
Reasoning in the Time of Scaling

Laura Ruis

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

January 28, 2026

To my parents, who gave me a childhood so secure I learned to choose curiosity

over safety.

Acknowledgements

I spent most of my life more interested in other things than science, even taking

a few years after high school to work in restaurants across Europe before finally

going to university. All that changed when I encountered Artificial Intelligence

at the end of my undergraduate degree at the University of Amsterdam. I

switched to AI for my MSc, marking the beginning of my passion for the topic.

I feel incredibly lucky to have had many people shape my career.

I am deeply indebted to those who believed in me early on, when I had no

programming skills to speak of, no research experience, and only a shallow

understanding of AI. The first was Jasmijn Bastings, who took me on as an MSc

student at the UvA Institute for Logic, Language and Computation, where she

taught me the basics of experimental design, reproducing existing work, and

testing hypotheses without succumbing to graduate student descent on the test

set. Those lessons still serve me every day. Then Brenden Lake took me on as

an intern at Facebook AI Research for my first full research project. From him

I learned to think about what was still missing from AI: the richness of human

cognition. He introduced me to cognitive science, and the time at FAIR and

NYU was formative. The questions I encountered there, about what it means to

truly understand, to learn, to generalise, run through every chapter of this thesis.

These experiences landed me a PhD position with Edward Grefenstette and

Tim Rocktäschel at UCL DARK, to whom I owe the most. All four years

of my PhD were a pleasure, and I owe that to the lab Ed and Tim built.

Beyond a place of technical excellence, filled with people with a passion for AI,

they created a safe place and looked out for students’ wellbeing. They also

taught me to think deeply about the potential impact of my research, placing

it within the broader trajectory of the field, and motivated us to do research

that would remain relevant as AI systems grew more powerful. Beyond that,

6

each shaped me in distinct ways. Tim, I feel lucky to have absorbed your

unique approach to AI research: the north-star method, focusing on long-term

goals and working toward them step by step. This approach has cured me of

worrying about being scooped, and it is something I hope to carry forward if I

ever get to build my own lab. I also owe you my external brain in Obsidian,

without which I feel like only half a researcher. Ed, your incredibly broad

range of knowledge, and way of asking and answering research questions, has

shaped the core direction of many chapters in this thesis. Also, making me read

Philosophical Investigations in my first year shaped my thinking in lasting ways.

The UCL DARK lab is full of remarkable people, and I am grateful to all

of them for being cracked researchers to look up to: Akbir, Robert, Mika,

Zhengyao, Minqi, Yingchen, Davide, Nathan, Ahmet, and Ross. My desk

was right next to that of Akbir Khan, who became my best friend in London.

Anyone who knows Akbir knows he is the life energy of every group, and I love

you for making my PhD and time in London fun. I am also grateful to Rob

Kirk, who became a dear friend and slowly convinced me of the importance of

AI safety. I feel safer working on AI knowing that you dedicate your career to it.

A non-trivial part of my PhD was spent interning at Cohere, and I owe an

important part of this thesis to my manager Max Bartolo. Max and I pursued

an overly ambitious project for an internship, and it became one of my favourite

collaborations. Working with an adviser who was involved in every aspect

— from in-the-weeds XLA bugs to high-level research questions — was an

absolute pleasure. Without your constant belief in a project that lasted much

longer than we had anticipated, I would have never been able to answer the

research question in Chapter 3 of this thesis. As a side effect, my time at

Cohere significantly enriched my life in London, where I met many amazing

people, some of whom became collaborators: Max Mozes, Sid, Dwarak, and

Acyr. In Acyr I found more than a collaborator. Getting to know the hidden

range of your passions, your rare combination of leading teams with humour,

real warmth, and deep technical knowledge, has been a treat I did not see

coming, but one I hope to keep learning from.

I owe thanks to many other collaborators and friends in AI I have met along the

way. Ekdeep, you may know the most about how AI works of anyone I know,

and I am happy to call you my friend. Jonny, working with you was the first

7

time another PhD student wanted to build on my work in that way, and led to

a project driven by you that I am very proud of and covers a whole chapter

in this thesis. I want to thank you for that. Others who have touched my

PhD time in important ways are Ethan, Emile, Evgenii, Silvia, Stella, Juhan,

Arduin, Herbie, Saeed, Robert de Vries and Mark Hill, Sara Hooker, Marco

Baroni, Julia Proskurnia, Jyrki Alakuijala, Martin Bruse, and Jacob Andreas.

Moreover, I am grateful to the students that were willing to work with me and

teach me about advising research: J, Itamar, Yi, Alex, Can, Russell, Efstathios,

and Rob. Working with you has given me some of the highlights of my career.

On the personal side, the most important presence during my PhD has been

Philipp, whose love and support carried me through my time as a researcher.

Together we dealt with the stress of our PhDs by climbing mountains without

preparation or the necessary gear (I’ll never forget the patience with which

you countered my mental breakdowns on Maja Jezerce). From you I learned

to deeply question my assumptions, never satisfied with a particular level of

understanding. You made me a better researcher and thinker. Only when you

moved to London did it truly start to feel like home.

Another person who made London feel more like home is Lena. When you tried

to headhunt me for a startup and realised that was not going to happen, we

became friends instead. Our endless conversations over dinner (cooked by you)

became the highlight of my time here. Your combination of warmth, intelli-

gence, curiosity, and raw ambition is rare, and I feel lucky to have you as a friend.

I am deeply grateful to my dear old friends who stood by me while I pursued

my PhD. Words cannot express how much it means to me that we have stayed

friends while I moved away, always coming to visit me in the different countries

I moved to, always being my biggest fans: Esther, Inge, Ary, Emu, Robin,

Aweng, and Frederieke. Besides the cherished times that I got to see all of you

in person, I never knew how important group chats could be for my general

well-being (one of them unusually enthusiastic about edge cases). Some of you

have since become parents to my favourite additions to humanity: Joes, Lou,

Phoebe, and Robin. Watching your lives reshape around them has been one of

the joys of these years.

8

Last but not least, I want to thank my family, my unwavering foundation:

Elise, Henk, Ruud, Frank, Bella, Hasnaa, Emma, Kasper, and Sander. The

ability to come home to all of you makes my life abroad feel grounded and safe.

Bella, my sister, I feel attached to you through an invisible string, while we

both live life differently. You uncover every stone of life and show me what’s

beneath it. Because of you I have not only progressed professionally these past

four years, but am also learning to be a fuller human being. Frank, my brother,

you are the epitome of an investigator, turning everything your mind touches

into a deep rabbit hole. I admire your dedication to the full truth, and the

way you’re applying that to your personal journey. Mom, you taught me to be

non-judgemental and kind. You showed me what it means to dedicate your

work to others, taking on cases no one else would fight for. Dad, I owe you my

mind. I greatly admire you in your profession and as a writer, and the humour

and competence you bring to both. I owe both of you everything I get to do

with my life.

Declaration

I, Laura Eline Ruis, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this

has been indicated in the thesis.

Laura Eline Ruis

Abstract

This thesis investigates the nature of reasoning in large language models (LLMs)

within the context of the compute scaling paradigm. I define reasoning as the

process of deriving novel information from existing knowledge, an ability that

is difficult to evaluate when models train on trillions of tokens of data.

Across four studies, I progressively develop a characterisation of LLM reasoning.

First, I empirically demarcate LLM reasoning from memorisation by showing

that models learn distinct strategies from pre-training data for mathematical

and factual retrieval tasks. Reasoning involves generalising from shared patterns

across questions, while factual retrieval relies on specific instances. The second

study situates LLM reasoning further yet from memorised patterns. When

LLMs are fine-tuned to auto-regressively predict source code tokens for previ-

ously unseen programs, they also develop the ability to evaluate these programs

for inputs. This emergence demonstrates that models extract computational

principles during training that abstract away from specific inputs and generalise

beyond their original context. Turning my attention away from reasoning

that follows strict axioms, in the third study I show LLMs also acquire social

reasoning abilities during large-scale training. Models demonstrate human-level

performance in inferring implicit communicative intentions from ambiguous

text, suggesting pragmatic understanding. This ability emerges during large-

scale next-token prediction, strengthens with model scale, and is most improved

during post-training. However, my final study reveals that the socio-cognitive

mechanisms that underpin such human pragmatic understanding may not have

conclusively emerged. This underscores how machine reasoning may differ from

human reasoning. Taken together, these findings characterise LLM reasoning

as a versatile computational process that emerges with scale and generalises

beyond training data to novel contexts, highlighting the broader potential of

the compute scaling paradigm.

Impact Statement

The current economy is strongly oriented toward investment in artificial in-

telligence [NYT25]. In equity markets, the performance of the S&P 500 has

been disproportionately driven by a small group of technology companies, often

referred to as the “Magnificent Seven” (including Apple, Microsoft, Alphabet,

Amazon, Meta, Tesla, and NVIDIA) [FT25]. This concentration reflects an

underlying bet that continued advances in the compute scaling paradigm will

ultimately yield artificial intelligence with high return on investment. The

realisation of these returns hinges critically on whether large language models

(LLMs) — the central manifestation of the scaling approach — are capable of

reasoning, understood here as the ability to generate novel conclusions from

existing knowledge.

This thesis takes important initial steps toward addressing this fundamental

question by developing methods to characterise the nature and boundaries of

LLM reasoning capabilities. While these findings contribute to understanding

LLM capabilities, they represent early progress on a complex question that will

require extensive further research to fully resolve. The emergence of reasoning

abilities in constrained domains suggests promise for the scaling paradigm, but

the distinct nature of machine reasoning processes and the limited scope of

current investigations leave substantial uncertainty about whether and how

these capabilities will translate to the broad, robust reasoning required for

transformative economic impact.

Contents

List of Figures 19

List of Tables 27

List of Abbreviations 37

1 Introduction 1

1.1 Outline . 6

1.2 List of Publications . 7

2 Background 9

2.1 Reasoning . 9

2.1.1 Social Reasoning . 10

2.2 Large Language Models . 12

2.2.1 Pre-training . 12

2.2.2 Post-training . 14

2.2.3 Compute scaling . 16

2.3 Influence Functions . 17

3 How Models Learn to Reason from Pre-training Data 25

3.1 Overview . 25

3.2 Method . 27

3.3 Experimental Setup . 29

3.4 Experiments and Results . 32

3.4.1 Quantitative analysis . 32

3.4.2 Qualitative analysis . 35

3.5 Related work . 38

3.6 Discussion, Limitations, and Future Work 39

16 Contents

4 How Models Learn to Reason from Code Data 43

4.1 Overview . 43

4.2 LLMs as Interpreters: Programming LLMs by Training on Code 45

4.3 Experimental Setup . 46

4.3.1 Datasets . 46

4.3.2 Training Details . 48

4.4 Results . 50

4.4.1 Random Arithmetic Results 50

4.4.2 Leetcode and Cipher Results 54

4.5 Related Work . 55

4.6 Discussion, Limitations, and Future Work 57

5 A Case Study in Social Reasoning: Pragmatics 59

5.1 Overview . 59

5.2 Evaluation Protocol . 61

5.3 Experiments . 63

5.4 Related Work . 70

5.5 Discussion, Limitations, and Future Work 72

6 A Case Study in Social Reasoning: Theory of Mind 75

6.1 Overview . 75

6.2 Evaluation Protocol . 77

6.3 Experiments . 82

6.4 Related Work . 83

6.5 Discussion, Limitations, and Future Work 84

7 Conclusions 87

7.1 The Nature of LLM Reasoning 87

7.2 Discussion . 90

7.2.1 Stochastic Parrots, or Not? 90

7.2.2 The Surprising Effectiveness of Next-token Prediction at

Scale . 91

7.2.3 Pre-training or Post-training, Where do Models Learn to

Reason? . 91

7.2.4 Scaling Compute Infinitely 92

7.3 Concrete Future Directions . 93

Bibliography 98

Contents 17

A How to Kick Your Appendix-Skipping Habit 123

B How Models Learn to Reason from Pre-training Data 125

B.1 Counterfactual Re-training Experiments with Influence Functions127

B.2 EKFAC Influence Functions . 132

B.2.1 Justifying Approximations 133

B.2.2 Full implementation . 134

B.3 Query sets . 136

B.4 Query keywords for finding the answer 140

B.5 Prompts given to Command R+ for finding the answer 141

B.6 Prompts for characterising the query-document relation 146

B.7 Further discussion of limitations 150

B.8 Additional qualitative analysis 151

B.8.1 Answers to questions in pre-training data 151

B.8.2 Cross-lingual transfer . 157

B.8.3 Characterise relation top documents to query 159

B.8.4 Source dataset analysis 161

B.8.5 Content analysis of relevant documents 166

B.9 Additional quantitative analysis 167

B.9.1 Correlation analysis . 167

B.9.2 Magnitude of influence 181

B.9.3 Influence spread: power laws 185

C How Models Learn to Reason from Code Data 191

C.1 Hyperparameters . 191

C.1.1 SFT . 191

C.1.2 RL . 191

C.2 Data Scaling . 192

C.2.1 Ablation over Dataset Size 192

C.2.2 Ablation over Number of IO Pairs 192

C.3 Single-Stage Programming by Backprop 193

C.4 Online vs. Offline Retroactive-PBB 195

C.5 Ciphers Data . 195

C.6 Natural Language Descriptions 195

C.7 Compute Requirements . 196

18 Contents

D A Case Study in Social Reasoning: Pragmatics 197

D.1 Background on implicature . 198

D.2 Detailed prompt templates . 200

D.3 Model categorisation . 203

D.4 Human evaluation . 204

D.5 Comparison with BIG-bench implicatures task 207

D.5.1 Discarding ambiguous examples 207

D.5.2 Overestimation of performance on implicature under-

standing . 208

D.5.3 Other limitations . 209

D.6 Chain-of-thought completions by GPT-4 210

D.7 Additional results . 212

D.7.1 Contrastive experiment 212

D.7.2 Variance over prompt ordering 213

D.7.3 Different zero-shot instruction prompts 214

D.7.4 The effect of in-context examples on sensitivity to prompt

wording . 215

D.7.5 Variance over API runs 215

D.7.6 Experiment with random in-context labels 217

D.7.7 Chain-of-thought on base models 218

D.7.8 Testing for spurious correlations 218

D.7.9 Detailed results type label analysis 220

D.7.10 Detailed results per model 221

D.8 Timestamps API calls . 256

D.9 Compute and Emissions . 260

E A Case Study in Social Reasoning: Theory of Mind 271

E.1 Detailed results . 271

List of Figures

2.1 A Chinchilla scaling law [Hof+22], where T is the number of tokens,

and L(D,T) is the estimated loss of a model with D parameters and

T tokens. The parameters L0, A, B, α and β are empirically fitted

across multiple model and token sizes (shown here for four model

sizes D1 to D4). Using Chinchilla scaling laws, the compute-optimal

model and token size can be obtained by minimising L(D,T) subject

to compute constraints. 17

3.1 A summary of our most important findings towards answering the

question “how do LLMs learn to reason from pre-training data?” We

rank 5 million pre-training documents according to their influence

on the likelihood of completions of two models, Cohere’s Command

R 7B and 35B, for 40 factual and 40 reasoning queries. We find

that procedural knowledge drives influence on reasoning traces: a

document’s influence on the reasoning traces of one query is strongly

predictive of that document’s influence on another query with the

same mathematical task, in 3 of the 4 tasks. We show this on the

left through arrows indicating influence, and on the right through

correlations of all 5M document influences between a random sample

of 10 queries per task (a plot with all queries can be found in Figure

B.8 in Appendix B.9.1). Further, we find that the answers to factual

queries often show up in the top 0.01% of pre-training documents (see

text in bottom row of documents), but not for the reasoning questions.

Finally, individual documents influence reasoning traces much less

strongly than factual answer generations, indicating models rely on

documents less when reasoning. All documents and queries shown

are redacted versions of real data, and the relations are based on

documents found in the top 50 for the queries. 26

20 List of Figures

3.2 The pipeline for creating rankings of the most influential pre-training

documents for a question-completion pair (query) using influence

functions. The documents at the top of the ranking influence the

likelihood of the completion positively, and the bottom negatively. We

create rankings for a set of 40 reasoning, 40 factual, and 20 control

queries over 5 million pre-training documents (2.5B tokens) for two

models of different sizes (Cohere’s Command R series, 7B and 35B). 29

3.3 The total influence per nat of query completion information for different

portions of the positive ranking over documents, left for the 7B model,

right for the 35B. The total influence per nat is usually lower for

reasoning questions than for factual questions, and the influence

per document varies more for factual questions than for reasoning

questions, especially for the 35B model. 33

3.4 We search for the answer in the top 500 (top 0.01%) documents, and

find it relatively frequently for the factual questions. For the reasoning

questions, we find the answer twice for the 7B, and never for the 35B.

Both those times, the answers to the steps occur in separate documents. 35

4.1 When LLMs are fine-tuned to auto-regressively predict source tokens

for previously unseen programs, the ability to evaluate these programs

for inputs also emerges, provided they are separately trained on I/O

pairs for different programs. We call this Programming by Backprop

(PBB), and demonstrate it on three datasets: random arithmetic

programs, Leetcode programs, and custom ciphers. Models can learn

to evaluate programs implicitly, executing multiple lines of code in the

forward pass, as well as by using chain-of-thought reasoning. General-

isation happens to later seen code (Proactive-PBB) as well as earlier

seen code (Retroactive-PBB), but the latter mainly if reinforcement

learning is used. In this Figure, we use ‘Group A’ to refer to w/ IO

programs (trained on as both code and I/O pairs), and ‘Group B’ to

refer to w/o IO programs (trained on only as code, before testing on

I/O pairs). 44

4.2 Left: Accuracy of Llama-3.1-8B-Instruct following Proactive-PBB

on evaluating w/o IO random arithmetic programs represented as

natural language or code. The use of data augmentation is also

ablated. Right: Accuracy of different models following Proactive-

PBB for compositions of two programs that have been trained on

independently. 50

List of Figures 21

4.3 Left: Accuracy of Llama-3.1-8B-Instruct following each stage of

Proactive-PBB on evaluating w/o IO Leetcode programs. Right:

Accuracy of different models at evaluating w/o IO Leetcode programs

following Retroactive-PBB. 52

4.4 Accuracy of GPT-4o when encrypting text with ciphers trained on

only as code, or when trained on as demonstrated execution traces

with unevenly distributed shifts. 53

5.1 A schematic depiction of the protocol we propose to evaluate whether

language models can resolve implicatures. Each example in the test

set gets wrapped in templates and transformed into an incoherent

example by swapping “yes” and “no”. The model is said to resolve

the implicature if it assigns a higher likelihood to the coherent text

than the incoherent text. 60

5.2 The few-shot accuracy for the best model of each class (e.g. the best

performing model in the class Cohere-command is the 52B model,

whereas the best model in the class OPT is the 13b model). The

bars show the group means. Models fine-tuned on example-level

instructions perform better than most other models, especially for

k > 0. For all models there is a significant gap between best accuracy

and human accuracy (which is 86.2%). * means size unknown. . . . 66

5.3 Scaling results for the model classes of which we know the number of

non-embedding parameters. The error bars show standard deviation

over prompt templates. Cohere’s command models instruction-tuned

at the example-level perform better than all other models. For all

models there is still a significant gap between best accuracy and human

accuracy. 68

5.4 The accuracy v. k for the generalised and particularised examples

obtained by the Example IT models Cohere-command and GPT-4.

Particularised (context-heavy) examples are often significantly more

difficult than generalised (context-free) examples for both models and

humans. For most models, in-context prompting can mitigate this,

but for others (like GPT-4), a significant gap remains. We see that

Cohere-command-52B achieves similar performance as GPT-4 on the

particularised examples, but significantly lower on the generalised

examples. 71

22 List of Figures

6.1 A visual depiction of our test inspired by Woodward [Woo98]. We

prompt an LLM with k ambiguous linguistic habituations that can be

explained either by the goal being the object or the location (k = 2

in the image). We then test the bias the model shows for assuming

the goal was the object (left-bottom) or the location (right-bottom).

We say a model selectively encodes the goal if it shows a distinct bias

when an agent appears to be acting purposefully. 76

6.2 The results for text-davinci-003, GPT-3.5-turbo, and GPT-4 for k = 0

(left) and k = 6 (right) habituations. For k = 0, we expect the

object bias to be roughly 0.5 (equal selection of object bias target

and location bias target). For k = 6 in the right column of the figure,

recall that if the model is encoding irrelevant surface-level patterns of

the prompt, we expect a strong object bias for the fruit target prompt

variations (top-right) and a strong location bias for the pillar target

prompt variations (bottom-right), regardless of whether the test case is

animate, inanimate, or control. Indeed, we observe a general stronger

object bias for the top row than the bottom row when k = 6. We

further see that all models have a higher object bias for the animate

test cases than for the inanimate, but show a similar bias for the

control test case as the animate case for the fruit target variations

(top-right plot). GPT-3.5-turbo and GPT-4 are the only models that

also show a similar bias for the control test case as the inanimate

case, which means they selectively encode the goal of an agent’s reach

(i.e. the biases for inanimate and control are similar and distinct from

animate). However, only when the target is the pillar (bottom-right

plot), and GPT-4 does so only very weakly. The error bars represent

the standard deviation over the two prompt templates in each group

(fruit targets and pillar targets). 80

List of Figures 23

B.1 (a) Counterfactual retraining experiments on Wikitext-2. We fine-

tuned GPT-2 (124M) on Wikitext-2 and use three different methods

to remove training examples from the training set: randomly, TracIn,

and Influence Functions (IF). For each number of samples removed

we fine-tune the base model five times with different training data

ordering, the variance over these runs is represented by the error

bars. Each point on the plot is the average perplexity achieved by

the five models after fine-tuning on the augmented dataset. We find

that influence functions can find examples that impact the perplexity

significantly more than baselines. (b) We repeat the same experiment

as in (a), but retain top influential queries instead (removing most

negatively influential). 129

B.2 Counterfactual retraining experiments on reading comprehension

benchmark DROP (a) and the multiple-choice reasoning dataset RACE

(b). 131

B.3 For the reasoning and factual sets, we compare the amount of docu-

ments from a certain source dataset that show up in the top portions

of the rankings to the amount you would expect to show up if you

randomly sample from the pre-training distribution (indicated by

‘Training distribution’ in the figure). The top two plots are for the

7B, and the bottom for the 35B. We find that data from Wikipedia

and Math & Trivia are important for the factual questions for both

models, for the reasoning questions Math & Trivia, StackExchange,

Code, and ArXiv data is important. In all cases, the multipliers tend

to the training distribution for higher k. 161

B.4 For the reasoning and factual sets, We compare the amount of doc-

uments from a certain source dataset that show up in the bottom

portions of the rankings to the amount you would expect to show up

if you randomly sample from the pre-training distribution (indicated

by ‘Training distribution’ in the figure). The top two plots are for

the 7B, and the bottom for the 35B. We find the patterns are almost

identical to those shown for the top portions of the ranking: data

from Wikipedia and Math & Trivia are important for the factual

questions for both models, for the reasoning questions Math & Trivia,

StackExchange, Code, and ArXiv data is important. In all cases, the

multipliers tend to the training distribution for higher k. 163

24 List of Figures

B.5 For the query control sets, we also compare the amount of documents

from a certain source dataset that show up in the top portions of the

rankings to the amount you would expect to show up if you randomly

sample from the pre-training distribution (indicated by ‘Training

distribution’ in the figure). The top two plots are for the 7B, and

the bottom for the 35B. We find that code is still overrepresented,

but arXiv as source is less overrepresented for the top portions of the

reasoning control set than for the reasoning set. 164

B.6 For the query control sets, we also compare the amount of documents

from a certain source dataset that show up in the bottom portions

of the rankings to the amount you would expect to show up if you

randomly sample from the pre-training distribution (indicated by

‘Training distribution’ in the figure). The top two plots are for the 7B,

and the bottom for the 35B. We find that it again looks similar to the

source distribution for the top of the rankings for the query control sets.165

B.7 Comparison of capability categories identified for the most and least

influential documents for the reasoning queries, as well as for a random

subset of sampled documents. We repeat the random sampling three

times and report mean scores with standard deviations indicated. . . 166

B.8 The correlation between the influence scores of all 5 million documents

for pairs of queries. All queries are on the x- and y-axis, with the

first 40 belonging to the factual set, the next 40 to the reasoning

set (arithmetic and slopes for the 7B, and linear and slopes for the

35B), the following 10 to the factual control set, and the last 10 to the

reasoning control set. The take-away is that there is only a signficant

correlation between queries of the same reasoning type, most strongly

so for the 35B slopes queries. 167

B.9 The average correlations between the influences of all documents for

queries of a specific type grouped. We leave out any query combinations

where the correlation is not significant and any combination where

the query on the x- and y-axis is the same query. We again observe

that there is only a correlation of influence for queries of the same

reasoning type. 168

B.10 The total influence per nat of query completion information for different

portions of the positive ranking over documents, left for the 7B model,

right for the 35B. In this case, we only plot queries that are present in

the query sets for both models. This means the prompt is the same,

but the completion is be different. The pattern is very similar as the

observed pattern for the top of the ranking. 181

List of Figures 25

B.11 The total influence per nat of query completion information for different

portions of the negative ranking over documents, left for the 7B model,

right for the 35B. We again only plot queries that are present in the

query sets for both models. In this case, the k-th percentile contains

the top k % of most negatively influential documents. The pattern is

very similar as the observed pattern for the top of the ranking. . . . 182

B.12 The total influence per nat of query completion information for different

portions of the positive ranking over documents, left for the 7B model,

right for the 35B. We plot all queries, including the query control sets

for both factual and reasoning, which contain 10 queries each. 182

B.13 The total influence per nat of query completion information for different

portions of the negative ranking over documents, left for the 7B model,

right for the 35B. We plot all queries, including the query control sets

for both factual and reasoning, which contain 10 queries each. 183

B.14 The total influence per nat of query completion information for different

number of documents k of the positive ranking, left for the 7B model,

right for the 35B. We plot all queries, including the query control sets

for both factual and reasoning, which contain 10 queries each. 183

B.15 The total influence per nat of query completion information for different

number of documents k of the negative ranking, left for the 7B model,

right for the 35B. We plot all queries, including the query control sets

for both factual and reasoning, which contain 10 queries each. 184

B.16 The ranked influence scores per query nat for each query shown

separately in log-log space. We observe; the results follow power laws

(linear in log-log space), everything is shifted up for the 35B model

(right), generally the scores for the reasoning documents are lower

for the 7B model, and for the 35B model there is less variance in

magnitude of influence for reasoning queries than for factual queries,

and more often than not the influence scores are lower than for factual

questions. 185

B.17 The ranked influence scores per query nat for each query shown

separately in log-log space again, but now also showing the control

queries. We observe that also for the control queries the influence is

much more volatile than for reasoning questions, and on average the

magnitude is higher. 185

B.18 The percentage of total influence per nat of query completion informa-

tion for different portions of the positive ranking over documents, left

for the 7B model, right for the 35B. We plot only non-control queries. 188

26 List of Figures

B.19 The percentage of total influence per nat of query completion infor-

mation for different portions of the positive ranking over documents,

left for the 7B model, right for the 35B. We plot all queries, including

the query control sets for both factual and reasoning, which contain

10 queries each. 188

B.20 The percentage of total influence per nat of query completion informa-

tion for different portions of the negative ranking over documents, left

for the 7B model, right for the 35B. We plot only non-control queries. 189

B.21 The percentage of total influence per nat of query completion infor-

mation for different portions of the negative ranking over documents,

left for the 7B model, right for the 35B. We plot all queries, including

the query control sets for both factual and reasoning, which contain

10 queries each. 189

C.1 Performance comparison of Llama models across 1B, 3B and 8B on

w/ IO and w/o IO Random Arithmetic program evaluation. Each

model is trained and tested across varying dataset sizes. Dataset size

refers to the number of unique functions present in the dataset. . . . 193

C.2 Impact of varying the number of IO training pairs for w/ IO programs

and w/o IO sets evaluation accuracy. Results are shown for the

Llama-3.2-3B-Instruct model using a Random Arithmetic dataset

comprising 200 distinct functions. 193

C.3 Comparing two-stage Proactive-PBB to a single SFT stage on the full

Random Arithmetic training data mixture for different numbers of

repeated source code samples. The base model is Llama-3.1-8B-Instruct.194

C.4 Comparing fine-tuning algorithms for the second stage of Retroactive-

PBB on Random Arithmetic with Llama-3.1-8B-Instruct. DPO is

an offline method, but allows for learning from positive and negative

examples. GRPO is online and thus has the added benefit of learning

from on-policy data. 195

C.5 Sampled shifts for cipher I/O pairs. 196

D.1 A screenshot of how the experiment is presented to potential annotators

on Prolific (www.prolific.co). 204

D.2 Screenshots of the Google form participants fill out as part of the

implicature study. 205

D.3 Relative performance increase over 0-shot due to in-context prompting.

Structured prompt templates are dashed lines (1, 3, 4) and natural

prompt templates dotted lines (2, 5, 6). 215

www.prolific.co

List of Tables

3.1 Example from the reasoning set that involves simple two-step arithmetic. 30

3.2 Example from the factual set that requires retrieving the right answer. 30

5.1 The k-shot accuracy (k ∈ {0, 1, 5}) for the best performing model

of each class. For each model, we select the model size to show by

choosing the one that achieves the best 5-shot performance. The std is

over prompt templates for the models and over annotators for humans.

FT stands for fine-tuning and IT for instruction-tuning. We find

that the models in the Example IT class obtain significantly higher

performance than all others. ⋆ means size unknown. 65

5.2 Scaling results for OpenAI’s text-< engine>-001-series, for which we

do not know the number of non-embedding parameters but do know

the ordering in terms of size. The colors indicate whether going up in

size (from left-to-right) increases performance significantly or not. . . 68

5.3 Results of the chain-of-thought (CoT) experiment for models in the

group Example IT. The numbers between brackets show the difference

in performance with the number on the same row one column to the left.

Most models benefit from CoT-prompting, but not all. Additionally,

GPT-4 reaches average human-level performance with CoT prompting.

⋆ means size unknown. 69

5.4 An example from the dataset for two types of implicature found in

the test set. The rightmost column shows the amount of that type we

manually found in the test set. 70

6.1 The prompt variations we use in our evaluations. For each template

text, the target word is bolded. 77

B.1 Wikitext remove top influential . 128

B.2 Wikitext remove bottom influential 128

28 List of Tables

B.3 Counterfactual re-training accuracies on DROP (free generation of

answers). We use three different methods (random, TracIn, influence

functions) to remove k datapoints, and re-train a model on the resulting

dataset. Each number is the mean over five re-training runs with

different data ordering. ⋆ indicates significantly lower than random

with a p-value below 0.1 and ⋆⋆ with a p-value below 0.05. The

underlined means are the lowest. 130

B.4 Counterfactual re-training accuracies on RACE (multiple-choice). We

use three different methods (random, TracIn, influence functions) to

remove k datapoints, and re-train a model on the resulting dataset.

Each number is the mean over five re-training runs with different data

ordering. ⋆ indicates significantly lower than random with a p-value

below 0.1 and ⋆⋆ with a p-value below 0.05. The underlined means

are the lowest. 130

B.5 Score correlations of using increasingly more approximations with a

full implementation. 134

B.6 Reasoning query set (slopes). Example from the reasoning set

that involves calculating the slope of a line going through two points.

We have 20 examples like these on different points. The completion is

by the 7B model, but we use the same questions for the 35B model. 137

B.7 Reasoning query set (linear). Example from the reasoning set

that requires solving for x in a linear equation. We have twenty other

examples like these on different numbers, only for the 35B model. The

completion is by the 35B model. 137

B.8 Factual control query set (7B). Example from the factual control

set that resembles the question about the tallest mountain in the world

from the 7B factual query set (Table 3.2), but does not require any

factual recall. The completion is by the 7B model. 138

B.9 Factual control query set (35B). Example from the factual control

set that resembles the first factual query for the 35B model superficially,

but does not require any factual recall. The completion is by the 35B

model. 138

B.10 Reasoning control query set (7B). Example from the reasoning

control set that resembles the slope queries superficially, but does not

require any reasoning. The completion is by the 7B model. 139

B.11 Reasoning control query set (35B). Example from the reasoning

control set that resembles the slope queries superficially, but does not

require any reasoning. The completion is by the 35B model. 139

List of Tables 29

B.12 Raw counts of the amount of times Command R+ assigns a certain

keyword to a query-document pair to characterise its relation, for the

arithmetic (7B) queries. 159

B.13 Raw counts of the amount of times Command R+ assigns a certain

keyword to a query-document pair to characterise its relation, for the

slopes (7B) queries. 159

B.14 Raw counts of the amount of times Command R+ assigns a certain

keyword to a query-document pair to characterise its relation, for the

slopes (35B) queries. 160

B.15 Raw counts of the amount of times Command R+ assigns a certain

keyword to a query-document pair to characterise its relation, for the

linear (35B) queries. 160

B.16 Two query examples, of which one is from the reasoning set (slopes) and

the other from the reasoning control set that resembles the slope queries

superficially, but does not require any reasoning. The completions are

by the 7B model. 169

B.17 Two query examples for which the Pearson’s R correlation of their

document influences is 0.63, both from the factual set of the 7B model.

We observe that the main similarity between these queries is that they

both concern short “what” questions, and the completions both are

short answers with quotes used. 171

B.18 Two query examples for which the Pearson’s R correlation of their

document influences is 0.08, both from the factual set of the 35B

model. We observe that the main similarity between these queries is

that they both concern short “what” questions, and the completions

both are relatively short answers with quotes used. 172

B.19 Two query examples for which the Pearson’s R correlation of their

document influences is -0.03, one from the factual set (top), and one

from the factual control set (bottom). We observe that although the

formatting is similar, and there are some overlapping concepts, there

is no correlation between the document influences. 173

B.20 Two query examples for which the Pearson’s R correlation of their doc-

ument influences is 0.89, both from the reasoning query set concerning

calculating slopes. We observe that, although the reasoning is applied

to different numbers, the steps follow an identical pattern. In fact, the

only difference between the two queries, including completions, is the

numbers used. 175

30 List of Tables

B.21 Two query examples for which the Pearson’s R correlation of their

document influences is 0.55, both from the reasoning query set con-

cerning calculating the slope. We observe that the second completion

is structured very similarly to the first, except it has less new lines. . 176

B.22 Two query examples for which the Pearson’s R correlation of their

document influences is 0.38, both from the reasoning control set for

the 7B model. We observe that the formatting is very similar, but the

correlation is still lower than for the reasoning queries above. 177

B.23 Two query examples for which the Pearson’s R correlation of their

document influences is 0.35, both from the reasoning control set for

the 35B model. We observe that their completions are very different,

indicating that it can not only be superficial similarities that drive

correlations. 178

B.24 Two query examples for which the Pearson’s R correlation of their doc-

ument influences is 0.49, both from the reasoning query set concerning

two-step arithmetic. We observe that one of the operations required is

overlapping (+ 6), and the completion is somewhat similarly formatted

but not fully. 179

B.25 Two query examples for which the Pearson’s R correlation of their doc-

ument influences is 0.94, both from the reasoning query set concerning

two-step arithmetic. We observe that not only is the completion very

similarly formatted, but one of the operations overlaps (multiplying

something by 2). 180

B.26 Slopes of the fitted functions to the top 500 documents in the influence

rankings in log-log space, separated by query set and whether the

model gets the question right or wrong. ⋆ indicates the significance of

an independent T-test performed between the slopes of the factual vs.

reasoning queries, where ⋆ indicates a p-value below 0.1 and ⋆⋆ below

0.05. 186

D.1 Ranking prompt templates. The six templates we wrap the test exam-

ples in to present to the models. Template 1, 3, and 4 are of the type

structured, and 2, 5, and 6 of the type natural. Within the type of

prompt template they only differ slightly in wording. 200

D.2 Completion prompt templates. The six adjusted templates we wrap

the test examples in to present to the models when we use completion

instead of likelihood ranking. Template 1, 3, and 4 are of the type

structured, and 2, 5, and 6 of the type natural. Within the type of

prompt template they only differ slightly in wording. 201

List of Tables 31

D.3 The three additional templates we wrap the test examples in to present

to the models, adapted from [Gla+22]. 201

D.4 Chain-of-thought (CoT) prompt templates. One of the six chain-of-

thought prompt templates we use for the CoT experiment. Note

that this is a 5-shot prompt. Each prompt variation contains five

CoT examples. The other five variations are separately added to the

supplementary materials . 202

D.5 Model categorisation for each of the models. DL stands for dialogue,

FT for fine-tuning, BL for benchmark-level, EL for example-level, and

IT for instruction-tuning. 203

D.6 The performance of the human annotators on the subsets of the test

set. Subset 1 through 4 are non-overlapping and cover the whole

test set. Annotator X for subset Y might be a different human than

annotator X for subset Z. IAA is the average pairwise inter-annotator

agreement (Cohen’s kappa coefficient) between annotators per subset. 206

D.7 Performance on the implicature task framed contrastively by OpenAI’s

text-davinci-002. The mean and standard deviation are reported over

two different prompt templates (template 1 and 2). 213

D.8 Variance over prompt ordering for 5-shot evaluation per prompt tem-

plate (P.T.) for text-davinci-002 . 214

D.9 Zero-shot accuracy over three additional prompt templates for a base

LLM and two instructable models. 214

D.10 Results per prompt template (P.T.) for 10 different runs from text-

davinci-002 for 0-shot evaluation. Each evaluation has exactly the

same text, so the variance in performance is due to API stochasticity. 216

D.11 Results per prompt template (P.T.) for 10 different runs from Cohere-

52B for 0-shot evaluation. Each evaluation has exactly the same text,

so the variance in performance is due to API stochasticity. 216

D.12 The results of the 1- and 5-shot experiment with random labels for

the few-shot examples as opposed to the the true labels. We find that

performance does not degrade for the models in the Example IT group,

which implies that for these models not the content of the examples is

important for performance, but the structure. 217

D.13 Results of the chain-of-thought (CoT) experiment for models in the

base group. The numbers between brackets show the difference in

performance with the number on the same row one column to the

left. These models do not benefit from CoT-prompting. The reason

Cohere-6b achieves such a low score for CoT-prompting is because it

is not able to adhere to the correct output format (yes/no). 218

32 List of Tables

D.14 Results of running the benchmark with only the utterance as input,

to test for spurious correlations with the label. 218

D.15 Results of running the benchmark with only the response as input, to

test what part of the examples can be resolved without the utterance. 219

D.16 An example from the dataset for each type of implicature found in

the test set. The rightmost column shows the amount of that type we

manually found in the test set. 220

D.17 Accuracy per label for 0-shot evaluation. 221

D.18 Accuracy per label for 0-shot evaluation. 222

D.19 Accuracy per label for 1-shot evaluation. 223

D.20 Accuracy per label for 1-shot evaluation. 224

D.21 Accuracy per label for 5-shot evaluation. 225

D.22 Accuracy per label for 5-shot evaluation. 226

D.23 Accuracy per label for 10-shot evaluation. 227

D.24 Accuracy per label for 10-shot evaluation. 228

D.25 Accuracy per label for 15-shot evaluation. 229

D.26 Accuracy per label for 15-shot evaluation. 230

D.27 Accuracy per label for 30-shot evaluation. 231

D.28 Accuracy per label for 30-shot evaluation. 232

D.29 Accuracy per label for model group Example IT for 5-shot chain-of-

thought evaluation. 233

D.30 Accuracy per label for model group Example IT for 5-shot chain-of-

thought evaluation. 233

D.31 Accuracy per prompt template for BERT-cased. 233

D.32 Accuracy per prompt template for BERT-uncased. 234

D.33 Accuracy per prompt template for RoBERTa-base. 234

D.34 Accuracy per prompt template for RoBERTa-large. 235

D.35 Accuracy per prompt template for GPT-2-medium. 235

D.36 Accuracy per prompt template for GPT-2-large. 236

D.37 Accuracy per prompt template for GPT-2-xl. 236

D.38 Accuracy per prompt template for EleutherAI-125M. 237

D.39 Accuracy per prompt template for EleutherAI-1.3B. 237

D.40 Accuracy per prompt template for EleutherAI-2.7B. 237

D.41 Accuracy per prompt template for EleutherAI-6B. 238

D.42 Accuracy per prompt template for EleutherAI-20B. 238

D.43 Accuracy per prompt template for BLOOM-560M. 238

D.44 Accuracy per prompt template for BLOOM-1B1. 239

D.45 Accuracy per prompt template for BLOOM-1B7. 239

D.46 Accuracy per prompt template for BLOOM-3B. 239

List of Tables 33

D.47 Accuracy per prompt template for BLOOM-7B1. 240

D.48 Accuracy per prompt template for BLOOM-176B. 240

D.49 Accuracy per prompt template for OPT-125M. 241

D.50 Accuracy per prompt template for OPT-350M. 241

D.51 Accuracy per prompt template for OPT-1.3B. 241

D.52 Accuracy per prompt template for OPT-2.7B. 242

D.53 Accuracy per prompt template for OPT-6.7B. 242

D.54 Accuracy per prompt template for OPT-13B. 242

D.55 Accuracy per prompt template for OPT-30B. 243

D.56 Accuracy per prompt template for OPT-66B. 243

D.57 Accuracy per prompt template for OPT-175B. 244

D.58 Accuracy per prompt template for Cohere-409.3M (Cohere-small). . 244

D.59 Accuracy per prompt template for Cohere-6.067B (Cohere-medium). 245

D.60 Accuracy per prompt template for Cohere-13.12B (Cohere-large). . . 245

D.61 Accuracy per prompt template for Cohere-52B (Cohere-xl). 245

D.62 Accuracy per prompt template for GPT-3-350M (ada). 246

D.63 Accuracy per prompt template for GPT-3-1.3B (babbage). 246

D.64 Accuracy per prompt template for GPT-3-6.7B (curie). 246

D.65 Accuracy per prompt template for GPT-3-175B (davinci). 247

D.66 Accuracy per prompt template for BlenderBot-90M. 247

D.67 Accuracy per prompt template for BlenderBot-2.7B. 247

D.68 Accuracy per prompt template for BlenderBot-9.4B. 248

D.69 Accuracy per prompt template for T0-3B. 248

D.70 Accuracy per prompt template for T0-11B. 249

D.71 Accuracy per prompt template for Flan-T5-780M. 249

D.72 Accuracy per prompt template for Flan-T5-3B. 250

D.73 Accuracy per prompt template for Flan-T5-11B. 250

D.74 Accuracy per prompt template for Cohere-command-6b. 251

D.75 Accuracy per prompt template for Cohere-command-52b. 251

D.76 Accuracy per prompt template for text-ada-001-unknown. 252

D.77 Accuracy per prompt template for text-babbage-001-unknown. . . . 252

D.78 Accuracy per prompt template for text-curie-001-unknown. 252

D.79 Accuracy per prompt template for text-davinci-001-unknown. 253

D.80 Accuracy per prompt template for text-davinci-002-unknown. 253

D.81 Accuracy per prompt template for text-davinci-003-unknown. 254

D.82 Accuracy per prompt template for ChatGPT-unknown. 254

D.83 Accuracy per prompt template for GPT-4-unknown. 255

D.84 Timestamp each was evaluated through OpenAI’s API (1/2). 257

34 List of Tables

D.85 Timestamp each was evaluated through OpenAI’s API - continued

(2/2). 258

D.86 Timestamp each model was evaluated through Cohere’s API. 259

D.87 Timestamp, duration, and emissions per experiment with non-API

models. (1/6) . 261

D.88 Timestamp, duration, and emissions per experiment with non-API

models. (2/6) . 262

D.89 Timestamp, duration, and emissions per experiment with non-API

models. (3/6) . 263

D.90 Timestamp, duration, and emissions per experiment with non-API

models. (4/6) . 264

D.91 Timestamp, duration, and emissions per experiment with non-API

models. (5/6) . 265

D.92 Timestamp, duration, and emissions per experiment with non-API

models. (6/6) . 266

D.93 Compute used per experiment with non-API models. (1/4) 266

D.94 Compute used per experiment with non-API models. (2/4) 267

D.95 Compute used per experiment with non-API models. (3/4) 268

D.96 Compute used per experiment with non-API models. (4/4) 269

E.1 Animate, inanimate, and control object and location bias for GPT-4

on prompts from the group Pillar targets. H stands for habituations,

and Anim for whether (Y) or not (N) the prompt template has animate

denotation. 271

E.2 Animate, inanimate, and control object and location bias for GPT-4

on prompts from the group Fruit targets. H stands for habituations,

and Anim for whether (Y) or not (N) the prompt template has animate

denotation. 272

E.3 Animate, inanimate, and control object and location bias for GPT-

3.5-turbo on prompts from the group Pillar targets. H stands for

habituations, and Anim for whether (Y) or not (N) the prompt tem-

plate has animate denotation. 272

E.4 Animate, inanimate, and control object and location bias for GPT-

3.5-turbo on prompts from the group Fruit targets. H stands for

habituations, and Anim for whether (Y) or not (N) the prompt tem-

plate has animate denotation. 273

List of Tables 35

E.5 Animate, inanimate, and control object and location bias for text-

davinci-003 on prompts from the group Pillar targets. H stands

for habituations, and Anim for whether (Y) or not (N) the prompt

template has animate denotation. 273

E.6 Animate, inanimate, and control object and location bias for text-

davinci-003 on prompts from the group Fruit targets. H stands for

habituations, and Anim for whether (Y) or not (N) the prompt tem-

plate has animate denotation. 274

List of Abbreviations

LLMLarge Language Model

AIArtificial Intelligence

GPTGenerative Pre-Trained

SFTSupervised Fine-Tuning

RLReinforcement Learning

RLHFReinforcement Learning from Human Feedback

RLVRReinforcement Learning from Verified Rewards

DPODirect Preference Optimisation

GRPOGroup-Relative Policy Optimisation

PBBProgramming by Backpropagation

IO or I/O . . .Input/Output

ToMTheory of Mind

TDATraining Data Attribution

FOCFirst-order Optimality Condition

LOOLeave One Out

KFACKronecker-Factored Approximation to the Curvature

EKFACEigenvalue-corrected Kronecker Factorization

PBOProximal Bregman Objective

PBRFProximal Bregman Response Function

38 List of Abbreviations

IHVPInverse-Hessian-Vector product

FIMFisher Information Matrix

GNHGauss-Newton Hessian

i.i.d.Independent and Identically Distributed

Chapter 1

Introduction

We alone among Earth’s creatures inhabit a world of abstractions

and impossibilities, brooding over what never was, musing over

what might have been, and pondering what it will be like not to be.

We tell stories about our real experiences and invent stories about

imagined ones, and we use these stories to organize our lives.

Living our life in this virtual world, we slowly realized that no

other species can follow us here.

Terrence Deacon, The Symbolic Species (1997)

For decades, language production and comprehension was considered a uniquely

human behaviour [HCF02; PJ05; Fri17; TER19, inter alia.]. Today, large

language models (LLMs) challenge this assumption. In the four years spanning

my doctoral studies, LLMs evolved from experimental systems producing

syntactically correct but often incoherent text into sophisticated models ca-

pable of generating contextually appropriate, semantically rich text. Most

strikingly, they have become general-purpose tools integrated in millions of

daily workflows1, handling complex cognitive tasks that seemingly require

reasoning and understanding [WHL23; WHL24; McL+24; Dub+24; Gem+25;

Coh+25; Qwe+25, inter alia].

Much of these advancements are driven by scaling up computational resources

during development, such as model and training data size [Kap+20; Hof+22].

If we define reasoning as the process of deriving new information from existing

knowledge, the strong performance LLMs demonstrate on reasoning tasks alone

is insufficient evidence of genuine reasoning capability. After all, we cannot

1ChatGPT had 800 million weekly active users in April 2025 according to https://www.

demandsage.com/chatgpt-statistics/.

https://www.demandsage.com/chatgpt-statistics/
https://www.demandsage.com/chatgpt-statistics/

2 Chapter 1. Introduction

determine how closely these evaluation tasks resemble the training data. Do

LLMs extract reasoning principles implicit in the data, developing capabilities

that can generalise to novel problems, or does their apparent reasoning result

from similar sequences encountered during training? The distinction is crucial:

the former suggests a type of machine reasoning, while the latter implies a

more limited process unlikely to contribute meaningfully to existing knowledge.

In this thesis, I aim to characterise LLM reasoning within the context of the

compute scaling paradigm. I begin with a basic premise: the approach to

reasoning must differ qualitatively from the memorisation of facts if it is to

generalise beyond training data. Chapter 3 examines this distinction by con-

trasting how models learn mathematical reasoning with how they learn factual

retrieval. In a large-scale experiment, my collaborators and me trace model

predictions back to their origins in pre-training data, identifying which training

examples contribute most strongly to specific responses. The analysis reveals

a clear distinction: while factual responses draw on question-specific data,

mathematical reasoning responses consistently rely on task-specific pre-training

data, where the same underlying data influence multiple questions within a

reasoning task. This pattern suggests models rely on what I term procedural

knowledge for reasoning: knowledge patterns that transfer across multiple

examples. For example, when solving for x in 5 = 3x + 2 and 12 = 4x − 6,

models draw on similar data, indicating they acquire generalisable strategies

rather than memorise individual solutions.

Having established that LLM reasoning differs from the memorisation of facts,

in Chapter 4 I investigate the level of abstraction at which models acquire

procedural knowledge. Can LLMs learn computational principles that abstract

away from specific inputs? The previous chapter provides a clue: the most

influential training sequences for reasoning contain not only worked examples

with implicit procedural knowledge, but also explicit procedures : abstract, input-

general representations of the task solution, such as code implementations or

analytical formulas. An illustrative example of explicit procedural knowledge

is the following program for solving linear equations:

def solve_linear(a, b, c):

"""Solve ax + b = c for x"""

return (c - b) / a

3

However, the influence-based analysis in Chapter 3 identifies which training

examples matter most without explaining why they are influential. In Chap-

ter 4, we test whether LLMs can learn to apply procedures to novel inputs

from abstract procedural representations alone. Specifically, when an LLM is

fine-tuned by auto-regressively predicting the tokens of an unseen program’s

source code, does it also acquire the ability to evaluate the program for

inputs, without ever seeing input-output pairs for that specific program? The

results confirm models indeed to some extent learn to evaluate programs from

generative training on their source code alone, provided they receive separate

training on input-output pairs for programs implementing different procedures.

Although their performance is far from perfect, they generalise uniformly

across inputs from a single piece of code, and are able to evaluate compositions

of programs encountered separately during training. The findings in this

chapter confirm that LLMs extract abstract procedural knowledge from sym-

bolic representations and apply these procedures to novel cases at inference time.

The previous two chapters characterise LLM reasoning as distinctly different

from memorising patterns in pre-training data, showing how models extract

generalisable strategies from worked examples and symbolic representations

like code and mathematical formulas that can be applied in novel context.

However, the analysis so far has focused exclusively on domains with clear rules

and objective solutions: mathematics and logic follow strict axioms that make

correct reasoning unambiguous. Human reasoning, however, extends beyond

formal systems. Much of our cognitive work involves navigating the messy,

context-dependent world of social interaction, where success depends on implicit

knowledge of social norms, cultural conventions, and shared understanding.

Social reasoning requires inferring unstated assumptions, interpreting commu-

nicative intent, and modelling the mental states of other agents; capabilities

that seem to demand experiential learning rather than pattern extraction from

text. The final chapters extend the characterisation of LLM reasoning to the

social domain through two case studies.

I start by examining LLMs’ ability to understand language pragmatics, the

principle that utterances derive meaning not just from the literal words, but

from contextual factors like conventions, shared beliefs, and background knowl-

edge (Chapter 5). Consider Wittgenstein’s famous example: the exclamation

“water!’ [Wit53]. Without context, it could signal a person lost in the desert

4 Chapter 1. Introduction

finally seeing water in the distance, a homeowner’s alarm at discovering a

leak, or an environmental activist identifying humanity’s greatest challenge.

