-PBB.

Berglund et al. [Ber+23] similarly find data augmentations to be useful for

out-of-context-reasoning (of which the generalisation discovered here is an

example, discussed below in Section 4.5), however our results show additionally

that it is not necessary to augment the source code itself: simply augmenting

the prompt and the response text preceding the source code is enough.

Finding 4: Generalisation from training on source code to appli-
cations of compositions of these source codes also happens. For
the Llama models, this only works if they are allowed to use chain-
of-thought at inference time, but GPT-4o0 can sometimes evaluate
compositions of programs entirely within its weights.

We also study the effectiveness of Proactive-PBB on composite functions. Here,
the set of programs seen only as code includes functions defined as the compo-
sition of two of the original random arithmetic functions. E.g. the composition

of zibble and foo from Figure 4.1 would appear as follows:

def bar(x):
return zibble(foo(x))

For a given task, the model must therefore parametrically retrieve the composite
function definition, as well as both of the functions being composed, so that it
can execute one and use the resulting input for the other. We find that the
Llama models we consider fail to evaluate composite programs implicitly, but
they are sometimes capable of doing so when using chain-of-thought (Figure
4.2 right). We check whether much larger models are capable of evaluat-
ing composite programs implicitly by following the same fine-tuning steps

with GPT-40. Remarkably, GPT-40 demonstrates some ability to successfully
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Figure 4.4: Accuracy of GPT-40 when encrypting text with ciphers trained on only
as code, or when trained on as demonstrated execution traces with
unevenly distributed shifts.

retrieve two programs that were trained on independently and successively
evaluate each, all without producing an explicit chain-of-thought.? As ex-
pected, it can do composite program evaluation much better when it generates
the intermediate reasoning steps. In all cases, we see that composition is
harder when the composite program length is greater, which we attribute to

the likelihood of errors growing as the number of successive operations increases.

Finding 5: Generalisation to applications of earlier-seen program
source codes happens primarily if the second stage of training on
programs with I/0 pairs is done with reinforcement learning.

Finally, we test how well models of different scales use Retroactive-PBB to
learn to evaluate random arithmetic programs previously trained on (Figure
4.1 bottom right). Performance again varies considerably with model scale. We
see that the final performance of the 8B model after fine-tuning with SF'T in
the second stage is surpassed even by the 1B model when RL is used instead.
This is a strong indication that the use of on-policy data in RL is supporting
generalisation, which aligns with hypotheses and findings in prior work [HHG63a;
OCD21; Kir+24; Chu+25]. We investigate this further in Appendix C.4

by running DPO to isolate the roles of learning from negative samples and

2As GPT-4o0 is an API-based model, we cannot be certain that it is not using additional
inference compute.
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learning from on-policy data: whilst DPO considerably outperforms SFT,
GRPO remains the most effective algorithm, indicating that both negative

samples and being on-policy are beneficial.

4.4.2 Leetcode and Cipher Results
Finding 6: When fine-tuned on Leetcode programs and their 1/0

pairs, Llama-3.1-8B-Instruct improves in applications of other
Leetcode programs that must have been seen during pre-training.

In Figure 4.3 (left), we show how the outcome of Proactive-PBB on Leetcode
programs with the 8B model varies with each stage. Note that this is the only
dataset for which all programs likely appear in the pre-training data, and 1/O
pairs for each may appear, even the w/o IO set of programs. The Leetcode
programs are mainly used to investigate generalisation to another set of w/o
10 programs, discussed below. However, we discuss the results on Leetcode
alone first. Stage 1 alone (i.e. w/ IO code and I/O pairs) yields a significant
performance jump when evaluating the w/o 10 programs. Given all of the
Leetcode programs in our dataset are probably within the model’s pre-training
data, some generalisation from stage 1 alone is expected. This result shows that
generalisation from stage 1 to source code seen during pre-training happens,
although it is unclear whether input-output pairs have been seen for these.
We do however observe a further performance increase following stage 2 (w/o
IO code), where the program source code associated with the held-out word

problems is trained on.

In Figure 4.3 (right), we show how test accuracy increases during Retroactive-
PBB for different model scales. Given that zero-shot accuracy is non-zero for
Leetcode word problems, each model also starts at a different initial perfor-
mance following stage 1 SFT. However, we observe that the progress made by
the 3B and 8B model over the course of stage 2 RL is much greater than that
of the 1B model, indicating that its more limited capacity restricts its ability

to generalise to the programs that are only trained on as source code.

Finding 7 € 8: Generalisation from source code to applications
emerges even if the training stage with 1/0 pairs enabling this gen-
eralisation uses programs from another domain. Moreover, teaching

models algorithms in this way leads to a more uniform performance
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across inputs than training on I/0 pairs for the programs.

We report the results for transfer of Leetcode program evaluation abilities to
novel ciphers via Proactive-PBB with GPT-4o0 in Figure 4.4 (‘Train on Code’).
As the ciphers are custom, with made-up names, zero-shot encryption accuracy
prior to fine-tuning is zero. Firstly, we note that, following stage 1 training
on Leetcode programs with I/O pairs, training on the custom ciphers source
code alone is sufficient for the model to encrypt text at reasonable accuracy.
Secondly, when comparing to the performance following training on the dataset
of chain-of-thought solutions with an uneven distribution of shifts (‘Train on
I/O’), we see that PBB yields a much more uniform accuracy across shifts.
This demonstrates that PBB is a promising direction for addressing the ‘embers
of autoregression’. However, the peak performance of training on 1/0 is higher,
indicating that demonstration data is advantageous when there are sufficient
examples for each parameter variation. Whether training on code or 1/0, we
see that performance increases for the smallest and largest shifts, because these

shifts point to letters that are close to the original in the alphabet.

4.5 Related Work

Training LLMs on code. Code is a standard part of most pre-training
corpora [Dub+24; Gem+25; Coh+25; Qwe+25, inter alia] and believed to be
an important contribution to general-purpose reasoning abilities. Although
this is mostly conventional wisdom, some prior work has shown that training
on code positively transfers to downstream tasks [Ary+24]. Further, Petty,
Steenkiste, and Linzen [PSL24| hypothesise that compositionality in code helps
with learning to generate structured outputs and mathematical reasoning,
presenting experimental results supporting this. In this work, we hypothesise
code has the complimentary advantage of explicitly representing procedures

that can be reused (i.e. implicitly executed) for step-by-step reasoning problems.

Out-of-context reasoning. Our work has deep connections to the growing
body of work that investigates out-of-context reasoning (OOCR) in LLMs
[AL23; Ber+23; Tre+24; Bet+25b; Bet+25a]. This can be loosely defined as
an LLM’s ability to infer knowledge implicit within its training data and apply
that knowledge downstream, without in-context demonstrations. We consider
program source code and show that training on this allows models to encode
knowledge of how to compute outputs for specific inputs. A second way in which

our setting evaluates OOCR is the ability of models to accurately generate
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outputs for a program seen in its training data by executing it implicitly for
specific inputs entirely within its weights (no chain-of-thought reasoning). Prior
to LLMs being developed, Zaremba and Sutskever [ZS15] study the ability of
LSTMs trained from scratch to execute programs adding two 9-digit numbers
in one forward pass through the model. Wang et al. [Wan+24b] study similar
implicit reasoning behaviours in grokked transformers, where the training data
containes I1/O samples rather than explicit procedures. Krasheninnikov et al.
[Kra+24] investigate a phenomenon similar to OOCR that occurs during the
training process itself, which they refer to as implicit meta-learning. Similarly
to our work, they use a two-stage fine-tuning process to first train an LLM to
learn associations between aspects of the data (in their case, tokens implicitly
indicating truthfulness, in ours, function definitions and calls), and then further
train the LLM such that its learning will be informed by those associations.
Lampinen et al. [Lam+25] investigate distilling in-context reasoning abilities
into OOCR abilities. Our work similarly considers problems where LLMs
generalise in-context information more effectively than information that has

only appeared in their training data.

Emergence of algorithmic reasoning. Previous research into the emergence
of algorithmic reasoning during training has revealed a number insights. By
training on search traces, Gandhi et al. [Gan+24] show that language mod-
els can learn to emulate the search process, thus demonstrating algorithm
distillation [Las+23] via next-token prediction. By training transformers on
variable dereferencing problems, Wu, Geiger, and Milliere [WGM25] illuminate
three distinct phases of learning, as models transition from using heuristics
to implementing systematic variable binding. Meanwhile, some prior work
illuminates critical failures in the algorithmic reasoning of language models.
Through mechanistic interpretability experiments, Nikankin et al. [Nik+25]
find that language models may use heuristics to solve arithmetic problems,
rather than doing so algorithmically. Shojaee et al. [Sho+25] similarly show
that LLMs fail to use explicit algorithms and reason inconsistently. Perhaps
relatedly, McCoy et al. [McC+24] reveal that LLMs suffer from the ‘embers
of autoregression’, causing their outputs on algorithmic tasks to depend on
the probability of the inputs, algorithms, outputs under the pre-training data
distribution. Finally, Thomm et al. [Tho+24] show that language models can

fail to compose algorithms they have learned independently. This is in contrast
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to our finding that LLMs can in fact do so for algorithms independently learned
through backpropagation (Figure 4.2, right).

4.6 Discussion, Limitations, and Future Work

This chapter demonstrates that LLMs develop reusable algorithmic abstrac-
tions from code training, providing an explanation for how training on code
may lead to improved general-purpose reasoning. Importantly, we do not
argue our fine-tuning experiments themselves confer novel reasoning abilities;
rather, we demonstrate how fine-tuning on code might provide models with
abstractions they can leverage at inference time — even without accompanying

I/O demonstrations. Several limitations warrant discussion.

Synthetic datasets. We deliberately construct datasets featuring novel algo-
rithms, composed of random or synthetically chosen sequences of operations,
to minimise overlap with the model’s pre-training corpus. This controlled
approach provides a compelling story for how models might improve their
reasoning abilities, since real-world algorithms can similarly be broken down
into sequences of basic operations like the ones in our datasets. Whilst our
experiments on Leetcode problems and ciphers take steps towards real-world
domains, the application of this approach to more complex practical algorithms

presents a promising avenue for future research.

Limited performance on program evaluation. Although we convincingly
demonstrate even small models can be programmed by backpropagation, the
performance is still limited. Future work can investigate how we can obtain
models that are more amenable to being programmed, perhaps by incorporating

procedurally generated source code — I/O data mixtures into pre-training.

Fine-tuning vs pre-training. Our experiments are conducted in a controlled
fine-tuning regime. The inductive biases of this setup differ from those of
large-scale pre-training, and it is not clear to what degree models internalise
reusable algorithmic abstractions during pre-training. Nonetheless, we believe
similar mechanisms may be at play during pre-training, as the data is likely
to contain many copies of common algorithms and corresponding execution
traces for at least some of them. Further, our results showing transfer from one

domain of programs to another make Programming by Backprop from natural
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pre-training data more likely.

Future work. Our work leaves open many questions about whether and
how transfer from program generation to program evaluation manifests during
pre-training, as well as potential ways to exploit the idea for model training.
For example, do models indeed internalise reusable and relevant abstractions
from code during pre-training, like those encoded by search or planning algo-
rithms? Further, can we generate synthetic program source code that aids
internalisation of useful abstractions? If so, a single LLM could in principle
be used to generate and internalise novel programs in a loop similar to those
that maintain an external database of programs [Nov+25]. Finally, we find
that Programming by Backprop is much more effective from code data than
semantically equivalent programs described in natural language. This spurs
interesting questions about what makes code special, and whether this insight
can be further exploited besides reasoning problems. For instance, can we align

models to constitutional principles if these are presented symbolically?

This and the previous chapter together demonstrate that LLMs can acquire
generalisable mathematical and algorithmic principles from pre- and post-
training and apply these in novel contexts. Chapter 3 demonstrates that even
if the answers to reasoning steps appear in the pre-training data, it does not
mean the model is relying on them to produce reasoning chains. In fact, their
generalisation strategy looks entirely different than factual retrieval. This
chapter further confirms that models can generalise from program generation
to program evaluation, demonstrating that the procedural knowledge models
acquire during auto-regressive training abstracts away from specific inputs.
However, the types of reasoning studied in these chapters are both formal,
underlying strict axioms and logic. The next chapters investigate a different

type of reasoning where objective standards of correctness are not well-defined.



Chapter 5

A Case Study in Social

Reasoning: Pragmatics

5.1 Overview

The reasoning tasks examined in the previous two chapters feature objectively
correct steps and answers, providing an ideal testing ground for determining
whether models rely on training data exposure to the answers and for under-
standing the levels of abstraction across which models can generalise. However,
a more complete characterisation of LLM reasoning requires investigating tasks
that humans perform naturally but for which correctness depends on social
consensus rather than logical necessity. To this end we turn to social reasoning

in the next two chapters, starting with pragmatic language understanding.

Consider the following exchange:

Esther: “Can you come to my party on Friday?”

Juan: “I have to work.”

Meaning in language is not only determined by a combination of words,
but also context, beliefs, and social institutions [Wit53; Gri75; Hual7]. We
resolve Juan’s response as him declining the invitation by using the contextual
commonsense knowledge that having to work on a Friday night precludes
attendance. This exchange contains an implicature — utterances that convey
something other than their literal meaning.! Implicatures illustrate how context
contributes to meaning; distinguishing writing and speaking from communi-
cating [Gre96]. We cannot fully understand utterances without understanding

their implications. Being able to resolve completely novel implicatures and,

In Appendix D.1 we present an introduction to implicature.
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Figure 5.1: A schematic depiction of the protocol we propose to evaluate whether
language models can resolve implicatures. Each example in the test
set gets wrapped in templates and transformed into an incoherent
example by swapping “yes” and “no”. The model is said to resolve the
implicature if it assigns a higher likelihood to the coherent text than
the incoherent text.

more broadly, engage in pragmatic understanding constitutes an essential and

ubiquitous aspect of our every day use of language.

This raises an important question: to what extent can large language models
resolve conversational implicature? To answer this question we use a public
dataset of conversational implicatures and propose an evaluation protocol on
top of it (Figure 5.1). We evaluate a range of models that can be categorised
into four groups; large-scale pre-trained models, like OPT [Zha+22], LLMs
fine-tuned on conversational data, like BlenderBot [Ng+19], LLMs fine-tuned
on common NLP benchmarks with natural instructions for each benchmark,
like Flan-T5 [Chu+22], and LLMs fine-tuned on tasks with natural instructions
for each example, e.g. versions of OpenAl’s InstructGPT-3 series®. Our results
show that implicature resolution is a challenging task for LLMs. All base models
obtain close to random zero-shot accuracy (around 60%), whereas humans
obtain 86%. Base models’ performance improves with model scale and with
few-shot in-context examples. However, our results suggest that instruction-
tuning at the example level is important for pragmatic understanding. Models
fine-tuned with this method perform much better than others, and analysis
of different model sizes shows that they have the best scaling properties. We

further push performance for these models with chain-of-thought prompting,

2The precise method is unpublished and differs from the original instructGPT [Ouy+22].
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and find that one model in the group (GPT-4) reaches human-level performance.
In summary, we conclude that human-like pragmatic understanding has not yet
arisen from large-scale pre-training on its own, but scaling analysis shows that it
might for much larger scale. Fine-tuning on conversational data or benchmark-
level instructions does not produce models with pragmatic understanding.
However, fine-tuning on instructions at the example-level is a fruitful path

towards more useful models of human discourse.

5.2 FEvaluation Protocol

Here we outline the evaluation protocol we use to answer the question “To
what extent can LLMs resolve conversational implicature?”. We focus on
binary implicatures that imply “yes” or “no” (see Figure 5.1). We say a model
resolves an implicature correctly if it assigns higher likelihood to a coherent

utterance than a similar but incoherent one, detailed below.

Zero-shot evaluation. Consider the example from the introduction packed

into a single utterance:

Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

We can transform this example to be pragmatically incoherent (in the sense
that it will become pragmatically inconsistent with expected use) by replacing

the word “no” with “yes”:

Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

To resolve the implicature, the model should assign higher likelihood to the first
of the two sentences above, namely the most coherent one. Importantly, both
sentences have exactly the same words except for the binary implicature “yes”
or “no”, making the assigned likelihood scores directly comparable. Formally,
let the coherent prompt be y and the augmented, incoherent prompt be 3. A
model outputs a likelihood p parameterised by weights 8. We say a model
correctly resolves an example y when it assigns pg (y) > pe (). This is equiva-
lent to evaluating whether the model assigns a higher likelihood to the correct
continuation of the two options. Note that this is a more lenient evaluation
protocol than sometimes used for language models, where models are evaluated

on on their ability to generate the correct continuation, in this case “no”. The
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¢

greedy decoding approach (evaluating whether “yes” or “no” is generated) is
also captured by our approach, but we additionally label an example correct if
“no” is not the highest assigned likelihood, but still higher than “yes”. We did
not opt for greedy decoding because “no” is not the only coherent continuation
here, and marginalising over all possible correct continuations is intractable.
The more lenient evaluation does capture implicature resolution, because
the choice of “no” versus “yes” is only determined by the resolution of the
implicature. We guide the models to output “yes” or “no” explicitly in three of
the six prompt templates with instructions, such that we can estimate the effect
of this guidance on performance. For two model classes (i.e. GPT-3.5-turbo
and GPT-4) we do not have access to likelihoods, and for these models we
take the greedy decoding approach, guiding the model to output “yes” or “no”
explicitly in all prompts (see Table D.2 in Appendix D.2).

We use a dataset of conversational implicatures curated by George and Mamidi
[GM20].° Tt contains implicatures that, like in Figure 5.1, are presented in
utterance-response-implicature tuples. Of these, 718 are binary implicatures
that we can convert into an incoherent sentence. We randomly sample 600
examples for the test set and keep the remaining 118 as a development set to
improve implicature resolution after pre-training through in-context prompting

or fine-tuning.

Few-shot in-context evaluation. We add k examples of the task to the

prompt, e.g. with k = 2:
Esther asked “Have you found him yet?” and Juan responded
“They’re still looking”, which means no.

Esther asked “Are you having fun?” and Juan responded “Is the

pope Catholic?”, which means yes.
Finish the following sentence:
Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

We evaluate the models’ k-shot capabilities for & € {1, 5, 10, 15,30} by randomly
sampling k£ examples from the development set for each test example. We

opt for a random sampling approach to control for two sources of randomness.

3Published under a CC BY 4.0 license.
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Firstly, examples have different levels of informativeness. Secondly, recent
work found that the order in which examples are presented matters [Lu+22].
Ideally, to marginalise over these random factors, we would evaluate each

test example with all permutations of £ examples from the development set.

118!
(118—k)!

Instead, we estimate performance per test example by randomly sampling

This requires evaluations for each test example, which is intractable.
from the development set. In this way we control for some of the variance in
performance, but avoid extra evaluations. We ensure each model sees the same

few-shot examples per test example.

Controlling for prompt sensitivity. It has been shown language models are
sensitive to prompt wording [EL20; Tan+21; RM21a; WP21]. To control for
this factor of randomness we manually curate six different template prompts
and measure performance across these. One of the templates has been presented
above, namely “Esther asked <utterance> and Juan responded <response>,
which means <implicature>". Another template is: “Question: <utterance>,
response: <response>, meaning: <implicature>". The former we call natural
prompts and the latter structured prompts. Each group has three templates
that only differ slightly in wording. This grouping allows us to look at the
variance due to slight changes in wording as well as performance difference
due to a completely different way of presenting the example. The full list of
prompts can be found in Appendix D.2.

5.3 Experiments

The set of large language model classes we evaluate can be grouped into four

distinct categories:

1. Base models: large-scale pre-trained models; RoBERTa [Liu+19], BERT
[Dev+18], GPT-2 [Rad+19], EleutherAl [WK21; Bla+22], BLOOM
[Big22], OPT [Zha+22|, Cohere’s base models, and GPT-3 [Bro+20a]

2. Dialogue FT: LLMs fine-tuned on dialogue, BlenderBot [Ng+19].

3. Benchmark IT: LLMs fine-tuned on tasks with natural instructions
for each benchmark or “benchmark-level instruction-tuned models”; T0
[San+22] and Flan-T5 [Chu+22].

4. Fxample IT: LLMs fine-tuned on tasks with natural instructions for

each example or “example-level instruction-tuned models”; a subset of
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OpenAl’s API models and Cohere’s API models). A type of SFT where

both the instructions and the completions are human-written.

Benchmark IT can be seen as a type of SF'T where annotators write a single
instruction for an entire dataset. The models are then fine-tuned on each
example from the dataset with the same instruction. We distinguish this
from example-level IT; the type of SF'T where each example in the dataset
has a human-written instruction and completion, resulting in a more diverse
dataset. Each group contains model classes for which we evaluate a range
of sizes. A detailed categorisation of the models and their attributes can
be found in appendix D.3.* We make use of the OpenAl and Cohere APIs
as well as the pre-trained models in the transformers library [Wol+4-20] and
EleutherAT’s framework to evaluate them [Gao+21]. All code used for this
paper can be found on GitHub” and the dataset is made publicly available on
HuggingFace®. Below, we present zero-shot and few-shot results, discussing
patterns of performance of the models in the four different groups. We further
look at the results for different model sizes of each model class and the variance

over the prompt templates.

We contrast the models’ performance with human performance. To this end,
each test example gets annotated by five humans. We split the test set in
four and assign each annotator a subset, leaving us with twenty annotators in
total. The average human performance is 86.2%, and the best performance is
92%. Some of the errors humans make uncover examples that have multiple
interpretations, and others uncover annotation errors. The nature of the task
of implicature resolution means we do not expect models to perform better
than human best performance. Details on the human experiment can be
found in the Appendix D.4 (also containing an analysis of human errors),
and detailed results per model and prompt template in Appendix D.7.10.
We also test for spurious correlations present in the benchmark (like lexical
cues the model can rely on, Appendix D.7.8). We do this by running the
benchmark using utterance- or response-only examples, finding that models
mostly perform random for the former, and are able to resolve response-only

implicatures with about 65.5% accuracy (resolving implicatures with responses

4Note that there are several important aspects unknown for models behind APIs, like
OpenAl’s model sizes.

Shttps://github.com/LauraRuis/do-pigs-fly

Shttps://huggingface.co/datasets/UCL-DARK/ludwig
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such as “do fish swim?”). The findings from this experiment additionally

serve as a test for memorisation; if the models had memorised the bench-

mark they would likely perform above random in the utterance-only experiment.

Table 5.1: The k-shot accuracy (k € {0,1,5}) for the best performing model of each
class. For each model, we select the model size to show by choosing the
one that achieves the best 5-shot performance. The std is over prompt
templates for the models and over annotators for humans. FT stands
for fine-tuning and IT for instruction-tuning. We find that the models
in the Fxample IT class obtain significantly higher performance than
all others. * means size unknown.

Model 0-shot 1-shot 5-shot
Baseline Random 50%
Topline Human avg. 86.2% + 2.3
BERT-110M 54.8% 4+ 1.6 51.7% + 1.7 53.3% + 2.2
RoBERTa-355M 55.6% + 2.0 54.1% + 0.9 57.1% + 1.5
GPT-2-x1 51.3% + 2.9 57.4% + 3.3 57.7% + 1.1
Base models EleutherAI-20B 57.5% + 3.3 55.9% + 2.3 61.1% + 4.9
BLOOM-176B 54.2% 4+ 1.2 61.1% + 2.7 65.4% + 3.4
OPT-13B 61.0% + 5.5 60.6% + 2.7 67.4% + 2.1
Cohere-52B 58.5% =+ 4.0 63.0% =+ 3.8 65.1% + 2.9
GPT-3-175B 57.7% + 4.4 65.7% + 1.4 68.7% + 1.5
Dialogue FT BlenderBot-2.7B 53.4% + 0.3 53.3% + 0.1 53.3% + 0.1
Benchmark IT TO0-11B 55.6% + 7.0 47.8% + 0.5 47.0% + 0.2
Flan-T5-11B 60.8% + 2.4 57.4% + 5.0 61.7% + 4.8
Example IT text-davinci-001-% 72.3% + 2.8 72.7% + 1.3 74.5% + 1.0
p text-davinci-002-x 70.6% + 2.3 75.6% + 2.8 79.6% + 2.0
text-davinci-003-% 71.2% 4+ 2.8 74.3% + 1.4 79.7% + 0.6
ChatGPT-x 72.1% 4+ 5.9 75.1% + 1.5 73.9% + 6.3
GPT-4-% 81.8% + 1.8 82.3% +1.4 82.0% + 1.7
Cohere-command-52B 60.2% + 5.2 72.8% + 1.3 75.4% + 1.8

Finding 1: Models instruction-tuned at the example level outper-
form all others.

Table 5.1 shows the best 0-, 1-, and 5-shot accuracy each model class achieved
on the implicature task. The best overall accuracy is achieved by GPT-4 (the
size of this model is unknown) at 82.3% + 1.4. This leaves a gap of 3.9% with
human average performance. All models in the class Example IT perform
significantly better than any of the other models for all k, except Cohere-
command-52B at 0-shot. This result is more clearly seen in Figure 5.2, where
we present the average accuracy for each model group. The performance for the
other model classes across k ranges from 47.0% by BlenderBot-2.7b at k =5
and 68.7% by GPT-3-175b at k = 5. Even though base models benefit from
few-shot examples, their performance remains mostly closer to random than

to humans for all k, showing a gap of at least 17.5% with the average human.
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Figure 5.2: The few-shot accuracy for the best model of each class (e.g. the best
performing model in the class Cohere-command is the 52B model,
whereas the best model in the class OPT is the 13b model). The bars
show the group means. Models fine-tuned on example-level instructions
perform better than most other models, especially for k£ > 0. For all
models there is a significant gap between best accuracy and human
accuracy (which is 86.2%). * means size unknown.

We observe a decrease in performance for £ > 0 for the group Benchmark
IT. This is not surprising, as these kind of models are specifically fine-tuned
to be better at zero-shot generalisation [San+22; Chu+22]. BlenderBot, in
the group Dialogue FT, performs barely better than random for all k. We
hypothesise that the lower performance which Cohere-command-52B achieves
0-shot is not due to a lack of implicature understanding, but due to a failure to
calibrate the yes/no likelihoods without examples. For this model, we observe
a sharp rise in performance from k£ = 0 to k = 1 (see Table 5.1 or Figure
5.2). Since it is unlikely that one example of an implicature induces pragmatic
understanding, we hypothesise that few-shot prompting mostly serves to clarify
the task format. We test this hypothesis in Appendix D.7.6 by repeating
the 1- and 5-shot experiment with random labels for Cohere-command-52B
and text-davinci-001. We find that the performance does not degrade, which
confirms that the few-shot examples mainly serve to prime the model towards

producing outputs following the yes/no structure.
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Finding 2: The results are robust to different prompt templates.

As detailed in Section 3, each example in the test set is wrapped in six different
prompt templates. The standard deviation in Table 5.1 and in Figure 5.2
shows the sensitivity to different prompt wording. The standard deviation
ranges from 0.3 for BlenderBot to 7.0 for T0-11B. All in all, the sensitivity to
prompt wording does not seem to be a problem for this task; when taking into
account the confidence intervals the result remains that models in the group
Example IT perform significantly better than all other models, but worse than
humans. In Appendix D.7.4 another analysis is presented that shows how
different prompt templates benefit from in-context examples. The takeaway
from the analysis is that few-shot prompting can mitigate the fact that some
models are better at natural prompts and others better at structured prompts
by improving performance on the type of prompt the model struggles with
zero-shot. Again, when only looking at the best prompt type for each model
class (i.e. structured or natural), the results remain that models in the group

Ezample IT perform best.

Finding 3: Models instruction-tuned at the example-level have the
most favourable scaling properties, but some base models also show
positive correlation with scale.

Figure 5.3 shows the scaling behaviour of the model classes for which we know
the number of non-embedding parameters. We highlight 0- and 5-shot results,
because for k > 5 the accuracy of most models plateaus (see Figure 5.2). How-
ever, detailed results for other k can be found in Appendix D.7.10. Note that we
do not know the number of parameters for OpenAl’s ‘text-<engine>-001"-series,
but we do know the order of the engines in size, and we separately present
its scaling results in Table 5.2. Except OpenAl’s ‘text-<engine>-001’-series,
none of the models show significant performance increase with model size for
the O-shot evaluations. However, for k-shot evaluations with £ > 1 we observe
significant positive correlation with size for the models in the Ezample IT class
for which we have multiple sizes (Cohere-command and ‘text-<engine>-001)
as well as some models in the base model class. Not only do the models in
the Erample IT class exhibit higher performance for the same model size,
these models also have a steeper performance increase with size than the base
models. Comparing the scaling properties of the best base model (GPT-3) with
Cohere-command, we see that the increase in performance from the second-

largest to the largest model is 0.04% per billion parameters from GPT-3-6.7B
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Figure 5.3: Scaling results for the model classes of which we know the number of
non-embedding parameters. The error bars show standard deviation
over prompt templates. Cohere’s command models instruction-tuned
at the example-level perform better than all other models. For all
models there is still a significant gap between best accuracy and human
accuracy.

Table 5.2: Scaling results for OpenAT’s text-< engine>-001-series, for which we do
not know the number of non-embedding parameters but do know the
ordering in terms of size. The colors indicate whether going up in size
(from left-to-right) increases performance significantly or

Engine Ada Babbage Curie Davinci

0-shot  56.5% + 5.8 64.5% =& 1.8 (+8.0%) 69.0% = 2.9 (+4.5%) 72.3% =+ 2.8
5-shot  57.6% + 2.8 66.1% % 0.3 (+8.5%) 71.3% + 1.3 (+5.2%)  74.5% =+ 1.0 (+4.0%)

to GPT-3-175B and 0.15% per billion parameters for Cohere-command-6B
to Cohere-command-52B (exact numbers used to calculate the slope can be
found in Appendix D.7.10). If performance is linearly extrapolated from this
curve GPT-3 reaches human-level performance at 642b parameters where

Cohere-command would need 125b parameters.

Finding 4: GPT-4 reaches average human-level performance with
chain-of-thought prompting.

For the model groups that benefit from in-context examples, we attempt to
push performance further with chain-of-thought prompting. We manually write
a five-shot chain-of-thought prompt for all six prompt templates, and evaluate
model performance using this prompt. One of the six chain-of-thought prompts

can be found in Table D.4 in Appendix D.2, and the other five are provided
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Table 5.3: Results of the chain-of-thought (CoT) experiment for models in the
group Fzample IT. The numbers between brackets show the difference
in performance with the number on the same row one column to the left.
Most models benefit from CoT-prompting, but not all. Additionally,
GPT-4 reaches average human-level performance with CoT prompting.
* means size unknown.

Model 0-shot 5-shot 5-shot CoT
text-davinci-001-x 72.3% + 2.8  74.5% + 1.0 (+2.2%) 67.3% + 2.6 (-7.2%)
text-davinci-002-+ 70.6% + 2.3 79.6% + 2.0 (+9.0%) 80.1% 4+ 0.8
text-davinci-003-x 71.2% £ 28  79.7% + 0.6 (+8.5%) 83.6% £ 0.6 (+4.0%)
ChatGPT-x 72.1% £ 6.0 73.9% £ 6.3 77.2% + 1.0 (+3.3%)
GPT-4-% 81.8% + 1.8 82.0% + 1.7 86.5% + 1.0 (+4.5%)

Cohere-command-52B  60.2% + 5.2 75.4% + 1.8 (+15.2%)  75.3% £+ 0.5

in the supplementary material.” We only present the results for the group
Example IT here, since CoT prompting did not improve performance for two
of the base model classes we tried (see Appendix D.7.7). Consequently, we
decided not to apply this experiment to the other models in the base group
to save compute costs. The results of are shown in Table 5.3. We find that
chain-of-thought prompting does not help for all models, but is nonetheless
able to boost performance of GPT-4 to 86.5% =+ 1.0. This is on-par with
average human-level performance, and slightly below human best performance
at 89.8%. To illustrate how explicit reasoning helps implicature understanding,
we highlight a CoT generated by GPT-4 for an example from the dataset that
models persistently get wrong. “A: Is there a bus I can get to the station? B:
You can’t rely on it”. The implicature is yes, there is a bus, you just cannot
rely on it. GPT-4 five-shot gets this wrong for all six templates. With CoT it
gets it right for five of six templates. The generated CoT for one template is

the following:

Alice says ‘You can’t rely on it.” Alice must be implying that there
is a bus, but it may not be dependable or timely. This means
the response to Bob’s question is yes, but with a caution about

reliability. Answer: yes

More completions can be found in Appendix D.6.

Finding 5: Models often struggle with the same type of examples

humans struggle with.

"Which can be find at https://openreview.net/forum?id=5bWW9Eop71.
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Table 5.4: An example from the dataset for two types of implicature found in
the test set. The rightmost column shows the amount of that type we
manually found in the test set.

Type Example Utterance Example Response Impl. #
Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’'ve gotta get up early. No. 94

We manually labeled 217 examples of the 600 examples in the test set according
to a taxonomy. The remaining 383 examples do not fall as clearly within a
category and are grouped together as type other. In Table 5.4 the two types
of examples that occur frequently in the dataset are exemplified. Generalised
implicatures require little or no context to be understood. They are the simplest
type of example in the test set, and generally imply the same thing (“some”
almost always implies “not all”). Particularised implicatures, by contrast, do
require context to be resolved. For example, from Table 5.4, we need the
context that it is undesirable to stay up late drinking when one has to get
up early (see in Appendix D.1 for more on generalised vs. particularised).
In these type of examples, the context needed to resolve it is different every
time. We label three other types of implicatures in the dataset, but since the
analysis of these examples does not show significant patterns, we present it in
Appendix D.7.9. We show the accuracy broken down per example type for two
models from the Example IT group, as these patterns hold more broadly for
almost all models evaluated (see the detailed results broken down per example
type in Appendix D.7.9). Figure 5.4 shows that for lower k, the models often
have a significantly worse performance for particularised examples than for
generalised examples, just like humans do. For some, like Cohere-command-
52B, this is mitigated by few-shot prompting, which brings particularised and
generalised performance closer together (sometimes at the cost of generalised
performance). For others, like GPT-4, the gap between particularised and
generalised performance remains large for all k. From the bottom row in Figure
5.4 we observe that the edge GPT-4 has over Cohere-command-52B seems
mostly driven by a higher accuracy on generalised examples. The accuracy on

the particularised examples is comparable between those two models.

5.4 Related Work

There is a large body of work that investigates the interplay between pragmat-
ics and computational modeling [Cia+18; SCD20; LRR20; Kim+21; LSD21;
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Accuracy for two different types of implicature.

NB: Y-axis starts at 45% (just below random performance).
Cohere-command-52B GPT-4

90 +

Accuracy (%)

—4— Particularised
—4—  Generalised
Human particularised
Human generalised
0 J - Random chance

2
2

0 5 10 15 20 25 30 0 3 10 15 20 25 30

Figure 5.4: The accuracy v. k for the generalised and particularised examples
obtained by the Example IT models Cohere-command and GPT-4.
Particularised (context-heavy) examples are often significantly more
difficult than generalised (context-free) examples for both models and
humans. For most models, in-context prompting can mitigate this,
but for others (like GPT-4), a significant gap remains. We see that
Cohere-command-52B achieves similar performance as GPT-4 on the
particularised examples, but significantly lower on the generalised
examples.

Jer+20; Par+21; Hos+23]. [Cia+18] introduce the task of predicting adverbial
presupposition triggers, which are words like ‘again’ that trigger the unspoken
presupposition that an event has happened before. [SCD20] study the ability of
computational models to do scalar inferences, finding that models use linguistic
features to make pragmatic inferences. [Kim+21] find that a substantial
part of question-answering datasets contain questions that are unanswerable
due to false presuppositions (i.e. “which linguist invented the lightbulb”).
[Hos+23] present a dataset for selecting entities with indirect answers, and
find that language models adapted for this task get reasonable accuracy, but
that there is room for improvement. The difference with this body of work
and ours is that we look at the emergence of pragmatic understanding from
large-scale language modeling. [Jer+-20; Par+21] are early works investigating
the emergence of pragmatic understanding in pretrained language models, but
they only look at scalar implicatures and presuppositions. [Zhe+21] are the
first to evaluate pretrained language models on conversational implicatures.
This is important pioneering work highlighting the difficulty of implicature
for language models, but their evaluations require task-specific training and
the models they evaluate are relatively small. In contrast, our evaluation
protocol is applicable out-of-the-box and is much more comprehensive, eval-

uating models up to 176 billion parameters and using in-context prompting.
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Additionally, [Zhe+21] benchmark synthetic data whereas this work evaluates
performance on naturally occurring implicatures [GM20]. We believe this to be a

better representation of the true distribution of implicatures in natural dialogue.

The standard set of benchmarks LLMs are evaluated on covers many tasks,
but even though implicature is one of the most important aspects of language
pragmatics [Lev83], it is only evaluated as part of BIG-bench [Sri+22]. Unfortu-
nately, the methodology used by the BIG-bench implicature task contributors
has limitations, which call into question the validity of their claims. Firstly,
the task contributors discard a subset of the data that is ambiguous according
to them. In our view this defeats the point of the benchmark. Implicatures
are a type of non-literal, ambiguous language the intended meaning of which
humans often easily interpret; comparing the way humans and models do this
is precisely what we are interested in. In turn, we expect performance on the
BIG-bench task to overestimate the ability of LLMs to resolve naturally occur-
ring implicatures. We keep this challenging subset of the data and instead use
human evaluation to deal with examples that are too ambiguous to understand.
Secondly, the difference in performance between their average and best rater
is 18%, whereas for our evaluations this difference is 6%. This indicates their
human evaluation is of low quality, but it is impossible to verify because there
are no details available on how the annotation is done. Finally, BIG-bench
uses only base LLMs and no SotA fine-tuning methods. In summary, we use
a more challenging dataset, and in turn at least six times more evaluations
per model, we provide higher-quality human annotations, and evaluate four
different categories of LLMs to investigate which aspects of LLMs contribute

to their performance on implicature understanding.

5.5 Discussion, Limitations, and Future Work
In this study we use prompting to evaluate whether different groups of LLMs

can resolve implicatures. In designing our experimental protocol, we carefully
considered various alternatives, and here we discuss limitations of the chosen

approach.

Firstly, evaluating LLM competencies is inherently uncertain and sensitive to
prompt choice. Nonetheless, we are confident our evaluation is comprehensive
enough to assess implicature understanding: we apply six different prompt

templates per test example, each used in three different prompting techniques
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(zero-shot, few-shot, chain-of-thought). Additionally, in the appendix we
present alternative zero-shot prompts and task specifications (Appendix D.7.3
and D.7.1 respectively), but since these did not improve performance they were

not further considered.

Another limitation is the fact that a subset of the models we evaluate are behind
APIs. This means models are subject to change (affecting reproducibility)
and certain details about these models are unknown. This affects the group
instruction-tuned at the example-level, which is the group we find outperforms
all others and has the most favourable scaling properties. How do we know
instruction-tuning at the example-level is the main driver behind these findings
without controlled A/B testing? Unfortunately, due to the secrecy surrounding
the exact implementation of these models we cannot be certain, but we can
be relatively confident. We evaluated ten models across six model classes and
two APIs in the group example-level instruction tuned. Within this group,
models probably vary significantly in other training and architecture details
(especially Cohere-command models versus OpenAl models). The most salient
commonality they share with each other and none of the other models is
multi-task instruction-tuning at the example level, making it likely that this is
the driving factor of their performance. A further datapoint in favour of this
conclusion can be seen in Figure 5.3 (right); base models at similar scales as
Example IT models perform significantly worse. We see that Cohere-command
52B significantly outperforms Cohere-base 52B, and the only difference between
those models is instruction-tuning at the example level (Cohere-command is
fine-tuned from Cohere-base). In fact, Cohere-command 52B outperforms other
base models more than 3 times the size by a large margin (e.g. GPT-3 175B,
BLOOM-176B, OPT-175B). We are therefore confident that instruction-tuning
at the example-level is important for pragmatic understanding, a finding
which can guide the development of open-source models capable of pragmatic
understanding. Investigating the exact effect of this type of instruction-tuning
on pragmatic understanding in a controlled setting is an interesting future

work direction (e.g. by isolating the effect of data diversity from instructions).

A further limitation is that some evaluations are subject to API stochasticity,
which we address in Appendix D.7.5. After running the zero-shot experiment
ten times through each API we conclude there is some stochasticity, but

it is too small to impact our conclusions. We publish exact timestamps
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at which we queried APIs in Appendix D.8. Further, a downside of doing
a comprehensive analysis on many models is compute costs. In Appendix
D.9 we publish a list of exact compute used (time and hardware), as well

as estimated carbon emissions for each of the models that are not behind an API.

Finally, the likelihood ranking approach we take limits our study to implicatures
with clear alternative. However, implicatures in natural language can entail
more complex propositions. For example, imagine Esther now asking “Can I
use your stapler?” and Juan responding “Here’s the key to my office.”. Juan is
implicating that (1) Esther can use the stapler, (2) the stapler is located in the
office, and (3) the office is currently locked. This leaves ample room for the de-

sign of benchmarks with implicatures entailing multiple non-binary propositions.

Using our protocol that evaluates LLMs on binary implicature resolution, we
establish a significant gap with human understanding for SotA LLMs in three
categories; large-scale pre-trained models, models fine-tuned on conversations,
and models fine-tuned with benchmark-level instructions. By contrast, we
find that models fine-tuned on example-level instructions perform significantly
better. This group also exhibits the best correlation between accuracy and
model size. Scaling analysis shows that for some large-scale pre-trained models
accuracy also positively correlates with model size, but the best model in
this group would need at least five times more parameters to reach similar
performance. From these results, we conclude that instruction-tuning at the
example level is important for pragmatic understanding. We hypothesise
that there is something about the multi-task data diversity obtained from
example-level instructions (i.e. each example a new task) that makes pragmatic

understanding appear at smaller scale.

Pragmatic understanding is intimately linked to theory of mind in human
development, with researchers arguing that children’s ability to understand
the mental states of others provides the cognitive foundation for interpreting
conversational implicatures [MADO7]. This raises a key question: given the
results in this chapter, have models similarly developed the theory-of-mind
capabilities that precede pragmatic understanding in children? The next chapter
examines the earliest theory-of-mind-like behaviours observed in infants to

explore this question.



Chapter 6

A Case Study in Social
Reasoning: Theory of Mind

6.1 Overview

Given that the previous chapter establishes an understanding of conversational
implicatures at a human-level, one may wonder whether the precursors to this
type of pragmatic understanding in human development have similarly emerged
in models. In this chapter, we continue the characterisation of the social
reasoning abilities of LLMs by investigating a key socio-cognitive foundation
for pragmatic reasoning: theory of mind (ToM). Theory of mind is the ability
to reason about unobserved mental states of other agents. It is considered
central to many aspects of human cognition, like linguistic communication
[MADO7]. Recent studies on the emergence of ToM in LLMs yield conflicting
results; some works suggest it has emerged [Kos24; MH23|, and others suggest
it has not [UlI23b] or at least not at a level comparable to humans [Tro+22;
Sap+22; Sha+23]. While Kosinski [Kos24] shows certain LLMs can pass
classic false-belief tests, Ullman [Ul123b] demonstrates that those same models
fail on minimal alterations to the tasks that change the expected answer.!
This evidence suggests models memorise training patterns without actually
mentalising. However, the evaluated tasks are classic false-belief tasks that are
abundant in the pre-training data, and it remains an open question whether
models can mentalise in situations that are less likely to occur in their training
data.

1Ullman tests LLMs on unexpected contents tasks where the contents are in see-through
containers, altering the answer to the false-belief tests.
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Figure 6.1: A visual depiction of our test inspired by Woodward [Woo098]. We
prompt an LLM with k& ambiguous linguistic habituations that can be
explained either by the goal being the object or the location (k = 2
in the image). We then test the bias the model shows for assuming
the goal was the object (left-bottom) or the location (right-bottom).
We say a model selectively encodes the goal if it shows a distinct bias
when an agent appears to be acting purposefully.

How can we investigate machine theory of mind in models that have seen all
the classic tasks from developmental psychology and regurgitate their patterns
even when these tasks are worded differently? In this chapter, we avoid
pre-existing text-based tasks and look at one of the developmentally earliest
occurrences of theory-of-mind-like human biases: selectively encoding the goal
object of an actor’s reach [Wo098]. In her seminal study, Woodward shows that
pre-linguistic infants exhibit a bias for encoding an agent’s goal object over
a goal location (detailed in Section 2.1.1). Similarly, we ask the question: do
large language models selectively encode the goal object of an actor’s reach? We
say a model passes the test if it shows a distinct bias between the agent acting
purposefully and otherwise (see Figure 6.1). For a behaviour to be considered
theory of mind, the same behaviour should not show up when the task does
not involve a goal-directed agent [FF12; DHD14].

Our results show that GPT-3.5-turbo and GPT-4 pass the criterion for saying
that they selectively encode the goal of an actor’s reach for some of our prompt
variations, but not for other semantically equivalent ones. These results
contribute to the picture from existing work on ToM in LLMs, concluding that

even the developmentally earliest ToM-like human behaviour does not robustly
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Table 6.1: The prompt variations we use in our evaluations. For each template
text, the target word is bolded.