Can models interpret communicative intent, even when the relevant context is

not explicitly given in the text? Testing a range of LLMs on tasks requiring

interpretation of ambiguous language that humans readily understand, we find

that certain models do possess this capability. The ability emerges in base

models and strengthens with increased parameters, but the most significant im-

provement can be attributed to specific post-training methods designed to align

LLMs with human values. Taken together, the findings suggest that the abil-

ity to infer contextual meaning can be learned from passive, mostly textual data.

Human understanding of implicit communicative intent is thought to depend

on our ability to reason about other agents’ mental states, a capacity known as

theory of mind (ToM). In developmental psychology, children who successfully

interpret the types of ambiguous language studied in Chapter 5 have typically

reached key theory of mind milestones first. This raises a question: have LLMs

similarly reached the milestones thought to precede pragmatic understanding?

Chapter 6 presents a preliminary investigation into whether LLMs develop

one of the earliest manifestations of theory of mind: infants’ propensity to

encode agent’s goal-directed actions. In her seminal study, Woodward [Woo98]

demonstrates that infants as young as 6–9 months encode the goal object of

an agent’s reaching event. When an agent repeatedly reaches for one object

(a teddy bear) over another (a ball), infants exhibit surprise when the agent

subsequently grasps the ball, suggesting they have formed expectations about

the agent’s object preferences. Crucially, when identical reaching motions are

performed by an inanimate rod rather than a human hand, infants form no

such expectations. This indicates they encode events differently based on agent

animacy.

In Chapter 6, we investigate whether LLMs similarly demonstrate differential

encoding of textual descriptions involving animate versus inanimate agents.

We extend Woodward’s original design by introducing an experimental control:

scenarios where agents act accidentally rather than intentionally. This control

condition tests whether models truly understand goal-directed behaviour or

simply respond differently to animate versus inanimate actors regardless of

intentionality. Our results prove inconclusive regarding a consistent machine

theory of mind. While state-of-the-art models do show differential encoding for

5

animate versus inanimate actors in some cases, they often respond similarly

to both intentional and accidental actions by animate agents. This finding

undermines the conclusion that models expect object preferences from animate

agents. The study serves as a cautionary example for the field. In light of recent

literature claiming that LLMs exhibit human-like theory of mind [Kos24], our

findings highlight the importance of employing experimental controls when

adapting human psychological tests for artificial intelligence.

The four studies in this thesis position LLMs as sophisticated systems in which

machine reasoning has emerged across both mathematical and social domains.

Their mathematical reasoning capabilities stem from extracting transferable

procedures from sequential text and code data, enabling generalisation to

novel problems and different levels of abstraction. Beyond formal domains

with objectively correct solutions, LLMs acquire social reasoning abilities

during large-scale training, allowing them to infer communicative intent in

pragmatically ambiguous language. However, investigations into whether

the foundational socio-cognitive mechanisms that underpin human pragmatic

understanding have similarly emerged in LLMs yield inconclusive results. This

underscores how machine reasoning may follow different pathways than human

cognition while still achieving comparable performance on complex reasoning

tasks.

The work presented here represents only initial steps towards uncovering the

types of generalisations LLMs can achieve, and many questions remain unan-

swered. My findings demonstrate reasoning that generalises across different

instances of mathematical tasks and from abstract symbolic representations to

concrete applications. An obvious next question is: can models learn reasoning

patterns that transfer across different tasks or fundamentally different forms

of reasoning? For example, can the procedural knowledge we observe in

formal, verifiable mathematical reasoning extend to the inductive reasoning

that underpins empirical science, where evidence must be weighed, hypotheses

formed, and conclusions drawn about questions with no directly verifiable

answers?

If LLMs can indeed bridge the gap between deductive and inductive reasoning,

then scaling up the current paradigm might enable far more ambitious appli-

cations than studied here. LLMs, having trained on much of the knowledge

6 Chapter 1. Introduction

humans have produced, could potentially propose novel theorems, generate

testable hypotheses, and contribute meaningfully to discovery in experimental

domains like biology and physics, sciences where knowledge emerges through

iterative experimentation rather than logical proof.

I started my doctoral studies in a pre-LLM era, where deep learning models

failed to classify cows when these stepped onto a beach instead of their usual

pastoral settings [BVP18], and more generally struggled to generalise out-of-

distribution [LB18]. Within this context, it took me several years of research

to accept that fundamentally different generalisation patterns emerge when

models are trained at scale. Given the remarkable generalisations LLMs already

make from simple self-supervised objectives, I remain cautiously optimistic

that the current compute scaling paradigm can lead to systems capable of

contributing genuinely new knowledge. After all, predicting the next token in

an infinite stream of sequential data generated by the natural world can most

efficiently be done by inferring the causal model underlying it.

1.1 Outline
The rest of this work is organised as follows. Chapter 2 provides comprehensive

background on each of the concepts required to understand the contributions

of this thesis, covering reasoning, LLM development, scaling laws, and influ-

ence functions. Chapter 3–6 present the core contributions introduced above.

Chapter 7 briefly summarises these contributions, reflects on the wider impact

of this work and the directions it opens for continued exploration beyond my

doctoral studies.

1.2. List of Publications 7

1.2 List of Publications
The research presented in this thesis is based on the following publications:

• Chapter 3 – Learning to Reason from Pre-training Data [Rui+25]

Ruis, L., Mozes, M., Bae, J., Kamalakara, S.R., Talupuru, D., Locatelli,

A., Kirk, R., Rocktäschel, T., Grefenstette, E., Bartolo, M. (2025)

ICLR 2025

Procedural Knowledge in Pretraining Drives Reasoning in Large Language

Models

Personal contribution: project proposal and leadership, designing the

experimental protocol, code, interpreting the results, paper writing.

• Chapter 4 – Learning to Reason from Code Data [Coo+26]

Cook, J., Sapora, S., Ahmadian, A., Khan, A., Rocktäschel, T., Foerster,

J., Ruis, L. (2025)

ICLR 2026

Programming by Backprop: One Instruction is Worth One Hundred

Examples When Training LLMs

Personal contribution: Main advisor. Jonny Cook and me developed

the research question based on [Rui+25], Jonny drove implementations,

together with Silvia Sapora. I was intimately involved in the overall

direction, most of the experimental decisions, and paper writing.

• Chapter 5 – Case Study: Pragmatic Reasoning [Rui+23b]

Ruis, L., Khan, A., Biderman, S., Hooker, S., Rocktäschel, T., Grefen-

stette, E. (2023)

NeurIPS 2023 (spotlight)

The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Mat-

ters for Implicature Resolution by LLMs

Personal contribution: project proposal and leadership, dataset develop-

ment, code writing, human experiment.

• Chapter 6 – Case Study: Theory of Mind [Rui+23a]

Ruis, L., Findeis, A., Bradley, H., Rahmani, H. A., Choe, K. W., Grefen-

stette, E., Rocktäschel, T. (2023)

ToM workshop ICML 2023

Do LLMs selectively encode the goal of an agent’s reach?

Personal contribution: project proposal and leadership, task development,

interpretation of results, paper writing.

Chapter 2

Background

This chapter establishes the concepts required for understanding the thesis’

contributions. I start with a brief note on reasoning, a sometimes controversial

topic that humans have been thinking about since Aristotle. While I assume

familiarity with the mathematical reasoning tasks discussed in Chapters 3

and 4 (arithmetic and basic control flow), I focus here on the social reasoning

capabilities central to Chapters 5 and 6: pragmatic inference and theory of mind.

I then discuss the basics of LLM development, covering pre-training, several

post-training methods, and compute scaling. Finally, I provide background to

understand influence functions, the method used in Chapter 3 to trace model

responses back to their pre-training data.

2.1 Reasoning

Reasoning may be loosely defined as the process of drawing conclusions about

unknown information based on what is already known. Contemporary dual

process theory would modify this definition to emphasise conscious inference,

distinguishing reasoning from unconscious processes like intuition [WE74;

Kah03]. Some scholars challenge the conscious-unconscious distinction [MS18]

and others propose alternative frameworks entirely [SW86; GCT24, inter

alia]. Rather than adjudicating between these theoretical positions, this

thesis adopts the broader definition outlined above for pragmatic reasons.

Whether AI systems engage in conscious processing remains an open — and

perhaps unanswerable — question. More immediately relevant is distinguishing

reasoning from the retrieval of memorised patterns from training data. The

distinction between a model that simply reproduces previously encountered

information and one capable of generating genuinely novel knowledge is crucial

for understanding AI capabilities. Under this definition, reasoning encompasses

10 Chapter 2. Background

both deliberate logical inference and intuitive processes, making it functionally

equivalent to ‘inference’ more broadly. I retain the term ‘reasoning’ because

the tasks examined in this thesis are conventionally classified as reasoning

problems when performed by humans. While I do not claim to definitively

resolve whether current AI systems can reason under this definition, I aim to

advance our understanding of the question.

2.1.1 Social Reasoning

Humans are pre-eminently social beings. Our capacity for social reasoning

is thought to be intimately linked and sometimes even causally related to

cognition [Tom99; VYG78; MAD07]. More directly, social reasoning enables

us to navigate interpersonal interactions: understanding the mental states of

others, inferring communicative intentions, and recognising the implicit rules

that govern social behaviour. This multifaceted capacity develops through

years of embodied social experience, beginning in infancy when children learn

to follow gaze, respond to pointing, and engage in joint attention [TCL07].

By early childhood, humans demonstrate sophisticated abilities to understand

that others may hold beliefs different from their own, anticipate how social

context shapes meaning, and navigate the unspoken conventions that structure

communication [reviewed in Wel90].

In this thesis, I investigate two components of social reasoning that are par-

ticularly relevant to language understanding. Firstly, pragmatic reasoning

enables us to derive meaning that goes beyond the literal content of utterances,

drawing on context, beliefs, and social institutions [Wit53; Gri75; Hua17]. A

well-studied form of pragmatic language is conversational implicature, utter-

ances that convey something other than their literal meaning. Consider an

exchange where Esther asks her friend Juan “Can you come to my party on

Friday?” and Juan responds “I have to work”. We resolve Juan’s response as

him declining the invitation by using the contextual common-sense knowledge

that having to work on a Friday night precludes attendance. This is an

example of a conversational implicature, illustrating how unstated context

contributes to meaning. In Appendix D.1, I present a brief literature review on

implicature, covering the Gricean cooperative principle as well as other theories

of pragmatics.

2.1. Reasoning 11

Secondly, theory of mind represents our ability to attribute mental states to

others and understand how these states guide behaviour. This capacity follows

a developmental trajectory beginning with basic goal attribution in infancy.

Woodward [Woo98] demonstrates that 6- and 9-month-old infants can distin-

guish goal-directed from non-goal-directed actions, selectively encoding aspects

of human actions that are relevant to the actor’s goal object rather than other

salient features of the event. Based on agents’ reaching behaviour, infants form

expectations about their object preferences, suggesting early understanding of

goal-directed action. Studies of pre-linguistic infants such as these rely heavily

on the looking-time paradigm, which exploits infants’ tendency to look longer

at novel or unexpected stimuli [Fan64]. This methodology has revolutionised

developmental psychology, allowing researchers to build theories of infant

cognition. In this paradigm, researchers first familiarise groups of infants with

stimuli until their looking time decreases (i.e. habituation), indicating reduced

interest. Subsequently, different test stimuli are presented to different groups of

infants, and looking times are compared across conditions. When infants look

longer at one test stimulus than another, this reveals how they represented

and processed the original habituation stimuli, providing insights into early

cognitive abilities.

Woodward [Woo98] uses the looking-time paradigm to study how infants

represent goal-direct reaching motions. She habituates infants to reaching

actions of a demonstrator that always reaches to the same object on the same

location (e.g. a teddy bear on the left) over another object in another location

(a ball on the right). The objects then switch positions, and infants looking

time in two different test conditions is compared. In one condition, the actor

reaches to the same object from habituation that is now in a different location

(the teddy bear on the right), which would represent an object bias. In the

other condition, the actor reaches to the other object in the same location

from habituation (the ball on the left), demonstrating a location bias. Infants

look longer for the location bias case, suggesting that this condition is more

unexpected to them, which in turn suggests they expect the actor to reach for

the teddy bear regardless of location. Woodward interprets this to mean they

selectively encode the goal object of the actor’s reach and not the location.

Moreover, they do not show this behaviour when the actor is replaced by an

inanimate rod that is moved to the object (the infants only see the rod and

not whatever moves it). When they are habituated with a rod, the looking

12 Chapter 2. Background

times in the object and location bias test cases are comparable.

Theory of mind abilities become increasingly sophisticated throughout child-

hood, culminating in the understanding of false beliefs: the recognition that

others can hold beliefs about the world that differ from reality and from

one’s own knowledge [WP83]. Classic false-belief tasks reveal that by age 4–5,

children understand that someone who has not witnessed a change in object

location will continue to believe the object remains in its original position, even

when this belief is objectively false. This developmental progression from goal

attribution to false-belief understanding reflects the gradual emergence of our

capacity to model the complex mental worlds of other agents.

2.2 Large Language Models

Language models came to be colloquially considered ‘large’ around GPT-3

[Bro+20a], but their foundational principles have deeper historical roots. The

core self-supervised objective that drives both pre-training and types of post-

training, next-token prediction, was pioneered decades earlier by Elman [Elm90]

in his seminal work on recurrent neural networks. Elman demonstrates that

by implicitly representing ‘time’ (i.e. temporal information) through its effect

on processing (by maintaining a dynamic state), simple predictive objectives

enable models to discover sophisticated linguistic structures, including word

boundaries in character sequences and context-dependent lexical categories

emerging from word order patterns. Beyond next-token prediction, many other

foundational techniques in contemporary LLMs trace back longer, including

dense word representations [Ben+03], sub-word tokenisation methods [Boj+17],

and attention mechanisms for contextual processing [BCB15; LPM15]. In

the following, I will briefly describe the stages of LLM development that are

relevant for this thesis’ contributions: pre-training, supervised post-training,

and post-training with reinforcement learning. I will end with a note on the

main approach driving progress and how it impacts the research presented here:

scaling compute.

2.2.1 Pre-training

Nearly three decades after Elman’s foundational study, Radford et al. [Rad+18]

demonstrate that next-token prediction at scale can produce models that

serve as powerful general-purpose representations, readily adaptable to di-

verse downstream tasks through fine-tuning. This breakthrough establishes

2.2. Large Language Models 13

the pre-training paradigm that now dominates natural language processing.

Building on this foundation, Radford et al. [Rad+19] make another significant

discovery: when scaling up the parameters and training set size of base genera-

tive models, they learn to perform zero-shot task generalisation directly from

natural language prompts, without any fine-tuning. Specifically, a task can

be specified by conditioning the model on a prompt yp = (yt1 , . . . , ytm), and

the model performs the task by generating a completion yc = (ytm+1 , . . . , ytn),

where yti ∈ Z, 0 ≤ yti < V are tokens from the model’s vocabulary. Radford

et al. validate this across multiple benchmarks spanning reading comprehension,

translation, summarization, and question answering. Brown et al. [Bro+20a]

subsequently show that this generalisation can be further enhanced by provid-

ing task examples within the input context itself, a technique now known as

in-context learning. This capability has since spawned an active research field,

with investigators exploring both the origins of in-context learning [Cha+22;

Wur+25], what algorithm it implements [Aky+23; Von+23; ZFM25], and its

practical applications for improving downstream task performance [Wei+22a].

In this thesis, we call generative pre-trained models simply base models, denoted

by Mbase. We denote the model parameters by θ ∈ RD, where D in this thesis

ranges from millions (M) to billions (B) of parameters, and the distribution

over next token it parametrises is denoted by:

pθ(yc | yp) =
n∏

i=m+1

pθ(yti | yt<i
)

The parameters are typically found through next-token prediction using the

negative log-likelihood:

θ⋆ = arg min
θ∈RD

1

N

∑
x∈D

k∑
i=1

− log pθ
(
xti | xt<i

)
(2.1)

(2.2)

Where N is the training set size |D| and x = (xt1 , . . . , xtk) ∈ D training

sequences of tokens xti ∈ Z. The parameters are typically found by performing

a gradient-based iterative algorithm on the above objective that is stopped

according to some criterion, which need not mean they minimise the objective

or are converged.

14 Chapter 2. Background

2.2.2 Post-training

Pre-training enables LLMs to develop broad capabilities across diverse tasks,

but base models often fail to align with user intentions. When prompted with

“explain the moon landing to a 6 year old in a few sentences,” base GPT-3

completes this with similar instruction patterns like “explain the theory of

gravity to a 6 year old” rather than actually explaining the moon landing

[Ouy+22]. To adress this, Ouyang et al. [Ouy+22] introduce a multiple stage

post-training method. The first stage involves supervised fine-tuning (SFT),

where the model learns from human-written instruction-completion pairs using

standard next-token prediction. In subsequent stages, human evaluators rank

multiple model outputs for various prompts, generating preference data that

can be used to train the model through reinforcement learning from human

feedback (RLHF). The resulting model is more aligned with human intent and

vastly preferred by human evaluators, now completing the above prompt with

“people went to the moon, and they took pictures of what they saw, and sent

them back to the earth so we could all see them.”

The alignment techniques pioneered by Ouyang et al. spurred extensive research

into post-training methods. The field now encompasses a variety of training ap-

proaches and specialised instruction datasets spanning multiple domains. This

thesis uses several of these advances: in Chapter 4, we incorporate MathInstruct

[Tos+24] alongside our task-specific data when fine-tuning instruction-tuned

models for code execution. This practice of mixing general instruction data

with specialised training has become standard for preventing forgetting of

instruction-following capabilities during domain-specific fine-tuning. The fol-

lowing outlines the three post-training methods used in this thesis: supervised

fine-tuning (SFT), direct preference optimisation (DPO) [Raf+23], and group

relative policy optimisation (GRPO) [Sha+24].

Supervised fine-tuning (SFT) is the most straightforward approach to

adapting base models for specific behaviours, simply applying only the first

stage of the alignment technique described above [Ouy+22]. SFT involves

collecting relevant data and continuing model training with next-token pre-

diction. Compared to pre-training, SFT typically requires substantially less

data and computational resources. Research indicates this stage serves pri-

marily to enhance existing capabilities acquired during pre-training rather

2.2. Large Language Models 15

than teaching fundamentally new skills [Jai+24; KSR24; Pra+24]. However, a

growing body of work demonstrates that SFT has limitations in generalisation.

Besides showing improved performance on top of SFT [Ouy+22], evidence

suggests that models fine-tuned with reinforcement learning generalise better

out-of-distribution [Kir+24; Chu+25; Sha+24].

Reinforcement learning from human feedback (RLHF), as described earlier,

represents one prominent RL-based approach. In RLHF, a reward model

is first trained using human preference data and then used to fine-tune the

‘policy’ (i.e. the model, typically following an SFT stage) via reinforcement

learning objectives such as proximal policy optimisation (PPO) [Sch+17].

However, RLHF with PPO can be unstable and difficult to implement in

practice. Rafailov et al. [Raf+23] propose a simpler alternative called direct

preference optimisation (DPO), which reformulates the two-stage RLHF

process into a single-stage supervised training objective. The key insight in

DPO is that, given a human preference pair (yc,w is preferred over yc,l for a

given prompt yp), one can analytically infer the optimal policy consistent with

those preferences, eliminating the need for an explicit reward model. Using

this insight, the DPO objective derives a logistic regression loss starting from

the full RLHF objective. In the resulting objective, the logit is the difference

in log-probabilities between the preferred and dispreferred response, and the

target is 1 for the preferred sample, and 0 for the non-preferred one.

While DPO eliminates many of RLHF’s implementation challenges, the field

continues to develop more specialised approaches for particular domains.

Group relative policy optimisation (GRPO) [Sha+24] is one of those

methods, targeting mathematical reasoning tasks while significantly reducing

PPO’s computational overhead. The efficiency gains stem from eliminating

PPO’s value function requirement. As an actor-critic method, PPO must

train a separate value function to estimate expected future rewards from

each state. This is typically implemented with a copy of the base model,

effectively doubling memory requirements. GRPO circumvents this by using

a simpler baseline to estimate expected reward: the average reward across

multiple sampled responses to the same prompt (where G represents the group

size). This group-based baseline serves the same reward variance reduction

purpose as a learned value function but requires no additional parameters.

GRPO supports both outcome supervision, where rewards are assigned only

16 Chapter 2. Background

at sequence completion, and process supervision, where intermediate rewards

guide reasoning at each step. This flexibility makes it particularly well-suited

for mathematical domains where step-by-step verification is valuable.

A key distinction among RL-based post-training methods is whether they

operate on-policy or off-policy. On-policy methods learn from data generated

by the current policy being optimised, requiring fresh samples at each training

step. Off-policy methods can learn from data generated by any policy, including

older model versions or entirely different models. This enables efficient reuse

of existing datasets. DPO operates off-policy, allowing training on static

preference datasets without generating new model responses during optimisa-

tion. GRPO and RLHF are on-policy methods that sample fresh responses

from the current policy at each update step. However, RLHF introduces

complexity through its reward model, which is typically trained on preference

data collected from an earlier policy (usually post-SFT), creating a subtle

distribution mismatch. These distinctions have practical implications for

generalisation. In Chapter 4, we contribute to the literature demonstrating

that RL has generalisation benefits, demonstrating that GRPO outperforms

both DPO and SFT in generalisation. This suggests that the combination of

negative sampling and on-policy training provides benefits for generalisation.

We denote post-trained models by Mstage, where stage can be replaced by

SFT, GRPO, or DPO, to denote which post-training method is used.

2.2.3 Compute scaling

The unifying perspective that abstracts away from the above underlying

methodological details is provided by scaling laws [Kap+20; Hof+22]. These

empirically-derived power laws describe how model loss decreases predictably

as parameter count and dataset size increase. Crucially, scaling laws suggest

that performance gains can continue indefinitely through optimal allocation

of computational resources (ensuring neither resource becomes a bottleneck),

and reveal that compute has been the primary catalyst for transforming these

decades-old foundational principles into today’s capable systems. See Figure

2.1 for an example of a scaling law.

2.3. Influence Functions 17

Figure 2.1: A Chinchilla scaling law [Hof+22], where T is the number of tokens,
and L(D,T) is the estimated loss of a model with D parameters and T
tokens. The parameters L0, A, B, α and β are empirically fitted across
multiple model and token sizes (shown here for four model sizes D1 to
D4). Using Chinchilla scaling laws, the compute-optimal model and
token size can be obtained by minimising L(D,T) subject to compute
constraints.

The scaling paradigm has two critical implications for the research in this

thesis. First, the massive scale of training data (ranging from billions to

trillions of tokens) makes it impossible to guarantee clean separation between

training and evaluation data. Each chapter addresses this challenge differently:

explicitly linking model responses to training data (Chapter 3), designing tasks

unlikely to appear in pre-training (Chapter 4), testing for memorisation of

evaluation data (Chapter 5), or employing control tasks (Chapter 6). Second,

any observed effect or capability must be examined across different model and

data scales, as phenomena that appear robust at one scale may diminish or

disappear entirely as models or datasets grow larger.

2.3 Influence Functions

In response to the scaling paradigm, a field that is growing in importance is

training data attribution (TDA): tracing back model behaviour to the training

data. TDA aims to estimate the impact of data points on the trained model

18 Chapter 2. Background

parameters and outputs. A naive way to calculate the influence of a particular

training data point x = (xt1 , . . . , xtk) (called ‘document’ in the context of

TDA) on a model completion yc given a prompt yp (called ‘query’) is the

following: train a model with x and without x in the training set D, resulting

in parameters θ{x} and θ{x}c respectively. The influence of x is then given by

the difference in likelihood assigned by the models to the completion given the

prompt: pθ{x}(yc | yp) − pθ{x}c (yc | yp). However, this so-called leave-one-out

(LOO) retraining is intractable for large language models.

In this section, I present the relevant background material for understanding

the method used in Chapter 3 for tracing model behaviour back to pre-training

data. I start by demonstrating in detail how Koh and Liang [KL17] estimate

influence by repurposing a tool from robust statistics called influence functions

[Ham74]. Then, I discuss how computational instabilities lead to changes in

the influence function formulation [Tes+21], which in turns leads to them

estimating a slightly different ground-truth than LOO retraining [Bae+22].

Finally, I briefly cover efficient estimation of the second-order terms in influence

functions, which is required for modern-scale LLMs.

Classical influence functions. To estimate the influence of documents on

queries, Koh and Liang [KL17] propose to use influence functions [Ham74].

Recall we want to calculate the influence of document x on the likelihood

the model assigns to a query pθ(yc | yp). Let us consider how Koh and

Liang do this for the optimal parameters θ⋆ that minimise the empirical risk

J (θ,D) := 1
N

∑N
i=1 L(xi, θ) (where L(x, θ) is some scalar-valued loss function).

We assume throughout that

1. J (θ) and L(x, θ) are twice continuously differentiable in a neighbourhood

of θ⋆,

2. the Hessian Hθ⋆ := ∇2J (θ⋆) is non-singular (invertible).

Influence functions compute the change in optimal parameters if x were up-

weighted by some small ε:

θ⋆ε,x := arg min
θ∈RD

(J (θ,D) + εL(x, θ)) (2.3)

2.3. Influence Functions 19

Equation 2.3 is called a response function. We want to know how θ⋆ε,x changes

with ε, described by
dθ⋆ε,x
dε

∣∣∣
ε=0

. Since θ⋆ε,x is defined by a minimisation, we need

to use implicit differentiation using the first-order optimality condition (FOC)

to obtain
dθ⋆ε,x
dε

∣∣∣
ε=0

. This is possible to do directly, as shown in Appendix B

in [Bae+22]. Here, we instead follow the approach by Koh and Liang [KL17]

who first take a Taylor expansion of the FOC, leading to the same result in

a slightly more intuitive way. Given θ⋆ε,x is a minimiser of J (θ,D) + εL(x, θ),
the FOC is:

0 = ∇J (θ⋆ε) + ε∇L(x, θ⋆ε)

Where we drop the dependence of the empirical risk on D and of θ⋆ε,x on x

to avoid clutter, and we write ∇ in place of ∇θ to further lighten notation

(all gradients are w.r.t. θ unless otherwise specified). Now that we have an

explicit expression, and since θ⋆ε → θ⋆ as ε → 0, we can use a first-order Taylor

expansion of the FOC around θ⋆ to reason about how the optimal parameters

may change when up-weighting x by ε.

0 ≈
[
∇J (θ⋆) + ε∇L(x, θ⋆)

]
+
[
∇2J (θ⋆) + ε∇2L(x, θ⋆)

]
(θ⋆ε − θ⋆) (2.4)

How θ⋆ε changes with ε (i.e. the quantity we are after) is the same as asking

how θ⋆ε − θ⋆ changes with ε, as θ⋆ does not depend on ε. Therefore, we rewrite

Equation 2.4 in terms of θ⋆ε − θ⋆:

θ⋆ε − θ⋆ ≈ −
[
∇2J (θ⋆) + ε∇2L(x, θ⋆)

]−1[∇J (θ⋆) + ε∇L(x, θ⋆)
]

We further note that ∇J (θ⋆) = 0, use the Woodbury matrix identity to expand

the inverse, and only keep O(ε) terms:

θ⋆ε − θ⋆ ≈ −∇2J (θ⋆)−1∇L(x, θ⋆)ε

Now, we take the derivative w.r.t. ε to obtain the influence of x on θ⋆ as defined

by influence functions:

20 Chapter 2. Background

Iθ⋆(x) :=
dθ⋆ε
dε

∣∣∣∣
ε=0

≈ −∇2J (θ⋆)−1∇L(x, θ⋆) = −H−1
θ⋆ ∇L(x, θ⋆)

An application of the chain rule then leads to the influence on the completion

yc given a prompt yp as measured by any continuously differentiable quantity

f(θ⋆) such as the loss or the likelihood pθ⋆(yc | yp).

If(θ⋆)(x) =
df(θ⋆ε)

dε

∣∣∣∣
ε=0

= ∇f(θ⋆ε)
dθ⋆ε
dε

∣∣∣∣
ε=0

= −∇f(θ⋆)TH−1
θ⋆ ∇L(x, θ⋆)

To provide an intuitive sense of what influence computed in this way measures,

I discuss each term below. I refer to H−1
θ⋆ ∇L(x, θ⋆) as the inverse-Hessian-

conditioned document gradient and ∇f(θ⋆) as the query gradient.

• ∇L(x, θ⋆) ∈ RD×1: the sensitivity of the model’s loss on x to small

parameter changes, indicating the first-order direction that up-weighting

document x would push the model parameters (in the opposite direction

of the greatest increase in the loss given by the gradient).

• H−1
θ⋆ ∈ RD×D: modulates the effective magnitude of parameter changes

when x is up-weighted based on the loss landscape’s curvature at θ⋆.

Because of the inverse, document gradients aligning with low-curvature

directions are amplified (flat directions on the loss surface), while those

aligning with high-curvature directions are suppressed (sharp directions).

Intuitively, during optimisation model parameters move more easily in

flat regions of the loss than on sharp regions, meaning up-weighting x

will be less “resisted” by the overall training dataset and lead to a higher

influence of x on the parameters.

• ∇f(θ⋆) ∈ R1×D: the sensitivity of the target quantity f (evaluated

on the query) to small parameter changes. Influence is the dot product

between this query gradient and the inverse-Hessian-conditioned document

gradient from the previous terms. If these two align in direction, then

because of the leading minus sign influence is negative (indicating a

decrease in loss or increase in likelihood when up-weighting x), and

vice-versa. Intuitively, the interpretation on choosing f as the loss or

likelihood is reversed because the loss equals the negative likelihood. The

dot product encodes both directional alignment and magnitude; if either

2.3. Influence Functions 21

the query gradient or the Hessian-conditioned document gradient is close

to zero, the influence will be small even if their directions align.

The above intuition demonstrates why introducing the expensive second-order

Hessian term over first-order TDA methods such as TracIn [Pru+20] has

benefits. The influence is not only determined by the document’s gradient-

similarity to the query, but also by how its gradient direction interacts with the

global geometry of the loss surface shaped by the entire dataset. In Appendix

B.1, we empirically demonstrate benefits of second-order information for data

attribution in large language model fine-tuning.

Computational instabilities. Classical influence functions assume that

the empirical risk is strictly convex in θ, ensuring a unique minimiser and an

invertible Hessian H. However, this assumption fails in overparameterised

neural networks, where many parameter vectors can achieve the same loss,

leading to singular or nearly-singular Hessians. Basu, Pope, and Feizi [BPF21]

and Bae et al. [Bae+22] empirically demonstrate that classical influence func-

tions poorly approximate leave-one-out (LOO) retraining, tracing this failure

to two core issues: non-unique optima due to overparameterisation, and the

unrealistic assumption that models are trained to convergence. To address

computational instability, researchers have proposed replacing the Hessian

with more stable approximations. Koh and Liang [KL17] add damping terms

(H + λI), while Teso et al. [Tes+21] use the Fisher Information Matrix (FIM)

instead of the Hessian, which is positive semi-definite by construction. However,

using the FIM comes at the cost of ignoring negative eigenvalues present in

the true Hessian, corresponding to directions of negative curvature in the

loss landscape. This omission can bias influence estimates by overestimating

curvature magnitudes. Damping terms do not correct this bias, but they

mitigate a separate numerical issue: instability when inverting nearly singular

curvature matrices. For common loss functions like cross-entropy, the FIM is

equivalent to the Gauss-Newton matrix G = JTHŷJ , where J is the Jacobian

of network outputs with respect to parameters and Hŷ is the Hessian of the

loss with respect to outputs.

The true ground-truth estimated by influence functions for uncon-

verged parameters. Bae et al. [Bae+22] argue that these modifications

change what influence functions actually estimate. Rather than approximating

22 Chapter 2. Background

LOO retraining, damped influence functions with FIM/Gauss-Newton approxi-

mations actually estimate a different counterfactual: the proximal Bregman

response function (PBRF). The PBRF measures how removing a data point af-

fects model predictions while maintaining consistency with the original trained

model, without requiring training to convergence. Starting from the proximal

Bregman objective rather than classical empirical risk minimisation and using

a linearisation of the PBRF, influence functions take the form:

If(θu)(x) = −∇f(θu)T(G+ λI)−1∇L(x, θu) (2.5)

where θu represents the unconverged parameters from actual training, G is the

Gauss-Newton matrix, and λ is the damping parameter. Bae et al. show that

influence functions for modern neural network applications correlate better

with the PBRF than LOO retraining. The PBRF formulation is therefore a

more relevant counterfactual that accounts for the realities of modern neural

network training. We adopt this PBRF-based formulation throughout our work,

as it provides both computational stability and a more appropriate theoretical

foundation for influence estimation in overparameterised models. For readers

interested in the mathematical derivation connecting the PBRF to this influence

function formulation, we refer to Appendices B.2 and B.3 of Bae et al. [Bae+22].

Efficient estimation of second-order information in influence functions.

Computing Equation 2.5 requires an inverse-Hessian-vector product (IHVP).

Following Grosse et al. [Gro+23], we use this terminology even though the

computation involves the Gauss-Newton Hessian G (GNH) rather than the full

Hessian H. While the IHVP can be computed more efficiently than explicitly

forming G, it remains intractable for large language models with billions of

parameters. To address this computational challenge, Grosse et al. [Gro+23]

propose using eigenvalue-corrected Kronecker-factored approximate curvature

(EKFAC) [Geo+18], which provides a tractable approximation to G based

on the Kronecker-factored approximation to the curvature (K-FAC) method

[MG15]. The FIM, equivalent to G in our case, is defined as follows:

F := Ex∼pdata,ŷ∼pŷ|x(θ)[∇ log p(ŷ | θ, x)∇ log p(ŷ | θ, x)T]

where pdata is the data distribution and pŷ|x(θ) is the model’s predictive distri-

bution. K-FAC approximates G by making two key independence assumptions:

2.3. Influence Functions 23

the activations and pre-activations of each layer are independent, and dif-

ferent layers are independent of each other. These assumptions lead to a

block-diagonal approximation where each block corresponds to a layer and

can be factored as a Kronecker product, dramatically reducing computational

complexity. EKFAC improves upon K-FAC by leveraging the insight that the

Kronecker-factored blocks admit efficient eigendecomposition. This enables a

more accurate approximation of G while maintaining computational tractability

[Geo+18]. For detailed derivations of the EKFAC approximation, we refer

readers to Grosse et al. [Gro+23], Section 2.2.2 and 2.2.3.

Chapter 3

How Models Learn to Reason

from Pre-training Data

3.1 Overview

Having covered the topics needed to understand the content of this thesis, let

us recall the overarching goal of this work: to characterise LLM reasoning in

the context of the compute scaling paradigm. Most recent progress is driven by

increased compute during development, with token budgets reaching trillions

of tokens. At this scale, the boundary between training and evaluation data

has effectively collapsed: we can no longer reasonably assume that benchmark

problems are unseen during pre-training. This raises a question: to what

extent does LLM reasoning depend on similar sequences encountered during

pre-training? This question is particularly pressing given the conflicting

evidence about LLM capabilities. Their well-documented versatile reasoning

abilities [WHL23; WHL24; McL+24, inter alia] sharply contrast with the line of

work highlighting the brittleness of their reasoning [Raz+22; McC+23; Ull23a;

Wu+24; Mah+24]. A finding common to the latter is that LLM reasoning

depends on the frequency of similar problems in the training data, meaning

benchmark saturation on its own can not be taken at face value. Recent works

have documented the extent of the contamination issue [Bro+20b; Tou+23;

Gun+23; Yan+23; Den+24], showing that many common benchmarks have a

high percentage of contaminated data. Yang et al. [Yan+23] show that even

rephrased benchmark data that elude N-gram-based detection methods can

impact performance, further complicating the issue. However, it is unclear

how and when state-of-the-art LLMs rely on contaminated data to perform

reasoning.

26 Chapter 3. How Models Learn to Reason from Pre-training Data

Figure 3.1: A summary of our most important findings towards answering the
question “how do LLMs learn to reason from pre-training data?” We
rank 5 million pre-training documents according to their influence on the
likelihood of completions of two models, Cohere’s Command R 7B and
35B, for 40 factual and 40 reasoning queries. We find that procedural
knowledge drives influence on reasoning traces: a document’s influence
on the reasoning traces of one query is strongly predictive of that
document’s influence on another query with the same mathematical
task, in 3 of the 4 tasks. We show this on the left through arrows
indicating influence, and on the right through correlations of all 5M
document influences between a random sample of 10 queries per task
(a plot with all queries can be found in Figure B.8 in Appendix B.9.1).
Further, we find that the answers to factual queries often show up in
the top 0.01% of pre-training documents (see text in bottom row of
documents), but not for the reasoning questions. Finally, individual
documents influence reasoning traces much less strongly than factual
answer generations, indicating models rely on documents less when
reasoning. All documents and queries shown are redacted versions of
real data, and the relations are based on documents found in the top
50 for the queries.

In this chapter, we investigate which pre-training data influence model’s reason-

ing traces and how those data relate to the specific problems being addressed,

contrasting it to the data that influence factual question answering. We use

influence functions (as detailed in the previous Section 2.3) to compute the

influence of pre-training documents on the likelihood of prompt-completions

pairs under a trained model. In the extreme case, a language model answering

reasoning questions may rely heavily on retrieval from parametric knowledge

3.2. Method 27

influenced by a limited set of documents within its pre-training data. In this

scenario, specific documents containing the information to be retrieved (i.e. the

reasoning traces) contribute significantly to the model’s output, while many

other documents play a minimal role. Conversely, at the other end of the

spectrum, the model may draw from a broad range of documents that are

more abstractly related to the question, with each document influencing many

different questions similarly, but contributing a relatively small amount to the

final output. We propose generalisable reasoning should look like the latter

strategy.

Our findings, summarised in Figure 3.1, suggest a generalisation strategy for

reasoning that is unlike retrieval from the parametric knowledge formed during

pre-training. Instead, the models learn to apply procedural knowledge extracted

from documents involving similar reasoning processes, either in the form of

general descriptions of procedures, or applications of similar procedures.

3.2 Method

Given a pre-trained model θu ∈ RD that parametrises a distribution over next

tokens conditioned on a prompt pθu(yc | yp), we are interested in finding data

from the pre-training set D = {xi}Ni=1 that influence the completion. Put

differently, we want to know which examples in the pre-training set ‘caused’

a completion. To this end, we use EKFAC influence functions for large-scale

transformers as proposed by Grosse et al. [Gro+23]. Recall that the influence

of a training document x ∈ D on a continuous differentiable function f of the

parameters θu is given by Equation 2.5 in Section 2.3, copied here:

If(θu)(x) = −∇f(θu)T(G+ λI)−1∇L(x, θu)

Since we are investigating models with billions of parameters D, computing G is

intractable, and we estimate it using EKFAC estimation (introduced in Section

2.3). To make this estimation tractable we make a number of simplifying

assumptions across all our estimations, like independence between layers and

we only take into account MLP parameters of the transformer layers [Gro+23].

A full list of approximations can be found in Appendix B.7.

What we measure influence on (i.e. choosing f). Prior work has shown

that EKFAC influence functions more accurately estimate the counterfactual

28 Chapter 3. How Models Learn to Reason from Pre-training Data

given by the response function (Equation 2.3) than other types of influence

functions [Gro+23]. However, besides influence on language model completions,

we are also interested in influence on the accuracy of a trained language model

when answering questions. We can only calculate the influence on a continuous

differentiable function, and to the best of our knowledge, no work has shown

that influence functions also estimate effect on the underlying accuracy of

text produced by next-token prediction. As a proxy for accuracy, we take

as a continuous differentiable function the cross-entropy loss function (f in

Equation 2.5). In Appendix B.1 we show that the influence calculated in this

way surfaces documents that have a causal effect on the accuracy of a 7B model

fine-tuned to do reasoning and reading comprehension tasks. Namely, if we

remove documents from the fine-tuning data according to their influence and

re-train the model, the accuracy drops significantly more than if we take out the

same amount of documents randomly, or the same amount of documents using

gradient similarity. In parallel, we motivate the use of EKFAC estimations

of the GNH, by showing it significantly improves over a method using only

first-order information.

Making the computation tractable. Besides the EKFAC estimation of G

(for which we mostly follow prior work [Gro+23] and describe deviations in

Appendix B.2), each influence score requires a document and query gradient.

This means that if we would compute influence for the entire pre-training

set it would be at least B times more expensive than pre-training the model

itself (where B is the batch size). For this reason, we sample documents

i.i.d. from the pre-training distribution. Still, it is only reasonably possible

to loop over this sample once, and to store more than a single query gradient

in memory (which has the same memory complexity as the model itself),

Grosse et al. [Gro+23] use singular-value decomposition (SVD). Instead of

SVD, we use approximate SVD with a probabilistic algorithm [HMT11], which

significantly speeds up the computation of the query gradients. We justify each

approximation in Appendix B.2.1.

Interpreting the influence score. We approximate Equation 2.5 to get scores

for documents from the pre-training data D that represent the influence they

have on a completion yc given a prompt yp. Given the counterfactual question

approximated by the response function used to derive influence functions, an

influence score of -1 for x implies the loss of the sequence yc is decreased by

3.3. Experimental Setup 29

Figure 3.2: The pipeline for creating rankings of the most influential pre-training
documents for a question-completion pair (query) using influence func-
tions. The documents at the top of the ranking influence the likelihood
of the completion positively, and the bottom negatively. We create
rankings for a set of 40 reasoning, 40 factual, and 20 control queries
over 5 million pre-training documents (2.5B tokens) for two models of
different sizes (Cohere’s Command R series, 7B and 35B).

1 due to its inclusion in the training set. To compare influence scores across

different completions (and token lengths), we normalise the scores for each

query by the information content of its completion yc, measured in nats. The

information content of a query is defined as I(yc) = − log (pθu(yc | yp)). The

influence scores induce a ranking over documents from most positively to most

negatively influential, where a score can be interpreted as the decrease (or

increase) in loss per nat of query information. Note that we choose to use the

terms ‘positive’ and ‘negative’ here colloquially to make the discussion of the

results less confusing, where positive influence means a positive effect on the

loss (by decreasing it). Similarly, in the rest of this chapter a positive total

influence decreases the loss. The full pipeline is shown in Figure 3.2.

3.3 Experimental Setup

Query sets. We collect query sets with different types of questions, of which

40 are reasoning questions and 40 factual questions. Note that it is only

tractable to loop over the pre-training sample we look at once, so we need to

be able to store all query gradients in memory and cannot go beyond about

100 questions. For the remaining 20 queries that fit in memory, we design 10

30 Chapter 3. How Models Learn to Reason from Pre-training Data

Table 3.1: Example from the reason-
ing set that involves sim-
ple two-step arithmetic.

Reasoning query set (arithmetic)

Prompt

Calculate the answer: (7 - 4) * 7
Think step-by-step.

Completion (by 7B)

First, let’s evaluate the expression
inside the parentheses:
7 - 4 = 3
Now, let’s multiply the result by 7:
3 * 7 = 21
Therefore, the answer is 21.

Table 3.2: Example from the factual
set that requires retriev-
ing the right answer.

Factual query set

Prompt

What is the tallest mountain
in the world and how tall is it?

Completion (by 7B)

The tallest mountain in the world is
Mount Everest, which is located
in the Himalayas.
It is 29,029 feet tall.

control questions for each query set (reasoning control and factual control).

These control questions are superficially similar to reasoning or factual queries,

but do not require reasoning or factual retrieval to be completed accurately

(examples given in Appendix B.3). For the reasoning questions, we identify two

types of mathematical reasoning each model can do robustly with zero-shot

chain-of-thought [Wei+22b]. We do this by evaluating the models on larger

sets of 100 questions for each type of reasoning, and selecting tasks where it

gets at least 80% correct. This surfaces simple two-step arithmetic for the

7B model (Table 3.1), calculating the slope between two numbers for both

models (of which two redacted examples are shown in Figure 3.1), and solving

for x in linear equations for the 35B model (see Table B.7 in Appendix B.3

for prompt-completion pairs of the linear equations task). We ensure no query

ever requires outputting a fraction. To make the results between 7B and 35B

more comparable, we use the same slope questions for both models. For the

40 factual questions, we make sure the model gets half right and half wrong,

allowing us to identify failures of retrieving facts from parametric knowledge,

and we also ensure 16 of 40 overlap between models. We calculate influence

over the full completion, which includes the chain-of-thought in the reasoning

case. The full query sets are provided in the supplement.1

1Which can be found at https://openreview.net/forum?id=1hQKHHUsMx.

https://openreview.net/forum?id=1hQKHHUsMx

3.3. Experimental Setup 31

Documents set. We want to compare the influence of pre-training data on

reasoning by differently sized models (7B and 35B), so we select two models

that are trained on the same data. The EKFAC estimation of the GNH only

needs to be done once per model, but the other terms in Equation 2.5 require

two forward- and backward-passes through the model per document-query pair.

This means that obtaining a ranking over pre-training data for a single query

has a computational complexity similar to pre-training itself. To overcome this

issue, we sample a set of documents from the pre-training data that covers

multiple examples from each batch seen during pre-training, giving a total

of 5 million documents (approximately 2.5B tokens) distributed similary as

the training distribution. We batch queries and obtain the influence scores in

parallel. Each document contains 512 tokens.2

EKFAC estimation. To estimate the GNH for the 7B and 35B models we

need to estimate two expectations w.r.t. the data distribution (see Section 2.2.2

and 2.2.3 in [Gro+23]). To this end, we randomly sample 100 000 documents

equally spread-out through pre-training for both models. Details on how

exactly we approximate the GNH are in Appendix B.2. We note here that

although this aspect of the pipeline requires estimating over 300B parameters

representing second-order information, the bottleneck remains calculating

document gradients.

Models. We look at two models of different sizes: 7B and 35B (Cohere’s

Command R series).3 For each model, we use both base and supervised fine-

tuned versions, where the former is trained on trillions of tokens and the latter

is subsequently fine-tuned on a few thousand instruction-completion pairs. We

estimate the second order information and calculate document gradients using

the base models, and generate completions and calculate the query gradients

using the models fine-tuned with supervised instruction-tuning. The reason for

choosing this setup is that the fine-tuned models are much better at instruction

following. This means we are assuming the EKFAC for the fine-tuning phase

is the identity [Bae+24], and we are focusing only on the influence of the

pre-training data and ignoring the fine-tuning data.

2We choose 512 tokens because qualitatively interpreting more is hard (usually spanning
multiple topics).

3The specific stages of models we use are not publicly available, but the final checkpoints
are: https://huggingface.co/CohereLabs/c4ai-command-r-v01.

https://huggingface.co/CohereLabs/c4ai-command-r-v01

32 Chapter 3. How Models Learn to Reason from Pre-training Data

3.4 Experiments and Results

We compare the rankings (from most positively to most negatively influential)

over pre-training data produced by influence functions for reasoning questions

to the rankings for factual questions (which can only be answered by retrieving

parametric knowledge). We first analyse the rankings quantitatively by looking

at the influence of different documents per nat of generated query information

(Section 3.4.1). We aim to elucidate how generalisable the information in the

influential documents is, and how many documents the model is relying on when

doing reasoning compared to retrieval. Then, in Section 3.4.2 we investigate

how the documents relate to the queries qualitatively.

3.4.1 Quantitative analysis

Finding 1: There is a significant positive correlation between the

influence scores of documents for queries with the same underlying

reasoning task, indicating that these documents are relevant for

questions requiring the same procedure applied to different numbers.

If models are relying on documents that contain ‘general’ knowledge that is

applicable to any query with the same task (e.g. queries that require finding

the slope between two points for many different points), we would expect

there to be a significant correlation in the influence scores for these queries.

We calculate the Pearson’s R correlation of all 5 million document scores for

all query combinations (leading to 1002 correlations per model). The results

can be seen in the right panel of Figure 3.1 for a subsample of 10 queries per

task, and all query correlations can be found in Figure B.8 in Appendix B.9.1.

We find a strongly significant (p-values all below 4e− 8) positive correlation

between many queries of the same reasoning type, and a strongly significant

absence of correlation (p-values all around 4e− 3) for most (but not all) factual

queries or other combinations (e.g. reasoning queries of different types). This

means that many documents have a similar influence on the same type of

reasoning. Put differently; the model learns from the same data for different

instances of a reasoning task. Given that each type of reasoning query requires

applying the same procedure to different numbers, the positive correlation

indicates that the influence scores for reasoning queries pick up on procedural

knowledge. The correlations are strongest for the slope queries by the 35B

model, and this is also the type of reasoning the model can do most robustly

compared to solving linear equations. For the model to be able to solve linear

equations with an accuracy of more than 80%, we restrict the calculations to

3.4. Experiments and Results 33

lead to positive x, whereas for the slopes questions the answers can be positive

or negative. In Appendix B.9.1 we falsify the hypothesis that the correlations

are caused by the fact that the reasoning questions are superficially similar to

each other, by using the set of control queries that is also superficially similar

but does not require any reasoning and repeating the entire experiment. For

the control queries we mostly do not observe a correlation. In Appendix B.9.1

we highlight examples of queries with high or low correlation for different

query sets, finding that some of the correlation seems driven by formatting

of reasoning steps, and most by reasoning procedure. For example, we find

correlations are not driven by superficial similarities between queries like

“think step-by-step” or the word “slope”: when these phrases co-occur in con-

trol queries, there is usually not a significant correlation of their influence scores.

Finding 2: When reasoning, the model on average relies on each

individual document less per generated nat of information than

when answering factual questions, and the total magnitude of

influence is less volatile, indicating it is generalising from a more

general set of documents. The effect is more pronounced for the

larger model.

In Figure 3.3 we show the total influence for different percentiles of the

Figure 3.3: The total influence per nat of query completion information for different
portions of the positive ranking over documents, left for the 7B model,
right for the 35B. The total influence per nat is usually lower for
reasoning questions than for factual questions, and the influence per
document varies more for factual questions than for reasoning questions,
especially for the 35B model.

positive parts of the rankings. The results depict the total amount of influence

contained in the top-k percentile of the positively ranked documents: e.g. the

34 Chapter 3. How Models Learn to Reason from Pre-training Data

20th percentile contains 20% of the positive documents for a query, and the

amount of total influence shown is the sum of all document influences up to

that part of the ranking. The equivalent for the negative portions looks similar

(Figure B.11 in Appendix B.9.2) and the discussion below applies similarly

to the negative ranking. We observe two things for both models. Firstly, the

amount of total influence for most factual questions at any part of the ranking

is higher than for reasoning questions. Secondly, there is more variation in the

influence of documents at the same rank across different factual queries (and for

a few factual queries the amount of influence is actually lower than for the rea-

soning queries, seen more clearly in Figure B.16 in Appendix B.9.3). The first

result means that, on average, the models rely on individual documents within

our set less for generating reasoning traces than for answering factual questions.

The second result indicates that for the factual questions the model relies on

more ‘specific’ and infrequent documents: for a factual question it is more up

to chance whether relatively highly influential documents (w.r.t. influence of

documents for other factual questions) are part of the pre-training sample or not.

Influence spread. Another way to analyse the magnitude of influence is

to look at the dispersion of influence across the ranking: how much of total

influence for each query is contained at the top and bottom parts of the ranking?

Similarly to what Grosse et al. [Gro+23] report, we observe that the top parts

of the rankings over documents follow a power law characterised by a linear

relation between rank and influence per nat in log-log space (shown in Figure

B.16 in Appendix B.9.3). We find that the slopes for the reasoning questions

by the 35B are slightly steeper than for the factual questions, and therefore the

percentage of positive influence contained in the top portions of the rankings

for the 35B reasoning questions increases faster with rank than for the factual

questions (shown in Figure B.18 in Appendix B.9.3). For the 7B, the slopes for

the reasoning questions the model gets right are on average also a bit steeper

than for the factual questions, but the effect goes away when comparing slopes

for all factual vs. reasoning queries. This means that the percentage of the

total positive influence the top sequences cover is higher for the reasoning

questions than for the factual questions for the 35B model (and similarly for

the bottom sequences, see Figure B.11). There is a chance this finding is caused

by noise for the 35B model and we discuss this possibility more in Appendix

B.9.3, where we note that for the reasoning query with the steepest power law,

the top 1 document is qualitatively entirely unrelated to the prompt.

3.4. Experiments and Results 35

If we compare the result between models, we find that the difference in mag-

nitude and volatility are more pronounced for the 35B model across the full

rankings. We look into this in Appendix B.9.2, and find that the effect remains

even if we only look at queries that are the same for both models, which points

to higher data efficiency for the larger model.

3.4.2 Qualitative analysis

We perform three qualitative analyses on the top portions of the rankings for

each query; we search for the answer, we characterise the documents’ relation

to the reasoning queries, and we investigate what source datasets they are from

(for both the top and bottom parts of the ranking, e.g. code, Wikipedia, etc).

To filter some of the noise, we divide the influence scores by the document

gradient norm and re-rank them, which has empirically been found to help

[Cho+24].

Finding 3: The answer to the factual questions shows up relatively

often in the top influential documents for the factual questions,

and almost never for the reasoning questions.

To find the answer to the questions in the queries in the top documents

Figure 3.4: We search for the answer in the top 500 (top 0.01%) documents, and
find it relatively frequently for the factual questions. For the reasoning
questions, we find the answer twice for the 7B, and never for the 35B.
Both those times, the answers to the steps occur in separate documents.

manually, we construct keywords for each query that should be in the document

if the answer is there. For example, for the factual query in Table 3.2, the

keywords are “tallest”, “highest”, “Mount Everest”, “29029”, “8848”. For

the reasoning queries, we construct many more keywords per query, but some

examples for the example in Table 3.2 are 7 − 4, 3, 21, 3 ∗ 7, as well as

36 Chapter 3. How Models Learn to Reason from Pre-training Data

replacing the operations with words like ‘minus’ and ‘times’, and different ways

of representing the content in this query. For details on which keywords we

use for each query, see Appendix B.4. We determine the occurrence of each

of these keywords independently in the top 100 documents for each query

(meaning even if just the keyword ‘7’ is present it would be a hit), resulting

in many false-positives. We manually look over the hits to find the answer.

On top of that, we craft a prompt for Command R+ (a more capable 100B

model) to find the answer in a query-document pair, and use it to find the

answer in the top 500 documents for each query independent of keyword

overlap (the prompt is given in Appendix B.5). Then, we manually look over

the hits and keep track of documents that have the answer to a query. We

verify that Command R+ finds all, and more, of the answers we have identified

manually. We look for the full answer in a single document. For the reasoning

queries, we also count partial answers in separate documents if they combine

to the full answer. For example, if one document contains 7 − 4 = 3, and

another 3 ∗ 7 = 21, we consider that an answer. Finally, we apply the keyword

overlap search combined with prompting Command R+ to a subset of the

broader 2.5B pre-training tokens to verify that the answer to the questions are

in the entire set even if they do not show up in the top 500 documents for queries.

The results are shown in Figure 3.4. For the 7B model, we find the answer in

the top 500 documents for 55% of the factual queries, compared to 7.4% of the

reasoning queries. For the 35B model, the answer to the factual queries shows

up in the top influential documents 30% of the time, and never for the reasoning

set. We expect the answer shows up less frequently for the 35B model simply

because the factual questions are much more ‘niche’. For example, one of the

questions the model gets correct is “In which year did the Beinecke Library

open?”. Moreover, in certain cases, the answer shows up multiple times in the

top 500 documents. If we count all these separately, as opposed to a binary

‘yes’ or ‘no’ per query on which the results in Figure 3.4 are based, answers to

questions show up 30 times for the factual questions in the 7B rankings, and

twice for the reasoning questions. For the 35B, the same result is 15 times

for the factual questions, and never for the reasoning questions. Interestingly,

the answer to the factual questions often shows up in different languages, like

Spanish or Portuguese. We give two examples in Appendix B.8.2. To falsify the

hypothesis that the answers to reasoning questions are not showing up because

they are not present in the set of 5M documents, we repeat the above keyword

3.4. Experiments and Results 37

search over a random subset of the 5M documents. We identify answers to

reasoning steps in documents that do not show up in the top 500 documents

for 13 of 20 arithmetic queries and a full answer for 1 of 20, and expect more

to be there that elude the keyword search. For the slopes and linear equation

queries, we find answers to 3 reasoning steps which do not show up in the

top 0.01%. In Appendix B.8.1 we show some of these documents and their ranks.

Finding 4: We find that influential documents for the reasoning

queries are often doing a similar form of step-by-step reasoning,

e.g. also arithmetic. Further, we find that the influential documents

often implement a solution to reasoning questions in code or general

math.

For the slope queries (of which we have 20 which are the same for both

models), many different documents surface as highly influential that show how

to calculate the slope between two points in code or math. For the 7B model,

documents that present explicit procedural knowledge on how to calculate

the slope in either code or math show up in the top 100 documents for 16/20

queries (38 times), and for the 35B model they show up for all queries (51

times). All together, we manually find 7 unique documents that implement

the slope in code in the top 100 documents, and 13 that present equations for

calculating the slope. The 7B model relies on 18 of these documents for its

completions (meaning 18 different ones appear in the top 100 documents for

all queries), and the 35B on 8. An example of a highly influential document

implementing the solution in JavaScript (left) and in maths (right):

Positively influential code

function eqOfLine(x1, y1, x2, y2) {

if (x1 === x2) {

// Handle a vertical line

return ‘x = ${x1}‘;

} else {

// Calculate the slope

const m = (y2 - y1) / (x2 - x1);

const b = y1 - m * x1;

// Return y = mx + b

return ‘y = ${m}x + ${b}‘;

}

}

Positively influential math

If a straight line passing through the points

P (x1, y1), Q(x2, y2) is making an angle θ with the

positive X-axis, then the slope of the straight line is:

(A)
y2+y1
x2+x1

(B) θ

(C)
y2−y1
x2−x1

(D) sin θ

Solution:

Correct answer: (C)

We prompt Command R+ to further characterise the top 500 documents for

each query by choosing from a set of provided keywords, and find that often the

documents are doing similar arithmetic on other numbers (e.g. much larger or

smaller), doing similar arithmetic on similar numbers (for the slope questions),

38 Chapter 3. How Models Learn to Reason from Pre-training Data

or similar algebraic operations on similar numbers (for solving linear equations).

We present the detailed results and prompt for this analysis in Appendix B.8.3.

Finding 5: For factual queries, the most influential data sources

include Wikipedia and trivia, while for reasoning, key sources con-

sist of maths, StackExchange, ArXiv, and code.

We look at the type of source datasets that represent the most influential

documents. Specifically, we count the source datasets of the top and bottom k

documents with k ∈ {50, 500, 5000, 50000, 500000}, and compare the count to

the pre-training distribution. We present the details in Appendix B.8.4, but

mention here that code data is highly influential for reasoning. StackExchange

as a source has ten times more influential data in the top portions of the

rankings than expected if the influential data was randomly sampled from

the pre-training distribution. Other code sources are twice as influential as

expected when drawing randomly from the pre-training distribution for k = 50

up to k = 50000. Similar patterns hold for the bottom portions of the rankings.

3.5 Related work
The subfield with the aim of understanding how large language models generalise

is growing rapidly. This question can be approached in different ways, and

many recent works interpret weights of smaller models on synthetic tasks to

explain particular phenomena that we observe in language models at scale such

as grokking [Wan+24a], in-context learning [Ols+22; Sin+24], or superposition

[Elh+22; Bri+23]. Scaling interpretability methods to modern-sized LLMs

is challenging for many reasons, of which one is computational tractability.

Nonetheless, there are a few works that apply techniques from interpretability

to language models at scale. Templeton et al. [Tem+24] use sparse autoencoders

to extract interpretable features from Claude 3 Sonnet, and demonstrate how

to use these features to control model outputs. Grosse et al. [Gro+23] adapt

EKFAC influence functions [Geo+18] to large-scale Transformers, and use them

to understand what kind of pre-training data influence completions of models

up to 50B parameters. The authors show, among many other things, that

larger models rely on pre-training data that are more abstractly related to

the completion than smaller models. In this chapter, we build on the results

of Grosse et al. [Gro+23], leaning heavily on their efforts to make influence

functions tractable at scale, but focus instead on understanding reasoning

specifically.

3.6. Discussion, Limitations, and Future Work 39

3.6 Discussion, Limitations, and Future Work

From the findings in this chapter, we conclude that the generalisation strategy

for reasoning LLMs employ is unlike retrieval. More often than not, even if

the answer is part of the set of pre-training documents we look at, it does

not show up as highly influential as the answers to factual questions do. We

find that instead, the positively influential documents often contain explicit

procedural knowledge on how to get to a solution. Further, the models rely

less on individual documents when reasoning than when answering factual

questions, and the set of documents they rely on is more general. Finally,

documents often have a similar influence on reasoning queries that require

applying the same procedure to different numbers.

One of the quantitative findings is counter to our initial expectations: we

find that the distribution of influence is less spread out for reasoning than for

factual questions, characterised by steeper power laws. The distribution of

influence over documents tells us something about the type of generalisation

strategy the model is using; the more documents that contribute to each nat

of query information (i.e. the more spread out the total influence), the more

documents the model is relying on to produce the completion. One would

perhaps expect a steeper power law for factual questions than for reasoning

(meaning more of the total positive influence contained at the top parts of

the ranking), but our results show evidence for the opposite. Perhaps a

model needs to generalise from a broader set of documents for factual retrieval

than for reasoning because it needs to see the same information more often

to memorise it. This is supported by the finding that for factual questions

the answer often shows up multiple times in the top 0.01% most influential data.

There are important limitations to our approach, most notably that we do

not calculate influence on the entire training set, which is intractable. An

alternative explanation of our results is then the opposite conclusion: the model

is relying on data for reasoning that are so infrequent that a random sample of

2.5B tokens does not surface relatively highly influential samples for any of the

60 unique reasoning queries. This would result in the conclusion that LLMs

rely on sparse and infrequent documents for reasoning. That means we are

effectively looking at a set of relatively uninfluential documents for reasoning,

and that perhaps the answers to reasoning traces would be highly influential

40 Chapter 3. How Models Learn to Reason from Pre-training Data

when looking at the entire pre-training data. We would argue that this is

the more unlikely explanation for three reasons: (1) the qualitative analysis

shows that the influential data for the reasoning questions are intuitively highly

relevant, and that the answers to many reasoning traces are part of the 2.5B

tokens, they are just not highly influential for reasoning, (2) the correlation of

influence scores for the different reasoning tasks is highly significant, and (3)

we confirm that these results do not hold for control queries that look similar

to the reasoning queries superficially, but do not require step-by-step reasoning.

Moreover, it seems unlikely that the model is learning to do retrieval from

such infrequent data for one of the simplest forms of mathematical reasoning,

namely subtraction and multiplication on small numbers. Taken together we

argue the results indicate a generalisation strategy that relies on procedural

knowledge. Regardless, the nature of interpretability research such as the work

presented here is that all we can do is provide evidence, and not proof.

Another limitation is that we do not look at the supervised fine-tuning stage.

The reason we only look at the pre-training data is because the fine-tuning

stage is targeted at making the models more aligned and ‘instructable’, and

prior work has shown that SFT serves primarily to enhance existing model

capabilities [Jai+24; KSR24; Pra+24]. Nonetheless, an interesting direction for

future work is applying the same method used here to the fine-tuning data.

With this work, we do not claim to say contamination is not an issue, or that

LLM reasoning is not brittle and reliant on pre-training statistics. What we

demonstrate is that, in principle, it appears possible for LLMs to produce

reasoning traces using a generalisation strategy that combines information

from procedurally related documents, as opposed to doing a form of retrieval.

This is not to say that there are no cases of LLM reasoning where the model is

in fact doing retrieval, on the contrary, models can be overfit to contaminated

data if it appears often enough in the training data.

The work in this chapter spurs further avenues for future work. Firstly, as

previously discussed, identifying data types that are similarly influential across

reasoning types could provide additional insight into data selection techniques

for improved reasoning. Relatedly, what properties of code data makes it

influential for reasoning? What kind is positively influential, and what kind

negatively? Further, since we only take into account the feed-forward layers

3.6. Discussion, Limitations, and Future Work 41

and treat the attention as fixed, an interesting avenue for future work would

be to investigate how the relatively low magnitude of influence of pre-training

data on feed-forward parameters for reasoning traces interacts with attention,

connecting to a finding from literature that certain forms of reasoning happen in

the attention heads [Ols+22]. Finally, in this work we investigate mathematical

reasoning. Future work should verify whether similar results hold for other

types of reasoning, such as inductive reasoning.

The central finding of this chapter is that LLMs depend on procedural knowledge

in pre-training for reasoning, demonstrated quantitatively by showing how a

pre-training document’s influence for one reasoning query is predictive of its

influence on another query with the same task. Qualitatively, we identify explicit

symbolic procedures that frequently prove highly influential for reasoning

performance (Finding 4). However, the latter does not tell us why these explicit

procedures are useful. While influence functions reveal that models consistently

draw on abstract code implementations and analytical formulas, they cannot

determine at what level of abstraction models process and use these data.

The next chapter investigates whether models truly extract input-independent

computational principles that can be applied to novel contexts.

Chapter 4

How Models Learn to Reason

from Code Data

4.1 Overview

In the previous chapter, we discover that LLM reasoning is unlike retrieval

from parametric knowledge and relies on procedural knowledge extracted from

pre-training data. In this chapter, we go one step further and investigate at

what level of abstraction models can acquire knowledge from training data.

Specifically, we ask whether models learn to execute procedures on novel

inputs from exposure to abstract procedural representations alone, without ever

seeing input-output examples for those specific procedures. This would clearly

demonstrate generalisation from explicit procedural knowledge encountered in

the training data — i.e. abstract, input-independent instructions such as code

and mathematical formulas — to implicit use of this procedural knowledge at

inference time, when these procedures are applied in specific contexts.

Code provides an ideal domain for studying this type of generalisation, as it

naturally distinguishes between explicit and implicit procedural knowledge:

source code represents input-general procedures, while program evaluations (i.e.

execution traces) reveal how these procedures unfold step-by-step for specific

inputs. Moreover, exposure to code has been increasingly recognised as a key

driver of LLMs’ reasoning abilities [Ary+24; PPF25]. Yet, a fundamental

question remains unresolved: does code allow LLMs to internalise algorithmic

abstractions that can be reused for reasoning across tasks, or does it simply

offer a more concentrated form of logical reasoning compared to other forms of

data?

44 Chapter 4. How Models Learn to Reason from Code Data

Datasets Evaluation

def zap(x):
s = x / 4
return s + 10

zap(20)?

TRAIN TEST

Programming by Backprop

Group A Code

Proactive-PBB

Group A
I/O Pairs TRAIN - SFT STAGE 2 TEST

Group B Code Group B
I/O Pairs

TRAIN - SFT STAGE 1

Group A Code

Retroactive-PBB

Group B Code TRAIN - RL STAGE 2
TEST

Group A
I/O Pairs

Group B
I/O Pairs

TRAIN - SFT STAGE 1

def foo(x):
return x + 2

foo(2) -> 4 zap(10)?

zap(4)?

w/ IO Set:
Code & I/O

w/o IO Set:
Code only

Code

I/O Pairs

… … …

Integer Functions Cyphers Leetcode

def zibble(x):
 s = 0
 for i in range(3):
 s += x*i
 return s

def foo(x):
 return x + 2

…

Leetcode
Jacob has 4
marbles with
sizes: 5, 3, 8,
and 14. He has
to select two
that sum to 17.
->
Solution is: 3,
14

…

Cyphers

alice_cypher(
 “hello”, 5
)
->
The solution
is: “xippn”

…

Integer Functions

zibble(10) -> 20

foo(4) -> 6

foo(5) -> 7

def
alice_cypher(t,k):

def twoSum(n, t):

A B C D

F H K T

Direct Chain-of-Thought

w/o IO Set:
Test on I/O

What is zap(8)?

To calculate zap(8):
1. Divide 8 by 4 = 2
2. Add 10 to 2 = 12
3. The answer is 12

The answer is 12.

1 2

3

5 3 8 14

5 3 8 14

5 3 8 14

Figure 4.1: When LLMs are fine-tuned to auto-regressively predict source tokens for
previously unseen programs, the ability to evaluate these programs for
inputs also emerges, provided they are separately trained on I/O pairs
for different programs. We call this Programming by Backprop (PBB),
and demonstrate it on three datasets: random arithmetic programs,
Leetcode programs, and custom ciphers. Models can learn to evaluate
programs implicitly, executing multiple lines of code in the forward
pass, as well as by using chain-of-thought reasoning. Generalisation
happens to later seen code (Proactive-PBB) as well as earlier seen code
(Retroactive-PBB), but the latter mainly if reinforcement learning is
used. In this Figure, we use ‘Group A’ to refer to w/ IO programs
(trained on as both code and I/O pairs), and ‘Group B’ to refer to w/o
IO programs (trained on only as code, before testing on I/O pairs).

Our findings, summarised in Figure 4.1, demonstrate that training LLMs to

evaluate programs, either a-priori through an SFT stage with programs and

4.2. LLMs as Interpreters: Programming LLMs by Training on Code 45

evaluations, or a-posteriori through RL on program evaluations, allows LLMs

to evaluate programs they have only seen presented as source code, even when

they are from a different domain. These findings reveal a generalisation from

abstract source code to concrete applications, indicating a more sophisticated

form of computational abstraction than previously documented.

4.2 LLMs as Interpreters: Programming LLMs

by Training on Code

We study the extent to which LLMs behave as interpreters, evaluating programs

that appear in their training data without I/O examples. To do so, the LLM

must learn to perform input-specific execution of input-general procedures

that are learned via next-token prediction — a process we call Programming

by Backprop (PBB). Successful PBB implies that an LLM has not simply

memorised the program’s source code, but learned generalisable representations

of the procedure it encodes at different levels of abstraction. We investigate

PBB in the context of controlled fine-tuning experiments on pre-trained LLMs.

Consider a dataset of programs Dcode = (Dw/ IO
code ,Dw/o IO

code). We also define a

dataset of I/O pairs Dexec = (Dtrain
exec ,Dtest

exec) associated with the functions in

Dcode. Dtest
exec is the subset of I/O pairs we hold out and on which we test an

LLM’s ability to evaluate the programs in Dw/o IO
code . Dw/ IO

code and Dtrain
exec therefore

facilitate learning a correspondence between program source code and program

evaluations that may transfer to other programs the LLM has previously been

or will later be trained on. Depending on whether or not chain-of-thought is

used for inference, Dtrain
exec can feature outputs that include a chain-of-thought

reflecting the entire program evaluation or simply the final output.

With this setup, we propose two approaches to eliciting PBB. The first, called

Proactive-PBB, is a two-stage SFT pipeline (Algorithm 1). The first stage

uses a mixture of programs and corresponding I/O pairs, priming the model to

implicitly learn to evaluate programs seen in future training data. In the sec-

ond stage, the resulting model is trained on other programs as source code alone.

The second approach, which we call Retroactive-PBB, is summarised in Al-

gorithm 2. It consists of a first stage in which the model is trained via SFT

on program source code alone, followed by a second stage of RL for program

46 Chapter 4. How Models Learn to Reason from Code Data

Algorithm 1 Proactive-PBB

1: Dcode = (Dw/ IO
code ,Dw/o IO

code) := Dataset of program source code

2: Dexec = (Dtrain
exec ,Dtest

exec) := Dataset of I/O pairs

3: Mbase := pre-trained LLM

4: Mstage-1 = SFT(Mbase, (Dw/ IO
code ,Dtrain

exec)) // Proactively learn code-I/O

relationship

5: Mstage-2 = SFT(Mstage-1,Dw/o IO
code) // Implicitly learn I/O mapping for

new code

6: Metric = Accuracy(Mstage-2,Dtest
exec)

evaluation on the programs from Dw/ IO
code via chain-of-thought1. This second

stage enables the model to retroactively learn a general correspondence between

learned code and input-specific problems. As demonstrated in Section 4.4, we

find that RL is able to elicit this retroactive generalisation much better than

SFT.

Algorithm 2 Retroactive-PBB

1: Mstage-1 = SFT(Mbase,Dcode) // Learn new code

2: Mstage-2 = RL(Mstage-1,Dtrain
exec) // Retroactively learn code-I/O relation-

ship

3: Metric = Accuracy(Mstage-2,Dtest
exec)

4.3 Experimental Setup

4.3.1 Datasets

To empirically investigate PBB with LLMs, we generate several synthetic

datasets ranging from arbitrary Python programs to real-world algorithmic

reasoning problems. We create the following three datasets, each of which we

open-source to facilitate future research:

• Random Arithmetic: randomly generated programs of varying length

involving standard arithmetic and control flow.

1We do not test Retroactive-PBB without chain-of-thought inference, as we use RL
fine-tuning.

4.3. Experimental Setup 47

• Leetcode: common algorithmic challenges found on competitive pro-

gramming platforms, taken from an open-source dataset of Leetcode

problems [HFg].

• Ciphers: custom encryption algorithms.

Each dataset includes programs as source code with a series of associated word

problems representing the input/output pairs that assess the ability to evaluate

the relevant program. Our focus is on generalisation from code, learned via

SFT, to the word problems. At test time, the model needs to parametrically

‘retrieve’ the program learned via SFT and evaluate it step-by-step for inputs.

Across all datasets, each word problem features a direct and chain-of-thought

solution. Chain-of-thought reasoning is generated in a post-rationalised manner,

using GPT-4o conditioned on the respective algorithm and the answer itself.

All training datapoints are formatted as prompt-response pairs, meaning

that program source code appears as a response to a prompt requesting an

implementation of the program. Detailed descriptions of each dataset follow.

Random Arithmetic. This dataset includes 1000 unique Python programs

synthetically generated to map integer inputs to integer outputs. Programs

are constructed by composing fundamental Python control flow structures (e.g.

for loops, if / else conditionals) with a set of standard algebraic operators

(addition +, subtraction -, multiplication *, integer division //, modulo %,

comparison >, <, exponentiation exp, and absolute value abs). Each program

is categorised by its length, measured as the maximum number of operations

executed for any input within the specified range. The dataset maintains a

uniform distribution of programs across lengths. For each program, we provide

100 I/O word problems, 10 of which are reserved for test, with inputs spanning

the integer range [−50, 50).

Leetcode. This dataset consists of 702 Leetcode problems and their Python

solutions. Problems range from easy to hard and have been filtered to ensure

that each solution is a single function. For each Leetcode problem, we use

GPT-4o to generate 20 word problems, 10 of which are reserved for test. The

ground truth final solutions to these word problems are procedurally generated

by running the relevant source code on the correct inputs.

48 Chapter 4. How Models Learn to Reason from Code Data

Ciphers. To construct this dataset, we first take three common ciphers: Caesar,

Atbash, and Vigenère. We then augment each real cipher, forming three custom

ciphers:

• Alice: Similar to a Caesar cipher, but the index of each letter in the

plaintext is added to the shift for that letter.

• Bob: Similar to an Atbash cipher, but each letter in the plaintext is

replaced by its opposite letter in a shifted alphabet.

• Kevin: Similar to a Vigenère cipher, but the shift associated with a letter

in the key is added to the corresponding plaintext letter if that shift is

even and subtracted if it is odd.

Each cipher is parameterised by an integer shift and the Kevin cipher addi-

tionally takes a text key parameter. These custom ciphers allow us to perform

controlled evaluation of an LLM’s ability to do encryption for a cipher that we

can reasonably assume is not within its pre-training data. For each cipher, we

generate 400 encryption problems, 300 of which are reserved for test. The test

split for this dataset is much larger because there are far fewer programs.

4.3.2 Training Details

Below, we provide the main training details for experiments on each dataset.

Further implementation details and hyperparameters are included in Appendix

C.1. For each experiment, we perform evaluation across 16 generations per

problem, sampled with temperature 0.8, and we report 95% confidence intervals

over these. Due to computational constraints, all training is done for a single

seed.

Random Arithmetic. For our main experiment, each group of programs

(w/ IO and w/o IO) consists of 100 functions, but we also explore the im-

pact of data scaling in Appendix C.2. The 10 test word problems for each

w/o IO program are used for final evaluation. We use the 1B, 3B, and 8B

instruction-tuned models from the Llama 3 series [Dub+24] as the base models.

For Proactive-PBB, each of the 90 train word problems for w/ IO programs

are used in stage 1 training. Each function definition appears in the training

data 30 times, with different augmentations being applied to the prompt (e.g.

“Provide a Python function that applies <program name> to a number.”) and

4.3. Experimental Setup 49

response preamble (e.g. “Here is a function that accomplishes that: <source

code>”). These augmentations ensure that the same code appears as a number

of distinct datapoints, which we find is crucial for eliciting program distillation

(Figure 4.2 left). To preserve instruction-following capabilities during stage

2 (code-only fine-tuning) we mixed in 1000 MathInstruct samples [Tos+24],

which proves crucial for eliciting successful program evaluation. Each SFT

stage involves a single epoch over the appropriate data.

For Retroactive-PBB, given that stage 2 is done with RL, we only consider

chain-of-thought program evaluation. For the RL stage, we use GRPO [Sha+24]

with a group size of 6 and batch size of 6, meaning that each batch consists of

a single group. We therefore use only 15 I/O pairs (90/6) per w/ IO program

for RL training. This is so that we can make a fair comparison to instead

using SFT for stage 2, where we only train on a single chain-of-thought per input.

Leetcode. For Leetcode experiments, 500 randomly selected programs are

used as the w/ IO group and 100 as the w/o IO group. Other aspects of the

training setup are the same as above.

Ciphers. We use the ciphers dataset to evaluate transfer of the ability to

evaluate programs for inputs across different algorithmic domains. We perform

stage 1 of Proactive-PBB on Leetcode data (w/ IO) and then perform stage 2

on the cipher source code (w/ IO).

Our use of ciphers is motivated by McCoy et al. [McC+24], who show that

LLMs, having learned to use ciphers to encrypt text from naturally occurring

examples in pre-training data, are biased by the uneven distribution of algo-

rithmic parameters in these examples — a phenomenon termed the ‘embers

of autoregression’. Given that program distillation opens the door to learning

programs such as ciphers from their source code alone, we investigate whether

it can overcome these embers. We therefore also create a dataset of encryption

problems and correct chain-of-thought responses, where the shift parameter

used in each cipher is drawn from a Gaussian distribution with mean 13 and

standard deviation 2 (mirroring the fact that ROT13 is a far more frequently oc-

curring shift in real-world data). The frequencies of sampled shifts are reported

in Appendix C.5. We then perform SFT on this biased dataset of examples and

compare the test execution accuracy to that obtained by Proactive-PBB (stage

50 Chapter 4. How Models Learn to Reason from Code Data

1 on Leetcode, stage 2 on Ciphers). For this experiment, we fine-tune GPT-4o

via the OpenAI fine-tuning API, as we find that Llama-3.1-8B-Instruct is

unable to perform accurate encryption for the ciphers we consider, even when

trained on many examples.

4.4 Results

In this section, we discuss the results of our experiments. The main overarching

finding is that generalisation from autoregressive next-token prediction on

abstract source code to concrete applications of these programs for input-output

pairs happens, provided models are separately trained on concrete applications

of a different set of program source codes (which may be of a different domain).

We start by discussing the results on the random arithmetic dataset, followed

by experiments testing generalisation from evaluating Leetcode programs to

cipher algorithms.

4.4.1 Random Arithmetic Results

Finding 1: Generalisation from abstract source code to concrete

applications improves with model scale, and drops off with program

length.

We first evaluate how well models of different scales use Proactive-PBB to

learn to evaluate the random arithmetic programs for which no word problems

(and hence, no input-output pairs) have appeared in training. These results

are in Figure 4.1 (bottom left). We observe that the ability to solve problems

Figure 4.2: Left: Accuracy of Llama-3.1-8B-Instruct following Proactive-PBB
on evaluating w/o IO random arithmetic programs represented as
natural language or code. The use of data augmentation is also ablated.
Right: Accuracy of different models following Proactive-PBB for
compositions of two programs that have been trained on independently.

4.4. Results 51

by evaluating these programs improves with model scale. This is the case

both when the model can do so in-context via chain-of-thought and when the

model has to directly output the answer, implicitly evaluating the program

in the forward pass. For both forms of inference, shorter programs are easier

to program into the model. At the 1B model scale, there is little to no

capacity for implicit program evaluation. For the 3B and 8B models, the

accuracy–program length curves are flatter for chain-of-thought evaluation,

indicating that explicit reasoning increases the capacity for these models to

handle successive computational operations. In Appendix C.3, we show that

the two-stage approach of Proactive-PBB means that the same piece of code

from Dw/o IO
code can appear fewer times in the training data than if the data

is mixed in a single fine-tuning stage. This suggests that a data curriculum

encouraging a general code-I/O relationship to be learned proactively enables

more efficient learning of program evaluation for programs seen only as source

code.

Finding 2: Generalisation from abstract programs to concrete

applications works better if programs are represented in code rather

than equivalent natural language descriptions.

We next investigate the impact of how programs are represented in train-

ing data on the effectiveness of Proactive-PBB. We do so by training on

semantically equivalent natural language program descriptions instead of code

functions (example included in Appendix C.6). In Figure 4.2 (left), we see that

Llama-3.1-8B-Instruct is much better at being programmed with code than

with natural language descriptions, despite the fact that the programs are also

perfectly described in natural language. This could indicate that the structure

and syntax of code enables LLMs to more easily internalise the algorithmic

abstractions it represents. However, given that we only investigate PBB at the

fine-tuning stage, it is unclear to what extent this result is due to an emphasis

on code training in the construction of the base model.

Finding 3: Presenting the same piece of code with multiple prompt

augmentations is crucial for the generalisation from source code to

applications to happen.

We also ablate the use of prompt and response preamble augmentations,

shown in Figure 4.2 (left). We find that the augmentations used to create

multiple distinct datapoints with the same program source code is essential.

52 Chapter 4. How Models Learn to Reason from Code Data

Figure 4.3: Left: Accuracy of Llama-3.1-8B-Instruct following each stage of
Proactive-PBB on evaluating w/o IO Leetcode programs. Right:
Accuracy of different models at evaluating w/o IO Leetcode programs
following Retroactive-PBB.

Berglund et al. [Ber+23] similarly find data augmentations to be useful for

out-of-context-reasoning (of which the generalisation discovered here is an

example, discussed below in Section 4.5), however our results show additionally

that it is not necessary to augment the source code itself: simply augmenting

the prompt and the response text preceding the source code is enough.

Finding 4: Generalisation from training on source code to appli-

cations of compositions of these source codes also happens. For

the Llama models, this only works if they are allowed to use chain-

of-thought at inference time, but GPT-4o can sometimes evaluate

compositions of programs entirely within its weights.

We also study the effectiveness of Proactive-PBB on composite functions. Here,

the set of programs seen only as code includes functions defined as the compo-

sition of two of the original random arithmetic functions. E.g. the composition

of zibble and foo from Figure 4.1 would appear as follows:

def bar(x):

return zibble(foo(x))

For a given task, the model must therefore parametrically retrieve the composite

function definition, as well as both of the functions being composed, so that it

can execute one and use the resulting input for the other. We find that the

Llama models we consider fail to evaluate composite programs implicitly, but

they are sometimes capable of doing so when using chain-of-thought (Figure

4.2 right). We check whether much larger models are capable of evaluat-

ing composite programs implicitly by following the same fine-tuning steps

with GPT-4o. Remarkably, GPT-4o demonstrates some ability to successfully

4.4. Results 53

Figure 4.4: Accuracy of GPT-4o when encrypting text with ciphers trained on only
as code, or when trained on as demonstrated execution traces with
unevenly distributed shifts.

retrieve two programs that were trained on independently and successively

evaluate each, all without producing an explicit chain-of-thought.2 As ex-

pected, it can do composite program evaluation much better when it generates

the intermediate reasoning steps. In all cases, we see that composition is

harder when the composite program length is greater, which we attribute to

the likelihood of errors growing as the number of successive operations increases.

Finding 5: Generalisation to applications of earlier-seen program

source codes happens primarily if the second stage of training on

programs with I/O pairs is done with reinforcement learning.

Finally, we test how well models of different scales use Retroactive-PBB to

learn to evaluate random arithmetic programs previously trained on (Figure

4.1 bottom right). Performance again varies considerably with model scale. We

see that the final performance of the 8B model after fine-tuning with SFT in

the second stage is surpassed even by the 1B model when RL is used instead.

This is a strong indication that the use of on-policy data in RL is supporting

generalisation, which aligns with hypotheses and findings in prior work [HH63a;

OCD21; Kir+24; Chu+25]. We investigate this further in Appendix C.4

by running DPO to isolate the roles of learning from negative samples and

2As GPT-4o is an API-based model, we cannot be certain that it is not using additional
inference compute.

54 Chapter 4. How Models Learn to Reason from Code Data

learning from on-policy data: whilst DPO considerably outperforms SFT,

GRPO remains the most effective algorithm, indicating that both negative

samples and being on-policy are beneficial.

4.4.2 Leetcode and Cipher Results

Finding 6: When fine-tuned on Leetcode programs and their I/O

pairs, Llama-3.1-8B-Instruct improves in applications of other

Leetcode programs that must have been seen during pre-training.

In Figure 4.3 (left), we show how the outcome of Proactive-PBB on Leetcode

programs with the 8B model varies with each stage. Note that this is the only

dataset for which all programs likely appear in the pre-training data, and I/O

pairs for each may appear, even the w/o IO set of programs. The Leetcode

programs are mainly used to investigate generalisation to another set of w/o

IO programs, discussed below. However, we discuss the results on Leetcode

alone first. Stage 1 alone (i.e. w/ IO code and I/O pairs) yields a significant

performance jump when evaluating the w/o IO programs. Given all of the

Leetcode programs in our dataset are probably within the model’s pre-training

data, some generalisation from stage 1 alone is expected. This result shows that

generalisation from stage 1 to source code seen during pre-training happens,

although it is unclear whether input-output pairs have been seen for these.

We do however observe a further performance increase following stage 2 (w/o

IO code), where the program source code associated with the held-out word

problems is trained on.

In Figure 4.3 (right), we show how test accuracy increases during Retroactive-

PBB for different model scales. Given that zero-shot accuracy is non-zero for

Leetcode word problems, each model also starts at a different initial perfor-

mance following stage 1 SFT. However, we observe that the progress made by

the 3B and 8B model over the course of stage 2 RL is much greater than that

of the 1B model, indicating that its more limited capacity restricts its ability

to generalise to the programs that are only trained on as source code.

Finding 7 & 8: Generalisation from source code to applications

emerges even if the training stage with I/O pairs enabling this gen-

eralisation uses programs from another domain. Moreover, teaching

models algorithms in this way leads to a more uniform performance

4.5. Related Work 55

across inputs than training on I/O pairs for the programs.

We report the results for transfer of Leetcode program evaluation abilities to

novel ciphers via Proactive-PBB with GPT-4o in Figure 4.4 (‘Train on Code’).

As the ciphers are custom, with made-up names, zero-shot encryption accuracy

prior to fine-tuning is zero. Firstly, we note that, following stage 1 training

on Leetcode programs with I/O pairs, training on the custom ciphers source

code alone is sufficient for the model to encrypt text at reasonable accuracy.

Secondly, when comparing to the performance following training on the dataset

of chain-of-thought solutions with an uneven distribution of shifts (‘Train on

I/O’), we see that PBB yields a much more uniform accuracy across shifts.

This demonstrates that PBB is a promising direction for addressing the ‘embers

of autoregression’. However, the peak performance of training on I/O is higher,

indicating that demonstration data is advantageous when there are sufficient

examples for each parameter variation. Whether training on code or I/O, we

see that performance increases for the smallest and largest shifts, because these

shifts point to letters that are close to the original in the alphabet.

4.5 Related Work
Training LLMs on code. Code is a standard part of most pre-training

corpora [Dub+24; Gem+25; Coh+25; Qwe+25, inter alia] and believed to be

an important contribution to general-purpose reasoning abilities. Although

this is mostly conventional wisdom, some prior work has shown that training

on code positively transfers to downstream tasks [Ary+24]. Further, Petty,

Steenkiste, and Linzen [PSL24] hypothesise that compositionality in code helps

with learning to generate structured outputs and mathematical reasoning,

presenting experimental results supporting this. In this work, we hypothesise

code has the complimentary advantage of explicitly representing procedures

that can be reused (i.e. implicitly executed) for step-by-step reasoning problems.

Out-of-context reasoning. Our work has deep connections to the growing

body of work that investigates out-of-context reasoning (OOCR) in LLMs

[AL23; Ber+23; Tre+24; Bet+25b; Bet+25a]. This can be loosely defined as

an LLM’s ability to infer knowledge implicit within its training data and apply

that knowledge downstream, without in-context demonstrations. We consider

program source code and show that training on this allows models to encode

knowledge of how to compute outputs for specific inputs. A second way in which

our setting evaluates OOCR is the ability of models to accurately generate

56 Chapter 4. How Models Learn to Reason from Code Data

outputs for a program seen in its training data by executing it implicitly for

specific inputs entirely within its weights (no chain-of-thought reasoning). Prior

to LLMs being developed, Zaremba and Sutskever [ZS15] study the ability of

LSTMs trained from scratch to execute programs adding two 9-digit numbers

in one forward pass through the model. Wang et al. [Wan+24b] study similar

implicit reasoning behaviours in grokked transformers, where the training data

containes I/O samples rather than explicit procedures. Krasheninnikov et al.

[Kra+24] investigate a phenomenon similar to OOCR that occurs during the

training process itself, which they refer to as implicit meta-learning. Similarly

to our work, they use a two-stage fine-tuning process to first train an LLM to

learn associations between aspects of the data (in their case, tokens implicitly

indicating truthfulness, in ours, function definitions and calls), and then further

train the LLM such that its learning will be informed by those associations.

Lampinen et al. [Lam+25] investigate distilling in-context reasoning abilities

into OOCR abilities. Our work similarly considers problems where LLMs

generalise in-context information more effectively than information that has

only appeared in their training data.

Emergence of algorithmic reasoning. Previous research into the emergence

of algorithmic reasoning during training has revealed a number insights. By

training on search traces, Gandhi et al. [Gan+24] show that language mod-

els can learn to emulate the search process, thus demonstrating algorithm

distillation [Las+23] via next-token prediction. By training transformers on

variable dereferencing problems, Wu, Geiger, and Millière [WGM25] illuminate

three distinct phases of learning, as models transition from using heuristics

to implementing systematic variable binding. Meanwhile, some prior work

illuminates critical failures in the algorithmic reasoning of language models.

Through mechanistic interpretability experiments, Nikankin et al. [Nik+25]

find that language models may use heuristics to solve arithmetic problems,

rather than doing so algorithmically. Shojaee et al. [Sho+25] similarly show

that LLMs fail to use explicit algorithms and reason inconsistently. Perhaps

relatedly, McCoy et al. [McC+24] reveal that LLMs suffer from the ‘embers

of autoregression’, causing their outputs on algorithmic tasks to depend on

the probability of the inputs, algorithms, outputs under the pre-training data

distribution. Finally, Thomm et al. [Tho+24] show that language models can

fail to compose algorithms they have learned independently. This is in contrast

4.6. Discussion, Limitations, and Future Work 57

to our finding that LLMs can in fact do so for algorithms independently learned

through backpropagation (Figure 4.2, right).

4.6 Discussion, Limitations, and Future Work

This chapter demonstrates that LLMs develop reusable algorithmic abstrac-

tions from code training, providing an explanation for how training on code

may lead to improved general-purpose reasoning. Importantly, we do not

argue our fine-tuning experiments themselves confer novel reasoning abilities;

rather, we demonstrate how fine-tuning on code might provide models with

abstractions they can leverage at inference time — even without accompanying

I/O demonstrations. Several limitations warrant discussion.

Synthetic datasets. We deliberately construct datasets featuring novel algo-

rithms, composed of random or synthetically chosen sequences of operations,

to minimise overlap with the model’s pre-training corpus. This controlled

approach provides a compelling story for how models might improve their

reasoning abilities, since real-world algorithms can similarly be broken down

into sequences of basic operations like the ones in our datasets. Whilst our

experiments on Leetcode problems and ciphers take steps towards real-world

domains, the application of this approach to more complex practical algorithms

presents a promising avenue for future research.

Limited performance on program evaluation. Although we convincingly

demonstrate even small models can be programmed by backpropagation, the

performance is still limited. Future work can investigate how we can obtain

models that are more amenable to being programmed, perhaps by incorporating

procedurally generated source code — I/O data mixtures into pre-training.

Fine-tuning vs pre-training. Our experiments are conducted in a controlled

fine-tuning regime. The inductive biases of this setup differ from those of

large-scale pre-training, and it is not clear to what degree models internalise

reusable algorithmic abstractions during pre-training. Nonetheless, we believe

similar mechanisms may be at play during pre-training, as the data is likely

to contain many copies of common algorithms and corresponding execution

traces for at least some of them. Further, our results showing transfer from one

domain of programs to another make Programming by Backprop from natural

58 Chapter 4. How Models Learn to Reason from Code Data

pre-training data more likely.

Future work. Our work leaves open many questions about whether and

how transfer from program generation to program evaluation manifests during

pre-training, as well as potential ways to exploit the idea for model training.

For example, do models indeed internalise reusable and relevant abstractions

from code during pre-training, like those encoded by search or planning algo-

rithms? Further, can we generate synthetic program source code that aids

internalisation of useful abstractions? If so, a single LLM could in principle

be used to generate and internalise novel programs in a loop similar to those

that maintain an external database of programs [Nov+25]. Finally, we find

that Programming by Backprop is much more effective from code data than

semantically equivalent programs described in natural language. This spurs

interesting questions about what makes code special, and whether this insight

can be further exploited besides reasoning problems. For instance, can we align

models to constitutional principles if these are presented symbolically?

This and the previous chapter together demonstrate that LLMs can acquire

generalisable mathematical and algorithmic principles from pre- and post-

training and apply these in novel contexts. Chapter 3 demonstrates that even

if the answers to reasoning steps appear in the pre-training data, it does not

mean the model is relying on them to produce reasoning chains. In fact, their

generalisation strategy looks entirely different than factual retrieval. This

chapter further confirms that models can generalise from program generation

to program evaluation, demonstrating that the procedural knowledge models

acquire during auto-regressive training abstracts away from specific inputs.

However, the types of reasoning studied in these chapters are both formal,

underlying strict axioms and logic. The next chapters investigate a different

type of reasoning where objective standards of correctness are not well-defined.

Chapter 5

A Case Study in Social

Reasoning: Pragmatics

5.1 Overview
The reasoning tasks examined in the previous two chapters feature objectively

correct steps and answers, providing an ideal testing ground for determining

whether models rely on training data exposure to the answers and for under-

standing the levels of abstraction across which models can generalise. However,

a more complete characterisation of LLM reasoning requires investigating tasks

that humans perform naturally but for which correctness depends on social

consensus rather than logical necessity. To this end we turn to social reasoning

in the next two chapters, starting with pragmatic language understanding.

Consider the following exchange:

Esther: “Can you come to my party on Friday?”

Juan: “I have to work.”

Meaning in language is not only determined by a combination of words,

but also context, beliefs, and social institutions [Wit53; Gri75; Hua17]. We

resolve Juan’s response as him declining the invitation by using the contextual

commonsense knowledge that having to work on a Friday night precludes

attendance. This exchange contains an implicature — utterances that convey

something other than their literal meaning.1 Implicatures illustrate how context

contributes to meaning; distinguishing writing and speaking from communi-

cating [Gre96]. We cannot fully understand utterances without understanding

their implications. Being able to resolve completely novel implicatures and,

1In Appendix D.1 we present an introduction to implicature.

60 Chapter 5. A Case Study in Social Reasoning: Pragmatics

Figure 5.1: A schematic depiction of the protocol we propose to evaluate whether
language models can resolve implicatures. Each example in the test
set gets wrapped in templates and transformed into an incoherent
example by swapping “yes” and “no”. The model is said to resolve the
implicature if it assigns a higher likelihood to the coherent text than
the incoherent text.

more broadly, engage in pragmatic understanding constitutes an essential and

ubiquitous aspect of our every day use of language.

This raises an important question: to what extent can large language models

resolve conversational implicature? To answer this question we use a public

dataset of conversational implicatures and propose an evaluation protocol on

top of it (Figure 5.1). We evaluate a range of models that can be categorised

into four groups; large-scale pre-trained models, like OPT [Zha+22], LLMs

fine-tuned on conversational data, like BlenderBot [Ng+19], LLMs fine-tuned

on common NLP benchmarks with natural instructions for each benchmark,

like Flan-T5 [Chu+22], and LLMs fine-tuned on tasks with natural instructions

for each example, e.g. versions of OpenAI’s InstructGPT-3 series2. Our results

show that implicature resolution is a challenging task for LLMs. All base models

obtain close to random zero-shot accuracy (around 60%), whereas humans

obtain 86%. Base models’ performance improves with model scale and with

few-shot in-context examples. However, our results suggest that instruction-

tuning at the example level is important for pragmatic understanding. Models

fine-tuned with this method perform much better than others, and analysis

of different model sizes shows that they have the best scaling properties. We

further push performance for these models with chain-of-thought prompting,

2The precise method is unpublished and differs from the original instructGPT [Ouy+22].

5.2. Evaluation Protocol 61

and find that one model in the group (GPT-4) reaches human-level performance.

In summary, we conclude that human-like pragmatic understanding has not yet

arisen from large-scale pre-training on its own, but scaling analysis shows that it

might for much larger scale. Fine-tuning on conversational data or benchmark-

level instructions does not produce models with pragmatic understanding.

However, fine-tuning on instructions at the example-level is a fruitful path

towards more useful models of human discourse.

5.2 Evaluation Protocol
Here we outline the evaluation protocol we use to answer the question “To

what extent can LLMs resolve conversational implicature?”. We focus on

binary implicatures that imply “yes” or “no” (see Figure 5.1). We say a model

resolves an implicature correctly if it assigns higher likelihood to a coherent

utterance than a similar but incoherent one, detailed below.

Zero-shot evaluation. Consider the example from the introduction packed

into a single utterance:

Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

We can transform this example to be pragmatically incoherent (in the sense

that it will become pragmatically inconsistent with expected use) by replacing

the word “no” with “yes”:

Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

To resolve the implicature, the model should assign higher likelihood to the first

of the two sentences above, namely the most coherent one. Importantly, both

sentences have exactly the same words except for the binary implicature “yes”

or “no”, making the assigned likelihood scores directly comparable. Formally,

let the coherent prompt be y and the augmented, incoherent prompt be ŷ. A

model outputs a likelihood p parameterised by weights θ. We say a model

correctly resolves an example y when it assigns pθ (y) > pθ (ŷ). This is equiva-

lent to evaluating whether the model assigns a higher likelihood to the correct

continuation of the two options. Note that this is a more lenient evaluation

protocol than sometimes used for language models, where models are evaluated

on on their ability to generate the correct continuation, in this case “no”. The

62 Chapter 5. A Case Study in Social Reasoning: Pragmatics

greedy decoding approach (evaluating whether “yes” or “no” is generated) is

also captured by our approach, but we additionally label an example correct if

“no” is not the highest assigned likelihood, but still higher than “yes”. We did

not opt for greedy decoding because “no” is not the only coherent continuation

here, and marginalising over all possible correct continuations is intractable.

The more lenient evaluation does capture implicature resolution, because

the choice of “no” versus “yes” is only determined by the resolution of the

implicature. We guide the models to output “yes” or “no” explicitly in three of

the six prompt templates with instructions, such that we can estimate the effect

of this guidance on performance. For two model classes (i.e. GPT-3.5-turbo

and GPT-4) we do not have access to likelihoods, and for these models we

take the greedy decoding approach, guiding the model to output “yes” or “no”

explicitly in all prompts (see Table D.2 in Appendix D.2).

We use a dataset of conversational implicatures curated by George and Mamidi

[GM20].3 It contains implicatures that, like in Figure 5.1, are presented in

utterance-response-implicature tuples. Of these, 718 are binary implicatures

that we can convert into an incoherent sentence. We randomly sample 600

examples for the test set and keep the remaining 118 as a development set to

improve implicature resolution after pre-training through in-context prompting

or fine-tuning.

Few-shot in-context evaluation. We add k examples of the task to the

prompt, e.g. with k = 2:

Esther asked “Have you found him yet?” and Juan responded

“They’re still looking”, which means no.

Esther asked “Are you having fun?” and Juan responded “Is the

pope Catholic?”, which means yes.

Finish the following sentence:

Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

We evaluate the models’ k-shot capabilities for k ∈ {1, 5, 10, 15, 30} by randomly

sampling k examples from the development set for each test example. We

opt for a random sampling approach to control for two sources of randomness.

3Published under a CC BY 4.0 license.

5.3. Experiments 63

Firstly, examples have different levels of informativeness. Secondly, recent

work found that the order in which examples are presented matters [Lu+22].

Ideally, to marginalise over these random factors, we would evaluate each

test example with all permutations of k examples from the development set.

This requires 118!
(118−k)!

evaluations for each test example, which is intractable.

Instead, we estimate performance per test example by randomly sampling

from the development set. In this way we control for some of the variance in

performance, but avoid extra evaluations. We ensure each model sees the same

few-shot examples per test example.

Controlling for prompt sensitivity. It has been shown language models are

sensitive to prompt wording [EL20; Tan+21; RM21a; WP21]. To control for

this factor of randomness we manually curate six different template prompts

and measure performance across these. One of the templates has been presented

above, namely “Esther asked <utterance> and Juan responded <response>,

which means <implicature>”. Another template is: “Question: <utterance>,

response: <response>, meaning: <implicature>”. The former we call natural

prompts and the latter structured prompts. Each group has three templates

that only differ slightly in wording. This grouping allows us to look at the

variance due to slight changes in wording as well as performance difference

due to a completely different way of presenting the example. The full list of

prompts can be found in Appendix D.2.

5.3 Experiments
The set of large language model classes we evaluate can be grouped into four

distinct categories:

1. Base models : large-scale pre-trained models; RoBERTa [Liu+19], BERT

[Dev+18], GPT-2 [Rad+19], EleutherAI [WK21; Bla+22], BLOOM

[Big22], OPT [Zha+22], Cohere’s base models, and GPT-3 [Bro+20a]

2. Dialogue FT : LLMs fine-tuned on dialogue, BlenderBot [Ng+19].

3. Benchmark IT : LLMs fine-tuned on tasks with natural instructions

for each benchmark or “benchmark-level instruction-tuned models”; T0

[San+22] and Flan-T5 [Chu+22].

4. Example IT : LLMs fine-tuned on tasks with natural instructions for

each example or “example-level instruction-tuned models”; a subset of

64 Chapter 5. A Case Study in Social Reasoning: Pragmatics

OpenAI’s API models and Cohere’s API models). A type of SFT where

both the instructions and the completions are human-written.

Benchmark IT can be seen as a type of SFT where annotators write a single

instruction for an entire dataset. The models are then fine-tuned on each

example from the dataset with the same instruction. We distinguish this

from example-level IT; the type of SFT where each example in the dataset

has a human-written instruction and completion, resulting in a more diverse

dataset. Each group contains model classes for which we evaluate a range

of sizes. A detailed categorisation of the models and their attributes can

be found in appendix D.3.4 We make use of the OpenAI and Cohere APIs

as well as the pre-trained models in the transformers library [Wol+20] and

EleutherAI’s framework to evaluate them [Gao+21]. All code used for this

paper can be found on GitHub5 and the dataset is made publicly available on

HuggingFace6. Below, we present zero-shot and few-shot results, discussing

patterns of performance of the models in the four different groups. We further

look at the results for different model sizes of each model class and the variance

over the prompt templates.