Template variation Test case Example of differing template part
Animate Wendy grasps the kiwi
Fruit targets Inanimate A rod moves to and touches the kiwi
Control Wendy accidentally touches the kiwi
Animate A person named Wendy grasps the kiwi
Fruit targets (anim) Inanimate An inanimate rod moves to and touches the kiwi
Control A person named Wendy accidentally touches the kiwi
Animate Wendy grasps the item on the first pillar
Pillar targets Inanimate A rod moves to and touches the item on the first pillar
Control Wendy accidentally grasps the item on the first pillar
Animate A person named Wendy grasps the item on the first pillar
Pillar targets (anim) Inanimate An inanimate rod moves to and touches the item on the first pillar
Control A person named Wendy accidentally grasps the item on the first pillar

show up in current SotA LLMs. Our findings further highlight the importance
of designing multiple prompt variations for each task: depending on how the

task is framed, conclusions can be opposite.

6.2 Evaluation Protocol

In this section we outline the method we use to answer the question: do

language models selectively encode the goal of an actor’s reach?

We prompt a set of LLMs with habituations that can be explained both by the
goal of an actor’s reach being an object, as well as a location. We then look at
whether LLMs exhibit a bias for assuming the goal is the object or the location
(see Figure 6.1). We investigate the bias the model shows in three situations:
an agent is purposefully reaching for an object, an inanimate object moves

and touches an object, and an agent is acting accidentally and touches an object.

Defining object and location bias. We want to investigate the question
whether models store knowledge that leads them to encode the goal-related
properties of an agent’s reaching event, and that this knowledge does not
get encoded in similar events involving inanimate objects. To this end, we
design the following test cases: an animate test case where the prompt contains
k habituations in which an agent reaches for the same object in the same
location. A test case is appended to this prompt where the goal object is placed
in a different location. We then obtain the likelihoods the model assigns to
continuing the full prompt as if the same location with a novel object is reached

for by the agent (location bias), or the same object at a different location
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(object bias, see Figure 6.1). Below is an example for an agent, Wendy, who

has a preference for kiwis, with & = 2 habituations:

There is a kiwi on the first pillar, an orange on the second pillar,
and a fig on the third pillar. Wendy grasps the item on the first
pillar.

There is a kiwi on the first pillar, a fig on the second pillar, and
an orange on the third pillar. Wendy grasps the item on the first
pillar.

There is an orange on the first pillar, a kiwi on the second pillar, and

a fig on the third pillar. Wendy grasps the item on the first/second

In this example, a model that assigns a higher probability to first is said to
exhibit a location bias, whereas a model that assigns a higher probability to
second exhibits object bias. Independently, we test the model on the same

example with an inanimate object:

There is a kiwi on the first pillar, an orange on the second pillar,
and a fig on the third pillar. A pole moves to and touches the item
on the first pillar.

There is a kiwi on the first pillar, a fig on the second pillar, and an
orange on the third pillar. A pole moves to and touches the item
on the first pillar.

There is an orange on the first pillar, a kiwi on the second pillar,
and a fig on the third pillar. A pole moves to and touches the item
on the first/second

We generate 100 examples with a roughly equal distribution over object and
location targets (in this example template, the targets can be one of “first”,
“second”, and “third”). We define the object bias o, as the conditional probability
that the object bias target is chosen by a model given that the model has to
either choose the object or location bias target, as in

p(object bias target)

= 6.1
% p(object bias target) + p(location bias target)’ (6.1)

where each probability p(-) is conditioned on the prompt like p(- | prompt).

In some cases we do not have access to the probabilities assigned to each target
by a model (i.e. GPT-3.5-turbo and GPT-4 have restrictive APIs). Instead,
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we sample those models ten times for each prompt with a temperature of
1, recording how often they output the object bias target ¢, (second in the
previous example) or the location bias target ¢; (first in the previous example).
Using these counts, we estimate the object bias o, of a model for each example

as the fraction of times it chooses the object bias target:

Co

Co +

A~

Op =

(6.2)

We discard all samples where a model does not choose the object or location
bias target and record them separately as unclassified in the ¢, count. We
report summary statistics for the obtained probabilities and the counts c¢,, ¢,

and ¢, for each model and prompt template in Appendix E.1.

The criterion for selective encoding. We add a control task where the
agent accidentally reaches for the item, meaning that the object is no longer
the agent’s goal. We do this by slightly changing the animate prompts. For
example in one template we change Wendy grasps the item ... to Wendy falls
and accidentally grasps the item . ... Note that although this is similar in spirit
to [Ull23b], the difference is that we show the model multiple (k) habituations

with the same change.

The criterion for saying that a model selectively encodes the goal of an actor’s
reach is if it exhibits a distinct bias in the animate case compared with the
bias shown in the inanimate and control case. In other words, the bias in the
animate case should be different from the bias in the inanimate and control
case, and the latter two should be similar. If this criterion is passed, it means
the model has a different bias when there is a goal-directed agent involved than
when there is an inanimate or non-goal-directed agent involved. Besides the
selective encoding of the goal, we can also contrast the specific bias the model
demonstrates with human infants, who show an object bias in the animate
case, and no bias in the inanimate case in Woodward’s visual test (infants are

not tested with a control task).

Prompt variations. We vary the agent names, pillar fruits, and inanimate
objects to get a larger set of test examples (namely 100 per test case). Addi-
tionally, for each test case we design a set of four different prompts, to test for

things like irrelevant alterations of the text. The first prompt has already been
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Figure 6.2: The results for text-davinci-003, GPT-3.5-turbo, and GPT-4 for k =0
(left) and £ = 6 (right) habituations. For k = 0, we expect the
object bias to be roughly 0.5 (equal selection of object bias target and
location bias target). For k = 6 in the right column of the figure, recall
that if the model is encoding irrelevant surface-level patterns of the
prompt, we expect a strong object bias for the fruit target prompt
variations (top-right) and a strong location bias for the pillar target
prompt variations (bottom-right), regardless of whether the test case is
animate, inanimate, or control. Indeed, we observe a general stronger
object bias for the top row than the bottom row when £ = 6. We
further see that all models have a higher object bias for the animate
test cases than for the inanimate, but show a similar bias for the control
test case as the animate case for the fruit target variations (top-right
plot). GPT-3.5-turbo and GPT-4 are the only models that also show
a similar bias for the control test case as the inanimate case, which
means they selectively encode the goal of an agent’s reach (i.e. the
biases for inanimate and control are similar and distinct from animate).
However, only when the target is the pillar (bottom-right plot), and
GPT-4 does so only very weakly. The error bars represent the standard
deviation over the two prompt templates in each group (fruit targets
and pillar targets).

presented in this section. This prompt is of the type pillar target, because the
target on which the model is evaluated is a pillar choice (first, second, or third).
In the second prompt the target is not the pillar location, but the fruit itself
(e.g. replace Wendy grasps the item on the first pillar with Wendy grasps the
kiwt), and so the prompt is of the type fruit target. For both of these prompts,
we also construct a variation in which we explicitly denote that the agent is
animate and the inanimate object is not (e.g. replace A pole moves to ... with

An inanimate pole moves to ... and replace Wendy grasps ... with A person
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named Wendy grasps ... ). This leaves us with four prompt variations in total,
which are fully presented in Table 6.1. Templates only differ in the sentences

describing the agent’s reach, otherwise they share the pattern previously shown.

Note that for the pillar target prompt variations, a prompt with multiple
habituations repeats the action of reaching for the same pillar multiple times
(e.g. grasps the item on the first pillar). Hence, a language model that is
sensitive to surface-level patterns in text might put a high probability on the
same pillar from the habituations to complete the test case phrase grasps the
item on the _, which would result in a recorded location bias for this model.
This is why we construct the prompt variations where the target is the fruit
instead (Fruit targets in Table 6.1). In those variations, a prompt with multiple
habituations repeats the action of grasping the fruit (e.g. grasps the kiwi). This
might cause a language model to put high probability on the same object from
the habituations to complete the test case phrase grasps the _, in which case
an object bias would be encoded. Therefore, if the model is not encoding the
semantics of the prompt and simply repeats surface-level patterns, we expect
an object bias for the fruit target variations, and a location bias for the pillar
target variations, regardless of whether the test case is animate, inanimate, or

control.

This protocol has several benefits over other approaches of investigating
machine ToM from literature. Firstly, the underlying task logic is visually
presented to pre-linguistic human infants in literature, making it less likely
that the exact task appears in the training data of pre-trained language models.
Nonetheless, the reasoning pattern might be numerously described. In similar
spirit to Ullman [Ul123b], we extend Woodward [Woo098] by adding a control
task where the agent acts accidentally, nullifying the assumption that the agent
is acting in a goal-directed way. Like the inanimate case, the object bias should
not show up in this control task. Another benefit is the habituations that are
reminiscent of few-shot prompting in LLMs [Bro+20al, but unlike true few-shot
examples these do not leak any information about the expected output. These
examples both serve to habituate a model in order to probe for a bias, as
well as to guide the model to the task. Importantly however, even though
we can use our protocol to make empirically backed claims about whether or
not LLMs selectively encode the goals of agents, we can make no statements

about how the model does it and whether there is reasoning involved. Similarly,



82 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

Woodward makes no assumptions about what kind of knowledge infants use to

encode the goal object of an actor’s reach; she just shows that they do.

6.3 Experiments

We evaluate three different models on our test cases, all of which are OpenAl
API models (text-davinci-003, GPT-3.5-turbo, and GPT-4). For the latter
two, we do not have access to their likelihoods; to obtain an estimate despite
this we apply a sampling strategy as described in Section 6.2. The results are
presented in Figure 6.2, and the numbers underlying this figure are presented
in Appendix E.1. The left column in Figure 6.2 shows the results for kK = 0
habituations, which is a sanity check that the model does not have a strong
bias for a target a priori. These numbers should ideally show no bias (0.5
object bias and location bias), which is roughly the case. Below, we discuss the
results for k& = 6 habituations, which is the number of habituations [Wo098|

uses with infants.

Finding 1: All models show a stronger object bias in the animate
case than in the inanimate case, but only GPT-3.5-turbo and
GPT-j selectively encode the goal of an agent’s reach, and only for
two of the four prompt variations.

In general for all three test cases (i.e. animate, inanimate, control), we see a
stronger object bias for the fruit target variations (top-right in Figure 6.2), and
a stronger location bias for the pillar target variations (bottom-right in Figure
6.2). As mentioned at the end of Section 6.2, this is unsurprising given the
repeated patterns in the habituations, and any deviation from this pattern is
notable and points to encoding of semantics over surface-level properties. All
models show a higher object bias in the animate case than the inanimate case,
which is similar to the effect that Woodward finds for infants (object bias in
the animate case, no bias in the inanimate case). The only models which pass
the criterion for saying they selectively encode the goal of an agent’s reach on
our test set are GPT-3.5-turbo and GPT-4 (recall that the criterion is a strong
difference in bias for the animate test case compared to the inanimate and
control cases). However, the criterion is primarily passed for the two prompts
where the targets are the pillars instead of the fruits (bottom-right), and only
very weakly in GPT-4’s case.
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Finding 2: text-davinci-003 does not appear to selectively encode
the goal of an agent’s reach.

Although text-davinci-003 shows a stronger object bias in the animate case than
the inanimate case, it shows the same bias as the animate case in the control
test case (overlapping error bars for the pillar targets in the bottom-right plot).
This means we cannot say the model selectively encodes the goal of an agent’s
reach, because it encodes text similarly when an agent is acting purposefully
as when the agent is not acting in a goal-directed fashion. Looking at the
magnitude of the biases again, we see that text-davinci-003 shows a strong
object bias for the fruit target templates, whereas it shows a full location bias
for the pillar target templates. For the latter, it might simply be using the

heuristic of repeating the pillar from habituations.

Finding 3: All three models are heavily influenced by semantically
wrrelevant alterations of the prompt, but are clearly not only encod-
ing surface-level statistics of the text.

Comparing the top-right and bottom-right plots in Figure 6.2, we find that
all three models show much more location bias when the target is the pillar
instead of the fruit. However, it is not the case that the models simply have an
object bias when the target is the fruit and a location bias when the target
is the pillar. Although this shows that the models’ internal reasoning can be
heavily influenced by superficial differences in output requirements, the strong
biases that go against the surface-level repetitions do indicate encoding of the

semantics of the text.

6.4 Related Work

Recently, classic ToM tests from developmental psychology have been ex-
tensively applied to LLMs. However, these studies have conflicting results.
Kosinski [Kos24] claims theory of mind has emerged in a subset of OpenAl’s
API models, but the evaluation protocol has been pointed out as flawed by
Ullman [Ul123b]. Similarly, Sap et al. [Sap+22] show that GPT-3 achieves well
below human performance on a range of different ToM tasks. The methodology
used in that study is however critiqued by Moghaddam and Honey [MH23], who
apply similar tests but use SotA prompting techniques and show that OpenAl’s
models that are fine-tuned with RLHF' achieve human-level performance on the
ToM tasks. By contrast, Shapira et al. [Sha+23] show that LLMs can robustly
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solve some ToM tasks, but not others, and conclude that models have some
ToM capabilities, but that these are not robust. Concurrently and motivated
similarly to our work, Gandhi et al. [Gan+23] propose a procedurally generated
benchmark testing for false-belief tasks in natural-sounding situations. They
find GPT-4 shows human-like ToM inference patterns, but less robustly than

humans do.

Woodward [Woo098] conducts her study with the aim of exploring how infants
perceive and comprehend others’ actions. The study focuses on investigating
infants’ ability to selectively encode the goal object of an actor’s reach. Drawing
inspiration from Woodward [Wo098], Gandhi et al. [Gan+21] apply a similar
task to neural networks, aiming to determine whether machines can represent
an agent’s preferred goal object. However, to our knowledge, there is currently

no study that applies the task from Woodward specifically to pre-trained LLMs.

6.5 Discussion, Limitations, and Future Work

Our results show that the tested LLMs do not robustly encode the goal-related
properties of an agent’s reaching action. GPT-3.5-turbo and GPT-4 do treat
text differently when there is a goal-directed agent involved, but do not do
this equally for semantically equivalent prompt variations. Additionally, the
biases they show are very different from the bias human infants show in
Woodward [Woo98]. The specific bias we investigate is very basic, appearing in
infants as young as six months old. Our results indicate that ToM-like human
biases might not emerge from large-scale pre-training on text or instruction
fine-tuning, at least not in the way we might expect them to. This suggests
that studies investigating the emergence of ToM in LLMs should not expect
a machine ToM that is comparable to human ToM, but should instead focus
on identifying in what way machines reason about the mental states of others,
forming a machine theory of mind. Additionally, our results show that studies
need to take into account the sensitivity of models to semantically irrelevant
surface-level patterns in text, which might be very different from humans’
responses to such patterns. In our study we deal with this by designing prompt
variations that would result in an opposite effect if only surface-level patterns
are encoded. Any deviation from this pattern indicates encoding of semantics
over irrelevant patterns. Our results serve as a first step towards comparing

human theory of mind and machine theory of mind without preconceived
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notions of the kind of mentalising the machine should do.

We take the approach of linguistically presenting a ToM test to LLMs that is
traditionally only tested wisually in pre-linguistic infants. Although we view
this as a strength of the protocol because it makes it less likely that the test
appears in the training data, it also means that a lack of human-like bias in
LLMs may simply indicate that this bias does not show up linguistically. To
say LLMs show a different bias than humans in this task, we need to administer
the same tests to human adults. In future work, we want to conduct human

evaluations on our linguistic test to identify the biases humans show.

One hypothesis for why selectively encoding the goal object of an actor’s reach
has not yet emerged is that learning such a bias might simply not be consistently
useful for next-token prediction in pre-training on text. Another hypothesis is
that pre-training on large-scale internet data representing too many agents with
noisy beliefs hindered the ToM-like ability [And22]. An interesting direction for
future work would be to test if fine-tuning pre-trained models on data reflecting
agent preferences for objects, and random reaching events for inanimate objects
can lead to the emergence of ToM-like ability. Successful next-token prediction
on this dataset requires inferring the underlying agent preferences of the agents
that occur in the data, as well as learning that inanimate objects have no
preferences. Using this protocol, we can control how consistently useful the
object bias is for next-token prediction by adding noise to the data, and see-

ing how this affects the resulting biases in the model for novel agents and objects.

Our evaluation protocol opens up further interesting avenues for future work.
Although prior work in machine ToM mostly views it as a static ability that
you can either have or not, current approaches to ToM in humans and other
animals recognize that mentalising inferences are dynamic [Bak+17] and graded
in performance [DHD14]. These insights have recently been applied to make
progress on the Baby Intuitions Benchmark [Gan+21] by applying a Bayesian
hierarchical framework [Lan00]. Since our evaluation protocol allows varying
the number of habituations, future work might take a similar approach, and
investigate how varying degree of observations change the model’s predictions
of an agent’s behavior, as the studies investigating human ToM did [DHD14;
BST09; Bak+17; SGG14; YDF08]. For example, repeated trials of hide and
seek [DHD14] can differentiate ToM abilities in different clinical populations
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[dDD20] and even across primate species [Dev+17]. Models taking this ap-
proach successfully generate precise quantitative predictions of how people
infer preferences and beliefs of other agents over a range of parametrically
controlled stimuli [Bak+17].

In this chapter, we introduce a new evaluation protocol to test large language
models’ (LLMs) capabilities in the context of Theory of Mind (ToM). Inspired
by Woodward [Wo098|, we prompt LLMs with ambiguous examples of agents
interacting with objects. We let the models predict the agent’s next interaction,
which can be either explained as an explicit agent goal in terms of location or
object choice, or by random chance—allowing us to assess if a model selectively
encodes the goal of an agent’s reach. Extending the original study, we do
not only test against inanimate interactions but also use a control task with
accidental interactions. This addition appears crucial, as without it our results
would have concluded LLMs selectively encode the goal object of an agent’s
reach, whereas the recorded biases in the control test case call into question
this conclusion. We further show that all models are highly susceptible to be
influenced by minor prompt variations that do not semantically change the
task. These findings serve as a cautionary tale for researchers investigating
human-like biases in LLMs; careful evaluations should be designed in order
to control for models repeating patterns from training data without robustly
demonstrating the bias of interest. Moreover, our findings indicate that the
social reasoning abilities of LLMs may not follow a similar developmental

trajectory as humans’ abilities.
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Conclusions

This chapter concludes the investigation into how LLMs perform reasoning tasks.
I begin by summarising the four main ways in which this thesis characterises
LLM reasoning. I then discuss the broader implications of these findings,
situating them within the wider field, and speculate on where the compute
scaling paradigm may lead. Finally, I outline concrete future directions arising

from each of the preceding four chapters.

7.1 The Nature of LLM Reasoning

1. LLM reasoning is markedly different than retrieving facts.

Through a large-scale study ranking five million pre-training documents accord-
ing to their influence on model completions, I quantitatively and qualitatively
demonstrate that models develop distinctly different strategies for reasoning
versus factual retrieval. Even when documents with answers to the exact
reasoning steps are present in the pre-training data, these are ranked typically
much less high than the documents with answers to the factual retrieval
completions. Instead, models rely on what I term procedural knowledge in
pre-training; knowledge that is useful for multiple instances of a reasoning
task. The influence analysis further reveals two key distinctions between
reasoning and factual retrieval. First, models depend less heavily on individual
pre-training documents for reasoning than for factual tasks, as measured
by influence scores representing how much including each document would
decrease loss on completions. Second, influence scores for reasoning show less
volatility than those for factual retrieval, indicating that reasoning draws from
a more stable and broadly available set of training data. These convergent
findings demonstrate that models acquire generalisable procedural knowledge

during pre-training, employing a strategy for reasoning that extends beyond
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memorisation.

2. LLMs have acquired reusable computational principles that ab-
stract away from inputs.

In a follow-up study, we auto-regressively fine-tune LLMs on previously unseen
program source codes, and demonstrate that the ability to evaluate these
programs for inputs emerges. This indicates that over the course of their
pre- and post-training stages, LLMs have acquired computational princi-
ples that enable them to learn diverse emergent capabilities from further
auto-regressive training on symbolic source code. For example, when we
first fine-tune models to predict outputs for inputs to common programming
challenges in Leetcode and then fine-tune them to auto-regressively predict
the tokens of source code for novel custom cipher algorithms, the ability to
evaluate these ciphers for inputs also emerges. This transfer indicates that
while LLMs are trained on the surface task of predicting the next token, this
process somehow leads them to internalise computational principles which
they can apply to novel situations at inference time. Fine-tuning models on
programs in this way leads to a more uniform performance across inputs than
when training on input-output pairs that mirror naturally occurring data. In
fact, we demonstrate that fine-tuning models on a single piece of cipher code
augmented with different prompts without changing the source code itself
leads to uniform and non-trivial performance across inputs. Perhaps most
strikingly, the most capable model we fine-tune to auto-regressively ingest
two separate program’s source codes with next token-prediction subsequently
shows some ability to evaluate compositions of these for inputs entirely within
its weights (i.e. without outputting intermediate computations in a chain of
thought). These findings confirm that models indeed acquire abstract procedu-

ral knowledge from training which can be applied to unseen context at test time.

3. LLMs learn to infer communicative intent implicit in ambiguous
language from large-scale auto-regressive pre-training.

We investigate this by comparing how humans and different types of LLMs
resolve conversational implicatures; a type of language where conversational
turns imply more than their literal meaning. For example, when asked “Can
you come to my party tonight?” responding “I’'m sick” implies “no” without
explicitly stating it. Our findings show that the ability to correctly resolve such

binary conversational implicatures emerges in base models and improves with
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scale. However, the most substantial gains occur when models are post-trained
on human-written instruction-completion pairs. Using chain-of-through prompt-
ing, the most capable model we evaluate achieves human-level performance
at implicature understanding. The scaling trends suggest that human-level
implicature resolution could emerge from parameter scaling of base models
alone, but high-quality post-training methods produce more efficient pragmatic

reasoners at current scales.

4. LLMs do not robustly encode text differently based on whether
an intentional agent is involved.

Given that LLMs demonstrate human-level pragmatic reasoning abilities, we
investigate whether they have also developed the foundational socio-cognitive
skills that enable such reasoning in humans. Specifically, we test whether
state-of-the-art LLMs exhibit theory-of-mind-like behaviours analogous to those
observed in early human development. Infants as young as 6-9 months expect
agents to have preferences that inanimate actors do not have, demonstrating
early theory of mind development. We adapt a visual experiment conducted
on pre-linguistic infants into a textual format suitable for LLMs. Crucially, we
include an experimental control condition featuring animate agents acting acci-
dentally, which eliminates any intentional preference hypothesis. Our analysis
examines whether LLMs process text systematically differently for intentional
animate agents compared to both inanimate objects and accidentally-acting
agents, finding no consistent differences across these conditions. Notably,
without the accidental control condition, we would have incorrectly concluded
that LLMs do encode agent animacy and intentionality, highlighting the critical
importance of rigorous experimental controls when adapting psychological

experiments for Al evaluation.

Taken together, my findings characterise LLM reasoning not as the retrieval
of memorised facts, but as the synthesis of procedural knowledge during pre-
training. Models appear able to extract reasoning principles implicit in their
training data and apply them to diverse questions. Auto-regressive next-
token prediction further supports the acquisition of knowledge at multiple
levels of abstraction, which can then be applied to novel contexts at inference
time. Beyond formal reasoning, some social reasoning abilities that human
children acquire in direct social contexts also emerge from large-scale next-token

prediction. Yet LLMs’ social reasoning does not necessarily follow the same
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developmental trajectory as humans, suggesting it should be characterised on

its own terms, without relying on expectations from developmental psychology.

7.2 Discussion

I set out to understand how models trained on trillions of tokens of sequential
data learn to perform reasoning tasks. Amid the widespread adoption of LLMs,
a fundamental question remained unanswered: can these systems generalise
beyond their training distributions in ways that might contribute genuinely
novel knowledge, or are they fundamentally constrained by the patterns they
encountered during pre-training? I cannot claim to have definitively answered
this question. However, my understanding of LLM reasoning has significantly
deepened throughout my doctoral studies. In this chapter, I discuss the
implications of my research, draw some tentative conclusions, and outline its

limitations.

7.2.1 Stochastic Parrots, or Not?
The idea that training LLMs with the simple task of predicting the next token

leads them to internalise more fundamental computational principles, like
logical reasoning patterns and causal relationships, seemed outrageous to many
besides perhaps a small group of researchers at OpenAl. While models were
rapidly saturating reasoning benchmarks, sceptics (including myself) claimed
they are simply regurgitating what they have seen before. The findings in this
thesis show that this is at least not true at the level of verbatim regurgitation
of answers to reasoning steps from pre-training data. However, critics then
often point out that LLM reasoning does not verbatim regurgitate what it
has seen before, but extracts information from vast distributed training data
in uninterpretable ways and recombines this to seem like proper reasoning,
but that would not generalise to truly unseen situations. This is a more
difficult position to argue against, as it is vague enough to cover most forms of
generalisation. However, the level of emergent reasoning demonstrated in this

thesis seems far from limited to shallow training patterns.

In Chapter 4 we demonstrated in a controlled setting what Chapter 3 already
hinted at in a more messy large-scale investigation of pre-training: models have
acquired seemingly symbolic computational skills from training that they can
reuse for unseen applications. The most complex generalisation we observe

is while auto-regressively ingesting pieces of code, the ability to perform in-
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weight evaluation of compositions of these for inputs emerges. This requires
parametric retrieval of two programs from disparate pieces of training data
and evaluating each in sequence for inputs, entirely within weights (i.e. out-of-
context). All while never having been trained on input-output pairs for either
of these programs, let alone their composition. Of course, each operation that
make up these programs are highly familiar to the models (simple arithmetic
and control flow), and if we were to give the source codes in context the model
could easily step through it to get the answer. The point of these experiments
is not so much demonstrating LLMs’ arithmetic skills, but rather demonstrate
the emergent acquisitions of knowledge at different levels of abstractions from

simple generative training on source code.

7.2.2 The Surprising Effectiveness of Next-token Predic-
tion at Scale

Beyond the controlled fine-tuning experiments described in Chapter 4, several
key findings in this thesis demonstrate that next-token prediction at scale
serves as a remarkably powerful learning objective. Chapter 3 reveals how
fundamentally different learning patterns emerge during pre-training using the
same self-supervised objective across large-scale text and code datasets. This
supports the foundational claim that language models function as unsupervised
multitask learners [Rad+19]. More strikingly, this passive text-based training
enables models to infer implicit communicative intent, providing direct empir-
ical evidence against theories arguing such capabilities cannot emerge from
passive text learning alone [BK20]. Chapter 5 shows that while human-level
pragmatic performance requires post-training through opaque methods (po-
tentially including reinforcement learning), base models nevertheless exhibit
meaningful pragmatic understanding that scales with model size. These empiri-
cal results align with the theoretical framework proposed by Merrill, Warstadst,
and Linzen [MWL22], which suggests that perfect mastery of the language
modelling objective necessarily means the acquisition of complete entailment

semantics. Our findings provide concrete evidence for this theoretical position.
7.2.3 Pre-training or Post-training, Where do Models

Learn to Reason?

The findings above support the conventional view that model capabilities
emerge during pre-training, with post-training serving primarily to make these

capabilities more accessible and aligned with human values. This perspective



92 Chapter 7. Conclusions

finds support in several studies demonstrating that supervised fine-tuning
enhances rather than creates underlying abilities [Jai+24; KSR24; Pra+24).
However, my own research presents a different picture. In the published work
underlying Chapter 5, I argue that supervised fine-tuning on human-written
instruction-completion pairs is important for pragmatic understanding, given
the dramatic performance improvements we observe for instruction-tuned base

models.

Two years later, my thinking has evolved toward a more nuanced position:
these empirical results may not indicate that fine-tuning creates pragmatic
abilities, but rather that it makes latent capabilities in base models more readily
accessible. This reinterpretation gains credibility from several observations.
Base models do exhibit pragmatic understanding that scales with size, and
their performance improves substantially with in-context examples. Indeed,
it is difficult to know for sure base models would not have achieved the same
performance as their post-trained counterparts through more complex inference-
time techniques. Moreover, it is hard to know when the techniques themselves
give the model too much outside signal for us to claim the base model has
the capability on its own. Consider the scenarios where a base model achieves
equivalent task performance through few-shot prompting compared to an
instruction-tuned model’s zero-shot performance; did the few-shot labels confer
novel abilities? What about the situation where random-label examples that
merely clarify task format yield similar improvements, or where best-of-N
sampling on base models succeeds without external supervision. Each scenario
complicates our understanding of capability emergence, and with today’s
knowledge I would be more careful with claims that a post-training method is

important for improving pragmatic understanding.

7.2.4 Scaling Compute Infinitely

Having discussed the nuances of the results presented in this thesis, here I
combine its findings with insights from the broader community and instead
present the most optimistic view of where the compute scaling paradigm can
lead, acknowledging the speculative nature of such claims. While this thesis
demonstrates the remarkable generalisations that current LLMs make from
their training data, it ultimately leaves open the central question I set out to

answer: whether models can truly generate novel knowledge.
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Scaling laws predict continued gains as long as model size and training data
increase proportionally. Intuitively, a model that perfectly predicts tokens
in an infinite data stream would necessarily possess a causal understanding
of the underlying distribution. While this is unrealistic, the findings in this
thesis demonstrate qualitatively different patterns of generalisation at scale.
Even at a small scale, the community discovered sudden perfect generalisation
when overtraining on algorithmic tasks, a phenomenon known as ‘grokking’
[Pow+22|. This emerges because regularisation techniques like weight decay
favour efficient generalising solutions over brute-force memorisation [Wan+24a;
Liu+22]. Could LLMs be grokking the diverse implicit tasks within their
training data? As training scales, memorisation becomes increasingly inefficient
compared to true understanding. While grokking has only been observed in
algorithmic domains with strict logical structure, the underlying principle that
more compute favours generalisation over memorisation may extend more

broadly.

Griffiths [Gri20] argues human intelligence presents differently from artificial
intelligence because of bottlenecks, in time, computation, and communication.
Humans evolved under pressure to generalise rapidly from limited data, while
AT systems face fewer such constraints and consequently require vastly more
data to achieve generalisation. Yet this difference in efficiency may be irrelevant
if Al can ultimately generalise effectively. LLMs can process many times more
information than any single human can, communicate across broader networks,
and operate at superhuman speed. Combined with genuinely generalisable
reasoning, could this computational advantage eventually yield novel discov-
eries? The answer to this question remains uncertain, hinging on our ability
to generate sufficient data, but the trajectory of progress suggests the scaling

paradigm’s potential should not be underestimated.

7.3 Concrete Future Directions
Landing back with both feet firmly on earth, in this section I briefly outline

a few concrete future directions following from each content chapter in this

thesis.

Using training data attribution to understand LLM capabilities.
Large-scale data attribution for LLMs as demonstrated in Chapter 3 has been

attempted only once before [Gro+23], leaving numerous questions unexplored.
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The general framework introduced in Chapter 3, defining tasks by sets of
prompt-completion pairs and analysing how models learn these from training
data, can be used to study many more interesting questions. Our investigation
focuses on ranking pre-training data based on their influence on the likelihood
of chain-of-thought traces with step-by-step arithmetic. Future work could
examine whether influence rankings quantitatively and qualitatively differ
when models output answers directly without chain-of-thought scaffolding, how
semantically equivalent prompt variations affect these rankings, or whether
different reasoning domains like social cognition exhibit distinct attribution
patterns. Further, it opens up different directions, like finding evidence for the
simulator hypothesis [And22; SMR23]. Do prompts asking for the same task
completion, but written in very different ways (e.g. “you are a highly intelligent
.7) lead to TDA methods surfacing higher quality data sources? Finally, how

does few-shot prompting change rankings compared to zero-shot prompts?

Using training data attribution to understand emergence with scale.
Our comparison between 7B and 35B parameter models in Chapter 3 reveals
striking quantitative differences in learning from data. Individual documents
exert substantially larger influence on completion likelihood in the larger model,
potentially indicating improved data efficiency. More puzzling, a document’s
influence on the 7B model’s completion mostly bears no predictive relationship
to its influence on the 35B model’s response to identical prompts. Even when
both models coincidentally generated identical completions to the same prompt,
their training data influence scores show only a Pearson’s R correlation of 0.19.
This suggests fundamental differences in how models of different scales extract
and utilise information from training data. Future research could identify
systematic patterns distinguishing what data benefits smaller versus larger

models, ultimately characterising how learning mechanisms evolve with scale.

Out-of-context probabilistic reasoning.

The generalisation from code generation to code evaluation we observe in
Chapter 4 is a form of out-of-context reasoning: the ability to infer knowledge
implicit within disparate pieces of training data and apply that knowledge
downstream. In this case, the model combines familiar logical operations in
an unseen configuration. An intriguing extension emerges when considering
probabilistic rather than deterministic reasoning: can models develop out-of-

context capabilities for frequentist or even Bayesian reasoning? For example,
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imagine fine-tuning LLMs on datasets representing a certain probability dis-
tribution. Overall, in 80% of the data points wugs are red, and in 20% they
are blue. Moreover, red wugs have a 50% chance to be peaceful, whereas blue
wugs only have a 10% chance to be peaceful. Training on this data, can the
LLM articulate the probability that a peaceful wug is red? More broadly,
probabilistic and inductive out-of-context reasoning abilities could lead to
interesting applications in scientific research, where training models on data
from experiments may lead to their ability to articulate theories explaining this
data.

Generalisation from verifiable reasoning to less easily verifiable
reasoning.

For LLM reasoning to be broadly useful, it must extend beyond tasks with
clear, automatically checkable answers to domains where correctness is harder
or impossible to determine directly. Many of the recent advances in LLM
reasoning have come from large-scale training on tasks with verifiable rewards
(e.g. mathematics, code execution). A promising direction for future work is to
use similar controlled fine-tuning experiments as in Chapter 4 to investigate
whether models trained on verifiable reasoning problems can generalise to less
verifiable settings, such as social reasoning, or to empirically verifiable domains
like engineering in machine learning, where reasoning must be validated through

experiments rather than ground-truth labels.

Comparing passive learning and active learning.

In Chapter 4, we find that on-policy reinforcement learning with verified re-
wards (RLVR) substantially outperforms passive approaches, whether training
on expert demonstrations or off-policy learning from reward-model-labelled
positive and negative samples. Therefore, we attribute these gains to the
on-policy nature of the data used for training. On-policy training both results
in a better fit to the current model distribution, as well as less constraints in
generation. The model can generate more diverse completions for which it will
receive rewards. Can future research demarcate between these two, pinpointing
more clearly what about on-policy RLVR makes it more useful? Extending
beyond this question, can models learn qualitatively different things from active
interaction with an environment than when learning is done passively? This
question is difficult to study because comparing these two head-to-head while

only varying interaction is challenging, as demonstrated by animal studies
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on the topic. For example, in Held and Hein [HH63b]’s “kitten carousel”
experiment, two kittens were physically attached to the same enclosed carousel
right after birth so that they received identical visual input, but only one could
move and thereby control the other’s ride, isolating the effect of self-guided
interaction from mere exposure. Only the active kitten developed normal
visuomotor coordination. Can we similarly design an experimental protocol to

isolate the effect of interactive learning for LLMs?

How does pragmatic understanding emerge?

Chapter 5 demonstrates that while pragmatic understanding of language
emerges during pre-training, it substantially improves through post-training.
This raises a question about the nature of this improvement: does post-training
genuinely teach new pragmatic reasoning capabilities, or does it primarily
surface and amplify latent abilities already present from pre-training? We can
disentangle these mechanisms through several approaches. First, inference-time
methods like best-of-N sampling applied to base models could reveal the upper
bounds of their pragmatic capabilities before post-training. Second, controlled
post-training experiments could isolate the specific factors driving pragmatic
improvements. For instance, if post-training exclusively on logical reasoning
data such as Mathlnstruct [Tos+24] also enhances pragmatic understanding,
this would suggest that post-training primarily serves to surface existing

pragmatic understanding in base models.

Towards a developmental psychology of LLMs.

Chapter 6 presents inconclusive findings regarding whether LLMs encode
text differently based on agent animacy: a crucial precursor to the pragmatic
abilities demonstrated in Chapter 5. These results suggest that LLM social
reasoning may not follow human developmental trajectories, raising funda-
mental questions about machine cognition. An exciting direction for future
work involves essentially reconstructing developmental psychology for artificial
systems: mapping which reasoning capabilities emerge at what scales and in
what sequence across model development. This research program could extend
beyond replicating human developmental milestones to discovering uniquely
machine forms of social cognition. For instance, we might develop a machine
theory of mind: a framework for understanding how LLMs represent and reason
about mental states that may bear little resemblance to human theory of mind

mechanisms. Such investigations could reveal whether LLMs develop alterna-
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tive but equally sophisticated approaches to modelling agency, intentionality,
and social reasoning, potentially uncovering computational strategies for social

cognition that evolution never explored in biological systems.
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Appendix A

How to Kick Your
Appendix-Skipping Habit

Whoever reads the appendix, right? But this time, you might want to break
that habit. Why? Because tucked away here are five sections that I think are

genuinely worth your attention.

Starting with Section B.9.1.

In Chapter 3, I distinguished LLM reasoning from factual retrieval using
correlation analysis: the influence of training documents on one reasoning
question strongly predicts their influence on other reasoning questions of the
same type. This suggests models generalise across questions, rather than just
memorising. But could this simply be driven by superficial similarity between
reasoning questions? Section B.9.1 shows that’s not the case, and also offers a

window into what models actually absorb from their pre-training data.

Other interesting sections.
Beyond that, there are four shorter contributions that don’t sit at the centre of

the thesis, but which I find interesting in their own right:

e Section B.1: EKFAC influence scores reveal how including a training

document affects downstream reasoning accuracy.

e Section B.8.2: LLMs learn to answer English factual questions from

documents containing the relevant facts in other languages.

e Section C.4: Online reinforcement learning is important for generalisa-
tion, as shown in compute-matched experiments comparing GRPO, DPO,

and SFT.
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e Section D.7.6: Randomising labels for few-shot in-context examples
does not hurt performance, meaning they mainly serve to clarify task

format instead of leaking information about the task.

Structure of the appendix.

I've designed the appendix to be maximally skippable: every section is flagged
in the main text, and all key results are already summarised there. Still, if
you're curious, each appendix chapter is about one main content chapter, with

a short roadmap summarising contents at the top.



Appendix B

How Models Learn to Reason

from Pre-training Data

This chapter contains the Appendix for Chapter 3. Below, I outline the content
of each section in this appendix.

EKFAC influence functions. In Appendix B.1 we discuss the counterfactual
re-training experiments that motivate our use of EKFAC influence functions
for estimating the effect of pre-training data on the accuracy of downstream
behaviour. We describe in more detail how we use influence functions at scale
in Appendix B.2, documenting how we estimate the Hessian, how we store
many query gradients in memory (each having the same memory complexity
as the entire model), and how we sample from the pre-training distribution.
Query sets examples. Then, in Appendix B.3, we show examples of the
reasoning sets that we did not show examples for in the main body of this
manuscript.

Finding query answers in documents and characterising document-
query relations. In Appendix B.4 we discuss how we create keywords for each
query in order to find the answer in the top documents, and in the sections
directly after that, Appendix B.5 and B.6, we give the prompts we used to
allow Command R+ to search for answers in the top 500 documents for each
query, as well as characterise their relationship.

Limitations. In Appendix B.7 we discuss limitations specific to influence
functions.

Additional qualitative results. In Appendix B.8 we provide additional
qualitative results.

Answer finding. We show examples of answer documents in Appendix B.8.1.

Cross-lingual transfer. We give some examples of cross-lingual transfer in
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Appendix B.8.2.

Characterise query-document relation. We give detailed results on the charac-
terisation of the relationship between queries and the top 500 documents in
Appendix B.8.3.

Source-dataset analysis. We analyse which datasets the influential data comes
from in Appendix B.8.4.

Content analysis of relevant documents. We classify data from the source
dataset code for whether it actually contains code in Appendix B.8.5.
Additional quantitative results. In Appendix B.9 we provide additional
quantitative results.

Correlation analysis. Further results for the correlation analysis of influence
scores for documents for different queries in Appendix B.9.1.

Magnitude of influence. Further results for the magnitude of influence in
Appendix B.9.2.

Spread of influence. Further results for the spread of influence over the rankings
in Appendix B.9.3.
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B.1 Counterfactual Re-training Experiments

with Influence Functions

We use EKFAC influence functions to approximate the counterfactual question:
which documents from pre-training have a causal effect on the completions
of a trained model. However, we are also interested in the causal effect on
the accuracy of the completions. In this section, we aim to motivate two
aspects of this choice; the fact that influence functions are designed to estimate
the effect on continuous differentiable functions, like the log-likelihood, and
not on the accuracy. Secondly, we motivate the need for estimating the
second-order information of the pre-training objective using EKFAC, which
is very computationally expensive. We present four different experiments in
this section, which show that indeed the influence of documents as determined
by influence functions also estimate the effect on downstream task accuracy,
as well as the benefits from estimating second order information over simply

using first-order gradient information.

The pipeline for each of these experiments is similar; we take a pre-trained
model, we fine-tune it on some dataset, and evaluate it on 50 validation exam-
ples with a metric (perplexity or accuracy). We then use the fine-tuned weights
to calculate the influence of the documents in the dataset used for fine-tuning
on the set of 50 validation questions with two methods: EKFAC influence
functions and TracIn [Pru+20]. Subsequently, we use those two methods
to remove the k£ most positively influential documents from the fine-tuning
dataset, as well as randomly selecting £ documents as a baseline, and fine-tune
the original pre-trained model five times (with different seeds) on each new
fine-tuning dataset created (for different values for k). We then calculate the
perplexity or accuracy on the validation questions used to calculate the influ-
ence, and see how it changed. The more it changed, the more the documents
indeed influence the relevant metric (i.e. perplexity or accuracy). Note that
for n different values for k, this requires fine-tuning 3 * 5 % n models: five

times for each of the three methods of removing documents from the training set.

We start by motivating the use of EKFAC influence functions over simple
similarity information between document and query gradients. In our setup,
where we only have access to the final checkpoint of pre-training, a dot-product

between the query and document gradient effectively boils down to a method
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for estimating influence of documents on queries called TracIn [Pru+20]. With
access to multiple checkpoints, TracIn uses gradient information from all of
them, accounting for the learning rate used at that point in training. How-
ever, we only use the final checkpoint and hence taking into account learning
rate only changes scores by a constant. We take GPT-2-small (124M) from
HuggingFace,! and fine-tune it for three epochs with next-token prediction on
Wikitext-2 [Mer+16]. We use Adam optimizer [KB15] with default parameters
(b1 0.9, b2 0.999, eps le-8, additive weight decay 0.01). The results can be
found in Figure B.1 and Table B.1, showing that removing documents using
EKFAC influence functions has a significantly larger effect on downstream
perplexity for all values of k. We do the exact same experiment but instead
remove the most negatively influential documents, and see that instead the
perplexity decreases significantly more for EKFAC influence functions (Figure
B.1 and Table B.2).

Table B.1: Wikitext remove top influential

k — 50 100 150 200 250 300
Random  22.09 + 0.02 22.12 + 0.02 22.10 £ 0.02 22.20 £ 0.06 22.19 + 0.05 22.15 £ 0.05
Tracln 22.16 £ 0.02**  22.22 + 0.02**  22.25 £ 0.01**  22.35 4+ 0.03** 22,42 + 0.01**  22.45 4 0.02**
IF (ours) 22.49 + 0.02**  22.66 + 0.02**  22.73 4+ 0.02**  22.88 + 0.01**  22.97 + 0.02**  23.05 + 0.05**

Table B.2: Wikitext remove bottom influential

k — 50 100 150 200 250 300
Random  27.40 + 0.08 26.24 + 0.10 25.62 + 0.15 25.22 £ 0.10 25.04 + 0.12 24.85 4 0.10
TracIn 26.73 4+ 0.04**  25.48 + 0.05**  24.86 4 0.02**  24.36 £ 0.04**  24.16 4+ 0.05**  23.94 + 0.03**
IF (ours) 25.96 + 0.04**  24.78 + 0.05**  23.95 + 0.03**  23.52 4+ 0.03**  23.46 + 0.03**  23.32 + 0.04**

Next, we turn to motivating the use of EKFAC influence functions in estimating
the effect of documents on downstream accuracy of model generations. To
this end, we look at two different datasets: DROP [Dua+19] and RACE
[Lai+17]. DROP is a reading comprehension dataset requiring different skills
like subtraction, addition, coreference resolution, counting, and other skills.
The model needs to generate an answer that often consists of one or a few
words. We allow the fine-tuned models to generate answers to the questions
freely, and evaluate based on exact match. In this experiment, we use a 7B
model. We randomly select a subset of 8000 examples for fine-tuning, and

use the procedure described above to perform counterfactual experiments. We

lhttps://huggingface.co/
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Figure B.1: (a) Counterfactual retraining experiments on Wikitext-2. We fine-
tuned GPT-2 (124M) on Wikitext-2 and use three different methods to
remove training examples from the training set: randomly, TracIn, and
Influence Functions (IF). For each number of samples removed we fine-
tune the base model five times with different training data ordering,
the variance over these runs is represented by the error bars. Each
point on the plot is the average perplexity achieved by the five models
after fine-tuning on the augmented dataset. We find that influence
functions can find examples that impact the perplexity significantly
more than baselines. (b) We repeat the same experiment as in (a),
but retain top influential queries instead (removing most negatively
influential).

use Adam optimizer again, with the same hyperparameters as for the above
experiment: bl 0.9, b2 0.999, eps le-8, additive weight decay 0.01, but only
train for one epoch. The results can be found in the left panel of Figure B.2 as
well as in Table B.3. We find that EKFAC influence functions are succesful
in selecting data points that impact downstream accuracy, much more so
than randomly removing the same amount of training data. For most k (all
but £ = 1000), EKFAC influence functions also have a significantly stronger
effect on accuracy than Tracln, but the difference is less large. We apply the
exact same procedure to the RACE dataset, except now we keep 10k examples
(empirically found to lead to the least overfitting when fine-tuning). Further,
RACE is a multiple-choice dataset, so we allow the model to generate a single
token indicating the choice, and calculate the accuracy. The results can be seen
in Figure B.2 and Table B.4. Again, the finding is similar; EKFAC influence
functions surface documents that have a stronger effect on accuracy than
Tracln for all but one value of k, and for all values of k£ than randomly removing
documents. There is a large variance in the results for all methods though,

which we attribute to the fact that the model sometimes seems to overfit to
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the fine-tuning data. Further, the reason why the difference between Tracln
and EKFAC influence functions is much larger in the perplexity experiments
than in the accuracy experiments could be attributed to the fact that we only
fine-tune for one epoch in the accuracy experiments (as more cause overfitting).
EKFAC influence functions differ from Tracln in that they estimate second
order information, which becomes more important with more training steps.
An interesting avenue for future work is to do counterfactual re-training
experiments like these on a subset of pre-training data for a 7B model, but

this is incredibly computationally expensive.

Table B.3: Counterfactual re-training accuracies on DROP (free generation of
answers). We use three different methods (random, Tracln, influence
functions) to remove k datapoints, and re-train a model on the resulting
dataset. Each number is the mean over five re-training runs with
different data ordering. % indicates significantly lower than random with
a p-value below 0.1 and *x with a p-value below 0.05. The underlined
means are the lowest.

k — 500 1000 1500 2000

Random  0.61 £+ 0.05 0.60 £ 0.03  0.56 £0.05  0.57 &£ 0.06
Tracln 0.55 £ 0.03* 0.49 £ 0.02** 0.44 + 0.04* 0.43 £+ 0.06™
IF (ours) 0.51 + 0.03** 0.50 4+ 0.04** 0.40 £+ 0.05** 0.38 + 0.05**

Table B.4: Counterfactual re-training accuracies on RACE (multiple-choice). We
use three different methods (random, Tracln, influence functions) to
remove k datapoints, and re-train a model on the resulting dataset.
Each number is the mean over five re-training runs with different data
ordering. x indicates significantly lower than random with a p-value
below 0.1 and % with a p-value below 0.05. The underlined means are
the lowest.

k — 1000 1500 2000 2500

Random 0.85 £ 0.04 0.83+£0.03 0.82+£0.04 0.81 £0.04
Tracln 0.84 £0.01 0.78 £0.03* 0.80 £0.03  0.79 £ 0.04
IF (ours) 0.80 + 0.04* 0.76 + 0.05** 0.74 4+ 0.04** 0.74 + 0.05*

Although the results of the experiments in this section are an encouraging sign
for using EKFAC influence functions in estimating causal effect of data on
accuracy, it is important to note that they are limited in several ways. Accuracy

is a discrete metric and it is a prior unclear how many documents need to be
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(a) Counterfactual retraining experiments

on reading comprehension questions. We
fine-tuned Cohere Command 2 (7B) on a
subset of the DROP training set (8k ex-
amples) and use three different methods
to remove training examples from the
training set: randomly, TracIn, and In-
fluence Functions (IF). For each number
of samples removed we fine-tune the base
model five times with different training
data ordering, the variance over these
runs is represented by the error bars.
Each point in the plot is the average ac-
curacy achieved by the five models after
fine-tuning on the augmented dataset.
We find that influence functions can find
examples that impact the accuracy sig-
nificantly more than baselines, although
only slightly more than Tracln.
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(b) Counterfactual retraining experiments

on multiple-choice reasoning data. We
fine-tuned Cohere Command 2 (7B) on a
subset of the RACE training set (10k ex-
amples) and use three different methods
to remove training examples from the
training set: randomly, TracIn, and In-
fluence Functions (IF). For each number
of samples removed we fine-tune the base
model five times with different training
data ordering, the variance over these
runs is represented by the error bars.
Each point in the plot is the average ac-
curacy achieved by the five models after
fine-tuning on the augmented dataset.
We find that influence functions can find
examples that impact the accuracy sig-
nificantly more than baselines, although
there is some variance in the results.

Figure B.2: Counterfactual retraining experiments on reading comprehension
benchmark DROP (a) and the multiple-choice reasoning dataset RACE

(b).

removed to flip its value. However, the influence functions we use estimate
effect of removing a single document, and removing multiple documents can
have additional effects that are unaccounted for. This makes removing multiple
documents a cruder way to empirically show impact of influence functions on
accuracy, but at the same time it is unavoidable. Therefore, any significant
causal effect on accuracy over other methods is a good signal, but the absence
of a significant effect does not necessarily mean EKFAC influence functions do

not properly do what they are designed to do.
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B.2 EKFAC Influence Functions

The code we use for EKFAC influence functions at scale is a part of
larger internal Cohere infrastructure, and hence cannot be released pub-
licly.  However, we base our code on the public GitHub repository
https://github.com/pomonam/kronfluence. We implement estimation of
the Hessian in the same way as in that codebase, except for a few changes to
make it tractable, which we discuss in more detail below. Further, we compare
the results produced by our implementation with the results using the public
implementation. We do this by fine-tuning GPT-2 (124M) on Wikitext-2
using internal infrastructure, and calculating influence scores with both code
bases. We find that the results correlate very strongly (with a Pearson’s R of
more than 0.99, see B.2.2 below for more details). Here, we provide details of
the design choices and hyperparameters used in our implementation, as well
as the additional approximations to make EKFAC estimation and influence

calculation tractable at scale.

Query-batching and approximation As mentioned in Chapter 3, we approx-
imate query gradients using approximate SVD [HMT11]. We use the default
parameters for this algorithm, which can be found in the Dask documentation

[Das16].

Sampling from the pre-training data. It is intractable to calculate influ-
ence for the entire pre-training data, so we sample a set of 5 million documents.
To this end, we loop over the training data as seen by the models in order,
and randomly sample 6 examples from each batch. This ensures that the
pre-training sample we use is both similar to the pre-training distribution in
terms of what kind of data the model sees, as well as when it has encountered

the data during pre-training.

Estimating EKFAC. To estimate the EKFAC matrices, we sample 100000
documents from pre-training in the same manner as described above. We
use the same samples to estimate the EKFAC for the 7B as for the 35B. For
both models, we use a damping factor of 0.1 (see Section 2.3 for details on
what the damping factor is). Further, part of estimating the EKFAC is an
eigendecomposition on the EKFAC matrices. We use the same approximation

as empirically motivated in [Gro+23], namely block-diagonal approximation.
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For the 7B, we use 2 blocks, and for the 35B, we use 4. The block-diagonal
approximation is not part of the public codebase, but simply amounts to
dividing the matrices in n blocks (where n is 2 and 4 in our case), zero-ing
out the remaining entries, and taking the eigendecomposition of each block
individually. After, these blocks are patched back together again into the

original size matrix, which will be further processed as in the public codebase.

B.2.1 Justifying Approximations

In this section, we justify the additional approximations we do on top of
those mentioned in Grosse et al. [Gro+23] by reporting the correlation with
the full implementation for a smaller model (124M parameters). Applying
EKFAC influence functions to models with billions of parameters requires
estimating a multiple of the model parameters. E.g. for the 7B model we
estimate around 70B EKFAC parameters, and for the 35B model we estimate
around 320B parameters. Further, to calculate the influence scores for a set
of 5 million documents we have to calculate the gradient for 100 queries x 5
million documents, each of which has the same size as all feed-forward layers
in the model itself. We can only afford to loop over the 5 million documents
and calculate their gradients once, so we need to batch the query gradients
in memory. This is impossible for the full gradients and we use SVD to store

low-rank approximations instead, like in Grosse et al. [Gro+23].

Details on the experiment. To compare results of using EKFAC influence
functions with different approximations, we use the same fine-tuned model from
Section B.1 to calculate influence scores for the 4656 training examples (i.e.
documents) on the first 32 validation examples (i.e. queries) of the Wikitext-2
dataset. We repeat this with different types of approximations applied; full
SVD on the query gradients, approximate SVD [Das16] on the query gradients,
and a block-diagonal approximation of the EKFAC matrices before the eigen-
decomposition (described in Appendix A of Grosse et al. [Gro+23]) with 2 and
4 blocks. For each level of approximation applied, this gives us 32 vectors with
4656 scores (one for each query-document pair), and we compare these to the
full implementation without SVD and block diagonal approximations using
Pearson’s R correlation. The correlations reported are the average over all 32

queries, but in the supplement we provide the correlations for each query for
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all experiments done below.

In Table B.5 we report the correlations of increasingly more approximations
w.r.t. a full implementation. Note that the full implementation also uses
approximations, but those are all justified in Grosse et al. [Gro+23]. Here,
for completeness, we additionally justify the approximations we use that are
different, namely approximate SVD instead of full SVD, and a block-diagonal
approximation with 4 blocks instead of 2. From Table B.5, we can see that the
approximate SVD algorithm has a neglible effect on the scores, whereas the

block-diagonal approximation has a small effect on the scores.

Approximations Pearson R
SVD 0.96 £+ 0.01
Approximate SVD 0.96 4+ 0.01
Approximate SVD + block diagonal EKFAC (2 blocks) 0.95 4+ 0.00
Approximate SVD + block diagonal EKFAC (4 blocks) 0.93 £ 0.00

Table B.5: Score correlations of using increasingly more approximations with a full
implementation.

B.2.2 Full implementation

We also compare the full implementation scores of our own influence functions
implementation with the scores calculated for the same model and dataset with
the public implementation at https://github.com/pomonam/kronfluence,
and confirm the average score correlation between queries is 0.993 (4 0.003).
We add a direct score comparison of both methods for the top 3 documents for
each of the 32 queries to the supplemental material. Specifically, for each query
we log the top 3 documents as determined by our internal implementation
as well as the external implementation, showing that they are almost always
the same documents, and logging the score given to that document by each
implementation (the supplement” also contains the score correlation for each
query separately). The average number of documents that appear in both
top 50’s determined by the internal and external implementation is 46.7. The
reason for using an internal implementation nonetheless is that the public
implementation is not optimised for usage on large-scale models, and cannot be

used for models above about 1B parameters. We used the internal pre-training

’https://openreview.net/forum?id=1hQKHHUsMx
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library for implementing influence functions, because part of the infrastructure

used for pre-training large models could be re-used.
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B.3 Query sets

Reasoning query sets. We show an example of the other two types of
reasoning than arithmetic present in the reasoning query sets in Table B.6
and B.7. The former requires calculating the slope of a line going through two
given points (used for both the 7B and 35B model) and the latter is about

solving for z in a linear equation (only used for the 35B model).

Control query sets. We design two control sets with 10 questions each
for both the 7B and 35B model. These query sets resemble reasoning and
factual questions, but do not require actual reasoning or factual retrieval. The
reason for constructing such query sets is to compare the results for the factual
/ reasoning query sets to the corresponding control sets, and comment on
whether the patterns we are seeing also show up for queries that do not require

reasoning / retrieval, which further helps interpretations of the results.

Two factual control examples can be seen in Table B.8 and B.9, for the 7B
and 35B model respectively. They are designed to match the first factual
query superficially (e.g. the same numbers), but they are instead reading
comprehension questions about fictional entities. This means all the model

needs to do to answer the question is retrieve from context (not parameters).

Two of the reasoning control examples for the 7B and 35B respectively can
be seen in Table B.10 and B.11. Again, these resemble reasoning queries in
number and style, but do not require any actual reasoning as the answer is

given in the context.
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Table B.6: Reasoning query set (slopes). Example from the reasoning set that
involves calculating the slope of a line going through two points. We
have 20 examples like these on different points. The completion is by
the 7B model, but we use the same questions for the 35B model.

Reasoning query set (slopes)

Prompt

What is the slope of the line passing through the points (93, 28) and (74, 47)7

Think step-by-step.

Completion by 7B

To find the slope of the line passing through the points (93, 28) and (74, 47), we can use the following steps:
1. Identify the coordinates of the two points:

- Point A: (93, 28)

- Point B: (74, 47)

2. Calculate the difference in x-coordinates between the two points:
- Difference in x-coordinates: x2 - x1 = 74 - 93 = -19

3. Calculate the difference in y-coordinates between the two points:
- Difference in y-coordinates: y2 - yl = 47 - 28 = 19

4. Determine the ratio of the difference in y-coordinates to the difference in x-coordinates:
- Ratio: 19 /-19=1/-1

5. Multiply the ratio by -1 to reverse the direction of the line:
- Slope: -1 /1 =-

Therefore, the slope of the line passing through the points (93, 28) and (74, 47) is -1.

Table B.7: Reasoning query set (linear). Example from the reasoning set
that requires solving for x in a linear equation. We have twenty other
examples like these on different numbers, only for the 35B model. The
completion is by the 35B model.

Reasoning query set (linear)

Prompt

Solve for x: 5x + 21 = 91

Think step-by-step.

Completion by 35B

Here are the steps to solve for x:

1. Subtract 21 from both sides of the equation:
5x +21-21 =91-21

5x = 70

2. Divide both sides of the equation by 5 to solve for x:
(5x) /5=70/5
x =14

Therefore, the solution to the equation 5x 4+ 21 = 91 is x = 14.
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Table B.8: Factual control query set (7B). Example from the factual control
set that resembles the question about the tallest mountain in the world
from the 7B factual query set (Table 3.2), but does not require any
factual recall. The completion is by the 7B model.

Factual control query set

Prompt

The planet Zog has multiple mountains, of which the tallest one is called Wirtu which is 29,029 feet tall.
What is the largest mountain on the planet Zog called and how tall is it?

Completion by 7B

The largest mountain on the planet Zog is called Wirtu and it is 29,029 feet tall.

Table B.9: Factual control query set (35B). Example from the factual control
set that resembles the first factual query for the 35B model superficially,
but does not require any factual recall. The completion is by the 35B
model.

Factual control query set

Prompt

In a fictional planetary system, there is a supernova remnant and pulsar wind nebula in the centre of
a constellation of stars called Minotaur called the Goat Nebula.
‘What is the supernova remnant and pulsar wind nebula in the constellation Minotaur called?

Completion by 35B

In the fictional planetary system, the supernova remnant and pulsar wind nebula in the centre of
the constellation Minotaur is called the “Goat Nebula”.
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Table B.10: Reasoning control query set (7B). Example from the reasoning
control set that resembles the slope queries superficially, but does not
require any reasoning. The completion is by the 7B model.

Reasoning control query set

Prompt

The slope of the line is -22. What is the slope of the line?

Think step-by-step.

Completion by 7B

Given that the slope of the line is -22.
To find the slope of the line, we need to find the change in y-coordinates divided by the change in x-coordinates.
The slope of the line is -22.

Therefore, the slope of the line is -22.

Table B.11: Reasoning control query set (35B). Example from the reasoning
control set that resembles the slope queries superficially, but does not
require any reasoning. The completion is by the 35B model.

Reasoning control query set

Prompt

This line has a slope 6. What is the slope of the aforementioned line?

Think step-by-step.

Completion by 35B

The slope of a line is a measure of the steepness of the line.
It is defined as the ratio of the change in the y-coordinate to the change in the x-coordinate.

In this case, the line has a slope of 6. This means that for every 1 unit increase in the x-coordinate,
the y-coordinate will increase by 6 units.

It’s important to note that the slope of a line is not limited to positive values and can be negative or
zero depending on the orientation of the line.
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B.4 Query keywords for finding the answer

We provide all keywords used to search for the answers for both the 7B and
35B in the supplementary material to this manuscript®, and describe here the

procedure for generating keywords, as well as giving some examples.

For the factual questions, we generated keywords manually for each query, and
these can be found in the supplemental material. For example, for the question
“What is the world’s smallest mammal by body length?” (answer: bumblebee
bat), we have the following keywords: bumblebee bat; bumblebee; bumble; bee;
bat; smallest mammal; body length; mammal; smallest; small. This results in
many false positives, e.g. if only the word ‘small’ occurs, which we all check

manually for the answer.

Based on the type of reasoning question, we programatically create keywords
for each question. For example, for the question in Table B.7, the keywords

are:

[’14°, °x = 14°>, ’bx + 21°, ’91’, ’bx + 21 = 91°, ’21’, ’5’,

’91 - 21°, ’91 - 21 =70°, °(91 - 21) / &, ’70 / 5,

’70 / 5 = 14°, °70°, ’x=14’, ’bx+21°, ’bx+21=91’, ’91-217,
’91-21=70’, ’(91-21)/5’, ’70/5’, ’70/5=14’,

’(91 - 21) divided by 5°, ’(91-21) divided by 5°,

’(91 minus 21) divided by 5’, ’(91 min 21) divided by 5°,

>70 divided by 5’, ’70 divided by 5 = 14’,

’70 divided by 5 is 14’, ’70 / 5 is 14’, °70/5 is 14°,

’91 - 21 is 70’, ’91-21 is 70’, ’91 minus 21 is 70°’,

’91 min 21 is 70’, ’70 divided by 5 equals 14°,

>70 / 5 equals 14’, ’70/5 equals 14°, ’91 - 21 equals 70°,

’91-21 equals 70’, ’91 minus 21 equals 70’, ’91 min 21 equals 70°,
’bx plus 21’°, ’bx plus 21 = 91’, ’bx plus 21 is 91’, ’bx + 21 is 91’7,
’91 minus 21°, ’91 min 21°, ’91 minus 21 = 70’, ’91 min 21 = 707,
’(91 minus 21) / 5, ’(91 min 21) / 5°]

Note that, because the individual numbers ‘14’, ‘5, ‘91°, and ‘70’ are part of the
keywords, each document that contains one of these numbers becomes a hit, and we

go over all hits manually.

3https://openreview.net/forum?id=1hQKHHUsMx


https://openreview.net/forum?id=1hQKHHUsMx

B.5. Prompts given to Command R+ for finding the answer 141
B.5 Prompts given to Command R+ for find-

ing the answer

We use multiple prompts for each different type of reasoning question to allow
Command R+ to find the answer in the top 500 influential documents; prompts to
find the answer to the intermediate reasoning steps, and a prompt for finding the

answer to the full question. We provide an example of each below.

Preamble:

You are a brilliant Al assistant that is excellent at arithmetic designed
to help users with data analysis. You will be given an arithmetic query
and a document, and your task is to determine whether the answer to

the question s in the document.

Prompt for the first step to a two-step arithmetic question

Question: 4 + 2
Answer: 4 + 2 =6

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The order of operations are changed. E.g. 2 + 4 = 6.

- Different symbol used for sum/subtract sign. E.g. plus/minus.

- The calculation is part of another larger calculation. E.g. (4 + 2) * 9 =6 * 9 or (4 4+ 2)/12 = 6/12.
- Different formatting. E.g. (4) + (2) = (6).

- The calculation is a part of an algebraic formulation. E.g. 4X 4+ 2X = 6X.

What does not count as an answer:
- Other numbers are being summed/subtracted. E.g. 5 + 2.
- Numbers are taken to the other side of the equals sign. E.g. 6 - 2 = 4.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.
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Prompt for the second step to a two-step arithmet

Question: 6 * 15
Answer: 90

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The order of operations are changed. E.g. 15 * 6 = 90.

- Different symbol used for the multiplier sign. E.g. x or times.

- The calculation is part of another larger calculation. E.g. (6 * 15) * 9 = 90 * 9 or (6 * 15)/12 = 90/12.
- Different formatting. E.g. (6) * (15) = (90).

- The calculation is a part of an algebraic formulation. E.g. 6X * 15X = 90X.

What does not count as an answer:
- Other numbers are being multiplied. E.g. 7 * 15.
- Numbers are taken to the other side of the equals sign. E.g. 6 = 90/15.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.

Prompt for step 1 (and 2 is similar) to answ slope question

Question: 74 - 73
Answer: 74 - 73 =1

‘What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a difference or change. E.g. the difference (or change) between 73 and 74 is
1.

- The order of operations are changed. E.g. 73 - 74 = -1.

- Different symbol used for the minus sign. E.g. subtracted from.

- The calculation is part of another larger calculation. E.g. (74 - 73) * 9 =1 * 9 or (74 - 73)/12 = 1/12.

- Different formatting. E.g. (74) - (73) = (1).

- The calculation is a part of an algebraic formulation. E.g. 74X - 73X = 1X.

What does not count as an answer:
- Other numbers are being subtracted. E.g. 75 - 73.
- Numbers are taken to the other side of the equals sign. E.g. 74 = 1 + 73.

Document:
<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.
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Prompt for step 3 to ans

Question: 74 / 1
Answer: 74 /1 = 74

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The signs on the LHS are flipped. E.g. -74 / -1 = 74.

- Different symbol used for the division sign. E.g. divided by.

- The calculation is part of another larger calculation. E.g. (74 /1) * 9 =74 * 9 or (74 / 1)/12 = 74/12.
- Different formatting. E.g. (74) / (1) = (74).

- The calculation is a part of an algebraic formulation. E.g. 74X / 1 = 74X.

What does not count as an answer:
- Other numbers are being divided. E.g. 75 / 1.
- Numbers are taken to the other side of the equals sign. E.g. 74 = 74 * 1.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.
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Question: 32 - 16
Answer: 16

‘What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a difference or change. E.g. the difference (or change) between 32 and 16 is
16.

- The order of operations are changed. E.g. -16 + 32 = 16.

- Different representation used for the minus sign. E.g. ’subtracted from’.

- The calculation is part of another larger calculation. E.g. (32 -16) * 9 = 16 * 9 or (32 - 16)/12 = 16/12.

- Different formatting. E.g. (32) - (16) = (16).

- The calculation is a part of an algebraic formulation. E.g. 32X - 16X = 16X.

What does not count as an answer:
- Other numbers are being subtracted. E.g. 33 - 16.
- Numbers are taken to the other side of the equals sign. E.g. 32 = 16 + 16.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.

Question: 16 / 8
Answer: 16 / 8 = 2

‘What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a ratio. E.g. the ratio between 16 and 8 is 2.

- Different representation used for the division sign. E.g. 'divided by’.

- The calculation is part of another larger calculation. E.g. (16 / 8) * 9 =2 * 9 or (16 / 8)/12 = 2/12.
- Different formatting. E.g. (16) / (8) = (2).

- The calculation is a part of an algebraic formulation. E.g. 32X / 16X = 2X.

What does not count as an answer:
- Other numbers are being divided. E.g. 17 / 8.
- Numbers are taken to the other side of the equals sign. E.g. 16 = 2 * 16.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might
be given.




B.5. Prompts given to Command R+ for finding the answer 145

Prompt for the full answer to a linear qu

Question: 8x + 16 = 32
Answer: 2

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a ratio. E.g. the ratio between 16 and 8 is 2.

- Different representation used for the plus sign or the equals sign. E.g. ’added to’ and ’equals’.

- A different variable than X is used. E.g. ’t’: 8t + 16 = 32,

- The calculation is part of another larger calculation. E.g. (8x + 16 = 32) * 9 =2 * 9 or (8x 4 16 = 32)/12 = 2/12.
- The solution is written out in steps below each other. E.g.:

8x 4+ 16 = 32
8x =2
x = 0.

- The calculation is a part of an algebraic formulation. E.g.:
5% (8x 4+ 16) = 5 * 32
5*x=25%*2,

‘What does not count as an answer:
- Other numbers are being used. E.g. 9x + 16 = 32.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is
by copying the part of the document in which the answer occurs, ending with an explanation of why that passage
contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.
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B.6 Prompts for characterising the query-

document relation

We combine all reasoning queries in pairs with their top 500 most influential docu-

ments, and prompt Command R+ to characterise the relationship. For all types of

reasoning, we use the same preamble:

You are a brilliant Al assistant that is excellent at arithmetic designed to
help users with data analysis. You will be given an arithmetic query and
a document, and your task is to characterise the document by choosing

keywords from a given set that best describe how the document relates to

the question.

For each type of reasoning, we craft a prompt that allows Command R+ to choose

multiple keywords for each query-document pair in the top 500 documents. We

provide each below.
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Prompt for arithmetic questions

Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Similar arithmetic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are
the same)

Similar arithmetic operations (on other types of numbers, e.g. much larger or smaller)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an
answer)

Other types of maths

Code that contains arithmetic

Code that concerns other types of math

Code that concerns no math/arithmetic

Text about math/arithmetic (no other relation to the query than that the text is about math, text does not perform
math/arithmetic)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words
related to other parts of math, like algebra)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.
Keep in mind that the document might be in another language than English. If you pick any of the code keywords,
add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’). If the relation
between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your
own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’
and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation
below separated by newlines Give your answer in the form of a semicolon-separated list of keywords, and add an
explanation below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’).
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Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Similar arithmetic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are
the same)

Similar arithmetic operations (on other types of numbers, e.g. much larger or smaller)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an
answer)

Other types of maths

Code that contains arithmetic

Code that calculates the slope between two numbers

Math that calculates the slope between two numbers

Code that calculates the slope of an equation

Math that calculates the slope of an equation

Code that concerns other types of math

Code that concerns no math/arithmetic

Text about math/arithmetic (no other relation to the query than that the text is about math, text does not perform
math/arithmetic)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words
related to other parts of math, like algebra)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.
Keep in mind that the document might be in another language than English. If you pick any of the code keywords,
add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’). If the relation
between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your
own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’
and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation
below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’).




B.6. Prompts for characterising the query-document relation 149

Prompt for linear que

Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Code that solves a linear equation for a variable (of the form ax + b = cor ax - b = ¢)

Code that solves a linear equation with multiple variables for one or both variables (e.g. ax + by = ¢)

Code that solves a linear equation of another form than ax + b =corax-b =c¢

Math that solves a linear equation for a variable (of the form ax + b =cor ax- b = ¢)

Math that solves an equation with multiple variables for one or both variables (e.g. ax + by = c¢)

Math that contains linear equations of another form than ax + b = corax-b = ¢

Math that contains linear equations but they are not solved (of the form ax + b =cor ax - b = ¢)

Math that contains linear equations but they are not solved (of another form than ax + b = c or ax - b = ¢)
Similar algebraic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are the
same)

Similar algebraic operations (on other types of numbers, e.g. much larger or smaller)

Other forms of algebra

Arithmetic operations

Other types of maths

Code that contains arithmetic

Code that concerns other types of math

Code that concerns no math/algebra

Text about math/algebra (no other relation to the query than that the text is about math, text does not perform
math/algebra)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an
answer)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words
related to other parts of math, like arithmetic)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.
Keep in mind that the document might be in another language than English. If you pick any of the code keywords,
add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’) If the relation
between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your
own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’
and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation
below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’). If you pick a keyword
about solving a linear equation, add the linear equation in the explanation.
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B.7 Further discussion of limitations

More broadly, the findings in Chapter 3 suffer from the same limitations any work
does that uses EKFAC influence functions; we do many approximations to estimate
the counterfactual and only take into account MLP parameters. This latter decision
is because EKFAC influence functions are not properly defined for the attention
layers [Gro+23], although we do look at the dense layers used within them. We list

the assumptions and approximations here:
e First-order Taylor approximation to the PBRF.

e Assume different layers of MLPs are independent, making the Gauss-Newton

Hessian block-diagonal.
e Assume activations are independent of pre-activation pseudo-gradients.

e Estimate the approximation to the Fisher Information Matrix or equivalently
the Gauss-Newton Hessian by sampling from the empirical data distribution /
model output distribution, because it’s an expectation over that distribution
(MC estimation).

e Block-diagonal approximation of the eigenvector matrices within each layer.
e Low-rank approximation of query gradients.
e Assume EKFAC for SFT stage is identity [Bae+24].

All these approximations are verified and justified in Grosse et al. [Gro+23] and

[Bae+24], and the reader is referred there for a more in-depth analysis.

Our empirical results showing that nonetheless influence functions surface documents
that are causally related to accuracy in Appendix B.1 should alleviate some of these

concerns, but not all.
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B.8 Additional qualitative analysis

B.8.1 Answers to questions in pre-training data

In Section 3.4.2, we find the answer to factual questions relatively often compared to
the answer to reasoning questions. In this section, we comment on the possibility
that the answer to reasoning questions are simply not part of the pre-training sample
of 5 million documents we look at, as well as present examples of documents with
answers to queries. Recall that all reasoning tasks require multiple steps, and the
model outputs reasoning traces to get to the final answer. This means that if the
model is retrieving the answers, it should retrieve answers to all the reasoning steps.
On top of the search in Section 3.4.2, we search for answers to the reasoning steps
and factual questions in a random subset of the 5M pre-training documents. For
the 7B reasoning questions, we find 43 documents containing answers to reasoning
steps, of which only 9 show up in the top 0.02% of the data. Of these 9, 4 documents
together contain the 2 answers found for the 7B arithmetic queries in the main
text. The remaining 5 are answers to single reasoning steps that do not combine
to a full answer. By contrast, we find the full answer to factual questions in 73
documents, of which 35 show up in the top 0.02% of the data. For the 35B, we
find 7 documents with answers to reasoning steps, of which 4 show up in the top
0.02% (none combining to a full answer). For the factual questions, we find 17
documents with answers, of which 15 show up in the top 0.02%. In terms of full
answers showing up in the top 0.02%, we find one additional full answer on top of
the ones we found in the main text for the 7B reasoning questions, spread over two
documents with rank 896542 and 4997351 of 5 million respectively (i.e. highly un- or
negatively influential). For the 35B we do not find full answers to reasoning queries
at all. We provide many documents with answers to factual and reasoning queries
found in the top 0.02% in the supplemental material* as well as one example per
reasoning step answer we find (e.g. if we find the answer to 6 — 4 = 2 four times, we
show one example in the supplement). We highlight here some examples from the

larger pre-training sample for illustration.

Examples of pre-training data with answers.

For factual questions, it happens relatively frequently that the answer to the question
shows up as highly influential in multiple documents of the top 10 documents. For
example, for the factual question in Table 3.2 ( “What is the tallest mountain in
the world and how tall is 1t?”), the answer shows up at ranks 1, 4, 6, and 7. The
document at rank 1 (the most positively influential document), is the following,

which has the same question and the answer (question 5 below, underlined):

‘https://openreview.net/forum?id=1hQKHHUsMx


https://openreview.net/forum?id=1hQKHHUsMx
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Factual query

What is the tallest mountain in the world and how tall is it?

Completion by 7B

The tallest mountain in the world is Mount Everest, which is located
between Nepal and Tibet. The height of Mount Everest is 8,849 meters
(29,029 feet) above sea level.

Write some general trivia questions and answers. Here are some general

trivia questions and answers:

1. What is the longest word in the English language?

Answer: The longest word in the English language is ” pneumonoultra-

microscopicsilicovolcanoconiosis”, which is a type of lung disease.

2. How many bones are in the human body?

Answer: There are 206 bones in the human body.

3. What is the largest ocean in the world?

Answer: The largest ocean in the world is the Pacific Ocean, which

covers approximately one-third of the Earth’s surface.

4. What is the longest river in the world?

Answer: The longest river in the world is the Nile River, which is 6,650
kilometers (4,130 miles) long.

5. What is the highest mountain in the world?

Answer: The highest mountain in the world is Mount Everest,
which is 8,848 meters (29,029 feet) high.

6. What is the most common element in the human body?

. redacted
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Another document has the answer to part of an arithmetic query for the 7B (“Calcu-
late the answer: (5 - 3) * 12. Think step-by-step.”), namely 5 - 3 = 2 (underlined
below, note that one needs to understand rules to writing arithmetic to figure the
answer out). Interestingly, this document shows up in the top 10 documents for 11
of 20 arithmetic queries. By contrast, the factual answer document shown before
shows up in the top 10 for 4 of 40 queries (we have another query that asks for the
largest ocean in the world, for which this document also has the answer). View the

document on the next page:
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7

Reasoning query (arithmetic)

Calculate the answer: (5 - 3) * 12

Think step-by-step.

Completion by 7B

First, let’s evaluate the expression inside the parentheses:
5-3=2

Now, let’s multiply the result by 12:
2%12=24

Therefore, the answer is 24.

shown in numbers 7, 9 and 10.
PEMDAS Rules Practice 1 Solutions
1.
Solution:
Multiply: 2x3 +4x6 =6 + 24
Add: 6 + 24 = 30
Answer: 30
2.
. redacted
4.
Solution:
Parenthesis: 8(6 —2) + 2(5 — 3) = 8(4) + 2(2)
Multiply: 8(4) + 2(2) = 32 + 2(2)*
Divide: 32 + 2(2)= 16(2)
Multiply: 16(2) = 32
Answer: 32
*This is the case mentioned in the PEMDAS Rules that when multi-
plication and division are performed consecutively (without any other
operations or grouping symbols in between), the perform the operations
from the left hand side to the right hand side. ... redacted
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To show that answers to more “niche” questions also show up, consider this document

that contains the answer to the question “What is the common name for the larva

of a housefly?” (answer: maggot, underlined below):

What is the common name for the larva of a housefly?

Factual query

The common name for the larva of a housefly is a maggot.

Completion by 35B

Common House Fly

Flies are easily recognized and are universally annoying. To say they
are unappealing is an understatement. Flies enjoy spending time on
decaying organic filth, including rotting meat and feces. They then
manage to enter your home and land on your kitchen counters and
any uncovered food. House flies do more than just buzz around and
steal your food. They can transfer over 65 diseases including cholera,
dysentery, poliomyelitis, and tuberculosis. Flies accumulate nasty
pathogens when they rest on sewers, trash, feces, and any other moist
or decaying material.

Flies lay their eggs on food (fruit in your fruit

When the eggs hatch, the tiny rice-like larvae are called maggots.

Few other bugs provoke nausea and an overall disgust like tiny,
squirming maggots. There are a number of ways to eliminate flies and
their larvae from your home. The most common practices include using
sticky fly traps, ultra-violet lights, and baited traps. Fly swatters are
effective when trying to get rid of the lone fly. A timely smack from a
dish towel can also be employed.

. redacted

bowl), other animals, and even rotting flesh.

This document has rank 6 for the relevant query, and never shows up in the top 10

for other queries.
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Below, we show a document containing the answer to the reasoning step 5 + 4 = 9,
required for one of the arithmetic queries for the 7B model (“Calculate the answer:
(5 + 4) * 2. Think step-by-step.”), which does not show up in the top 0.02%.

e D

Reasoning query (arithmetic)

Calculate the answer: (5 + 4) * 2

Think step-by-step.

Completion by 7B

First, let’s evaluate the expression inside the parentheses:
54+4=9

Now, let’s move on to the next step:
9*2=18

Therefore, the answer to the given expression is 18.

For example:

n=1= 142=3

n=2 = 144=5, 2x3=6

n=3 = 445=9, 14+7=8, 2x3=6

The question is, does a solution exist for every n?

I tried writing a basic program and it becomes too slow after n = 14.
Here are the

solutions I have so far:

1 [‘142=3]

2 [12*3=6", ‘1+4=5']

3 [(4+5=9’, ‘1+7=8’, ‘2*3=06"]

4 [‘34+6=9", ‘1+10=11", ‘44+8=12’, ‘245=T7"]

. redacted

This document has rank 2140 for the relevant query.
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B.8.2 Cross-lingual transfer

Additional finding: The answer to the factual question sometimes shows
up tn non-English languages.

Interestingly, we observe some crosslingual transfer for the factual questions. For
example, for the question about the tallest mountain in the world (Table 3.2), the

answer shows up in Portuguese:

A americana Samantha Larson, de 19 anos, se tornou nesta sexta-feira
a mulher estrangeira mais jovem a conquistar o Monte Everest, sequndo
nota oficial divulgada pelo Ministério de Turismo do Nepal. A montanha,
de 8.848m, é a mais alta do mundo e se encontra na fronteira entre o
Nepal e Tibet.

Which translates to:

American Samantha Larson, 19, became the youngest foreign woman
to conquer Mount Everest on Friday, according to an official statement
released by Nepal’s Ministry of Tourism. The 8,848m mountain is the
highest in the world and is located on the border between Nepal and Tibet.

We observe more crosslingual transfer for questions, for example for the question
“What is the capital of Belgium?” the answer shows in up in French and Spanish. We

show the French document here:

Le Premier ministre belge Yves Leterme a assuré ce mercredi qu’il
resterait en place et ménerait a bien la réforme institutionnelle entre les
régions, malgré les profondes divisions entre Flamands et Wallons qui

menacent l'unité du pays.

Les francophones redoutent pour leur part une réduction des budgets
accordés a la Wallonie, région la plus pauvre du pays, et a la capitale
bilingue, Bruzelles. Ils estiment également que les régions se sont vu
transférer depuis les années 1980 assez de compétences fédérales, et
soupgconnent les néerlandophones de chercher o faire sécession de la

Belgique afin de pouvoir déclarer l'indépendance de la Flandre.
Which translates to:

Belgian Prime Minister Yves Leterme assured on Wednesday that he
would stay in office and carry out the institutional reform between the
regions, despite the deep divisions between Flemish and Walloons that

threaten the unity of the country.
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The French speakers, for their part, fear a reduction in the budgets granted
to Wallonia, the poorest region of the country, and to the bilingual capital,
Brussels. They also believe that the regions have been transferred enough
federal powers since the 1980s, and suspect that the Dutch-speaking
countries are seeking to secede from Belgium in order to be able to

declare the independence of Flanders.

Note that both these quotes are snippets from otherwise larger documents. We did
not translate all documents and hence only found cases of crosslingual transfer if
there happened to be keyword overlap. We show a few here, but have found the
answer to factual questions through keyword overlap with non-English documents 8
times for the 7B model and 4 times for the 35B model. Note that because this is only
based on circumstantial keyword overlap, we likely missed most cases of cross-lingual
transfer, and therefore cannot assign any meaning to the fact that it happened less
for the 35B than the 7B. It would be interesting to focus on cross-lingual transfer in

future work.
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B.8.3 Characterise relation top documents to query

Finding 4: why documents are influential for reasoning.

We prompt Command R+ to characterise the relationship between the top 500
documents and each query (see prompts in Appendix B.6). We add ‘reasoning traces’
as a potential keyword in the prompt, but after inspecting the results we find the
model uses that keyword for almost any document, and we remove those results. We

report the raw counts of each keyword occurring in the tables below.

Arithmetic (7B) Count
Other types of maths 5765
Similar arithmetic operations on other numbers (e.g. much larger/smaller) 4691
Code that contains arithmetic 4038
Text about math/arithmetic 3202
Code that concerns other types of math 2554
Similar arithmetic operations on similar numbers 2246
Similar formatting 2223
Superficial similarities 1391
Code that concerns no math/arithmetic 277

Table B.12: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
arithmetic (7B) queries.

Slopes (7B) Count
Other types of maths 10787
Similar arithmetic operations on similar numbers 7312
Code that contains arithmetic 5035
Similar formatting 4675
Text that explains in words how to calculate the slope of an equation 3911
Code that concerns other types of math 3577
Text about math/arithmetic 3323
Text that explains in words how to calculate the slope between two numbers 2959
Math that calculates the slope of an equation 2921
Math that calculates the slope between two numbers 2490
Superficial similarities 2222
Text that mentions the slope but does not explain how to calculate it 1677
Code that calculates the slope between two numbers 1633
Code that calculates the slope of an equation 1110
Code that concerns no math/arithmetic 263
Other 15

Table B.13: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
slopes (7B) queries.
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Slopes (35B) Count
Other types of maths 11104
Similar arithmetic operations on similar numbers 8340
Code that contains arithmetic 4617
Similar formatting 4141
Text that explains in words how to calculate the slope of an equation 3869
Text about math/arithmetic 3845
Math that calculates the slope of an equation 3745
Math that calculates the slope between two numbers 3533
Code that concerns other types of math 3192
Text that explains in words how to calculate the slope between two numbers 2747
Superficial similarities 2291
Text that mentions the slope but does not explain how to calculate it 1936
Code that calculates the slope between two numbers 1150
Code that calculates the slope of an equation 865
Code that concerns no math/arithmetic 121
Other 12
Similar arithmetic operations on other numbers (e.g. much larger/smaller) 1

Table B.14: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
slopes (35B) queries.

Linear (35B) Count
Math that contains linear equations but they are not solved 13434
Similar algebraic operations on similar numbers 10717
Similar formatting 5533
Math that solves a linear equation for a variable 2415
Other forms of algebra 2234
Arithmetic operations 2057
Code that contains arithmetic 1417
Other types of maths 1390
Text about math/algebra 1146
Code that solves a linear equation of another form than ax + b=corax-b =c¢ 1109
Superficial similarities 1105
Code that concerns other types of math 949
Code that concerns no math/algebra 560
Code that solves a linear equation for a variable 475
Math that solves an equation with multiple variables for one or both variables 172
Math that contains linear equations of another form than ax + b =corax-b =c¢ 156
Code that solves a linear equation with multiple variables for one or both variables 110
Other 1

Table B.15: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
linear (35B) queries.
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Figure B.3: For the reasoning and factual sets, we compare the amount of docu-
ments from a certain source dataset that show up in the fop portions
of the rankings to the amount you would expect to show up if you ran-
domly sample from the pre-training distribution (indicated by ‘Training
distribution’ in the figure). The top two plots are for the 7B, and the
bottom for the 35B. We find that data from Wikipedia and Math &
Trivia are important for the factual questions for both models, for the
reasoning questions Math & Trivia, StackExchange, Code, and ArXiv
data is important. In all cases, the multipliers tend to the training
distribution for higher k.

B.8.4 Source dataset analysis

Finding 5: code is heavily overrepresened for reasoning both for the top
and bottom portions of the ranking.

For each source dataset, we report the multiplier w.r.t. the training distribution.
This means that if the top k& documents are randomly sampled from pre-training, the
multipliers will be one, whereas if they are above or below one, that source dataset is
either over- or underrepresented in the most influential documents. The full results
are presented in Figure B.3, and we discuss the most interesting deviations from the
pre-training distribution here. For the factual questions, the most overrepresented
source datasets for both the 7B and 35B are Math & Trivia (multiplier of 27 and
16 for k = 50 respectively) and Wikipedia (multipliers of 5 and 6 respectively). For
the reasoning questions, the most overrepresented datasets are StackExchange and
Math & Trivia (with 50 and 24 als multipliers for the 7B, and 62 and 21 for the
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35B). Interestingly, for both the 7B and the 35B, code data is important for the
influential documents. Besides StackFExzchange, for the medium-influential portion of
the rankings (between k& = 5000 and k& = 50000), more code data becomes influential
(with multipliers around 2, compared to 0.5 for the factual questions at that same
part of the ranking). This is conventional wisdom among practitioners (most LLMs
designers use some percentage of code data in pre-training now, e.g. Touvron et al.
[Tou+23]), and recent work has empirically found code to be important for reasoning
performance [Ary+24]. However, the question of why code data is important for
reasoning is still open. Below, in Appendix B.8.5, we further confirm that code is
important for reasoning by not only relying on the fact that these documents come
from a code dataset, but actually classifying their contents. In Figure B.4 we present
the same plot for the bottom portion of the ranking, showing the findings are similar.
Further, in Figure B.5 and B.6 we respectively show the same results for the top and
bottom portion of the rankings for the control queries. Again, the results look similar
(code and StackExchange is also overrepresented for the reasoning control queries),
but arXiv is less overrepresented for reasoning control and wiki is less overrepresented

for factual control answering.
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Figure B.4: For the reasoning and factual sets, We compare the amount of doc-
uments from a certain source dataset that show up in the bottom
portions of the rankings to the amount you would expect to show up
if you randomly sample from the pre-training distribution (indicated
by ‘Training distribution’ in the figure). The top two plots are for
the 7B, and the bottom for the 35B. We find the patterns are almost
identical to those shown for the top portions of the ranking: data
from Wikipedia and Math & Trivia are important for the factual
questions for both models, for the reasoning questions Math & Trivia,
StackExchange, Code, and ArXiv data is important. In all cases, the
multipliers tend to the training distribution for higher k.
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Figure B.5: For the query control sets, we also compare the amount of documents
from a certain source dataset that show up in the top portions of
the rankings to the amount you would expect to show up if you
randomly sample from the pre-training distribution (indicated by
‘Training distribution’ in the figure). The top two plots are for the 7B,
and the bottom for the 35B. We find that code is still overrepresented,
but arXiv as source is less overrepresented for the top portions of the
reasoning control set than for the reasoning set.
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Figure B.6:

For the query control sets, we also compare the amount of documents
from a certain source dataset that show up in the bottom portions
of the rankings to the amount you would expect to show up if you
randomly sample from the pre-training distribution (indicated by
‘Training distribution’ in the figure). The top two plots are for the 7B,
and the bottom for the 35B. We find that it again looks similar to the
source distribution for the top of the rankings for the query control
sets.
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B.8.5 Content analysis of relevant documents

We provide further insights into the characteristics of influential documents on reason-
ing queries. To do so, we compute capability categories of the n = 500 most frequently
occurring documents among the & = 5000 most (top) or least (bottom) influential
documents for the reasoning queries (for the 7B model), and compare these to a
randomly sampled set of 500 documents (we repeat the sampling process three times
and provide mean and standard deviation scores on the detected capabilities). Results
are shown in Figure B.7. We can see that the “code” category represents the vast
majority of most and least influential documents, whereas for the random subsets the
fraction of code-related documents is relatively small. This provides further evidence

that code-related documents strongly influence model performance on reasoning tasks.