We contrast the models’ performance with human performance. To this end,

each test example gets annotated by five humans. We split the test set in

four and assign each annotator a subset, leaving us with twenty annotators in

total. The average human performance is 86.2%, and the best performance is

92%. Some of the errors humans make uncover examples that have multiple

interpretations, and others uncover annotation errors. The nature of the task

of implicature resolution means we do not expect models to perform better

than human best performance. Details on the human experiment can be

found in the Appendix D.4 (also containing an analysis of human errors),

and detailed results per model and prompt template in Appendix D.7.10.

We also test for spurious correlations present in the benchmark (like lexical

cues the model can rely on, Appendix D.7.8). We do this by running the

benchmark using utterance- or response-only examples, finding that models

mostly perform random for the former, and are able to resolve response-only

implicatures with about 65.5% accuracy (resolving implicatures with responses

4Note that there are several important aspects unknown for models behind APIs, like
OpenAI’s model sizes.

5https://github.com/LauraRuis/do-pigs-fly
6https://huggingface.co/datasets/UCL-DARK/ludwig

https://github.com/LauraRuis/do-pigs-fly
https://huggingface.co/datasets/UCL-DARK/ludwig

5.3. Experiments 65

such as “do fish swim?”). The findings from this experiment additionally

serve as a test for memorisation; if the models had memorised the bench-

mark they would likely perform above random in the utterance-only experiment.

Table 5.1: The k-shot accuracy (k ∈ {0, 1, 5}) for the best performing model of each
class. For each model, we select the model size to show by choosing the
one that achieves the best 5-shot performance. The std is over prompt
templates for the models and over annotators for humans. FT stands
for fine-tuning and IT for instruction-tuning. We find that the models
in the Example IT class obtain significantly higher performance than
all others. ⋆ means size unknown.

Model 0-shot 1-shot 5-shot

Baseline
Topline

Random 50%
Human avg. 86.2% ± 2.3

Base models

BERT-110M 54.8% ± 1.6 51.7% ± 1.7 53.3% ± 2.2
RoBERTa-355M 55.6% ± 2.0 54.1% ± 0.9 57.1% ± 1.5
GPT-2-xl 51.3% ± 2.9 57.4% ± 3.3 57.7% ± 1.1
EleutherAI-20B 57.5% ± 3.3 55.9% ± 2.3 61.1% ± 4.9
BLOOM-176B 54.2% ± 1.2 61.1% ± 2.7 65.4% ± 3.4
OPT-13B 61.0% ± 5.5 60.6% ± 2.7 67.4% ± 2.1
Cohere-52B 58.5% ± 4.0 63.0% ± 3.8 65.1% ± 2.9
GPT-3-175B 57.7% ± 4.4 65.7% ± 1.4 68.7% ± 1.5

Dialogue FT BlenderBot-2.7B 53.4% ± 0.3 53.3% ± 0.1 53.3% ± 0.1

Benchmark IT
T0-11B 55.6% ± 7.0 47.8% ± 0.5 47.0% ± 0.2
Flan-T5-11B 60.8% ± 2.4 57.4% ± 5.0 61.7% ± 4.8

Example IT
text-davinci-001-⋆ 72.3% ± 2.8 72.7% ± 1.3 74.5% ± 1.0
text-davinci-002-⋆ 70.6% ± 2.3 75.6% ± 2.8 79.6% ± 2.0
text-davinci-003-⋆ 71.2% ± 2.8 74.3% ± 1.4 79.7% ± 0.6
ChatGPT-⋆ 72.1% ± 5.9 75.1% ± 1.5 73.9% ± 6.3
GPT-4-⋆ 81.8% ± 1.8 82.3% ± 1.4 82.0% ± 1.7
Cohere-command-52B 60.2% ± 5.2 72.8% ± 1.3 75.4% ± 1.8

Finding 1: Models instruction-tuned at the example level outper-

form all others.

Table 5.1 shows the best 0-, 1-, and 5-shot accuracy each model class achieved

on the implicature task. The best overall accuracy is achieved by GPT-4 (the

size of this model is unknown) at 82.3%± 1.4. This leaves a gap of 3.9% with

human average performance. All models in the class Example IT perform

significantly better than any of the other models for all k, except Cohere-

command-52B at 0-shot. This result is more clearly seen in Figure 5.2, where

we present the average accuracy for each model group. The performance for the

other model classes across k ranges from 47.0% by BlenderBot-2.7b at k = 5

and 68.7% by GPT-3-175b at k = 5. Even though base models benefit from

few-shot examples, their performance remains mostly closer to random than

to humans for all k, showing a gap of at least 17.5% with the average human.

66 Chapter 5. A Case Study in Social Reasoning: Pragmatics

Figure 5.2: The few-shot accuracy for the best model of each class (e.g. the best
performing model in the class Cohere-command is the 52B model,
whereas the best model in the class OPT is the 13b model). The bars
show the group means. Models fine-tuned on example-level instructions
perform better than most other models, especially for k > 0. For all
models there is a significant gap between best accuracy and human
accuracy (which is 86.2%). * means size unknown.

We observe a decrease in performance for k > 0 for the group Benchmark

IT. This is not surprising, as these kind of models are specifically fine-tuned

to be better at zero-shot generalisation [San+22; Chu+22]. BlenderBot, in

the group Dialogue FT, performs barely better than random for all k. We

hypothesise that the lower performance which Cohere-command-52B achieves

0-shot is not due to a lack of implicature understanding, but due to a failure to

calibrate the yes/no likelihoods without examples. For this model, we observe

a sharp rise in performance from k = 0 to k = 1 (see Table 5.1 or Figure

5.2). Since it is unlikely that one example of an implicature induces pragmatic

understanding, we hypothesise that few-shot prompting mostly serves to clarify

the task format. We test this hypothesis in Appendix D.7.6 by repeating

the 1- and 5-shot experiment with random labels for Cohere-command-52B

and text-davinci-001. We find that the performance does not degrade, which

confirms that the few-shot examples mainly serve to prime the model towards

producing outputs following the yes/no structure.

5.3. Experiments 67

Finding 2: The results are robust to different prompt templates.

As detailed in Section 3, each example in the test set is wrapped in six different

prompt templates. The standard deviation in Table 5.1 and in Figure 5.2

shows the sensitivity to different prompt wording. The standard deviation

ranges from 0.3 for BlenderBot to 7.0 for T0-11B. All in all, the sensitivity to

prompt wording does not seem to be a problem for this task; when taking into

account the confidence intervals the result remains that models in the group

Example IT perform significantly better than all other models, but worse than

humans. In Appendix D.7.4 another analysis is presented that shows how

different prompt templates benefit from in-context examples. The takeaway

from the analysis is that few-shot prompting can mitigate the fact that some

models are better at natural prompts and others better at structured prompts

by improving performance on the type of prompt the model struggles with

zero-shot. Again, when only looking at the best prompt type for each model

class (i.e. structured or natural), the results remain that models in the group

Example IT perform best.

Finding 3: Models instruction-tuned at the example-level have the

most favourable scaling properties, but some base models also show

positive correlation with scale.

Figure 5.3 shows the scaling behaviour of the model classes for which we know

the number of non-embedding parameters. We highlight 0- and 5-shot results,

because for k > 5 the accuracy of most models plateaus (see Figure 5.2). How-

ever, detailed results for other k can be found in Appendix D.7.10. Note that we

do not know the number of parameters for OpenAI’s ‘text-<engine>-001’-series,

but we do know the order of the engines in size, and we separately present

its scaling results in Table 5.2. Except OpenAI’s ‘text-<engine>-001’-series,

none of the models show significant performance increase with model size for

the 0-shot evaluations. However, for k-shot evaluations with k ≥ 1 we observe

significant positive correlation with size for the models in the Example IT class

for which we have multiple sizes (Cohere-command and ‘text-<engine>-001’)

as well as some models in the base model class. Not only do the models in

the Example IT class exhibit higher performance for the same model size,

these models also have a steeper performance increase with size than the base

models. Comparing the scaling properties of the best base model (GPT-3) with

Cohere-command, we see that the increase in performance from the second-

largest to the largest model is 0.04% per billion parameters from GPT-3-6.7B

68 Chapter 5. A Case Study in Social Reasoning: Pragmatics

Figure 5.3: Scaling results for the model classes of which we know the number of
non-embedding parameters. The error bars show standard deviation
over prompt templates. Cohere’s command models instruction-tuned
at the example-level perform better than all other models. For all
models there is still a significant gap between best accuracy and human
accuracy.

Table 5.2: Scaling results for OpenAI’s text-< engine>-001-series, for which we do
not know the number of non-embedding parameters but do know the
ordering in terms of size. The colors indicate whether going up in size
(from left-to-right) increases performance significantly or not.

Engine Ada Babbage Curie Davinci

0-shot 56.5% ± 5.8 64.5% ± 1.8 (+8.0%) 69.0% ± 2.9 (+4.5%) 72.3% ± 2.8 (+3.3%)
5-shot 57.6% ± 2.8 66.1% ± 0.3 (+8.5%) 71.3% ± 1.3 (+5.2%) 74.5% ± 1.0 (+4.0%)

to GPT-3-175B and 0.15% per billion parameters for Cohere-command-6B

to Cohere-command-52B (exact numbers used to calculate the slope can be

found in Appendix D.7.10). If performance is linearly extrapolated from this

curve GPT-3 reaches human-level performance at 642b parameters where

Cohere-command would need 125b parameters.

Finding 4: GPT-4 reaches average human-level performance with

chain-of-thought prompting.

For the model groups that benefit from in-context examples, we attempt to

push performance further with chain-of-thought prompting. We manually write

a five-shot chain-of-thought prompt for all six prompt templates, and evaluate

model performance using this prompt. One of the six chain-of-thought prompts

can be found in Table D.4 in Appendix D.2, and the other five are provided

5.3. Experiments 69

Table 5.3: Results of the chain-of-thought (CoT) experiment for models in the
group Example IT. The numbers between brackets show the difference
in performance with the number on the same row one column to the left.
Most models benefit from CoT-prompting, but not all. Additionally,
GPT-4 reaches average human-level performance with CoT prompting.
⋆ means size unknown.

Model 0-shot 5-shot 5-shot CoT

text-davinci-001-⋆ 72.3% ± 2.8 74.5% ± 1.0 (+2.2%) 67.3% ± 2.6 (-7.2%)
text-davinci-002-⋆ 70.6% ± 2.3 79.6% ± 2.0 (+9.0%) 80.1% ± 0.8 (+0.5%)
text-davinci-003-⋆ 71.2% ± 2.8 79.7% ± 0.6 (+8.5%) 83.6% ± 0.6 (+4.0%)
ChatGPT-⋆ 72.1% ± 6.0 73.9% ± 6.3 (+1.8%) 77.2% ± 1.0 (+3.3%)
GPT-4-⋆ 81.8% ± 1.8 82.0% ± 1.7 (+0.2%) 86.5% ± 1.0 (+4.5%)
Cohere-command-52B 60.2% ± 5.2 75.4% ± 1.8 (+15.2%) 75.3% ± 0.5 (-0.1%)

in the supplementary material.7 We only present the results for the group

Example IT here, since CoT prompting did not improve performance for two

of the base model classes we tried (see Appendix D.7.7). Consequently, we

decided not to apply this experiment to the other models in the base group

to save compute costs. The results of are shown in Table 5.3. We find that

chain-of-thought prompting does not help for all models, but is nonetheless

able to boost performance of GPT-4 to 86.5% ± 1.0. This is on-par with

average human-level performance, and slightly below human best performance

at 89.8%. To illustrate how explicit reasoning helps implicature understanding,

we highlight a CoT generated by GPT-4 for an example from the dataset that

models persistently get wrong. “A: Is there a bus I can get to the station? B:

You can’t rely on it”. The implicature is yes, there is a bus, you just cannot

rely on it. GPT-4 five-shot gets this wrong for all six templates. With CoT it

gets it right for five of six templates. The generated CoT for one template is

the following:

Alice says ‘You can’t rely on it.’ Alice must be implying that there

is a bus, but it may not be dependable or timely. This means

the response to Bob’s question is yes, but with a caution about

reliability. Answer: yes

More completions can be found in Appendix D.6.

Finding 5: Models often struggle with the same type of examples

humans struggle with.

7Which can be find at https://openreview.net/forum?id=5bWW9Eop7l.

https://openreview.net/forum?id=5bWW9Eop7l

70 Chapter 5. A Case Study in Social Reasoning: Pragmatics

Table 5.4: An example from the dataset for two types of implicature found in
the test set. The rightmost column shows the amount of that type we
manually found in the test set.

Type Example Utterance Example Response Impl. #

Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’ve gotta get up early. No. 94

We manually labeled 217 examples of the 600 examples in the test set according

to a taxonomy. The remaining 383 examples do not fall as clearly within a

category and are grouped together as type other. In Table 5.4 the two types

of examples that occur frequently in the dataset are exemplified. Generalised

implicatures require little or no context to be understood. They are the simplest

type of example in the test set, and generally imply the same thing (“some”

almost always implies “not all”). Particularised implicatures, by contrast, do

require context to be resolved. For example, from Table 5.4, we need the

context that it is undesirable to stay up late drinking when one has to get

up early (see in Appendix D.1 for more on generalised vs. particularised).

In these type of examples, the context needed to resolve it is different every

time. We label three other types of implicatures in the dataset, but since the

analysis of these examples does not show significant patterns, we present it in

Appendix D.7.9. We show the accuracy broken down per example type for two

models from the Example IT group, as these patterns hold more broadly for

almost all models evaluated (see the detailed results broken down per example

type in Appendix D.7.9). Figure 5.4 shows that for lower k, the models often

have a significantly worse performance for particularised examples than for

generalised examples, just like humans do. For some, like Cohere-command-

52B, this is mitigated by few-shot prompting, which brings particularised and

generalised performance closer together (sometimes at the cost of generalised

performance). For others, like GPT-4, the gap between particularised and

generalised performance remains large for all k. From the bottom row in Figure

5.4 we observe that the edge GPT-4 has over Cohere-command-52B seems

mostly driven by a higher accuracy on generalised examples. The accuracy on

the particularised examples is comparable between those two models.

5.4 Related Work

There is a large body of work that investigates the interplay between pragmat-

ics and computational modeling [Cia+18; SCD20; LRR20; Kim+21; LSD21;

5.4. Related Work 71

Figure 5.4: The accuracy v. k for the generalised and particularised examples
obtained by the Example IT models Cohere-command and GPT-4.
Particularised (context-heavy) examples are often significantly more
difficult than generalised (context-free) examples for both models and
humans. For most models, in-context prompting can mitigate this,
but for others (like GPT-4), a significant gap remains. We see that
Cohere-command-52B achieves similar performance as GPT-4 on the
particularised examples, but significantly lower on the generalised
examples.

Jer+20; Par+21; Hos+23]. [Cia+18] introduce the task of predicting adverbial

presupposition triggers, which are words like ‘again’ that trigger the unspoken

presupposition that an event has happened before. [SCD20] study the ability of

computational models to do scalar inferences, finding that models use linguistic

features to make pragmatic inferences. [Kim+21] find that a substantial

part of question-answering datasets contain questions that are unanswerable

due to false presuppositions (i.e. “which linguist invented the lightbulb”).

[Hos+23] present a dataset for selecting entities with indirect answers, and

find that language models adapted for this task get reasonable accuracy, but

that there is room for improvement. The difference with this body of work

and ours is that we look at the emergence of pragmatic understanding from

large-scale language modeling. [Jer+20; Par+21] are early works investigating

the emergence of pragmatic understanding in pretrained language models, but

they only look at scalar implicatures and presuppositions. [Zhe+21] are the

first to evaluate pretrained language models on conversational implicatures.

This is important pioneering work highlighting the difficulty of implicature

for language models, but their evaluations require task-specific training and

the models they evaluate are relatively small. In contrast, our evaluation

protocol is applicable out-of-the-box and is much more comprehensive, eval-

uating models up to 176 billion parameters and using in-context prompting.

72 Chapter 5. A Case Study in Social Reasoning: Pragmatics

Additionally, [Zhe+21] benchmark synthetic data whereas this work evaluates

performance on naturally occurring implicatures [GM20]. We believe this to be a

better representation of the true distribution of implicatures in natural dialogue.

The standard set of benchmarks LLMs are evaluated on covers many tasks,

but even though implicature is one of the most important aspects of language

pragmatics [Lev83], it is only evaluated as part of BIG-bench [Sri+22]. Unfortu-

nately, the methodology used by the BIG-bench implicature task contributors

has limitations, which call into question the validity of their claims. Firstly,

the task contributors discard a subset of the data that is ambiguous according

to them. In our view this defeats the point of the benchmark. Implicatures

are a type of non-literal, ambiguous language the intended meaning of which

humans often easily interpret; comparing the way humans and models do this

is precisely what we are interested in. In turn, we expect performance on the

BIG-bench task to overestimate the ability of LLMs to resolve naturally occur-

ring implicatures. We keep this challenging subset of the data and instead use

human evaluation to deal with examples that are too ambiguous to understand.

Secondly, the difference in performance between their average and best rater

is 18%, whereas for our evaluations this difference is 6%. This indicates their

human evaluation is of low quality, but it is impossible to verify because there

are no details available on how the annotation is done. Finally, BIG-bench

uses only base LLMs and no SotA fine-tuning methods. In summary, we use

a more challenging dataset, and in turn at least six times more evaluations

per model, we provide higher-quality human annotations, and evaluate four

different categories of LLMs to investigate which aspects of LLMs contribute

to their performance on implicature understanding.

5.5 Discussion, Limitations, and Future Work
In this study we use prompting to evaluate whether different groups of LLMs

can resolve implicatures. In designing our experimental protocol, we carefully

considered various alternatives, and here we discuss limitations of the chosen

approach.

Firstly, evaluating LLM competencies is inherently uncertain and sensitive to

prompt choice. Nonetheless, we are confident our evaluation is comprehensive

enough to assess implicature understanding: we apply six different prompt

templates per test example, each used in three different prompting techniques

5.5. Discussion, Limitations, and Future Work 73

(zero-shot, few-shot, chain-of-thought). Additionally, in the appendix we

present alternative zero-shot prompts and task specifications (Appendix D.7.3

and D.7.1 respectively), but since these did not improve performance they were

not further considered.

Another limitation is the fact that a subset of the models we evaluate are behind

APIs. This means models are subject to change (affecting reproducibility)

and certain details about these models are unknown. This affects the group

instruction-tuned at the example-level, which is the group we find outperforms

all others and has the most favourable scaling properties. How do we know

instruction-tuning at the example-level is the main driver behind these findings

without controlled A/B testing? Unfortunately, due to the secrecy surrounding

the exact implementation of these models we cannot be certain, but we can

be relatively confident. We evaluated ten models across six model classes and

two APIs in the group example-level instruction tuned. Within this group,

models probably vary significantly in other training and architecture details

(especially Cohere-command models versus OpenAI models). The most salient

commonality they share with each other and none of the other models is

multi-task instruction-tuning at the example level, making it likely that this is

the driving factor of their performance. A further datapoint in favour of this

conclusion can be seen in Figure 5.3 (right); base models at similar scales as

Example IT models perform significantly worse. We see that Cohere-command

52B significantly outperforms Cohere-base 52B, and the only difference between

those models is instruction-tuning at the example level (Cohere-command is

fine-tuned from Cohere-base). In fact, Cohere-command 52B outperforms other

base models more than 3 times the size by a large margin (e.g. GPT-3 175B,

BLOOM-176B, OPT-175B). We are therefore confident that instruction-tuning

at the example-level is important for pragmatic understanding, a finding

which can guide the development of open-source models capable of pragmatic

understanding. Investigating the exact effect of this type of instruction-tuning

on pragmatic understanding in a controlled setting is an interesting future

work direction (e.g. by isolating the effect of data diversity from instructions).

A further limitation is that some evaluations are subject to API stochasticity,

which we address in Appendix D.7.5. After running the zero-shot experiment

ten times through each API we conclude there is some stochasticity, but

it is too small to impact our conclusions. We publish exact timestamps

74 Chapter 5. A Case Study in Social Reasoning: Pragmatics

at which we queried APIs in Appendix D.8. Further, a downside of doing

a comprehensive analysis on many models is compute costs. In Appendix

D.9 we publish a list of exact compute used (time and hardware), as well

as estimated carbon emissions for each of the models that are not behind an API.

Finally, the likelihood ranking approach we take limits our study to implicatures

with clear alternative. However, implicatures in natural language can entail

more complex propositions. For example, imagine Esther now asking “Can I

use your stapler?” and Juan responding “Here’s the key to my office.”. Juan is

implicating that (1) Esther can use the stapler, (2) the stapler is located in the

office, and (3) the office is currently locked. This leaves ample room for the de-

sign of benchmarks with implicatures entailing multiple non-binary propositions.

Using our protocol that evaluates LLMs on binary implicature resolution, we

establish a significant gap with human understanding for SotA LLMs in three

categories; large-scale pre-trained models, models fine-tuned on conversations,

and models fine-tuned with benchmark-level instructions. By contrast, we

find that models fine-tuned on example-level instructions perform significantly

better. This group also exhibits the best correlation between accuracy and

model size. Scaling analysis shows that for some large-scale pre-trained models

accuracy also positively correlates with model size, but the best model in

this group would need at least five times more parameters to reach similar

performance. From these results, we conclude that instruction-tuning at the

example level is important for pragmatic understanding. We hypothesise

that there is something about the multi-task data diversity obtained from

example-level instructions (i.e. each example a new task) that makes pragmatic

understanding appear at smaller scale.

Pragmatic understanding is intimately linked to theory of mind in human

development, with researchers arguing that children’s ability to understand

the mental states of others provides the cognitive foundation for interpreting

conversational implicatures [MAD07]. This raises a key question: given the

results in this chapter, have models similarly developed the theory-of-mind

capabilities that precede pragmatic understanding in children? The next chapter

examines the earliest theory-of-mind-like behaviours observed in infants to

explore this question.

Chapter 6

A Case Study in Social

Reasoning: Theory of Mind

6.1 Overview

Given that the previous chapter establishes an understanding of conversational

implicatures at a human-level, one may wonder whether the precursors to this

type of pragmatic understanding in human development have similarly emerged

in models. In this chapter, we continue the characterisation of the social

reasoning abilities of LLMs by investigating a key socio-cognitive foundation

for pragmatic reasoning: theory of mind (ToM). Theory of mind is the ability

to reason about unobserved mental states of other agents. It is considered

central to many aspects of human cognition, like linguistic communication

[MAD07]. Recent studies on the emergence of ToM in LLMs yield conflicting

results; some works suggest it has emerged [Kos24; MH23], and others suggest

it has not [Ull23b] or at least not at a level comparable to humans [Tro+22;

Sap+22; Sha+23]. While Kosinski [Kos24] shows certain LLMs can pass

classic false-belief tests, Ullman [Ull23b] demonstrates that those same models

fail on minimal alterations to the tasks that change the expected answer.1

This evidence suggests models memorise training patterns without actually

mentalising. However, the evaluated tasks are classic false-belief tasks that are

abundant in the pre-training data, and it remains an open question whether

models can mentalise in situations that are less likely to occur in their training

data.

1Ullman tests LLMs on unexpected contents tasks where the contents are in see-through
containers, altering the answer to the false-belief tests.

76 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

Figure 6.1: A visual depiction of our test inspired by Woodward [Woo98]. We
prompt an LLM with k ambiguous linguistic habituations that can be
explained either by the goal being the object or the location (k = 2
in the image). We then test the bias the model shows for assuming
the goal was the object (left-bottom) or the location (right-bottom).
We say a model selectively encodes the goal if it shows a distinct bias
when an agent appears to be acting purposefully.

How can we investigate machine theory of mind in models that have seen all

the classic tasks from developmental psychology and regurgitate their patterns

even when these tasks are worded differently? In this chapter, we avoid

pre-existing text-based tasks and look at one of the developmentally earliest

occurrences of theory-of-mind-like human biases: selectively encoding the goal

object of an actor’s reach [Woo98]. In her seminal study, Woodward shows that

pre-linguistic infants exhibit a bias for encoding an agent’s goal object over

a goal location (detailed in Section 2.1.1). Similarly, we ask the question: do

large language models selectively encode the goal object of an actor’s reach? We

say a model passes the test if it shows a distinct bias between the agent acting

purposefully and otherwise (see Figure 6.1). For a behaviour to be considered

theory of mind, the same behaviour should not show up when the task does

not involve a goal-directed agent [FF12; DHD14].

Our results show that GPT-3.5-turbo and GPT-4 pass the criterion for saying

that they selectively encode the goal of an actor’s reach for some of our prompt

variations, but not for other semantically equivalent ones. These results

contribute to the picture from existing work on ToM in LLMs, concluding that

even the developmentally earliest ToM-like human behaviour does not robustly

6.2. Evaluation Protocol 77

Table 6.1: The prompt variations we use in our evaluations. For each template
text, the target word is bolded.

Template variation Test case Example of differing template part

Fruit targets
Animate Wendy grasps the kiwi
Inanimate A rod moves to and touches the kiwi
Control Wendy accidentally touches the kiwi

Fruit targets (anim)
Animate A person named Wendy grasps the kiwi
Inanimate An inanimate rod moves to and touches the kiwi
Control A person named Wendy accidentally touches the kiwi

Pillar targets
Animate Wendy grasps the item on the first pillar
Inanimate A rod moves to and touches the item on the first pillar
Control Wendy accidentally grasps the item on the first pillar

Pillar targets (anim)
Animate A person named Wendy grasps the item on the first pillar
Inanimate An inanimate rod moves to and touches the item on the first pillar
Control A person named Wendy accidentally grasps the item on the first pillar

show up in current SotA LLMs. Our findings further highlight the importance

of designing multiple prompt variations for each task: depending on how the

task is framed, conclusions can be opposite.

6.2 Evaluation Protocol

In this section we outline the method we use to answer the question: do

language models selectively encode the goal of an actor’s reach?

We prompt a set of LLMs with habituations that can be explained both by the

goal of an actor’s reach being an object, as well as a location. We then look at

whether LLMs exhibit a bias for assuming the goal is the object or the location

(see Figure 6.1). We investigate the bias the model shows in three situations:

an agent is purposefully reaching for an object, an inanimate object moves

and touches an object, and an agent is acting accidentally and touches an object.

Defining object and location bias. We want to investigate the question

whether models store knowledge that leads them to encode the goal-related

properties of an agent’s reaching event, and that this knowledge does not

get encoded in similar events involving inanimate objects. To this end, we

design the following test cases: an animate test case where the prompt contains

k habituations in which an agent reaches for the same object in the same

location. A test case is appended to this prompt where the goal object is placed

in a different location. We then obtain the likelihoods the model assigns to

continuing the full prompt as if the same location with a novel object is reached

for by the agent (location bias), or the same object at a different location

78 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

(object bias, see Figure 6.1). Below is an example for an agent, Wendy, who

has a preference for kiwis, with k = 2 habituations:

There is a kiwi on the first pillar, an orange on the second pillar,

and a fig on the third pillar. Wendy grasps the item on the first

pillar.

There is a kiwi on the first pillar, a fig on the second pillar, and

an orange on the third pillar. Wendy grasps the item on the first

pillar.

There is an orange on the first pillar, a kiwi on the second pillar, and

a fig on the third pillar. Wendy grasps the item on the first/second

In this example, a model that assigns a higher probability to first is said to

exhibit a location bias, whereas a model that assigns a higher probability to

second exhibits object bias. Independently, we test the model on the same

example with an inanimate object:

There is a kiwi on the first pillar, an orange on the second pillar,

and a fig on the third pillar. A pole moves to and touches the item

on the first pillar.

There is a kiwi on the first pillar, a fig on the second pillar, and an

orange on the third pillar. A pole moves to and touches the item

on the first pillar.

There is an orange on the first pillar, a kiwi on the second pillar,

and a fig on the third pillar. A pole moves to and touches the item

on the first/second

We generate 100 examples with a roughly equal distribution over object and

location targets (in this example template, the targets can be one of “first”,

“second”, and “third”). We define the object bias ob as the conditional probability

that the object bias target is chosen by a model given that the model has to

either choose the object or location bias target, as in

ob =
p(object bias target)

p(object bias target) + p(location bias target)
, (6.1)

where each probability p(·) is conditioned on the prompt like p(· | prompt).

In some cases we do not have access to the probabilities assigned to each target

by a model (i.e. GPT-3.5-turbo and GPT-4 have restrictive APIs). Instead,

6.2. Evaluation Protocol 79

we sample those models ten times for each prompt with a temperature of

1, recording how often they output the object bias target co (second in the

previous example) or the location bias target cl (first in the previous example).

Using these counts, we estimate the object bias ob of a model for each example

as the fraction of times it chooses the object bias target:

ôb =
co

co + cl
(6.2)

We discard all samples where a model does not choose the object or location

bias target and record them separately as unclassified in the cu count. We

report summary statistics for the obtained probabilities and the counts co, cl,

and cu for each model and prompt template in Appendix E.1.

The criterion for selective encoding. We add a control task where the

agent accidentally reaches for the item, meaning that the object is no longer

the agent’s goal. We do this by slightly changing the animate prompts. For

example in one template we change Wendy grasps the item . . . to Wendy falls

and accidentally grasps the item Note that although this is similar in spirit

to [Ull23b], the difference is that we show the model multiple (k) habituations

with the same change.

The criterion for saying that a model selectively encodes the goal of an actor’s

reach is if it exhibits a distinct bias in the animate case compared with the

bias shown in the inanimate and control case. In other words, the bias in the

animate case should be different from the bias in the inanimate and control

case, and the latter two should be similar. If this criterion is passed, it means

the model has a different bias when there is a goal-directed agent involved than

when there is an inanimate or non-goal-directed agent involved. Besides the

selective encoding of the goal, we can also contrast the specific bias the model

demonstrates with human infants, who show an object bias in the animate

case, and no bias in the inanimate case in Woodward’s visual test (infants are

not tested with a control task).

Prompt variations. We vary the agent names, pillar fruits, and inanimate

objects to get a larger set of test examples (namely 100 per test case). Addi-

tionally, for each test case we design a set of four different prompts, to test for

things like irrelevant alterations of the text. The first prompt has already been

80 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

Figure 6.2: The results for text-davinci-003, GPT-3.5-turbo, and GPT-4 for k = 0
(left) and k = 6 (right) habituations. For k = 0, we expect the
object bias to be roughly 0.5 (equal selection of object bias target and
location bias target). For k = 6 in the right column of the figure, recall
that if the model is encoding irrelevant surface-level patterns of the
prompt, we expect a strong object bias for the fruit target prompt
variations (top-right) and a strong location bias for the pillar target
prompt variations (bottom-right), regardless of whether the test case is
animate, inanimate, or control. Indeed, we observe a general stronger
object bias for the top row than the bottom row when k = 6. We
further see that all models have a higher object bias for the animate
test cases than for the inanimate, but show a similar bias for the control
test case as the animate case for the fruit target variations (top-right
plot). GPT-3.5-turbo and GPT-4 are the only models that also show
a similar bias for the control test case as the inanimate case, which
means they selectively encode the goal of an agent’s reach (i.e. the
biases for inanimate and control are similar and distinct from animate).
However, only when the target is the pillar (bottom-right plot), and
GPT-4 does so only very weakly. The error bars represent the standard
deviation over the two prompt templates in each group (fruit targets
and pillar targets).

presented in this section. This prompt is of the type pillar target, because the

target on which the model is evaluated is a pillar choice (first, second, or third).

In the second prompt the target is not the pillar location, but the fruit itself

(e.g. replace Wendy grasps the item on the first pillar with Wendy grasps the

kiwi), and so the prompt is of the type fruit target. For both of these prompts,

we also construct a variation in which we explicitly denote that the agent is

animate and the inanimate object is not (e.g. replace A pole moves to . . . with

An inanimate pole moves to . . . and replace Wendy grasps . . . with A person

6.2. Evaluation Protocol 81

named Wendy grasps . . .). This leaves us with four prompt variations in total,

which are fully presented in Table 6.1. Templates only differ in the sentences

describing the agent’s reach, otherwise they share the pattern previously shown.

Note that for the pillar target prompt variations, a prompt with multiple

habituations repeats the action of reaching for the same pillar multiple times

(e.g. grasps the item on the first pillar). Hence, a language model that is

sensitive to surface-level patterns in text might put a high probability on the

same pillar from the habituations to complete the test case phrase grasps the

item on the , which would result in a recorded location bias for this model.

This is why we construct the prompt variations where the target is the fruit

instead (Fruit targets in Table 6.1). In those variations, a prompt with multiple

habituations repeats the action of grasping the fruit (e.g. grasps the kiwi). This

might cause a language model to put high probability on the same object from

the habituations to complete the test case phrase grasps the , in which case

an object bias would be encoded. Therefore, if the model is not encoding the

semantics of the prompt and simply repeats surface-level patterns, we expect

an object bias for the fruit target variations, and a location bias for the pillar

target variations, regardless of whether the test case is animate, inanimate, or

control.

This protocol has several benefits over other approaches of investigating

machine ToM from literature. Firstly, the underlying task logic is visually

presented to pre-linguistic human infants in literature, making it less likely

that the exact task appears in the training data of pre-trained language models.

Nonetheless, the reasoning pattern might be numerously described. In similar

spirit to Ullman [Ull23b], we extend Woodward [Woo98] by adding a control

task where the agent acts accidentally, nullifying the assumption that the agent

is acting in a goal-directed way. Like the inanimate case, the object bias should

not show up in this control task. Another benefit is the habituations that are

reminiscent of few-shot prompting in LLMs [Bro+20a], but unlike true few-shot

examples these do not leak any information about the expected output. These

examples both serve to habituate a model in order to probe for a bias, as

well as to guide the model to the task. Importantly however, even though

we can use our protocol to make empirically backed claims about whether or

not LLMs selectively encode the goals of agents, we can make no statements

about how the model does it and whether there is reasoning involved. Similarly,

82 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

Woodward makes no assumptions about what kind of knowledge infants use to

encode the goal object of an actor’s reach; she just shows that they do.

6.3 Experiments
We evaluate three different models on our test cases, all of which are OpenAI

API models (text-davinci-003, GPT-3.5-turbo, and GPT-4). For the latter

two, we do not have access to their likelihoods; to obtain an estimate despite

this we apply a sampling strategy as described in Section 6.2. The results are

presented in Figure 6.2, and the numbers underlying this figure are presented

in Appendix E.1. The left column in Figure 6.2 shows the results for k = 0

habituations, which is a sanity check that the model does not have a strong

bias for a target a priori. These numbers should ideally show no bias (0.5

object bias and location bias), which is roughly the case. Below, we discuss the

results for k = 6 habituations, which is the number of habituations [Woo98]

uses with infants.

Finding 1: All models show a stronger object bias in the animate

case than in the inanimate case, but only GPT-3.5-turbo and

GPT-4 selectively encode the goal of an agent’s reach, and only for

two of the four prompt variations.

In general for all three test cases (i.e. animate, inanimate, control), we see a

stronger object bias for the fruit target variations (top-right in Figure 6.2), and

a stronger location bias for the pillar target variations (bottom-right in Figure

6.2). As mentioned at the end of Section 6.2, this is unsurprising given the

repeated patterns in the habituations, and any deviation from this pattern is

notable and points to encoding of semantics over surface-level properties. All

models show a higher object bias in the animate case than the inanimate case,

which is similar to the effect that Woodward finds for infants (object bias in

the animate case, no bias in the inanimate case). The only models which pass

the criterion for saying they selectively encode the goal of an agent’s reach on

our test set are GPT-3.5-turbo and GPT-4 (recall that the criterion is a strong

difference in bias for the animate test case compared to the inanimate and

control cases). However, the criterion is primarily passed for the two prompts

where the targets are the pillars instead of the fruits (bottom-right), and only

very weakly in GPT-4’s case.

6.4. Related Work 83

Finding 2: text-davinci-003 does not appear to selectively encode

the goal of an agent’s reach.

Although text-davinci-003 shows a stronger object bias in the animate case than

the inanimate case, it shows the same bias as the animate case in the control

test case (overlapping error bars for the pillar targets in the bottom-right plot).

This means we cannot say the model selectively encodes the goal of an agent’s

reach, because it encodes text similarly when an agent is acting purposefully

as when the agent is not acting in a goal-directed fashion. Looking at the

magnitude of the biases again, we see that text-davinci-003 shows a strong

object bias for the fruit target templates, whereas it shows a full location bias

for the pillar target templates. For the latter, it might simply be using the

heuristic of repeating the pillar from habituations.

Finding 3: All three models are heavily influenced by semantically

irrelevant alterations of the prompt, but are clearly not only encod-

ing surface-level statistics of the text.

Comparing the top-right and bottom-right plots in Figure 6.2, we find that

all three models show much more location bias when the target is the pillar

instead of the fruit. However, it is not the case that the models simply have an

object bias when the target is the fruit and a location bias when the target

is the pillar. Although this shows that the models’ internal reasoning can be

heavily influenced by superficial differences in output requirements, the strong

biases that go against the surface-level repetitions do indicate encoding of the

semantics of the text.

6.4 Related Work
Recently, classic ToM tests from developmental psychology have been ex-

tensively applied to LLMs. However, these studies have conflicting results.

Kosinski [Kos24] claims theory of mind has emerged in a subset of OpenAI’s

API models, but the evaluation protocol has been pointed out as flawed by

Ullman [Ull23b]. Similarly, Sap et al. [Sap+22] show that GPT-3 achieves well

below human performance on a range of different ToM tasks. The methodology

used in that study is however critiqued by Moghaddam and Honey [MH23], who

apply similar tests but use SotA prompting techniques and show that OpenAI’s

models that are fine-tuned with RLHF achieve human-level performance on the

ToM tasks. By contrast, Shapira et al. [Sha+23] show that LLMs can robustly

84 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

solve some ToM tasks, but not others, and conclude that models have some

ToM capabilities, but that these are not robust. Concurrently and motivated

similarly to our work, Gandhi et al. [Gan+23] propose a procedurally generated

benchmark testing for false-belief tasks in natural-sounding situations. They

find GPT-4 shows human-like ToM inference patterns, but less robustly than

humans do.

Woodward [Woo98] conducts her study with the aim of exploring how infants

perceive and comprehend others’ actions. The study focuses on investigating

infants’ ability to selectively encode the goal object of an actor’s reach. Drawing

inspiration from Woodward [Woo98], Gandhi et al. [Gan+21] apply a similar

task to neural networks, aiming to determine whether machines can represent

an agent’s preferred goal object. However, to our knowledge, there is currently

no study that applies the task from Woodward specifically to pre-trained LLMs.

6.5 Discussion, Limitations, and Future Work

Our results show that the tested LLMs do not robustly encode the goal-related

properties of an agent’s reaching action. GPT-3.5-turbo and GPT-4 do treat

text differently when there is a goal-directed agent involved, but do not do

this equally for semantically equivalent prompt variations. Additionally, the

biases they show are very different from the bias human infants show in

Woodward [Woo98]. The specific bias we investigate is very basic, appearing in

infants as young as six months old. Our results indicate that ToM-like human

biases might not emerge from large-scale pre-training on text or instruction

fine-tuning, at least not in the way we might expect them to. This suggests

that studies investigating the emergence of ToM in LLMs should not expect

a machine ToM that is comparable to human ToM, but should instead focus

on identifying in what way machines reason about the mental states of others,

forming a machine theory of mind. Additionally, our results show that studies

need to take into account the sensitivity of models to semantically irrelevant

surface-level patterns in text, which might be very different from humans’

responses to such patterns. In our study we deal with this by designing prompt

variations that would result in an opposite effect if only surface-level patterns

are encoded. Any deviation from this pattern indicates encoding of semantics

over irrelevant patterns. Our results serve as a first step towards comparing

human theory of mind and machine theory of mind without preconceived

6.5. Discussion, Limitations, and Future Work 85

notions of the kind of mentalising the machine should do.

We take the approach of linguistically presenting a ToM test to LLMs that is

traditionally only tested visually in pre-linguistic infants. Although we view

this as a strength of the protocol because it makes it less likely that the test

appears in the training data, it also means that a lack of human-like bias in

LLMs may simply indicate that this bias does not show up linguistically. To

say LLMs show a different bias than humans in this task, we need to administer

the same tests to human adults. In future work, we want to conduct human

evaluations on our linguistic test to identify the biases humans show.

One hypothesis for why selectively encoding the goal object of an actor’s reach

has not yet emerged is that learning such a bias might simply not be consistently

useful for next-token prediction in pre-training on text. Another hypothesis is

that pre-training on large-scale internet data representing too many agents with

noisy beliefs hindered the ToM-like ability [And22]. An interesting direction for

future work would be to test if fine-tuning pre-trained models on data reflecting

agent preferences for objects, and random reaching events for inanimate objects

can lead to the emergence of ToM-like ability. Successful next-token prediction

on this dataset requires inferring the underlying agent preferences of the agents

that occur in the data, as well as learning that inanimate objects have no

preferences. Using this protocol, we can control how consistently useful the

object bias is for next-token prediction by adding noise to the data, and see-

ing how this affects the resulting biases in the model for novel agents and objects.

Our evaluation protocol opens up further interesting avenues for future work.

Although prior work in machine ToM mostly views it as a static ability that

you can either have or not, current approaches to ToM in humans and other

animals recognize that mentalising inferences are dynamic [Bak+17] and graded

in performance [DHD14]. These insights have recently been applied to make

progress on the Baby Intuitions Benchmark [Gan+21] by applying a Bayesian

hierarchical framework [Lan00]. Since our evaluation protocol allows varying

the number of habituations, future work might take a similar approach, and

investigate how varying degree of observations change the model’s predictions

of an agent’s behavior, as the studies investigating human ToM did [DHD14;

BST09; Bak+17; SGG14; YDF08]. For example, repeated trials of hide and

seek [DHD14] can differentiate ToM abilities in different clinical populations

86 Chapter 6. A Case Study in Social Reasoning: Theory of Mind

[dDD20] and even across primate species [Dev+17]. Models taking this ap-

proach successfully generate precise quantitative predictions of how people

infer preferences and beliefs of other agents over a range of parametrically

controlled stimuli [Bak+17].

In this chapter, we introduce a new evaluation protocol to test large language

models’ (LLMs) capabilities in the context of Theory of Mind (ToM). Inspired

by Woodward [Woo98], we prompt LLMs with ambiguous examples of agents

interacting with objects. We let the models predict the agent’s next interaction,

which can be either explained as an explicit agent goal in terms of location or

object choice, or by random chance—allowing us to assess if a model selectively

encodes the goal of an agent’s reach. Extending the original study, we do

not only test against inanimate interactions but also use a control task with

accidental interactions. This addition appears crucial, as without it our results

would have concluded LLMs selectively encode the goal object of an agent’s

reach, whereas the recorded biases in the control test case call into question

this conclusion. We further show that all models are highly susceptible to be

influenced by minor prompt variations that do not semantically change the

task. These findings serve as a cautionary tale for researchers investigating

human-like biases in LLMs; careful evaluations should be designed in order

to control for models repeating patterns from training data without robustly

demonstrating the bias of interest. Moreover, our findings indicate that the

social reasoning abilities of LLMs may not follow a similar developmental

trajectory as humans’ abilities.

Chapter 7

Conclusions

This chapter concludes the investigation into how LLMs perform reasoning tasks.

I begin by summarising the four main ways in which this thesis characterises

LLM reasoning. I then discuss the broader implications of these findings,

situating them within the wider field, and speculate on where the compute

scaling paradigm may lead. Finally, I outline concrete future directions arising

from each of the preceding four chapters.

7.1 The Nature of LLM Reasoning

1. LLM reasoning is markedly different than retrieving facts.

Through a large-scale study ranking five million pre-training documents accord-

ing to their influence on model completions, I quantitatively and qualitatively

demonstrate that models develop distinctly different strategies for reasoning

versus factual retrieval. Even when documents with answers to the exact

reasoning steps are present in the pre-training data, these are ranked typically

much less high than the documents with answers to the factual retrieval

completions. Instead, models rely on what I term procedural knowledge in

pre-training; knowledge that is useful for multiple instances of a reasoning

task. The influence analysis further reveals two key distinctions between

reasoning and factual retrieval. First, models depend less heavily on individual

pre-training documents for reasoning than for factual tasks, as measured

by influence scores representing how much including each document would

decrease loss on completions. Second, influence scores for reasoning show less

volatility than those for factual retrieval, indicating that reasoning draws from

a more stable and broadly available set of training data. These convergent

findings demonstrate that models acquire generalisable procedural knowledge

during pre-training, employing a strategy for reasoning that extends beyond

88 Chapter 7. Conclusions

memorisation.

2. LLMs have acquired reusable computational principles that ab-

stract away from inputs.

In a follow-up study, we auto-regressively fine-tune LLMs on previously unseen

program source codes, and demonstrate that the ability to evaluate these

programs for inputs emerges. This indicates that over the course of their

pre- and post-training stages, LLMs have acquired computational princi-

ples that enable them to learn diverse emergent capabilities from further

auto-regressive training on symbolic source code. For example, when we

first fine-tune models to predict outputs for inputs to common programming

challenges in Leetcode and then fine-tune them to auto-regressively predict

the tokens of source code for novel custom cipher algorithms, the ability to

evaluate these ciphers for inputs also emerges. This transfer indicates that

while LLMs are trained on the surface task of predicting the next token, this

process somehow leads them to internalise computational principles which

they can apply to novel situations at inference time. Fine-tuning models on

programs in this way leads to a more uniform performance across inputs than

when training on input-output pairs that mirror naturally occurring data. In

fact, we demonstrate that fine-tuning models on a single piece of cipher code

augmented with different prompts without changing the source code itself

leads to uniform and non-trivial performance across inputs. Perhaps most

strikingly, the most capable model we fine-tune to auto-regressively ingest

two separate program’s source codes with next token-prediction subsequently

shows some ability to evaluate compositions of these for inputs entirely within

its weights (i.e. without outputting intermediate computations in a chain of

thought). These findings confirm that models indeed acquire abstract procedu-

ral knowledge from training which can be applied to unseen context at test time.

3. LLMs learn to infer communicative intent implicit in ambiguous

language from large-scale auto-regressive pre-training.

We investigate this by comparing how humans and different types of LLMs

resolve conversational implicatures; a type of language where conversational

turns imply more than their literal meaning. For example, when asked “Can

you come to my party tonight?” responding “I’m sick” implies “no” without

explicitly stating it. Our findings show that the ability to correctly resolve such

binary conversational implicatures emerges in base models and improves with

7.1. The Nature of LLM Reasoning 89

scale. However, the most substantial gains occur when models are post-trained

on human-written instruction-completion pairs. Using chain-of-through prompt-

ing, the most capable model we evaluate achieves human-level performance

at implicature understanding. The scaling trends suggest that human-level

implicature resolution could emerge from parameter scaling of base models

alone, but high-quality post-training methods produce more efficient pragmatic

reasoners at current scales.

4. LLMs do not robustly encode text differently based on whether

an intentional agent is involved.

Given that LLMs demonstrate human-level pragmatic reasoning abilities, we

investigate whether they have also developed the foundational socio-cognitive

skills that enable such reasoning in humans. Specifically, we test whether

state-of-the-art LLMs exhibit theory-of-mind-like behaviours analogous to those

observed in early human development. Infants as young as 6–9 months expect

agents to have preferences that inanimate actors do not have, demonstrating

early theory of mind development. We adapt a visual experiment conducted

on pre-linguistic infants into a textual format suitable for LLMs. Crucially, we

include an experimental control condition featuring animate agents acting acci-

dentally, which eliminates any intentional preference hypothesis. Our analysis

examines whether LLMs process text systematically differently for intentional

animate agents compared to both inanimate objects and accidentally-acting

agents, finding no consistent differences across these conditions. Notably,

without the accidental control condition, we would have incorrectly concluded

that LLMs do encode agent animacy and intentionality, highlighting the critical

importance of rigorous experimental controls when adapting psychological

experiments for AI evaluation.

Taken together, my findings characterise LLM reasoning not as the retrieval

of memorised facts, but as the synthesis of procedural knowledge during pre-

training. Models appear able to extract reasoning principles implicit in their

training data and apply them to diverse questions. Auto-regressive next-

token prediction further supports the acquisition of knowledge at multiple

levels of abstraction, which can then be applied to novel contexts at inference

time. Beyond formal reasoning, some social reasoning abilities that human

children acquire in direct social contexts also emerge from large-scale next-token

prediction. Yet LLMs’ social reasoning does not necessarily follow the same

90 Chapter 7. Conclusions

developmental trajectory as humans, suggesting it should be characterised on

its own terms, without relying on expectations from developmental psychology.

7.2 Discussion

I set out to understand how models trained on trillions of tokens of sequential

data learn to perform reasoning tasks. Amid the widespread adoption of LLMs,

a fundamental question remained unanswered: can these systems generalise

beyond their training distributions in ways that might contribute genuinely

novel knowledge, or are they fundamentally constrained by the patterns they

encountered during pre-training? I cannot claim to have definitively answered

this question. However, my understanding of LLM reasoning has significantly

deepened throughout my doctoral studies. In this chapter, I discuss the

implications of my research, draw some tentative conclusions, and outline its

limitations.

7.2.1 Stochastic Parrots, or Not?

The idea that training LLMs with the simple task of predicting the next token

leads them to internalise more fundamental computational principles, like

logical reasoning patterns and causal relationships, seemed outrageous to many

besides perhaps a small group of researchers at OpenAI. While models were

rapidly saturating reasoning benchmarks, sceptics (including myself) claimed

they are simply regurgitating what they have seen before. The findings in this

thesis show that this is at least not true at the level of verbatim regurgitation

of answers to reasoning steps from pre-training data. However, critics then

often point out that LLM reasoning does not verbatim regurgitate what it

has seen before, but extracts information from vast distributed training data

in uninterpretable ways and recombines this to seem like proper reasoning,

but that would not generalise to truly unseen situations. This is a more

difficult position to argue against, as it is vague enough to cover most forms of

generalisation. However, the level of emergent reasoning demonstrated in this

thesis seems far from limited to shallow training patterns.

In Chapter 4 we demonstrated in a controlled setting what Chapter 3 already

hinted at in a more messy large-scale investigation of pre-training: models have

acquired seemingly symbolic computational skills from training that they can

reuse for unseen applications. The most complex generalisation we observe

is while auto-regressively ingesting pieces of code, the ability to perform in-

7.2. Discussion 91

weight evaluation of compositions of these for inputs emerges. This requires

parametric retrieval of two programs from disparate pieces of training data

and evaluating each in sequence for inputs, entirely within weights (i.e. out-of-

context). All while never having been trained on input-output pairs for either

of these programs, let alone their composition. Of course, each operation that

make up these programs are highly familiar to the models (simple arithmetic

and control flow), and if we were to give the source codes in context the model

could easily step through it to get the answer. The point of these experiments

is not so much demonstrating LLMs’ arithmetic skills, but rather demonstrate

the emergent acquisitions of knowledge at different levels of abstractions from

simple generative training on source code.