[7B] Category Distribution Across Different Datasets
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Figure B.7: Comparison of capability categories identified for the most and least
influential documents for the reasoning queries, as well as for a random
subset of sampled documents. We repeat the random sampling three
times and report mean scores with standard deviations indicated.
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B.9 Additional quantitative analysis

B.9.1 Correlation analysis

7B

35B

00

Figure B.8: The correlation between the influence scores of all 5 million documents
for pairs of queries. All queries are on the x- and y-axis, with the
first 40 belonging to the factual set, the next 40 to the reasoning
set (arithmetic and slopes for the 7B, and linear and slopes for the
35B), the following 10 to the factual control set, and the last 10 to the
reasoning control set. The take-away is that there is only a signficant
correlation between queries of the same reasoning type, most strongly
so for the 35B slopes queries.

Finding 1: correlation between reasoning queries of the same type.

In Chapter 3, we find that there is a correlation between the influence scores for the
documents for different queries that underlie the same type of reasoning question
(e.g. questions that all require calculating the slope but for different numbers).

Recall that the correlation of influence scores for documents says something about
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Figure B.9: The average correlations between the influences of all documents for
queries of a specific type grouped. We leave out any query combinations
where the correlation is not significant and any combination where
the query on the x- and y-axis is the same query. We again observe
that there is only a correlation of influence for queries of the same
reasoning type.

whether or not models are learning a similar amount from the same data for their
completions. Intuitively, correlations could be driven by many things, like formatting
of the training documents, factual information it contains that is useful or necessary
for the completions, implicit information about how to reason, explicit information
about how to reason, N-gram overlap, etc. In the main text in Chapter 3, we take the
higher correlations between reasoning queries of the same type to mean the models
are generalising from a similar set of data to different reasoning questions. One other
explanation for this result could be the fact that all these queries are superficially
more similar to each other than the factual questions, and that this is the reason the
influence correlates. To test this hypothesis, we use the 10 control queries for both
the factual questions and the reasoning questions that are superficially similar, but
do not require factual retrieval or reasoning to get to the solution (see Appendix B.3
for examples from each set). Besides testing this alternative hypothesis, this section

gives more insight into what drives influence scores in LLMs.

Figure B.8 shows all query-query correlations for the 100 queries we look at, ordered
as follows: 40 factual queries, 40 reasoning (of which 20 are arithmetic and 20
slopes questions for the 7B, and 20 linear equation and 20 slopes questions for the
35B), 10 factual control, and 10 reasoning control queries. We see that there is
only a significant correlation between queries of the same reasoning type, which we

summarise in Figure B.9 by grouping queries of the same type and averaging the
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correlations.

To get a sense of what the control questions look like, we show a comparison of a
slopes query (top) and the control query that is meant to resemble it (bottom) below.

The influences for this query correlate with the influences for the slope questions

Table B.16: Two query examples, of which one is from the reasoning set (slopes) and
the other from the reasoning control set that resembles the slope queries
superficially, but does not require any reasoning. The completions are
by the 7B model.

Reasoning and Reasoning Control Query Set (7B)

Slopes (original prompt)

What is the slope of the line passing through the points (79, 47) and (80, 25)?

Think step-by-step.

Completion

To find the slope of the line passing through the points (79, 47) and (80, 25),
we can use the following steps:

1. Identify the coordinates of the two points:
- Point A: (79, 47)
- Point B: (80, 25)

2. Calculate the difference in x-coordinates between the two points:
- Point A x-coordinate: 79
- Point B x-coordinate: 80 ... redacted completion.

Slopes (control prompt)

The slope of the line is -22. What is the slope of the line?

Think step-by-step.

Completion

Given that the slope of the line is -22.

To find the slope of the line, we need to find the change in y-coordinates divided
by the change in x-coordinates.

The slope of the line is -22.

Therefore, the slope of the line is -22.

on average with a Pearson’s R of 0.05, which is much smaller than the 0.32 average

correlation between the influences found for the different slope reasoning questions by
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the 7B model. Below, we perform a more detailed qualitative analysis of the query
combinations and what drives their correlations, but first we discuss the quantitative

result.

As mentioned, we have 10 factual and 10 reasoning control questions for both models,
and show the full correlation matrices below in Figure B.8 (per query) and Figure
B.9 (averaged per group). We observe that the correlations between queries from the
control sets and other query sets for the 35B is always between 0.05 and 0.10, which
indicates that there can be a score correlation of at least 0.10 for other things than
genuine reasoning (e.g. formatting, or topic). Further, the within-group correlations
of the reasoning control set sometimes go as high as 0.38 (although the average is
0.06 for the 7B and 0.10 for the 35B). For comparison, the average linear-linear
(subset of reasoning questions) score correlation for the 35B is 0.16, and not many
of the correlations that make up this average are higher than the correlations in
the reasoning control sets. To get a sense of how different the correlations are in
magnitude between the reasoning questions and the control questions, we calculate
the highest correlation of a query from a specific reasoning type with any other query
that does not concern reasoning, and count the amount of reasoning query-query
combinations for which the correlation is higher. For example, the maximum
correlation we find between any slope question for the 35B and any other query that
is not a slope question is 0.30 Pearson’s R. If we discard all slope query combinations
that are below 0.30 we are left with 138 of 190 significant combinations that are
higher, ranging up to 0.96 Pearson’s R (note that each reasoning group has 20
queries, and all combinations are 20 x 19/2 = 190). For the linear equation queries
by contrast, there are only 34 of 190 query-query combinations within this group
that have a correlation higher than the highest correlation with the control queries,
ranging up to 0.95 Pearson’s R. For the 7B, 84 of 190 arithmetic query combinations
have a higher correlation than the control correlations, ranging up to 0.96 Pearson’s
R, and 120 of 190 slopes query combinations, ranging up to 0.88. We therefore
conclude that the correlations between the queries for the linear equations can
mainly be explained by other, more superficial things than procedural knowledge,
and connect this finding to the fact that the model is less robustly able to solve
linear equations. The within-group correlations of the factual set are much lower,
and for the 7B we only find 5 of 780 correlations that are higher than the maximum
correlation of a factual query with another query group, ranging to 0.63 Pearson’s R
(we show the queries with the highest correlation below). For the 35B, we find no cor-

relations for factual queries higher than the maximum correlation with another group.
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We release all 100 * 100 query-query correlations in the supplemental material’
(on which Figure B.8 is based), and we highlight a few examples here to get a
sense of what is driving higher or lower correlations. We mostly do not find a
correlation between the influence scores for different factual questions (on average
the correlation is 0.06 for the 7B and 0.03 for the 35B), but we show the highest
correlation found between two factual queries below in Table B.17. For this particular
example, the correlation seems driven by the fact that they are both “what”-questions
with very short completions using quotation marks. By contrast, a similar style
query-completion pair for the 35B shows almost no correlation (Table B.18). For the
factual control set (the average correlation is 0.04 for the 7B and 0.08 for the 35B,
but we also show a factual control correlation below for completeness. Table B.19
shows a factual query and a matched factual control example for the 35B model.

The correlation between this control query and the factual query it matches is -0.03.

Table B.17: Two query examples for which the Pearson’s R correlation of their
document influences is 0.63, both from the factual set of the 7B model.
We observe that the main similarity between these queries is that they
both concern short “what” questions, and the completions both are
short answers with quotes used.

Factual Query Set (7B)

Factual prompt 1

What is the symbol for gold on the periodic table?

Completion to factual prompt 1

The symbol for gold on the periodic table is “Au”.

Factual prompt 2

What is the common name for the larva of a housefly?

Completion to factual prompt 2

The common name for the larva of a housefly is “maggot”

See Table B.20 below for a representative high correlation example for the 35B slopes
questions (Pearson’s R of 0.89):

We see that the numbers for the questions are different, but the steps to get to
the answer are the same and formatted similarly. We generally observe that a
combination of different numbers used in the same procedure and similarly formatted
reasoning steps results in higher correlation. Another example is shown in Table

B.21 below for a query combination that gets a lower correlation (0.55), but has

Shttps://openreview.net/forum?id=1hQKHHUsMx
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Table B.18: Two query examples for which the Pearson’s R correlation of their
document influences is 0.08, both from the factual set of the 35B
model. We observe that the main similarity between these queries is
that they both concern short “what” questions, and the completions
both are relatively short answers with quotes used.

Factual Query Set (35B)

Factual prompt 1

What is the name of the main antagonist in the Shakespeare play “Othello”?

Completion to factual prompt 1

The main antagonist in Shakespeare’s play “Othello” is Iago, Othello’s
standard-bearer. Tago is a manipulative and deceitful character who orchestrates
the tragedy in the play.

Factual prompt 2

What is the name of the smallest member of the camel family?

Completion to factual prompt 2

The smallest member of the camel family is called a “dromedary”.
Dromedaries are easily recognizable by their single hump.
They are native to North Africa and the Middle East.

the same answer (-22). The relatively lower correlation here seems driven by the
different formatting of the completion (less newlines). This indicates that part

of the correlations are driven by superficial similarities such as completion formatting.

For comparison, Table B.22 shows a pair of control queries for which the prompt
and completion are also very similarly formatted, and the correlation is 0.38 (which

is the highest correlation we find using a control query).

However, superficial formatting cannot be the full picture, as we show in Table
B.23, where the correlation is 0.35 but the completions are very dissimilar. For this
particular query, it seems that it’s not the positive scores that explain the correlation
(Pearson’s R of about 0.2), but rather the negative scores (Pearson’s R of 0.44).
Perhaps some of the correlation can be explained by documents that are generally

negatively influential for the types of completions the models generate here.

Finally, in Table B.24 and B.25 we show two relatively high correlation examples for
the arithmetic queries, again indicating that both underlying operations as well as

formatting drive correlations.
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Table B.19: Two query examples for which the Pearson’s R correlation of their
document influences is -0.03, one from the factual set (top), and one
from the factual control set (bottom). We observe that although the
formatting is similar, and there are some overlapping concepts, there
is no correlation between the document influences.

Factual and Control Query Set (35B)

Factual prompt

What is the supernova remnant and pulsar wind nebula in the constellation
of Taurus called?

Completion to factual prompt

The supernova remnant and pulsar wind nebula in the constellation Taurus
is called the Crab Nebula.

Factual control prompt

In a fictional planetary system, there is a supernova remnant and pulsar
wind nebula in the centre of a constellation of stars

called Minotaur called the Goat Nebula. What is the supernova remnant and
pulsar wind nebula in the constellation Minotaur called?

Completion to factual control prompt

In the fictional planetary system, the supernova remnant and pulsar wind nebula
in the centre of the constellation Minotaur is called the “Goat Nebula”.

Taken together, it seems like correlations can be driven by underlying procedures,
formatting of the completion, and other more general things (like “what”-questions
in Table B.17 and B.23). We generally find the highest correlations when procedures
and formatting of completions coincide (of which two examples are given in Table
B.20 and B.25). The magnitude of these correlations indicate that almost all of the
influence of the 5 million documents in similar for such queries. One interesting
possibility is that the query information surrounding the actual numbers generated
(which do not seem to drive correlation much at all) is determined by the attention
layers (which, besides the dense parameters contained in them, we ignore in this
thesis), connecting potentially to literature attributing reasoning operations to
attention heads. An interesting avenue for future work would be investigating this
further.

7B vs 35B

An additional finding that is not central to the research question in Chapter 3, but is
nonetheless interesting, is that there is almost no correlation between the influence
scores of the two different models. We have 36 queries that share the same prompt

for the 7B and 35B (16 factual questions, and 20 slopes reasoning questions) and
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we can calculate the Pearson’s R of the queries with matched prompts (i.e. 36
combinations). The average correlation of influence scores is 0.02 Pearson’s R (if we
only look at the slopes questions the average correlation is 0.03). The maximum
correlation we find is 0.19, for the question “What is the capital of Belgium?”, which
we know from above is not a comparatively high score correlation. Interestingly, for
this query, both models produced the exact same completion, and still the correlation
is comparatively low. All other query combinations correlate with a Pearson’s R
below 0.11. This connects to a finding from Grosse et al. [Gro+23] (larger models
rely on data that is more abstractly related to the prompt): the 35B model relies on
very different pre-training data than the 7B, and the same pre-training documents

influence completions for the same prompt very differently.
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Table B.20: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.89, both from the reasoning query set concerning
calculating slopes. We observe that, although the reasoning is applied
to different numbers, the steps follow an identical pattern. In fact, the
only difference between the two queries, including completions, is the
numbers used.

Reasoning Query Set (35B)

Slopes (prompt 1)

What is the slope of the line passing through the points (94, 62) and (95, 19)?

Think step-by-step.

Completion to prompt 1

The slope of a line passing through two points is calculated using the formula:
Slope = (change in y) / (change in x)

In this case, we have the points (94, 62) and (95, 19).

Substituting the values into the formula, we have:

Slope = (19 - 62) / (95 - 94)

Slope = (-43) / (1)

Slope = -43

Therefore, the slope of the line passing through the points
(94, 62) and (95, 19) is -43.

Slopes (prompt 2)

What is the slope of the line passing through the points (90, 20) and (94, 64)7

Think step-by-step.

Completion to prompt 2

The slope of a line passing through two points is calculated using the formula:
Slope = (change in y) / (change in x)

In this case, we have the points (90, 20) and (94, 64).

Substituting the values into the formula, we have:

Slope = (64 - 20) / (94 - 90)

Slope = (44 / 4)

Slope = 11

Therefore, the slope of the line passing through the points
(90, 20) and (94, 64) is 11
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Table B.21: Two query examples for which the Pearson’s R correlation of their
document influences is 0.55, both from the reasoning query set con-
cerning calculating the slope. We observe that the second completion
is structured very similarly to the first, except it has less new lines.

Reasoning Query Set (7B)

Slopes (prompt 1)

What is the slope of the line passing through the points (62, 31) and (61, 53)7

Think step-by-step.

Completion

The slope of a line passing through two points is calculated using the formula:
Slope = (change in y) / (change in x)

In this case, we have the points (62, 31) and (61, 53).

Substituting the values into the formula, we have:

Slope = (31 - 53) / (62 - 61)

Slope = (-22) / (1)

Slope = -22

Therefore, the slope of the line passing through the points
(62, 31) and (61, 53) is -22

Slopes (prompt 2)

What is the slope of the line passing through the points (79, 47) and (80, 25)?

Think step-by-step.

Completion

The slope of a line passing through two points is calculated using the formula:
Slope = (change in y) / (change in x)

In this case, we have the points (79, 47) and (80, 25).

Substituting the values into the formula, we have:
Slope = (25 - 47) / (80 - 79)

Slope = (-22) / (1)

Slope = -22

Therefore, the slope of the line passing through the points
(79, 47) and (80, 25) is -22.
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Table B.22: Two query examples for which the Pearson’s R correlation of their
document influences is 0.38, both from the reasoning control set for
the 7B model. We observe that the formatting is very similar, but the
correlation is still lower than for the reasoning queries above.

Reasoning Control Query Set (7B)

Reasoning Control (prompt 1)

Find the answer: There are 21 kids in the bus. How many kids are in the bus?

Think step-by-step.

Completion

There are 21 kids in the bus.

Reasoning Control (prompt 2)

Find the answer: There are 132 marbles in a jar. How many marbles are in the jar?

Think step-by-step.

Completion

There are 132 marbles in the jar.
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Table B.23: Two query examples for which the Pearson’s R correlation of their
document influences is 0.35, both from the reasoning control set for
the 35B model. We observe that their completions are very different,
indicating that it can not only be superficial similarities that drive
correlations.

Reasoning Control Query Set (35B)

Reasoning control (prompt 1)

This line has a slope 6. What is the slope of the aforementioned line?

Think step-by-step.

Completion

The slope of a line is a measure of the steepness of the line.
It is defined as the ratio of the change in the y-coordinate to
the change in the x-coordinate.

In this case, the line has a slope of 6. This means that for every 1 unit increase
in the x-coordinate, the y-coordinate will increase by 6 units.

It’s important to note that the slope of a line is not limited to positive values
and can be negative or zero depending on the orientation of the line

Reasoning control (prompt 2)

Find the answer: there are two bananas on a tree, how many bananas
are on the tree?

Think step-by-step.

Completion

There are two bananas on the tree.




B.9. Additional quantitative analysis 179

Table B.24: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.49, both from the reasoning query set concerning
two-step arithmetic. We observe that one of the operations required is
overlapping (+ 6), and the completion is somewhat similarly formatted
but not fully.

Reasoning Query Set (7B)

Arithmetic (prompt 1)

Calculate the answer: (5 + 6) * 10

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
54 6=11

Now, let’s multiply the result by 10:
11 %10 =110

Therefore, the answer is 110

Arithmetic (prompt 2)

Calculate the answer: (6 + 10) * 6

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
6+ 10 =16

Now, let’s calculate the result of multiplying the expression
inside the parentheses by 6:
16 * 6 = 96

Therefore, the answer to the expression is 96
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Table B.25: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.94, both from the reasoning query set concerning
two-step arithmetic. We observe that not only is the completion very
similarly formatted, but one of the operations overlaps (multiplying
something by 2).

Reasoning Query Set (7B)

Arithmetic (prompt 1)
Calculate the answer: (5 - 3) * 12

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
5-3=2

Now, let’s multiply the result by 12:
2%12=24

Therefore, the answer is 24

Arithmetic (prompt 2)

Calculate the answer: (4 -2) * 15

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
4-2=2

Now, let’s multiply the result by 15:
2*%15 =30

Therefore, the answer is 30
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B.9.2 Magnitude of influence

Finding 2: magnitude of influence is much lower and less wvolatile for
reasoning questions.

In Section 3.4.1, we find that the influence of documents at the same rank for factual
questions is much more volatile than for reasoning questions. We mention that one
explanation for this might be that the queries for the 35B model are much more niche,
and therefore the relevant documents much more infrequent. To test this hypothesis,
we plot the same results for only the overlapping queries (those that are part of both
query sets for the 7B and 35B) in Figure B.10. We find that the magnitude and
variance is still larger for the 35B model than for the 7B model, indicating that the
influence of influential documents for the factual and reasoning questions by the 35B
can be much larger than for the 7B model. Further, in Figure B.11 we show that
the results look similar for the negative portions of the ranking (where we flip the

influence scores from negative to positive).
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Figure B.10: The total influence per nat of query completion information for
different portions of the positive ranking over documents, left for the
7B model, right for the 35B. In this case, we only plot queries that
are present in the query sets for both models. This means the prompt
is the same, but the completion is be different. The pattern is very
similar as the observed pattern for the top of the ranking.

Finally, in Figure B.12 and Figure B.13 we plot the same metric for all queries for
the top and bottom parts of the rankings respectively, now including the 10 control
set queries of the factual and reasoning control set. As shown in Appendix B.3, we
use 10 control queries for each set to investigate whether results hold similarly for
queries that superficially look similar as the factual/reasoning questions, but that do
not require factual retrieval or reasoning respectively. We observe that the control
sets both show much higher variance and magnitude than the reasoning queries
as well, for the positive and negative portions of the ranking. For completeness,
we show the same result with the number of documents on the x-axis instead of

percentiles in Figure B.14 and Figure B.15, to show that the results are similar if we



182 Appendix B. How Models Learn to Reason from Pre-training Data

o
=

Factual 7B --4--  Reasoning 7B Factual 35B --e-- Reasoning 35B

O -
o o 2 = =
E & ® o 9w

Total influence / query nat

I
1<}
s}

g
=3
S

Figure B.11:

40 60 80 100 20 40 60 80 100
Bottom-k percentile Bottom-k percentile

The total influence per nat of query completion information for
different portions of the negative ranking over documents, left for
the 7B model, right for the 35B. We again only plot queries that
are present in the query sets for both models. In this case, the
k-th percentile contains the top k % of most negatively influential
documents. The pattern is very similar as the observed pattern for
the top of the ranking.
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The total influence per nat of query completion information for
different portions of the positive ranking over documents, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.

take into account that the 20-th percentile of documents for each query contains a

different amount of documents k.
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The total influence per nat of query completion information for
different portions of the negative ranking over documents, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.
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Figure B.14:

The total influence per nat of query completion information for
different number of documents k of the positive ranking, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.
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Figure B.15: The total influence per nat of query completion information for
different number of documents k of the negative ranking, left for the
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7B model, right for the 35B. We plot all queries, including the query

control sets for both factual and reasoning, which contain 10 queries

each.
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B.9.3 Influence spread: power laws
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Figure B.16:
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The ranked influence scores per query nat for each query shown
separately in log-log space. We observe; the results follow power laws
(linear in log-log space), everything is shifted up for the 35B model
(right), generally the scores for the reasoning documents are lower
for the 7B model, and for the 35B model there is less variance in
magnitude of influence for reasoning queries than for factual queries,
and more often than not the influence scores are lower than for factual
questions.
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Figure B.17:

Rank 35B

The ranked influence scores per query nat for each query shown
separately in log-log space again, but now also showing the control
queries. We observe that also for the control queries the influence is
much more volatile than for reasoning questions, and on average the
magnitude is higher.

In this section, we look at the power laws induced by the top portions of the rankings.

We can fit linear functions to the rankings in log-log space, and analyse the slopes to

comment on the sparsity of the rankings (i.e. how many documents do models rely

on for a completion). Specifically, we perform linear regression on the log-log top
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500 rankings of each query, and report the slopes in Table B.26.

Table B.26: Slopes of the fitted functions to the top 500 documents in the influence
rankings in log-log space, separated by query set and whether the
model gets the question right or wrong. = indicates the significance of
an independent T-test performed between the slopes of the factual vs.

reasoning queries, where x indicates a p-value below 0.1 and % below
0.05.

7B (Correct) 7B (Incorrect) 35B (Correct) 35B (Incorrect)

Reasoning () —0.36 £+ 0.03* —0.33 £0.02 —0.36 + 0.04** —0.38 + 0.04*
Factual (o) —0.34+0.03 —0.34 +£0.04 —0.32+£0.05 —0.34 £0.04

After qualitatively inspecting the queries for the 35B model with the steepest slope,
we believe an explanation for this result may be ‘noise’ in the influence scores. For
example, the query with the steepest slope (o« = —0.45) has as the most influential
document a document that is seemingly entirely unrelated to the query. Namely,
the query asks the question “What is the slope of the line passing through the points
(41, 28) and (18, 92)? Think step-by-step.”, and the top influential document is a
snippet about the lunar eclipses and when and where they can be viewed which does

not have high N-gram overlap with the query either:

December 8, 1946 — Total Lunar Eclipse — Rawaki, Phoenix Islands,
Kiribati

Maz view in Rawaki

Sunday, December 8, 1946 at 5:01 AM

Global Type: Total Lunar Eclipse

Rawaki: Partial Lunar Eclipse

Began: Sun, Dec 8, 1946 at 3:183 AM

Mazimum: Sun, Dec 8, 1946 at 5:01 AM

Ended: Sun, Dec 8, 1946 at 8:22 AM

Duration: 5 hours, 10 minutes

December 8, 1946 — Total Lunar Eclipse — Rawak:

You are using an outdated browser, to view the animation please update
or switch to a modern browser. Alternatively you can view the old
animation by clicking here.

Animation: How the Partial Lunar Eclipse Looked

The total phase of this lunar eclipse was not visible in Rawaki, but it
could be observed there as a partial lunar eclipse.

More about the December 8, 1946 — Total Lunar Eclipse
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Phases and local times of this eclipse
FEclipses visible in Rawaki
All eclipses worldwide, from 1900 to 2100

This is the only query for which we observe an unrelated top 1 document, but for the
35B model we qualitatively observed seemingly irrelevant documents in the rankings
more often (in the 7B we did not observe this). This connects to a finding from
literature that for large models influence functions sometimes surface documents
with high gradient norms that are unrelated to the query [BBD20; Gro+23; Cho+24].
As Grosse et al. [Gro+23| note, it is currently unclear whether this is true noise, or
whether these are genuinely influential for the completions. Regardless, it seems like
noise cannot easily explain the difference between the factual and slopes queries, as

one would expect noise to show up equally everywhere.

Another way to visualise this result is to plot the percentage of total influence
contained in different parts of the top ranking, which we do in Figure B.18 below.
The results in this plot show that for the top-k percentile of most positively influential
documents, the total percentage of positive influence is much higher than & (e.g. 20%
of the total positive influence is contained in the top 5% of documents). Here, it is
clear that on average, for the 35B model the total amount of influence contained in
the top-k percentile increases faster for reasoning questions than for factual questions,
indicating that a larger portion of the total positive influence is contained in the
top portions of the rankings. In Figure B.19 we show the same result holds if we
include the control queries. As Grosse et al. [Gro+23], it is not clear whether this is
a sensible result to show because for each query we are dividing the total influence
at each k by the sum of positive influence for that query (perhaps a large part of
the positive influence gets cancelled out by negative influence), but we show the
result here nonetheless for completeness. We know from the absolute results of the
total influence at different portions of the ranking that each percentage of total
influence at the top-k percentile a much lower value in absolute terms for reasoning
than for the factual questions. If the relative result does not turn out to be noise, it
is the case that of the total influence, a higher percentage is contained in the top
portions of the rankings for reasoning questions than for factual questions. Taken
together with the fact that the absolute influence is often much higher for factual
questions, this indicates that the model relies on more highly influential documents
for factual retrieval than for reasoning. This could indicate that there are more
highly relevant factual documents further down the ranking, which makes sense given
the fact that the pre-training distribution is dominated by websources and news,

which are more likely to contain relevant information for factual question answering
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than for reasoning. Further, it connects to the finding from literature that models

need to see examples often before text gets memorised [Cho+22].
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Figure B.19: The percentage of total influence per nat of query completion infor-
mation for different portions of the positive ranking over documents,
left for the 7B model, right for the 35B. We plot all queries, including
the query control sets for both factual and reasoning, which contain

10 queries each.

Again, the picture looks similar for the negative portions of the ranking, shown for

completeness below in Figure B.20 and B.21.
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left for the 7B model, right for the 35B. We plot all queries, including
the query control sets for both factual and reasoning, which contain

10 queries each.






Appendix C

How Models Learn to Reason
from Code Data

This chapter contains the supplementary materials for Chapter 4. Below, I outline
the contents of each section briefly.

Section C.1 contains the hyperparameters we used to fine-tune the models with SFT
and GRPO.

Section C.2 presents additional results for larger dataset sizes.

Section C.3 ablates the two-stage nature of the experiments in Chapter 4, finding
that two separate stages lead to higher sample efficiency.

Section C.4 discusses the finding that GRPO outperforms DPO and SFT when
eliciting retroactive programming by backprop.

Section C.5 contains the distribution over inputs used in the cipher experiments in
the main text at the end of Section 4.4.

Section C.6 has an example of a natural language description of a program.

Section C.7 details the compute used in the experiments.

C.1 Hyperparameters
C.1.1 SFT

All SFT experiments use a learning rate of 2 x 107° and a linear learning rate
schedule. The Adam optimiser is used with 8 = 0.9, f2 = 0.999, and € = 1 x 1078.

The max grad norm is set to 1.

C.1.2 RL

All RL experiments use GRPO with a group size of 6 batch size of 6. The learning
rate is set to 1 x 1076, The Adam optimiser is used with 8 = 0.9, 8> = 0.999, and
e=1x107%.
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C.2 Data Scaling
C.2.1 Ablation over Dataset Size

Figure C.1 compares the performance of Llama models (1B, 3B and 8B parameters)
for varying dataset size on the evaluation of Random Arithmetic programs. Here,
‘dataset size’, refers specifically to the amount of unique code functions included in

the dataset. Performance is evaluated on three separate sets:

e The w/ IO Train set: both the function and the IO pairs are observed during

training

e The w/ IO Test set: uses the same functions as w/ IO Train but different 10

pairs, not included in the training data

e The w/0 IO Test set: evaluates IO pairs for functions seen only as code during

training

The results show that accuracy on both w/ IO and w/o IO sets generally increases
with larger dataset sizes and larger model scales. Notably, model performance is
strongly tied to parameter count; for example, the 8B model trained on only 100
unique functions achieves comparable performance on the w/o IO set to the 1B

model trained on 800 functions.

C.2.2 Ablation over Number of I0 Pairs

In Figure C.2 we vary the number of IO training pairs (per program) provided
for the w/ IO set, and examine the results. This analysis specifically uses the
Llama-3.2-3B-Instruct model on the Random Arithmetic dataset, which for this
experiment consists of 200 distinct functions. Performance is reported across the
same sets as the ones described in Appendix C.2.1. The results show how increasing
the quantity of IO examples for each program affects not only direct generalisation
in the w/ IO Test set, but also the model’s ability to accurately execute w/o 10

programs.
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Figure C.2:
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Performance comparison of Llama models across 1B, 3B and 8B on w/
I0 and w/o IO Random Arithmetic program evaluation. Each model
is trained and tested across varying dataset sizes. Dataset size refers
to the number of unique functions present in the dataset.
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Impact of varying the number of 10 training pairs for w/ IO programs
and w/o IO sets evaluation accuracy. Results are shown for the
Llama-3.2-3B-Instruct model using a Random Arithmetic dataset
comprising 200 distinct functions.

C.3 Single-Stage Programming by Backprop

In Figure C.3, we show the accuracy of Llama-3.1-8B-Instruct on w/o 10 Random

Arithmetic program evaluation following Proactive-PBB in comparison to a single

SFT stage with all training data in a single mixture. As we scale the number of

times the same piece of w/o IO source code appears in the dataset, with prompt
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and response preamble augmentations, single-stage SF'T approaches the performance
of Proactive-PBB. The greater sample efficiency of Proactive-PBB is likely because
initial train steps on source code are waisted in single-stage SFT, as a code-I1/O

relationship has not yet been learned.

1-Stage vs. 2-Stage PBB

SFT Method

—§- 2-Stage

—$~ 1-Stage

T T T T T T T

30 40 50 60 70 80 90
Code Repetitions

Figure C.3: Comparing two-stage Proactive-PBB to a single SFT stage on the
full Random Arithmetic training data mixture for different numbers
of repeated source code samples. The base model is Llama-3.1-8B-
Instruct.
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C.4 Online vs. Offline Retroactive-PBB

In Figure C.4, we compare different fine-tuning algorithms for the second stage of
Retroactive-PBB with Llama-3.1-8B-Instruct on Random Arithmetic. DPO allows
for learning from both positive and negative samples, considerably outperforming
SFT. GRPO is an online RL algorithm, meaning that the model learns from on-
policy data, which could be why it yields further improvements. To ensure a fair
comparison, we use only 15 I/O pairs instead of 90 (90/6 = 15) per w/ IO program
for RL training. With a group size of 6, this means that for each I/O pair the model
generates 6 completions that receive a reward. This in turn leads to the same number

of completions with a ground-truth signal as SF'T, and a fairer comparison.

Retroactive-PBB Algorithm Comparison

0.30

0.25

0.20

0.151

Accuracy

_

0.10 4

0.05
0.00 —-—-—-

SFT DPO GRPO

Figure C.4: Comparing fine-tuning algorithms for the second stage of Retroactive-
PBB on Random Arithmetic with Llama-3.1-8B-Instruct. DPO is
an offline method, but allows for learning from positive and negative
examples. GRPO is online and thus has the added benefit of learning
from on-policy data.

C.5 Ciphers Data

A plot showing the distribution of 10 pairs used in Figure 4.4 is provided in Figure
C.5.

C.6 Natural Language Descriptions

Here, we include an example of a random arithmetic program and its natural language
description.

Program:

def Blaankle(x):
t0 = x + x
tl = 1 * abs(t0)

return ti
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Count

Shift

Figure C.5: Sampled shifts for cipher I/O pairs.

Description: A Blaankle is a process that takes an input value, doubles it, and then

returns the absolute value of the doubled result.

C.7 Compute Requirements

All experiments with L1ama models can be run on two GPUs with 40GB vRAM. We
used data parallelism over 4 NVIDIA L40s GPUs to run these experiments.

Experiments with GPT-40 made use of the OpenAl fine-tuning API. Data generation
(Leetcode word problems and post-rationalised chain-of-thought ground truth outputs

for all datasets) and fine-tuning runs came to a total cost just over 500 USD.



Appendix D

A Case Study in Social

Reasoning: Pragmatics

This Chapter contains the appendix for Chapter 5. Below, I briefly outline the
content of each section for reference.

I begin with a more detailed background on conversational implicature in Section
D.1.

Then, I provide all the prompt templates used for the evaluation in Section D.2.

A categorisation of models evaluated is given in Section D.3.

Details on the human experiments can be found in Section D.4.

A comment on the fact that BIG bench uses the same underlying benchmark in
Section D.5.

Examples of completions by the model with chains-of-thought in Section D.6.

A detailed table of results for all experiments can be found in Section D.7.

Section D.7 further contains the following additional experiments:

o We reframe the task as a contrastive one in Section D.7.1, finding it works less

well.
e We report the variance over prompt ordering in Section D.7.2.
o We experiment with more detailed zero-shot prompts in Section D.7.3.
o We present detailed results for different prompt templates in Section D.7.4.
e We report variance of multiple API calls in Section D.7.5, finding it is minor.

e We confirm that few-shot in-context labels can be randomised without loss of

performance in Section D.7.6.

e We do chain-of-thought prompting on base models in Section D.7.7.
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e We test for spurious correlations and memorisation in Section D.7.8.

For reproducibility, we provide timestamps for all experiments done with APIs in
Section D.8.

Finally, in Section D.9 we detail the compute used.

D.1 Background on implicature

The first influential consideration of implicature is [Gri75]. In his work, Grice
continues the trend of moving away from purely logical accounts of language started
by [Wit21] by hypothesising implicatures arise in conversation when some mutually
agreed upon maxims seem to be violated. For example, if we agree on only making
relevant contributions to conversation, Juan’s response in the introduction seemingly
violates this maxim—after all, he starts talking about work when Esther asks him
about a party. However, because Juan agreed to be relevant he must be implying that
having to work means he cannot come to the party. Grice contrasts conversational
implicatures that arise through context with conventional implicatures. These
are implicatures where the conventional meaning of the word determines what
is implicated. An example given by Grice is the following sentence: “he is an
Englishman; he is therefore brave.”. Grice notes that this sentence does not literally
state that an Englishman being brave is a direct consequence of him being English,

but it’s implied by the conventional meaning of the word ‘therefore’.

Since then, issues with the Gricean cooperative principle have been pointed out
by many [Lev83; SW86; Dav98; LS14]. The most influential alternative theory
is relevancy theory by [SW86]. They do away with the cooperative principle and
instead theorise implicatures arise because speakers try to produce utterances that
are both as relevant as possible and require the least effort to process. Another point
of contention is the incorporation of conventional implicatures on the pragmatics side.
[Bac99] argues that there is no such thing as conventional implicatures, and they are
simply instances of something else. Based on a thorough treatment of what Grice
calls conventional implicatures, Bach argues all examples of it can be filed under
other concepts within semantics, like utterance modifiers (called “utterance modifiers”
instead of “sentence modifiers” because they go against the semantic content of the
rest of the sentence). [Pot05] also argues that to explain conventional implicatures we
can stay on semantic turf. Indeed, even Grice himself says conventional implicatures
derive from the meaning of the words, not from conversational context. However,
Potts does not claim conventional implicatures do not exist, but instead argues they
arise by a combination of lexical meaning and novel ways of combining words—the
latter being the well-known principle of compositionality, an important part of seman-

tics, not of pragmatics. Potts provides us with an illuminating demarcation between
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conventional and conversational implicatures. Conventional implicatures are never
negotiable by context, whereas conversational implicatures are context-dependent
and can always be cancelled without causing incoherent discourse. Consider again
the sentence “he is an Englishman; he is therefore brave.” and the sentence “Eddie
has three bicycles” (implicating that Eddie has exactly three bicycles and not more).
The former sentence can not be cancelled by new context without contradiction,
whereas for the latter, if we continue saying “In fact, Eddie has 10 bicycles, he is a
bicycle junkie”, we have cancelled the implicature. This demarcation clearly puts
conventional implicatures on the semantic side, and conversational implicatures on
the pragmatic side. Potts goes on by providing a formal theory for conventional

implicatures.

In later work, [Pot06] describes how pragmatic pressures interacting with context
cause conversational implicature to arise. He shows how sensitive conversational
implicatures are to small changes in the context. Novel information about a speaker’s
belief state might completely change what is implied. There are many more models
of implicature that aim to explain how humans understand language in context.
Most notably, [FG12] formalise the view that speakers produce utterances that are
helpful and not longer than necessary with a Bayesian model called the rational
speech act (RSA). Many variants on the RSA framework have since been proposed.
For example, [GF16] extend it to handle nonliteral uses of language, like irony, and
metaphor. In the context of computational models, prior work uses insights from
pragmatics to show that the use of certain words can make a language model produce
biased completions ([PP21], e.g. saying someone “claimed” something rather than
“said” something), and inform bias and sentiment classifiers [GR09; RDJ13].

In Chapter 5, we focus on conversational implicatures and not on conventional
implicatures. All conversational implicatures are negotiable by context, but the way
they depend on context can be different. [Gri75] identifies generalised conversational
implicatures and particularised conversational implicatures. The former require little
or no context to be resolved. For example, “some athletes smoke” can imply “not all
athletes smoke”, but might also imply “I do not know whether all athletes smoke”
when it is a response to the question “do you know whether all athletes smoke?”
[Dav19]. The latter only arise in certain contexts. For example, the response “I have

an early morning” to the question “do you want to stay for a drink?”.
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D.2 Detailed prompt templates

Table D.1 contains the full prompt templates we used for the main evaluation and

Table D.3 contains the extra prompt templates.

Table D.1: Ranking prompt templates. The six templates we wrap the test examples
in to present to the models. Template 1, 3, and 4 are of the type
structured, and 2, 5, and 6 of the type natural. Within the type of
prompt template they only differ slightly in wording.

[ # [ Prompt template ]

Does the following response to the question imply yes or no?

1 question: <utterance>
response: <response>
implicature: <implicature>
Finish the following text:

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>
Is the implied meaning of the following response yes or no:

3 question: <utterance>

response: <response>

meaning: <implicature>

What is the intent of the following response, yes or no?

4 | question: <utterance>
response: <response>
intent: <implicature>
Finish the following text:

Karen asked “<utterance>" and William responded “<response>", which means <implicature>
Finish the following text:

Bob asked “<wutterance>" and Alice responded “<response>", which means <implicature>
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Table D.2: Completion prompt templates. The six adjusted templates we wrap

the test examples in to present to the models when we use completion
instead of likelihood ranking. Template 1, 3, and 4 are of the type
structured, and 2, 5, and 6 of the type natural. Within the type of
prompt template they only differ slightly in wording.

L#

Prompt template

Does the following response to the question imply yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <wutterance>
response: <response>

implicature: <implicature>
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Esther asked “<wutterance>” and Juan responded “<response>”, which means <implicature>

Is the implied meaning of the following response yes or no. Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
meaning: <implicature>

What is the intent of the following response, yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <wutterance>
response: <response>
intent: <implicature>
b

Finish the following text. Only output ‘yes’ or ‘no’. Even if you're uncertain, choose either ‘yes’ or ‘no’.

Karen asked “<utterance>” and William responded “<response>”, which means <implicature>
Finish the following text. Only output ‘yes’ or ‘no’. Even if you're uncertain, choose either ‘yes’ or ‘no’.

Bob asked “<utterance>” and Alice responded “<response>”, which means <implicature>

Table D.3: The three additional templates we wrap the test examples in to present

to the models, adapted from [Gla+22].

[ # | Prompt template ]

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that contains
an implicature.
An implicature is an utterance that means something other than the literal meaning of the words.

7 | The implicature of Juan’s response is yes or no.
You, the Al assistant, are asked to finish the text with yes or no.
The task begins:
Esther asked “<wutterance>” and Juan responded “<response>", which means <implicature>
The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.

8 That meaning is either yes or no.
You, the Al assistant, are asked to finish the text with the correct meaning, either yes or no.
The task begins:
Esther asked “<utterance>" and Juan responded “<response>”, which means <implicature>
The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.

9 | You, a highly intelligent and knowledgeable Al assistant, are asked to finish the text with the
correct meaning, either yes or no.
The task begins:
Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>
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Table D.4: Chain-of-thought (CoT) prompt templates. One of the six chain-of-

thought prompt templates we use for the CoT experiment. Note that
this is a 5-shot prompt. Each prompt variation contains five CoT
examples. The other five variations are separately added to the supple-
mentary materials

[ # [ Prompt template
Bob asks Alice a question, and Alice responds with an implicature. This means that Alice’s response
does not literally contain the answer to Bob’s question, but implies an answer. Assuming that Alice is a
cooperative conversational partner, what is the implicated answer to the question? For example:
Bob: You invented fire?
Alice: T told you that.
Implicature: Alice says ‘I told you that’. Alice’s response must be relevant to Bob’s question because
Alice is a cooperative conversational partner. Alice must mean that she told Bob that she invented fire.
Alice’s response to Bob’s question 'You invented fire?’ is yes.
Answer: yes
Bob: That cake looks delicious. Aren’t you going to have some with me?
Alice: But that was a huge meal we just had.
Implicature: Alice’s response must be relevant to Bob’s question because Alice is a cooperative
conversational partner. Alice must mean that the meal they just had was so huge she is not hungry
anymore, and this must be relevant to Bob’s question: ‘Aren’t you going to have some with me?’
Alice’s response to the question must therefore be no.
Answer: no
Bob: Could you perform well?
Alice: Being bilingual would help put me ahead of the pack.
Implicature: Alice says being bilingual would help put her ahead of the pack. Alice’s response must
be relevant to Bob’s question because Alice is a cooperative conversational partner. Alice must be
implying that she could perform well because she is bilingual. This means the response to Bob’s

1 question is yes.

Answer: yes

Bob: Have you any news for me?

Alice: I’ve made progress

Implicature: Alice says she has made progress. Alice’s response must be relevant to Bob’s
question because Alice is a cooperative conversational partner. If Alice would not have any

news for Bob, Alice would not have said she would have made progress because that would

be misleading. The answer to Bob’s question ‘Have you any news for me?’ must therefore be yes.
Answer: yes

Bob: You looked out for him?

Alice: He looked out for me. He taught me.

Implicature: Bob asks Alice ‘You looked out for him?’ and Alice’s response says that the person
that is being referred to by ‘him’ here looked out for Alice. If Alice meant yes to Bob’s
question, Alice would have said something like ‘he also looked out for me’. Stating the

response like this implies that the answer to Bob’s question is no.

Answer: no

Only output a ‘yes’ or ‘no’ as a final answer. Write your reasoning after ‘Implicature:’
and then output either ‘Answer: yes’ or ‘Answer: no’.

Bob: <utterance>
Alice: <response>
Implicature:
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D.3 Model categorisation

Table D.5 contains details on the model classes that are a part of each group of

models we evaluate, along with their model sizes.

Table D.5: Model categorisation for each of the models. DL stands for dialogue,
FT for fine-tuning, BL for benchmark-level, EL for example-level, and
IT for instruction-tuning.

Group Model class Model IDs Model size Instruct
BERT base uncased 110M No
RoBERTa base, large 125M, 355M No
GPT-2 GPT-2 medium, large, xl 354M, 774M, 1.6B No
B EleutherAI GPT-J, GPT-NeoX 125M, 1.3B, 2.7B, 6B, 20B No
ase BLOOM - 560M, 1B1, 3B, 7B1, 176B No
OPT - 125M, 350M, 1.3B, 13B, 30B, 66B, 175B No
Cohere small, medium, large, XL 409.3M, 6.067B, 13.12B, 52.4B No
GPT-3 ada, babbage, curie, davinci Est. 350M, 1.3B, 6.7B, 175B No
DL FT BlenderBot - 90M, 2.7B, 9.4B No
TO - 3B, 11B Yes
BL IT Flan-T5 - 780M, 3B, 11B Yes
EL IT Cohere-command medium, xlarge 6.067B, 52.4B Yes
text-davinci-001 ada, babbage, curie, davinci-1 Unknown, left-to-right increasing in size Yes
text-davinci-002 - Unknown Yes
text-davinci-003 - Unknown Yes
ChatGPT gpt-3.5.turbo Unknown Yes

GPT-4 gpt-4 Unknown Yes
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D.4 Human evaluation

The participants for the human evaluation in Chapter 5 were recruited using Prolific
(www.prolific.co). The setup of the experiment is as follows. We divide the test
set of 600 examples into four non-overlapping subsets of 150 examples. Each set
of 150 examples was given to five unique annotators. This means each example in
the test set is labeled five times by different people, and we have in total twenty
annotators for the whole test set (five different ones for each of the four subsets). The
only constraint for the annotators is that they are native English speakers. In Figure
D.1 the screen shown to potential participants on Prolific is shown. Participants are
paid 15 pounds an hour, which was the living wage at the time of the experiment
and more than the 12 dollars an hour Prolific recommends. The total amount spent
on the human evaluation is 236 pounds. This amount came to be from four subsets,
each costing about 30 minutes to label per annotators, and having 5 annotators per
subset: 15 * 4 * 0.5 * 5 = 150. The extra costs were for the annotator that didn’t

pass the attention check which we paid nonetheless, and for prolific as a platform.

M
A study about the implied meanings of responses

ENE750 = £15.00/hr (O30 mins 3% 6 places

The aim of this study
We want to compare the performance of humans and language models (like GPT-3) on an important aspect of language
What you'll do

You'll see a set of 150 sentences in a google form, and are asked to finish the sentence with yes/no, whichever makes more sense to you given the sentence.
Please finish each of the 150 questions. if you don't know the answer, just take the best guess. To avoid your submission being rejected, make sure you enter your
correct unique Prolific 1D in the first question, fill out the correct email address to receive your completion code, finish all the 150 guestions, and pass the attention
test. We expect this task to take around 30 minutes. When you've submitted the form, we will check that everything has been filled out and send you the
completion code that you can use to tell Prolific you've finished the task.

Sensitive information

No sensitive information is required to give in this test and the answers are completely anonymised. We don't do anything with the information about you except
match the prolific 1D to the responses.

Reward

We will pay out the reward as quickly as pessible after your submission, hopefully within a day, at least within a week.

Devices you can use to take this study

1) Desktop | 0 ) Mobile () Tablet

Open study link in a new window

Figure D.1: A screenshot of how the experiment is presented to potential annotators
on Prolific (www.prolific.co).

The 150 test examples are wrapped in prompt template 2 (see Table D.1) and

presented in a Google form. We opted to wrap all examples in prompt template


www.prolific.co
www.prolific.co
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A study about the implied meanings of

Esther asked "Aren't you scared?" and Juan responded "Sometimes.’, which

responses i
Each of the responses in the following sentences means yes or no, choose the right one. O v
o
@ O No
What is your unique Prolific ID? * Esther asked "Are you focused?" and Juan responded "Yes.", which means *
QO Yes
O No
Which amei can e senid your Completion Code to once you Fifsh this formt Esther asked "Is it a difficult test?" and Juan responded ‘It would be a piece of
cake", which means
QO Yes
O No
Esther asked 'Is the dress perfect?” and Juan responded “it fits like a glove.”,
which means
O ves (b) Part of the Google form the partici-
O e pants are asked to fill out. The second
question in this image is part of the
(a) The start of the Google form partic- attention test. Juan’s response does
ipants are asked to fill out for the not contain an implicature but simply
human study. gives away the correct answer.

Figure D.2: Screenshots of the Google form participants fill out as part of the
implicature study.

2 to make the full human study directly comparable to the model’s results on
template 2. If we had done a mix of all templates we either had to spent six times
as much on the human evalyations (which was not within our budget) or subsample
evaluations, making it less comparable to part of the model study. Although models
have been shown to be very sensitive to prompt wording, humans are less likely
to perform differently for different prompt templates. All templates are coherent
natural language that any native English speaker will understand. That said, this is
speculative, and to confirm this hypothesis future work should investigate the effect
of different wordings on implicature resolution by humans. The participants are asked
to choose the correct continuation, yes or no (see Figure D.2a). As recommended by
Prolific, we subject the participants to an attention test (see Figure D.2b). At three
random places in the form, we add a question that does not contain an implicature
and obviously maps to “yes”. In this way, if the participants fails at least two of
these questions, we can conclude they were not paying attention and remove their
answers from the result. In practice, this happened once and we decided to pay the

participant regardless, but discard their results, which were close to random.

Table D.6 shows the performance of each annotator on the subset they annotated.
The average human performance across subsets and annotators is 86.2% =+ 2.3, the
best performance is 89.8% =4 2.2, and the worst performance is 83.5% &+ 1.5. The

column “TAA” shows the average Cohen’s Kappa coefficient which is the pairwise
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inter-annotator agreement for each annotator per subset. All agreements are substan-

tial according to the interpretation guidelines for Cohen’s Kappa (between 0.61-0.80).

Table D.6: The performance of the human annotators on the subsets of the test set.
Subset 1 through 4 are non-overlapping and cover the whole test set.
Annotator X for subset Y might be a different human than annotator
X for subset Z. IAA is the average pairwise inter-annotator agreement
(Cohen’s kappa coefficient) between annotators per subset.

Annotator 1 2 3 4 5 Mean Best Worst ITAA
Subset 1 86.0% 92.0% 90.7% 90.6% 86.0% 89.1% 92.0% 86.0% 0.73
Subset 2 84.7% 83.3% 87.3% 86.0% 86.0% 85.5% 87.3%  83.3% 0.64
Subset 3 84.0% 85.3% 88.0% 86.0% 82.7% 85.2% 88.0% 82.7% 0.78
Subset 4 85.3% 82.7% 84.0% 82.0% 92.0% 852% 92.0% 82.0% 0.71
Total - - - - - 86.2%  89.8%  83.5% 0.72
Std - - - - - 2.3 2.2 1.5 0.1

Human source of disagreement with ground-truth. We do an analysis of the
source of disagreement with the ground-truth. We explicitly do not call this error,
as in some cases examples might allow multiple interpretations, and both could be

right. In other cases, the ground-truth might be wrong.

Annotation errors and multiple interpretations: We analyse the examples for which
most humans choose a different answer than the ground-truth. For 30 out of 600
examples in the test set, only one or zero people choose the same answer as the
ground-truth. Of these examples, most are annotated wrongly (18 of 30). For exam-
ple: ‘Are you busy?’, ‘I'm drowning in work.’, implicature: ‘no’. Some are examples
that can have multiple different interpretations (12 of 18), and the ground-truth
answer likely just chooses one that is unnatural to humans. For example: “You don’t
remember them?’, ‘Leave me alone!’, implicature: ‘yes’. 6 of the 30 examples are

particularised, and 1 is generalised.

Examples for which all humans agree with the ground-truth: There are 409 out of 600
examples that all humans get correct. This set of examples contains most of the gener-

alised implicatures (39 out of 47). These contain 58 out of 94 particularised examples.

Examples most humans agree with the ground-truth: When we look at examples that
3 or more humans got correct, that comprises most of the test set (530 of 600), and
all of the generalised examples (47 of 47). This subset has 78 of 94 particularised
examples, so for 16 particularised examples 3 or more humans disagree with the

ground-truth.
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D.5 Comparison with BIG-bench implicatures
task

One of the BIG-bench tasks is related to the task in Chapter 5.' It uses the
same underlying dataset we use [GM20]. With the below we aim to discuss our
contribution in light of the BIG-bench result. To summarise; the methodology used
by the BIG-bench task contributors has limitations, which call into question the
validity of their claims. Further, some of the BIG-bench results are irreproducible due
to missing details in the tech report and the use of proprietary models. Considering
this, our work is an important contribution validating the BIG-bench results in a
reproducible and methodologically sound way, and above that providing insight into

what aspects of LLM training are crucial for the ability to do pragmatic inferences.

Limitations of the methodological approach of the task contributors in
BIG-bench implicatures. Our benchmark has 30% more data, which the BIG-
bench task contributors discard. In this section we motivate the crucial importance
of that data for evaluating implicature understanding (Section D.5.1), and why
BIG-bench in turn might be overestimating the performance of LLMs on implicature
resolution (Section D.5.2). Moreover, the human performance on the BIG-bench task
indicates low quality human annotation, which we will also elaborate upon below,
noting that this is impossible to verify because the BIG-bench report does not detail

how the evaluation was done for this task (Section D.5.3).

D.5.1 Discarding ambiguous examples

The BIG-bench task preprocesses the 1001 examples that [GM20] curate by keeping
only yes/no questions, discarding any examples that are ambiguous according to the
task contributors, and discarding remaining examples to create a 50/50 distribution
of yes/no answers. This leaves them with 492 examples. Of these examples, 81
appear in our development set and the remaining 411 appear in our test set. Our test
set has 600 examples, so BIG-bench effectively discarded 189 ambiguous examples
compared to our test set; a bit more than 30% of the benchmark. To illustrate the
importance of not discarding this data, we cherry picked a few examples that the
BIG-bench authors discarded from the data.

e Utterance: “Can you lend me hundred dollars?”, Response: ”Is this supposed

to be some kind of a joke?”, Implicature: “No”

'https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/
implicatures


https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/implicatures
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/implicatures
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e Utterance: “Do you know, how long is Uncle Arthur staying with us?”, Re-

sponse: ” Ask your father.”, Implicature: “No”

Indeed, these examples are ambiguous. Asking whether the request for a hundred
dollars is a joke does not literally mean you're saying no to the request. The response
“ask your father” does not mean the speaker does not actually know, maybe they just
do not want to respond. The humans in our study all infer the intended ground truth
implicature. This shows a general property of implicatures; they are ambiguous,
but often humans do infer the intended meaning. Ambiguity is not a discrete
property. Some examples may be so vague that no one gets it. The following are

examples the BIG-bench task discards that the humans in our study did struggle with:

e Utterance: “Got any more of those?”, Response: ”Nothing I'm at liberty to

reveal here.”, Implicature: ”Yes”

e Utterance: “Have you finished sight-seeing?”, Response: ”Sorry. I should’ve

come to see you first.”, Implicature: “Yes”

In the first of these the implicature is “yes” because the person responding is implying
that they do have more, they just cannot reveal them. Otherwise they would most
likely simply say no. In the second example it feels more natural that someone
says this when they are finished sight-seeing, otherwise they would’ve probably said
something to the effect of “I’'m still out, but I’'m sorry..”. In any case, humans in
our study did not understand these responses like that. This illustrates another
aspect of implicature; sometimes communication will go wrong over it. Removing
implicatures that are ambiguous though, defeats the purpose of the task, as they
are all ambiguous to a certain degree. The purpose of this study is to compare
how humans resolve this type of non-literal language compared to how models do
it. The human baseline of 86% accuracy that humans achieve on our test set deals
more naturally with examples that are too ambiguous for models to understand than

discarding examples based on the subjective opinion of a few people.

D.5.2 Overestimation of performance on implicature

understanding

On the overlapping part of our test set and theirs the humans in our study achieve
92.8% accuracy. The best model on the BIG-bench task is PaLM, achieving a
zero-shot performance of 64.4%. Note that this performance is on their full test
set (not the overlapping part) and hence not directly comparable. Nonetheless,
the missing examples are randomly sampled for our development set, and we can

be pretty confident this number indicates a large gap with human performance.
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Two-shot PaLM comes very close to human performance with 91.7% accuracy, but
of course this does not take into account the 189 more challenging examples that
are part of our benchmark. Humans achieve 71.9% performance on this subset of
ambiguous data, indicating that these data are more difficult than average, but
nonetheless performance is higher than random. Without access to the models used
to evaluate the BIG-bench task we cannot say anything for certain, but we expect
the performance of PaLM to be overestimated as it does not account for a large part

of the type of implicatures found in natural discourse; ambiguous ones.

D.5.3 Other limitations

Poor quality human evaluation. The average human evaluator on BIG-bench implica-
tures achieves around 82% performance (where ours achieves on average 86% on a
more challenging dataset), and their human best rater achieves 100% (where our
human best is 92%). This difference between human average and best hints at poor
quality average rating. This is impossible to verify because there is no information
in the BIG-bench tech report on how the human evaluation was done exactly, or

even which examples where evaluated.

No fine-tuned models. BIG-bench uses only base LLMs and no SotA fine-tuning
methods. A question that remains is therefore, what aspects of LLMs contribute to
their performance on implicatures? In our work we find that implicature performance
emerges at a much smaller scale in models instruction fine-tuned at the example

level, and that scale and prompting techniques are important.



210 Appendix D. A Case Study in Social Reasoning: Pragmatics
D.6 Chain-of-thought completions by GPT-4

GPT-4 reaches human-level performance with CoT prompting. In this section we look
at a few completions to help illuminate how CoT-prompting improves implicature

resolution.

Specifically, we look at some of the examples for which GPT-4 5-shot gets 0%
accuracy (i.e. wrong for all templates), and GPT-4 5-shot CoT gets 100% accuracy
(i.e. right for all templates). This is a set of 10 examples. We only look at the first

template, but all templates get a similar performance with CoT.

Utterance: ‘Do you sell calculators?’
Response: ‘We are all sold out. We wont probably have any more in for a few weeks.’

Implicature: Yes. But we dont have any calculators to sell now.

This is an example that GPT-4 gets wrong for all templates 5-shot, probably because
the response has a negative sentiment, and also it means they do not sell calculators
right now. However, the implicature is yes, because they do sell them normally. The

CoT completion is:

CoT completion: ‘Alice says they are all sold out and won’t have any more in for
a few weeks. Alice’s response must be relevant to Bob’s question because Alice
is a cooperative conversational partner. Alice must be implying that they do sell
calculators, but they currently don’t have any in stock. The answer to Bob’s question

is yes. Answer: yes’

This example is similar to the one given in Section 5.3, and there are more like these
in the dataset: the sentiment is negative, and an interpretation can be negative, but

strictly the implicature is positive (yes).

Utterance: ‘Do you know where he is?’
Response: ‘I'll find him.’

Implicature: No.

GPT-4 gets this wrong for all templates 5-shot, and right for all of them with CoT:

CoT completion: ‘Alice says she will find him. Alice’s response must be relevant to
Bob’s question because Alice is a cooperative conversational partner. If Alice knew
where he is, she would have provided that information directly. Instead, she says

she will find him, implying that she does not currently know his location. The an-
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swer to Bob’s question ‘Do you know where he is?” must therefore be no. Answer: no’

It’s unclear why GPT-4 gets this one wrong 5-shot (all humans get this one right),
but the CoT is very relevant and helpful.

Utterance: ‘It seems Cathy is not happy at all with her new room mate. Did you ask
her why?’
Response: ‘Believe me. I tried to find out. But I simply could not pin it down.’

Implicature: Yes. But Cathy did not give specific reasons for her feelings.

Again an example where the sentiment of the response seems to hint at no. Of 5
human annotators, also only 2 interpret this response as “yes”. With a CoT, GPT-4

gets it right six times:

CoT completion: ‘Alice says she tried to find out but couldn’t pin it down. Alice’s
response must be relevant to Bob’s question because Alice is a cooperative conver-
sational partner. Alice must mean that she attempted to ask Cathy why she is
unhappy with her new roommate, but was unable to get a clear answer. The answer

to Bob’s question 'Did you ask her why?’ must therefore be yes. Answer: yes’

A helpful reasoning trace. All CoT completions by the models we have run CoT on

are available in the GitHub: https://github.com/LauraRuis/do-pigs-fly.


https://github.com/LauraRuis/do-pigs-fly
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D.7 Additional results

D.7.1 Contrastive experiment

In this section we reframe the implicature resolution task to a contrastive one,
allowing the model to contrast the coherent to the incoherent sentence in a single

prompt.

Contrastive task. In the ranking task the model is required to assign higher
likelihood to the coherent utterance than the incoherent one (pg (v) > pg (9)). In
assigning a likelihood to y, the model has no knowledge of g, and vice-versa. We
hypothesize that the task might become easier if we reformulate it as a contrastive

task. Consider the following prompt .

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

Answer:

We can now evaluate the models’ ability to understand which is the coherent sentence
by evaluating whether it assigns pg (A | yp) > pg (B | yp). Note that this can again
be framed in a ranking task of assigning a higher likelihood to the coherent prompt.
If we finish the above prompt ¥, by adding “A” to make a coherent prompt y and “B”
to make an incoherent prompt ¢ we can again formulate the task by py (y) > po (9).
The difference is that within both the coherent and the incoherent prompt, the model
can contrast the coherent and incoherent utterance to each other. We randomise the

assignment of A and B to the utterances.

We do a small experiment with the contrastive task with one of the best performing
models overall, OpenAT’s text-davinci-002, for & = {0,1,5}. We use two prompt
templates and for each template try three different multiple choice answers: A and
B like above, one and two, or the full text of the answer. For the last option the

coherent prompt x would look as follows:
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Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

Answer: Esther asked “Can you come to my party on Friday?” and

Juan responded “I have to work”, which means no.

Table D.7: Performance on the implicature task framed contrastively by OpenAl’s
text-davinci-002. The mean and standard deviation are reported over
two different prompt templates (template 1 and 2).

k Non-contrastive Rank one, two Rank A, B Rank full text
0 71.3% + 1.75 53.9% £+ 0.9 59.3% + 1.3 48.9% =+ 0.6
1 76.1% + 2.6 59.4% + 1.6 63.2% + 2.0 66.9% + 0.9
5 80.5% 4+ 2.3 61.4% + 1.3 64.0% + 1.3 67.9% + 2.1

In Table D.7, perhaps surprisingly, we can see that the contrastive task is much
more difficult than the original ranking task. For k = 0, the result is random except
for the prompt where the multiple choice options are A and B. For k = {1,5} the
full text ranking does best, but is still significantly worse than the original ranking
setup. Because of these disappointing results, we did not evaluate the other models
contrastively. Future work must establish whether the contrastive setup is worse

across all model classes and sizes.

D.7.2 Variance over prompt ordering

As mentioned in Section 5.2, models are sensitive to the ordering of the k& examples
in the prompt. Instead of marginalising over this random factor by evaluating all
possible prompt orderings, we randomly sampled an ordered set of examples from
the development set for each test example. Throughout experiments, we kept this
randomly sampled order the same, meaning if you re-run the 5-shot evaluation you
get exactly the same orderings. The reason for this is that we want evaluate each
model equally. In this section we ask how the performance chances for the best
performing model if we select another random order. We do this for the 5-shot
evaluation, because the results show that adding more in-context examples barely

helps performance.
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Table D.8: Variance over prompt ordering for 5-shot evaluation per prompt template
(P.T.) for text-davinci-002

Seed P.T.1 P.T.2 P.T.3 P.T.4 P.T.5 P.T.6 Mean

0 80.17 78.17 82.83 80.50 79.17 76.50 79.56
1 80.17 76.17 81.33 81.83 76.00 76.33 78.64
2 79.50 78.17 81.17 80.17 78.17 76.50 78.94
mean 79.94 77.50 81.78 80.83 77.78 76.44 -
std 0.31 0.94 0.75 0.72 1.32 0.08 -

Table D.8 shows the results of this experiment. Some prompt templates seem to be
more sensitive to prompt example ordering than others, but for none of them the

variance is high enough to change any conclusions.

D.7.3 Different zero-shot instruction prompts

There is a narrative around large language models that if they fail a task, it might be
that the prompt was not the right one (through works like Reynolds and McDonell
[RM21b] and Kojima et al. [Koj+22]). The idea is that they can be prompted
to simulate almost anything, if you set them up correctly. Because implicature
resolution is a ubiquitous result of learning language, we hold the view that a model
should be able to do this task if a prompt is given in coherent natural language.
Nonetheless, in an additional effort to find the “let’s think step-by-step” [Koj+22] of

zero-shot implicature resolution we try three more prompt templates.

Table D.9: Zero-shot accu-
racy over three
additional prompt

We evaluate a base large language model and two
instructable models: GPT-3-175B, text-davinci-

001, and text-davinci-002. The prompts we templates for a
use are taken from recent work that proposes base LLM and
two  instructable

a dialogue agent trained with human feedback

Is.
[Gla+22], but adapted to the task of implicature models
resolution. The full prompts are presented in Ta- Model Templates
ble D.3 and Table D.9 shows the results. The new
GPT-3-175b 59.2% + 4.5

templates do not improve performance for any
text-davinci-001-x  66.1% + 3.2

text-davinci-002-x  67.7% £ 9.6

of these models. The variance over the prompt

templates for text-davinci-002 is high, and the

best prompt template of these three does achieve a slightly higher accuracy than the
others: 74.5%. These results do not change the picture sketched so far.
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Relative accuracy (w.r.t. 0-shot) due to in-context examples for all prompt templates.
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Figure D.3: Relative performance increase over 0-shot due to in-context prompting.
Structured prompt templates are dashed lines (1, 3, 4) and natural
prompt templates dotted lines (2, 5, 6).

D.7.4 The effect of in-context examples on sensitivity

to prompt wording

Figure D.3 shows the relative performance increase due to in-context prompting
broken down per prompt template. For text-davinci-001, most templates benefit
similarly from more in-context examples, except for template 1. Perhaps surprisingly,
we see that this template already achieves a performance of 76.5% at the zero-shot
evaluation and does not improve much with few-shot prompting. For Cohere-52B
and OPT-175B we see a clear grouping between the structured prompts (dashed
lines) and natural prompts (dotted lines). Cohere struggles significantly more with
the structured prompts than with the natural prompts in the zero-shot evaluation,
and few-shot prompting can mitigate that, lowering the standard deviation over
prompt templates to 1.89 at k = 30 from 4 at £k = 0. OPT benefits from prompting

for the natural prompts, but not for the structured prompts.

D.7.5 Variance over API runs

In this section we comment on the reproducibility of research done using APIs.
OpenAl and Cohere have their models behind an API, meaning we do not have
control over what happens to the prompt before the model processes it. We run
the zero-shot evaluation ten more times for two models of OpenAl and Cohere,
text-davinci-002 and Cohere-52B. The results from this experiment are shown in
Table D.10 and D.11. From this we can conclude that there is some stochasticity in
the API that we have no control over, a bit more for OpenAl than for Cohere, but
again we can be relatively confident that the conclusion will not be different because
of it. The results from this work are therefore reproducible with access to the same

models behind the API now. Unfortunately, when OpenAl or Cohere changes the
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models behind the API, these results are not exactly reproducible anymore.

For completeness, we add the timestamp that each result was obtained below (Ap-
pendix D.8).

Table D.10: Results per prompt template (P.T.) for 10 different runs from text-
davinci-002 for 0-shot evaluation.
Each evaluation has exactly the same text, so the variance in perfor-
mance is due to API stochasticity.

API-run P.T.1 P.T.2 P.T.3 P.T.4 P.T.5 P.T.6 Mean

0 73.50 68.83 73.00 71.17 67.17 68.83 70.42
1 73.83 69.00 72.83 71.50 67.67 68.33 70.53
2 73.67 68.67 73.17 71.33 67.50 68.50 70.47
3 73.83 68.17 73.17 71.00 67.67 68.17 70.33
4 73.67 68.83 73.33 71.17 67.00 68.33 70.39
) 73.83 68.50 73.00 71.00 67.00 68.17 70.25
6 73.67 69.00 73.00 71.17 67.33 68.50 70.44
7 73.67 68.67 72.83 71.33 67.50 68.67 70.44
8 73.83 69.17 72.83 71.17 67.33 68.00 70.39
9 73.50 68.50 72.83 71.00 67.50 68.67 70.33
10 73.67 69.50 73.00 71.33 67.50 68.50 70.58
mean 73.70 68.80 73.00 71.20 67.38 68.42 -
std 0.12 0.35 0.16 0.16 0.23 0.24 -

Table D.11: Results per prompt template (P.T.) for 10 different runs from Cohere-
52B for 0-shot evaluation.
Each evaluation has exactly the same text, so the variance in perfor-
mance is due to API stochasticity.

API-run P.T.1 P.T.2 P.T.3 P.T.4 P.T.5 P.T.6 Mean

0 56.00 62.67 54.33 54.00 62.17 62.17 58.56
1 56.00 62.83 54.33 54.00 62.33 62.33 58.64
2 56.00 62.83 54.33 54.00 62.17 62.33 58.61
3 56.00 62.83 54.33 54.00 62.17 62.33 58.61
4 55.83 62.67 54.33 54.00 62.17 62.33 58.56
) 56.00 62.83 54.33 54.00 62.17 62.17 58.58
6 56.00 62.83 54.33 54.00 62.17 62.17 58.58
7 56.00 62.67 94.33 54.00 62.33 62.17 58.58
8 56.00 62.83 54.33 54.00 62.00 62.33 58.58
9 56.00 62.83 54.00 53.83 62.17 62.17 58.50
mean 55.98 62.78 54.30 53.98 62.18 62.25 -

std 0.05 0.08 0.10 0.05 0.09 0.08 -
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D.7.6 Experiment with random in-context labels

Chapter 5 presents the thesis that instruction-tuning at the example level (“Example
IT”) is important for pragmatic understanding in LLMs. However, the 0-shot
result that one of the models in the Example IT group achieves is similar to that
of base models; Cohere-command-52b obtains a zero-shot performance of 60.2%.
From the sharp rise in performance observed for the k = 0 to k = 1 result (from
60.2% to 72.8%) we hypothesise that the k-shot in-context examples in this task
do not necessarily teach the model pragmatics in-context, but prime the model for
the task format (namely, outputting either “yes” or “no” as detailed in Section
5.2). If this hypothesis is true, we would observe similar performance regardless
of whether the labels given in the prompt for the few-shot examples are true. We
test this empirically for two base models (GPT-3, Cohere-52b) and two Example IT
models (text-davinci-001, Cohere-command-52b) for 1-shot and 5-shot evaluation.
The results can be found in Table D.12. We find that for the Example I'T models
in-context prompts with random labels obtain the same results (i.e. within confidence
intervals) as the experiments with ground-truth labels in the in-context examples.
For base models however we do observe a drop in performance; for GPT-3-175b at
5-shot, and Cohere-52b both at 1- and 5-shot. Taken together, we can conclude that
for base models the content of the in-context prompt seems important, whereas for
models in the example IT group the in-context examples mainly serve as a primer

for the task structure.

Table D.12: The results of the 1- and 5-shot experiment with random labels for
the few-shot examples as opposed to the the true labels. We find that
performance does not degrade for the models in the Example IT group,
which implies that for these models not the content of the examples is
important for performance, but the structure.

Model 1-shot 1-shot rand labels 5-shot 5-shot rand labels
GPT-3-175b 65.7% + 1.4 65.4% + 1.2 68.7% + 1.5 64.7% + 1.9
Cohere-52b 63.0% =+ 3.8 58.3% =+ 3.3 65.1% + 2.9 60.5% + 1.9
text-davinci-001 72.7% + 1.3 73.9% + 1.7 74.5% + 1.0 73.4% + 1.2

Cohere-command-52b  72.8% + 1.3 72.0% + 1.6 75.4% + 1.8 73.5% + 2.7
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Table D.13: Results of the chain-of-thought (CoT) experiment for models in the
base group. The numbers between brackets show the difference in
performance with the number on the same row one column to the
left. These models do not benefit from CoT-prompting. The reason
Cohere-6b achieves such a low score for CoT-prompting is because it
is not able to adhere to the correct output format (yes/no).

Model 0-shot 5-shot 5-shot CoT

GPT-3-350m 51.5% + 3.0 55.7% + 1.6 (+4.2%)  55.0% =+ 3.5
GPT-3-1.3b  57.7% + 3.1  62.6% + 2.0 (+4.9%)  54.4% =+ 5.8 (-8.2%)
GPT-3-6.7b  54.8% + 1.9 62.4% + 1.5 (+7.6%)  61.0% =+ 2.3 (+4.0%)
GPT-3-175b  57.2% + 4.4 68.7% + 1.5 (+11.5%)  60.3% =+ 4.2 (-8.4%)
Cohere-6b  57.3% + 2.2 60.9% + 4.1 29.2% + 14.7 (-31.7%)
Cohere-52b  58.5% + 4.0 65.1% + 2.9 (+6.6%)  64.7% + 3.2

D.7.7 Chain-of-thought on base models

In Section 5.3 we do a CoT experiment on the models in the Example IT group.
Base models also benefit from in-context examples, so it makes sense to also try CoT
prompting on these models. After attempting this for two of the model classes in
the group, we decided not to apply this prompting technique to the other models,
because it decreases performance, sometimes significantly. See the results of the CoT

experiment on the two base model classes in Table D.13.

D.7.8 Testing for spurious correlations

In this section, we do a small scale experiment to test whether the benchmark has
spurious correlations. Specifically, we run the benchmark with only the utterance or
only the response as input. Strictly, getting the implicature right from the response
only does not always indicate spurious correlations, as some examples only need
the response (e.g. rhetorical questions like ‘do pigs fly?’). Utterance-only results do
always indicate spurious correlations. We run this experiment for GPT-3.5-turbo
and GPT-4 0-shot and 5-shot (see Table D.14 and Table D.15).

Table D.14: Results of running the benchmark with only the utterance as input,
to test for spurious correlations with the label.

Utterance-only 0-shot 5-shot

GPT-3.5-Turbo 54.3% + 3.3 41.7% £ 12.4
GPT-4 48.9% + 10.5  53.7% £+ 0.5
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Table D.15: Results of running the benchmark with only the response as input, to
test what part of the examples can be resolved without the utterance.

Response-only 0-shot 5-shot
GPT-3.5-Turbo  59.2% + 4.7 58.3% =+ 6.6
GPT-4 62.6% + 1.7 65.5% + 1.1

We find that models mostly perform random for utterance-only, so spurious correla-
tions do not seem to be an issue. For response-only, GPT-4 5-shot gets 65% accuracy.

Some examples it gets right are: “do fish swim?” and “let’s hope so0”.
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Table D.16: An example from the dataset for each type of implicature found in
the test set. The rightmost column shows the amount of that type we
manually found in the test set.

Type Example Utterance Example Response Impl. #
Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’'ve gotta get up early. No. 94
World knowledge Did you leave fingerprints? I wore gloves. No. 23
Idiom Would he fire me? He’s all bark and no bite.  No. 42
Rhetorical question  Can you drive that far? Can fish swim? Yes. 11
Other - - - 383

D.7.9 Detailed results type label analysis

In Section 5.3 we do an analysis of two types of examples that occur frequently in
the dataset, namely generalised and particularised implicatures. Here, we detail
the full taxonomy of types of examples occurring in the dataset and report detailed
results for each type per model (see D.17 until Table D.30 below). In Table D.16 the
full taxonomy of the examples is shown, representing types of examples that occur
frequently in the dataset. We manually labeled 217 examples of the 600 examples in
the test set according to this taxonomy. The remaining 383 examples do not fall
as clearly within a category and are grouped together as type other. Generalised
implicatures require little or no context to be understood. They are the simplest type
of example in the test set, and generally imply the same thing (“some” almost always
implies “not all”). Particularised implicatures, by contrast, do require context to be
resolved. For example, from Table D.16, we need the context that it is undesirable
to stay up late drinking when one has to get up early (see in Appendix D more
on generalised vs. particularised). The type world knowledge requires knowledge
of the physical world to be resolved. From the example in Table D.16; we need
to know that you cannot leave fingerprints when wearing gloves to resolve this
implicature. Idiom types contain an idiom or a metaphor that one needs to know or
understand to resolve the implicature, and finally Rhetorical question types contain a

question like “Is the Pope Catholic?”, often requiring factual knowledge to be resolved.

The following tables contain the detailed results broken down per example type: Table
D.17 - Table D.30. The most interesting pattern in this data is that for almost all
models, even the best model (GPT-4 30-shot in Table D.28), there is a significant gap
between human-level performance on the particularised examples. This gap is larger
than the gap for the other labels usually. Few-shot prompting can often mitigate
this (e.g. for GPT-3-175b, Cohere-52b, and text-davinci-002), but not always (e.g.
for GPT-4 the gap remains large for k& = 30). However, for GPT-4, chain-of-thought
can mitigate the gap as seen in Table D.30. Where GPT-4 30-shot obtains 71.97%
accuracy on the particularised examples (and humans 83.18%), GPT-4 with 5-shot
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CoT achieves 81.63%, which is close to human-level. We find that the particularised
examples mostly benefit from CoT prompting. Namely, for the generalised type of
examples, GPT-4 30-shot already achieves 86.23% accuracy and CoT improves this

to 88.66%, which is a much smaller improvement than for the particularised examples.

Table D.17: Accuracy per label for 0-shot evaluation.

Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 50.92 50.00 +/- 2.17 51.52 +/- 9.96 57.58 +/- 10.05
OPT-350m 57.14 57.97 +/- 10.25 64.77 +/- 3.65 65.15 +/- 3.39
OPT-1.3b 60.36 60.14 +/- 5.84 68.94 +/- 5.52 59.09 +/- 4.55
OPT-2.7b 59.56 60.87 4/- 6.15 67.05 +/- 2.18 69.70 +/- 6.78
OPT-6.7b 60.33 59.42 4 /- 6.95 59.47 4 /- 2.04 53.03 +/- 19.93
OPT-13b 61.03 63.77 +/- 14.78 73.86 +/- 7.51 66.67 +/- 16.32
OPT-30b 61.47 65.94 +/- 10.48 62.88 +/- 8.05 74.24 +/- 6.25
OPT-66b 61.33 69.57 +/- 13.75 60.23 +/- 4.30 59.09 +/- 18.74
OPT-175b 55.33 55.07 +/- 5.42 54.55 +/- 9.19 63.64 +/- 21.64
BLOOM-560m 51.58 54.35 +/- 5.47 54.92 +/- 16.72 50.00 +/- 13.64
BLOOM-1b1 51.17 50.00 +/- 2.17 50.38 +/- 11.77 53.03 +/- 12.22
BLOOM-1b7 53.61 52.17 +/- 6.15 53.79 +/- 8.77 68.18 +/- 6.94
BLOOM-3b 56.89  54.35 +/- 6.02  59.85 4/- 4.48 63.64 +/- 5.25
BLOOM-7b1 58.67 63.77 +/- 14.57 68.94 + /- 5.82 68.18 +/- 4.55
BLOOM-176b 54.22 55.07 +/- 7.39 50.38 +/- 11.01 62.12 +/- 9.70
EleutherAI-125m 51.89 56.52 4/- 9.72 52.65 +/- 8.84 63.64 +/- 5.25
EleutherAI-1.3b 53.14 51.45 +/- 3.90 53.03 +/- 11.19 62.12 +/- 3.39
EleutherAlI-2.7b 59.17 60.14 +/- 13.38 65.91 +/- 3.94 68.18 +/- 4.55
EleutherAI-6b 56.36 57.25 4+/- 7.28 56.06 +/- 8.87 50.00 +/- 17.99
EleutherAI-20b 57.53 51.45 +/- 3.90 67.80 +/- 5.93 72.73 +/- 5.25
Cohere-409m 51.61 52.17 +/- 4.35 53.41 +/- 11.94 54.55 +/- 12.86
Cohere-6b 57.28 55.80 +/- 5.28 60.23 +/- 5.98 72.73 +/- 9.09
Cohere-13b 57.19 59.42 +/- 4.81 54.55 +/- 10.82 48.48 4 /- 10.05
Cohere-52b 58.50 60.14 +/- 13.61 65.15 +/- 3.86 74.24 +/- 11.03
GPT-3-350m 51.47 51.45 4/- 3.90 53.41 +/- 13.56 50.00 +/- 13.64
GPT-3-1.3b 57.72 61.59 +/- 11.06 64.39 +/- 4.08 65.15 +/- 3.39
GPT-3-6.7b 54.83 54.35 +/- 6.99 53.79 +/- 7.61 62.12 +/- 3.39
GPT-3-175b 57.22 55.80 +/- 7.28 68.94 +/- 5.19 77.27 +/- 8.70
TO0-3b 4825  54.35 4/- 4.86 4242 +/- 4.29 36.36 +/- 0.00
TO-11b 55.61 60.14 +/- 6.84 54.92 +/- 14.93 36.36 +/- 0.00
BlenderBot-90m 46.64 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.44 47.83 +/- 0.00 61.36 +/- 1.31 63.64 +/- 0.00
BlenderBot-9b 53.36 52.17 4+/- 6.64 60.98 +/- 4.81 63.64 +/- 0.00
Flan-T5-780m 63.31 72.46 +/- 4.10 71.97 +/- 5.82 54.55 +/- 13.89
Flan-T5-3b 52.50 50.72 4+/- 6.95 51.89 +/- 4.23 42.42 +/- 8.57
Flan-T5-11b 60.78  65.94 4/- 5.84  72.35 +/- 7.59 65.15 +/- 6.25
Cohere-command-6b 66.31 72.46 +/- 7.80 78.41 +/- 4.30 37.88 +/- 3.39
Cohere-command-52b 60.22  66.67 +/- 10.85  63.64 +/- 10.33 T7.27 +/- 6.94
text-ada-001-unknown 56.50 63.77 +/- 4.10 58.71 +/- 16.04 51.52 +/- 10.05
text-babbage-001-unknown  64.47 67.39 +/- 6.02 76.52 +/- 1.69 60.61 +/- 10.05
text-curie-001-unknown 68.94 76.81 4/- 3.24 76.89 +/- 2.76 54.55 +/- 12.86
text-davinci-001-unknown 72.31 84.78 4 /- 7.43 78.79 +/- 4.08 59.09 +/- 13.64
text-davinci-002-unknown 70.58 82.61 +/- 9.05 75.38 +/- 3.05 57.58 +/- 16.32
text-davinci-003-unknown 71.25 86.96 +/- 13.28 72.35 4+/- 7.35 48.48 +/- 8.57
ChatGPT-unknown 72.08 82.61 +/- 12.04 83.33 +/- 5.97 56.06 +/- 16.11
GPT-4-unknown 81.78 92.03 +/- 2.99 90.91 +/- 3.21 84.85 +/- 8.57
Humans 86.23 93.04 92.73 92.73

D.7.10 Detailed results per model

This section contains the results used for the zero-shot and few-shot evaluation in

Section 5.3, broken down per prompt template. See Table D.31 until Table D.80.
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Table D.18: Accuracy per label for 0-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 50.92 49.43 +/- 5.52 55.07 +/- 21.10  50.56 +/- 1.33
OPT-350m 5714 47.92 +/- 437  69.20 +/- 8.36  56.68 +/- 4.99
OPT-1.3b 60.36 51.52 +/- 6.81 74.64 +/- 2.05 59.65 +/- 3.51
OPT-2.7b 59.56 50.19 +/- 5.06 69.93 +/- 5.53 59.22 +/- 6.14
OPT-6.7b 60.33 52.27 +/- 5.90 75.36 +/- 2.71 60.77 +/- 6.13
OPT-13b 61.03 55.49 +/- 8.79 75.00 +/- 5.72 58.79 +/- 5.51
OPT-30b 61.47  54.55 +/- 4.15  71.38 +/- 594 6111 +/- 2.12
OPT-66b 61.33 55.11 +/- 7.33 69.93 +/- 12.26  61.46 +/- 3.68
OPT-175b 55.33 54.17 +/- 7.70 58.33 +/- 18.51  55.12 4 /- 4.21
BLOOM-560m 51.58 50.76 +/- 5.59 48.91 +/- 25.22  51.59 +/- 3.50
BLOOM-1b1 5117 5057 +/- 632 53.26 +/- 27.40  51.16 +/- 2.41
BLOOM-1b7 53.61 50.38 +/- 7.95 59.78 +/- 18.82  53.23 +/- 1.62
BLOOM-3b 56.89 51.70 +/- 8.27 67.39 +/- 10.35  56.46 +/- 4.39
BLOOM-7b1 58.67 46.59 +/- 2.86 79.35 +/- 2.74 57.11 4 /- 4.03
BLOOM-176b 54.22 54.73 +/- 10.61  60.14 +/- 16.73  53.57 +/- 1.65
EleutherAI-125m 51.89 50.38 +/- 5.71 57.25 +/- 20.15  50.90 +/- 0.99
EleutherAlI-1.3b 53.14 50.57 +/- 7.03 55.43 +/- 23.20  53.32 +/- 2.05
EleutherAL-2.7b 50.17 5095 +/- 7.43 7464 +/- 4.97  58.10 +/- 2.92
EleutherAlI-6b 56.36 53.22 +/- 6.86 69.20 +/- 7.36 55.73 +/- 2.43
EleutherAI-20b 57.53 49.43 +/- 6.68 72.83 +/- 5.99 56.20 +/- 3.01
Cohere-409m 51.61 51.33 +/- 4.84 52.54 +/- 22.71  51.25 +/- 2.93
Cohere-6b 57.28 51.52 +/- 6.68 64.49 +/- 16.06  57.06 +/- 3.13
Cohere-13b 57.19 52.27 +/- 5.83 68.12 +/- 10.99  57.45 +/- 3.35
Cohere-52b 58.50 51.52 +/- 7.21 73.91 +/- 5.75 56.85 +/- 3.81
GPT-3-350m 51.47 50.76 +/- 6.96 52.90 +/- 24.07  51.29 +/- 1.63
GPT-3-1.3b 57.72 50.00 +/- 6.29 67.75 +/- 9.84 57.06 +/- 3.78
GPT-3-6.7b 54.83 52.65 +/- 8.16 63.41 +/- 15.14  54.26 +/- 2.12
GPT-3-175b 57.22 53.03 +/- 1.93 71.01 4/- 4.81 54.61 4 /- 5.58
T0-3b 48.25 55.68 +/- 0.66 27.17 4+ /- 2.74 49.83 +/- 1.90
TO0-11b 55.61 57.95 +/- 2.18 47.10 +/- 17.15  56.33 +/- 6.49
BlenderBot-90m 46.64 55.49 +/- 0.42 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.44 44.51 +/- 0.42 76.09 +/- 0.00 51.81 +/- 0.20
BlenderBot-9b 53.36 49.24 +/- 4.81 71.01 +/- 5.71 51.03 +/- 1.63
Flan-T5-780m 63.31 59.28 +/- 3.90 68.84 +/- 7.60 62.23 +/- 3.13
Flan-T5-3b 52.50 54.55 +/- 1.61 48.19 +/- 11.73  53.14 +/- 3.15
Flan-T5-11b 60.78 51.52 +/- 3.39 73.19 +/- 7.28 59.60 +/- 2.18
Cohere-command-6b 66.31  58.90 +/- 3.62 73.19 +/-2.71  66.15 +/- 2.41
Cohere-command-52b 60.22  55.49 +/- 4.66  60.51 +/- 16.67 59.99 +/- 5.09
text-ada-001-unknown 56.50  52.65 +/- 3.86  61.59 +/- 15.96  56.24 +/- 5.74
text-babbage-001-unknown  64.47 56.25 +/- 2.52 72.46 +/- 9.86 63.87 +/- 1.55
text-curie-001-unknown 68.94  66.48 +/-2.34  68.84 +/- 5.98  68.48 +/- 3.63
text-davinci-001-unknown 72.31  59.66 +/- 5.07 79.35 +/-9.78  73.17 +/- 2.54
text-davinci-002-unknown 70.58  64.20 +/- 3.75  80.07 +/- 5.67  69.94 +/- 3.69
text-davinci-003-unknown 71.25  63.64 +/- 1.86 82.25 +/- 4.77  71.23 +/- 2.74
ChatGPT-unknown 72.08 68.75 +/- 2.99 69.57 +/- 11.16  71.66 +/- 5.79
GPT-4-unknown 81.78 71.59 +/- 3.47 89.86 +/- 2.05 81.35 +/- 1.66
Humans 86.23 83.18 92.17 84.86
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Table D.19: Accuracy per label for 1-shot evaluation.
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Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 52.72 43.48 +/- 5.02 54.92 +/- 7.24 59.09 +/- 4.55
OPT-350m 5292 39.86 +/- 1.62  48.11 +/- 2.76 59.09 +/- 6.94
OPT-1.3b 56.31 54.35 +/- 4.16 58.33 +/- 4.48 53.03 +/- 12.22
OPT-2.7b 56.83 64.49 +/- 15.35 64.39 +/- 2.51 66.67 +/- 4.29
OPT-6.7b 60.08 61.59 +/- 13.84 68.94 +/- 6.90 56.06 +/- 6.25
OPT-13b 60.56 68.84 +/- 7.70 69.70 4/- 6.11 54.55 +/- 15.75
OPT-30b 60.33 71.74 +/- 547 63.26 +/- 4.81 51.52 +/- 10.05
OPT-66b 63.19 70.29 +/- 11.06 62.50 +/- 2.86 48.48 +/- 13.55
OPT-175b 58.36  63.77 +/- 4.81  66.67 +/- 877  57.58 +/- 17.14
BLOOM-560m 54.83 50.00 +/- 5.47 64.02 +/- 4.62 63.64 +/- 0.00
BLOOM-1b1 5256 56.52 +/- 9.05  59.47 +/- 2.04 59.09 +/- 4.55
BLOOM-1b7 52.81 54.35 +/- 6.52 60.98 +/- 3.57 63.64 +/- 5.25
BLOOM-3b 55.94 50.72 4/- 4.10 64.39 +/- 4.08 59.09 +/- 4.55
BLOOM-7b1 57.00 50.00 +/- 3.32 64.77 +/- 2.86 62.12 +/- 6.25
BLOOM-176b 61.11 77.54 4+/- 3.90 66.67 +/- 6.11 50.00 +/- 6.94
EleutherAI-125m 51.67 44.93 +/- 6.95 50.76 +/- 4.29 57.58 4/- 4.29
EleutherAlI-1.3b 55.72 47.10 +/- 4.64 55.68 +/- 4.50 50.00 +/- 11.44
EleutherAL-2.7b 55.50  54.35 +/- 5AT  67.42 +/- 4.67 65.15 +/- 9.70
EleutherAI-6b 54.97 57.25 +/- 5.84 60.23 +/- 4.30 53.03 +/- 8.16
EleutherAI-20b 55.86  69.57 +/- 435  62.88 +/- 4.85 53.03 +/- 6.25
Cohere-409m 51.89 42.75 +/- 6.84 51.89 +/- 4.62 54.55 +/- 5.25
Cohere-6b 57.86 58.70 +/- 12.74 67.05 +/- 5.83 68.18 +/- 11.44
Cohere-13b 61.78 71.74 4+/- 11.43 67.42 +/- 8.47 37.88 +/-9.70
Cohere-52b 62.97 66.67 +/- 6.48 70.08 +/- 4.43 62.12 +/- 14.29
GPT-3-350m 55.97 50.72 +/- 4.10 61.74 +/- 5.15 69.70 +/- 12.49
GPT-3-1.3b 60.75 58.70 +/- 4.16 65.53 +/- 4.23 54.55 +/- 5.25
GPT-3-6.7b 61.17 60.87 +/- 11.77 69.32 +/- 3.65 56.06 +/- 8.16
GPT-3-175b 65.72 76.81 +/- 3.24 73.48 /- 2.51 57.58 +/- 16.32
T0-3b 48.89 54.35 +/- 2.17 42.80 +/- 2.04 36.36 +/- 0.00
TO-11b 47.78 52.17 +/- 0.00 40.53 +/- 2.43 36.36 +/- 0.00
BlenderBot-90m 49.94 55.07 4/- 6.48 47.73 +/- 9.99 51.52 +/- 13.55
BlenderBot-3b 53.31 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.53 50.72 +/- 9.61 57.20 +/- 12.95 66.67 +/- 6.78
Flan-T5-780m 62.89 6449 +/-7.70  67.42 +/- 13.03  46.97 +/- 8.16
Flan-T5-3b 52.75 65.22 4 /- 15.47 55.30 +/- 9.34 45.45 +/- 12.86
Flan-T5-11b 57.44 59.42 4/- 3.24 61.36 +/- 12.17 48.48 +/- 12.49
Cohere-command-6b 65.00 71.74 4/- 6.99 71.59 +/- 3.15 36.36 +/- 0.00
Cohere-command-52b 72.83 83.33 4/- 3.90 83.33 +/- 2.51 71.21 +/- 6.25
text-ada-001-unknown 57.36 60.87 4/- 7.10 67.80 +/- 3.81 66.67 +/- 6.78
text-babbage-001-unknown  63.89 68.84 +/- 3.90 76.89 +/- 2.43 50.00 +/- 11.44
text-curie-001-unknown 64.39 66.67 +/- 5.98 68.56 +/- 9.94 56.06 +/- 6.25
text-davinci-001-unknown 72.72 93.48 +/- 4.16 80.68 +/- 2.18 57.58 +/- 12.49
text-davinci-002-unknown 75.61 91.30 +/- 2.51 87.12 +/- 2.51 56.06 +/- 8.16
text-davinci-003-unknown 74.31 90.58 +/- 5.28 82.20 +/- 1.56 54.55 + /- 7.42
ChatGPT-unknown 75.11 86.23 +/- 2.99 85.61 +/- 3.12 56.06 +/- 14.29
GPT-4-unknown 82.31 97.10 +/- 3.24 88.64 +/- 3.94 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73
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Table D.20: Accuracy per label for 1-shot evaluation.