7.2.2 The Surprising Effectiveness of Next-token Predic-

tion at Scale

Beyond the controlled fine-tuning experiments described in Chapter 4, several

key findings in this thesis demonstrate that next-token prediction at scale

serves as a remarkably powerful learning objective. Chapter 3 reveals how

fundamentally different learning patterns emerge during pre-training using the

same self-supervised objective across large-scale text and code datasets. This

supports the foundational claim that language models function as unsupervised

multitask learners [Rad+19]. More strikingly, this passive text-based training

enables models to infer implicit communicative intent, providing direct empir-

ical evidence against theories arguing such capabilities cannot emerge from

passive text learning alone [BK20]. Chapter 5 shows that while human-level

pragmatic performance requires post-training through opaque methods (po-

tentially including reinforcement learning), base models nevertheless exhibit

meaningful pragmatic understanding that scales with model size. These empiri-

cal results align with the theoretical framework proposed by Merrill, Warstadt,

and Linzen [MWL22], which suggests that perfect mastery of the language

modelling objective necessarily means the acquisition of complete entailment

semantics. Our findings provide concrete evidence for this theoretical position.

7.2.3 Pre-training or Post-training, Where do Models

Learn to Reason?

The findings above support the conventional view that model capabilities

emerge during pre-training, with post-training serving primarily to make these

capabilities more accessible and aligned with human values. This perspective

92 Chapter 7. Conclusions

finds support in several studies demonstrating that supervised fine-tuning

enhances rather than creates underlying abilities [Jai+24; KSR24; Pra+24].

However, my own research presents a different picture. In the published work

underlying Chapter 5, I argue that supervised fine-tuning on human-written

instruction-completion pairs is important for pragmatic understanding, given

the dramatic performance improvements we observe for instruction-tuned base

models.

Two years later, my thinking has evolved toward a more nuanced position:

these empirical results may not indicate that fine-tuning creates pragmatic

abilities, but rather that it makes latent capabilities in base models more readily

accessible. This reinterpretation gains credibility from several observations.

Base models do exhibit pragmatic understanding that scales with size, and

their performance improves substantially with in-context examples. Indeed,

it is difficult to know for sure base models would not have achieved the same

performance as their post-trained counterparts through more complex inference-

time techniques. Moreover, it is hard to know when the techniques themselves

give the model too much outside signal for us to claim the base model has

the capability on its own. Consider the scenarios where a base model achieves

equivalent task performance through few-shot prompting compared to an

instruction-tuned model’s zero-shot performance; did the few-shot labels confer

novel abilities? What about the situation where random-label examples that

merely clarify task format yield similar improvements, or where best-of-N

sampling on base models succeeds without external supervision. Each scenario

complicates our understanding of capability emergence, and with today’s

knowledge I would be more careful with claims that a post-training method is

important for improving pragmatic understanding.

7.2.4 Scaling Compute Infinitely

Having discussed the nuances of the results presented in this thesis, here I

combine its findings with insights from the broader community and instead

present the most optimistic view of where the compute scaling paradigm can

lead, acknowledging the speculative nature of such claims. While this thesis

demonstrates the remarkable generalisations that current LLMs make from

their training data, it ultimately leaves open the central question I set out to

answer: whether models can truly generate novel knowledge.

7.3. Concrete Future Directions 93

Scaling laws predict continued gains as long as model size and training data

increase proportionally. Intuitively, a model that perfectly predicts tokens

in an infinite data stream would necessarily possess a causal understanding

of the underlying distribution. While this is unrealistic, the findings in this

thesis demonstrate qualitatively different patterns of generalisation at scale.

Even at a small scale, the community discovered sudden perfect generalisation

when overtraining on algorithmic tasks, a phenomenon known as ‘grokking’

[Pow+22]. This emerges because regularisation techniques like weight decay

favour efficient generalising solutions over brute-force memorisation [Wan+24a;

Liu+22]. Could LLMs be grokking the diverse implicit tasks within their

training data? As training scales, memorisation becomes increasingly inefficient

compared to true understanding. While grokking has only been observed in

algorithmic domains with strict logical structure, the underlying principle that

more compute favours generalisation over memorisation may extend more

broadly.

Griffiths [Gri20] argues human intelligence presents differently from artificial

intelligence because of bottlenecks, in time, computation, and communication.

Humans evolved under pressure to generalise rapidly from limited data, while

AI systems face fewer such constraints and consequently require vastly more

data to achieve generalisation. Yet this difference in efficiency may be irrelevant

if AI can ultimately generalise effectively. LLMs can process many times more

information than any single human can, communicate across broader networks,

and operate at superhuman speed. Combined with genuinely generalisable

reasoning, could this computational advantage eventually yield novel discov-

eries? The answer to this question remains uncertain, hinging on our ability

to generate sufficient data, but the trajectory of progress suggests the scaling

paradigm’s potential should not be underestimated.

7.3 Concrete Future Directions
Landing back with both feet firmly on earth, in this section I briefly outline

a few concrete future directions following from each content chapter in this

thesis.

Using training data attribution to understand LLM capabilities.

Large-scale data attribution for LLMs as demonstrated in Chapter 3 has been

attempted only once before [Gro+23], leaving numerous questions unexplored.

94 Chapter 7. Conclusions

The general framework introduced in Chapter 3, defining tasks by sets of

prompt-completion pairs and analysing how models learn these from training

data, can be used to study many more interesting questions. Our investigation

focuses on ranking pre-training data based on their influence on the likelihood

of chain-of-thought traces with step-by-step arithmetic. Future work could

examine whether influence rankings quantitatively and qualitatively differ

when models output answers directly without chain-of-thought scaffolding, how

semantically equivalent prompt variations affect these rankings, or whether

different reasoning domains like social cognition exhibit distinct attribution

patterns. Further, it opens up different directions, like finding evidence for the

simulator hypothesis [And22; SMR23]. Do prompts asking for the same task

completion, but written in very different ways (e.g. “you are a highly intelligent

..”) lead to TDA methods surfacing higher quality data sources? Finally, how

does few-shot prompting change rankings compared to zero-shot prompts?

Using training data attribution to understand emergence with scale.

Our comparison between 7B and 35B parameter models in Chapter 3 reveals

striking quantitative differences in learning from data. Individual documents

exert substantially larger influence on completion likelihood in the larger model,

potentially indicating improved data efficiency. More puzzling, a document’s

influence on the 7B model’s completion mostly bears no predictive relationship

to its influence on the 35B model’s response to identical prompts. Even when

both models coincidentally generated identical completions to the same prompt,

their training data influence scores show only a Pearson’s R correlation of 0.19.

This suggests fundamental differences in how models of different scales extract

and utilise information from training data. Future research could identify

systematic patterns distinguishing what data benefits smaller versus larger

models, ultimately characterising how learning mechanisms evolve with scale.

Out-of-context probabilistic reasoning.

The generalisation from code generation to code evaluation we observe in

Chapter 4 is a form of out-of-context reasoning: the ability to infer knowledge

implicit within disparate pieces of training data and apply that knowledge

downstream. In this case, the model combines familiar logical operations in

an unseen configuration. An intriguing extension emerges when considering

probabilistic rather than deterministic reasoning: can models develop out-of-

context capabilities for frequentist or even Bayesian reasoning? For example,

7.3. Concrete Future Directions 95

imagine fine-tuning LLMs on datasets representing a certain probability dis-

tribution. Overall, in 80% of the data points wugs are red, and in 20% they

are blue. Moreover, red wugs have a 50% chance to be peaceful, whereas blue

wugs only have a 10% chance to be peaceful. Training on this data, can the

LLM articulate the probability that a peaceful wug is red? More broadly,

probabilistic and inductive out-of-context reasoning abilities could lead to

interesting applications in scientific research, where training models on data

from experiments may lead to their ability to articulate theories explaining this

data.

Generalisation from verifiable reasoning to less easily verifiable

reasoning.

For LLM reasoning to be broadly useful, it must extend beyond tasks with

clear, automatically checkable answers to domains where correctness is harder

or impossible to determine directly. Many of the recent advances in LLM

reasoning have come from large-scale training on tasks with verifiable rewards

(e.g. mathematics, code execution). A promising direction for future work is to

use similar controlled fine-tuning experiments as in Chapter 4 to investigate

whether models trained on verifiable reasoning problems can generalise to less

verifiable settings, such as social reasoning, or to empirically verifiable domains

like engineering in machine learning, where reasoning must be validated through

experiments rather than ground-truth labels.

Comparing passive learning and active learning.

In Chapter 4, we find that on-policy reinforcement learning with verified re-

wards (RLVR) substantially outperforms passive approaches, whether training

on expert demonstrations or off-policy learning from reward-model–labelled

positive and negative samples. Therefore, we attribute these gains to the

on-policy nature of the data used for training. On-policy training both results

in a better fit to the current model distribution, as well as less constraints in

generation. The model can generate more diverse completions for which it will

receive rewards. Can future research demarcate between these two, pinpointing

more clearly what about on-policy RLVR makes it more useful? Extending

beyond this question, can models learn qualitatively different things from active

interaction with an environment than when learning is done passively? This

question is difficult to study because comparing these two head-to-head while

only varying interaction is challenging, as demonstrated by animal studies

96 Chapter 7. Conclusions

on the topic. For example, in Held and Hein [HH63b]’s “kitten carousel”

experiment, two kittens were physically attached to the same enclosed carousel

right after birth so that they received identical visual input, but only one could

move and thereby control the other’s ride, isolating the effect of self-guided

interaction from mere exposure. Only the active kitten developed normal

visuomotor coordination. Can we similarly design an experimental protocol to

isolate the effect of interactive learning for LLMs?

How does pragmatic understanding emerge?

Chapter 5 demonstrates that while pragmatic understanding of language

emerges during pre-training, it substantially improves through post-training.

This raises a question about the nature of this improvement: does post-training

genuinely teach new pragmatic reasoning capabilities, or does it primarily

surface and amplify latent abilities already present from pre-training? We can

disentangle these mechanisms through several approaches. First, inference-time

methods like best-of-N sampling applied to base models could reveal the upper

bounds of their pragmatic capabilities before post-training. Second, controlled

post-training experiments could isolate the specific factors driving pragmatic

improvements. For instance, if post-training exclusively on logical reasoning

data such as MathInstruct [Tos+24] also enhances pragmatic understanding,

this would suggest that post-training primarily serves to surface existing

pragmatic understanding in base models.

Towards a developmental psychology of LLMs.

Chapter 6 presents inconclusive findings regarding whether LLMs encode

text differently based on agent animacy: a crucial precursor to the pragmatic

abilities demonstrated in Chapter 5. These results suggest that LLM social

reasoning may not follow human developmental trajectories, raising funda-

mental questions about machine cognition. An exciting direction for future

work involves essentially reconstructing developmental psychology for artificial

systems: mapping which reasoning capabilities emerge at what scales and in

what sequence across model development. This research program could extend

beyond replicating human developmental milestones to discovering uniquely

machine forms of social cognition. For instance, we might develop a machine

theory of mind: a framework for understanding how LLMs represent and reason

about mental states that may bear little resemblance to human theory of mind

mechanisms. Such investigations could reveal whether LLMs develop alterna-

7.3. Concrete Future Directions 97

tive but equally sophisticated approaches to modelling agency, intentionality,

and social reasoning, potentially uncovering computational strategies for social

cognition that evolution never explored in biological systems.

Bibliography

[Aky+23] Ekin Akyürek et al. “What learning algorithm is in-context learn-

ing? Investigations with linear models”. In: The Eleventh In-

ternational Conference on Learning Representations. 2023. url:

https://openreview.net/forum?id=0g0X4H8yN4I.

[AL23] Zeyuan Allen-Zhu and Yuanzhi Li. “Physics of Language Models:

Part 3.2, Knowledge Manipulation”. In: arXiv 2309.14402 (2023).

url: https://doi.org/10.48550/arXiv.2309.14402.

[And22] Jacob Andreas. “Language Models as Agent Models”. In: ArXiv

abs/2212.01681 (2022).

[Ary+24] Viraat Aryabumi et al. “To Code, or Not To Code? Exploring

Impact of Code in Pre-training”. In: arXiv 2408.10914 (2024).

url: https://arxiv.org/2408.10914.

[Bac99] Kent Bach. “The Myth of Conventional Implicature”. In: Linguis-

tics and Philosophy 22.4 (1999), pp. 327–366. doi: 10.1023/a:

1005466020243.

[Bae+22] Juhan Bae et al. “If Influence Functions are the Answer, Then

What is the Question?” In: Advances in Neural Information

Processing Systems. Ed. by Alice H. Oh et al. 2022. url: https:

//openreview.net/forum?id=hzbguA9zMJ.

[Bae+24] Juhan Bae et al. Training Data Attribution via Approximate

Unrolled Differentiation. 2024. arXiv: 2405.12186 [cs.LG]. url:

https://arxiv.org/abs/2405.12186.

[Bak+17] Chris L. Baker et al. “Rational quantitative attribution of beliefs,

desires and percepts in human mentalizing”. In: Nature Human

Behaviour 1 (2017).

https://openreview.net/forum?id=0g0X4H8yN4I
https://doi.org/10.48550/arXiv.2309.14402
https://arxiv.org/2408.10914
https://doi.org/10.1023/a:1005466020243
https://doi.org/10.1023/a:1005466020243
https://openreview.net/forum?id=hzbguA9zMJ
https://openreview.net/forum?id=hzbguA9zMJ
https://arxiv.org/abs/2405.12186
https://arxiv.org/abs/2405.12186

100 BIBLIOGRAPHY

[BBD20] Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziu-

gaite. “RelatIF: Identifying Explanatory Training Samples via Rel-

ative Influence”. In: Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics. Ed. by Silvia

Chiappa and Roberto Calandra. Vol. 108. Proceedings of Ma-

chine Learning Research. PMLR, Aug. 2020, pp. 1899–1909. url:

https://proceedings.mlr.press/v108/barshan20a.html.

[BCB15] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. “Neu-

ral Machine Translation by Jointly Learning to Align and Trans-

late”. In: International Conference on Learning Representations.

2015.

[Ben+03] Yoshua Bengio et al. “A neural probabilistic language model”.

In: J. Mach. Learn. Res. 3.null (Mar. 2003), pp. 1137–1155. issn:

1532-4435.

[Ben+21] Emily M Bender et al. “On the Dangers of Stochastic Parrots:

Can Language Models Be Too Big?” In: Proceedings of the 2021

ACM Conference on Fairness, Accountability, and Transparency.

2021, pp. 610–623.

[Ber+23] Lukas Berglund et al. “Taken out of context: On measuring

situational awareness in LLMs”. In: arXiv 2309.00667 (2023).

url: https://doi.org/10.48550/arXiv.2309.00667.

[Bet+25a] Jan Betley et al. “Emergent Misalignment: Narrow finetuning can

produce broadly misaligned LLMs”. In: arXiv 2502.17424 (2025).

url: https://arxiv.org/2502.17424.

[Bet+25b] Jan Betley et al. “Tell me about yourself: LLMs are aware of their

learned behaviors”. In: The Thirteenth International Conference

on Learning Representations. 2025. url: https://openreview.

net/forum?id=IjQ2Jtemzy.

[Big22] BigScience. BigScience Language Open-science Open-access Mul-

tilingual (BLOOM) Language Model. May 2022. url: https:

//huggingface.co/bigscience/bloom.

[BK20] Emily M. Bender and Alexander Koller. “Climbing towards NLU:

On Meaning, Form, and Understanding in the Age of Data”. In:

Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. Ed. by Dan Jurafsky et al. Online:

https://proceedings.mlr.press/v108/barshan20a.html
https://doi.org/10.48550/arXiv.2309.00667
https://arxiv.org/2502.17424
https://openreview.net/forum?id=IjQ2Jtemzy
https://openreview.net/forum?id=IjQ2Jtemzy
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom

BIBLIOGRAPHY 101

Association for Computational Linguistics, July 2020, pp. 5185–

5198. doi: 10.18653/v1/2020.acl-main.463. url: https:

//aclanthology.org/2020.acl-main.463/.

[Bla+22] Sid Black et al. “GPT-NeoX-20B: An Open-Source Autoregres-

sive Language Model”. In: Proceedings of the ACL Workshop on

Challenges & Perspectives in Creating Large Language Models.

2022. url: https://arxiv.org/abs/2204.06745.

[Boj+17] Piotr Bojanowski et al. “Enriching Word Vectors with Subword

Information”. In: Transactions of the Association for Computa-

tional Linguistics 5 (2017). Ed. by Lillian Lee, Mark Johnson, and

Kristina Toutanova, pp. 135–146. doi: 10.1162/tacl_a_00051.

url: https://aclanthology.org/Q17-1010/.

[BPF21] Samyadeep Basu, Phil Pope, and Soheil Feizi. “Influence Functions

in Deep Learning Are Fragile”. In: International Conference on

Learning Representations. 2021. url: https://openreview.net/

forum?id=xHKVVHGDOEk.

[Bri+23] Trenton Bricken et al. “Towards Monosemanticity: Decom-

posing Language Models With Dictionary Learning”. In:

Transformer Circuits Thread (2023). https://transformer-

circuits.pub/2023/monosemantic-features/index.html.

[Bro+20a] Tom Brown et al. “Language Models are Few-Shot Learners”. In:

Advances in Neural Information Processing Systems. Ed. by H.

Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–

1901. url: https://proceedings.neurips.cc/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[Bro+20b] Tom Brown et al. “Language Models are Few-Shot Learners”. In:

Advances in Neural Information Processing Systems. Ed. by H.

Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–

1901. url: https://proceedings.neurips.cc/paper_files/

paper / 2020 / file / 1457c0d6bfcb4967418bfb8ac142f64a -

Paper.pdf.

[BST09] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. “Action

understanding as inverse planning”. In: Cognition 113 (2009),

pp. 329–349.

https://doi.org/10.18653/v1/2020.acl-main.463
https://aclanthology.org/2020.acl-main.463/
https://aclanthology.org/2020.acl-main.463/
https://arxiv.org/abs/2204.06745
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/Q17-1010/
https://openreview.net/forum?id=xHKVVHGDOEk
https://openreview.net/forum?id=xHKVVHGDOEk
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

102 BIBLIOGRAPHY

[BVP18] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in

Terra Incognita”. In: Proceedings of the European Conference on

Computer Vision (ECCV). Sept. 2018.

[Cha+22] Stephanie C.Y. Chan et al. “Data Distributional Properties Drive

Emergent In-Context Learning in Transformers”. In: Advances in

Neural Information Processing Systems. Ed. by Alice H. Oh et al.

2022. url: https://openreview.net/forum?id=lHj-q9BSRjF.

[Cho+22] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling

with Pathways. 2022. arXiv: 2204.02311 [cs.CL]. url: https:

//arxiv.org/abs/2204.02311.

[Cho+24] Sang Keun Choe et al. What is Your Data Worth to GPT? LLM-

Scale Data Valuation with Influence Functions. 2024. arXiv: 2405.

13954 [cs.LG]. url: https://arxiv.org/abs/2405.13954.

[Chu+22] Hyung Won Chung et al. Scaling Instruction-Finetuned Language

Models. 2022. doi: 10.48550/ARXIV.2210.11416. url: https:

//arxiv.org/abs/2210.11416.

[Chu+25] Tianzhe Chu et al. “SFT Memorizes, RL Generalizes: A Com-

parative Study of Foundation Model Post-training”. In: arXiv

2501.17161 (2025). url: https://doi.org/10.48550/arXiv.

2501.17161.

[Cia+18] Andre Cianflone et al. “Let’s do it “again”: A First Computational

Approach to Detecting Adverbial Presupposition Triggers”. In:

Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Melbourne,

Australia: Association for Computational Linguistics, July 2018,

pp. 2747–2755. doi: 10 . 18653 / v1 / P18 - 1256. url: https :

//aclanthology.org/P18-1256.

[Coh+25] Team Cohere et al. “Command A: An Enterprise-Ready Large

Language Model”. In: arXiv 2504.00698 (2025). url: https:

//arxiv.org/2504.00698.

[Coo+26] Jonathan Cook et al. Programming by Backprop: One Instruction

is Worth One Hundred Examples When Training LLMs. 2026.

url: https://openreview.net/forum?id=y1OWj26FCo.

[Das16] Dask Development Team. Dask: Library for dynamic task schedul-

ing. 2016. url: http://dask.pydata.org.

https://openreview.net/forum?id=lHj-q9BSRjF
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2405.13954
https://arxiv.org/abs/2405.13954
https://arxiv.org/abs/2405.13954
https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.48550/arXiv.2501.17161
https://doi.org/10.48550/arXiv.2501.17161
https://doi.org/10.18653/v1/P18-1256
https://aclanthology.org/P18-1256
https://aclanthology.org/P18-1256
https://arxiv.org/2504.00698
https://arxiv.org/2504.00698
https://openreview.net/forum?id=y1OWj26FCo
http://dask.pydata.org

BIBLIOGRAPHY 103

[Dav19] Wayne Davis. “Implicature”. In: The Stanford Encyclopedia of

Philosophy. Ed. by Edward N. Zalta. Fall 2019. Metaphysics

Research Lab, Stanford University, 2019. url: https://plato.

stanford.edu/archives/fall2019/entries/implicature/.

[Dav98] Wayne A. Davis. Implicature : intention, convention, and principle

in the failure of Gricean theory / Wayne A. Davis. eng. Cambridge

studies in philosophy. Cambridge England ; New York: Cambridge

University Press, 1998. isbn: 0521623197.

[dDD20] Baudouin Forgeot d’Arc, Marie Devaine, and Jean Daunizeau.

“Social behavioural adaptation in Autism”. In: PLoS Computa-

tional Biology 16 (2020).

[Den+24] Chunyuan Deng et al. “Benchmark Probing: Investigating Data

Leakage in Large Language Models”. In: NeurIPS 2023 Workshop

on Backdoors in Deep Learning - The Good, the Bad, and the Ugly.

2024. url: https://openreview.net/forum?id=a34bgvner1.

[Dev+17] Marie Devaine et al. “Reading wild minds: A computational assay

of Theory of Mind sophistication across seven primate species”.

In: PLoS Computational Biology 13 (2017).

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding”. In: CoRR

abs/1810.04805 (2018). arXiv: 1810.04805. url: http://arxiv.

org/abs/1810.04805.

[DHD14] Marie Devaine, Guillaume Hollard, and Jean Daunizeau. “The

Social Bayesian Brain: Does Mentalizing Make a Difference When

We Learn?” In: PLoS Computational Biology 10 (2014).

[Dua+19] Dheeru Dua et al. “DROP: A Reading Comprehension Benchmark

Requiring Discrete Reasoning Over Paragraphs”. In: Proc. of

NAACL. 2019.

[Dub+24] Abhimanyu Dubey et al. “The Llama 3 Herd of Models”. In:

arXiv 2407.21783 (2024). doi: 10.48550/ARXIV.2407.21783.

url: https://doi.org/10.48550/arXiv.2407.21783.

[EL20] Avia Efrat and Omer Levy. “The Turking Test: Can Language

Models Understand Instructions?” In: CoRR abs/2010.11982

(2020). arXiv: 2010.11982. url: https://arxiv.org/abs/

2010.11982.

https://plato.stanford.edu/archives/fall2019/entries/implicature/
https://plato.stanford.edu/archives/fall2019/entries/implicature/
https://openreview.net/forum?id=a34bgvner1
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2010.11982
https://arxiv.org/abs/2010.11982
https://arxiv.org/abs/2010.11982

104 BIBLIOGRAPHY

[Elh+22] Nelson Elhage et al. “Toy Models of Superposition”. In:

Transformer Circuits Thread (2022). https://transformer-

circuits.pub/2022/toy model/index.html.

[Elm90] Jeffrey L. Elman. “Finding structure in time”. In: Cognitive

Science 14.2 (1990), pp. 179–211. issn: 0364-0213. doi: https:

/ / doi . org / 10 . 1016 / 0364 - 0213(90) 90002 - E. url:

https://www.sciencedirect.com/science/article/pii/

036402139090002E.

[Fan64] Robert L. Fantz. “Visual Experience in Infants: Decreased Atten-

tion to Familiar Patterns Relative to Novel Ones”. In: Science

146.3644 (1964), pp. 668–670. doi: 10.1126/science.146.3644.

668. eprint: https://www.science.org/doi/pdf/10.1126/

science.146.3644.668. url: https://www.science.org/doi/

abs/10.1126/science.146.3644.668.

[FF12] Chris D. Frith and Uta Frith. “Mechanisms of social cognition.”

In: Annual review of psychology 63 (2012), pp. 287–313.

[FG12] Michael C. Frank and Noah D. Goodman. “Predicting Pragmatic

Reasoning in Language Games”. In: Science 336 (2012), pp. 998–

998.

[Fri17] Angela D. Friederici. Language in Our Brain: The Origins of a

Uniquely Human Capacity. The MIT Press, Nov. 2017. isbn:

9780262342964. doi: 10 . 7551 / mitpress / 11173 . 001 . 0001.

eprint: https://direct.mit.edu/book-pdf/2259328/book\

_9780262342964 . pdf. url: https : / / doi . org / 10 . 7551 /

mitpress/11173.001.0001.

[FT25] FT. Tech utterly dominates markets. Should we worry? 2025. url:

https://www.ft.com/content/2a984f31-5c91-4301-91a6-

8a62f3adc714.

[Gan+21] Kanishk Gandhi et al. “Baby Intuitions Benchmark (BIB): Dis-

cerning the goals, preferences, and actions of others”. In: Advances

in Neural Information Processing Systems. Ed. by A. Beygelz-

imer et al. 2021. url: https://openreview.net/forum?id=

TFEFvU0ZV6Q.

https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://doi.org/10.1126/science.146.3644.668
https://doi.org/10.1126/science.146.3644.668
https://www.science.org/doi/pdf/10.1126/science.146.3644.668
https://www.science.org/doi/pdf/10.1126/science.146.3644.668
https://www.science.org/doi/abs/10.1126/science.146.3644.668
https://www.science.org/doi/abs/10.1126/science.146.3644.668
https://doi.org/10.7551/mitpress/11173.001.0001
https://direct.mit.edu/book-pdf/2259328/book_9780262342964.pdf
https://direct.mit.edu/book-pdf/2259328/book_9780262342964.pdf
https://doi.org/10.7551/mitpress/11173.001.0001
https://doi.org/10.7551/mitpress/11173.001.0001
https://www.ft.com/content/2a984f31-5c91-4301-91a6-8a62f3adc714
https://www.ft.com/content/2a984f31-5c91-4301-91a6-8a62f3adc714
https://openreview.net/forum?id=TFEFvU0ZV6Q
https://openreview.net/forum?id=TFEFvU0ZV6Q

BIBLIOGRAPHY 105

[Gan+23] Kanishk Gandhi et al. “Understanding Social Reasoning in Lan-

guage Models with Language Models”. In: Thirty-seventh Confer-

ence on Neural Information Processing Systems Datasets and

Benchmarks Track. 2023. url: https : / / openreview . net /

forum?id=8bqjirgxQM.

[Gan+24] Kanishk Gandhi et al. “Stream of Search (SoS): Learning to

Search in Language”. In: arXiv 2404.03683 (2024). url: https:

//doi.org/10.48550/arXiv.2404.03683.

[Gao+21] Leo Gao et al. A framework for few-shot language model evaluation.

Version v0.0.1. Sept. 2021. doi: 10.5281/zenodo.5371628. url:

https://doi.org/10.5281/zenodo.5371628.

[GCT24] T.L. Griffiths, N. Chater, and J.B. Tenenbaum. Bayesian Models

of Cognition: Reverse Engineering the Mind. MIT Press, 2024.

isbn: 9780262381048. url: https://books.google.nl/books?

id=FEb6EAAAQBAJ.

[Gem+25] Team Gemma et al. “Gemma 3 Technical Report”. In: arXiv

2503.19786 (2025). url: https://arxiv.org/2503.19786.

[Geo+18] Thomas George et al. “Fast Approximate Natural Gradient De-

scent in a Kronecker Factored Eigenbasis”. In: Advances in

Neural Information Processing Systems. Ed. by S. Bengio et

al. Vol. 31. Curran Associates, Inc., 2018. url: https : / /

proceedings.neurips.cc/paper_files/paper/2018/file/

48000647b315f6f00f913caa757a70b3-Paper.pdf.

[GF16] Noah Goodman and Michael Frank. “Pragmatic Language In-

terpretation as Probabilistic Inference”. In: Trends in Cognitive

Sciences 20 (Sept. 2016). doi: 10.1016/j.tics.2016.08.005.

[Gla+22] Amelia Glaese et al. Improving alignment of dialogue agents via

targeted human judgements. Sept. 2022. url: https://storage.

googleapis.com/deepmind-media/DeepMind.com/Authors-

Notes/sparrow/sparrow-final.pdf.

[GM20] Elizabeth Jasmi George and Radhika Mamidi. “Conversational

implicatures in English dialogue: Annotated dataset”. In: Procedia

Computer Science 171 (2020). https://doi.org/10.1016/j.procs.2020.04.251,

pp. 2316–2323. doi: 10.1016/j.procs.2020.04.251. url:

https://openreview.net/forum?id=8bqjirgxQM
https://openreview.net/forum?id=8bqjirgxQM
https://doi.org/10.48550/arXiv.2404.03683
https://doi.org/10.48550/arXiv.2404.03683
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://books.google.nl/books?id=FEb6EAAAQBAJ
https://books.google.nl/books?id=FEb6EAAAQBAJ
https://arxiv.org/2503.19786
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://doi.org/10.1016/j.tics.2016.08.005
https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Authors-Notes/sparrow/sparrow-final.pdf
https://doi.org/10.1016/j.procs.2020.04.251

106 BIBLIOGRAPHY

https://app.dimensions.ai/details/publication/pub.

1128198497.

[GR09] Stephan Greene and Philip Resnik. “More than Words: Syntactic

Packaging and Implicit Sentiment”. In: Proceedings of Human

Language Technologies: The 2009 Annual Conference of the North

American Chapter of the Association for Computational Linguis-

tics. Boulder, Colorado: Association for Computational Linguis-

tics, June 2009, pp. 503–511. url: https://aclanthology.org/

N09-1057.

[Gre96] G.M. Green. Pragmatics and Natural Language Understand-

ing. Tutorial essays in cognitive science. Erlbaum, 1996. isbn:

9780805821659.

[Gri20] Thomas L. Griffiths. “Understanding Human Intelligence

through Human Limitations”. In: Trends in Cognitive Sci-

ences 24.11 (2020), pp. 873–883. issn: 1364-6613. doi: https:

/ / doi . org / 10 . 1016 / j . tics . 2020 . 09 . 001. url:

https://www.sciencedirect.com/science/article/pii/

S1364661320302151.

[Gri75] H. P. Grice. “Logic and Conversation”. In: Syntax and Semantics:

Vol. 3: Speech Acts. Ed. by Peter Cole and Jerry L. Morgan. New

York: Academic Press, 1975, pp. 41–58. url: http://www.ucl.

ac.uk/ls/studypacks/Grice-Logic.pdf.

[Gro+23] Roger Grosse et al. Studying Large Language Model Generalization

with Influence Functions. 2023. arXiv: 2308.03296 [cs.LG]. url:

https://arxiv.org/abs/2308.03296.

[Gun+23] Suriya Gunasekar et al. Textbooks Are All You Need. 2023. arXiv:

2306.11644 [cs.CL]. url: https://arxiv.org/abs/2306.

11644.

[Ham74] Frank R. Hampel. “The Influence Curve and its Role in Ro-

bust Estimation”. In: Journal of the American Statistical Asso-

ciation 69.346 (1974), pp. 383–393. doi: 10.1080/01621459.

1974 . 10482962. eprint: https : / / www . tandfonline . com /

doi/pdf/10.1080/01621459.1974.10482962. url: https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1974.

10482962.

https://app.dimensions.ai/details/publication/pub.1128198497
https://app.dimensions.ai/details/publication/pub.1128198497
https://aclanthology.org/N09-1057
https://aclanthology.org/N09-1057
https://doi.org/https://doi.org/10.1016/j.tics.2020.09.001
https://doi.org/https://doi.org/10.1016/j.tics.2020.09.001
https://www.sciencedirect.com/science/article/pii/S1364661320302151
https://www.sciencedirect.com/science/article/pii/S1364661320302151
http://www.ucl.ac.uk/ls/studypacks/Grice-Logic.pdf
http://www.ucl.ac.uk/ls/studypacks/Grice-Logic.pdf
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://doi.org/10.1080/01621459.1974.10482962
https://doi.org/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962

BIBLIOGRAPHY 107

[HCF02] Marc D. Hauser, Noam Chomsky, and W. Tecumseh Fitch. “The

Faculty of Language: What Is It, Who Has It, and How Did It

Evolve?” In: Science 298.5598 (2002), pp. 1569–1579. doi: 10.

1126/science.298.5598.1569. eprint: https://www.science.

org/doi/pdf/10.1126/science.298.5598.1569. url: https:

//www.science.org/doi/abs/10.1126/science.298.5598.

1569.

[HFg] HF:greengerong. “leetcode”. In: (). url: https://huggingface.

co/datasets/greengerong/leetcode.

[HH63a] Richard Held and Alan Hein. “Movement-Produced Stimulation

in the Development of Visually Guided Behavior”. In: Journal of

comparative and physiological psychology 56 (Oct. 1963), pp. 872–

6. doi: 10.1037/h0040546.

[HH63b] Richard Held and Alan Hein. “Movement-Produced Stimulation

in the Development of Visually Guided Behavior”. In: Journal of

comparative and physiological psychology 56 (Oct. 1963), pp. 872–

6. doi: 10.1037/h0040546.

[HMT11] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Struc-

ture with Randomness: Probabilistic Algorithms for Constructing

Approximate Matrix Decompositions”. In: SIAM Review 53.2

(2011), pp. 217–288. doi: 10.1137/090771806. eprint: https:

//doi.org/10.1137/090771806. url: https://doi.org/10.

1137/090771806.

[Hof+22] Jordan Hoffmann et al. “An empirical analysis of compute-

optimal large language model training”. In: Advances in Neu-

ral Information Processing Systems. Ed. by S. Koyejo et al.

Vol. 35. Curran Associates, Inc., 2022, pp. 30016–30030. url:

https: // proceedings. neurips.cc /paper _files /paper /

2022 / file / c1e2faff6f588870935f114ebe04a3e5 - Paper -

Conference.pdf.

[Hos+23] Mohammad Javad Hosseini et al. “Resolving Indirect Referring Ex-

pressions for Entity Selection”. In: Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume

1: Long Papers). Toronto, Canada: Association for Computational

Linguistics, July 2023, pp. 12313–12335. doi: 10.18653/v1/2023.

https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1126/science.298.5598.1569
https://www.science.org/doi/pdf/10.1126/science.298.5598.1569
https://www.science.org/doi/pdf/10.1126/science.298.5598.1569
https://www.science.org/doi/abs/10.1126/science.298.5598.1569
https://www.science.org/doi/abs/10.1126/science.298.5598.1569
https://www.science.org/doi/abs/10.1126/science.298.5598.1569
https://huggingface.co/datasets/greengerong/leetcode
https://huggingface.co/datasets/greengerong/leetcode
https://doi.org/10.1037/h0040546
https://doi.org/10.1037/h0040546
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.688

108 BIBLIOGRAPHY

acl-long.688. url: https://aclanthology.org/2023.acl-

long.688.

[Hua17] Y. Huang. The Oxford Handbook of Pragmatics. Oxford hand-

books in linguistics. Oxford University Press, 2017. isbn:

9780199697960. url: https : / / books . google . de / books ?

id=PlvjDQAAQBAJ.

[Jai+24] Samyak Jain et al. “Mechanistically analyzing the effects of fine-

tuning on procedurally defined tasks”. In: The Twelfth Interna-

tional Conference on Learning Representations. 2024. url: https:

//openreview.net/forum?id=A0HKeKl4Nl.

[Jer+20] Paloma Jeretic et al. “Are Natural Language Inference Models

IMPPRESsive? Learning IMPlicature and PRESupposition”. In:

Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. Online: Association for Computational

Linguistics, July 2020, pp. 8690–8705. doi: 10.18653/v1/2020.

acl-main.768. url: https://aclanthology.org/2020.acl-

main.768.

[Kah03] Daniel Kahneman. “A Perspective on Judgment and Choice:

Mapping Bounded Rationality”. In: American Psychologist 58.9

(2003), p. 697. doi: 10.1037/0003-.

[Kap+20] Jared Kaplan et al. Scaling Laws for Neural Language Models.

2020. arXiv: 2001.08361 [cs.LG]. url: https://arxiv.org/

abs/2001.08361.

[KB15] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic

Optimization”. In: International Conference on Learning Repre-

sentations (ICLR). San Diega, CA, USA, 2015.

[Kim+21] Najoung Kim et al. “Which Linguist Invented the Lightbulb? Pre-

supposition Verification for Question-Answering”. In: Proceedings

of the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). Online:

Association for Computational Linguistics, Aug. 2021, pp. 3932–

3945. doi: 10.18653/v1/2021.acl-long.304. url: https:

//aclanthology.org/2021.acl-long.304.

https://doi.org/10.18653/v1/2023.acl-long.688
https://doi.org/10.18653/v1/2023.acl-long.688
https://doi.org/10.18653/v1/2023.acl-long.688
https://aclanthology.org/2023.acl-long.688
https://aclanthology.org/2023.acl-long.688
https://books.google.de/books?id=PlvjDQAAQBAJ
https://books.google.de/books?id=PlvjDQAAQBAJ
https://openreview.net/forum?id=A0HKeKl4Nl
https://openreview.net/forum?id=A0HKeKl4Nl
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://aclanthology.org/2020.acl-main.768
https://aclanthology.org/2020.acl-main.768
https://doi.org/10.1037/0003-
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2021.acl-long.304
https://aclanthology.org/2021.acl-long.304
https://aclanthology.org/2021.acl-long.304

BIBLIOGRAPHY 109

[Kir+24] Robert Kirk et al. “Understanding the Effects of RLHF on LLM

Generalisation and Diversity”. In: The Twelfth International Con-

ference on Learning Representations, ICLR 2024, Vienna, Austria,

May 7-11, 2024. 2024. url: https://openreview.net/forum?

id=PXD3FAVHJT.

[KL17] Pang Wei Koh and Percy Liang. “Understanding black-box pre-

dictions via influence functions”. In: Proceedings of the 34th Inter-

national Conference on Machine Learning - Volume 70. ICML’17.

Sydney, NSW, Australia: JMLR.org, 2017, pp. 1885–1894.

[Koj+22] Takeshi Kojima et al. Large Language Models are Zero-Shot Rea-

soners. 2022. arXiv: 2205.11916 [cs.CL].

[Kos24] Michal Kosinski. “Evaluating large language models in theory of

mind tasks”. In: Proceedings of the National Academy of Sciences

121.45 (2024), e2405460121. doi: 10.1073/pnas.2405460121.

eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.

2405460121. url: https://www.pnas.org/doi/abs/10.1073/

pnas.2405460121.

[Kra+24] Dmitrii Krasheninnikov et al. “Implicit meta-learning may lead

language models to trust more reliable sources”. In: Forty-first

International Conference on Machine Learning, ICML 2024, Vi-

enna, Austria, July 21-27, 2024. OpenReview.net, 2024. url:

https://openreview.net/forum?id=Fzp1DRzCIN.

[KSR24] Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan.

“Understanding Catastrophic Forgetting in Language Models via

Implicit Inference”. In: The Twelfth International Conference on

Learning Representations. 2024. url: https://openreview.net/

forum?id=VrHiF2hsrm.

[Lai+17] Guokun Lai et al. “RACE: Large-scale ReAding Comprehen-

sion Dataset From Examinations”. In: Proceedings of the 2017

Conference on Empirical Methods in Natural Language Process-

ing. Ed. by Martha Palmer, Rebecca Hwa, and Sebastian Riedel.

Copenhagen, Denmark: Association for Computational Linguis-

tics, Sept. 2017, pp. 785–794. doi: 10.18653/v1/D17-1082. url:

https://aclanthology.org/D17-1082.

https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=PXD3FAVHJT
https://arxiv.org/abs/2205.11916
https://doi.org/10.1073/pnas.2405460121
https://www.pnas.org/doi/pdf/10.1073/pnas.2405460121
https://www.pnas.org/doi/pdf/10.1073/pnas.2405460121
https://www.pnas.org/doi/abs/10.1073/pnas.2405460121
https://www.pnas.org/doi/abs/10.1073/pnas.2405460121
https://openreview.net/forum?id=Fzp1DRzCIN
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://doi.org/10.18653/v1/D17-1082
https://aclanthology.org/D17-1082

110 BIBLIOGRAPHY

[Lam+25] Andrew K. Lampinen et al. “On the generalization of language

models from in-context learning and finetuning: a controlled

study”. In: arXiv 2505.00661 (2025). url: https://arxiv.org/

2505.00661.

[Lan00] P. Langley. “Crafting Papers on Machine Learning”. In: Proceed-

ings of the 17th International Conference on Machine Learning

(ICML 2000). Ed. by Pat Langley. Stanford, CA: Morgan Kauf-

mann, 2000, pp. 1207–1216.

[Las+23] Michael Laskin et al. “In-context Reinforcement Learning with Al-

gorithm Distillation”. In: The Eleventh International Conference

on Learning Representations, ICLR 2023, Kigali, Rwanda, May

1-5, 2023. OpenReview.net, 2023. url: https://openreview.

net/forum?id=hy0a5MMPUv.

[LB18] Brenden Lake and Marco Baroni. “Generalization without sys-

tematicity: On the compositional skills of sequence-to-sequence

recurrent networks”. English (US). In: 35th International Confer-

ence on Machine Learning, ICML 2018. Ed. by Jennifer Dy and

Andreas Krause. 35th International Conference on Machine Learn-

ing, ICML 2018. Publisher Copyright: © Copyright 2018 by the

author(s).; 35th International Conference on Machine Learning,

ICML 2018 ; Conference date: 10-07-2018 Through 15-07-2018.

International Machine Learning Society (IMLS), 2018, pp. 4487–

4499.

[Lev83] Stephen C. Levinson. Pragmatics. Cambridge, U.K.: Cambridge

University Press, 1983.

[Liu+19] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT

Pretraining Approach”. In: CoRR abs/1907.11692 (2019). arXiv:

1907.11692. url: http://arxiv.org/abs/1907.11692.

[Liu+22] Ziming Liu et al. “Towards Understanding Grokking: An Effective

Theory of Representation Learning”. In: Advances in Neural

Information Processing Systems. Ed. by Alice H. Oh et al. 2022.

url: https://openreview.net/forum?id=6at6rB3IZm.

[LPM15] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effec-

tive Approaches to Attention-based Neural Machine Translation”.

In: Proceedings of the 2015 Conference on Empirical Methods

https://arxiv.org/2505.00661
https://arxiv.org/2505.00661
https://openreview.net/forum?id=hy0a5MMPUv
https://openreview.net/forum?id=hy0a5MMPUv
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=6at6rB3IZm

BIBLIOGRAPHY 111

in Natural Language Processing. Ed. by Llúıs Màrquez, Chris

Callison-Burch, and Jian Su. Lisbon, Portugal: Association for

Computational Linguistics, Sept. 2015, pp. 1412–1421. doi: 10.

18653/v1/D15-1166. url: https://aclanthology.org/D15-

1166/.

[LRR20] Annie Louis, Dan Roth, and Filip Radlinski. ““I’d rather just

go to bed”: Understanding Indirect Answers”. In: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Online: Association for Computational

Linguistics, Nov. 2020, pp. 7411–7425. doi: 10.18653/v1/2020.

emnlp- main.601. url: https://aclanthology.org/2020.

emnlp-main.601.

[LS14] Ernie Lepore and Matthew Stone. Imagination and Convention:

Distinguishing Grammar and Inference in Language. Oxford Uni-

versity Press, Dec. 2014. isbn: 9780198717188. doi: 10.1093/

acprof:oso/9780198717188.001.0001. url: https://doi.

org/10.1093/acprof:oso/9780198717188.001.0001.

[LSD21] Elissa Li, Sebastian Schuster, and Judith Degen. “Predicting

scalar inferences from “or” to “not both” using neural sentence

encoders”. In: Proceedings of the Society for Computation in Lin-

guistics 2021. Online: Association for Computational Linguistics,

Feb. 2021, pp. 446–450. url: https://aclanthology.org/2021.

scil-1.54.

[Lu+22] Yao Lu et al. “Fantastically Ordered Prompts and Where to Find

Them: Overcoming Few-Shot Prompt Order Sensitivity”. In: ACL.

2022.

[MAD07] Karen Milligan, Janet Wilde Astington, and Lisa Ain Dack. “Lan-

guage and Theory of Mind: Meta-Analysis of the Relation Between

Language Ability and False-belief Understanding”. In: Child De-

velopment 78.2 (2007), pp. 622–646. doi: https://doi.org/

10 . 1111 / j . 1467 - 8624 . 2007 . 01018 . x. eprint: https : / /

srcd.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-

8624.2007.01018.x. url: https://srcd.onlinelibrary.

wiley.com/doi/abs/10.1111/j.1467-8624.2007.01018.x.

https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://aclanthology.org/D15-1166/
https://aclanthology.org/D15-1166/
https://doi.org/10.18653/v1/2020.emnlp-main.601
https://doi.org/10.18653/v1/2020.emnlp-main.601
https://aclanthology.org/2020.emnlp-main.601
https://aclanthology.org/2020.emnlp-main.601
https://doi.org/10.1093/acprof:oso/9780198717188.001.0001
https://doi.org/10.1093/acprof:oso/9780198717188.001.0001
https://doi.org/10.1093/acprof:oso/9780198717188.001.0001
https://doi.org/10.1093/acprof:oso/9780198717188.001.0001
https://aclanthology.org/2021.scil-1.54
https://aclanthology.org/2021.scil-1.54
https://doi.org/https://doi.org/10.1111/j.1467-8624.2007.01018.x
https://doi.org/https://doi.org/10.1111/j.1467-8624.2007.01018.x
https://srcd.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8624.2007.01018.x
https://srcd.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8624.2007.01018.x
https://srcd.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8624.2007.01018.x
https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8624.2007.01018.x
https://srcd.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8624.2007.01018.x

112 BIBLIOGRAPHY

[Mah+24] Kyle Mahowald et al. “Dissociating language and thought in

large language models”. In: Trends in Cognitive Sciences 28 (Mar.

2024). doi: 10.1016/j.tics.2024.01.011.

[McC+23] R. Thomas McCoy et al. Embers of Autoregression: Understanding

Large Language Models Through the Problem They are Trained to

Solve. 2023. arXiv: 2309.13638 [cs.CL]. url: https://arxiv.

org/abs/2309.13638.

[McC+24] R. Thomas McCoy et al. “Embers of autoregression show how

large language models are shaped by the problem they are trained

to solve”. In: Proceedings of the National Academy of Sciences

https://www.pnas.org/doi/pdf/10.1073/pnas.2322420121.41

(2024), e2322420121. doi: 10 . 1073 / pnas . 2322420121. url:

https://www.pnas.org/doi/10.1073/pnas.2322420121.

[McL+24] Sean McLeish et al. Transformers Can Do Arithmetic with

the Right Embeddings. 2024. arXiv: 2405.17399 [cs.LG]. url:

https://arxiv.org/abs/2405.17399.

[Mer+16] Stephen Merity et al. Pointer Sentinel Mixture Models. 2016.

arXiv: 1609.07843 [cs.CL].

[MG15] James Martens and Roger Grosse. “Optimizing neural networks

with Kronecker-factored approximate curvature”. In: Proceedings

of the 32nd International Conference on International Confer-

ence on Machine Learning - Volume 37. ICML’15. Lille, France:

JMLR.org, 2015, pp. 2408–2417.

[MH23] Sh.R. Moghaddam and Christopher John Honey. “Boosting

Theory-of-Mind Performance in Large Language Models via

Prompting”. In: ArXiv abs/2304.11490 (2023).

[MS18] Hugo Mercier and Dan Sperber. The Enigma of Reason. Penguin,

2018.

[MWL22] William Merrill, Alex Warstadt, and Tal Linzen. “Entailment

Semantics Can Be Extracted from an Ideal Language Model”.

In: Proceedings of the 26th Conference on Computational Natural

Language Learning (CoNLL). Abu Dhabi, United Arab Emirates

(Hybrid): Association for Computational Linguistics, Dec. 2022,

pp. 176–193. url: https://aclanthology.org/2022.conll-

1.13.

https://doi.org/10.1016/j.tics.2024.01.011
https://arxiv.org/abs/2309.13638
https://arxiv.org/abs/2309.13638
https://arxiv.org/abs/2309.13638
https://doi.org/10.1073/pnas.2322420121
https://www.pnas.org/doi/10.1073/pnas.2322420121
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/1609.07843
https://aclanthology.org/2022.conll-1.13
https://aclanthology.org/2022.conll-1.13

BIBLIOGRAPHY 113

[Ng+19] Nathan Ng et al. “Facebook FAIR’s WMT19 News Translation

Task Submission”. In: Proceedings of the Fourth Conference on

Machine Translation (Volume 2: Shared Task Papers, Day 1).

Florence, Italy: Association for Computational Linguistics, Aug.

2019, pp. 314–319. doi: 10.18653/v1/W19-5333. url: https:

//aclanthology.org/W19-5333.

[Nik+25] Yaniv Nikankin et al. “Arithmetic Without Algorithms: Language

Models Solve Math with a Bag of Heuristics”. In: The Thirteenth

International Conference on Learning Representations. 2025. url:

https://openreview.net/forum?id=O9YTt26r2P.

[Nov+25] Alexander Novikov et al. “AlphaEvolve: A coding agent for sci-

entific and algorithmic discovery”. In: arXiv 2506.13131 (2025).

url: https://arxiv.org/2506.13131.

[NYT25] NYT. Is the A.I. Sell-Off the Start of Something Bigger? 2025.

url: https://www.nytimes.com/2025/08/20/business/

dealbook/ai-dip-blip-palantir-nvidia.html.

[OCD21] Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. “The

Difficulty of Passive Learning in Deep Reinforcement Learning”.

In: Advances in Neural Information Processing Systems. Ed. by

A. Beygelzimer et al. 2021. url: https://openreview.net/

forum?id=nPHA8fGicZk.

[Ols+22] Catherine Olsson et al. “In-context Learning and Induction

Heads”. In: Transformer Circuits Thread (2022). https://transformer-

circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

[Ouy+22] Long Ouyang et al. “Training language models to follow instruc-

tions with human feedback”. In: ArXiv abs/2203.02155 (2022).

[Par+21] Alicia Parrish et al. “NOPE: A Corpus of Naturally-Occurring

Presuppositions in English”. In: Proceedings of the 25th Con-

ference on Computational Natural Language Learning. Online:

Association for Computational Linguistics, Nov. 2021, pp. 349–

366. doi: 10.18653/v1/2021.conll- 1.28. url: https://

aclanthology.org/2021.conll-1.28.

https://doi.org/10.18653/v1/W19-5333
https://aclanthology.org/W19-5333
https://aclanthology.org/W19-5333
https://openreview.net/forum?id=O9YTt26r2P
https://arxiv.org/2506.13131
https://www.nytimes.com/2025/08/20/business/dealbook/ai-dip-blip-palantir-nvidia.html
https://www.nytimes.com/2025/08/20/business/dealbook/ai-dip-blip-palantir-nvidia.html
https://openreview.net/forum?id=nPHA8fGicZk
https://openreview.net/forum?id=nPHA8fGicZk
https://doi.org/10.18653/v1/2021.conll-1.28
https://aclanthology.org/2021.conll-1.28
https://aclanthology.org/2021.conll-1.28

114 BIBLIOGRAPHY

[PJ05] Steven Pinker and Ray Jackendoff. “The faculty of language:

what’s special about it?” In: Cognition 95.2 (2005), pp. 201–

236. issn: 0010-0277. doi: https : / / doi . org / 10 . 1016 / j .

cognition.2004.08.004. url: https://www.sciencedirect.

com/science/article/pii/S0010027704001763.

[Pot05] Christopher Potts. The Logic of Conventional Implicatures. Ox-

ford University Press UK, 2005.