Model Mean  Particularised Generalised Other

OPT-125m 52.72  48.30 +/- 1.83  60.87 +/- 13.04 52.89 +/- 1.04
OPT-350m 52.92  47.73 +/- 237  60.87 +/- 11.71  54.35 +/- 3.10
OPT-1.3b 56.31 53.41 +/- 2.71 52.17 +/- 9.88 57.41 +/- 1.38
OPT-2.7b 56.83  49.81 +/- 5.31 69.93 +/- 6.33 55.17 4+/- 3.94
OPT-6.7b 60.08 52.65 +/- 7.44 73.55 +/- 3.18 59.09 +/- 5.85
OPT-13b 60.56  53.03 +/- 1.82 71.01 +/- 7.60 59.56 +/- 2.75
OPT-30b 60.33  55.87 +/- 3.31 70.65 +/- 8.01 59.26 +/- 4.61
OPT-66b 63.19  60.04 +/- 4.12 67.39 +/- 8.70 63.39 +/- 4.28
OPT-175b 58.36  56.63 +/- 3.96 59.42 4 /- 7.06 57.28 4/- 7.30
BLOOM-560m 54.83  43.94 1/-3.12  66.30 +/- 8.21  54.82 +/- 1.85
BLOOM-1b1 5256 47.35 +/- 312 63.04 +/- 12.36  51.16 +/- 1.54
BLOOM-1b7 52.81 45.64 +/- 3.50 67.03 +/- 9.92 51.29 4 /- 1.44
BLOOM-3b 55.94 4527 +/- 1.21 76.09 +/- 1.26 55.12 +/- 1.93
BLOOM-7b1 57.00  49.62 +/- 4.08 77.17 +/- 1.66 55.56 +/- 3.57
BLOOM-176b 61.11 58.14 +/- 3.31 66.67 +/- 5.98 59.73 +/- 3.66
EleutherAI-125m 51.67  50.19 +/- 2.49 53.99 +/- 8.82 52.11 4/- 0.89
EleutherAlI-1.3b 55.72  50.57 +/- 4.67 57.97 +/- 13.44 57.36 +/- 2.66
EleutherAL-2.7b 5550 48.67 +/- 4.84 6522 +/- 4.86  54.22 +/- 2.79
EleutherAlI-6b 54.97  49.81 +/- 1.21 66.30 +/- 4.82 54.01 +/- 3.36
EleutherAI-20b 55.86  53.03 +/- 357  64.49 +/- 6.36  53.83 +/- 2.41
Cohere-409m 51.89  52.84 +/- 3.98 48.55 +/- 3.69 52.54 4+/- 1.96
Cohere-6b 57.86  44.13 +/- 1.66 77.54 +/- 2.05 57.15 4+/- 5.08
Cohere-13b 61.78  53.98 +/- 2.05 74.28 +/- 3.64  61.41 +/- 1.84
Cohere-52b 62.97 60.42 +/- 8.18 69.20 +/- 5.24 61.76 +/- 4.21
GPT-3-350m 55.97  50.76 +/- 1.82 73.91 4+/- 7.94 54.31 4+/- 1.92
GPT-3-1.3b 60.75  53.79 +/- 2.98 68.48 +/- 3.26 61.07 +/- 1.82
GPT-3-6.7b 61.17 55.49 +/- 6.83 72.10 4/- 2.64 60.29 +/- 4.09
GPT-3-175b 65.72  62.31 +/- 4.17 64.86 +/- 7.26 65.33 +/- 2.00
T0-3b 48.89  56.25 +/- 1.57 34.06 +/- 4.29 49.83 +/- 0.55
TO0-11b 47.78  56.44 +/- 0.54 27.54 +/- 1.02 49.22 +/- 0.53
BlenderBot-90m 49.94  52.46 +/- 4.27 44.57 +/- 15.66  50.00 +/- 1.65
BlenderBot-3b 53.31 4451 +/- 042 76.09 +/- 0.00  51.59 +/- 0.24
BlenderBot-9b 52.53  54.92 +/- 3.45 55.80 +/- 12.90 50.90 +/- 2.60
Flan-T5-780m 62.89 56.44 +/- 3.32 68.84 +/- 12.90 63.44 +/- 6.28
Flan-T5-3b 52.75  55.11 +/- 1.57 44.20 +/- 5.98 52.41 4 /- 3.23
Flan-T5-11b 57.44 5398 +/-1.94 62.68 +/- 15.85 57.28 +/- 4.79
Cohere-command-6b 65.00 60.61 +/-3.69 68.12 +/- 9.53  65.25 +/- 1.37
Cohere-command-52b 72.83 67.42 +/- 2.83 80.07 +/- 2.92 71.36 +/- 1.70
text-ada-001-unknown 57.36  46.97 +/- 2.76  74.64 +/-2.99  55.90 +/- 3.11
text-babbage-001-unknown  63.89  58.52 +/- 1.43 63.41 +/- 7.26 63.70 +/- 1.10
text-curie-001-unknown 64.39 60.98 +/- 2.14  69.93 +/- 3.42  64.04 +/- 5.79
text-davinci-001-unknown 72.72 6231 +/-1.66 76.81 +/-2.71  72.83 +/- 1.70
text-davinci-002-unknown 75.61 68.18 +/-2.86  77.54 +/-2.05 75.32 +/- 3.14
text-davinci-003-unknown 74.31  64.20 +/- 1.43  80.43 +/- 5.02  74.50 +/- 1.29
ChatGPT-unknown 7511  70.08 +/- 4.38  78.99 +/- .50 7446 +/- 1.19
GPT-4-unknown 82.31  74.43 +/- 2.60 86.96 +/- 3.32 81.70 +/- 1.94
Humans 86.23 83.18 92.17 84.86
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Table D.21: Accuracy per label for 5-shot evaluation.
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Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 50.22 44.93 +/- 3.24 57.58 +/- 7.73 57.58 +/- 4.29
OPT-350m 5147  53.62 +/- 4.81 5871 +/- 1.56 45.45 +/- 0.00
OPT-1.3b 58.03 68.84 +/- 8.48 63.26 +/- 6.21 30.30 +/- 8.57
OPT-2.7b 57.33  BT.97 +/- 481  66.67 +/- 4.67 71.21 +/- 3.39
OPT-6.7b 6331  66.67 +/- 1620  67.42 +/- 4.08  42.42 +/- 16.32
OPT-13b 67.39 80.43 +/- 4.86 68.94 +/- 4.29 39.39 +/- 6.78
OPT-30b 65.64 84.78 +/- 8.60 66.29 +/- 8.13 37.88 +/-6.25
OPT-66b 61.50 75.36 +/- 8.20 55.30 +/- 6.90 36.36 +/- 7.42
OPT-175b 63.89 7826 +/-7.10  65.15 +/- 2.83 43.94 +/- 3.39
BLOOM-560m 53.75 44.20 +/- 2.99 65.91 +/- 3.94 54.55 +/- 5.25
BLOOM-1b1 57.39  49.28 +/- 6.95  65.15 +/- 4.85 66.67 +/- 6.78
BLOOM-1b7 54.44 61.59 +/- 5.84 56.06 +/- 1.69 43.94 +/- 6.25
BLOOM-3b 57.19 50.72 +/- 3.24 64.77 +/- 4.87 63.64 +/- 12.86
BLOOM-7b1 54.50 50.00 +/- 2.17 62.88 +/- 1.69 69.70 +/- 4.29
BLOOM-176b 65.42 76.09 +/- 6.02 69.32 +/- 4.87 43.94 +/- 3.39
EleutherAI-125m 49.56 50.00 +/- 3.32 50.38 +/- 4.43 34.85 +/- 3.39
EleutherAlI-1.3b 57.11 55.07 4+/- 5.98 63.64 +/- 4.15 37.88 +/- 11.03
EleutherAL-2.7b 58.03 7174 +/- 416  59.85 +/- 312  43.94 +/- 14.29
EleutherAI-6b 58.39 67.39 +/- 6.99 56.82 +/- 6.01 42.42 +/- 18.68
EleutherAI-20b 61.14 65.22 4/- 8.70 64.77 +/- 11.11 30.30 +/- 8.57
Cohere-409m 53.30  47.83 +/-5.61  59.47 +/- 5.32 31.82 +/- 6.94
Cohere-6b 60.89 65.94 +/- 8.48 66.67 +/- 10.05 45.45 +/- 9.09
Cohere-13b 62.47 81.88 4/- 8.10 62.88 +/- 10.71 34.85 +/- 11.03
Cohere-52b 65.14 73.91 +/- 5.61 67.80 +/- 3.05 51.52 4+/- 6.78
GPT-3-350m 55.72 46.38 +/- 3.24 65.53 +/- 1.56 51.52 4/- 4.29
GPT-3-1.3b 62.64 72.46 +/- 10.55 69.70 +/- 4.48 37.88 +/- 12.22
GPT-3-6.7b 62.39 76.81 +/- 14.57 62.50 +/- 5.53 36.36 +/- 7.42
GPT-3-175b 68.72 82.61 +/- 4.35 71.59 +/- 2.54 60.61 +/- 13.55
T0-3b 46.67 52.17 4/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
TO-11b 47.00 52.17 +/- 0.00 39.02 +/- 0.85 36.36 +/- 0.00
BlenderBot-90m 46.58 52.17 4+/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.36 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.81 47.83 +/- 4.35 60.98 +/- 0.85 63.64 +/- 0.00
Flan-T5-780m 61.03  61.59 +/- 4.64  70.08 +/- 9.59 42.42 +/- 4.29
Flan-T5-3b 54.89 62.32 +/- 7.39 60.61 +/- 8.26 34.85 +/- 3.39
Flan-T5-11b 61.64 68.84 +/- 6.84 67.80 +/- 8.03 43.94 +/- 8.16
Cohere-command-6b 68.56 77.54 +/- 9.86 78.79 +/- 5.36 39.39 +/- 4.29
Cohere-command-52b 75.42 87.68 +/- 3.90 84.09 +/- 1.31 74.24 +/- 9.70
text-ada-001-unknown 57.61 52.17 4/- 3.55 64.39 +/- 2.83 62.12 +/- 8.16
text-babbage-001-unknown  66.14 71.74 4+/- 2.17 77.65 +/- 5.15 57.58 +/- 12.49
text-curie-001-unknown 71.33 76.09 +/- 2.17 70.08 +/- 6.07 43.94 +/- 3.39
text-davinci-001-unknown 74.53 88.41 +/- 3.24 78.03 +/- 5.97 66.67 +/- 12.49
text-davinci-002-unknown 79.56 90.58 +/- 1.62 89.02 +/- 2.04 69.70 +/- 6.78
text-davinci-003-unknown 79.67 89.13 +/- 2.17 86.36 +/- 2.27 74.24 +/- 11.03
ChatGPT-unknown 73.89 86.96 +/- 6.15 87.88 +/- 4.85 75.76 +/- 12.49
GPT-4-unknown 82.03 95.65 +/- 2.51 86.74 +/- 2.04 87.88 +/- 6.78
Humans 86.23 93.04 92.73 92.73
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Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.22: Accuracy per label for 5-shot evaluation.

Model Mean  Particularised Generalised Other

OPT-125m 50.22  47.35 4+/- 3.12 60.87 +/- 13.28  48.84 +/- 3.71
OPT-350m 5147 3958 +/- 1.79  67.39 +/- 3.07  51.38 +/- 0.95
OPT-1.3b 58.03  56.06 +/- 3.63 57.61 +/- 4.12 58.01 +/- 2.84
OPT-2.7b 57.33  47.35 +/- 3.05 72.46 +/- 2.40 56.20 +/- 3.60
OPT-6.7b 63.31  56.63 +/- 6.93 71.01 4/- 6.48 63.74 +/- 3.18
OPT-13b 67.39  60.23 +/- 2.93 64.86 +/- 2.92 69.12 +/- 2.83
OPT-30b 65.64  59.85 +/- 1.42 59.42 4 /- 7.70 67.27 +/- 4.36
OPT-66b 61.50 56.44 +/- 3.51 58.70 +/- 9.64 63.65 +/- 3.93
OPT-175b 63.89  61.55 +/- 2.22 52.54 +/- 5.53 65.33 +/- 2.44
BLOOM-560m 53.75  44.89 +/- 2.05 73.19 +/- 6.11 52.50 +/- 0.78
BLOOM-1b1 57.39  48.67 +/- 3.44 70.65 +/- 4.12 57.02 /- 1.86
BLOOM-1b7 54.44  48.86 +/- 4.91 60.14 +/- 3.24 54.74 4 /- 0.96
BLOOM-3b 57.19  50.00 +/- 3.35 72.46 +/- 2.40 56.24 4/- 0.89
BLOOM-7b1 54.50  46.02 +/- 2.25 72.10 +/- 4.24 53.10 +/- 1.04
BLOOM-176b 65.42  65.53 +/- 4.38 49.28 +/- 9.69 66.88 +/- 3.42
EleutherAI-125m 49.56  44.32 4 /- 5.76 56.88 4 /- 4.05 50.04 +/- 2.49
EleutherAlI-1.3b 57.11  50.76 +/- 3.26 69.93 +/- 4.77 56.89 4 /- 1.57
EleutherAlI-2.7b 58.03  51.52 +/- 2.43 61.59 +/- 4.10 58.61 +/- 1.39
EleutherAI-6b 58.39  49.62 +/- 1.69 63.04 +/- 5.02 59.91 +/- 5.04
EleutherAI-20b 61.14 51.52 +/- 243 61.59 +/- 12.78 63.48 +/- 5.29
Cohere-409m 53.30  50.38 /- 1.60  68.48 +/- 4.82  52.45 +/- 0.99
Cohere-6b 60.89  52.65 +/- 2.14 64.49 +/- 5.98 61.80 +/- 4.77
Cohere-13b 62.47 59.66 +/- 6.11  68.84 +/- 7.28  62.02 +/- 3.56
Cohere-52b 65.14 60.04 /- 4.07  68.12 +/- 7.39 65.46 +/- 3.30
GPT-3-350m 55.72  44.70 +/- 1.26  T4.28 +/- 6.07  55.47 +/- 1.59
GPT-3-1.3b 62.64  49.24 +/- 2.51 67.39 +/- 4.35 64.38 +/- 2.51
GPT-3-6.7b 62.39 51.70 +/- 2.25 64.86 +/- 7.68 64.38 +/- 2.30
GPT-3-175b 68.72  60.98 +/- 5.74 66.67 +/- 8.76 69.90 +/- 0.68
T0-3b 46.67  55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.15
T0-11b 47.00  55.87 +/- 0.42 25.00 +/- 1.66 48.62 +/- 0.23
BlenderBot-90m 46.58  55.11 +/- 1.27 24.28 +/- 0.81 48.28 +/- 0.31
BlenderBot-3b 53.36  44.32 +/- 0.00 76.09 +/- 0.00 51.72 4+/- 0.10
BlenderBot-9b 52.81  44.32 +/- 0.93 75.72 +/- 0.81 50.95 +/- 1.02
Flan-T5-780m 61.03 54.36 +/- 3.50 71.01 +/- 12.96 60.77 +/- 6.09
Flan-T5-3b 54.89  57.01 4+/- 1.79 41.30 +/- 9.64 55.47 +/- 4.00
Flan-T5-11b 61.64 56.25 +/- 3.20 64.86 +/- 17.04 61.76 +/- 5.21
Cohere-command-6b 68.56  60.23 /- 5.00  74.28 +/- 6.57  68.91 +/- 1.47
Cohere-command-52b 75.42  70.08 +/-3.39  T7.17 4+/-3.26  74.68 +/- 2.80
text-ada-001-unknown 57.61 48.86 +/-2.18 72.83 +/-1.66  57.11 /- 3.74
text-babbage-001-unknown  66.14  57.01 +/- 2.82 71.74 +/- 2.81 66.06 +/- 0.85
text-curie-001-unknown 71.33  60.04 +/- 0.78  69.93 +/- 5.67  74.63 +/- 0.98
text-davinci-001-unknown 74.53  60.80 +/- 3.75  81.16 +/- 3.69  75.80 +/- 1.32
text-davinci-002-unknown 79.56  71.02 +/-2.76  87.68 +/- 1.62  79.03 +/- 2.26
text-davinci-003-unknown 79.67 7159 +/-1.86  87.68 +/- 1.02  79.33 +/- 1.12
ChatGPT-unknown 73.89 69.51 +/-4.80 7391 +/-11.64 72.44 +/- 6.16
GPT-4-unknown 82.03 71.21 +/-2.091 87.32 +/- 3.64 82.30 +/- 2.31
Humans 86.23 83.18 92.17 84.86
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Table D.23: Accuracy per label for 10-shot evaluation.
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Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 52.89 55.80 4 /- 8.48 55.68 +/- 8.78 66.67 +/- 6.78
OPT-350m 56.72 57.97 +/- 4.10 60.61 +/- 3.86 65.15 +/- 16.11
OPT-1.3b 59.92 70.29 +/- 4.64 54.17 +/- 3.57 34.85 +/- 3.39
OPT-2.7b 58.03 5217 +/-2.51  65.53 +/- 2.76 63.64 +/- 5.25
OPT-6.7b 63.28 71.01 +/- 5.42 65.53 +/- 6.07 53.03 +/- 17.73
OPT-13b 65.75 77.54 +/- 6.84 63.26 +/- 4.23 50.00 +/- 10.16
OPT-30b 63.36 78.99 +/- 4.64 56.06 +/- 8.57 33.33 +/-4.29
OPT-66b 60.81 71.01 4/- 7.80 54.55 +/- 9.46 36.36 +/- 0.00
OPT-175b 6075  76.81 +/-4.10  58.33 +/- 6.52  43.94 +/- 11.03
BLOOM-560m 54.56 49.28 +/- 3.24 64.39 +/- 3.12 63.64 +/- 0.00
BLOOM-1b1 57.31 55.07 +/- 5.42 60.61 +/- 5.36 59.09 +/- 8.70
BLOOM-1b7 53.14 68.12 +/- 6.48 45.45 + /- 2.62 59.09 +/- 11.44
BLOOM-3b 59.39 54.35 4 /- 4.86 65.53 +/- 5.32 66.67 +/- 4.29
BLOOM-7b1 56.11 53.62 +/- 7.39 65.53 +/- 3.81 69.70 +/- 6.78
BLOOM-176b 63.47 75.36 +/- 5.98 68.18 +/- 9.00 42.42 +/- 4.29
EleutherAI-125m 54.39 58.70 +/- 6.02 52.27 +/- 5.41 83.33 +/- 19.93
EleutherAlI-1.3b 57.83 67.39 +/- 5.47 60.61 +/- 5.19 62.12 +/- 11.03
EleutherAL-2.7b 57.03  73.19 +/-2.99 5568 +/- 537  66.67 +/- 13.55
EleutherAI-6b 57.64 64.49 +/- 3.90 51.14 +/- 11.04 56.06 +/- 16.94
EleutherAI-20b 59.33 67.39 +/- 5.47 62.12 +/- 10.47 37.88 +/- 6.25
Cohere-409m 53.92 63.04 +/- 5.47 46.21 +/- 6.90 51.52 +/- 11.34
Cohere-6b 58.72 66.67 +/- 9.61 63.26 +/- 14.46 50.00 +/- 12.59
Cohere-13b 60.36 76.81 +/- 6.48 56.06 +/- 9.52 34.85 +/- 3.39
Cohere-52b 63.31 72.46 4/- 5.98 68.18 +/- 4.55 51.52 +/- 10.05
GPT-3-350m 57.72 53.62 +/- 3.24 63.64 +/- 6.01 65.15 +/- 8.16
GPT-3-1.3b 60.92 73.19 +/- 7.28 59.47 +/- 5.78 48.48 +/- 8.57
GPT-3-6.7b 63.94 71.01 4/- 7.80 67.80 +/- 1.56 40.91 +/- 8.70
GPT-3-175b 67.28 76.81 +/- 9.61 68.56 +/- 5.32 81.82 +/- 10.50
T0-3b 46.67 52.17 4/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
TO-11b 46.72 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 52.17 4+/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.36 42.03 +/- 4.10 62.12 +/- 3.12 63.64 +/- 0.00
Flan-T5-780m 60.19  63.04+/- 217  68.56 +/- 10.77  40.91 +/- 4.55
Flan-T5-3b 55.14 61.59 +/- 6.84 58.71 +/- 10.37 36.36 +/- 0.00
Flan-T5-11b 60.56 67.39 +/- 7.43 70.83 +/- 10.45 40.91 +/- 4.55
Cohere-command-6b 68.22 78.99 4/- 5.28 74.62 4 /- 5.32 36.36 +/- 0.00
Cohere-command-52b 75.64 88.41 +/- 3.24 84.85 +/- 2.51 66.67 +/- 8.57
text-ada-001-unknown 57.36 64.49 +/- 7.28 56.44 +/- 5.78 57.58 +/- 6.78
text-babbage-001-unknown  63.53 67.39 +/- 2.17 73.11 +/- 4.62 68.18 +/- 4.55
text-curie-001-unknown 70.17 83.33 +/- 1.62 76.14 +/- 2.86 45.45 +/- 5.25
text-davinci-001-unknown 74.97 89.13 +/- 2.17 83.33 +/- 2.83 59.09 +/- 6.94
text-davinci-002-unknown 79.56 93.48 +/- 2.17 88.26 +/- 0.85 66.67 +/- 8.57
text-davinci-003-unknown 79.00 94.93 +/- 3.90 85.61 +/- 3.39 66.67 +/- 4.29
ChatGPT-unknown 74.28 84.06 +/- 6.48 86.36 +/- 4.35 62.12 +/- 11.03
GPT-4-unknown 81.31 94.93 +/- 2.99 86.74 +/- 4.03 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73
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Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.24: Accuracy per label for 10-shot evaluation.

Model Mean  Particularised Generalised Other

OPT-125m 52.80 51.33 +/-4.52 5797 +/-15.30 51.68 +/- 1.58
OPT-350m 56.72 5511 +/- 1.57  72.10 +/- 2.32  54.39 +/- 1.50
OPT-1.3b 59.92  60.23 +/- 0.93 61.23 +/- 2.32 60.34 +/- 2.77
OPT-2.7b 58.03  49.62 +/- 3.32  T4.64 +/-2.05  57.19 +/- 3.77
OPT-6.7b 63.28 58.33 +/- 3.97 73.19 +/- 3.48 62.70 +/- 3.22
OPT-13b 65.75  60.23 +/- 2.45 72.10 4+/- 3.18 66.37 +/- 2.84
OPT-30b 63.36  62.31 /- 240  65.22 +/- 6.28  64.17 +/- 3.73
OPT-66b 60.81 57.58 +/- 1.26 60.51 +/- 7.98 62.36 +/- 3.33
OPT-175b 60.75  60.98 +/- 2.24 56.16 +/- 2.92 60.94 +/- 3.42
BLOOM-560m 54.56  46.21 +/- 1.26  73.19 +/- 2.99  53.06 +/- 0.77
BLOOM-1b1 57.31  47.54 +/- 4.97 64.13 +/- 7.40 58.31 +/- 3.30
BLOOM-1b7 53.14  53.03 +/- 3.45 53.62 +/- 4.64 52.80 +/- 1.74
BLOOM-3b 59.39 5549 +/- 2.22 69.57 +/- 5.89 58.35 +/- 0.41
BLOOM-7b1 56.11  49.62 +/- 5.07 71.38 +/- 2.92 54.35 +/- 3.34
BLOOM-176b 63.47  68.18 +/- 3.47 50.36 +/- 9.00 63.35 +/- 4.15
EleutherAI-125m 54.39  55.11 +/- 3.13 63.41 +/- 6.20 52.20 +/- 2.23
EleutherAlI-1.3b 57.83  50.00 +/- 2.78 69.20 +/- 2.32 57.15 4+/- 1.52
EleutherAL-2.7b 57.03  57.20 +/- 2.76  57.25 +/- 6.23  55.77 +/- 0.96
EleutherAlI-6b 57.64 56.25 +/- 2,76  59.42 +/- 10.25 58.05 +/- 4.71
EleutherAI-20b 59.33 57.39 +/-1.83 63.04 +/- 13.63  59.04 +/- 3.30
Cohere-409m 53.92  57.39 +/- 2.60 66.30 +/- 4.98 51.94 4/- 1.99
Cohere-6b 58.72  51.70 +/- 2.34 64.86 +/- 6.33 58.74 +/- 5.75
Cohere-13b 60.36  58.52 +/- 1.27 70.29 +/- 5.98 59.73 +/- 5.24
Cohere-52b 63.31  53.41 +/- 2.93 67.75 +/- 7.88 64.17 +/- 2.12
GPT-3-350m 57.72  50.95 +/- 2.89 73.91 +/- 1.26 56.59 +/- 1.79
GPT-3-1.3b 60.92 57.01 +/- 5.01 63.77 +/- 2.71 61.15 +/- 1.10
GPT-3-6.7b 63.94 58.52 +/- 4.19 66.67 +/- 5.28 64.56 +/- 1.31
GPT-3-175b 67.28 63.45 +/- 2.66 68.84 +/- 4.64 66.75 +/- 2.65
T0-3b 46.67  55.68 +/- 0.00  24.28 +/- 0.81  48.28 +/- 0.10
TO-11b 46.72  55.68 +/- 0.00  24.28 +/- 0.81  48.36 +/- 0.10
BlenderBot-90m 46.67  55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.25  44.70 +/- 0.54 76.09 +/- 0.00 51.46 +/- 0.23
BlenderBot-9b 53.36 4527 +/- 1.21 76.09 +/- 1.77 51.77 4+/- 0.69
Flan-T5-780m 60.19  54.17 +/- 2,51  71.38 +/- 10.75  59.60 +/- 4.49
Flan-T5-3b 55.14  54.92 +/- 1.42 4348 +/- 12.10 56.29 +/- 3.84
Flan-T5-11b 60.56  59.66 +/- 3.33  57.61 +/- 13.09 60.03 +/- 5.13
Cohere-command-6b 68.22  63.07 /- 4.44  T7.17 +/-6.73  67.79 +/- 2.45
Cohere-command-52b 75.64  70.27 +/- 1.53  76.45 /- 4.24  75.15 +/- 1.17
text-ada-001-unknown 57.36  49.24 +/- 3.32  61.96 +/- 5.14  58.23 +/- 1.53
text-babbage-001-unknown  63.53  56.63 +/- 2.22 65.22 +/- 5.47 63.35 +/- 1.49
text-curie-001-unknown 70.17  62.69 +/- 2.12  67.75 +/- 7.36  71.32 /- 1.01
text-davinci-001-unknown 74.97 63.83 +/-1.21  80.80 +/- 1.95  75.41 +/- 1.79
text-davinci-002-unknown 79.56  70.08 +/- 1.56  84.78 4+/- 2.51  79.59 +/- 2.79
text-davinci-003-unknown 79.00 68.18 +/-1.31 87.32 +/-1.49  79.07 +/- 1.38
ChatGPT-unknown 74.28  68.37 +/-4.37 75.36 +/- 11.06  73.90 +/- 4.82
GPT-4-unknown 81.31  70.83 +/- 420  86.96 +/- 2.81  81.31 +/- 3.82
Humans 86.23 83.18 92.17 84.86
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Table D.25: Accuracy per label for 15-shot evaluation.
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Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 51.86 44.93 +/- 4.10 53.41 +/- 8.48 43.94 +/- 19.93
OPT-350m 55.42  48.55 +/-2.99  48.48 +/- 2.51 42.42 +/- 6.78
OPT-1.3b 61.61 64.49 +/- 5.28 68.94 +/- 4.67 42.42 +/- 6.78
OPT-2.7b 50.53  55.80 +/-5.84  62.50 +/- 2.18 60.61 +/- 4.29
OPT-6.7b 64.72 55.80 +/- 7.28 68.18 +/- 3.47 60.61 +/- 16.32
OPT-13b 65.17 64.49 +/- 6.36 66.67 +/- 6.11 54.55 +/- 5.25
OPT-30b 64.06 68.84 +/- 4.64 60.23 +/- 5.98 43.94 +/- 8.16
OPT-66b 61.83 65.94 +/- 11.34 55.30 +/- 8.26 39.39 +/- 4.29
OPT-175b 64.78  76.09 +/- 11.16  67.05 +/- 9.44 50.00 +/- 6.94
BLOOM-560m 55.00 47.83 +/- 2.51 59.09 +/- 2.27 62.12 +/- 3.39
BLOOM-1b1 57.58  50.00 +/- 4.86  53.03 +/- 2.51 57.58 +/- 4.29
BLOOM-1b7 55.14 60.14 +/- 12.40 50.38 +/- 4.98 53.03 +/- 16.94
BLOOM-3b 58.60  44.93 +/-324  61.36 +/- 6.94 57.58 +/- 6.78
BLOOM-7b1 55.67 55.07 +/- 7.80 61.36 +/- 2.93 56.06 +/- 8.16
BLOOM-176b 61.89 77.54 +/- 9.86 70.08 4 /- 7.59 37.88 +/- 3.39
EleutherAI-125m 56.03 60.14 +/- 7.70 42.80 +/- 4.62 59.09 +/- 13.64
EleutherAlI-1.3b 57.44 49.28 +/- 2.05 51.52 +/- 6.11 39.39 +/- 15.45
EleutherAlI-2.7b 58.08 53.62 +/- 4.81 57.20 +/- 4.81 56.06 +/- 11.03
EleutherAI-6b 58.81 58.70 +/- 10.87 56.06 +/- 10.47 56.06 +/- 6.25
EleutherAI-20b 59.86 55.80 +/- 2.99 63.64 +/- 9.19 42.42 + /- 4.29
Cohere-409m 5519  50.00 +/- 416  50.76 +/- 4.85 42.42 +/- 6.78
Cohere-6b 60.44 65.94 +/- 9.19 67.05 +/- 9.88 50.00 +/- 17.99
Cohere-13b 62.83 67.39 +/- 13.92 64.77 4+ /- 5.53 43.94 +/- 9.70
Cohere-52b 64.72 63.04 +/- 6.52 69.32 +/- 7.28 63.64 +/- 13.89
GPT-3-350m 58.83  50.00 +/- 7.43 5341 +4/- 1.74  42.42 +/- 13.55
GPT-3-1.3b 62.86 53.62 +/- 7.39 65.91 +/- 3.71 50.00 +/- 14.61
GPT-3-6.7b 65.17 6232 +/- 6.95  63.64 +/-2.27  51.52 +/- 10.05
GPT-3-175b 68.31 78.26 +/- 5.02 66.67 +/- 4.48 56.06 +/- 11.03
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
TO-11b 46.81 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.56 52.17 4+/- 0.00 38.64 +/- 0.00 34.85 +/- 3.39
BlenderBot-3b 53.14 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.19 45.65 +/- 3.32 60.61 +/- 5.03 65.15 +/- 3.39
Flan-T5-780m 61.50  65.94 +/- 584  67.42 +/- 1071  42.42 +/- 4.29
Flan-T5-3b 55.08 66.67 +/- 10.55 60.23 +/- 11.64 36.36 +/- 0.00
Flan-T5-11b 60.83 65.94 +/- 7.28 68.56 +/- 8.65 45.45 + /- 7.42
Cohere-command-6b 70.03 80.43 +/- 3.32 78.41 +/- 2.18 45.45 +/- 10.50
Cohere-command-52b 75.39 89.13 +/- 2.17 83.33 +/- 1.69 72.73 +/- 5.25
text-ada-001-unknown 58.28 55.07 4/- 5.98 56.06 +/- 5.67 63.64 +/- 13.89
text-babbage-001-unknown  65.19 63.04 4/- 4.86 77.27 +/- 3.71 68.18 +/- 6.94
text-curie-001-unknown 69.92 79.71 +/- 2.05 73.11 +/- 1.56 45.45 4 /- 10.50
text-davinci-001-unknown 75.31 88.41 +/- 2.05 82.95 +/- 2.86 57.58 +/- 8.57
text-davinci-002-unknown 79.06 94.93 +/- 1.62 85.23 +/- 2.86 72.73 +/- 15.75
text-davinci-003-unknown 79.03 91.30 +/- 0.00 85.61 +/- 1.69 69.70 +/- 15.45
ChatGPT-unknown 75.56 86.23 +/- 4.64 86.74 +/- 4.03 60.61 +/- 10.05
GPT-4-unknown 82.08 95.65 +/- 2.51 81.44 +/- 2.43 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73




230

Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.26: Accuracy per label for 15-shot evaluation.

Model Mean  Particularised Generalised Other

OPT-125m 51.86 50.95 +/-4.32 55.80 +/- 20.34 51.94 +/- 0.84
OPT-350m 55.42  55.30 +/- 3.39 60.51 +/- 4.24 56.29 +/- 0.75
OPT-1.3b 61.61 57.39 +/- 5.90 63.77 +/- 6.60 61.76 +/- 3.50
OPT-2.7b 59.53  49.24 +/- 2.98 75.00 +/- 1.66 59.78 4 /- 5.03
OPT-6.7b 64.72  58.71 +/- 7.78 74.28 +/- 5.24 65.12 +/- 2.69
OPT-13b 65.17  64.02 +/- 2.34 65.22 +/- 7.32 65.50 +/- 1.25
OPT-30b 64.06  62.50 +/- 3.99 61.59 +/- 6.84 65.42 +/- 3.99
OPT-66b 61.83 58.71 +/- 7.21 57.61 +/- 5.14 64.25 +/- 3.20
OPT-175b 64.78  64.20 +/- 4.03  59.78 +/- 3.92  64.90 +/- 3.66
BLOOM-560m 55.00 44.13 4 /- 258  TA.64 +/- 4.64 5478 +/- 1.75
BLOOM-1b1 57.58 4545 +/- 1.74 64.13 +/- 5.58 60.42 +/- 2.34
BLOOM-1b7 55.14  52.27 +/- 5.21 57.61 4 /- 8.40 55.73 4+/- 0.84
BLOOM-3b 58.69  49.81 +/- 1.21 74.28 4/- 2.92 59.30 +/- 0.95
BLOOM-7b1 55.67  48.67 +/- 3.74 70.29 +/- 3.90 54.78 4 /- 3.23
BLOOM-176b 61.89 64.02 +/-4.43 46.38 +/- 11.20  62.02 +/- 4.53
EleutherAI-125m 56.03  56.82 +/- 3.47 54.35 +/- 5.89 57.11 4+/- 0.65
EleutherAl-1.3b 57.44 51.14 +/- 3.21 61.59 +/- 9.11 59.95 4 /- 2.44
EleutherAL-2.7b 58.08 5T.58 +/- 224  61.96 +/- 6.49  58.27 +/- 1.50
EleutherAlI-6b 58.81  54.17 +/- 6.07 66.67 +/- 8.48 59.35 +/- 4.11
EleutherAI-20b 59.86  55.11 +/- 3.98  62.68 +/- 11.87  60.85 +/- 4.53
Cohere-409m 55.19  52.65 +/- 1.69  61.23 +/- 8.08  56.12 +/- 2.19
Cohere-6b 60.44  49.62 +/- 2.60 71.01 +/- 6.48 60.85 +/- 4.38
Cohere-13b 62.83 5777 +/- 3.17  TLOL +/-5.98  63.00 +/- 2.62
Cohere-52b 64.72  57.39 +/- 2.69 71.01 4+/- 4.81 65.16 +/- 1.07
GPT-3-350m 58.83  55.68 +/- 2.54 65.22 +/- 8.96 60.29 +/- 1.99
GPT-3-1.3b 62.86  56.06 +/- 5.67 63.04 +/- 7.63 64.86 +/- 1.78
GPT-3-6.7b 65.17  58.33 +/- 4.62 73.55 +/- 7.88 66.37 +/- 2.47
GPT-3-175b 68.31  64.77 +/- 4.10 71.38 4 /- 6.33 68.60 +/- 3.97
T0-3b 46.67  55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
TO-11b 46.81  55.68 +/- 0.00  25.00 +/- 1.09  48.41 +/- 0.12
BlenderBot-90m 46.56  55.68 +/- 0.00 23.91 +/- 0.00 48.19 +/- 0.13
BlenderBot-3b 53.14  44.32 +/- 0.00 75.36 +/- 1.02 51.46 +/- 0.23
BlenderBot-9b 53.19  44.13 /- 1.79  75.72 +/- 149 51.72 +/- 0.74
Flan-T5-780m 61.50 56.63 +/-2.22 71.74 +/- 11.30  60.90 +/- 4.55
Flan-T5-3b 55.08 56.82 +/- 1.31  45.65 +/- 12.92  55.04 +/- 3.39
Flan-T5-11b 60.83 57.01 +/-3.37 60.14 +/- 15.81 61.02 +/- 5.34
Cohere-command-6b 70.03 60.80 +/-4.72  72.83 +/-8.30  70.84 +/- 1.68
Cohere-command-52b 75.39  69.89 +/-2.43  76.81 +/- 3.90  74.76 4+/- 1.01
text-ada-001-unknown 58.28 52.08 +/-3.74  69.20 +/- 3.42  58.57 +/- 2.04
text-babbage-001-unknown  65.19  58.33 +/- 2.43 67.03 +/- 3.42 65.12 +/- 2.40
text-curie-001-unknown 69.92  62.50 +/- 1.47  68.84 +/- 6.72  71.40 +/- 0.93
text-davinci-001-unknown 75.31 64.58 +/-2.12  83.70 +/- 1.66  75.54 +/- 0.95
text-davinci-002-unknown 79.06 7292 +/-1.02  86.96 +/- 3.97  77.99 +/- 2.77
text-davinci-003-unknown 79.03 69.32 +/-2.37 87.68 +/-1.62  78.94 +/- 1.12
ChatGPT-unknown 75.56  72.16 +/- 4.81 77.54 +/- 7.90 74.63 +/- 4.41
GPT-4-unknown 82.08 72.92 +/- 1.02 86.23 +/- 2.99 82.69 +/- 3.87
Humans 86.23 83.18 92.17 84.86
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Table D.27: Accuracy per label for 30-shot evaluation.

231

Model Mean  World knowledge Idiom Rhetorical question
OPT-125m 51.50 55.80 +/- 5.28 54.55 +/- 9.28 54.55 +/- 9.09
OPT-350m 54.61  49.28 +/-7.39  56.82 +/- 1.86 37.88 +/- 9.70
OPT-1.3b 61.67 71.01 +/- 3.24 67.80 +/- 5.48 28.79 +/- 11.03
OPT-2.7b 59.86 58.70 +/- 10.87 71.21 4/- 8.37 46.97 +/- 11.03
OPT-6.7b 63.61 62.32 +/- 11.13 67.05 +/- 2.86 46.97 +/- 19.93
OPT-13b 63.39 60.14 +/- 5.28 60.98 +/- 5.93 46.97 +/- 6.25
OPT-30b 65.47 71.74 +/- 8.23 62.88 +/- 7.38 37.88 +/-3.39
OPT-66b 60.83 60.14 +/- 3.90 51.52 +/- 11.79 43.94 +/- 6.25
OPT-175b 6244 6594 +/- 10.77  62.50 +/- 13.43  60.61 +/- 4.29
BLOOM-560m 55.00 47.10 +/- 1.62 60.98 +/- 2.43 62.12 +/- 3.39
BLOOM-1b1 56.80  49.28 +/- 324 54.92 +/- 8.65 46.97 +/- 8.16
BLOOM-1b7 52.28 52.90 +/- 7.28 47.35 +/- 9.32 36.36 +/- 16.60
BLOOM-3b 58.64  50.72 +/-2.05  62.50 +/- 5.68 59.09 +/- 6.94
BLOOM-7b1 57.61 50.72 +/- 5.98 61.74 +/- 3.81 54.55 4/- 9.09
BLOOM-176b 61.06 73.19 +/- 8.85 66.29 +/- 9.41 48.48 +/- 4.29
EleutherAI-125m 53.44 47.10 +/- 4.64 47.73 +/- 6.43 39.39 +/- 15.45
EleutherAlI-1.3b 55.97 44.93 +/- 4.81 51.89 +/- 6.74 37.88 +/- 6.25
EleutherAL-2.7b 57.36  62.32 +/- 5.98  53.41 +/-2.86  37.88 +/- 11.03
EleutherAI-6b 58.75 59.42 4 /- 12.21 52.27 +/- 14.43 36.36 +/- 5.25
EleutherAI-20b 57.36 57.97 4+/- 5.42 60.61 +/- 10.30 31.82 +/- 8.70
Cohere-409m 57.17 47.83 +/- 3.55 53.41 +/- 3.15 53.03 +/- 3.39
Cohere-6b 60.36 58.70 +/- 13.92 62.50 +/- 10.23 54.55 +/- 10.50
Cohere-13b 64.81 70.29 +/- 21.65 65.91 +/- 7.07 45.45 +/- 5.25
Cohere-52b 65.72 67.39 +/- 8.60 66.29 +/- 1.56 53.03 +/- 11.03
GPT-3-350m 60.25 55.07 +/- 2.05 57.95 +/- 5.83 51.52 +/- 10.05
GPT-3-1.3b 60.19 61.59 +/- 3.90 54.92 +/- 6.99 43.94 +/- 9.70
GPT-3-6.7b 62.86  56.52 +/- 4.35  65.53 +/- 3.32 50.00 +/- 6.94
GPT-3-175b 68.31 67.39 +/- 547 72.73 +/- 2.62 75.76 +/- 4.29
T0-3b 46.67 52.17 4/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
TO-11b 46.75 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 51.45 4+/- 1.62 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.72 46.38 +/- 4.10 63.26 +/- 3.32 63.64 +/- 0.00
Flan-T5-780m 61.50  67.39 +/- 860  70.83 +/- 6.35 42.42 +/- 4.29
Flan-T5-3b 56.11 65.22 +/- 7.10 62.50 +/- 13.04 36.36 +/- 0.00
Flan-T5-11b 62.11 67.39 +/- 10.27 72.73 +/- 10.66 51.52 +/- 15.45
Cohere-command-6b 70.44 81.16 +/- 3.24 78.03 +/- 2.83 46.97 +/- 8.16
Cohere-command-52b 75.00 85.51 +/- 2.05 78.41 +/- 1.14 78.79 +/- 6.78
text-ada-001-unknown 55.58 50.72 +/- 7.39 57.58 +/- 4.29 57.58 +/- 8.57
text-babbage-001-unknown  66.00 67.39 +/- 5.47 71.59 +/- 3.15 63.64 +/- 5.25
text-curie-001-unknown 70.33 75.36 +/- 3.24 76.52 +/- 5.03 60.61 +/- 8.57
text-davinci-001-unknown 75.83 85.51 +/- 2.05 84.09 +/- 1.86 65.15 +/- 8.16
text-davinci-002-unknown 80.64 97.83 +/- 2.17 87.50 +/- 2.18 83.33 +/- 3.39
text-davinci-003-unknown 79.53 94.93 +/- 1.62 84.85 +/- 3.39 81.82 +/- 9.09
ChatGPT-unknown 75.64 87.68 +/- 4.64 89.02 +/- 4.43 83.33 +/- 9.70
GPT-4-unknown 82.17 95.65 +/- 3.55 87.12 4+ /- 3.12 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73
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Table D.28: Accuracy per label for 30-shot evaluation.