[Pot06] Christopher Potts. “Conversational Implicatures Via General

Pragmatic Pressures”. In: New Frontiers in Artificial Intelligence.

Ed. by Takashi Washio et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2006, pp. 205–218. isbn: 978-3-540-69902-6.

[Pow+22] Alethea Power et al. “Grokking: Generalization Beyond Overfit-

ting on Small Algorithmic Datasets”. In: CoRR abs/2201.02177

(2022). arXiv: 2201.02177. url: https://arxiv.org/abs/2201.

02177.

[PP21] Roma Patel and Ellie Pavlick. ““Was it “stated” or was it

“claimed”?: How linguistic bias affects generative language models”.

In: Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing. Online and Punta Cana, Dominican

Republic: Association for Computational Linguistics, Nov. 2021,

pp. 10080–10095. doi: 10.18653/v1/2021.emnlp-main.790.

url: https://aclanthology.org/2021.emnlp-main.790.

[PPF25] Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. “Training Lan-

guage Models on Synthetic Edit Sequences Improves Code Syn-

thesis”. In: The Thirteenth International Conference on Learning

Representations. 2025. url: https://openreview.net/forum?

id=AqfUa08PCH.

[Pra+24] Nikhil Prakash et al. “Fine-Tuning Enhances Existing Mecha-

nisms: A Case Study on Entity Tracking”. In: The Twelfth In-

ternational Conference on Learning Representations. 2024. url:

https://openreview.net/forum?id=8sKcAWOf2D.

[Pru+20] Garima Pruthi et al. “Estimating Training Data Influence by

Tracing Gradient Descent”. In: Advances in Neural Informa-

tion Processing Systems. Ed. by H. Larochelle et al. Vol. 33.

Curran Associates, Inc., 2020, pp. 19920–19930. url: https:

https://doi.org/https://doi.org/10.1016/j.cognition.2004.08.004
https://doi.org/https://doi.org/10.1016/j.cognition.2004.08.004
https://www.sciencedirect.com/science/article/pii/S0010027704001763
https://www.sciencedirect.com/science/article/pii/S0010027704001763
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://doi.org/10.18653/v1/2021.emnlp-main.790
https://aclanthology.org/2021.emnlp-main.790
https://openreview.net/forum?id=AqfUa08PCH
https://openreview.net/forum?id=AqfUa08PCH
https://openreview.net/forum?id=8sKcAWOf2D
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf

BIBLIOGRAPHY 115

//proceedings.neurips.cc/paper_files/paper/2020/file/

e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf.

[PSL24] Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. “How Does

Code Pretraining Affect Language Model Task Performance?” In:

arXiv 2409.04556 (2024). url: https://doi.org/10.48550/

arXiv.2409.04556.

[Qwe+25] Qwen et al. “Qwen2.5 Technical Report”. In: arXiv 2412.15115

(2025). url: https://arxiv.org/2412.15115.

[Rad+18] Alec Radford et al. Improving language understanding by genera-

tive pre-training. 2018.

[Rad+19] Alec Radford et al. Language Models are Unsupervised Multitask

Learners. 2019.

[Raf+23] Rafael Rafailov et al. “Direct Preference Optimization: Your

Language Model is Secretly a Reward Model”. In: Thirty-seventh

Conference on Neural Information Processing Systems. 2023. url:

https://openreview.net/forum?id=HPuSIXJaa9.

[Raz+22] Yasaman Razeghi et al. “Impact of Pretraining Term Frequencies

on Few-Shot Numerical Reasoning”. In: Findings of the Associa-

tion for Computational Linguistics: EMNLP 2022. Ed. by Yoav

Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United

Arab Emirates: Association for Computational Linguistics, Dec.

2022, pp. 840–854. doi: 10.18653/v1/2022.findings-emnlp.59.

url: https://aclanthology.org/2022.findings-emnlp.59.

[RDJ13] Marta Recasens, Cristian Danescu-Niculescu-Mizil, and Dan Ju-

rafsky. “Linguistic Models for Analyzing and Detecting Biased

Language”. In: Proceedings of the 51st Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1: Long Papers).

Sofia, Bulgaria: Association for Computational Linguistics, Aug.

2013, pp. 1650–1659. url: https://aclanthology.org/P13-

1162.

[RM21a] Laria Reynolds and Kyle McDonell. Prompt Programming for

Large Language Models: Beyond the Few-Shot Paradigm. 2021.

arXiv: 2102.07350 [cs.CL].

https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://doi.org/10.48550/arXiv.2409.04556
https://doi.org/10.48550/arXiv.2409.04556
https://arxiv.org/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://aclanthology.org/2022.findings-emnlp.59
https://aclanthology.org/P13-1162
https://aclanthology.org/P13-1162
https://arxiv.org/abs/2102.07350

116 BIBLIOGRAPHY

[RM21b] Laria Reynolds and Kyle McDonell. “Prompt Programming for

Large Language Models: Beyond the Few-Shot Paradigm”. In: Ex-

tended Abstracts of the 2021 CHI Conference on Human Factors

in Computing Systems. CHI EA ’21. Yokohama, Japan: Associa-

tion for Computing Machinery, 2021. isbn: 9781450380959. doi:

10.1145/3411763.3451760. url: https://doi.org/10.1145/

3411763.3451760.

[Rui+23a] Laura Ruis et al. “Do LLMs selectively encode the goal of an

agent’s reach?” In: First Workshop on Theory of Mind in Commu-

nicating Agents. 2023. url: https://openreview.net/forum?

id=KxvXjtyuYl.

[Rui+23b] Laura Eline Ruis et al. “The Goldilocks of Pragmatic Understand-

ing: Fine-Tuning Strategy Matters for Implicature Resolution

by LLMs”. In: Thirty-seventh Conference on Neural Informa-

tion Processing Systems. 2023. url: https://openreview.net/

forum?id=5bWW9Eop7l.

[Rui+25] Laura Ruis et al. “Procedural Knowledge in Pretraining Drives

Reasoning in Large Language Models”. In: The Thirteenth In-

ternational Conference on Learning Representations. 2025. url:

https://openreview.net/forum?id=1hQKHHUsMx.

[San+22] Victor Sanh et al. “Multitask Prompted Training Enables Zero-

Shot Task Generalization”. In: International Conference on Learn-

ing Representations. 2022. url: https://openreview.net/

forum?id=9Vrb9D0WI4.

[Sap+22] Maarten Sap et al. “Neural Theory-of-Mind? On the Limits of

Social Intelligence in Large LMs”. In: Conference on Empirical

Methods in Natural Language Processing. 2022.

[SCD20] Sebastian Schuster, Yuxing Chen, and Judith Degen. “Harnessing

the linguistic signal to predict scalar inferences”. In: Proceedings

of the 58th Annual Meeting of the Association for Computational

Linguistics. Online: Association for Computational Linguistics,

July 2020, pp. 5387–5403. doi: 10.18653/v1/2020.acl-main.

479. url: https://aclanthology.org/2020.acl-main.479.

https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://openreview.net/forum?id=KxvXjtyuYl
https://openreview.net/forum?id=KxvXjtyuYl
https://openreview.net/forum?id=5bWW9Eop7l
https://openreview.net/forum?id=5bWW9Eop7l
https://openreview.net/forum?id=1hQKHHUsMx
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2020.acl-main.479
https://doi.org/10.18653/v1/2020.acl-main.479
https://aclanthology.org/2020.acl-main.479

BIBLIOGRAPHY 117

[Sch+17] John Schulman et al. Proximal Policy Optimization Algorithms.

2017. arXiv: 1707.06347 [cs.LG]. url: https://arxiv.org/

abs/1707.06347.

[SGG14] Patrick Shafto, Noah D. Goodman, and Thomas L. Griffiths.

“A rational account of pedagogical reasoning: Teaching by, and

learning from, examples”. In: Cognitive Psychology 71 (2014),

pp. 55–89.

[Sha+23] Natalie Shapira et al. Clever Hans or Neural Theory of Mind?

Stress Testing Social Reasoning in Large Language Models. 2023.

arXiv: 2305.14763 [cs.CL].

[Sha+24] Zhihong Shao et al. “DeepSeekMath: Pushing the Limits of

Mathematical Reasoning in Open Language Models”. In: arXiv

2402.03300 (2024). url: https://arxiv.org/2402.03300.

[Sho+25] Parshin Shojaee et al. “The Illusion of Thinking: Understanding

the Strengths and Limitations of Reasoning Models via the Lens of

Problem Complexity”. In: arXiv 2506.06941 (2025). url: https:

//arxiv.org/2506.06941.

[Sin+24] Aaditya K Singh et al. “What needs to go right for an induction

head? A mechanistic study of in-context learning circuits and their

formation”. In: Forty-first International Conference on Machine

Learning. 2024. url: https://openreview.net/forum?id=

O8rrXl71D5.

[SMR23] Murray Shanahan, Kyle McDonell, and Laria Reynolds. “Role

play with large language models”. In: Nature 623.7987 (Nov. 2023),

pp. 493–498. doi: 10.1038/s41586-023-06647-8. url: https:

/ / ideas . repec . org / a / nat / nature / v623y2023i7987d10 .

1038_s41586-023-06647-8.html.

[Sri+22] Aarohi Srivastava et al. Beyond the Imitation Game: Quantifying

and extrapolating the capabilities of language models. 2022. doi:

10.48550/ARXIV.2206.04615. url: https://arxiv.org/abs/

2206.04615.

[SW86] D. Sperber and D. Wilson. Relevance: Communication and Cog-

nition. Language and thought series. Harvard University Press,

1986. isbn: 9780674754768. url: https://books.google.ca/

books?id=1LkkAQAAMAAJ.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2305.14763
https://arxiv.org/2402.03300
https://arxiv.org/2506.06941
https://arxiv.org/2506.06941
https://openreview.net/forum?id=O8rrXl71D5
https://openreview.net/forum?id=O8rrXl71D5
https://doi.org/10.1038/s41586-023-06647-8
https://ideas.repec.org/a/nat/nature/v623y2023i7987d10.1038_s41586-023-06647-8.html
https://ideas.repec.org/a/nat/nature/v623y2023i7987d10.1038_s41586-023-06647-8.html
https://ideas.repec.org/a/nat/nature/v623y2023i7987d10.1038_s41586-023-06647-8.html
https://doi.org/10.48550/ARXIV.2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://books.google.ca/books?id=1LkkAQAAMAAJ
https://books.google.ca/books?id=1LkkAQAAMAAJ

118 BIBLIOGRAPHY

[Tan+21] Zhixing Tan et al. “Msp: Multi-stage prompting for making pre-

trained language models better translators”. In: arXiv preprint

arXiv:2110.06609 (2021).

[TCL07] Michael Tomasello, Malinda Carpenter, and Ulf Liszkowski. “A

New Look at Infant Pointing”. In: Child development 78 (May

2007), pp. 705–22. doi: 10.1111/j.1467-8624.2007.01025.x.

[Tem+24] Adly Templeton et al. “Scaling Monosemanticity: Extracting

Interpretable Features from Claude 3 Sonnet”. In: Transformer

Circuits Thread (2024). url: https://transformer-circuits.

pub/2024/scaling-monosemanticity/index.html.

[TER19] HERBERT S. TERRACE. Why Chimpanzees Can’t Learn Lan-

guage and Only Humans Can. Columbia University Press, 2019.

isbn: 9780231171106. url: http://www.jstor.org/stable/10.

7312/terr17110 (visited on 08/06/2025).

[Tes+21] Stefano Teso et al. “Interactive Label Cleaning with Example-

based Explanations”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by A. Beygelzimer et al. 2021. url: https:

//openreview.net/forum?id=T6m9bNI7C__.

[Tho+24] Jonathan Thomm et al. “Limits of Transformer Language Models

on Learning to Compose Algorithms”. In: Advances in Neural

Information Processing Systems 38: Annual Conference on Neural

Information Processing Systems 2024, NeurIPS 2024, Vancouver,

BC, Canada, December 10 - 15, 2024. Ed. by Amir Globersons et

al. 2024. url: http://papers.nips.cc/paper%5C_files/

paper / 2024 / hash / 0e797d5139ad94fc2dc2080c09119f29 -

Abstract-Conference.html.

[Tom99] Michael Tomasello. The Cultural Origins of Human Cognition.

Harvard University Press, 1999. isbn: 9780674000704. url:

http://www.jstor.org/stable/j.ctvjsf4jc (visited on

08/01/2025).

[Tos+24] Shubham Toshniwal et al. “OpenMathInstruct-1: A 1.8 Million

Math Instruction Tuning Dataset”. In: arXiv 2402.10176 (2024).

url: https://arxiv.org/2402.10176.

https://doi.org/10.1111/j.1467-8624.2007.01025.x
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
http://www.jstor.org/stable/10.7312/terr17110
http://www.jstor.org/stable/10.7312/terr17110
https://openreview.net/forum?id=T6m9bNI7C__
https://openreview.net/forum?id=T6m9bNI7C__
http://papers.nips.cc/paper%5C_files/paper/2024/hash/0e797d5139ad94fc2dc2080c09119f29-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2024/hash/0e797d5139ad94fc2dc2080c09119f29-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2024/hash/0e797d5139ad94fc2dc2080c09119f29-Abstract-Conference.html
http://www.jstor.org/stable/j.ctvjsf4jc
https://arxiv.org/2402.10176

BIBLIOGRAPHY 119

[Tou+23] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned

Chat Models. 2023. arXiv: 2307.09288 [cs.CL]. url: https:

//arxiv.org/abs/2307.09288.

[Tre+24] Johannes Treutlein et al. “Connecting the Dots: LLMs can

Infer and Verbalize Latent Structure from Disparate Training

Data”. In: Advances in Neural Information Processing Systems

38: Annual Conference on Neural Information Processing Sys-

tems 2024, NeurIPS 2024, Vancouver, BC, Canada, December

10 - 15, 2024. Ed. by Amir Globersons et al. 2024. url: http:

//papers.nips.cc/paper%5C_files/paper/2024/hash/

fe489a28a54583ee802b8e2955c024c2-Abstract-Conference.

html.

[Tro+22] Sean Trott et al. “Do Large Language Models know what humans

know?” In: arXiv preprint arXiv:2209.01515 (2022).

[Ull23a] Tomer Ullman. Large Language Models Fail on Trivial Alterations

to Theory-of-Mind Tasks. 2023. arXiv: 2302.08399 [cs.AI]. url:

https://arxiv.org/abs/2302.08399.

[Ull23b] Tomer David Ullman. “Large Language Models Fail on Trivial

Alterations to Theory-of-Mind Tasks”. In: ArXiv abs/2302.08399

(2023).

[Von+23] Johannes Von Oswald et al. “Transformers Learn In-Context

by Gradient Descent”. In: Proceedings of the 40th International

Conference on Machine Learning. Ed. by Andreas Krause et al.

Vol. 202. Proceedings of Machine Learning Research. PMLR, 23–

29 Jul 2023, pp. 35151–35174. url: https://proceedings.mlr.

press/v202/von-oswald23a.html.

[VYG78] L. S. VYGOTSKY. Mind in Society: Development of Higher

Psychological Processes. Harvard University Press, 1978. isbn:

9780674576285. url: http : / / www . jstor . org / stable / j .

ctvjf9vz4 (visited on 08/01/2025).

[Wan+24a] Boshi Wang et al. Grokked Transformers are Implicit Reasoners: A

Mechanistic Journey to the Edge of Generalization. 2024. arXiv:

2405.15071 [cs.CL]. url: https://arxiv.org/abs/2405.

15071.

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
http://papers.nips.cc/paper%5C_files/paper/2024/hash/fe489a28a54583ee802b8e2955c024c2-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2024/hash/fe489a28a54583ee802b8e2955c024c2-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2024/hash/fe489a28a54583ee802b8e2955c024c2-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2024/hash/fe489a28a54583ee802b8e2955c024c2-Abstract-Conference.html
https://arxiv.org/abs/2302.08399
https://arxiv.org/abs/2302.08399
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
http://www.jstor.org/stable/j.ctvjf9vz4
http://www.jstor.org/stable/j.ctvjf9vz4
https://arxiv.org/abs/2405.15071
https://arxiv.org/abs/2405.15071
https://arxiv.org/abs/2405.15071

120 BIBLIOGRAPHY

[Wan+24b] Boshi Wang et al. “Grokked Transformers are Implicit Reasoners:

A Mechanistic Journey to the Edge of Generalization”. In: arXiv

2405.15071 (2024). url: https://doi.org/10.48550/arXiv.

2405.15071.

[WE74] P.C. Wason and J.ST.B.T. Evans. “Dual processes in reason-

ing?” In: Cognition 3.2 (1974), pp. 141–154. issn: 0010-0277. doi:

https://doi.org/10.1016/0010- 0277(74)90017- 1. url:

https://www.sciencedirect.com/science/article/pii/

0010027774900171.

[Wei+22a] Jason Wei et al. Chain of Thought Prompting Elicits Reasoning in

Large Language Models. 2022. doi: 10.48550/ARXIV.2201.11903.

url: https://arxiv.org/abs/2201.11903.

[Wei+22b] Jason Wei et al. “Chain of Thought Prompting Elicits Reasoning

in Large Language Models”. In: Advances in Neural Information

Processing Systems. Ed. by Alice H. Oh et al. 2022. url: https:

//openreview.net/forum?id=_VjQlMeSB_J.

[Wel90] Henry M. Wellman. The Child’s Theory of Mind. MIT Press

(MA), 1990.

[WGM25] Yiwei Wu, Atticus Geiger, and Raphaël Millière. “How Do Trans-

formers Learn Variable Binding in Symbolic Programs?” In: Forty-

Second International Conference on Machine Learning. 2025.

[WHL23] Taylor Webb, Keith Holyoak, and Hongjing Lu. “Emergent ana-

logical reasoning in large language models”. In: Nature Human

Behaviour 7 (July 2023), pp. 1–16. doi: 10.1038/s41562-023-

01659-w.

[WHL24] Taylor Webb, Keith J. Holyoak, and Hongjing Lu. Evidence from

counterfactual tasks supports emergent analogical reasoning in

large language models. 2024. arXiv: 2404.13070 [cs.CL]. url:

https://arxiv.org/abs/2404.13070.

[Wit21] L. Wittgenstein. “Tractatus Logico-Philosophicus”. In: London:

Routledge, 1981 (1921). Ed. by D.F.Pears. url: http://scholar.

google.de/scholar.bib?q=info:1G2GoIkyCZIJ:scholar.

google.com/&output=citation&hl=de&ct=citation&cd=0.

[Wit53] Ludwig Wittgenstein. Philosophical Investigations. Oxford: Basil

Blackwell, 1953. isbn: 0631119000.

https://doi.org/10.48550/arXiv.2405.15071
https://doi.org/10.48550/arXiv.2405.15071
https://doi.org/https://doi.org/10.1016/0010-0277(74)90017-1
https://www.sciencedirect.com/science/article/pii/0010027774900171
https://www.sciencedirect.com/science/article/pii/0010027774900171
https://doi.org/10.48550/ARXIV.2201.11903
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1038/s41562-023-01659-w
https://doi.org/10.1038/s41562-023-01659-w
https://arxiv.org/abs/2404.13070
https://arxiv.org/abs/2404.13070
http://scholar.google.de/scholar.bib?q=info:1G2GoIkyCZIJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:1G2GoIkyCZIJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:1G2GoIkyCZIJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0

BIBLIOGRAPHY 121

[WK21] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Pa-

rameter Autoregressive Language Model. https://github.com/

kingoflolz/mesh-transformer-jax. May 2021.

[Wol+20] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Lan-

guage Processing”. In: Proceedings of the 2020 Conference on Em-

pirical Methods in Natural Language Processing: System Demon-

strations. Online: Association for Computational Linguistics, Oct.

2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp-demos.6. url:

https://aclanthology.org/2020.emnlp-demos.6.

[Woo98] A. Woodward. “Infants Selectively Encode the Goal Object of

an Actor’s Reach”. In: Cognition 69.1 (1998), pp. 1–34. doi:

10.1016/s0010-0277(98)00058-4.

[WP21] Albert Webson and Ellie Pavlick. “Do Prompt-Based Models

Really Understand the Meaning of their Prompts?” In: arXiv

preprint arXiv:2109.01247 (2021).

[WP83] Heinz Wimmer and Josef Perner. “Beliefs about beliefs: Repre-

sentation and constraining function of wrong beliefs in young

children’s understanding of deception”. In: Cognition 13.1 (1983),

pp. 103–128. issn: 0010-0277. doi: https://doi.org/10.1016/

0010-0277(83)90004-5. url: https://www.sciencedirect.

com/science/article/pii/0010027783900045.

[Wu+24] Zhaofeng Wu et al. “Reasoning or Reciting? Exploring the Capa-

bilities and Limitations of Language Models Through Counterfac-

tual Tasks”. In: Proceedings of the 2024 Conference of the North

American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies (Volume 1: Long Papers).

Ed. by Kevin Duh, Helena Gomez, and Steven Bethard. Mexico

City, Mexico: Association for Computational Linguistics, June

2024, pp. 1819–1862. doi: 10.18653/v1/2024.naacl-long.102.

url: https://aclanthology.org/2024.naacl-long.102.

[Wur+25] Daniel Wurgaft et al. In-Context Learning Strategies Emerge

Rationally. 2025. arXiv: 2506.17859 [cs.LG]. url: https://

arxiv.org/abs/2506.17859.

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.1016/s0010-0277(98)00058-4
https://doi.org/https://doi.org/10.1016/0010-0277(83)90004-5
https://doi.org/https://doi.org/10.1016/0010-0277(83)90004-5
https://www.sciencedirect.com/science/article/pii/0010027783900045
https://www.sciencedirect.com/science/article/pii/0010027783900045
https://doi.org/10.18653/v1/2024.naacl-long.102
https://aclanthology.org/2024.naacl-long.102
https://arxiv.org/abs/2506.17859
https://arxiv.org/abs/2506.17859
https://arxiv.org/abs/2506.17859

122 BIBLIOGRAPHY

[Yan+23] Shuo Yang et al. Rethinking Benchmark and Contamination for

Language Models with Rephrased Samples. 2023. arXiv: 2311.

04850 [cs.CL]. url: https://arxiv.org/abs/2311.04850.

[YDF08] Wako Yoshida, Raymond J. Dolan, and Karl J. Friston. “Game

Theory of Mind”. In: PLoS Computational Biology 4 (2008).

[ZFM25] Zhenghao Zhou, Robert Frank, and R. Thomas McCoy. “Is In-

Context Learning a Type of Error-Driven Learning? Evidence

from the Inverse Frequency Effect in Structural Priming”. In:

Proceedings of the 2025 Conference of the Nations of the Americas

Chapter of the Association for Computational Linguistics: Human

Language Technologies (Volume 1: Long Papers). Ed. by Luis

Chiruzzo, Alan Ritter, and Lu Wang. Albuquerque, New Mexico:

Association for Computational Linguistics, Apr. 2025, pp. 11712–

11725. isbn: 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-

long.586. url: https://aclanthology.org/2025.naacl-

long.586/.

[Zha+22] Susan Zhang et al. OPT: Open Pre-trained Transformer Language

Models. 2022. arXiv: 2205.01068 [cs.CL].

[Zhe+21] Zilong Zheng et al. “GRICE: A Grammar-based Dataset for Re-

covering Implicature and Conversational rEasoning”. In: Findings

of the Association for Computational Linguistics: ACL-IJCNLP

2021. Online: Association for Computational Linguistics, Aug.

2021, pp. 2074–2085. doi: 10.18653/v1/2021.findings-acl.

182. url: https://aclanthology.org/2021.findings-acl.

182.

[ZS15] Wojciech Zaremba and Ilya Sutskever. “Learning to Execute”. In:

arXiv 1410.4615 (2015). url: https://arxiv.org/1410.4615.

https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://doi.org/10.18653/v1/2025.naacl-long.586
https://doi.org/10.18653/v1/2025.naacl-long.586
https://aclanthology.org/2025.naacl-long.586/
https://aclanthology.org/2025.naacl-long.586/
https://arxiv.org/abs/2205.01068
https://doi.org/10.18653/v1/2021.findings-acl.182
https://doi.org/10.18653/v1/2021.findings-acl.182
https://aclanthology.org/2021.findings-acl.182
https://aclanthology.org/2021.findings-acl.182
https://arxiv.org/1410.4615

Appendix A

How to Kick Your

Appendix-Skipping Habit

Whoever reads the appendix, right? But this time, you might want to break

that habit. Why? Because tucked away here are five sections that I think are

genuinely worth your attention.

Starting with Section B.9.1.

In Chapter 3, I distinguished LLM reasoning from factual retrieval using

correlation analysis: the influence of training documents on one reasoning

question strongly predicts their influence on other reasoning questions of the

same type. This suggests models generalise across questions, rather than just

memorising. But could this simply be driven by superficial similarity between

reasoning questions? Section B.9.1 shows that’s not the case, and also offers a

window into what models actually absorb from their pre-training data.

Other interesting sections.

Beyond that, there are four shorter contributions that don’t sit at the centre of

the thesis, but which I find interesting in their own right:

• Section B.1: EKFAC influence scores reveal how including a training

document affects downstream reasoning accuracy.

• Section B.8.2: LLMs learn to answer English factual questions from

documents containing the relevant facts in other languages.

• Section C.4: Online reinforcement learning is important for generalisa-

tion, as shown in compute-matched experiments comparing GRPO, DPO,

and SFT.

124 Appendix A. How to Kick Your Appendix-Skipping Habit

• Section D.7.6: Randomising labels for few-shot in-context examples

does not hurt performance, meaning they mainly serve to clarify task

format instead of leaking information about the task.

Structure of the appendix.

I’ve designed the appendix to be maximally skippable: every section is flagged

in the main text, and all key results are already summarised there. Still, if

you’re curious, each appendix chapter is about one main content chapter, with

a short roadmap summarising contents at the top.

Appendix B

How Models Learn to Reason

from Pre-training Data

This chapter contains the Appendix for Chapter 3. Below, I outline the content

of each section in this appendix.

EKFAC influence functions. In Appendix B.1 we discuss the counterfactual

re-training experiments that motivate our use of EKFAC influence functions

for estimating the effect of pre-training data on the accuracy of downstream

behaviour. We describe in more detail how we use influence functions at scale

in Appendix B.2, documenting how we estimate the Hessian, how we store

many query gradients in memory (each having the same memory complexity

as the entire model), and how we sample from the pre-training distribution.

Query sets examples. Then, in Appendix B.3, we show examples of the

reasoning sets that we did not show examples for in the main body of this

manuscript.

Finding query answers in documents and characterising document-

query relations. In Appendix B.4 we discuss how we create keywords for each

query in order to find the answer in the top documents, and in the sections

directly after that, Appendix B.5 and B.6, we give the prompts we used to

allow Command R+ to search for answers in the top 500 documents for each

query, as well as characterise their relationship.

Limitations. In Appendix B.7 we discuss limitations specific to influence

functions.

Additional qualitative results. In Appendix B.8 we provide additional

qualitative results.

Answer finding. We show examples of answer documents in Appendix B.8.1.

Cross-lingual transfer. We give some examples of cross-lingual transfer in

126 Appendix B. How Models Learn to Reason from Pre-training Data

Appendix B.8.2.

Characterise query-document relation. We give detailed results on the charac-

terisation of the relationship between queries and the top 500 documents in

Appendix B.8.3.

Source-dataset analysis. We analyse which datasets the influential data comes

from in Appendix B.8.4.

Content analysis of relevant documents. We classify data from the source

dataset code for whether it actually contains code in Appendix B.8.5.

Additional quantitative results. In Appendix B.9 we provide additional

quantitative results.

Correlation analysis. Further results for the correlation analysis of influence

scores for documents for different queries in Appendix B.9.1.

Magnitude of influence. Further results for the magnitude of influence in

Appendix B.9.2.

Spread of influence. Further results for the spread of influence over the rankings

in Appendix B.9.3.

B.1. Counterfactual Re-training Experiments with Influence Functions 127

B.1 Counterfactual Re-training Experiments

with Influence Functions

We use EKFAC influence functions to approximate the counterfactual question:

which documents from pre-training have a causal effect on the completions

of a trained model. However, we are also interested in the causal effect on

the accuracy of the completions. In this section, we aim to motivate two

aspects of this choice; the fact that influence functions are designed to estimate

the effect on continuous differentiable functions, like the log-likelihood, and

not on the accuracy. Secondly, we motivate the need for estimating the

second-order information of the pre-training objective using EKFAC, which

is very computationally expensive. We present four different experiments in

this section, which show that indeed the influence of documents as determined

by influence functions also estimate the effect on downstream task accuracy,

as well as the benefits from estimating second order information over simply

using first-order gradient information.

The pipeline for each of these experiments is similar; we take a pre-trained

model, we fine-tune it on some dataset, and evaluate it on 50 validation exam-

ples with a metric (perplexity or accuracy). We then use the fine-tuned weights

to calculate the influence of the documents in the dataset used for fine-tuning

on the set of 50 validation questions with two methods: EKFAC influence

functions and TracIn [Pru+20]. Subsequently, we use those two methods

to remove the k most positively influential documents from the fine-tuning

dataset, as well as randomly selecting k documents as a baseline, and fine-tune

the original pre-trained model five times (with different seeds) on each new

fine-tuning dataset created (for different values for k). We then calculate the

perplexity or accuracy on the validation questions used to calculate the influ-

ence, and see how it changed. The more it changed, the more the documents

indeed influence the relevant metric (i.e. perplexity or accuracy). Note that

for n different values for k, this requires fine-tuning 3 ∗ 5 ∗ n models: five

times for each of the three methods of removing documents from the training set.

We start by motivating the use of EKFAC influence functions over simple

similarity information between document and query gradients. In our setup,

where we only have access to the final checkpoint of pre-training, a dot-product

between the query and document gradient effectively boils down to a method

128 Appendix B. How Models Learn to Reason from Pre-training Data

for estimating influence of documents on queries called TracIn [Pru+20]. With

access to multiple checkpoints, TracIn uses gradient information from all of

them, accounting for the learning rate used at that point in training. How-

ever, we only use the final checkpoint and hence taking into account learning

rate only changes scores by a constant. We take GPT-2-small (124M) from

HuggingFace,1 and fine-tune it for three epochs with next-token prediction on

Wikitext-2 [Mer+16]. We use Adam optimizer [KB15] with default parameters

(b1 0.9, b2 0.999, eps 1e-8, additive weight decay 0.01). The results can be

found in Figure B.1 and Table B.1, showing that removing documents using

EKFAC influence functions has a significantly larger effect on downstream

perplexity for all values of k. We do the exact same experiment but instead

remove the most negatively influential documents, and see that instead the

perplexity decreases significantly more for EKFAC influence functions (Figure

B.1 and Table B.2).

Table B.1: Wikitext remove top influential

k → 50 100 150 200 250 300

Random 22.09 ± 0.02 22.12 ± 0.02 22.10 ± 0.02 22.20 ± 0.06 22.19 ± 0.05 22.15 ± 0.05
TracIn 22.16 ± 0.02⋆⋆ 22.22 ± 0.02⋆⋆ 22.25 ± 0.01⋆⋆ 22.35 ± 0.03⋆⋆ 22.42 ± 0.01⋆⋆ 22.45 ± 0.02⋆⋆

IF (ours) 22.49 ± 0.02⋆⋆ 22.66 ± 0.02⋆⋆ 22.73 ± 0.02⋆⋆ 22.88 ± 0.01⋆⋆ 22.97 ± 0.02⋆⋆ 23.05 ± 0.05⋆⋆

Table B.2: Wikitext remove bottom influential

k → 50 100 150 200 250 300

Random 27.40 ± 0.08 26.24 ± 0.10 25.62 ± 0.15 25.22 ± 0.10 25.04 ± 0.12 24.85 ± 0.10
TracIn 26.73 ± 0.04⋆⋆ 25.48 ± 0.05⋆⋆ 24.86 ± 0.02⋆⋆ 24.36 ± 0.04⋆⋆ 24.16 ± 0.05⋆⋆ 23.94 ± 0.03⋆⋆

IF (ours) 25.96 ± 0.04⋆⋆ 24.78 ± 0.05⋆⋆ 23.95 ± 0.03⋆⋆ 23.52 ± 0.03⋆⋆ 23.46 ± 0.03⋆⋆ 23.32 ± 0.04⋆⋆

Next, we turn to motivating the use of EKFAC influence functions in estimating

the effect of documents on downstream accuracy of model generations. To

this end, we look at two different datasets: DROP [Dua+19] and RACE

[Lai+17]. DROP is a reading comprehension dataset requiring different skills

like subtraction, addition, coreference resolution, counting, and other skills.

The model needs to generate an answer that often consists of one or a few

words. We allow the fine-tuned models to generate answers to the questions

freely, and evaluate based on exact match. In this experiment, we use a 7B

model. We randomly select a subset of 8000 examples for fine-tuning, and

use the procedure described above to perform counterfactual experiments. We

1https://huggingface.co/

https://huggingface.co/

B.1. Counterfactual Re-training Experiments with Influence Functions 129

(a) (b)

Figure B.1: (a) Counterfactual retraining experiments on Wikitext-2. We fine-
tuned GPT-2 (124M) on Wikitext-2 and use three different methods to
remove training examples from the training set: randomly, TracIn, and
Influence Functions (IF). For each number of samples removed we fine-
tune the base model five times with different training data ordering,
the variance over these runs is represented by the error bars. Each
point on the plot is the average perplexity achieved by the five models
after fine-tuning on the augmented dataset. We find that influence
functions can find examples that impact the perplexity significantly
more than baselines. (b) We repeat the same experiment as in (a),
but retain top influential queries instead (removing most negatively
influential).

use Adam optimizer again, with the same hyperparameters as for the above

experiment: b1 0.9, b2 0.999, eps 1e-8, additive weight decay 0.01, but only

train for one epoch. The results can be found in the left panel of Figure B.2 as

well as in Table B.3. We find that EKFAC influence functions are succesful

in selecting data points that impact downstream accuracy, much more so

than randomly removing the same amount of training data. For most k (all

but k = 1000), EKFAC influence functions also have a significantly stronger

effect on accuracy than TracIn, but the difference is less large. We apply the

exact same procedure to the RACE dataset, except now we keep 10k examples

(empirically found to lead to the least overfitting when fine-tuning). Further,

RACE is a multiple-choice dataset, so we allow the model to generate a single

token indicating the choice, and calculate the accuracy. The results can be seen

in Figure B.2 and Table B.4. Again, the finding is similar; EKFAC influence

functions surface documents that have a stronger effect on accuracy than

TracIn for all but one value of k, and for all values of k than randomly removing

documents. There is a large variance in the results for all methods though,

which we attribute to the fact that the model sometimes seems to overfit to

130 Appendix B. How Models Learn to Reason from Pre-training Data

the fine-tuning data. Further, the reason why the difference between TracIn

and EKFAC influence functions is much larger in the perplexity experiments

than in the accuracy experiments could be attributed to the fact that we only

fine-tune for one epoch in the accuracy experiments (as more cause overfitting).

EKFAC influence functions differ from TracIn in that they estimate second

order information, which becomes more important with more training steps.

An interesting avenue for future work is to do counterfactual re-training

experiments like these on a subset of pre-training data for a 7B model, but

this is incredibly computationally expensive.

Table B.3: Counterfactual re-training accuracies on DROP (free generation of
answers). We use three different methods (random, TracIn, influence
functions) to remove k datapoints, and re-train a model on the resulting
dataset. Each number is the mean over five re-training runs with
different data ordering. ⋆ indicates significantly lower than random with
a p-value below 0.1 and ⋆⋆ with a p-value below 0.05. The underlined
means are the lowest.

k → 500 1000 1500 2000

Random 0.61 ± 0.05 0.60 ± 0.03 0.56 ± 0.05 0.57 ± 0.06
TracIn 0.55 ± 0.03⋆ 0.49 ± 0.02⋆⋆ 0.44 ± 0.04⋆⋆ 0.43 ± 0.06⋆⋆

IF (ours) 0.51 ± 0.03⋆⋆ 0.50 ± 0.04⋆⋆ 0.40 ± 0.05⋆⋆ 0.38 ± 0.05⋆⋆

Table B.4: Counterfactual re-training accuracies on RACE (multiple-choice). We
use three different methods (random, TracIn, influence functions) to
remove k datapoints, and re-train a model on the resulting dataset.
Each number is the mean over five re-training runs with different data
ordering. ⋆ indicates significantly lower than random with a p-value
below 0.1 and ⋆⋆ with a p-value below 0.05. The underlined means are
the lowest.

k → 1000 1500 2000 2500

Random 0.85 ± 0.04 0.83 ± 0.03 0.82 ± 0.04 0.81 ± 0.04
TracIn 0.84 ± 0.01 0.78 ± 0.03⋆⋆ 0.80 ± 0.03 0.79 ± 0.04
IF (ours) 0.80 ± 0.04⋆ 0.76 ± 0.05⋆⋆ 0.74 ± 0.04⋆⋆ 0.74 ± 0.05⋆

Although the results of the experiments in this section are an encouraging sign

for using EKFAC influence functions in estimating causal effect of data on

accuracy, it is important to note that they are limited in several ways. Accuracy

is a discrete metric and it is a prior unclear how many documents need to be

B.1. Counterfactual Re-training Experiments with Influence Functions 131

(a) Counterfactual retraining experiments
on reading comprehension questions. We
fine-tuned Cohere Command 2 (7B) on a
subset of the DROP training set (8k ex-
amples) and use three different methods
to remove training examples from the
training set: randomly, TracIn, and In-
fluence Functions (IF). For each number
of samples removed we fine-tune the base
model five times with different training
data ordering, the variance over these
runs is represented by the error bars.
Each point in the plot is the average ac-
curacy achieved by the five models after
fine-tuning on the augmented dataset.
We find that influence functions can find
examples that impact the accuracy sig-
nificantly more than baselines, although
only slightly more than TracIn.

(b) Counterfactual retraining experiments
on multiple-choice reasoning data. We
fine-tuned Cohere Command 2 (7B) on a
subset of the RACE training set (10k ex-
amples) and use three different methods
to remove training examples from the
training set: randomly, TracIn, and In-
fluence Functions (IF). For each number
of samples removed we fine-tune the base
model five times with different training
data ordering, the variance over these
runs is represented by the error bars.
Each point in the plot is the average ac-
curacy achieved by the five models after
fine-tuning on the augmented dataset.
We find that influence functions can find
examples that impact the accuracy sig-
nificantly more than baselines, although
there is some variance in the results.

Figure B.2: Counterfactual retraining experiments on reading comprehension
benchmark DROP (a) and the multiple-choice reasoning dataset RACE
(b).

removed to flip its value. However, the influence functions we use estimate

effect of removing a single document, and removing multiple documents can

have additional effects that are unaccounted for. This makes removing multiple

documents a cruder way to empirically show impact of influence functions on

accuracy, but at the same time it is unavoidable. Therefore, any significant

causal effect on accuracy over other methods is a good signal, but the absence

of a significant effect does not necessarily mean EKFAC influence functions do

not properly do what they are designed to do.

132 Appendix B. How Models Learn to Reason from Pre-training Data

B.2 EKFAC Influence Functions

The code we use for EKFAC influence functions at scale is a part of

larger internal Cohere infrastructure, and hence cannot be released pub-

licly. However, we base our code on the public GitHub repository

https://github.com/pomonam/kronfluence. We implement estimation of

the Hessian in the same way as in that codebase, except for a few changes to

make it tractable, which we discuss in more detail below. Further, we compare

the results produced by our implementation with the results using the public

implementation. We do this by fine-tuning GPT-2 (124M) on Wikitext-2

using internal infrastructure, and calculating influence scores with both code

bases. We find that the results correlate very strongly (with a Pearson’s R of

more than 0.99, see B.2.2 below for more details). Here, we provide details of

the design choices and hyperparameters used in our implementation, as well

as the additional approximations to make EKFAC estimation and influence

calculation tractable at scale.

Query-batching and approximation As mentioned in Chapter 3, we approx-

imate query gradients using approximate SVD [HMT11]. We use the default

parameters for this algorithm, which can be found in the Dask documentation

[Das16].

Sampling from the pre-training data. It is intractable to calculate influ-

ence for the entire pre-training data, so we sample a set of 5 million documents.

To this end, we loop over the training data as seen by the models in order,

and randomly sample 6 examples from each batch. This ensures that the

pre-training sample we use is both similar to the pre-training distribution in

terms of what kind of data the model sees, as well as when it has encountered

the data during pre-training.

Estimating EKFAC. To estimate the EKFAC matrices, we sample 100 000

documents from pre-training in the same manner as described above. We

use the same samples to estimate the EKFAC for the 7B as for the 35B. For

both models, we use a damping factor of 0.1 (see Section 2.3 for details on

what the damping factor is). Further, part of estimating the EKFAC is an

eigendecomposition on the EKFAC matrices. We use the same approximation

as empirically motivated in [Gro+23], namely block-diagonal approximation.

https://github.com/pomonam/kronfluence

B.2. EKFAC Influence Functions 133

For the 7B, we use 2 blocks, and for the 35B, we use 4. The block-diagonal

approximation is not part of the public codebase, but simply amounts to

dividing the matrices in n blocks (where n is 2 and 4 in our case), zero-ing

out the remaining entries, and taking the eigendecomposition of each block

individually. After, these blocks are patched back together again into the

original size matrix, which will be further processed as in the public codebase.

B.2.1 Justifying Approximations

In this section, we justify the additional approximations we do on top of

those mentioned in Grosse et al. [Gro+23] by reporting the correlation with

the full implementation for a smaller model (124M parameters). Applying

EKFAC influence functions to models with billions of parameters requires

estimating a multiple of the model parameters. E.g. for the 7B model we

estimate around 70B EKFAC parameters, and for the 35B model we estimate

around 320B parameters. Further, to calculate the influence scores for a set

of 5 million documents we have to calculate the gradient for 100 queries × 5

million documents, each of which has the same size as all feed-forward layers

in the model itself. We can only afford to loop over the 5 million documents

and calculate their gradients once, so we need to batch the query gradients

in memory. This is impossible for the full gradients and we use SVD to store

low-rank approximations instead, like in Grosse et al. [Gro+23].

Details on the experiment. To compare results of using EKFAC influence

functions with different approximations, we use the same fine-tuned model from

Section B.1 to calculate influence scores for the 4656 training examples (i.e.

documents) on the first 32 validation examples (i.e. queries) of the Wikitext-2

dataset. We repeat this with different types of approximations applied; full

SVD on the query gradients, approximate SVD [Das16] on the query gradients,

and a block-diagonal approximation of the EKFAC matrices before the eigen-

decomposition (described in Appendix A of Grosse et al. [Gro+23]) with 2 and

4 blocks. For each level of approximation applied, this gives us 32 vectors with

4656 scores (one for each query-document pair), and we compare these to the

full implementation without SVD and block diagonal approximations using

Pearson’s R correlation. The correlations reported are the average over all 32

queries, but in the supplement we provide the correlations for each query for

134 Appendix B. How Models Learn to Reason from Pre-training Data

all experiments done below.

In Table B.5 we report the correlations of increasingly more approximations

w.r.t. a full implementation. Note that the full implementation also uses

approximations, but those are all justified in Grosse et al. [Gro+23]. Here,

for completeness, we additionally justify the approximations we use that are

different, namely approximate SVD instead of full SVD, and a block-diagonal

approximation with 4 blocks instead of 2. From Table B.5, we can see that the

approximate SVD algorithm has a neglible effect on the scores, whereas the

block-diagonal approximation has a small effect on the scores.

Approximations Pearson R

SVD 0.96 ± 0.01
Approximate SVD 0.96 ± 0.01
Approximate SVD + block diagonal EKFAC (2 blocks) 0.95 ± 0.00
Approximate SVD + block diagonal EKFAC (4 blocks) 0.93 ± 0.00

Table B.5: Score correlations of using increasingly more approximations with a full
implementation.

B.2.2 Full implementation

We also compare the full implementation scores of our own influence functions

implementation with the scores calculated for the same model and dataset with

the public implementation at https://github.com/pomonam/kronfluence,

and confirm the average score correlation between queries is 0.993 (± 0.003).

We add a direct score comparison of both methods for the top 3 documents for

each of the 32 queries to the supplemental material. Specifically, for each query

we log the top 3 documents as determined by our internal implementation

as well as the external implementation, showing that they are almost always

the same documents, and logging the score given to that document by each

implementation (the supplement2 also contains the score correlation for each

query separately). The average number of documents that appear in both

top 50’s determined by the internal and external implementation is 46.7. The

reason for using an internal implementation nonetheless is that the public

implementation is not optimised for usage on large-scale models, and cannot be

used for models above about 1B parameters. We used the internal pre-training

2https://openreview.net/forum?id=1hQKHHUsMx

https://github.com/pomonam/kronfluence
https://openreview.net/forum?id=1hQKHHUsMx

B.2. EKFAC Influence Functions 135

library for implementing influence functions, because part of the infrastructure

used for pre-training large models could be re-used.

136 Appendix B. How Models Learn to Reason from Pre-training Data

B.3 Query sets
Reasoning query sets. We show an example of the other two types of

reasoning than arithmetic present in the reasoning query sets in Table B.6

and B.7. The former requires calculating the slope of a line going through two

given points (used for both the 7B and 35B model) and the latter is about

solving for x in a linear equation (only used for the 35B model).

Control query sets. We design two control sets with 10 questions each

for both the 7B and 35B model. These query sets resemble reasoning and

factual questions, but do not require actual reasoning or factual retrieval. The

reason for constructing such query sets is to compare the results for the factual

/ reasoning query sets to the corresponding control sets, and comment on

whether the patterns we are seeing also show up for queries that do not require

reasoning / retrieval, which further helps interpretations of the results.

Two factual control examples can be seen in Table B.8 and B.9, for the 7B

and 35B model respectively. They are designed to match the first factual

query superficially (e.g. the same numbers), but they are instead reading

comprehension questions about fictional entities. This means all the model

needs to do to answer the question is retrieve from context (not parameters).

Two of the reasoning control examples for the 7B and 35B respectively can

be seen in Table B.10 and B.11. Again, these resemble reasoning queries in

number and style, but do not require any actual reasoning as the answer is

given in the context.

B.3. Query sets 137

Table B.6: Reasoning query set (slopes). Example from the reasoning set that
involves calculating the slope of a line going through two points. We
have 20 examples like these on different points. The completion is by
the 7B model, but we use the same questions for the 35B model.

Reasoning query set (slopes)

Prompt

What is the slope of the line passing through the points (93, 28) and (74, 47)?

Think step-by-step.

Completion by 7B

To find the slope of the line passing through the points (93, 28) and (74, 47), we can use the following steps:

1. Identify the coordinates of the two points:
- Point A: (93, 28)
- Point B: (74, 47)

2. Calculate the difference in x-coordinates between the two points:
- Difference in x-coordinates: x2 - x1 = 74 - 93 = -19

3. Calculate the difference in y-coordinates between the two points:
- Difference in y-coordinates: y2 - y1 = 47 - 28 = 19

4. Determine the ratio of the difference in y-coordinates to the difference in x-coordinates:
- Ratio: 19 / -19 = 1 / -1

5. Multiply the ratio by -1 to reverse the direction of the line:
- Slope: -1 / 1 = -1

Therefore, the slope of the line passing through the points (93, 28) and (74, 47) is -1.

Table B.7: Reasoning query set (linear). Example from the reasoning set
that requires solving for x in a linear equation. We have twenty other
examples like these on different numbers, only for the 35B model. The
completion is by the 35B model.

Reasoning query set (linear)

Prompt

Solve for x: 5x + 21 = 91

Think step-by-step.

Completion by 35B

Here are the steps to solve for x:
1. Subtract 21 from both sides of the equation:
5x + 21 - 21 = 91 - 21
5x = 70

2. Divide both sides of the equation by 5 to solve for x:
(5x) / 5 = 70 / 5
x = 14

Therefore, the solution to the equation 5x + 21 = 91 is x = 14.

138 Appendix B. How Models Learn to Reason from Pre-training Data

Table B.8: Factual control query set (7B). Example from the factual control
set that resembles the question about the tallest mountain in the world
from the 7B factual query set (Table 3.2), but does not require any
factual recall. The completion is by the 7B model.

Factual control query set

Prompt

The planet Zog has multiple mountains, of which the tallest one is called Wirtu which is 29,029 feet tall.
What is the largest mountain on the planet Zog called and how tall is it?

Completion by 7B

The largest mountain on the planet Zog is called Wirtu and it is 29,029 feet tall.

Table B.9: Factual control query set (35B). Example from the factual control
set that resembles the first factual query for the 35B model superficially,
but does not require any factual recall. The completion is by the 35B
model.

Factual control query set

Prompt

In a fictional planetary system, there is a supernova remnant and pulsar wind nebula in the centre of
a constellation of stars called Minotaur called the Goat Nebula.
What is the supernova remnant and pulsar wind nebula in the constellation Minotaur called?

Completion by 35B

In the fictional planetary system, the supernova remnant and pulsar wind nebula in the centre of
the constellation Minotaur is called the “Goat Nebula”.

B.3. Query sets 139

Table B.10: Reasoning control query set (7B). Example from the reasoning
control set that resembles the slope queries superficially, but does not
require any reasoning. The completion is by the 7B model.

Reasoning control query set

Prompt

The slope of the line is -22. What is the slope of the line?

Think step-by-step.

Completion by 7B

Given that the slope of the line is -22.

To find the slope of the line, we need to find the change in y-coordinates divided by the change in x-coordinates.

The slope of the line is -22.

Therefore, the slope of the line is -22.

Table B.11: Reasoning control query set (35B). Example from the reasoning
control set that resembles the slope queries superficially, but does not
require any reasoning. The completion is by the 35B model.

Reasoning control query set

Prompt

This line has a slope 6. What is the slope of the aforementioned line?

Think step-by-step.

Completion by 35B

The slope of a line is a measure of the steepness of the line.
It is defined as the ratio of the change in the y-coordinate to the change in the x-coordinate.

In this case, the line has a slope of 6. This means that for every 1 unit increase in the x-coordinate,
the y-coordinate will increase by 6 units.

It’s important to note that the slope of a line is not limited to positive values and can be negative or
zero depending on the orientation of the line.

140 Appendix B. How Models Learn to Reason from Pre-training Data

B.4 Query keywords for finding the answer
We provide all keywords used to search for the answers for both the 7B and

35B in the supplementary material to this manuscript3, and describe here the

procedure for generating keywords, as well as giving some examples.

For the factual questions, we generated keywords manually for each query, and

these can be found in the supplemental material. For example, for the question

“What is the world’s smallest mammal by body length?” (answer: bumblebee

bat), we have the following keywords: bumblebee bat; bumblebee; bumble; bee;

bat; smallest mammal; body length; mammal; smallest; small. This results in

many false positives, e.g. if only the word ‘small’ occurs, which we all check

manually for the answer.

Based on the type of reasoning question, we programatically create keywords

for each question. For example, for the question in Table B.7, the keywords

are:

[’14’, ’x = 14’, ’5x + 21’, ’91’, ’5x + 21 = 91’, ’21’, ’5’,

’91 - 21’, ’91 - 21 = 70’, ’(91 - 21) / 5’, ’70 / 5’,

’70 / 5 = 14’, ’70’, ’x=14’, ’5x+21’, ’5x+21=91’, ’91-21’,

’91-21=70’, ’(91-21)/5’, ’70/5’, ’70/5=14’,

’(91 - 21) divided by 5’, ’(91-21) divided by 5’,

’(91 minus 21) divided by 5’, ’(91 min 21) divided by 5’,

’70 divided by 5’, ’70 divided by 5 = 14’,

’70 divided by 5 is 14’, ’70 / 5 is 14’, ’70/5 is 14’,

’91 - 21 is 70’, ’91-21 is 70’, ’91 minus 21 is 70’,

’91 min 21 is 70’, ’70 divided by 5 equals 14’,

’70 / 5 equals 14’, ’70/5 equals 14’, ’91 - 21 equals 70’,

’91-21 equals 70’, ’91 minus 21 equals 70’, ’91 min 21 equals 70’,

’5x plus 21’, ’5x plus 21 = 91’, ’5x plus 21 is 91’, ’5x + 21 is 91’,

’91 minus 21’, ’91 min 21’, ’91 minus 21 = 70’, ’91 min 21 = 70’,

’(91 minus 21) / 5’, ’(91 min 21) / 5’]

Note that, because the individual numbers ‘14’, ‘5’, ‘91’, and ‘70’ are part of the

keywords, each document that contains one of these numbers becomes a hit, and we

go over all hits manually.

3https://openreview.net/forum?id=1hQKHHUsMx

https://openreview.net/forum?id=1hQKHHUsMx

B.5. Prompts given to Command R+ for finding the answer 141

B.5 Prompts given to Command R+ for find-

ing the answer

We use multiple prompts for each different type of reasoning question to allow

Command R+ to find the answer in the top 500 influential documents; prompts to

find the answer to the intermediate reasoning steps, and a prompt for finding the

answer to the full question. We provide an example of each below.

Preamble:

You are a brilliant AI assistant that is excellent at arithmetic designed

to help users with data analysis. You will be given an arithmetic query

and a document, and your task is to determine whether the answer to

the question is in the document.

Prompt for the first step to a two-step arithmetic question

Question: 4 + 2

Answer: 4 + 2 = 6

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The order of operations are changed. E.g. 2 + 4 = 6.

- Different symbol used for sum/subtract sign. E.g. plus/minus.

- The calculation is part of another larger calculation. E.g. (4 + 2) * 9 = 6 * 9 or (4 + 2)/12 = 6/12.

- Different formatting. E.g. (4) + (2) = (6).

- The calculation is a part of an algebraic formulation. E.g. 4X + 2X = 6X.

What does not count as an answer:

- Other numbers are being summed/subtracted. E.g. 5 + 2.

- Numbers are taken to the other side of the equals sign. E.g. 6 - 2 = 4.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

142 Appendix B. How Models Learn to Reason from Pre-training Data

Prompt for the second step to a two-step arithmetic question

Question: 6 * 15

Answer: 90

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The order of operations are changed. E.g. 15 * 6 = 90.

- Different symbol used for the multiplier sign. E.g. x or times.

- The calculation is part of another larger calculation. E.g. (6 * 15) * 9 = 90 * 9 or (6 * 15)/12 = 90/12.

- Different formatting. E.g. (6) * (15) = (90).

- The calculation is a part of an algebraic formulation. E.g. 6X * 15X = 90X.

What does not count as an answer:

- Other numbers are being multiplied. E.g. 7 * 15.

- Numbers are taken to the other side of the equals sign. E.g. 6 = 90/15.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

Prompt for step 1 (and 2 is similar) to answer a slope question

Question: 74 - 73

Answer: 74 - 73 = 1

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a difference or change. E.g. the difference (or change) between 73 and 74 is

1.

- The order of operations are changed. E.g. 73 - 74 = -1.

- Different symbol used for the minus sign. E.g. subtracted from.

- The calculation is part of another larger calculation. E.g. (74 - 73) * 9 = 1 * 9 or (74 - 73)/12 = 1/12.

- Different formatting. E.g. (74) - (73) = (1).

- The calculation is a part of an algebraic formulation. E.g. 74X - 73X = 1X.

What does not count as an answer:

- Other numbers are being subtracted. E.g. 75 - 73.

- Numbers are taken to the other side of the equals sign. E.g. 74 = 1 + 73.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

B.5. Prompts given to Command R+ for finding the answer 143

Prompt for step 3 to answer a slope question

Question: 74 / 1

Answer: 74 / 1 = 74

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The signs on the LHS are flipped. E.g. -74 / -1 = 74.

- Different symbol used for the division sign. E.g. divided by.

- The calculation is part of another larger calculation. E.g. (74 / 1) * 9 = 74 * 9 or (74 / 1)/12 = 74/12.

- Different formatting. E.g. (74) / (1) = (74).

- The calculation is a part of an algebraic formulation. E.g. 74X / 1 = 74X.

What does not count as an answer:

- Other numbers are being divided. E.g. 75 / 1.

- Numbers are taken to the other side of the equals sign. E.g. 74 = 74 * 1.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

144 Appendix B. How Models Learn to Reason from Pre-training Data

Prompt for step 1 to answer a linear question

Question: 32 - 16

Answer: 16

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a difference or change. E.g. the difference (or change) between 32 and 16 is

16.

- The order of operations are changed. E.g. -16 + 32 = 16.

- Different representation used for the minus sign. E.g. ’subtracted from’.

- The calculation is part of another larger calculation. E.g. (32 - 16) * 9 = 16 * 9 or (32 - 16)/12 = 16/12.

- Different formatting. E.g. (32) - (16) = (16).

- The calculation is a part of an algebraic formulation. E.g. 32X - 16X = 16X.

What does not count as an answer:

- Other numbers are being subtracted. E.g. 33 - 16.

- Numbers are taken to the other side of the equals sign. E.g. 32 = 16 + 16.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

Prompt for step 2 to answer a linear question

Question: 16 / 8

Answer: 16 / 8 = 2

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a ratio. E.g. the ratio between 16 and 8 is 2.

- Different representation used for the division sign. E.g. ’divided by’.

- The calculation is part of another larger calculation. E.g. (16 / 8) * 9 = 2 * 9 or (16 / 8)/12 = 2/12.

- Different formatting. E.g. (16) / (8) = (2).

- The calculation is a part of an algebraic formulation. E.g. 32X / 16X = 2X.

What does not count as an answer:

- Other numbers are being divided. E.g. 17 / 8.

- Numbers are taken to the other side of the equals sign. E.g. 16 = 2 * 16.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

B.5. Prompts given to Command R+ for finding the answer 145

Prompt for the full answer to a linear question

Question: 8x + 16 = 32

Answer: 2

What also counts as an answer:

- The calculation is written out in words, or part of a story.

- The calculation is written in terms of a ratio. E.g. the ratio between 16 and 8 is 2.

- Different representation used for the plus sign or the equals sign. E.g. ’added to’ and ’equals’.

- A different variable than X is used. E.g. ’t’: 8t + 16 = 32’.

- The calculation is part of another larger calculation. E.g. (8x + 16 = 32) * 9 = 2 * 9 or (8x + 16 = 32)/12 = 2/12.

- The solution is written out in steps below each other. E.g.:

8x + 16 = 32

8x = 2

x = 0.

- The calculation is a part of an algebraic formulation. E.g.:

5 * (8x + 16) = 5 * 32

5 * x = 5 * 2.

What does not count as an answer:

- Other numbers are being used. E.g. 9x + 16 = 32.

Document:

<document >

Is the answer given in the document? Answer with yes or no. If you answer with yes, indicate where the answer is

by copying the part of the document in which the answer occurs, ending with an explanation of why that passage

contains the answer. Think step-by-step and carefully consider all the different ways in which such an answer might

be given.

146 Appendix B. How Models Learn to Reason from Pre-training Data

B.6 Prompts for characterising the query-

document relation

We combine all reasoning queries in pairs with their top 500 most influential docu-

ments, and prompt Command R+ to characterise the relationship. For all types of

reasoning, we use the same preamble:

You are a brilliant AI assistant that is excellent at arithmetic designed to

help users with data analysis. You will be given an arithmetic query and

a document, and your task is to characterise the document by choosing

keywords from a given set that best describe how the document relates to

the question.

For each type of reasoning, we craft a prompt that allows Command R+ to choose

multiple keywords for each query-document pair in the top 500 documents. We

provide each below.

B.6. Prompts for characterising the query-document relation 147

Prompt for arithmetic questions

Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Similar arithmetic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are

the same)

Similar arithmetic operations (on other types of numbers, e.g. much larger or smaller)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an

answer)

Other types of maths

Code that contains arithmetic

Code that concerns other types of math

Code that concerns no math/arithmetic

Text about math/arithmetic (no other relation to the query than that the text is about math, text does not perform

math/arithmetic)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words

related to other parts of math, like algebra)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.

Keep in mind that the document might be in another language than English. If you pick any of the code keywords,

add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’). If the relation

between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your

own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’

and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation

below separated by newlines Give your answer in the form of a semicolon-separated list of keywords, and add an

explanation below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’).

148 Appendix B. How Models Learn to Reason from Pre-training Data

Prompt for slope questions

Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Similar arithmetic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are

the same)

Similar arithmetic operations (on other types of numbers, e.g. much larger or smaller)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an

answer)

Other types of maths

Code that contains arithmetic

Code that calculates the slope between two numbers

Math that calculates the slope between two numbers

Code that calculates the slope of an equation

Math that calculates the slope of an equation

Code that concerns other types of math

Code that concerns no math/arithmetic

Text about math/arithmetic (no other relation to the query than that the text is about math, text does not perform

math/arithmetic)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words

related to other parts of math, like algebra)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.

Keep in mind that the document might be in another language than English. If you pick any of the code keywords,

add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’). If the relation

between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your

own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’

and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation

below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’).

B.6. Prompts for characterising the query-document relation 149

Prompt for linear questions

Start of Query:

<query>

End of Query

Start of Document

<document>

End of Document

How is the document related to the query?

Choose from the following keywords:

Code that solves a linear equation for a variable (of the form ax + b = c or ax - b = c)

Code that solves a linear equation with multiple variables for one or both variables (e.g. ax + by = c)

Code that solves a linear equation of another form than ax + b = c or ax - b = c

Math that solves a linear equation for a variable (of the form ax + b = c or ax - b = c)

Math that solves an equation with multiple variables for one or both variables (e.g. ax + by = c)

Math that contains linear equations of another form than ax + b = c or ax - b = c

Math that contains linear equations but they are not solved (of the form ax + b = c or ax - b = c)

Math that contains linear equations but they are not solved (of another form than ax + b = c or ax - b = c)

Similar algebraic operations on similar numbers (e.g. the numbers are similar in magnitude or the numbers are the

same)

Similar algebraic operations (on other types of numbers, e.g. much larger or smaller)

Other forms of algebra

Arithmetic operations

Other types of maths

Code that contains arithmetic

Code that concerns other types of math

Code that concerns no math/algebra

Text about math/algebra (no other relation to the query than that the text is about math, text does not perform

math/algebra)

Reasoning traces (multiple reasoning steps are explicitly given in the document explaining how one gets to an

answer)

Superficial similarities (there is no real relation, but loosely related topics occur, like the text contains words

related to other parts of math, like arithmetic)

Similar formatting (question/answer pair about other topics than math)

Similar formatting (other)

Other (pick own keyword)

Explain your answer for each keyword by quoting from the query and document and describing why they are similar.

Keep in mind that the document might be in another language than English. If you pick any of the code keywords,

add the programming languages in brackets (e.g. ‘Code that contains arithmetic (Python, LaTeX)’) If the relation

between the query and the document is not described by any of the given keywords, choose ‘other’ and pick your

own keyword that describes the document. Otherwise, if the query is not related to the document, state ‘no relation’

and describe why. Give your answer in the form of a semicolon-separated list of keywords, and add an explanation

below separated by newlines (e.g. ‘keyword 1; keyword 2; keyword 3 (Python) [explanation]’). If you pick a keyword

about solving a linear equation, add the linear equation in the explanation.

150 Appendix B. How Models Learn to Reason from Pre-training Data

B.7 Further discussion of limitations
More broadly, the findings in Chapter 3 suffer from the same limitations any work

does that uses EKFAC influence functions; we do many approximations to estimate

the counterfactual and only take into account MLP parameters. This latter decision

is because EKFAC influence functions are not properly defined for the attention

layers [Gro+23], although we do look at the dense layers used within them. We list

the assumptions and approximations here:

• First-order Taylor approximation to the PBRF.

• Assume different layers of MLPs are independent, making the Gauss-Newton

Hessian block-diagonal.

• Assume activations are independent of pre-activation pseudo-gradients.

• Estimate the approximation to the Fisher Information Matrix or equivalently

the Gauss-Newton Hessian by sampling from the empirical data distribution /

model output distribution, because it’s an expectation over that distribution

(MC estimation).

• Block-diagonal approximation of the eigenvector matrices within each layer.

• Low-rank approximation of query gradients.

• Assume EKFAC for SFT stage is identity [Bae+24].

All these approximations are verified and justified in Grosse et al. [Gro+23] and

[Bae+24], and the reader is referred there for a more in-depth analysis.

Our empirical results showing that nonetheless influence functions surface documents

that are causally related to accuracy in Appendix B.1 should alleviate some of these

concerns, but not all.

B.8. Additional qualitative analysis 151

B.8 Additional qualitative analysis

B.8.1 Answers to questions in pre-training data

In Section 3.4.2, we find the answer to factual questions relatively often compared to

the answer to reasoning questions. In this section, we comment on the possibility

that the answer to reasoning questions are simply not part of the pre-training sample

of 5 million documents we look at, as well as present examples of documents with

answers to queries. Recall that all reasoning tasks require multiple steps, and the

model outputs reasoning traces to get to the final answer. This means that if the

model is retrieving the answers, it should retrieve answers to all the reasoning steps.

On top of the search in Section 3.4.2, we search for answers to the reasoning steps

and factual questions in a random subset of the 5M pre-training documents. For

the 7B reasoning questions, we find 43 documents containing answers to reasoning

steps, of which only 9 show up in the top 0.02% of the data. Of these 9, 4 documents

together contain the 2 answers found for the 7B arithmetic queries in the main

text. The remaining 5 are answers to single reasoning steps that do not combine

to a full answer. By contrast, we find the full answer to factual questions in 73

documents, of which 35 show up in the top 0.02% of the data. For the 35B, we

find 7 documents with answers to reasoning steps, of which 4 show up in the top

0.02% (none combining to a full answer). For the factual questions, we find 17

documents with answers, of which 15 show up in the top 0.02%. In terms of full

answers showing up in the top 0.02%, we find one additional full answer on top of

the ones we found in the main text for the 7B reasoning questions, spread over two

documents with rank 896542 and 4997351 of 5 million respectively (i.e. highly un- or

negatively influential). For the 35B we do not find full answers to reasoning queries

at all. We provide many documents with answers to factual and reasoning queries

found in the top 0.02% in the supplemental material4 as well as one example per

reasoning step answer we find (e.g. if we find the answer to 6− 4 = 2 four times, we

show one example in the supplement). We highlight here some examples from the

larger pre-training sample for illustration.

Examples of pre-training data with answers.

For factual questions, it happens relatively frequently that the answer to the question

shows up as highly influential in multiple documents of the top 10 documents. For

example, for the factual question in Table 3.2 (“What is the tallest mountain in

the world and how tall is it?”), the answer shows up at ranks 1, 4, 6, and 7. The

document at rank 1 (the most positively influential document), is the following,

which has the same question and the answer (question 5 below, underlined):

4https://openreview.net/forum?id=1hQKHHUsMx

https://openreview.net/forum?id=1hQKHHUsMx

152 Appendix B. How Models Learn to Reason from Pre-training Data

Factual query

What is the tallest mountain in the world and how tall is it?

Completion by 7B

The tallest mountain in the world is Mount Everest, which is located

between Nepal and Tibet. The height of Mount Everest is 8,849 meters

(29,029 feet) above sea level.

Rank 1 document

Write some general trivia questions and answers. Here are some general

trivia questions and answers:

1. What is the longest word in the English language?

Answer: The longest word in the English language is ”pneumonoultra-

microscopicsilicovolcanoconiosis”, which is a type of lung disease.

2. How many bones are in the human body?

Answer: There are 206 bones in the human body.

3. What is the largest ocean in the world?

Answer: The largest ocean in the world is the Pacific Ocean, which

covers approximately one-third of the Earth’s surface.

4. What is the longest river in the world?

Answer: The longest river in the world is the Nile River, which is 6,650

kilometers (4,130 miles) long.

5. What is the highest mountain in the world?

Answer: The highest mountain in the world is Mount Everest,

which is 8,848 meters (29,029 feet) high.

6. What is the most common element in the human body?

... redacted

B.8. Additional qualitative analysis 153

Another document has the answer to part of an arithmetic query for the 7B (“Calcu-

late the answer: (5 - 3) * 12. Think step-by-step.”), namely 5 - 3 = 2 (underlined

below, note that one needs to understand rules to writing arithmetic to figure the

answer out). Interestingly, this document shows up in the top 10 documents for 11

of 20 arithmetic queries. By contrast, the factual answer document shown before

shows up in the top 10 for 4 of 40 queries (we have another query that asks for the

largest ocean in the world, for which this document also has the answer). View the

document on the next page:

154 Appendix B. How Models Learn to Reason from Pre-training Data

Reasoning query (arithmetic)

Calculate the answer: (5 - 3) * 12

Think step-by-step.

Completion by 7B

First, let’s evaluate the expression inside the parentheses:

5 - 3 = 2

Now, let’s multiply the result by 12:

2 * 12 = 24

Therefore, the answer is 24.

Rank 2 document

shown in numbers 7, 9 and 10.

PEMDAS Rules Practice 1 Solutions

1.

Solution:

Multiply: 2 x 3 + 4 x 6 = 6 + 24

Add: 6 + 24 = 30

Answer: 30

2.

... redacted

4.

Solution:

Parenthesis: 8(6 – 2) ÷ 2(5 – 3) = 8(4) ÷ 2(2)

Multiply: 8(4) ÷ 2(2) = 32 ÷ 2(2)*

Divide: 32 ÷ 2(2)= 16(2)

Multiply: 16(2) = 32

Answer: 32

*This is the case mentioned in the PEMDAS Rules that when multi-

plication and division are performed consecutively (without any other

operations or grouping symbols in between), the perform the operations

from the left hand side to the right hand side. ... redacted

B.8. Additional qualitative analysis 155

To show that answers to more “niche” questions also show up, consider this document

that contains the answer to the question “What is the common name for the larva

of a housefly?” (answer: maggot, underlined below):

Factual query

What is the common name for the larva of a housefly?

Completion by 35B

The common name for the larva of a housefly is a maggot.

Rank 6 document

Common House Fly

Flies are easily recognized and are universally annoying. To say they

are unappealing is an understatement. Flies enjoy spending time on

decaying organic filth, including rotting meat and feces. They then

manage to enter your home and land on your kitchen counters and

any uncovered food. House flies do more than just buzz around and

steal your food. They can transfer over 65 diseases including cholera,

dysentery, poliomyelitis, and tuberculosis. Flies accumulate nasty

pathogens when they rest on sewers, trash, feces, and any other moist

or decaying material.

Flies lay their eggs on food (fruit in your fruit

bowl), other animals, and even rotting flesh.

When the eggs hatch, the tiny rice-like larvae are called maggots.

Few other bugs provoke nausea and an overall disgust like tiny,

squirming maggots. There are a number of ways to eliminate flies and

their larvae from your home. The most common practices include using

sticky fly traps, ultra-violet lights, and baited traps. Fly swatters are

effective when trying to get rid of the lone fly. A timely smack from a

dish towel can also be employed.

... redacted

This document has rank 6 for the relevant query, and never shows up in the top 10

for other queries.

156 Appendix B. How Models Learn to Reason from Pre-training Data

Below, we show a document containing the answer to the reasoning step 5 + 4 = 9,

required for one of the arithmetic queries for the 7B model (“Calculate the answer:

(5 + 4) * 2. Think step-by-step.”), which does not show up in the top 0.02%.

Reasoning query (arithmetic)

Calculate the answer: (5 + 4) * 2

Think step-by-step.

Completion by 7B

First, let’s evaluate the expression inside the parentheses:

5 + 4 = 9

Now, let’s move on to the next step:

9 * 2 = 18

Therefore, the answer to the given expression is 18.

Rank 2140 document

For example:

n=1 = 1+2=3

n=2 = 1+4=5, 2x3=6

n=3 = 4+5=9, 1+7=8, 2x3=6

The question is, does a solution exist for every n?

I tried writing a basic program and it becomes too slow after n = 14.

Here are the

solutions I have so far:

1 [‘1+2=3’]

2 [‘2*3=6’, ‘1+4=5’]

3 [‘4+5=9’, ‘1+7=8’, ‘2*3=6’]

4 [‘3+6=9’, ‘1+10=11’, ‘4+8=12’, ‘2+5=7’]

... redacted

This document has rank 2140 for the relevant query.

B.8. Additional qualitative analysis 157

B.8.2 Cross-lingual transfer

Additional finding: The answer to the factual question sometimes shows

up in non-English languages.

Interestingly, we observe some crosslingual transfer for the factual questions. For

example, for the question about the tallest mountain in the world (Table 3.2), the

answer shows up in Portuguese:

A americana Samantha Larson, de 19 anos, se tornou nesta sexta-feira

a mulher estrangeira mais jovem a conquistar o Monte Everest, segundo

nota oficial divulgada pelo Ministério de Turismo do Nepal. A montanha,

de 8.848m, é a mais alta do mundo e se encontra na fronteira entre o

Nepal e Tibet.

Which translates to:

American Samantha Larson, 19, became the youngest foreign woman

to conquer Mount Everest on Friday, according to an official statement

released by Nepal’s Ministry of Tourism. The 8,848m mountain is the

highest in the world and is located on the border between Nepal and Tibet.

We observe more crosslingual transfer for questions, for example for the question

“What is the capital of Belgium?” the answer shows in up in French and Spanish. We

show the French document here:

Le Premier ministre belge Yves Leterme a assuré ce mercredi qu’il

resterait en place et mènerait à bien la réforme institutionnelle entre les

régions, malgré les profondes divisions entre Flamands et Wallons qui

menacent l’unité du pays.

...

Les francophones redoutent pour leur part une réduction des budgets

accordés à la Wallonie, région la plus pauvre du pays, et à la capitale

bilingue, Bruxelles. Ils estiment également que les régions se sont vu

transférer depuis les années 1980 assez de compétences fédérales, et

soupçonnent les néerlandophones de chercher à faire sécession de la

Belgique afin de pouvoir déclarer l’indépendance de la Flandre.

Which translates to:

Belgian Prime Minister Yves Leterme assured on Wednesday that he

would stay in office and carry out the institutional reform between the

regions, despite the deep divisions between Flemish and Walloons that

threaten the unity of the country.

...

158 Appendix B. How Models Learn to Reason from Pre-training Data

The French speakers, for their part, fear a reduction in the budgets granted

to Wallonia, the poorest region of the country, and to the bilingual capital,

Brussels. They also believe that the regions have been transferred enough

federal powers since the 1980s, and suspect that the Dutch-speaking

countries are seeking to secede from Belgium in order to be able to

declare the independence of Flanders.

Note that both these quotes are snippets from otherwise larger documents. We did

not translate all documents and hence only found cases of crosslingual transfer if

there happened to be keyword overlap. We show a few here, but have found the

answer to factual questions through keyword overlap with non-English documents 8

times for the 7B model and 4 times for the 35B model. Note that because this is only

based on circumstantial keyword overlap, we likely missed most cases of cross-lingual

transfer, and therefore cannot assign any meaning to the fact that it happened less

for the 35B than the 7B. It would be interesting to focus on cross-lingual transfer in

future work.

B.8. Additional qualitative analysis 159

B.8.3 Characterise relation top documents to query

Finding 4: why documents are influential for reasoning.

We prompt Command R+ to characterise the relationship between the top 500

documents and each query (see prompts in Appendix B.6). We add ‘reasoning traces’

as a potential keyword in the prompt, but after inspecting the results we find the

model uses that keyword for almost any document, and we remove those results. We

report the raw counts of each keyword occurring in the tables below.

Arithmetic (7B) Count

Other types of maths 5765
Similar arithmetic operations on other numbers (e.g. much larger/smaller) 4691
Code that contains arithmetic 4038
Text about math/arithmetic 3202
Code that concerns other types of math 2554
Similar arithmetic operations on similar numbers 2246
Similar formatting 2223
Superficial similarities 1391
Code that concerns no math/arithmetic 277

Table B.12: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
arithmetic (7B) queries.

Slopes (7B) Count

Other types of maths 10787
Similar arithmetic operations on similar numbers 7312
Code that contains arithmetic 5035
Similar formatting 4675
Text that explains in words how to calculate the slope of an equation 3911
Code that concerns other types of math 3577
Text about math/arithmetic 3323
Text that explains in words how to calculate the slope between two numbers 2959
Math that calculates the slope of an equation 2921
Math that calculates the slope between two numbers 2490
Superficial similarities 2222
Text that mentions the slope but does not explain how to calculate it 1677
Code that calculates the slope between two numbers 1633
Code that calculates the slope of an equation 1110
Code that concerns no math/arithmetic 263
Other 15

Table B.13: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
slopes (7B) queries.

160 Appendix B. How Models Learn to Reason from Pre-training Data

Slopes (35B) Count

Other types of maths 11104
Similar arithmetic operations on similar numbers 8340
Code that contains arithmetic 4617
Similar formatting 4141
Text that explains in words how to calculate the slope of an equation 3869
Text about math/arithmetic 3845
Math that calculates the slope of an equation 3745
Math that calculates the slope between two numbers 3533
Code that concerns other types of math 3192
Text that explains in words how to calculate the slope between two numbers 2747
Superficial similarities 2291
Text that mentions the slope but does not explain how to calculate it 1936
Code that calculates the slope between two numbers 1150
Code that calculates the slope of an equation 865
Code that concerns no math/arithmetic 121
Other 12
Similar arithmetic operations on other numbers (e.g. much larger/smaller) 1

Table B.14: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
slopes (35B) queries.

Linear (35B) Count

Math that contains linear equations but they are not solved 13434
Similar algebraic operations on similar numbers 10717
Similar formatting 5533
Math that solves a linear equation for a variable 2415
Other forms of algebra 2234
Arithmetic operations 2057
Code that contains arithmetic 1417
Other types of maths 1390
Text about math/algebra 1146
Code that solves a linear equation of another form than ax + b = c or ax - b = c 1109
Superficial similarities 1105
Code that concerns other types of math 949
Code that concerns no math/algebra 560
Code that solves a linear equation for a variable 475
Math that solves an equation with multiple variables for one or both variables 172
Math that contains linear equations of another form than ax + b = c or ax - b = c 156
Code that solves a linear equation with multiple variables for one or both variables 110
Other 1

Table B.15: Raw counts of the amount of times Command R+ assigns a certain
keyword to a query-document pair to characterise its relation, for the
linear (35B) queries.

B.8. Additional qualitative analysis 161

Figure B.3: For the reasoning and factual sets, we compare the amount of docu-
ments from a certain source dataset that show up in the top portions
of the rankings to the amount you would expect to show up if you ran-
domly sample from the pre-training distribution (indicated by ‘Training
distribution’ in the figure). The top two plots are for the 7B, and the
bottom for the 35B. We find that data from Wikipedia and Math &
Trivia are important for the factual questions for both models, for the
reasoning questions Math & Trivia, StackExchange, Code, and ArXiv
data is important. In all cases, the multipliers tend to the training
distribution for higher k.

B.8.4 Source dataset analysis

Finding 5: code is heavily overrepresened for reasoning both for the top

and bottom portions of the ranking.

For each source dataset, we report the multiplier w.r.t. the training distribution.

This means that if the top k documents are randomly sampled from pre-training, the

multipliers will be one, whereas if they are above or below one, that source dataset is

either over- or underrepresented in the most influential documents. The full results

are presented in Figure B.3, and we discuss the most interesting deviations from the

pre-training distribution here. For the factual questions, the most overrepresented

source datasets for both the 7B and 35B are Math & Trivia (multiplier of 27 and

16 for k = 50 respectively) and Wikipedia (multipliers of 5 and 6 respectively). For

the reasoning questions, the most overrepresented datasets are StackExchange and

Math & Trivia (with 50 and 24 als multipliers for the 7B, and 62 and 21 for the

162 Appendix B. How Models Learn to Reason from Pre-training Data

35B). Interestingly, for both the 7B and the 35B, code data is important for the

influential documents. Besides StackExchange, for the medium-influential portion of

the rankings (between k = 5000 and k = 50000), more code data becomes influential

(with multipliers around 2, compared to 0.5 for the factual questions at that same

part of the ranking). This is conventional wisdom among practitioners (most LLMs

designers use some percentage of code data in pre-training now, e.g. Touvron et al.

[Tou+23]), and recent work has empirically found code to be important for reasoning

performance [Ary+24]. However, the question of why code data is important for

reasoning is still open. Below, in Appendix B.8.5, we further confirm that code is

important for reasoning by not only relying on the fact that these documents come

from a code dataset, but actually classifying their contents. In Figure B.4 we present

the same plot for the bottom portion of the ranking, showing the findings are similar.

Further, in Figure B.5 and B.6 we respectively show the same results for the top and

bottom portion of the rankings for the control queries. Again, the results look similar

(code and StackExchange is also overrepresented for the reasoning control queries),

but arXiv is less overrepresented for reasoning control and wiki is less overrepresented

for factual control answering.

B.8. Additional qualitative analysis 163

Figure B.4: For the reasoning and factual sets, We compare the amount of doc-
uments from a certain source dataset that show up in the bottom
portions of the rankings to the amount you would expect to show up
if you randomly sample from the pre-training distribution (indicated
by ‘Training distribution’ in the figure). The top two plots are for
the 7B, and the bottom for the 35B. We find the patterns are almost
identical to those shown for the top portions of the ranking: data
from Wikipedia and Math & Trivia are important for the factual
questions for both models, for the reasoning questions Math & Trivia,
StackExchange, Code, and ArXiv data is important. In all cases, the
multipliers tend to the training distribution for higher k.

164 Appendix B. How Models Learn to Reason from Pre-training Data

Figure B.5: For the query control sets, we also compare the amount of documents
from a certain source dataset that show up in the top portions of
the rankings to the amount you would expect to show up if you
randomly sample from the pre-training distribution (indicated by
‘Training distribution’ in the figure). The top two plots are for the 7B,
and the bottom for the 35B. We find that code is still overrepresented,
but arXiv as source is less overrepresented for the top portions of the
reasoning control set than for the reasoning set.

B.8. Additional qualitative analysis 165

Figure B.6: For the query control sets, we also compare the amount of documents
from a certain source dataset that show up in the bottom portions
of the rankings to the amount you would expect to show up if you
randomly sample from the pre-training distribution (indicated by
‘Training distribution’ in the figure). The top two plots are for the 7B,
and the bottom for the 35B. We find that it again looks similar to the
source distribution for the top of the rankings for the query control
sets.

166 Appendix B. How Models Learn to Reason from Pre-training Data

B.8.5 Content analysis of relevant documents

We provide further insights into the characteristics of influential documents on reason-

ing queries. To do so, we compute capability categories of the n = 500 most frequently

occurring documents among the k = 5000 most (top) or least (bottom) influential

documents for the reasoning queries (for the 7B model), and compare these to a

randomly sampled set of 500 documents (we repeat the sampling process three times

and provide mean and standard deviation scores on the detected capabilities). Results

are shown in Figure B.7. We can see that the “code” category represents the vast

majority of most and least influential documents, whereas for the random subsets the

fraction of code-related documents is relatively small. This provides further evidence

that code-related documents strongly influence model performance on reasoning tasks.

cod
e

cre
ati

ve
_ge

ne
rat

ion

gro
un

de
d_t

ext

rea
son

ing
_an

d_f
act

s

Category

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

[7B] Category Distribution Across Different Datasets
n=500 (random)
k=5000 (bottom)
k=5000 (top)

Figure B.7: Comparison of capability categories identified for the most and least
influential documents for the reasoning queries, as well as for a random
subset of sampled documents. We repeat the random sampling three
times and report mean scores with standard deviations indicated.

B.9. Additional quantitative analysis 167

B.9 Additional quantitative analysis

B.9.1 Correlation analysis

Figure B.8: The correlation between the influence scores of all 5 million documents
for pairs of queries. All queries are on the x- and y-axis, with the
first 40 belonging to the factual set, the next 40 to the reasoning
set (arithmetic and slopes for the 7B, and linear and slopes for the
35B), the following 10 to the factual control set, and the last 10 to the
reasoning control set. The take-away is that there is only a signficant
correlation between queries of the same reasoning type, most strongly
so for the 35B slopes queries.

Finding 1: correlation between reasoning queries of the same type.

In Chapter 3, we find that there is a correlation between the influence scores for the

documents for different queries that underlie the same type of reasoning question

(e.g. questions that all require calculating the slope but for different numbers).

Recall that the correlation of influence scores for documents says something about

168 Appendix B. How Models Learn to Reason from Pre-training Data

Figure B.9: The average correlations between the influences of all documents for
queries of a specific type grouped. We leave out any query combinations
where the correlation is not significant and any combination where
the query on the x- and y-axis is the same query. We again observe
that there is only a correlation of influence for queries of the same
reasoning type.

whether or not models are learning a similar amount from the same data for their

completions. Intuitively, correlations could be driven by many things, like formatting

of the training documents, factual information it contains that is useful or necessary

for the completions, implicit information about how to reason, explicit information

about how to reason, N-gram overlap, etc. In the main text in Chapter 3, we take the

higher correlations between reasoning queries of the same type to mean the models

are generalising from a similar set of data to different reasoning questions. One other

explanation for this result could be the fact that all these queries are superficially

more similar to each other than the factual questions, and that this is the reason the

influence correlates. To test this hypothesis, we use the 10 control queries for both

the factual questions and the reasoning questions that are superficially similar, but

do not require factual retrieval or reasoning to get to the solution (see Appendix B.3

for examples from each set). Besides testing this alternative hypothesis, this section

gives more insight into what drives influence scores in LLMs.

Figure B.8 shows all query-query correlations for the 100 queries we look at, ordered

as follows: 40 factual queries, 40 reasoning (of which 20 are arithmetic and 20

slopes questions for the 7B, and 20 linear equation and 20 slopes questions for the

35B), 10 factual control, and 10 reasoning control queries. We see that there is

only a significant correlation between queries of the same reasoning type, which we

summarise in Figure B.9 by grouping queries of the same type and averaging the

B.9. Additional quantitative analysis 169

correlations.

To get a sense of what the control questions look like, we show a comparison of a

slopes query (top) and the control query that is meant to resemble it (bottom) below.

The influences for this query correlate with the influences for the slope questions

Table B.16: Two query examples, of which one is from the reasoning set (slopes) and
the other from the reasoning control set that resembles the slope queries
superficially, but does not require any reasoning. The completions are
by the 7B model.

Reasoning and Reasoning Control Query Set (7B)

Slopes (original prompt)

What is the slope of the line passing through the points (79, 47) and (80, 25)?

Think step-by-step.

Completion

To find the slope of the line passing through the points (79, 47) and (80, 25),
we can use the following steps:

1. Identify the coordinates of the two points:
- Point A: (79, 47)
- Point B: (80, 25)

2. Calculate the difference in x-coordinates between the two points:
- Point A x-coordinate: 79
- Point B x-coordinate: 80 ... redacted completion.

Slopes (control prompt)

The slope of the line is -22. What is the slope of the line?

Think step-by-step.

Completion

Given that the slope of the line is -22.

To find the slope of the line, we need to find the change in y-coordinates divided
by the change in x-coordinates.

The slope of the line is -22.

Therefore, the slope of the line is -22.

on average with a Pearson’s R of 0.05, which is much smaller than the 0.32 average

correlation between the influences found for the different slope reasoning questions by

170 Appendix B. How Models Learn to Reason from Pre-training Data

the 7B model. Below, we perform a more detailed qualitative analysis of the query

combinations and what drives their correlations, but first we discuss the quantitative

result.

As mentioned, we have 10 factual and 10 reasoning control questions for both models,

and show the full correlation matrices below in Figure B.8 (per query) and Figure

B.9 (averaged per group). We observe that the correlations between queries from the

control sets and other query sets for the 35B is always between 0.05 and 0.10, which

indicates that there can be a score correlation of at least 0.10 for other things than

genuine reasoning (e.g. formatting, or topic). Further, the within-group correlations

of the reasoning control set sometimes go as high as 0.38 (although the average is

0.06 for the 7B and 0.10 for the 35B). For comparison, the average linear-linear

(subset of reasoning questions) score correlation for the 35B is 0.16, and not many

of the correlations that make up this average are higher than the correlations in

the reasoning control sets. To get a sense of how different the correlations are in

magnitude between the reasoning questions and the control questions, we calculate

the highest correlation of a query from a specific reasoning type with any other query

that does not concern reasoning, and count the amount of reasoning query-query

combinations for which the correlation is higher. For example, the maximum

correlation we find between any slope question for the 35B and any other query that

is not a slope question is 0.30 Pearson’s R. If we discard all slope query combinations

that are below 0.30 we are left with 138 of 190 significant combinations that are

higher, ranging up to 0.96 Pearson’s R (note that each reasoning group has 20

queries, and all combinations are 20 ∗ 19/2 = 190). For the linear equation queries

by contrast, there are only 34 of 190 query-query combinations within this group

that have a correlation higher than the highest correlation with the control queries,

ranging up to 0.95 Pearson’s R. For the 7B, 84 of 190 arithmetic query combinations

have a higher correlation than the control correlations, ranging up to 0.96 Pearson’s

R, and 120 of 190 slopes query combinations, ranging up to 0.88. We therefore

conclude that the correlations between the queries for the linear equations can

mainly be explained by other, more superficial things than procedural knowledge,

and connect this finding to the fact that the model is less robustly able to solve

linear equations. The within-group correlations of the factual set are much lower,

and for the 7B we only find 5 of 780 correlations that are higher than the maximum

correlation of a factual query with another query group, ranging to 0.63 Pearson’s R

(we show the queries with the highest correlation below). For the 35B, we find no cor-

relations for factual queries higher than the maximum correlation with another group.

B.9. Additional quantitative analysis 171

We release all 100 ∗ 100 query-query correlations in the supplemental material5

(on which Figure B.8 is based), and we highlight a few examples here to get a

sense of what is driving higher or lower correlations. We mostly do not find a

correlation between the influence scores for different factual questions (on average

the correlation is 0.06 for the 7B and 0.03 for the 35B), but we show the highest

correlation found between two factual queries below in Table B.17. For this particular

example, the correlation seems driven by the fact that they are both “what”-questions

with very short completions using quotation marks. By contrast, a similar style

query-completion pair for the 35B shows almost no correlation (Table B.18). For the

factual control set (the average correlation is 0.04 for the 7B and 0.08 for the 35B,

but we also show a factual control correlation below for completeness. Table B.19

shows a factual query and a matched factual control example for the 35B model.

The correlation between this control query and the factual query it matches is -0.03.

Table B.17: Two query examples for which the Pearson’s R correlation of their
document influences is 0.63, both from the factual set of the 7B model.
We observe that the main similarity between these queries is that they
both concern short “what” questions, and the completions both are
short answers with quotes used.

Factual Query Set (7B)

Factual prompt 1

What is the symbol for gold on the periodic table?

Completion to factual prompt 1

The symbol for gold on the periodic table is “Au”.

Factual prompt 2

What is the common name for the larva of a housefly?

Completion to factual prompt 2

The common name for the larva of a housefly is “maggot”

See Table B.20 below for a representative high correlation example for the 35B slopes

questions (Pearson’s R of 0.89):

We see that the numbers for the questions are different, but the steps to get to

the answer are the same and formatted similarly. We generally observe that a

combination of different numbers used in the same procedure and similarly formatted

reasoning steps results in higher correlation. Another example is shown in Table

B.21 below for a query combination that gets a lower correlation (0.55), but has

5https://openreview.net/forum?id=1hQKHHUsMx

https://openreview.net/forum?id=1hQKHHUsMx

172 Appendix B. How Models Learn to Reason from Pre-training Data

Table B.18: Two query examples for which the Pearson’s R correlation of their
document influences is 0.08, both from the factual set of the 35B
model. We observe that the main similarity between these queries is
that they both concern short “what” questions, and the completions
both are relatively short answers with quotes used.

Factual Query Set (35B)

Factual prompt 1

What is the name of the main antagonist in the Shakespeare play “Othello”?

Completion to factual prompt 1

The main antagonist in Shakespeare’s play “Othello” is Iago, Othello’s
standard-bearer. Iago is a manipulative and deceitful character who orchestrates
the tragedy in the play.

Factual prompt 2

What is the name of the smallest member of the camel family?

Completion to factual prompt 2

The smallest member of the camel family is called a “dromedary”.
Dromedaries are easily recognizable by their single hump.
They are native to North Africa and the Middle East.

the same answer (-22). The relatively lower correlation here seems driven by the

different formatting of the completion (less newlines). This indicates that part

of the correlations are driven by superficial similarities such as completion formatting.

For comparison, Table B.22 shows a pair of control queries for which the prompt

and completion are also very similarly formatted, and the correlation is 0.38 (which

is the highest correlation we find using a control query).

However, superficial formatting cannot be the full picture, as we show in Table

B.23, where the correlation is 0.35 but the completions are very dissimilar. For this

particular query, it seems that it’s not the positive scores that explain the correlation

(Pearson’s R of about 0.2), but rather the negative scores (Pearson’s R of 0.44).

Perhaps some of the correlation can be explained by documents that are generally

negatively influential for the types of completions the models generate here.

Finally, in Table B.24 and B.25 we show two relatively high correlation examples for

the arithmetic queries, again indicating that both underlying operations as well as

formatting drive correlations.

B.9. Additional quantitative analysis 173

Table B.19: Two query examples for which the Pearson’s R correlation of their
document influences is -0.03, one from the factual set (top), and one
from the factual control set (bottom). We observe that although the
formatting is similar, and there are some overlapping concepts, there
is no correlation between the document influences.

Factual and Control Query Set (35B)

Factual prompt

What is the supernova remnant and pulsar wind nebula in the constellation
of Taurus called?

Completion to factual prompt

The supernova remnant and pulsar wind nebula in the constellation Taurus
is called the Crab Nebula.

Factual control prompt

In a fictional planetary system, there is a supernova remnant and pulsar
wind nebula in the centre of a constellation of stars
called Minotaur called the Goat Nebula. What is the supernova remnant and
pulsar wind nebula in the constellation Minotaur called?

Completion to factual control prompt

In the fictional planetary system, the supernova remnant and pulsar wind nebula
in the centre of the constellation Minotaur is called the “Goat Nebula”.

Taken together, it seems like correlations can be driven by underlying procedures,

formatting of the completion, and other more general things (like “what”-questions

in Table B.17 and B.23). We generally find the highest correlations when procedures

and formatting of completions coincide (of which two examples are given in Table

B.20 and B.25). The magnitude of these correlations indicate that almost all of the

influence of the 5 million documents in similar for such queries. One interesting

possibility is that the query information surrounding the actual numbers generated

(which do not seem to drive correlation much at all) is determined by the attention

layers (which, besides the dense parameters contained in them, we ignore in this

thesis), connecting potentially to literature attributing reasoning operations to

attention heads. An interesting avenue for future work would be investigating this

further.

7B vs 35B

An additional finding that is not central to the research question in Chapter 3, but is

nonetheless interesting, is that there is almost no correlation between the influence

scores of the two different models. We have 36 queries that share the same prompt

for the 7B and 35B (16 factual questions, and 20 slopes reasoning questions) and

174 Appendix B. How Models Learn to Reason from Pre-training Data

we can calculate the Pearson’s R of the queries with matched prompts (i.e. 36

combinations). The average correlation of influence scores is 0.02 Pearson’s R (if we

only look at the slopes questions the average correlation is 0.03). The maximum

correlation we find is 0.19, for the question “What is the capital of Belgium?”, which

we know from above is not a comparatively high score correlation. Interestingly, for

this query, both models produced the exact same completion, and still the correlation

is comparatively low. All other query combinations correlate with a Pearson’s R

below 0.11. This connects to a finding from Grosse et al. [Gro+23] (larger models

rely on data that is more abstractly related to the prompt): the 35B model relies on

very different pre-training data than the 7B, and the same pre-training documents

influence completions for the same prompt very differently.

B.9. Additional quantitative analysis 175

Table B.20: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.89, both from the reasoning query set concerning
calculating slopes. We observe that, although the reasoning is applied
to different numbers, the steps follow an identical pattern. In fact, the
only difference between the two queries, including completions, is the
numbers used.

Reasoning Query Set (35B)

Slopes (prompt 1)

What is the slope of the line passing through the points (94, 62) and (95, 19)?

Think step-by-step.

Completion to prompt 1

The slope of a line passing through two points is calculated using the formula:

Slope = (change in y) / (change in x)

In this case, we have the points (94, 62) and (95, 19).

Substituting the values into the formula, we have:

Slope = (19 - 62) / (95 - 94)
Slope = (-43) / (1)
Slope = -43

Therefore, the slope of the line passing through the points
(94, 62) and (95, 19) is -43.

Slopes (prompt 2)

What is the slope of the line passing through the points (90, 20) and (94, 64)?

Think step-by-step.

Completion to prompt 2

The slope of a line passing through two points is calculated using the formula:

Slope = (change in y) / (change in x)

In this case, we have the points (90, 20) and (94, 64).

Substituting the values into the formula, we have:

Slope = (64 - 20) / (94 - 90)
Slope = (44 / 4)
Slope = 11

Therefore, the slope of the line passing through the points
(90, 20) and (94, 64) is 11

176 Appendix B. How Models Learn to Reason from Pre-training Data

Table B.21: Two query examples for which the Pearson’s R correlation of their
document influences is 0.55, both from the reasoning query set con-
cerning calculating the slope. We observe that the second completion
is structured very similarly to the first, except it has less new lines.

Reasoning Query Set (7B)

Slopes (prompt 1)

What is the slope of the line passing through the points (62, 31) and (61, 53)?

Think step-by-step.

Completion

The slope of a line passing through two points is calculated using the formula:

Slope = (change in y) / (change in x)

In this case, we have the points (62, 31) and (61, 53).

Substituting the values into the formula, we have:

Slope = (31 - 53) / (62 - 61)

Slope = (-22) / (1)

Slope = -22

Therefore, the slope of the line passing through the points
(62, 31) and (61, 53) is -22

Slopes (prompt 2)

What is the slope of the line passing through the points (79, 47) and (80, 25)?

Think step-by-step.

Completion

The slope of a line passing through two points is calculated using the formula:
Slope = (change in y) / (change in x)

In this case, we have the points (79, 47) and (80, 25).

Substituting the values into the formula, we have:
Slope = (25 - 47) / (80 - 79)
Slope = (-22) / (1)
Slope = -22

Therefore, the slope of the line passing through the points
(79, 47) and (80, 25) is -22.

B.9. Additional quantitative analysis 177

Table B.22: Two query examples for which the Pearson’s R correlation of their
document influences is 0.38, both from the reasoning control set for
the 7B model. We observe that the formatting is very similar, but the
correlation is still lower than for the reasoning queries above.

Reasoning Control Query Set (7B)

Reasoning Control (prompt 1)

Find the answer: There are 21 kids in the bus. How many kids are in the bus?

Think step-by-step.

Completion

There are 21 kids in the bus.

Reasoning Control (prompt 2)

Find the answer: There are 132 marbles in a jar. How many marbles are in the jar?

Think step-by-step.

Completion

There are 132 marbles in the jar.

178 Appendix B. How Models Learn to Reason from Pre-training Data

Table B.23: Two query examples for which the Pearson’s R correlation of their
document influences is 0.35, both from the reasoning control set for
the 35B model. We observe that their completions are very different,
indicating that it can not only be superficial similarities that drive
correlations.

Reasoning Control Query Set (35B)

Reasoning control (prompt 1)

This line has a slope 6. What is the slope of the aforementioned line?

Think step-by-step.

Completion

The slope of a line is a measure of the steepness of the line.
It is defined as the ratio of the change in the y-coordinate to
the change in the x-coordinate.

In this case, the line has a slope of 6. This means that for every 1 unit increase
in the x-coordinate, the y-coordinate will increase by 6 units.

It’s important to note that the slope of a line is not limited to positive values
and can be negative or zero depending on the orientation of the line

Reasoning control (prompt 2)

Find the answer: there are two bananas on a tree, how many bananas
are on the tree?

Think step-by-step.

Completion

There are two bananas on the tree.

B.9. Additional quantitative analysis 179

Table B.24: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.49, both from the reasoning query set concerning
two-step arithmetic. We observe that one of the operations required is
overlapping (+ 6), and the completion is somewhat similarly formatted
but not fully.

Reasoning Query Set (7B)

Arithmetic (prompt 1)

Calculate the answer: (5 + 6) * 10

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
5 + 6 = 11

Now, let’s multiply the result by 10:
11 * 10 = 110

Therefore, the answer is 110

Arithmetic (prompt 2)

Calculate the answer: (6 + 10) * 6

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
6 + 10 = 16

Now, let’s calculate the result of multiplying the expression
inside the parentheses by 6:
16 * 6 = 96

Therefore, the answer to the expression is 96

180 Appendix B. How Models Learn to Reason from Pre-training Data

Table B.25: Two query examples for which the Pearson’s R correlation of their doc-
ument influences is 0.94, both from the reasoning query set concerning
two-step arithmetic. We observe that not only is the completion very
similarly formatted, but one of the operations overlaps (multiplying
something by 2).

Reasoning Query Set (7B)

Arithmetic (prompt 1)

Calculate the answer: (5 - 3) * 12

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
5 - 3 = 2

Now, let’s multiply the result by 12:
2 * 12 = 24

Therefore, the answer is 24

Arithmetic (prompt 2)

Calculate the answer: (4 - 2) * 15

Think step-by-step.

Completion

First, let’s evaluate the expression inside the parentheses:
4 - 2 = 2

Now, let’s multiply the result by 15:
2 * 15 = 30

Therefore, the answer is 30

B.9. Additional quantitative analysis 181

B.9.2 Magnitude of influence

Finding 2: magnitude of influence is much lower and less volatile for

reasoning questions.

In Section 3.4.1, we find that the influence of documents at the same rank for factual

questions is much more volatile than for reasoning questions. We mention that one

explanation for this might be that the queries for the 35B model are much more niche,

and therefore the relevant documents much more infrequent. To test this hypothesis,

we plot the same results for only the overlapping queries (those that are part of both

query sets for the 7B and 35B) in Figure B.10. We find that the magnitude and

variance is still larger for the 35B model than for the 7B model, indicating that the

influence of influential documents for the factual and reasoning questions by the 35B

can be much larger than for the 7B model. Further, in Figure B.11 we show that

the results look similar for the negative portions of the ranking (where we flip the

influence scores from negative to positive).

Figure B.10: The total influence per nat of query completion information for
different portions of the positive ranking over documents, left for the
7B model, right for the 35B. In this case, we only plot queries that
are present in the query sets for both models. This means the prompt
is the same, but the completion is be different. The pattern is very
similar as the observed pattern for the top of the ranking.

Finally, in Figure B.12 and Figure B.13 we plot the same metric for all queries for

the top and bottom parts of the rankings respectively, now including the 10 control

set queries of the factual and reasoning control set. As shown in Appendix B.3, we

use 10 control queries for each set to investigate whether results hold similarly for

queries that superficially look similar as the factual/reasoning questions, but that do

not require factual retrieval or reasoning respectively. We observe that the control

sets both show much higher variance and magnitude than the reasoning queries

as well, for the positive and negative portions of the ranking. For completeness,

we show the same result with the number of documents on the x-axis instead of

percentiles in Figure B.14 and Figure B.15, to show that the results are similar if we

182 Appendix B. How Models Learn to Reason from Pre-training Data

Figure B.11: The total influence per nat of query completion information for
different portions of the negative ranking over documents, left for
the 7B model, right for the 35B. We again only plot queries that
are present in the query sets for both models. In this case, the
k-th percentile contains the top k % of most negatively influential
documents. The pattern is very similar as the observed pattern for
the top of the ranking.