Model Mean  Particularised Generalised Other

OPT-125m 51.50 50.38 +/-4.29 5217 +/- 23.95 50.99 +/- 2.42
OPT-350m 54.61 55.30 +/- 1.26 49.28 +/- 3.48 55.51 4+/- 1.92
OPT-1.3b 61.67 56.25 +/- 2.76 56.16 +/- 4.05 63.14 +/- 5.41
OPT-2.7b 59.86  50.19 +/- 2.89 69.57 +/- 4.16 59.95 4 /- 5.23
OPT-6.7b 63.61  58.90 +/- 6.48 72.10 4/- 8.08 63.74 +/- 4.30
OPT-13b 63.39 5947 +/- 2.14 64.86 +/- 6.07 65.07 +/- 2.24
OPT-30b 65.47  63.64 +/- 3.01 63.04 +/- 7.94 66.93 +/- 5.52
OPT-66b 60.83  63.07 +/- 3.64 55.43 +/- 9.29 62.62 +/- 4.98
OPT-175b 6244  64.39 +/-2.34  51.09 +/- 572 63.18 +/- 2.85
BLOOM-560m 55.00 A47.92 +/-2.31  TL.OL +/- 6.23  54.18 +/- 1.82
BLOOM-1b1 56.89  49.81 +/- 4.93 56.88 +/- 8.46 59.35 +/- 3.16
BLOOM-1b7 52.28 55.49 +/- 1.79 40.94 +/- 8.82 53.83 4+/- 1.25
BLOOM-3b 58.64 52.46 +/- 1.53 68.84 +/- 3.69 58.74 /- 1.44
BLOOM-7b1 57.61  54.36 +/- 8.98 70.29 +/- 2.05 56.76 +/- 4.88
BLOOM-176b 61.06 67.42 +/-1.93  50.00 +/- 9.05  60.08 +/- 4.01
EleutherAl-125m 53.44 5947 +/- 243  46.74 +/- 4.65  54.18 +/- 1.21
EleutherAlI-1.3b 55.97 51.70 +/- 5.20 56.52 +/- 10.80  58.40 +/- 1.35
EleutherAI-2.7b 57.36  57.39 +/- 2.25  51.81 +/- 3.18  58.79 +/- 0.89
EleutherAlI-6b 58.75  BT.77 +/- 4.22 58.33 +/- 9.92 60.38 +/- 4.52
EleutherAI-20b 57.36  51.52 +/- 4.08 59.42 +/- 14.51 58.79 +/- 2.39
Cohere-409m 57.17 51.14 +/- 3.99 64.49 +/- 8.57 58.66 +/- 2.15
Cohere-6b 60.36  51.52 +/- 2.51 70.29 +/- 6.11 61.20 +/- 5.15
Cohere-13b 64.81 58.14 +/- 2.96 68.12 +/- 8.20 65.98 +/- 3.57
Cohere-52b 65.72  64.96 +/- 4.17 69.93 +/- 2.32 65.50 +/- 2.01
GPT-3-350m 60.25 57.58 +/- 2.51 65.22 +/- 6.28 60.98 +/- 1.63
GPT-3-1.3b 60.19  57.77 +/- 5.66 57.61 +/- 9.12 62.06 +/- 4.02
GPT-3-6.7b 62.86 61.17 +/- 6.41 63.41 +/- 7.98 63.65 +/- 2.52
GPT-3-175b 68.31  64.58 +/- 5.06 70.29 +/- 6.23 68.17 +/- 2.01
T0-3b 46.67  55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
TO0-11b 46.75  55.87 +/- 0.42 23.91 +/- 0.00 48.41 +/- 0.12
BlenderBot-90m 46.67  55.68 +/- 0.00 23.55 +/- 0.81 48.41 +/- 0.24
BlenderBot-3b 53.25  44.32 +/- 0.00 76.09 +/- 0.00 51.55 4+/- 0.20
BlenderBot-9b 53.72  45.08 +/- 1.82 75.36 +/- 1.02 52.11 4+/- 0.93
Flan-T5-780m 61.50 57.01 +/- 3.85  73.19 +/- 8.67  60.16 +/- 3.75
Flan-T5-3b 56.11 56.44 +/- 1.56  47.83 +/- 11.71  56.29 +/- 4.18
Flan-T5-11b 62.11 61.36 +/- 4.50 57.25 +/- 16.68 61.58 +/- 6.25
Cohere-command-6b 70.44  64.96 +/- 1.21 78.62 4 /- 5.53 69.81 +/- 1.60
Cohere-command-52b 75.00 71.78 +/-1.66  75.00 +/- 3.49  74.55 +/- 0.49
text-ada-001-unknown 55.58 5341 +/- 1.97 56.52 +/- 4.35  55.86 +/- 3.03
text-babbage-001-unknown  66.00  60.80 +/- 2.69 62.32 +/- 6.11 66.88 +/- 2.36
text-curie-001-unknown 70.33  60.42 +/- 5.01  74.28 +/- 6.20  71.32 +/- 1.42
text-davinci-001-unknown 75.83 67.05 +/- 1.97  83.33 +/- 3.48  75.67 +/- 1.02
text-davinci-002-unknown 80.64 74.43 +/-1.83 83.70 +/-2.74  79.76 +/- 1.44
text-davinci-003-unknown 79.53 7292 +/-249  86.59 +/- 1.95  78.55 +/- 1.20
ChatGPT-unknown 75.64  67.99 +/- 2.74 78.26 +/- 6.15 74.55 +/- 3.90
GPT-4-unknown 82.17  71.97 +/- 2.83 86.23 +/- 3.48 82.34 +/- 2.67
Humans 86.23 83.18 92.17 84.86
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Table D.29: Accuracy per label for model group Example IT for 5-shot chain-of-
thought evaluation.

Model Mean  World knowledge Idiom Rhetorical question
Cohere-command-6b 69.14 72.46 4/- 5.98 78.03 +/- 3.12 62.12 +/- 8.16
Cohere-command-52b 75.28 78.99 +/- 1.62 84.47 +/- 3.57 51.52 4/- 8.57
text-ada-001-unknown 15.33 11.59 +/- 8.20 17.42 +/- 9.43 10.61 +/- 9.70
text-babbage-001-unknown  47.67 47.83 +/- 11.50 55.30 +/- 16.21 42.42 +/- 8.57
text-curie-001-unknown 68.22 69.57 +/- 6.64 79.17 +/- 0.85 69.70 +/- 10.05
text-davinci-001-unknown 67.25 69.57 +/- 7.10 71.59 +/- 3.65 60.61 +/- 11.34
text-davinci-002-unknown 80.06 92.03 +/- 1.62 88.26 +/- 3.57 46.97 +/- 24.29
text-davinci-003-unknown 83.61 93.48 +/- 2.17 93.18 +/- 0.00 69.70 +/- 10.05
ChatGPT-unknown 77.19 89.86 +/- 4.10 87.88 +/- 3.63 65.15 +/- 9.70
GPT-4-unknown 86.47  93.48 +/-3.32  93.18 +/- 2.93 87.88 +/- 4.29
Humans 86.23 93.04 92.73 92.73

Table D.30: Accuracy per label for model group Example IT for 5-shot chain-of-
thought evaluation.

Model Mean Particularised Generalised Other

Cohere-command-6b 69.14  58.33 +/- 1.93 81.52 +/- 2.08 69.04 +/- 2.04
Cohere-command-52b 75.28 68.94 +/- 3.19 77.17 4+/- 2.08 75.88 +/- 0.53
text-ada-001-unknown 15.33  15.53 +/- 7.73 14.86 +/- 9.26 15.50 +/- 8.33
text-babbage-001-unknown  47.67  45.27 +/- 11.94  40.94 +/- 19.34  48.19 +/- 14.11
text-curie-001-unknown 68.22  59.47 +/- 5.15 74.28 +/- 7.88 68.04 +/- 1.75
text-davinci-001-unknown 67.25  64.58 +/- 3.85 64.13 +/- 5.14 67.92 +/- 3.30
text-davinci-002-unknown 80.06  75.95 +/- 3.68 80.07 +/- 6.69 80.23 +/- 1.07
text-davinci-003-unknown 83.61  77.46 +/- 1.02 87.32 /- 3.18 83.25 +/- 0.96
ChatGPT-unknown 7719 72.35 +/- 1.56 80.43 +/- 5.47 76.23 +/- 1.11
GPT-4-unknown 86.47 81.63 +/- 2.58 88.77 +/- 4.05 86.05 +/- 1.17
Humans 86.23 83.18 92.17 84.86

Table D.31: Accuracy per prompt template for BERT-cased.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 47.3 48.8 50.5 49.8 46.7 46.7
2 46.8 50.3 45.5 50.2 46.7 46.5
3 57.3 51.5 50.0 50.0 47.0 46.7
4 48.8 51.0 49.5 48.5 46.8 46.7
5 46.7 50.3 44.5 47.7 46.7 46.7
6 46.7 50.3 45.8 47.8 46.8 46.7
Mean 48.9 50.4 47.6 49.0 46.8 46.7
— std 3.81 0.832 2.42 1.04 0.107  0.0745
Structured  51.1 50.4 50.0 49.4 46.8 46.7
— std 4.4 1.17 0.408 0.665  0.125 7.1le-15
Natural 46.7 50.3 45.3 48.6 46.7 46.6
— std 0.0471 7.11e-15 0.556 1.16  0.0471  0.0943
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Table D.32: Accuracy per prompt template for BERT-uncased.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 57.0 53.2 51.8 55.2 51.7 49.3
53.7 50.3 54.0 48.7 49.0 49.3
54.7 54.7 57.3 55.5 53.3 52.8
56.7 51.5 52.3 54.0 50.3 49.5
53.2 50.2 50.2 48.3 48.2 47.2
6 53.3 50.3 54.2 49.2 53.0 53.5
Mean 54.8 51.7 53.3 51.8 50.9 50.3

— std 1.55 1.71 2.24 3.13 1.92 2.19
Structured  56.1 53.1 53.8 54.9 51.8 50.5
—std 1.02 1.31 248  0.648 1.23 1.6
Natural 53.4 50.3 52.8 48.7 50.1 50.0
— std 0.216 0.0471 1.84 0.368 2.1 2.62

U= W N

Table D.33: Accuracy per prompt template for RoBERTa-base.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 54.0 95.8 58.0 58.7 28.3 57.8
96.5 50.5 52.0 25.8 56.0 54.2
53.0 56.8 56.8 61.3 59.5 58.8
95.2 56.0 98.7 29.8 96.8 57.2
55.7 50.3 52.3 54.8 95.95 53.0
6 59.2 50.3 54.2 25.8 55.7 95.3
Mean 25.6 53.3 55.3 7.7 57.0 56.1

- std 1.97 2.93 2.65 2.38 1.47 2.05
Structured  54.1 56.2 97.8 99.9 08.2 57.9
- std 0.899 0432 0.785  1.07 1.1 0.66
Natural 57.1 50.4 592.8 25.95 55.7 54.2
- std 1.5 0.0943 0974 0471  0.205  0.939

U= W N
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Table D.34: Accuracy per prompt template for RoBERTa-large.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 D77 50.2  62.0 64.7 64.7 60.5

2 46.7 53.3  38.5 64.2 61.2 35.7

3 60.8 54.8  64.5 62.8 61.8 99.5

4 66.2 50.3  64.0 99.0 57.0 28.2

) 46.7 593.3  38.8 63.5 60.5 26.5

6 46.7 95.5  39.3 60.0 60.8 52.3
Mean 54.1 52.9  61.2 62.4 61.0 o7.1

— std 7.84 2.03 245 2.13 2.26 2.7
Structured 61.6 51.8  63.5 62.2 61.2 09.4
- std 3.51 2.15  1.08 2.37 3.18 0.942

Natural 46.7 54.0 389 62.6 60.8 24.8
- std 7.11e-15  1.04  0.33 1.84 0.287 1.82

Table D.35: Accuracy per prompt template for GPT-2-medium.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 53.2  53.7  54.0 53.8 53.8 55.0

2 52.8  53.7  55.8 57.2 60.3 597.2
3 53.7  54.0 525 56.5 55.8 55.3
4 53.5  55.7 533 95.8 95.5 54.3
5 59.2 543  56.7 S7.7 60.7 58.8
6 8.3  54.8  HA.T 57.7 61.7 57.8
Mean 55.1 544 547 56.4 58.0 56.4
- std 26 0.706 1.5 1.36 3.03 1.63

Structured  53.5 54.5 53.3 55.4 55.0 54.9
— std 0.205 0.881 0.613 1.14 0.881 0.419
Natural 56.8 54.3 56.1 57.5 60.9 57.9
— std 2.83  0.45 0.45 0.236 0.589 0.66
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Table D.36: Accuracy per prompt template for GPT-2-large.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.3 53.3 54.5 53.5 55.3 56.2
47.5 56.7  57.5 57.8 60.8 61.0
55.0 53.8 55.7 54.0 54.8 56.0
54.0 53.7  56.2 53.5 54.8 56.7
47.2 54.5 56.7 58.8 61.2 60.8
6 47.0 53.3 57.2 59.5 60.3 60.8
Mean 50.7  54.2 56.3 56.2 57.9 58.6
— std 3.47 1.18 1.0 2.57 2.92 2.29
Structured 54.1 53.6 55.5 53.7 55.0 56.3
— std 0.698 0.216 0.713 0.236 0.236  0.294
Natural 47.2 54.8 57.1 58.7 60.8 60.9
— std 0.205 1.41 0.33 0.698 0.368  0.0943

Ol = W N

Table D.37: Accuracy per prompt template for GPT-2-xI.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.2 53.3 57.0 54.5 54.7 56.2
48.7  61.3 57.3 63.7 62.0 60.5
55.0 55.2 59.5 59.0 58.0 60.7
54.2 54.3 56.0 54.5 54.3 56.3
48.0 59.7  58.3 60.8 62.7 61.7
6 48.5 60.8 58.0 61.8 61.5 61.5
Mean 51.3 574  57.7 59.1 58.9 59.5
— std 2.92 3.25 1.1 3.5 3.43 2.32
Structured 54.1 54.3 57.5 56.0 55.7 57.7
— std 0.736 0.776  1.47 2.12 1.66 2.1
Natural 48.4  60.6 57.9 62.1 62.1 61.2
— std 0.294 0.668 0.419 1.2 0.492 0.525

Ol =~ W N
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Table D.38: Accuracy per prompt template for Eleuther AI-125M.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 23.3  33.7 92.7 96.2 56.2 54.0
52.2  50.0 47.5 593.5 35.7 23.3
53.3  53.8 51.2 55.8 04.8 52.8
53.7 525 01.2 93.8 25.8 93.2
50.7  50.2 47.3 93.8 26.2 23.8
6 48.2 498 47.5 593.2 27.5 23.5
Mean 51.9  HL.7 49.6 54.4 56.0 53.4

- std 1.93 1.72 2.19 1.17 0.806  0.394
Structured 53.4  53.3 51.7 95.3 25.6 93.3
- std 0.189 0.591 0.707 1.05 0.589  0.499
Natural 20.4  50.0 47.4 593.5 26.5 23.5
— std 1.65 0.163 0.0943 0.245 0.759  0.205

O~ W N

Table D.39: Accuracy per prompt template for EleutherAlI-1.3B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 54.3 53.7  54.8 57.5 57.2 56.2
51.8 56.8 57.5 59.0 55.8 54.7
58.0 55.5 59.5 58.0 61.5 57.5
53.2 57.5 56.8 55.2 56.5 54.7
49.7  55.2 57.5 58.7 57.2 56.7
6 51.8 55.7  56.5 58.7 56.5 56.2
Mean 53.1 55.7  57.1 57.8 57.4 56.0

— std 2.59 1.21 1.4 1.29 1.87 1.02
Structured  55.2 55.6 57.0 56.9 58.4 56.1
— std 2.05 1.55 1.93 1.22 2.21 1.14
Natural 51.1 55.9 57.2 58.8 56.5 55.9
— std 0.99 0.668 0471 0.141 0.572 0.85

Ol = W N

Table D.40: Accuracy per prompt template for EleutherAI-2.7B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 54.0 52.8 58.2 57.8 59.5 56.7
62.0 56.2 57.7 55.8 57.8 57.7
58.7  60.0 58.8 59.2 57.8 57.8
56.5 54.2 57.5 56.2 57.5 55.5
62.7 54.7 587 55.7 57.3 57.8
6 61.2 55.2 57.3 57.5 58.5 58.7
Mean 59.2 55.5 58.0 57.0 58.1 57.4

— std 3.13 2.25 0.576 1.26 0.741 1.02
Structured  56.4 55.7 58.2 57.7 58.3 56.7
— std 1.92 3.12  0.531 1.23 0.881 0.939
Natural 62.0 55.4  57.9 56.3 57.9 58.1
— std 0.613 0.624 0.589 0.826 0.492 0.45

U = W N
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Table D.41: Accuracy per prompt template for Eleuther AI-6B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 57.5  H8.8 52T 53.0 52.5 51.3
57.7  H1.8  63.2 62.7 64.3 65.3
56.2 582  57.2 53.0 o4.7 54.5
52.8 555  53.3 52.2 54.0 53.8
56.8  H2.7T  62.7 63.2 65.2 64.2
6 57.2  52.8 61.3 61.8 62.2 63.3
Mean 56.4  55.0 584 57.6 58.8 58.7
— std 1.67 275  4.28 4.94 5.2 5.65
Structured 55.5  57.5 544 52.7 53.7 53.2
— std 198 144 199 0377  0.918 1.37
Natural 57.2 524 624 62.6 63.9 64.3
— std 0.368 0.45 0.804 0.579 1.26 0.818

Ot > W N

Table D.42: Accuracy per prompt template for Eleuther AI-20B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 53.0 58.0 55.3 54.3 52.8 54.3
61.3 54.2 65.8 63.3 65.0 60.3
54.3 58.3 58.5 56.7 55.3 52.0
56.2 58.2 55.3 57.2 57.0 58.7
59.0 53.0 66.7 62.8 65.0 59.2
6 61.3 53.5 65.2 61.7 64.0 59.7
Mean 57.5 55.9 61.1 59.3 59.9 57.4
— std 3.25 2.33 4.9 3.42 4.98 3.09
Structured 54.5 5&.2 56.4 56.1 55.0 55.0
— std 1.31 0.125 1.51 1.27 1.72 2.78
Natural 60.5 53.6 65.9 62.6 64.7 59.7
— std 1.08 0.492 0.616 0.668 0.471 0.45

Ol = W N

Table D.43: Accuracy per prompt template for BLOOM-560M.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 04.3 54.2 535 23.8 53.8 53.5

2 46.7 56.3  54.0 54.8 96.0 55.3

3 28.8 3.3  53.8 23.3 24.5 54.0

4 26.3 24.8 335 24.8 52.7 56.7

) 46.7 24.3  33.7 25.3 56.3 95.5

6 46.7 56.0  54.0 55.2 56.7 55.0
Mean 01.6 04.8  53.8 54.5 95.0 55.0

— std 2.05 1.04 0.206 0.734 1.45 1.04
Structured 26.5 24.1  33.6 54.0 53.7 54.7
- std 1.84 0.616 0.141 0.624  0.741 1.41

Natural 46.7 25.5 539 95.1 56.3 55.3
- std 7.11e-15 0.881 0.141 0.216  0.287  0.205
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Table D.44: Accuracy per prompt template for BLOOM-1B1.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 3.3 335  56.2 04.2 55.2 54.5
49.0 51.5  58.2 29.8 28.8 60.8
7.2 542 538 54.0 95.5 50.8
53.3  54.0 542 93.3 55.7 55.8
473  51.2 598 61.3 60.2 60.0
6 46.8  51.0  60.2 61.2 60.2 59.3
Mean 51.2 52,6 574 27.3 27.6 56.9

- std 3.75  1.36 218 3.51 2.19 3.53
Structured 54.6  53.9 554 23.8 95.5 93.7
- std 1.84 0.294 0.864 0.386  0.205 2.12
Natural 477 512 594 60.8 59.7 60.0
- std 0.942 0.205 0.864 0.685 0.66 0.613

QU = W N

Table D.45: Accuracy per prompt template for BLOOM-1B7.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.5 54.7  53.8 54.0 55.7 56.5
57.7 522 56.3 55.5 55.8 52.0
54.7  53.2 53.8 51.0 54.5 54.0
54.5 53.8 54.5 51.2 55.5 50.3
50.0 51.2 54.3 53.2 54.7 50.0
6 51.3 51.8 53.8 54.0 54.7 50.8
Mean 53.6 52.8 54.4 53.1 55.1 52.3

— std 2.49 1.2 0.886 1.6 0.528 2.31
Structured 54.2 53.9 54.0 52.1 55.2 53.6
— std 0.525 0.616 0.33 1.37 0.525 2.55
Natural 53.0 51.7  54.8 54.2 55.1 50.9
— std 3.37 0411 1.08 0.953 0.519 0.822

Ol = W N

Table D.46: Accuracy per prompt template for BLOOM-3B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.0 54.0 56.8 59.5 60.0 58.2

2 62.5 58.0  58.2 59.7 57.5 60.0
3 53.5  54.0 572 58.7 59.2 58.2
4 4.8 553  Hd.7 29.0 28.2 55.8
> 8.5  57.5  58.0 29.7 58.8 60.2
6 59.0  56.8  57.3 59.8 58.5 59.5
Mean 56.9 559  57.2 59.4 58.7 58.6
— std 3.4 1.6 0.823 0.408  0.783 1.5

Structured  53.8 54.4 56.6 59.1 59.1 57.4
— std 0.759 0.613 0.634  0.33 0.736 1.13
Natural 60.0 57.4 578 59.7 58.3 59.9
— std 1.78 0.492 0.386 0.0471 0.556  0.294
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Table D.47: Accuracy per prompt template for BLOOM-7B1.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 53.2 55.2 55.2 52.0 53.0 52.7
61.2 59.0 53.7 58.3 58.8 61.7
8.7  53.3 53.0 53.3 53.0 52.8
53.5 53.5 55.2 52.8 54.3 53.5
62.0 61.0 55.3 60.3 58.5 62.5
6 63.5 60.0 54.7 59.8 56.3 62.5
Mean 58.7  57.0 54.5 56.1 55.7 57.6
— std 4.03 3.11  0.871 3.46 2.39 4.63
Structured 55.1 54.0 54.5 52.7 53.4 53.0
— std 2.52 0852 1.04 0.535 0.613  0.356
Natural 62.2 60.0 54.6 59.5 57.9 62.2
— std 0.953 0.816 0.66 0.85 1.11 0.377

Ol = W N

Table D.48: Accuracy per prompt template for BLOOM-176B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.8  58.8 585 57.7 55.7 56.7
55.8  60.8  68.0 65.7 64.2 62.7
53.5  66.7  69.3 71.8 71.7 69.8
54.3  59.8 64.8 62.2 60.7 61.3
52.3  61.3  66.2 61.8 58.8 57.5
6 55.5  59.2  65.7 61.7 60.3 58.3
Mean 54.2 61.1 65.4 63.5 61.9 61.1

— std 1.19 2.65 3.43 4.38 5.06 4.44
Structured  53.9 61.8 64.2 63.9 62.7 62.6
— std 0.33 3.51  4.43 5.88 6.68 5.43
Natural 54.5  60.4  66.6 63.1 61.1 59.5
— std 1.58 0.896 0.988 1.86 2.28 2.29

O = W N
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Table D.49: Accuracy per prompt template for OPT-125M.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 53.3 55.2  54.0 55.2 54.2 55.0
49.5 50.5  47.5 52.7 50.5 48.2
53.5 55.5  H3.0 55.0 53.7 56.0
53.3 54.5  H4.2 53.8 54.3 53.8
48.5 50.5  46.3 50.7 49.5 48.0
6 47.3 50.2  46.3 50.0 49.0 48.0
Mean 50.9 52.7  50.2 52.9 51.9 51.5
— std 2.55 2.35  3.56 1.99 2.25 3.49
Structured  53.4 55.1 53.7 o4.7 54.1 54.9
— std 0.0943 0.419 0.525 0.618  0.262  0.899
Natural 48.4 50.4  46.7 51.1 49.7 48.1

— std 0.899 0.141 0.566  1.14 0.624  0.0943

O~ W N

Table D.50: Accuracy per prompt template for OPT-350M.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.3 53.8 51.5 56.5 54.2 54.7

2 60.5 50.3 50.8 56.5 55.2 54.0

3 53.3 56.3 52.8 58.7 55.0 56.2

4 53.7 56.3 52.0 55.2 55.2 56.3

5 62.3 50.3 50.8 57.0 56.5 53.5

6 59.7 50.3 50.8 56.5 56.5 53.0
Mean 57.1 52.9 51.4 56.7 55.4 54.6
— std 3.78 2.71 0.752 1.04 0.826 1.26
Structured 53.4 55.5 52.1 56.8 54.8 55.7
— std 0.189 1.18 0.535 1.44 0.432 0.732
Natural 60.8 50.3 50.8 56.7 56.1 53.5

- std 1.09 7.11le-15 7.11le-15 0.236  0.613  0.408

Table D.51: Accuracy per prompt template for OPT-1.3B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 57.8  56.2 555 60.2 59.8 62.7
62.2 57.0 61.2 61.8 64.8 67.2
60.8 59.5  57.2 59.7 60.3 58.2
54.8  55.8  59.2 56.5 57.0 54.7
62.5 56.2  59.3 61.7 65.0 64.5
6 64.0 53.2 558 59.7 62.7 62.8
Mean 60.4  56.3  58.0 59.9 61.6 61.7
— std 3.13 1.85 2.05 1.76 2.86 4.11
Structured 57.8  57.2  57.3 58.8 59.0 58.5
— std 2.45 1.66 1.51 1.64 1.45 3.27
Natural 62.9 555  58.8 61.1 64.2 64.8
— std 0.787 1.64 2.24 0.967 1.04 1.81

U = W N
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Table D.52: Accuracy per prompt template for OPT-2.7B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 54.7  53.0  53.2 53.8 54.3 53.7
64.0 60.3  60.2 60.3 61.3 64.5
55.8  H3.3 552 55.8 57.0 56.5
54.5  H3.3 548 55.5 56.8 57.0
64.8  60.7  60.7 62.2 64.3 64.3
6 63.5 60.3  60.0 60.5 63.3 63.2
Mean 59.6  56.8 574 58.0 59.5 59.9
— std 458  3.62  3.02 3.11 3.68 4.28
Structured  55.0 53.2 544 55.0 56.0 55.7
— std 0.572 0.141 0.864 0.881 1.23 1.45
Natural 64.1 604  60.3 61.0 63.0 64.0
— std 0.535 0.189 0.294 0.852 1.25 0.572

Ot > W N

Table D.53: Accuracy per prompt template for OPT-6.7B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 55.7  54.3 60.8 61.2 61.2 58.5
64.2 68.0 66.8 65.7 66.3 66.3
54.2 53.5 59.5 61.2 63.3 60.5
58.8 56.3 61.8 62.2 63.5 63.2
64.2 65.2 66.0 65.2 67.7 67.5
6 65.0 63.2 64.8 64.3 66.3 65.7
Mean 60.4  60.1 63.3 63.3 64.7 63.6
— std 4.34 5.62 2.73 1.84 2.23 3.23
Structured 56.2 54.7 60.7 61.5 62.7 60.7
— std 1.92 1.18 0.942 0471 1.04 1.93
Natural 64.5 65.5 65.9 65.1 66.8 66.5
— std 0.377 1.97 0.822 0.579 0.66 0.748

Ol = W N

Table D.54: Accuracy per prompt template for OPT-13B.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 54.7  64.0  69.8 68.2 67.8 62.2
68.2 57.8  69.5 68.0 66.8 63.7
54.3  62.2  65.2 63.2 64.3 66.3
58.3 63.3  64.3 63.7 63.5 64.0
66.0 585  67.2 65.3 63.7 62.7
6 64.7 57.5  68.3 66.2 64.8 61.5
Mean 61.0 60.6 674 65.8 65.1 63.4
— std 5.51 2.68 2.06 1.92 1.6 1.55
Structured  55.8 63.2 66.4 65.0 65.2 64.2
— std 1.8 0.741 241 2.25 1.87 1.68
Natural 66.3 57.9  68.3 66.5 65.1 62.6
— std 1.44 0.419 0.939 1.12 1.28 0.899

O = W N
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Table D.55: Accuracy per prompt template for OPT-30B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 62.2 62.7  66.0 65.2 65.5 65.0
62.0 58.7  69.0 65.7 66.3 69.0
60.3 63.5 62.7 60.8 60.5 61.5
65.0 66.8 57.8 57.2 57.2 56.2
60.3  55.8 70.0 66.0 67.2 71.0
6 59.0 54.5  68.3 65.3 67.7 70.2
Mean 61.5 60.3  65.6 63.4 64.1 65.5

— std 1.92 437 4.24 3.27 3.87 5.28
Structured 62.5 64.3 62.2 61.1 61.1 60.9
— std 1.93 1.77  3.37 3.27 3.41 3.62
Natural 60.4 56.3 69.1 65.7 67.1 70.1
— std 1.23 1.76  0.698 0.287  0.579  0.822

QU = W N

Table D.56: Accuracy per prompt template for OPT-66B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 59.3  56.2  56.7 96.5 55.7 54.3
66.5 673  65.3 64.2 67.2 65.2
6.5 643 555 95.0 56.2 52.2
62.0 61.5 66.5 63.0 61.7 63.7
62.5 66.0 64.8 63.7 65.7 65.0
6 61.2  63.8 60.2 62.5 64.7 64.7
Mean 61.3 632 615 60.8 61.9 60.8
- std 3.06  3.61 4.3 3.65 4.5 5.43
Structured  59.3  60.7  59.6 28.2 27.9 56.7
- std 225 336 493 3.47 2.72 5.0
Natural 63.4  65.7 634 63.5 65.9 65.0
- std 226 144 2.3 0.713 1.03 0.205

Tt W N
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Table D.57: Accuracy per prompt template for OPT-175B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 56.7  58.0  64.8 61.0 65.0 62.3
52.7 533  67.3 63.2 68.0 65.8
54.5  68.5  60.0 55.3 57.8 56.7
64.0 66.7 615 58.0 62.0 58.7
52.0  52.0  65.0 63.8 67.8 65.2
6 52.2  51.7  64.7 63.2 68.0 66.0
Mean 55.3  58.4  63.9 60.8 64.8 62.4

— std 419 6.87 2.42 3.13 3.79 3.62
Structured 584  64.4 @ 62.1 58.1 61.6 59.2
— std 4.06  4.58 2.0 2.33 2.95 2.32
Natural 52.3 52.3 65.7 63.4 67.9 65.7
— std 0.294 0.694 1.16 0.283 0.0943 0.34

Ot = W N

Table D.58: Accuracy per prompt template for Cohere-409.3M (Cohere-small).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 54.2  49.7 527 51.7 53.5 56.0
47.5 50.7  52.7 53.2 55.8 57.8
57.2 55.5 55.2 55.5 55.7 57.0
54.8 53.8 54.5 56.8 54.8 54.5
48.5 50.7  52.8 52.7 56.0 58.8
6 47.5 51.0 52.5 53.7 55.3 58.8
Mean 51.6 51.9 53.4 53.9 55.2 57.2

— std 3.91 2.05 1.05 1.72 0.847 1.54
Structured 55.4 53.0 54.1 54.7 54.7 55.8
— std 1.3 2.43 1.05 2.16 0.903 1.03
Natural 47.8 50.8 52.7 53.2 55.7 58.5
— std 0.471 0.141 0.125 0.408 0.294  0.471

Ol = W N
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Table D.59: Accuracy per prompt template for Cohere-6.067B (Cohere-medium).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 54.7  54.2  55.3 51.8 56.3 55.3
61.8 62.8 64.3 63.8 65.2 64.7
57.2  53.3 585 55.3 57.8 55.3
56.0 53.3  57.0 53.2 55.8 56.7
57.8  60.7  64.0 64.2 64.7 64.2
6 56.2  62.8  66.2 64.0 62.8 66.0
Mean 57.3 579 609 58.7 60.4 60.4
— std 224 432 411 5.38 3.92 4.65
Structured 56.0 53.6  56.9 53.4 56.6 55.8
— std 1.02 0424 1.31 1.44 0.85 0.66
Natural 58.6  62.1  64.8 64.0 64.2 65.0
— std 236 099 0974 0.163 1.03 0.759

QU = W N

Table D.60: Accuracy per prompt template for Cohere-13.12B (Cohere-large).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 55.3 57.3 56.3 55.0 58.5 59.0
59.2 64.2 68.0 66.3 64.7 69.5
57.2 62.8 61.0 59.0 64.2 62.3
55.5 61.3 56.3 54.0 59.0 59.8
56.8 64.3 66.7 64.2 65.7 69.8
6 59.2 60.7  66.5 63.7 65.0 68.3
Mean 57.2 61.8 62.5 60.4 62.9 64.8
— std 1.56 2.41 4.88 4.69 2.94 4.55
Structured  56.0 60.5 57.9 56.0 60.6 60.4
— std 0.852 2.32 2.22 2.16 2.58 1.41
Natural 58.4 63.1 67.1 64.7 65.1 69.2
— std 1.13 1.67 0.665 1.13 0.419 0.648

Ol = W N

Table D.61: Accuracy per prompt template for Cohere-52B (Cohere-xl).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 56.0  60.7  70.3 65.3 66.3 68.7
62.8 65.0 64.3 64.2 65.0 64.3
54.0  65.3  62.8 60.2 64.0 63.5
53.8 555  61.8 64.8 64.3 64.7
62.2 65.7 67.3 63.0 63.7 65.3
6 62.2 657  64.2 62.3 65.0 67.8
Mean 585  63.0 65.1 63.3 64.7 65.7
— std 397 377 287 1.72 0.855 1.89
Structured 54.6  60.5  65.0 63.4 64.9 65.6
— std 0.993 4.0 3.79 2.3 1.02 2.22
Natural 62.4  65.5  65.3 63.2 64.6 65.8
— std 0.283 0.33 1.44 0.785 0.613 1.47

U = W N
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Table D.62: Accuracy per prompt template for GPT-3-350M (ada).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 55.3  H7.2 583 57.5 58.2 60.5
46.7  56.8  56.3 59.5 59.2 61.7
54.0  H4.5  53.3 54.0 56.5 56.7
53.5  H2.8 547 56.7 58.8 59.7
49.8 573  55.3 58.5 58.8 61.8
6 49.5  5H7.2  56.3 60.2 61.5 61.2
Mean 51.5  56.0  55.7 57.7 58.8 60.3
— std 3.02 1.72 1.5 2.04 1.48 1.75
Structured 54.3  54.8 554 56.1 57.8 59.0
— std 0.759 1.81  2.11 1.5 0.974 1.64
Natural 48.7  5H7.1  56.0 59.4 59.8 61.6
— std 1.4 0.216 0471 0.698 1.19 0.262

Ot > W N

Table D.63: Accuracy per prompt template for GPT-3-1.3B (babbage).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 25.7  60.7  61.0 59.0 60.7 27.8

2 63.0 625  65.7 61.7 63.0 59.3
3 26.2  59.0  60.5 59.3 64.8 61.0
4 23.3  959.7  60.7 62.5 65.0 66.7
) 9.2 625  63.7 61.8 61.5 28.7
6 29.0 60.2  64.3 61.2 62.2 D7.7
Mean 57.7  60.8  62.6 60.9 62.9 60.2
— std 3.1 1.33  2.01 1.31 1.6 3.11

Structured 55.1 59.8 60.7 60.3 63.5 61.8
— std 1.27  0.698 0.205 1.58 1.98 3.68
Natural 60.4 61.7 64.6 61.6 62.2 58.6
— std 1.84 1.08 0.838 0.262 0.613 0.66

Table D.64: Accuracy per prompt template for GPT-3-6.7B (curie).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 53.3  58.3  63.0 64.8 67.7 64.0
575  65.2  63.2 65.3 65.8 65.2
57.0 54.2  59.2 61.2 60.8 59.3
53.3  61.7 62.8 63.8 64.7 60.7
55.3 64.2 625 64.5 65.8 63.7
6 52.5  63.5  63.7 64.0 66.2 64.3
Mean 54.8 61.2 62.4 63.9 65.2 62.9
— std 1.92 3.83 1.48 1.32 2.14 2.12
Structured  54.5 58.1 61.7 63.3 64.4 61.3
— std 1.74 3.07 1.75 1.52 2.82 1.97
Natural 55.1 64.3  63.1 64.6 65.9 64.4
- std 2.05 0.698 0.492 0535 0.189  0.616

O = W N
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Table D.65: Accuracy per prompt template for GPT-3-175B (davinci).

Template k=0 k=1 k=5 k=10 k=15 k=30
1 61.2 67.3  66.3 62.7 66.7 66.2

2 3.7 653  68.8 69.3 71.0 69.7
3 58.7  65.8  68.2 64.7 65.0 65.3
4 64.0 628 71.3 68.7 66.2 67.8
5 542  66.3  69.0 70.0 70.0 70.8
6 51.7  66.7  68.7 68.3 71.0 70.0
Mean 7.2 657  68.7 67.3 68.3 68.3
- std 4.4 1.44  1.46 2.65 2.43 2.03

Structured 61.3 65.3 68.6 65.4 66.0 66.4
— std 2.16 1.87  2.06 2.49 0.713 1.03
Natural 53.2 66.1 68.8 69.2 70.7 70.2
— std 1.08 0.589 0.125 0.698 0.471 0.464

Table D.66: Accuracy per prompt template for BlenderBot-90M.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 46.7 51.5 46.7 46.7 46.5 46.5

2 46.7 51.3 46.5 46.7 46.7 46.7
3 46.7 46.7 46.7 46.7 46.3 46.8
4 46.7 46.7 46.7 46.7 46.5 46.7
) 46.7 50.0 46.7 46.7 46.7 46.7
6 46.5 93.5 46.3 46.7 46.7 46.7
Mean 46.7 49.9 46.6 46.7 46.6 46.7

— std 0.0745 2.52 0.153  7.11le-15  0.149 0.0898
Structured 46.7 48.3 46.7 46.7 46.4 46.7
— std 7.11e-15 2.26 7.1le-15 7.11e-15 0.0943 0.125
Natural 46.6 51.6 46.5 46.7 46.7 46.7
— std 0.0943 1.44 0.163  7.1le-15 7.11le-15 T7.1le-15

Table D.67: Accuracy per prompt template for BlenderBot-2.7B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 54.0 53.2 53.3 53.0 52.8 53.3

2 53.3 53.3 53.3 53.3 53.3 53.3

3 53.2 53.2 53.3 53.2 53.2 53.2

4 53.5 53.5 53.5 53.3 52.8 53.0

5 53.3 53.3 53.3 53.3 53.3 53.3

6 53.3 53.3 53.3 53.3 53.3 53.3
Mean 53.4 53.3 53.3 53.2 53.1 53.2
— std 0.269 0.1 0.0745 0.111 0.227 0.111
Structured 53.6 53.3 53.4 53.2 52.9 53.2
— std 0.33 0.141 0.0943 0.125 0.189 0.125
Natural 53.3 53.3 53.3 53.3 53.3 53.3

- std 7.11e-15 7.11e-15 7.1le-15 T7.11le-15 7.1le-15 T7.1le-15
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Table D.68: Accuracy per prompt template for BlenderBot-9.4B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 53.7  51.5 53.0 53.0 53.0 54.0
53.2 53.8 54.2 52.5 52.2 52.2
53.3  49.7  52.0 54.0 54.2 55.5
54.0 55.3 52.5 54.0 53.5 53.7
53.3 52.8 53.5 53.2 53.5 53.3
6 52.7  52.0 51.7 53.5 52.8 53.7
Mean 53.4 52.5 52.8 53.4 53.2 53.7

— std 0.407 1.77 0.859 0.537 0.63 0.978
Structured 53.7 52.2 52.5 53.7 53.6 54.4
— std 0.287 233 0408 0471 0.492 0.787
Natural 53.1 52.9 53.1 53.1 52.8 53.1
— std 0.262 0.736 1.05 0.419 0.531 0.634

Ol = W N

Table D.69: Accuracy per prompt template for T0-3B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 48.7 49.5 46.5 46.7 46.7 46.7

2 46.7 47.5 46.7 46.7 46.7 46.7

3 49.2 48.3 46.7 46.7 46.7 46.7

4 51.7 49.0 46.7 46.7 46.7 46.7

5 46.7 49.2 46.7 46.7 46.7 46.7

6 46.7 49.8 46.8 46.7 46.7 46.7

Mean 48.3 48.9 46.7 46.7 46.7 46.7
— std 1.84 0.773 0.0898 7.11le-15 7.11le-15 7.11le-15

Structured 49.9 48.9 46.6 46.7 46.7 46.7
— std 1.31 0.492 0.0943 7.11le-15 7.11e-15 7.11le-15

Natural 46.7 48.8 46.7 46.7 46.7 46.7

— std 7.11le-15 0.974 0.0471 7.1le-15 7.11e-15 7.1le-15
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Table D.70: Accuracy per prompt template for TO-11B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 7.5 477 473 46.8 46.7 46.7
49.3 475  46.7 46.7 46.8 46.7
65.3  48.8 473 46.7 46.7 46.7
63.8 48.0 47.0 46.7 46.7 46.7
48.0 472 46.7 46.7 47.0 46.8

6 49.7 475  47.0 46.8 47.0 47.0
Mean 55.6  47.8  47.0 46.7 46.8 46.8
- std 7.04 0.515 0.245 0.0471 0.134 0.111

O~ W N

Structured 62.2 48.2 47.2 46.7 46.7 46.7
— std 3.38 0464 0.141 0.0471 7.1le-15 7.1le-15
Natural 49.0 474 46.8 46.7 46.9 46.8

— std 0.726  0.141 0.141 0.0471  0.0943 0.125

Table D.71: Accuracy per prompt template for Flan-T5-780M.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 64.5 63.3 62.2 60.7 61.5 60.2
66.5 65.8 65.3 62.8 65.5 65.0
61.7  60.2 58.8 60.8 59.8 59.7
58.0 50.2 50.7 51.3 52.3 54.8
63.8 69.0 64.3 63.2 65.2 65.5
6 65.3 68.8 64.8 62.3 64.7 63.8
Mean 63.3 62.9 61.0 60.2 61.5 61.5

— std 2.79  6.44 5.1 4.08 4.61 3.73
Structured 61.4 57.9 57.2 57.6 57.9 58.2
— std 2.66 5.59  4.82 4.45 4.0 2.44
Natural 65.2 67.9 64.8 62.8 65.1 64.8
— std 1.1 1.46  0.408 0.368 0.33 0.713

Ol = W N
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Table D.72: Accuracy per prompt template for Flan-T5-3B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 54.7  58.8 56.8 56.7 57.5 60.0
51.2 50.8 59.0 59.2 59.0 59.7
54.8 51.3  49.7 49.0 48.7 48.5
55.3 50.0  48.0 49.0 49.3 50.8
51.0 54.3 57.2 58.0 58.0 57.8
6 48.0 51.2 58.7 59.0 58.0 59.8
Mean 52.5 52.7  54.9 55.1 55.1 56.1

— std 2.65 3.02 4.37 4.42 4.33 4.67
Structured 54.9 53.4 51.5 51.6 51.8 53.1
— std 0.262 3.88 3.81 3.63 4.01 4.97
Natural 50.1 52.1 58.3 58.7 58.3 59.1
— std 1.46 1.56  0.787  0.525 0.471 0.92

Ol = W N

Table D.73: Accuracy per prompt template for Flan-T5-11B.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 64.3 61.0 63.7 65.0 62.5 64.3
61.5 59.7  63.2 62.3 64.0 68.0
56.5  63.0  60.2 57.3 56.7 56.8
61.7 477  51.7 50.3 50.3 49.5
61.5 55.8  64.8 64.7 65.5 66.3
6 29.2 575  66.3 63.7 66.0 67.7
Mean 60.8 574  61.7 60.5 60.8 62.1

- std 242 494 482 5.25 5.62 6.78
Structured 60.8  57.2  58.5 57.5 96.5 96.9
- std 324  6.79  5.04 6.0 4.98 6.04
Natural 60.7  57.7 648 63.6 65.2 67.3
- std 1.08 1.6 1.27  0.984 0.85 0.741

Ol =~ W N
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Table D.74: Accuracy per prompt template for Cohere-command-6b.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 65.0 63.2 71.7 70.2 71.3 70.3
64.8 64.2 66.8 67.5 69.8 1.7
68.0 65.5 69.2 65.5 66.8 68.2
70.0 68.5 69.2 71.2 71.7 73.2
66.3 65.0 66.8 67.5 70.5 69.8
6 63.7 63.7 67.7 67.5 70.0 69.5
Mean 66.3 65.0 68.6 68.2 70.0 70.5

— std 2.13 1.74 1.71 1.9 1.59 1.61
Structured 67.7 65.7 70.0 69.0 69.9 70.6
— std 2.05 2.17 1.18 2.49 2.22 2.05
Natural 64.9 64.3 67.1 67.5 70.1 70.3
— std 1.07  0.535 0.424 0.0 0.294  0.974

Ol = W N

Table D.75: Accuracy per prompt template for Cohere-command-52b.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 65.2 74.2 77.8 75.8 75.5 76.0
61.7 72.0 73.5 75.3 75.2 74.5
56.7  74.5 77.3 77.2 76.5 75.0
68.2 70.7  76.0 74.8 75.3 75.3
54.8 727 748 76.2 74.8 74.7
6 54.8 73.0 73.0 74.5 75.0 74.5
Mean 60.2 72.8 75.4 75.6 75.4 75.0

— std 5.19 1.29 1.8 0.903 0.546 0.529
Structured 63.4 73.1 77.0 75.9 75.8 75.4
— std 4.87 1.72 0.759 0.984  0.525 0.419
Natural 57.1 72.6 73.8 75.3 75.0 74.6

— std 3.25 0419 0.759 0.694 0.163 0.0943

Ol = W N
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Table D.76: Accuracy per prompt template for text-ada-001-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 60.8  62.8  60.8 59.0 58.7 58.8
50.7  56.3  54.8 56.0 57.7 52.7
63.7 585  60.8 59.0 56.7 97.5
61.8  56.3  59.3 58.3 61.0 56.7
53.3 555 552 55.7 58.0 54.3
6 48.7  b4.7 547 56.2 57.7 53.5
Mean 56.5  H7.3  57.6 57.4 58.3 55.6
— std 5.82 2.7 2.75 1.43 1.34 2.22
Structured  62.1 59.2  60.3 58.8 58.8 o7.7
— std 1.2 2.7 0.707  0.33 1.76 0.865
Natural 50.9 555 549 56.0 57.8 53.5
— std 1.88 0.653 0.216 0.205  0.141  0.653

Ot > W N

Table D.77: Accuracy per prompt template for text-babbage-001-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 67.5 64.0  66.3 63.0 64.0 64.7

2 63.0 625 66.2 64.2 66.5 68.2
3 65.3 65.2  66.0 63.2 64.7 64.5
4 652 63.5  65.7 62.7 63.0 64.8
> 61.8 643  66.5 64.0 66.3 67.8
6 64.0 63.8 66.2 64.2 66.7 66.0
Mean 64.5 639 66.1 63.6 65.2 66.0
— std 1.82 0815 0.25  0.605 1.4 1.5

Structured 66.0 64.2 66.0 63.0 63.9 64.7
— std 1.06 0.713 0.245 0.205 0.698 0.125
Natural 62.9 63.5 66.3 64.1 66.5 67.3
— std 0.899 0.759 0.141 0.0943 0.163 0.957

Table D.78: Accuracy per prompt template for text-curie-001-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 70.7  70.2 725 70.8 70.8 70.7

2 66.5 59.3  70.3 69.7 68.3 71.2
3 732 702 735 69.7 71.8 69.7
4 71.3  68.0 710 69.8 71.0 69.0
5 65.5 58.8  70.0 70.2 68.5 70.7
6 66.5 59.8  70.7 70.8 69.0 70.8
Mean 69.0 644 T71.3 70.2 69.9 70.4
- std 2.9 514  1.25 0478 1.35 0.754

Structured 71.7  69.5 72.3 70.1 71.2 69.8
— std 1.07  1.04 1.03 0497 0432 0.698
Natural 66.2 59.3 70.3 70.2 68.6 70.9
— std 0.471 0.408 0.287 0.45 0.294 0.216
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Table D.79: Accuracy per prompt template for text-davinci-001-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 76.5  73.7 5.7 75.7 76.3 76.8
72.0 725 743 75.2 76.0 75.3
748 742 757 7.2 75.8 76.8
68.0 70.2 728 72.8 73.3 75.0
72.5 732 743 74.3 75.3 75.7
6 70.0 727 743 4.7 75.0 75.3
Mean 723 727 745 75.0 75.3 75.8

— std 2.82 1.28 0.991 1.34 0.986  0.724
Structured 73.1 727 747 75.2 75.1 76.2
— std 3.67 178  1.37 1.83 1.31 0.849
Natural 71.5 728 743 4.7 75.4 75.4
— std 1.08 0.294 0.0 0.368  0.419  0.189

QU = W N

Table D.80: Accuracy per prompt template for text-davinci-002-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30
1 73.7  76.2  80.2 79.5 79.8 80.7
69.5 73.5 782 78.5 76.7 79.8
73.0 787 828 82.8 82.7 82.8
71.3  79.7  80.5 80.8 82.0 81.5
67.5 725 792 79.2 77.0 79.8
6 68.5 732  76.5 76.5 76.2 79.2
Mean 70.6 756  79.6 79.5 79.1 80.6
— std 2.28 2.79 1.96 1.94 2.6 1.22
Structured 72.7  78.2 81.2 81.0 81.5 81.7
— std 1.01 1.47  1.16 1.36 1.24 0.865
Natural 68.5 T73.1 78.0 78.1 76.6 79.6
— std 0.816 0419 1.11 1.14 0.33 0.283

Tt W N
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Table D.81: Accuracy per prompt template for text-davinci-003-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 74.3 71.7  79.8 80.2 80.7 80.3
71.8 75.0 80.2 78.8 78.2 78.3
71.8 73.7  79.7 79.5 79.2 81.2
65.2 74.2 78.5 78.2 79.7 79.5
72.2 75.3 80.2 78.5 78.2 78.8
6 72.2 76.0 79.7 78.8 78.3 79.0
Mean 71.2 74.3 79.7 79.0 79.0 79.5

— std 2.84 1.38 0.57  0.666 0.929  0.975
Structured 70.4 73.2 79.3 79.3 79.9 80.3
— std 3.84 1.08 0.591 0.829 0.624  0.694
Natural 72.1 75.4 80.0 78.7 78.2 78.7
— std 0.189 0.419 0.236 0.141 0.0471 0.294

Ol = W N

Table D.82: Accuracy per prompt template for ChatGPT-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 77.8 73.3 72.7 72.7 74.2 74.5
73.2 76.2 78.7 78.2 79.7 79.2
727 74.0 74.3 4.7 75.0 74.8
59.3 73.7  60.8 63.5 66.0 68.0
747  76.8 77.8 77T 79.3 78.8
6 74.8 76.7  79.0 79.0 79.2 78.5
Mean 72.1 75.1 73.9 74.3 75.6 75.6

— std 5.94 1.48 6.29 5.29 4.79 3.9
Structured 69.9 73.7 69.3 70.3 T1.7 72.4
— std 7.8 0.287 6.02 4.88 4.07 3.14
Natural 74.2 76.6 78.5 78.3 79.4 78.8
— std 0.732 0.262 0.51 0.535 0.216 0.287

Ol =~ W N
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Table D.83: Accuracy per prompt template for GPT-4-unknown.

Template k=0 k=1 k=5 k=10 k=15 k=30

1 83.3 82.7 84.0 84.2 85.5 84.5
81.8 80.8 80.8 78.0 79.3 79.7
84.7 83.7 84.2 85.3 85.5 85.3
80.5 84.3 82.5 84.3 83.3 83.7
79.5 81.0 80.8 77.0 79.0 79.0
6 80.8 81.3 79.8 79.0 79.8 80.8
Mean 81.8 82.3 82.0 81.3 82.1 82.2

— std 1.76 1.36 1.67 3.37 2.81 2.44
Structured  82.8 83.6 83.6 84.6 84.8 84.5
— std 1.75 0.66 0.759  0.497 1.04 0.653
Natural 80.7 81.0 80.5 78.0 79.4 79.8
— std 0.942 0.205 0.471 0.816 0.33 0.741

QU = W N
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D.8 Timestamps API calls

For reproducibility purposes, Table D.84, D.85, and D.86 contain the dates and times
the APIs from OpenAl and Cohere were queried for the results.



D.8. Timestamps API calls

Table D.84: Timestamp each was evaluated through OpenAl’s API (1/2).

model

timestamp

GPT-3-ada/0-shot
GPT-3-ada/1-shot
GPT-3-ada/5-shot
GPT-3-ada/10-shot
GPT-3-ada/15-shot
GPT-3-ada/30-shot
GPT-3-babbage/0-shot
GPT-3-babbage/1-shot
GPT-3-babbage/5-shot
GPT-3-babbage/10-shot
GPT-3-babbage/15-shot
GPT-3-babbage/30-shot
GPT-3-curie/0-shot
GPT-3-curie/1-shot
GPT-3-curie/5-shot
GPT-3-curie/10-shot
GPT-3-curie/15-shot
GPT-3-curie/30-shot
GPT-3-davinci/0-shot
GPT-3-davinci/1-shot
GPT-3-davinci/5-shot
GPT-3-davinci/10-shot
GPT-3-davinci/15-shot
GPT-3-davinci/30-shot
OpenAl-text-ada-001/0-shot
OpenAl-text-ada-001/1-shot
OpenAl-text-ada-001/5-shot
OpenAl-text-ada-001/10-shot
OpenAl-text-ada-001/15-shot
OpenAl-text-ada-001/30-shot
OpenAl-text-babbage-001/0-shot
OpenAl-text-babbage-001/1-shot
OpenAl-text-babbage-001/5-shot
OpenAl-text-babbage-001/10-shot
OpenAl-text-babbage-001/15-shot
OpenAl-text-babbage-001/30-shot
OpenAl-text-curie-001/0-shot
OpenAl-text-curie-001/1-shot
OpenAl-text-curie-001/5-shot
OpenAl-text-curie-001/10-shot
OpenAl-text-curie-001/15-shot
OpenAl-text-curie-001/30-shot
OpenAl-text-davinci-001/0-shot
OpenAl-text-davinci-001/1-shot
OpenAl-text-davinci-001/5-shot
OpenAl-text-davinci-001/10-shot
OpenAl-text-davinci-001/15-shot
OpenAl-text-davinci-001/30-shot

2022-09-22 13:13:29
2022-09-22 15:11:13
2022-09-22 15:40:12
2022-09-22 18:14:18
2022-09-22 19:15:29
2022-09-22 22:47:58
2022-09-22 23:19:05
2022-09-22 23:39:53
2022-09-23 00:01:32
2022-09-23 00:24:27
2022-09-23 00:49:13
2022-09-23 01:15:44
2022-09-22 14:04:32
2022-09-23 02:09:14
2022-09-23 02:32:20
2022-09-23 02:56:43
2022-09-23 03:23:19
2022-09-23 03:52:30
2022-09-22 12:21:48
2022-09-23 14:27:15
2022-09-23 15:10:40
2022-09-23 16:04:53
2022-09-23 17:17:04
2022-09-23 18:36:38
2022-08-17 16:59:45
2022-08-17 18:23:12
2022-08-17 19:16:48
2022-08-17 20:24:16
2022-08-17 21:21:46
2022-08-17 22:44:47
2022-08-17 11:50:44
2022-08-17 12:22:08
2022-08-17 12:50:59
2022-08-17 13:27:52
2022-08-17 14:57:43
2022-08-17 15:45:16
2022-08-18 04:39:55
2022-08-18 05:10:17
2022-08-18 05:40:56
2022-08-18 06:15:28
2022-08-18 06:53:09
2022-08-18 07:35:40
2022-08-26 20:26:21
2022-08-26 21:02:31
2022-08-26 21:35:19
2022-08-27 07:14:02
2022-08-27 07:58:25
2022-08-27 08:44:42
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Table D.85: Timestamp each was evaluated through OpenAl’s API - continued

(2/2).

model timestamp

OpenAl-text-davinci-002/0-shot  2022-08-10 21:41:50
OpenAl-text-davinci-002/1-shot  2022-08-11 10:04:17
OpenAl-text-davinci-002/5-shot ~ 2022-08-12 15:41:45
OpenAl-text-davinci-002/10-shot  2022-08-12 16:41:14
OpenAl-text-davinci-002/15-shot  2022-08-16 12:11:43
OpenAl-text-davinci-002/30-shot  2022-08-16 14:35:38
OpenAl-text-davinci-003/0-shot  2023-03-15 11:35:23
OpenAl-text-davinci-003/1-shot ~ 2023-04-04 13:12:05
OpenAl-text-davinci-003/5-shot ~ 2023-03-15 12:30:39
OpenAl-text-davinci-003/10-shot  2023-04-04 14:01:03
OpenAl-text-davinci-003/15-shot  2023-04-04 15:23:29
OpenAl-text-davinci-003/30-shot  2023-04-06 15:08:38

OpenAl-gpt-3.5.turbo/0-shot 2023-04-05 13:33:09
OpenAl-gpt-3.5.turbo/1-shot 2023-04-05 16:36:45
OpenAl-gpt-3.5.turbo/5-shot 2023-04-06 08:46:09

OpenAl-gpt-3.5.turbo/10-shot 2023-04-06 09:54:07
OpenAl-gpt-3.5.turbo/15-shot 2023-04-06 10:57:18
OpenAl-gpt-3.5.turbo/30-shot 2023-04-06 12:03:59

OpenAl-gpt-4/0-shot 2023-04-06 17:38:16
OpenAl-gpt-4/1-shot 2023-04-06 19:41:59
OpenAl-gpt-4/5-shot 2023-04-06 22:56:31
OpenAl-gpt-4/10-shot 2023-04-08 12:06:03
OpenAl-gpt-4/15-shot 2023-04-08 17:32:04

OpenAl-gpt-4/30-shot 2023-04-08 19:56:26




D.8. Timestamps API calls

Table D.86: Timestamp each model was evaluated through Cohere’s API.

model

timestamp

Cohere-small/0-shot
Cohere-small/1-shot
Cohere-small/5-shot
Cohere-small/10-shot
Cohere-small/15-shot
Cohere-small/30-shot
Cohere-medium/0-shot
Cohere-medium/1-shot
Cohere-medium/5-shot
Cohere-medium/10-shot
Cohere-medium /15-shot
Cohere-medium /30-shot
Cohere-large/0-shot
Cohere-large/1-shot
Cohere-large/5-shot
Cohere-large/10-shot
Cohere-large/15-shot
Cohere-large/30-shot

2022-08-16 22:22:17
2022-08-17 08:22:43
2022-08-17 09:19:57
2022-08-17 10:43:53
2022-08-17 12:53:02
2022-08-17 13:46:08
2022-08-17 15:14:02
2022-08-17 16:00:21
2022-08-17 18:23:38
2022-08-17 19:16:00
2022-08-17 20:24:12
2022-08-17 21:20:28
2022-08-17 22:47:49
2022-08-17 23:27:00
2022-08-18 00:10:08
2022-08-18 00:56:55
2022-08-18 01:48:30
2022-08-18 02:47:14

Cohere-x1/0-shot 2022-07-29
Cohere-x1/1-shot 2022-07-31
Cohere-x1/5-shot 2022-08-02

Cohere-x1/10-shot
Cohere-x1/15-shot
Cohere-x1/30-shot

2022-08-02 15:16:45
2022-08-07 13:55:44
2022-08-16 19:51:08
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Cohere-command-medium/0-shot ~ 2023-04-04 09:54:27
Cohere-command-medium/1-shot ~ 2023-04-04 11:51:07
Cohere-command-medium /5-shot ~ 2023-04-04 13:03:07
Cohere-command-medium/10-shot  2023-04-04 13:31:47
Cohere-command-medium/15-shot  2023-04-04 14:06:10
Cohere-command-medium/30-shot  2023-04-04 14:42:13
Cohere-command-x1/0-shot 2023-04-04 10:25:30
Cohere-command-x1/1-shot 2023-04-04 15:27:01
Cohere-command-x1/5-shot 2023-04-04 15:59:47
Cohere-command-x1/10-shot 2023-04-04 16:36:22
Cohere-command-xl1/15-shot 2023-04-04 17:22:58
Cohere-command-xl1/30-shot 2023-04-04 18:16:54
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D.9 Compute and Emissions

Find below in Table D.87 until Table D.92 the timestamps, durations, and emissions
per experiment (calculated with the CodeCarbon library in Python). Find below in
Table D.93 until Table D.96 the cpu-type and count and gpu-type and count per
experiment. In terms of compute the following GPU hours can be estimated if we
assume each run is entirely done on the GPU (which is not true in reality, but worst

case):
NVIDIA A100-SXM4-40GB used for 926.4291392151515 hours.
Tesla V100-PCIE-32GB used for 29.282544113265143 hours.

Tesla V100-PCIE-16GB used for 11.462701331244574 hours.



D.9. Compute and Emissions

models. (1/6)

model

timestamp

duration

Eleuther AI-125m-0-shot
EleutherAI-125m-1-shot
Eleuther AI-125m-5-shot
Eleuther AI-125m-10-shot
Eleuther AI-125m-15-shot
Eleuther AI-125m-30-shot
Eleuther AI-2.7b-0-shot
EleutherAI-2.7b-1-shot
EleutherAI-2.7b-5-shot
EleutherAI-2.7b-10-shot
EleutherAI-2.7b-15-shot
EleutherAI-2.7b-30-shot
Eleuther AI-20b-0-shot
Eleuther AI-20b-1-shot
Eleuther AI-20b-5-shot
Eleuther AI-20b-10-shot
Eleuther AI-20b-15-shot
Eleuther AI-20b-30-shot
Eleuther AI-6b-0-shot
Eleuther AI-6b-1-shot
Eleuther AI-6b-5-shot
Eleuther AI-6b-10-shot
Eleuther AI-6b-15-shot
Eleuther AI-6b-30-shot
EleutherAI-1.3b-0-shot
EleutherAI-1.3b-1-shot
EleutherAlI-1.3b-5-shot
EleutherAI-1.3b-10-shot
EleutherAI-1.3b-15-shot
EleutherAI-1.3b-30-shot

2022-09-01T21:33:14
2022-09-02T00:10:03
2022-09-02T00:26:27
2022-09-02T00:51:24
2022-09-02T01:29:03
2022-09-02T09:04:03
2022-09-03T00:36:14
2022-09-03T02:04:16
2022-09-03T04:28:19
2022-09-03T08:18:13
2022-09-03T13:33:25
2022-09-03122:47:06
2022-08-25T07:40:55
2022-08-25T08:15:23
2022-08-25T15:39:51
2022-08-25T16:18:50
2022-08-25T16:47:30
2022-08-25T17:45:28
2022-08-24122:29:30
2022-08-24'123:22:30
2022-08-25T00:16:57
2022-08-25T01:23:21
2022-08-25T02:26:23
2022-08-25T04:18:30
2022-09-02T09:54:06
2022-09-02T10:46:30
2022-09-02T12:25:25
2022-09-02T12:39:00
2022-09-02T18:00:39
2022-09-02T123:33:39

8549.649220
640.861120
982.369876
1495.525381
2257.290708
27298.375266
3752.897449
5279.884696
8641.654516
13792.592126
18909.551123
33219.682098
1378.197924
807.702344
859.585535
1175.128651
1713.266182
3469.811664
1287.627453
1831.554774
3255.128955
3971.650578
3772.113814
6719.419030
3000.666020
3142.207699
5933.046596
8509.257493
11615.289366
19978.306457

261

Table D.87: Timestamp, duration, and emissions per experiment with non-API
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Table D.88: Timestamp, duration, and emissions per experiment with non-API

Appendix D. A Case Study in Social Reasoning: Pragmatics

models. (2/6)

model

timestamp

duration

BLOOM-3b-0-shot
BLOOM-3b-1-shot
BLOOM-3b-5-shot
BLOOM-3b-10-shot
BLOOM-3b-15-shot
BLOOM-3b-30-shot
BLOOM-7b1-0-shot
BLOOM-7b1-1-shot
BLOOM-7b1-5-shot
BLOOM-7b1-10-shot
BLOOM-T7b1-15-shot
BLOOM-T7b1-30-shot
BLOOM-560m-0-shot
BLOOM-560m-1-shot
BLOOM-560m-5-shot
BLOOM-560m-10-shot
BLOOM-560m-15-shot
BLOOM-560m-30-shot
BLOOM-1b1-0-shot
BLOOM-1b1-1-shot
BLOOM-1b1-5-shot
BLOOM-1b1-10-shot
BLOOM-1b1-15-shot
BLOOM-1b1-30-shot
BLOOM-176b-0-shot
BLOOM-176b-1-shot
BLOOM-176b-5-shot
BLOOM-176b-10-shot
BLOOM-176b-15-shot
BLOOM-176b-30-shot

2022-08-31T12:54:37
2022-08-31T14:39:32
2022-08-31T17:37:29
2022-08-31T721:59:27
2022-09-01T03:41:02
2022-09-01T15:47:21
2022-08-25T04:56:35
2022-08-25T05:07:13
2022-08-25T05:24:22
2022-08-25T05:49:00
2022-08-25T06:23:26
2022-08-25T07:29:46
2022-08-29T15:35:52
2022-08-29T18:52:16
2022-08-29T20:16:16
2022-08-29T22:17:43
2022-08-30T00:38:23
2022-08-30T04:38:44
2022-08-30T05:18:44
2022-08-30T06:06:45
2022-08-30T07:35:59
2022-08-30T10:15:02
2022-08-30T13:22:42
2022-08-30T18:08:15
2022-10-14T12:51:11
2022-10-14T13:57:53
2022-10-14T20:41:10
2022-10-23T21:43:21
2022-10-24T01:14:10
2022-10-14T20:47:02

5178.369790
6292.560350
10675.230701
15715.744792
20492.823278
43577.882397
625.931470
630.628939
1022.138932
1471.008220
2058.455127
3972.772039
2541.248956
2532.794568
5038.547060
7285.239875
8438.096533
14419.447170
2398.828856
2879.435828
5352.607075
9541.535419
11257.077128
17131.797610
3015.240235
3906.461752
7411.725385
14462.201855
12609.026736
33159.499966




D.9. Compute and Emissions

models. (3/6)

model timestamp duration

OPT-13b-0-shot 2022-08-25T07:07:08  878.202579
OPT-13b-1-shot 2022-08-25T07:31:30  458.133617
OPT-13b-5-shot 2022-08-25T07:37:39  578.308507
OPT-13b-10-shot ~ 2022-08-25T08:01:50 821.158826

OPT-13b-15-shot
OPT-13b-30-shot
OPT-350m-0-shot
OPT-350m-1-shot
OPT-350m-5-shot
OPT-350m-10-shot
OPT-350m-15-shot
OPT-350m-30-shot
OPT-125m-0-shot
OPT-125m-1-shot
OPT-125m-5-shot
OPT-125m-10-shot
OPT-125m-15-shot
OPT-125m-30-shot
OPT-6.7b-0-shot
OPT-6.7b-1-shot
OPT-6.7b-5-shot
OPT-6.7b-10-shot
OPT-6.7b-15-shot
OPT-6.7b-30-shot
OPT-2.7b-0-shot
OPT-2.7b-1-shot
OPT-2.7b-5-shot
OPT-2.7b-10-shot
OPT-2.7b-15-shot
OPT-2.7b-30-shot
OPT-30b-0-shot
OPT-30b-1-shot
OPT-30b-5-shot
OPT-30b-10-shot
OPT-30b-15-shot
OPT-30b-30-shot
OPT-1.3b-0-shot
OPT-1.3b-1-shot
OPT-1.3b-5-shot
OPT-1.3b-10-shot
OPT-1.3b-15-shot
OPT-1.3b-30-shot

2022-08-25T08:20:49
2022-08-25T16:05:27
2022-09-16T17:26:28
2022-09-16T17:33:42
2022-09-16T18:00:14
2022-09-16T18:32:12
2022-09-16T19:03:23
2022-09-16T719:47:29
2022-09-16T15:15:56
2022-09-16T15:20:28
2022-09-16T'15:41:37
2022-09-16T16:09:59
2022-09-16T16:41:46
2022-09-16T17:19:51
2022-08-24T23:03:07
2022-08-24T23:17:51
2022-08-24T23:34:40
2022-08-24T23:55:44
2022-08-25T00:23:04
2022-08-25T01:05:49
2022-09-18T16:35:05
2022-09-18T'16:45:11
2022-09-18T'17:12:11
2022-09-18T'17:44:48
2022-09-18T'18:22:02
2022-09-18T19:09:05
2022-08-25T19:03:37
2022-08-25T19:14:32
2022-08-25T16:44:22
2022-08-25T17:07:22
2022-08-25T17:41:05
2022-08-25T18:10:39
2022-09-17T17:53:50
2022-09-17T718:03:45
2022-09-17T18:33:18
2022-09-17T19:12:19
2022-09-17T1719:48:32
2022-09-17T120:37:00

1131.479665
2235.869414
389.173905
424.832551
1583.824094
1908.822462
1863.625027
2637.811867
273.178967
259.680856
1259.801105
1693.598805
1899.415318
2276.441314
1140.485014
872.225225
995.894396
1252.956499
1627.749039
2553.054289
686.197892
593.508211
1613.313387
1949.808232
2225.927837
2815.327871
591.665447
645.923823
1825.821606
1372.752916
2015.006104
3859.078056
595.193443
579.367790
1759.103432
2327.300123
2161.637401
2893.829010

263

Table D.89: Timestamp, duration, and emissions per experiment with non-API
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Table D.90: Timestamp, duration, and emissions per experiment with non-API
models. (4/6)

model timestamp duration

OPT-175b-0-shot ~ 2022-10-19T'15:02:56  2387.104187
OPT-175b-1-shot  2022-10-19T16:34:06 1589.972279
OPT-175b-5-shot ~ 2022-10-19T17:25:58 3072.591171
OPT-175b-10-shot  2022-10-19T17:33:15 6211.692086
OPT-175b-15-shot  2022-10-19T21:29:16 8019.585246
OPT-175b-30-shot  2022-10-19T21:36:53 19901.470347
OPT-66b-0-shot 2022-08-25T18:58:11  2834.901372
OPT-66b-1-shot 2022-08-25T19:22:09  1427.806986
OPT-66b-5-shot 2022-08-25T19:47:39  1521.168440
OPT-66b-10-shot ~ 2022-08-25T20:24:56 2228.407874
OPT-66b-15-shot ~ 2022-08-25T21:41:21  3370.689256
OPT-66b-30-shot  2022-08-26T00:31:36 6816.312183




D.9. Compute and Emissions

models. (5/6)

model

timestamp

duration

BlenderBot-2.7b-0-shot
BlenderBot-2.7b-1-shot
BlenderBot-2.7b-5-shot
BlenderBot-2.7b-10-shot
BlenderBot-2.7b-15-shot
BlenderBot-2.7b-30-shot
BlenderBot-9.4b-0-shot
BlenderBot-9.4b-1-shot
BlenderBot-9.4b-5-shot
BlenderBot-9.4b-10-shot
BlenderBot-9.4b-15-shot
BlenderBot-9.4b-30-shot
BlenderBot-90m-0-shot
BlenderBot-90m-1-shot
BlenderBot-90m-5-shot
BlenderBot-90m-10-shot
BlenderBot-90m-15-shot
BlenderBot-90m-30-shot
T0-3b-0-shot
T0-3b-1-shot
T0-3b-5-shot
T0-3b-10-shot
T0-3b-15-shot
T0-3b-30-shot
T0-11b-0-shot
T0-11b-1-shot
T0-11b-5-shot
T0-11b-10-shot
T0-11b-15-shot
T0-11b-30-shot

2022-09-04T08:09:56
2022-09-12T15:58:01
2022-09-12T17:16:20
2022-09-12T'18:35:53
2022-09-12T19:54:13
2022-09-12T121:10:34
2022-10-22T04:04:24
2022-10-22T17:17:21
2022-10-22T17:31:48
2022-10-22T17:46:18
2022-10-22T17:53:41
2022-10-22T18:23:25
2022-09-14T15:11:44
2022-09-14T15:17:38
2022-09-14T15:29:50
2022-09-14T15:47:22
2022-09-14T16:07:27
2022-09-14T16:28:55
2022-10-21T17:33:36
2022-10-24'123:20:57
2022-10-24T23:29:21
2022-10-25T'15:56:54
2022-10-25T16:12:55
2022-10-24T723:30:17
2022-10-21T15:38:13
2022-10-22T19:18:25
2022-10-22T19:41:45
2022-10-22T20:17:30
2022-10-22T21:06:30
2022-10-22T22:41:16

3656.381540
4051.858183
4696.628979
4772.083818
4698.638356
4579.460884
614.201131
659.975971
839.336277
843.852691
1262.038660
853.334728
273.134700
351.542638
730.774348
1050.647882
1204.079804
1285.913686
348.245298
350.730799
474.378557
676.111759
928.215524
1961.897054
2289.815276
814.872760
1368.644314
2112.628515
2904.655213
5648.105648
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Table D.91: Timestamp, duration, and emissions per experiment with non-API
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Table D.92: Timestamp, duration, and emissions per experiment with non-API

Appendix D. A Case Study in Social Reasoning: Pragmatics

models. (6/6)

model

timestamp

duration

Flan-T5-3b-0-shot
Flan-T5-3b-1-shot
Flan-T5-3b-5-shot
Flan-T5-3b-10-shot
Flan-T5-3b-15-shot
Flan-T5-3b-30-shot
Flan-T5-780m-0-shot
Flan-T5-780m-1-shot
Flan-T5-780m-5-shot

Flan-T5-780m-10-shot
Flan-T5-780m-15-shot
Flan-T5-780m-30-shot

Flan-T5-11b-0-shot
Flan-T5-11b-1-shot
Flan-T5-11b-5-shot
Flan-T5-11b-10-shot
Flan-T5-11b-15-shot
Flan-T5-11b-30-shot

2022-10-24T11:20:36
2022-10-25T12:29:59
2022-10-25T12:38:24
2022-10-25T12:50:00
2022-10-25T13:05:34
2022-10-25T13:37:14
2022-10-24T11:54:09
2022-10-25T14:41:28
2022-10-25T14:46:09
2022-10-25T14:52:09
2022-10-25T14:59:00
2022-10-25T15:11:18
2022-10-24T10:25:09
2022-10-24T10:56:52
2022-10-25T17:26:50
2022-10-25T18:29:59
2022-10-25T19:21:15
2022-10-25T20:57:13

617.820384
348.405589
474.872964
665.592482
902.197151
1864.885266
160.503411
3816.321305
251.699700
331.340966
381.107934
705.711192
1111.283857
654.411412
1403.159768
3756.529085
3042.271478
5722.244579

Table D.93: Compute used per experiment with non-API models. (1/4)

model

gpu model

EleutherAI-125m-0-shot
EleutherAI-125m-1-shot
EleutherAI-125m-5-shot
EleutherAI-125m-10-shot
EleutherAI-125m-15-shot
EleutherAI-125m-30-shot
EleutherAI-2.7b-0-shot
EleutherAI-2.7b-1-shot
EleutherAI-2.7b-5-shot
EleutherAI-2.7b-10-shot
EleutherAI-2.7b-15-shot
EleutherAI-2.7b-30-shot
Eleuther AI-20b-0-shot
EleutherAI-20b-1-shot
Eleuther AI-20b-5-shot
EleutherAI-20b-10-shot
EleutherAI-20b-15-shot
Eleuther AI-20b-30-shot
Eleuther AI-6b-0-shot
EleutherAI-6b-1-shot
EleutherAI-6b-5-shot
EleutherAI-6b-10-shot
EleutherAI-6b-15-shot
Eleuther AI-6b-30-shot
EleutherAI-1.3b-0-shot
EleutherAI-1.3b-1-shot
EleutherAI-1.3b-5-shot
EleutherAI-1.3b-10-shot
EleutherAI-1.3b-15-shot
EleutherAI-1.3b-30-shot

Platinum 8275CL CPU @ 3.00GHz
Platinum 8275CL CPU @ 3.00GHz
Platinum 8275CL CPU @ 3.00GHz
Platinum 8275CL CPU @ 3.00GHz
Platinum 8275CL CPU @ 3.00GHz
Platinum 8275CL CPU @ 3.00GHz
Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz

Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz

cpus cpu model

10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
48 Intel(R) Xeon(R
1 Intel(R) Xeon(R
48 Intel(R) Xeon(R
48 Intel(R) Xeon(R
48 Intel(R) Xeon(R
48 Intel(R) Xeon(R
1

1

1

1

1

1

10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max
10 Apple M1 Max

8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
8 x NVIDIA A100-40GB
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Table D.94: Compute used per experiment with non-API models. (2/4)

model cpus cpu model gpu model
BLOOM-3b-0-shot 10 Apple M1 Max

BLOOM-3b-1-shot 10 Apple M1 Max

BLOOM-3b-5-shot 10 Apple M1 Max

BLOOM-3b-10-shot 10 Apple M1 Max

BLOOM-3b-15-shot 10 Apple M1 Max

BLOOM-3b-30-shot 10 Apple M1 Max

BLOOM-7b1-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-560m-0-shot 10 Apple M1 Max

BLOOM-560m-1-shot 10 Apple M1 Max

BLOOM-560m-5-shot 10 Apple M1 Max

BLOOM-560m-10-shot 10 Apple M1 Max

BLOOM-560m-15-shot 10 Apple M1 Max

BLOOM-560m-30-shot 10 Apple M1 Max

BLOOM-1b1-0-shot 10 Apple M1 Max

BLOOM-1bl-1-shot 10 Apple M1 Max

BLOOM-1b1-5-shot 10 Apple M1 Max

BLOOM-1b1-10-shot 10 Apple M1 Max

BLOOM-1b1-15-shot 10 Apple M1 Max

BLOOM-1b1-30-shot 10 Apple M1 Max

BLOOM-176b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
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Table D.95: Compute used per experiment with non-API models. (3/4)

model cpus cpu model gpu model

OPT-13b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-350m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-6.7b-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-2.7b-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-30b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-1.3b-0-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-1-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-5-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-10-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-15-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-30-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-175b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-66b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
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Table D.96: Compute used per experiment with non-API models. (4/4)

model cpus cpu model gpu model
BlenderBot-2.7b-0-shot 10 Apple M1 Max

BlenderBot-2.7b-1-shot 10 Apple M1 Max

BlenderBot-2.7b-5-shot 10 Apple M1 Max

BlenderBot-2.7b-10-shot 10 Apple M1 Max

BlenderBot-2.7b-15-shot 10 Apple M1 Max

BlenderBot-2.7b-30-shot 10 Apple M1 Max

BlenderBot-9.4b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-90m-0-shot 10 Apple M1 Max

BlenderBot-90m-1-shot 10 Apple M1 Max

BlenderBot-90m-5-shot 10 Apple M1 Max

BlenderBot-90m-10-shot 10 Apple M1 Max

BlenderBot-90m-15-shot 10 Apple M1 Max

BlenderBot-90m-30-shot 10 Apple M1 Max

T0-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
TO0-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
TO0-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
TO0-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
TO0-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
TO0-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB

Q@

Flan-T5-11b-30-shot 96 Intel(R) Xeon(R) CPU 2.20GHz 16 x NVIDIA A100-40GB







Appendix E

A Case Study in Social
Reasoning: Theory of Mind

This chapter contains the raw counts for the experiments in Chapter 6.

E.1 Detailed results

Table E.1 and E.2 show the results for GPT-4 on the pillar target templates and fruit
target templates respectively. Table E.3 and E.4 show the results for GPT-3.5-turbo
on the pillar target templates and fruit target templates respectively. Table E.5 and
E.6 show the results for text-davinci-003 on the pillar target templates and fruit

target templates respectively.

Table E.1: Animate, inanimate, and control object and location bias for GPT-4
on prompts from the group Pillar targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate

denotation.

Category Model H Anim N objbias N loc bias N unclassified

GPT-4 0 N 38+/-45 3.0+/-43 32+4/-44

Animate  OPT4 6 N 04+4/-14 96+4/-14  00+/-01

GPT-4 0 Y 37+/-43 324/-40 3.0+/-39

GPT-4 6 Y 054/-16 95+/-1.6 0.0 +/-0.0

GPT-4 0 N 36+/-45 34+4/-44 3.1 +/-43

: GPT-4 6 N 01+4+/-07 99+/-07 0.0 +/-0.0

Inanimate

GPT-4 0 Y 36+/-46 32+/-45 33+/-45

GPT-4 6 Y 004/-01 10.0+/-0.1 0.0 +/-0.1

GPT-4 0 N 36+/-39 32+/-35 32+/-36

Control  CFPT4 6 N 01+4/-03 99+/-03  0.0+/-0.0

GPT-4 0 Y 37+/-35 33+/-34 3.0+/-34

GPT-4 6 Y 00+/-00 10.0+/-0.0 0.0 +/-0.0
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Table E.2: Animate, inanimate, and control object and location bias for GPT-4
on prompts from the group Fruit targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate

denotation.

Category Model H Anim N obj bias N loc bias N unclassified
GPT-4 0 N 0.0 +/-0.0 0.0+/-0.1 10.0+/-0.1

Animate GPT-4 6 N 6.1 +/-3.7 20+/-32 18+4/-3.0
GPT-4 0 Y 0.0 +/-0.0 0.0+/-0.0 10.0 +/-0.0

GPT-4 6 Y 54 +/-3.8 1.0+/-24 3.6 +/-3.7

GPT-4 0 N 0.0 +/-0.0 0.0+/-0.0 10.0 +/-0.0

: GPT-4 6 N 3.0+/-35 5.7+/-4.1 1.3+/-25

Inanimate

GPT-4 0 Y 0.0 +/-0.1 0.0+/-01 10.0+/-0.2

GPT-4 6 Y 23+/-31 58+/-40 19 +/-3.1

GPT-4 0 N 0.0+/-02 0.0+/-02 99+4/-0.3

Control GPT-4 6 N 55+4+/-35 16+/-29 29+/-3.1
GPT-4 0 Y 0.0 +/-0.0 0.0+/-0.0 10.0 +/-0.0

GPT-4 6 Y 50+/-3.6 26+/-3.7 24+/-3.0

Table E.3: Animate, inanimate, and control object and location bias for GPT-
3.5-turbo on prompts from the group Pillar targets.
habituations, and Anim for whether (Y) or not (N) the prompt template
has animate denotation.

H stands for

Category Model H Anim N objbias N loc bias N unclassified

GPT-3.5-turbo 0 N 3.7+/-44 2.7+/-40 3.6 +/-44

. GPT-3.5-turbo 6 N 45+4+/-43 53+4+/-42 02+/-0.6
Animate

GPT-3.5-turbo 0 Y 32+4/-44 27+/-42 41+/-46

GPT-3.5-turbo 6 Y 52 +/-45 47+/-45 0.1+/-0.5

GPT-3.5-turbo 0 N 32+4+/-37 30+/-36 39+/-38

. GPT-3.5-turbo 6 N 33+/-37 6.0+/-38 0.7+/-15
Inanimate

GPT-3.5-turbo 0 Y 3.1 +/-42 29+/-40 4.0+4/-43

GPT-3.5-turbo 6 Y 33+4+/-39 62+/-39 05+/-1.2

GPT-3.5-turbo 0 N 3.1 +/-44 29+/-44  4.04/-4.7

Control GPT-3.5-turbo 6 N 3.7+/-44 53+/-43 09 +/-22

GPT-3.5-turbo 0 Y 32+/-44 28+/-41 414/-46

GPT-3.5-turbo 6 Y 38+/-44 6.0+/-44 02+/-0.7
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Table E.4: Animate, inanimate, and control object and location bias for GPT-3.5-
turbo on prompts from the group Fruit targets. H stands for habitua-
tions, and Anim for whether (Y) or not (N) the prompt template has
animate denotation.

Category Model H Anim N objbias N loc bias N unclassified

GPT-3.5-turbo 0 N 0.1+4+/-03 01+/-04 9.8+/-04

. GPT-3.5-turbo 6 N 6.0+/-34 18+/-32 22+4/-23
Animate

GPT-3.5-turbo 0 Y 0.1+4/-03 01+/-03 99+/-04

GPT-3.5-turbo 6 Y 74+/-26 084/-22 184/-20

GPT-3.5-turbo 0 N 03+4/-06 02+4/-07 95+4/-0.9

: GPT-3.5-turbo 6 N 6.3 +/-38 28+/-3.6 08+/-1.5
Inanimate

GPT-3.5-turbo 0 Y 09+/-14 07+/-11 84+/-1.6

GPT-3.5-turbo 6 Y 53 4+/-42 4.0+/-43 0.7+/-14

GPT-3.5-turbo 0 N 0.0+/-02 0.0+/-02 9.9+4/-0.2

Control GPT-3.5-turbo 6 N 78+/-31 16+/-32 0.6 +/-1.0

GPT-3.5-turbo 0 Y 00+/-02 01+4+/-02 99+/-0.3

GPT-3.5-turbo 6 Y 82+/-28 13+/-28 0.5+/-0.8

Table E.5: Animate, inanimate, and control object and location bias for text-
davinci-003 on prompts from the group Pillar targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template
has animate denotation.

Category Model H Anim Obj p Loc p Obj bias
text-davinci-003 0 N 03+/-02 03+/-02 0.5+/-0.2
Animate text-davinci-003 6 0.0+/-0.1 1.0+/-0.1 0.0+/-0.1
text-davinci-003 0 Y 03+/-02 03+/-02 0.5+/-02
text-davinci-003 6 Y 0.0+/-0.1 1.0+/-0.1 0.0+/-0.1
text-davinci-003 0 N 01+/-01 01+/-0.1 0.5+/-02
: text-davinci-003 6 N 0.0 +/-0.0 1.0+/-0.0 0.0+/-0.0

Inanimate

text-davinci-003 0 Y 02+/-01 02+/-01 0.5+/-0.2
text-davinci-003 6 Y 0.0 4+/-0.0 1.0+/-0.0 0.0+/-0.0
text-davinci-003 0 N 0.3+/-02 03+/-02 0.5+/-0.2
Control text-davinci-003 6 N 00+4/-00 1.0+/-0.0 0.0+/-0.0
text-davinci-003 0 Y 0.3+/-02 03+/-02 0.5+4/-0.2
text-davinci-003 6 Y 0.0+/-0.0 1.0+/-0.0 0.0+/-0.0
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Table E.6: Animate, inanimate, and control object and location bias for text-davinci-
003 on prompts from the group Fruit targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate

denotation.
Category Model H Anim Obj p Loc p Obj bias
text-davinci-003 0 N 0.1+4/-01 01+4/-01 0.5+/-0.2
Animate text-davinci-003 6 N 09+/-02 01+4+/-02 09+/-0.2
text-davinci-003 0 Y 0.1+4+/-01 01+4/-01 0.5+/-0.2
text-davinci-003 6 Y 1.0+/-02 00+/-02 1.0+/-0.2
text-davinci-003 0 N 0.1+4+/-00 0.1+4/-0.0 0.5+/-0.2
. text-davinci-003 6 N 0.7+/-04 03+/-04 0.7+/-04
Inanimate
text-davinci-003 0 Y 0.0 +/-0.0 0.0+/-0.0 0.5+/-0.2
text-davinci-003 6 Y 08+/-03 02+4/-03 0.8+/-0.3
text-davinci-003 0 N 00+/-00 0.0+4/-0.0 0.5+/-0.3
- inci- . - 0. . - 0. 1. - 0.
Control U davinci-003 6 N 1.0+/-0.0 0.0+/-00 1.0+/-0.0
text-davinci-003 0 Y 0.1+/-0.0 01+/-0.0 05+/-0.2
text-davinci-003 6 Y 1.0 +/-0.0 00+/-01 1.0+/-0.0
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