Figure B.12: The total influence per nat of query completion information for
different portions of the positive ranking over documents, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.

take into account that the 20-th percentile of documents for each query contains a

different amount of documents k.

B.9. Additional quantitative analysis 183

Figure B.13: The total influence per nat of query completion information for
different portions of the negative ranking over documents, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.

Figure B.14: The total influence per nat of query completion information for
different number of documents k of the positive ranking, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.

184 Appendix B. How Models Learn to Reason from Pre-training Data

Figure B.15: The total influence per nat of query completion information for
different number of documents k of the negative ranking, left for the
7B model, right for the 35B. We plot all queries, including the query
control sets for both factual and reasoning, which contain 10 queries
each.

B.9. Additional quantitative analysis 185

B.9.3 Influence spread: power laws

Figure B.16: The ranked influence scores per query nat for each query shown
separately in log-log space. We observe; the results follow power laws
(linear in log-log space), everything is shifted up for the 35B model
(right), generally the scores for the reasoning documents are lower
for the 7B model, and for the 35B model there is less variance in
magnitude of influence for reasoning queries than for factual queries,
and more often than not the influence scores are lower than for factual
questions.

Figure B.17: The ranked influence scores per query nat for each query shown
separately in log-log space again, but now also showing the control
queries. We observe that also for the control queries the influence is
much more volatile than for reasoning questions, and on average the
magnitude is higher.

In this section, we look at the power laws induced by the top portions of the rankings.

We can fit linear functions to the rankings in log-log space, and analyse the slopes to

comment on the sparsity of the rankings (i.e. how many documents do models rely

on for a completion). Specifically, we perform linear regression on the log-log top

186 Appendix B. How Models Learn to Reason from Pre-training Data

500 rankings of each query, and report the slopes in Table B.26.

Table B.26: Slopes of the fitted functions to the top 500 documents in the influence
rankings in log-log space, separated by query set and whether the
model gets the question right or wrong. ⋆ indicates the significance of
an independent T-test performed between the slopes of the factual vs.
reasoning queries, where ⋆ indicates a p-value below 0.1 and ⋆⋆ below
0.05.

7B (Correct) 7B (Incorrect) 35B (Correct) 35B (Incorrect)

Reasoning (α) −0.36± 0.03⋆ −0.33± 0.02 −0.36± 0.04⋆⋆ −0.38± 0.04⋆

Factual (α) −0.34± 0.03 −0.34± 0.04 −0.32± 0.05 −0.34± 0.04

After qualitatively inspecting the queries for the 35B model with the steepest slope,

we believe an explanation for this result may be ‘noise’ in the influence scores. For

example, the query with the steepest slope (α = −0.45) has as the most influential

document a document that is seemingly entirely unrelated to the query. Namely,

the query asks the question “What is the slope of the line passing through the points

(41, 23) and (18, 92)? Think step-by-step.”, and the top influential document is a

snippet about the lunar eclipses and when and where they can be viewed which does

not have high N-gram overlap with the query either:

December 8, 1946 — Total Lunar Eclipse — Rawaki, Phoenix Islands,

Kiribati

Max view in Rawaki

Sunday, December 8, 1946 at 5:01 AM

Global Type: Total Lunar Eclipse

Rawaki: Partial Lunar Eclipse

Began: Sun, Dec 8, 1946 at 3:13 AM

Maximum: Sun, Dec 8, 1946 at 5:01 AM

Ended: Sun, Dec 8, 1946 at 8:22 AM

Duration: 5 hours, 10 minutes

December 8, 1946 — Total Lunar Eclipse — Rawaki

You are using an outdated browser, to view the animation please update

or switch to a modern browser. Alternatively you can view the old

animation by clicking here.

Animation: How the Partial Lunar Eclipse Looked

The total phase of this lunar eclipse was not visible in Rawaki, but it

could be observed there as a partial lunar eclipse.

More about the December 8, 1946 — Total Lunar Eclipse

B.9. Additional quantitative analysis 187

Phases and local times of this eclipse

Eclipses visible in Rawaki

All eclipses worldwide, from 1900 to 2100

This is the only query for which we observe an unrelated top 1 document, but for the

35B model we qualitatively observed seemingly irrelevant documents in the rankings

more often (in the 7B we did not observe this). This connects to a finding from

literature that for large models influence functions sometimes surface documents

with high gradient norms that are unrelated to the query [BBD20; Gro+23; Cho+24].

As Grosse et al. [Gro+23] note, it is currently unclear whether this is true noise, or

whether these are genuinely influential for the completions. Regardless, it seems like

noise cannot easily explain the difference between the factual and slopes queries, as

one would expect noise to show up equally everywhere.

Another way to visualise this result is to plot the percentage of total influence

contained in different parts of the top ranking, which we do in Figure B.18 below.

The results in this plot show that for the top-k percentile of most positively influential

documents, the total percentage of positive influence is much higher than k (e.g. 20%

of the total positive influence is contained in the top 5% of documents). Here, it is

clear that on average, for the 35B model the total amount of influence contained in

the top-k percentile increases faster for reasoning questions than for factual questions,

indicating that a larger portion of the total positive influence is contained in the

top portions of the rankings. In Figure B.19 we show the same result holds if we

include the control queries. As Grosse et al. [Gro+23], it is not clear whether this is

a sensible result to show because for each query we are dividing the total influence

at each k by the sum of positive influence for that query (perhaps a large part of

the positive influence gets cancelled out by negative influence), but we show the

result here nonetheless for completeness. We know from the absolute results of the

total influence at different portions of the ranking that each percentage of total

influence at the top-k percentile a much lower value in absolute terms for reasoning

than for the factual questions. If the relative result does not turn out to be noise, it

is the case that of the total influence, a higher percentage is contained in the top

portions of the rankings for reasoning questions than for factual questions. Taken

together with the fact that the absolute influence is often much higher for factual

questions, this indicates that the model relies on more highly influential documents

for factual retrieval than for reasoning. This could indicate that there are more

highly relevant factual documents further down the ranking, which makes sense given

the fact that the pre-training distribution is dominated by websources and news,

which are more likely to contain relevant information for factual question answering

188 Appendix B. How Models Learn to Reason from Pre-training Data

than for reasoning. Further, it connects to the finding from literature that models

need to see examples often before text gets memorised [Cho+22].

Figure B.18: The percentage of total influence per nat of query completion infor-
mation for different portions of the positive ranking over documents,
left for the 7B model, right for the 35B. We plot only non-control
queries.

Figure B.19: The percentage of total influence per nat of query completion infor-
mation for different portions of the positive ranking over documents,
left for the 7B model, right for the 35B. We plot all queries, including
the query control sets for both factual and reasoning, which contain
10 queries each.

Again, the picture looks similar for the negative portions of the ranking, shown for

completeness below in Figure B.20 and B.21.

B.9. Additional quantitative analysis 189

Figure B.20: The percentage of total influence per nat of query completion infor-
mation for different portions of the negative ranking over documents,
left for the 7B model, right for the 35B. We plot only non-control
queries.

Figure B.21: The percentage of total influence per nat of query completion infor-
mation for different portions of the negative ranking over documents,
left for the 7B model, right for the 35B. We plot all queries, including
the query control sets for both factual and reasoning, which contain
10 queries each.

Appendix C

How Models Learn to Reason

from Code Data

This chapter contains the supplementary materials for Chapter 4. Below, I outline

the contents of each section briefly.

Section C.1 contains the hyperparameters we used to fine-tune the models with SFT

and GRPO.

Section C.2 presents additional results for larger dataset sizes.

Section C.3 ablates the two-stage nature of the experiments in Chapter 4, finding

that two separate stages lead to higher sample efficiency.

Section C.4 discusses the finding that GRPO outperforms DPO and SFT when

eliciting retroactive programming by backprop.

Section C.5 contains the distribution over inputs used in the cipher experiments in

the main text at the end of Section 4.4.

Section C.6 has an example of a natural language description of a program.

Section C.7 details the compute used in the experiments.

C.1 Hyperparameters

C.1.1 SFT

All SFT experiments use a learning rate of 2 × 10−5 and a linear learning rate

schedule. The Adam optimiser is used with β = 0.9, β2 = 0.999, and ϵ = 1× 10−8.

The max grad norm is set to 1.

C.1.2 RL

All RL experiments use GRPO with a group size of 6 batch size of 6. The learning

rate is set to 1× 10−6. The Adam optimiser is used with β = 0.9, β2 = 0.999, and

ϵ = 1× 10−8.

192 Appendix C. How Models Learn to Reason from Code Data

C.2 Data Scaling

C.2.1 Ablation over Dataset Size

Figure C.1 compares the performance of Llama models (1B, 3B and 8B parameters)

for varying dataset size on the evaluation of Random Arithmetic programs. Here,

‘dataset size’, refers specifically to the amount of unique code functions included in

the dataset. Performance is evaluated on three separate sets:

• The w/ IO Train set: both the function and the IO pairs are observed during

training

• The w/ IO Test set: uses the same functions as w/ IO Train but different IO

pairs, not included in the training data

• The w/o IO Test set: evaluates IO pairs for functions seen only as code during

training

The results show that accuracy on both w/ IO and w/o IO sets generally increases

with larger dataset sizes and larger model scales. Notably, model performance is

strongly tied to parameter count; for example, the 8B model trained on only 100

unique functions achieves comparable performance on the w/o IO set to the 1B

model trained on 800 functions.

C.2.2 Ablation over Number of IO Pairs

In Figure C.2 we vary the number of IO training pairs (per program) provided

for the w/ IO set, and examine the results. This analysis specifically uses the

Llama-3.2-3B-Instruct model on the Random Arithmetic dataset, which for this

experiment consists of 200 distinct functions. Performance is reported across the

same sets as the ones described in Appendix C.2.1. The results show how increasing

the quantity of IO examples for each program affects not only direct generalisation

in the w/ IO Test set, but also the model’s ability to accurately execute w/o IO

programs.

C.3. Single-Stage Programming by Backprop 193

Figure C.1: Performance comparison of Llama models across 1B, 3B and 8B on w/
IO and w/o IO Random Arithmetic program evaluation. Each model
is trained and tested across varying dataset sizes. Dataset size refers
to the number of unique functions present in the dataset.

Figure C.2: Impact of varying the number of IO training pairs for w/ IO programs
and w/o IO sets evaluation accuracy. Results are shown for the
Llama-3.2-3B-Instruct model using a Random Arithmetic dataset
comprising 200 distinct functions.

C.3 Single-Stage Programming by Backprop
In Figure C.3, we show the accuracy of Llama-3.1-8B-Instruct on w/o IO Random

Arithmetic program evaluation following Proactive-PBB in comparison to a single

SFT stage with all training data in a single mixture. As we scale the number of

times the same piece of w/o IO source code appears in the dataset, with prompt

194 Appendix C. How Models Learn to Reason from Code Data

and response preamble augmentations, single-stage SFT approaches the performance

of Proactive-PBB. The greater sample efficiency of Proactive-PBB is likely because

initial train steps on source code are waisted in single-stage SFT, as a code-I/O

relationship has not yet been learned.

Figure C.3: Comparing two-stage Proactive-PBB to a single SFT stage on the
full Random Arithmetic training data mixture for different numbers
of repeated source code samples. The base model is Llama-3.1-8B-
Instruct.

C.4. Online vs. Offline Retroactive-PBB 195

C.4 Online vs. Offline Retroactive-PBB
In Figure C.4, we compare different fine-tuning algorithms for the second stage of

Retroactive-PBB with Llama-3.1-8B-Instruct on Random Arithmetic. DPO allows

for learning from both positive and negative samples, considerably outperforming

SFT. GRPO is an online RL algorithm, meaning that the model learns from on-

policy data, which could be why it yields further improvements. To ensure a fair

comparison, we use only 15 I/O pairs instead of 90 (90/6 = 15) per w/ IO program

for RL training. With a group size of 6, this means that for each I/O pair the model

generates 6 completions that receive a reward. This in turn leads to the same number

of completions with a ground-truth signal as SFT, and a fairer comparison.

Figure C.4: Comparing fine-tuning algorithms for the second stage of Retroactive-
PBB on Random Arithmetic with Llama-3.1-8B-Instruct. DPO is
an offline method, but allows for learning from positive and negative
examples. GRPO is online and thus has the added benefit of learning
from on-policy data.

C.5 Ciphers Data
A plot showing the distribution of IO pairs used in Figure 4.4 is provided in Figure

C.5.

C.6 Natural Language Descriptions
Here, we include an example of a random arithmetic program and its natural language

description.

Program:

def Blaankle(x):

t0 = x + x

t1 = 1 * abs(t0)

return t1

196 Appendix C. How Models Learn to Reason from Code Data

Figure C.5: Sampled shifts for cipher I/O pairs.

Description: A Blaankle is a process that takes an input value, doubles it, and then

returns the absolute value of the doubled result.

C.7 Compute Requirements
All experiments with Llama models can be run on two GPUs with 40GB vRAM. We

used data parallelism over 4 NVIDIA L40s GPUs to run these experiments.

Experiments with GPT-4o made use of the OpenAI fine-tuning API. Data generation

(Leetcode word problems and post-rationalised chain-of-thought ground truth outputs

for all datasets) and fine-tuning runs came to a total cost just over 500 USD.

Appendix D

A Case Study in Social

Reasoning: Pragmatics

This Chapter contains the appendix for Chapter 5. Below, I briefly outline the

content of each section for reference.

I begin with a more detailed background on conversational implicature in Section

D.1.

Then, I provide all the prompt templates used for the evaluation in Section D.2.

A categorisation of models evaluated is given in Section D.3.

Details on the human experiments can be found in Section D.4.

A comment on the fact that BIG bench uses the same underlying benchmark in

Section D.5.

Examples of completions by the model with chains-of-thought in Section D.6.

A detailed table of results for all experiments can be found in Section D.7.

Section D.7 further contains the following additional experiments:

• We reframe the task as a contrastive one in Section D.7.1, finding it works less

well.

• We report the variance over prompt ordering in Section D.7.2.

• We experiment with more detailed zero-shot prompts in Section D.7.3.

• We present detailed results for different prompt templates in Section D.7.4.

• We report variance of multiple API calls in Section D.7.5, finding it is minor.

• We confirm that few-shot in-context labels can be randomised without loss of

performance in Section D.7.6.

• We do chain-of-thought prompting on base models in Section D.7.7.

198 Appendix D. A Case Study in Social Reasoning: Pragmatics

• We test for spurious correlations and memorisation in Section D.7.8.

For reproducibility, we provide timestamps for all experiments done with APIs in

Section D.8.

Finally, in Section D.9 we detail the compute used.

D.1 Background on implicature
The first influential consideration of implicature is [Gri75]. In his work, Grice

continues the trend of moving away from purely logical accounts of language started

by [Wit21] by hypothesising implicatures arise in conversation when some mutually

agreed upon maxims seem to be violated. For example, if we agree on only making

relevant contributions to conversation, Juan’s response in the introduction seemingly

violates this maxim—after all, he starts talking about work when Esther asks him

about a party. However, because Juan agreed to be relevant he must be implying that

having to work means he cannot come to the party. Grice contrasts conversational

implicatures that arise through context with conventional implicatures. These

are implicatures where the conventional meaning of the word determines what

is implicated. An example given by Grice is the following sentence: “he is an

Englishman; he is therefore brave.”. Grice notes that this sentence does not literally

state that an Englishman being brave is a direct consequence of him being English,

but it’s implied by the conventional meaning of the word ‘therefore’.

Since then, issues with the Gricean cooperative principle have been pointed out

by many [Lev83; SW86; Dav98; LS14]. The most influential alternative theory

is relevancy theory by [SW86]. They do away with the cooperative principle and

instead theorise implicatures arise because speakers try to produce utterances that

are both as relevant as possible and require the least effort to process. Another point

of contention is the incorporation of conventional implicatures on the pragmatics side.

[Bac99] argues that there is no such thing as conventional implicatures, and they are

simply instances of something else. Based on a thorough treatment of what Grice

calls conventional implicatures, Bach argues all examples of it can be filed under

other concepts within semantics, like utterance modifiers (called “utterance modifiers”

instead of “sentence modifiers” because they go against the semantic content of the

rest of the sentence). [Pot05] also argues that to explain conventional implicatures we

can stay on semantic turf. Indeed, even Grice himself says conventional implicatures

derive from the meaning of the words, not from conversational context. However,

Potts does not claim conventional implicatures do not exist, but instead argues they

arise by a combination of lexical meaning and novel ways of combining words—the

latter being the well-known principle of compositionality, an important part of seman-

tics, not of pragmatics. Potts provides us with an illuminating demarcation between

D.1. Background on implicature 199

conventional and conversational implicatures. Conventional implicatures are never

negotiable by context, whereas conversational implicatures are context-dependent

and can always be cancelled without causing incoherent discourse. Consider again

the sentence “he is an Englishman; he is therefore brave.” and the sentence “Eddie

has three bicycles” (implicating that Eddie has exactly three bicycles and not more).

The former sentence can not be cancelled by new context without contradiction,

whereas for the latter, if we continue saying “In fact, Eddie has 10 bicycles, he is a

bicycle junkie”, we have cancelled the implicature. This demarcation clearly puts

conventional implicatures on the semantic side, and conversational implicatures on

the pragmatic side. Potts goes on by providing a formal theory for conventional

implicatures.

In later work, [Pot06] describes how pragmatic pressures interacting with context

cause conversational implicature to arise. He shows how sensitive conversational

implicatures are to small changes in the context. Novel information about a speaker’s

belief state might completely change what is implied. There are many more models

of implicature that aim to explain how humans understand language in context.

Most notably, [FG12] formalise the view that speakers produce utterances that are

helpful and not longer than necessary with a Bayesian model called the rational

speech act (RSA). Many variants on the RSA framework have since been proposed.

For example, [GF16] extend it to handle nonliteral uses of language, like irony, and

metaphor. In the context of computational models, prior work uses insights from

pragmatics to show that the use of certain words can make a language model produce

biased completions ([PP21], e.g. saying someone “claimed” something rather than

“said” something), and inform bias and sentiment classifiers [GR09; RDJ13].

In Chapter 5, we focus on conversational implicatures and not on conventional

implicatures. All conversational implicatures are negotiable by context, but the way

they depend on context can be different. [Gri75] identifies generalised conversational

implicatures and particularised conversational implicatures. The former require little

or no context to be resolved. For example, “some athletes smoke” can imply “not all

athletes smoke”, but might also imply “I do not know whether all athletes smoke”

when it is a response to the question “do you know whether all athletes smoke?”

[Dav19]. The latter only arise in certain contexts. For example, the response “I have

an early morning” to the question “do you want to stay for a drink?”.

200 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.2 Detailed prompt templates
Table D.1 contains the full prompt templates we used for the main evaluation and

Table D.3 contains the extra prompt templates.

Table D.1: Ranking prompt templates. The six templates we wrap the test examples
in to present to the models. Template 1, 3, and 4 are of the type
structured, and 2, 5, and 6 of the type natural. Within the type of
prompt template they only differ slightly in wording.

Prompt template

1

Does the following response to the question imply yes or no?

question: <utterance>
response: <response>
implicature: <implicature>

2
Finish the following text:

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>

3

Is the implied meaning of the following response yes or no:

question: <utterance>
response: <response>
meaning: <implicature>

4

What is the intent of the following response, yes or no?

question: <utterance>
response: <response>
intent: <implicature>

5
Finish the following text:

Karen asked “<utterance>” and William responded “<response>”, which means <implicature>

6
Finish the following text:

Bob asked “<utterance>” and Alice responded “<response>”, which means <implicature>

D.2. Detailed prompt templates 201

Table D.2: Completion prompt templates. The six adjusted templates we wrap
the test examples in to present to the models when we use completion
instead of likelihood ranking. Template 1, 3, and 4 are of the type
structured, and 2, 5, and 6 of the type natural. Within the type of
prompt template they only differ slightly in wording.

Prompt template

1

Does the following response to the question imply yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
implicature: <implicature>

2
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>

3

Is the implied meaning of the following response yes or no. Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
meaning: <implicature>

4

What is the intent of the following response, yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
intent: <implicature>

5
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Karen asked “<utterance>” and William responded “<response>”, which means <implicature>

6
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Bob asked “<utterance>” and Alice responded “<response>”, which means <implicature>

Table D.3: The three additional templates we wrap the test examples in to present
to the models, adapted from [Gla+22].

Prompt template

7

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that contains
an implicature.
An implicature is an utterance that means something other than the literal meaning of the words.
The implicature of Juan’s response is yes or no.
You, the AI assistant, are asked to finish the text with yes or no.
The task begins:

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>

8

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, the AI assistant, are asked to finish the text with the correct meaning, either yes or no.
The task begins:

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>

9

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, a highly intelligent and knowledgeable AI assistant, are asked to finish the text with the
correct meaning, either yes or no.
The task begins:

Esther asked “<utterance>” and Juan responded “<response>”, which means <implicature>

202 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.4: Chain-of-thought (CoT) prompt templates. One of the six chain-of-
thought prompt templates we use for the CoT experiment. Note that
this is a 5-shot prompt. Each prompt variation contains five CoT
examples. The other five variations are separately added to the supple-
mentary materials

Prompt template

1

Bob asks Alice a question, and Alice responds with an implicature. This means that Alice’s response
does not literally contain the answer to Bob’s question, but implies an answer. Assuming that Alice is a
cooperative conversational partner, what is the implicated answer to the question? For example:

Bob: You invented fire?
Alice: I told you that.
Implicature: Alice says ‘I told you that’. Alice’s response must be relevant to Bob’s question because
Alice is a cooperative conversational partner. Alice must mean that she told Bob that she invented fire.
Alice’s response to Bob’s question ’You invented fire?’ is yes.
Answer: yes

Bob: That cake looks delicious. Aren’t you going to have some with me?
Alice: But that was a huge meal we just had.
Implicature: Alice’s response must be relevant to Bob’s question because Alice is a cooperative
conversational partner. Alice must mean that the meal they just had was so huge she is not hungry
anymore, and this must be relevant to Bob’s question: ‘Aren’t you going to have some with me?’
Alice’s response to the question must therefore be no.
Answer: no

Bob: Could you perform well?
Alice: Being bilingual would help put me ahead of the pack.
Implicature: Alice says being bilingual would help put her ahead of the pack. Alice’s response must
be relevant to Bob’s question because Alice is a cooperative conversational partner. Alice must be
implying that she could perform well because she is bilingual. This means the response to Bob’s
question is yes.
Answer: yes

Bob: Have you any news for me?
Alice: I’ve made progress
Implicature: Alice says she has made progress. Alice’s response must be relevant to Bob’s
question because Alice is a cooperative conversational partner. If Alice would not have any
news for Bob, Alice would not have said she would have made progress because that would
be misleading. The answer to Bob’s question ‘Have you any news for me?’ must therefore be yes.
Answer: yes

Bob: You looked out for him?
Alice: He looked out for me. He taught me.
Implicature: Bob asks Alice ‘You looked out for him?’ and Alice’s response says that the person
that is being referred to by ‘him’ here looked out for Alice. If Alice meant yes to Bob’s
question, Alice would have said something like ‘he also looked out for me’. Stating the
response like this implies that the answer to Bob’s question is no.
Answer: no

Only output a ‘yes’ or ‘no’ as a final answer. Write your reasoning after ‘Implicature:’
and then output either ‘Answer: yes’ or ‘Answer: no’.

Bob: <utterance>
Alice: <response>
Implicature:

D.3. Model categorisation 203

D.3 Model categorisation
Table D.5 contains details on the model classes that are a part of each group of

models we evaluate, along with their model sizes.

Table D.5: Model categorisation for each of the models. DL stands for dialogue,
FT for fine-tuning, BL for benchmark-level, EL for example-level, and
IT for instruction-tuning.

Group Model class Model IDs Model size Instruct

Base

BERT base uncased 110M No
RoBERTa base, large 125M, 355M No
GPT-2 GPT-2 medium, large, xl 354M, 774M, 1.6B No
EleutherAI GPT-J, GPT-NeoX 125M, 1.3B, 2.7B, 6B, 20B No
BLOOM - 560M, 1B1, 3B, 7B1, 176B No
OPT - 125M, 350M, 1.3B, 13B, 30B, 66B, 175B No
Cohere small, medium, large, XL 409.3M, 6.067B, 13.12B, 52.4B No
GPT-3 ada, babbage, curie, davinci Est. 350M, 1.3B, 6.7B, 175B No

DL FT BlenderBot - 90M, 2.7B, 9.4B No

BL IT
T0 - 3B, 11B Yes
Flan-T5 - 780M, 3B, 11B Yes

EL IT
Cohere-command medium, xlarge 6.067B, 52.4B Yes
text-davinci-001 ada, babbage, curie, davinci-1 Unknown, left-to-right increasing in size Yes
text-davinci-002 - Unknown Yes
text-davinci-003 - Unknown Yes
ChatGPT gpt-3.5.turbo Unknown Yes
GPT-4 gpt-4 Unknown Yes

204 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.4 Human evaluation
The participants for the human evaluation in Chapter 5 were recruited using Prolific

(www.prolific.co). The setup of the experiment is as follows. We divide the test

set of 600 examples into four non-overlapping subsets of 150 examples. Each set

of 150 examples was given to five unique annotators. This means each example in

the test set is labeled five times by different people, and we have in total twenty

annotators for the whole test set (five different ones for each of the four subsets). The

only constraint for the annotators is that they are native English speakers. In Figure

D.1 the screen shown to potential participants on Prolific is shown. Participants are

paid 15 pounds an hour, which was the living wage at the time of the experiment

and more than the 12 dollars an hour Prolific recommends. The total amount spent

on the human evaluation is 236 pounds. This amount came to be from four subsets,

each costing about 30 minutes to label per annotators, and having 5 annotators per

subset: 15 * 4 * 0.5 * 5 = 150. The extra costs were for the annotator that didn’t

pass the attention check which we paid nonetheless, and for prolific as a platform.

Figure D.1: A screenshot of how the experiment is presented to potential annotators
on Prolific (www.prolific.co).

The 150 test examples are wrapped in prompt template 2 (see Table D.1) and

presented in a Google form. We opted to wrap all examples in prompt template

www.prolific.co
www.prolific.co

D.4. Human evaluation 205

(a) The start of the Google form partic-
ipants are asked to fill out for the
human study.

(b) Part of the Google form the partici-
pants are asked to fill out. The second
question in this image is part of the
attention test. Juan’s response does
not contain an implicature but simply
gives away the correct answer.

Figure D.2: Screenshots of the Google form participants fill out as part of the
implicature study.

2 to make the full human study directly comparable to the model’s results on

template 2. If we had done a mix of all templates we either had to spent six times

as much on the human evalyations (which was not within our budget) or subsample

evaluations, making it less comparable to part of the model study. Although models

have been shown to be very sensitive to prompt wording, humans are less likely

to perform differently for different prompt templates. All templates are coherent

natural language that any native English speaker will understand. That said, this is

speculative, and to confirm this hypothesis future work should investigate the effect

of different wordings on implicature resolution by humans. The participants are asked

to choose the correct continuation, yes or no (see Figure D.2a). As recommended by

Prolific, we subject the participants to an attention test (see Figure D.2b). At three

random places in the form, we add a question that does not contain an implicature

and obviously maps to “yes”. In this way, if the participants fails at least two of

these questions, we can conclude they were not paying attention and remove their

answers from the result. In practice, this happened once and we decided to pay the

participant regardless, but discard their results, which were close to random.

Table D.6 shows the performance of each annotator on the subset they annotated.

The average human performance across subsets and annotators is 86.2% ± 2.3, the

best performance is 89.8% ± 2.2, and the worst performance is 83.5% ± 1.5. The

column “IAA” shows the average Cohen’s Kappa coefficient which is the pairwise

206 Appendix D. A Case Study in Social Reasoning: Pragmatics

inter-annotator agreement for each annotator per subset. All agreements are substan-

tial according to the interpretation guidelines for Cohen’s Kappa (between 0.61–0.80).

Table D.6: The performance of the human annotators on the subsets of the test set.
Subset 1 through 4 are non-overlapping and cover the whole test set.
Annotator X for subset Y might be a different human than annotator
X for subset Z. IAA is the average pairwise inter-annotator agreement
(Cohen’s kappa coefficient) between annotators per subset.

Annotator 1 2 3 4 5 Mean Best Worst IAA
Subset 1 86.0% 92.0% 90.7% 90.6% 86.0% 89.1% 92.0% 86.0% 0.73
Subset 2 84.7% 83.3% 87.3% 86.0% 86.0% 85.5% 87.3% 83.3% 0.64
Subset 3 84.0% 85.3% 88.0% 86.0% 82.7% 85.2% 88.0% 82.7% 0.78
Subset 4 85.3% 82.7% 84.0% 82.0% 92.0% 85.2% 92.0% 82.0% 0.71
Total - - - - - 86.2% 89.8% 83.5% 0.72
Std - - - - - 2.3 2.2 1.5 0.1

Human source of disagreement with ground-truth. We do an analysis of the

source of disagreement with the ground-truth. We explicitly do not call this error,

as in some cases examples might allow multiple interpretations, and both could be

right. In other cases, the ground-truth might be wrong.

Annotation errors and multiple interpretations: We analyse the examples for which

most humans choose a different answer than the ground-truth. For 30 out of 600

examples in the test set, only one or zero people choose the same answer as the

ground-truth. Of these examples, most are annotated wrongly (18 of 30). For exam-

ple: ‘Are you busy?’, ‘I’m drowning in work.’, implicature: ‘no’. Some are examples

that can have multiple different interpretations (12 of 18), and the ground-truth

answer likely just chooses one that is unnatural to humans. For example: ‘You don’t

remember them?’, ‘Leave me alone!’, implicature: ‘yes’. 6 of the 30 examples are

particularised, and 1 is generalised.

Examples for which all humans agree with the ground-truth: There are 409 out of 600

examples that all humans get correct. This set of examples contains most of the gener-

alised implicatures (39 out of 47). These contain 58 out of 94 particularised examples.

Examples most humans agree with the ground-truth: When we look at examples that

3 or more humans got correct, that comprises most of the test set (530 of 600), and

all of the generalised examples (47 of 47). This subset has 78 of 94 particularised

examples, so for 16 particularised examples 3 or more humans disagree with the

ground-truth.

D.5. Comparison with BIG-bench implicatures task 207

D.5 Comparison with BIG-bench implicatures

task

One of the BIG-bench tasks is related to the task in Chapter 5.1 It uses the

same underlying dataset we use [GM20]. With the below we aim to discuss our

contribution in light of the BIG-bench result. To summarise; the methodology used

by the BIG-bench task contributors has limitations, which call into question the

validity of their claims. Further, some of the BIG-bench results are irreproducible due

to missing details in the tech report and the use of proprietary models. Considering

this, our work is an important contribution validating the BIG-bench results in a

reproducible and methodologically sound way, and above that providing insight into

what aspects of LLM training are crucial for the ability to do pragmatic inferences.

Limitations of the methodological approach of the task contributors in

BIG-bench implicatures. Our benchmark has 30% more data, which the BIG-

bench task contributors discard. In this section we motivate the crucial importance

of that data for evaluating implicature understanding (Section D.5.1), and why

BIG-bench in turn might be overestimating the performance of LLMs on implicature

resolution (Section D.5.2). Moreover, the human performance on the BIG-bench task

indicates low quality human annotation, which we will also elaborate upon below,

noting that this is impossible to verify because the BIG-bench report does not detail

how the evaluation was done for this task (Section D.5.3).

D.5.1 Discarding ambiguous examples

The BIG-bench task preprocesses the 1001 examples that [GM20] curate by keeping

only yes/no questions, discarding any examples that are ambiguous according to the

task contributors, and discarding remaining examples to create a 50/50 distribution

of yes/no answers. This leaves them with 492 examples. Of these examples, 81

appear in our development set and the remaining 411 appear in our test set. Our test

set has 600 examples, so BIG-bench effectively discarded 189 ambiguous examples

compared to our test set; a bit more than 30% of the benchmark. To illustrate the

importance of not discarding this data, we cherry picked a few examples that the

BIG-bench authors discarded from the data.

• Utterance: “Can you lend me hundred dollars?”, Response: ”Is this supposed

to be some kind of a joke?”, Implicature: “No”

1https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/

implicatures

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/implicatures
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/implicatures

208 Appendix D. A Case Study in Social Reasoning: Pragmatics

• Utterance: “Do you know, how long is Uncle Arthur staying with us?”, Re-

sponse: ”Ask your father.”, Implicature: “No”

Indeed, these examples are ambiguous. Asking whether the request for a hundred

dollars is a joke does not literally mean you’re saying no to the request. The response

“ask your father” does not mean the speaker does not actually know, maybe they just

do not want to respond. The humans in our study all infer the intended ground truth

implicature. This shows a general property of implicatures; they are ambiguous,

but often humans do infer the intended meaning. Ambiguity is not a discrete

property. Some examples may be so vague that no one gets it. The following are

examples the BIG-bench task discards that the humans in our study did struggle with:

• Utterance: “Got any more of those?”, Response: ”Nothing I’m at liberty to

reveal here.”, Implicature: ”Yes”

• Utterance: “Have you finished sight-seeing?”, Response: ”Sorry. I should’ve

come to see you first.”, Implicature: “Yes”

In the first of these the implicature is “yes” because the person responding is implying

that they do have more, they just cannot reveal them. Otherwise they would most

likely simply say no. In the second example it feels more natural that someone

says this when they are finished sight-seeing, otherwise they would’ve probably said

something to the effect of “I’m still out, but I’m sorry..”. In any case, humans in

our study did not understand these responses like that. This illustrates another

aspect of implicature; sometimes communication will go wrong over it. Removing

implicatures that are ambiguous though, defeats the purpose of the task, as they

are all ambiguous to a certain degree. The purpose of this study is to compare

how humans resolve this type of non-literal language compared to how models do

it. The human baseline of 86% accuracy that humans achieve on our test set deals

more naturally with examples that are too ambiguous for models to understand than

discarding examples based on the subjective opinion of a few people.

D.5.2 Overestimation of performance on implicature

understanding

On the overlapping part of our test set and theirs the humans in our study achieve

92.8% accuracy. The best model on the BIG-bench task is PaLM, achieving a

zero-shot performance of 64.4%. Note that this performance is on their full test

set (not the overlapping part) and hence not directly comparable. Nonetheless,

the missing examples are randomly sampled for our development set, and we can

be pretty confident this number indicates a large gap with human performance.

D.5. Comparison with BIG-bench implicatures task 209

Two-shot PaLM comes very close to human performance with 91.7% accuracy, but

of course this does not take into account the 189 more challenging examples that

are part of our benchmark. Humans achieve 71.9% performance on this subset of

ambiguous data, indicating that these data are more difficult than average, but

nonetheless performance is higher than random. Without access to the models used

to evaluate the BIG-bench task we cannot say anything for certain, but we expect

the performance of PaLM to be overestimated as it does not account for a large part

of the type of implicatures found in natural discourse; ambiguous ones.

D.5.3 Other limitations

Poor quality human evaluation. The average human evaluator on BIG-bench implica-

tures achieves around 82% performance (where ours achieves on average 86% on a

more challenging dataset), and their human best rater achieves 100% (where our

human best is 92%). This difference between human average and best hints at poor

quality average rating. This is impossible to verify because there is no information

in the BIG-bench tech report on how the human evaluation was done exactly, or

even which examples where evaluated.

No fine-tuned models. BIG-bench uses only base LLMs and no SotA fine-tuning

methods. A question that remains is therefore, what aspects of LLMs contribute to

their performance on implicatures? In our work we find that implicature performance

emerges at a much smaller scale in models instruction fine-tuned at the example

level, and that scale and prompting techniques are important.

210 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.6 Chain-of-thought completions by GPT-4

GPT-4 reaches human-level performance with CoT prompting. In this section we look

at a few completions to help illuminate how CoT-prompting improves implicature

resolution.

Specifically, we look at some of the examples for which GPT-4 5-shot gets 0%

accuracy (i.e. wrong for all templates), and GPT-4 5-shot CoT gets 100% accuracy

(i.e. right for all templates). This is a set of 10 examples. We only look at the first

template, but all templates get a similar performance with CoT.

Utterance: ‘Do you sell calculators?’

Response: ‘We are all sold out. We wont probably have any more in for a few weeks.’

Implicature: Yes. But we dont have any calculators to sell now.

This is an example that GPT-4 gets wrong for all templates 5-shot, probably because

the response has a negative sentiment, and also it means they do not sell calculators

right now. However, the implicature is yes, because they do sell them normally. The

CoT completion is:

CoT completion: ‘Alice says they are all sold out and won’t have any more in for

a few weeks. Alice’s response must be relevant to Bob’s question because Alice

is a cooperative conversational partner. Alice must be implying that they do sell

calculators, but they currently don’t have any in stock. The answer to Bob’s question

is yes. Answer: yes’

This example is similar to the one given in Section 5.3, and there are more like these

in the dataset: the sentiment is negative, and an interpretation can be negative, but

strictly the implicature is positive (yes).

Utterance: ‘Do you know where he is?’

Response: ‘I’ll find him.’

Implicature: No.

GPT-4 gets this wrong for all templates 5-shot, and right for all of them with CoT:

CoT completion: ‘Alice says she will find him. Alice’s response must be relevant to

Bob’s question because Alice is a cooperative conversational partner. If Alice knew

where he is, she would have provided that information directly. Instead, she says

she will find him, implying that she does not currently know his location. The an-

D.6. Chain-of-thought completions by GPT-4 211

swer to Bob’s question ‘Do you know where he is?’ must therefore be no. Answer: no’

It’s unclear why GPT-4 gets this one wrong 5-shot (all humans get this one right),

but the CoT is very relevant and helpful.

Utterance: ‘It seems Cathy is not happy at all with her new room mate. Did you ask

her why?’

Response: ‘Believe me. I tried to find out. But I simply could not pin it down.’

Implicature: Yes. But Cathy did not give specific reasons for her feelings.

Again an example where the sentiment of the response seems to hint at no. Of 5

human annotators, also only 2 interpret this response as “yes”. With a CoT, GPT-4

gets it right six times:

CoT completion: ‘Alice says she tried to find out but couldn’t pin it down. Alice’s

response must be relevant to Bob’s question because Alice is a cooperative conver-

sational partner. Alice must mean that she attempted to ask Cathy why she is

unhappy with her new roommate, but was unable to get a clear answer. The answer

to Bob’s question ’Did you ask her why?’ must therefore be yes. Answer: yes’

A helpful reasoning trace. All CoT completions by the models we have run CoT on

are available in the GitHub: https://github.com/LauraRuis/do-pigs-fly.

https://github.com/LauraRuis/do-pigs-fly

212 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.7 Additional results

D.7.1 Contrastive experiment

In this section we reframe the implicature resolution task to a contrastive one,

allowing the model to contrast the coherent to the incoherent sentence in a single

prompt.

Contrastive task. In the ranking task the model is required to assign higher

likelihood to the coherent utterance than the incoherent one (pθ (y) > pθ (ŷ)). In

assigning a likelihood to y, the model has no knowledge of ŷ, and vice-versa. We

hypothesize that the task might become easier if we reformulate it as a contrastive

task. Consider the following prompt yp.

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

Answer:

We can now evaluate the models’ ability to understand which is the coherent sentence

by evaluating whether it assigns pθ (A | yp) > pθ (B | yp). Note that this can again

be framed in a ranking task of assigning a higher likelihood to the coherent prompt.

If we finish the above prompt yp by adding “A” to make a coherent prompt y and “B”

to make an incoherent prompt ŷ we can again formulate the task by pθ (y) > pθ (ŷ).

The difference is that within both the coherent and the incoherent prompt, the model

can contrast the coherent and incoherent utterance to each other. We randomise the

assignment of A and B to the utterances.

We do a small experiment with the contrastive task with one of the best performing

models overall, OpenAI’s text-davinci-002, for k = {0, 1, 5}. We use two prompt

templates and for each template try three different multiple choice answers: A and

B like above, one and two, or the full text of the answer. For the last option the

coherent prompt x would look as follows:

D.7. Additional results 213

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan

responded “I have to work”, which means yes.

Answer: Esther asked “Can you come to my party on Friday?” and

Juan responded “I have to work”, which means no.

Table D.7: Performance on the implicature task framed contrastively by OpenAI’s
text-davinci-002. The mean and standard deviation are reported over
two different prompt templates (template 1 and 2).

k Non-contrastive Rank one, two Rank A, B Rank full text
0 71.3% ± 1.75 53.9% ± 0.9 59.3% ± 1.3 48.9% ± 0.6
1 76.1% ± 2.6 59.4% ± 1.6 63.2% ± 2.0 66.9% ± 0.9
5 80.5% ± 2.3 61.4% ± 1.3 64.0% ± 1.3 67.9% ± 2.1

In Table D.7, perhaps surprisingly, we can see that the contrastive task is much

more difficult than the original ranking task. For k = 0, the result is random except

for the prompt where the multiple choice options are A and B. For k = {1, 5} the

full text ranking does best, but is still significantly worse than the original ranking

setup. Because of these disappointing results, we did not evaluate the other models

contrastively. Future work must establish whether the contrastive setup is worse

across all model classes and sizes.

D.7.2 Variance over prompt ordering

As mentioned in Section 5.2, models are sensitive to the ordering of the k examples

in the prompt. Instead of marginalising over this random factor by evaluating all

possible prompt orderings, we randomly sampled an ordered set of examples from

the development set for each test example. Throughout experiments, we kept this

randomly sampled order the same, meaning if you re-run the 5-shot evaluation you

get exactly the same orderings. The reason for this is that we want evaluate each

model equally. In this section we ask how the performance chances for the best

performing model if we select another random order. We do this for the 5-shot

evaluation, because the results show that adding more in-context examples barely

helps performance.

214 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.8: Variance over prompt ordering for 5-shot evaluation per prompt template
(P.T.) for text-davinci-002

Seed P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 80.17 78.17 82.83 80.50 79.17 76.50 79.56
1 80.17 76.17 81.33 81.83 76.00 76.33 78.64
2 79.50 78.17 81.17 80.17 78.17 76.50 78.94
mean 79.94 77.50 81.78 80.83 77.78 76.44 -
std 0.31 0.94 0.75 0.72 1.32 0.08 -

Table D.8 shows the results of this experiment. Some prompt templates seem to be

more sensitive to prompt example ordering than others, but for none of them the

variance is high enough to change any conclusions.

D.7.3 Different zero-shot instruction prompts

There is a narrative around large language models that if they fail a task, it might be

that the prompt was not the right one (through works like Reynolds and McDonell

[RM21b] and Kojima et al. [Koj+22]). The idea is that they can be prompted

to simulate almost anything, if you set them up correctly. Because implicature

resolution is a ubiquitous result of learning language, we hold the view that a model

should be able to do this task if a prompt is given in coherent natural language.

Nonetheless, in an additional effort to find the “let’s think step-by-step” [Koj+22] of

zero-shot implicature resolution we try three more prompt templates.

Table D.9: Zero-shot accu-
racy over three
additional prompt
templates for a
base LLM and
two instructable
models.

Model Templates

GPT-3-175b 59.2% ± 4.5

text-davinci-001-⋆ 66.1% ± 3.2

text-davinci-002-⋆ 67.7% ± 9.6

We evaluate a base large language model and two

instructable models: GPT-3-175B, text-davinci-

001, and text-davinci-002. The prompts we

use are taken from recent work that proposes

a dialogue agent trained with human feedback

[Gla+22], but adapted to the task of implicature

resolution. The full prompts are presented in Ta-

ble D.3 and Table D.9 shows the results. The new

templates do not improve performance for any

of these models. The variance over the prompt

templates for text-davinci-002 is high, and the

best prompt template of these three does achieve a slightly higher accuracy than the

others: 74.5%. These results do not change the picture sketched so far.

D.7. Additional results 215

Figure D.3: Relative performance increase over 0-shot due to in-context prompting.
Structured prompt templates are dashed lines (1, 3, 4) and natural
prompt templates dotted lines (2, 5, 6).

D.7.4 The effect of in-context examples on sensitivity

to prompt wording

Figure D.3 shows the relative performance increase due to in-context prompting

broken down per prompt template. For text-davinci-001, most templates benefit

similarly from more in-context examples, except for template 1. Perhaps surprisingly,

we see that this template already achieves a performance of 76.5% at the zero-shot

evaluation and does not improve much with few-shot prompting. For Cohere-52B

and OPT-175B we see a clear grouping between the structured prompts (dashed

lines) and natural prompts (dotted lines). Cohere struggles significantly more with

the structured prompts than with the natural prompts in the zero-shot evaluation,

and few-shot prompting can mitigate that, lowering the standard deviation over

prompt templates to 1.89 at k = 30 from 4 at k = 0. OPT benefits from prompting

for the natural prompts, but not for the structured prompts.

D.7.5 Variance over API runs

In this section we comment on the reproducibility of research done using APIs.

OpenAI and Cohere have their models behind an API, meaning we do not have

control over what happens to the prompt before the model processes it. We run

the zero-shot evaluation ten more times for two models of OpenAI and Cohere,

text-davinci-002 and Cohere-52B. The results from this experiment are shown in

Table D.10 and D.11. From this we can conclude that there is some stochasticity in

the API that we have no control over, a bit more for OpenAI than for Cohere, but

again we can be relatively confident that the conclusion will not be different because

of it. The results from this work are therefore reproducible with access to the same

models behind the API now. Unfortunately, when OpenAI or Cohere changes the

216 Appendix D. A Case Study in Social Reasoning: Pragmatics

models behind the API, these results are not exactly reproducible anymore.

For completeness, we add the timestamp that each result was obtained below (Ap-

pendix D.8).

Table D.10: Results per prompt template (P.T.) for 10 different runs from text-
davinci-002 for 0-shot evaluation.
Each evaluation has exactly the same text, so the variance in perfor-
mance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean

0 73.50 68.83 73.00 71.17 67.17 68.83 70.42
1 73.83 69.00 72.83 71.50 67.67 68.33 70.53
2 73.67 68.67 73.17 71.33 67.50 68.50 70.47
3 73.83 68.17 73.17 71.00 67.67 68.17 70.33
4 73.67 68.83 73.33 71.17 67.00 68.33 70.39
5 73.83 68.50 73.00 71.00 67.00 68.17 70.25
6 73.67 69.00 73.00 71.17 67.33 68.50 70.44
7 73.67 68.67 72.83 71.33 67.50 68.67 70.44
8 73.83 69.17 72.83 71.17 67.33 68.00 70.39
9 73.50 68.50 72.83 71.00 67.50 68.67 70.33
10 73.67 69.50 73.00 71.33 67.50 68.50 70.58
mean 73.70 68.80 73.00 71.20 67.38 68.42 -
std 0.12 0.35 0.16 0.16 0.23 0.24 -

Table D.11: Results per prompt template (P.T.) for 10 different runs from Cohere-
52B for 0-shot evaluation.
Each evaluation has exactly the same text, so the variance in perfor-
mance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean

0 56.00 62.67 54.33 54.00 62.17 62.17 58.56
1 56.00 62.83 54.33 54.00 62.33 62.33 58.64
2 56.00 62.83 54.33 54.00 62.17 62.33 58.61
3 56.00 62.83 54.33 54.00 62.17 62.33 58.61
4 55.83 62.67 54.33 54.00 62.17 62.33 58.56
5 56.00 62.83 54.33 54.00 62.17 62.17 58.58
6 56.00 62.83 54.33 54.00 62.17 62.17 58.58
7 56.00 62.67 54.33 54.00 62.33 62.17 58.58
8 56.00 62.83 54.33 54.00 62.00 62.33 58.58
9 56.00 62.83 54.00 53.83 62.17 62.17 58.50
mean 55.98 62.78 54.30 53.98 62.18 62.25 -
std 0.05 0.08 0.10 0.05 0.09 0.08 -

D.7. Additional results 217

D.7.6 Experiment with random in-context labels

Chapter 5 presents the thesis that instruction-tuning at the example level (“Example

IT”) is important for pragmatic understanding in LLMs. However, the 0-shot

result that one of the models in the Example IT group achieves is similar to that

of base models; Cohere-command-52b obtains a zero-shot performance of 60.2%.

From the sharp rise in performance observed for the k = 0 to k = 1 result (from

60.2% to 72.8%) we hypothesise that the k-shot in-context examples in this task

do not necessarily teach the model pragmatics in-context, but prime the model for

the task format (namely, outputting either “yes” or “no” as detailed in Section

5.2). If this hypothesis is true, we would observe similar performance regardless

of whether the labels given in the prompt for the few-shot examples are true. We

test this empirically for two base models (GPT-3, Cohere-52b) and two Example IT

models (text-davinci-001, Cohere-command-52b) for 1-shot and 5-shot evaluation.

The results can be found in Table D.12. We find that for the Example IT models

in-context prompts with random labels obtain the same results (i.e. within confidence

intervals) as the experiments with ground-truth labels in the in-context examples.

For base models however we do observe a drop in performance; for GPT-3-175b at

5-shot, and Cohere-52b both at 1- and 5-shot. Taken together, we can conclude that

for base models the content of the in-context prompt seems important, whereas for

models in the example IT group the in-context examples mainly serve as a primer

for the task structure.

Table D.12: The results of the 1- and 5-shot experiment with random labels for
the few-shot examples as opposed to the the true labels. We find that
performance does not degrade for the models in the Example IT group,
which implies that for these models not the content of the examples is
important for performance, but the structure.

Model 1-shot 1-shot rand labels 5-shot 5-shot rand labels

GPT-3-175b 65.7% ± 1.4 65.4% ± 1.2 68.7% ± 1.5 64.7% ± 1.9
Cohere-52b 63.0% ± 3.8 58.3% ± 3.3 65.1% ± 2.9 60.5% ± 1.9
text-davinci-001 72.7% ± 1.3 73.9% ± 1.7 74.5% ± 1.0 73.4% ± 1.2
Cohere-command-52b 72.8% ± 1.3 72.0% ± 1.6 75.4% ± 1.8 73.5% ± 2.7

218 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.13: Results of the chain-of-thought (CoT) experiment for models in the
base group. The numbers between brackets show the difference in
performance with the number on the same row one column to the
left. These models do not benefit from CoT-prompting. The reason
Cohere-6b achieves such a low score for CoT-prompting is because it
is not able to adhere to the correct output format (yes/no).

Model 0-shot 5-shot 5-shot CoT

GPT-3-350m 51.5% ± 3.0 55.7% ± 1.6 (+4.2%) 55.0% ± 3.5 (-0.7%)
GPT-3-1.3b 57.7% ± 3.1 62.6% ± 2.0 (+4.9%) 54.4% ± 5.8 (-8.2%)
GPT-3-6.7b 54.8% ± 1.9 62.4% ± 1.5 (+7.6%) 61.0% ± 2.3 (+4.0%)
GPT-3-175b 57.2% ± 4.4 68.7% ± 1.5 (+11.5%) 60.3% ± 4.2 (-8.4%)
Cohere-6b 57.3% ± 2.2 60.9% ± 4.1 (+3.6%) 29.2% ± 14.7 (-31.7%)
Cohere-52b 58.5% ± 4.0 65.1% ± 2.9 (+6.6%) 64.7% ± 3.2 (-0.4%)

D.7.7 Chain-of-thought on base models

In Section 5.3 we do a CoT experiment on the models in the Example IT group.

Base models also benefit from in-context examples, so it makes sense to also try CoT

prompting on these models. After attempting this for two of the model classes in

the group, we decided not to apply this prompting technique to the other models,

because it decreases performance, sometimes significantly. See the results of the CoT

experiment on the two base model classes in Table D.13.

D.7.8 Testing for spurious correlations

In this section, we do a small scale experiment to test whether the benchmark has

spurious correlations. Specifically, we run the benchmark with only the utterance or

only the response as input. Strictly, getting the implicature right from the response

only does not always indicate spurious correlations, as some examples only need

the response (e.g. rhetorical questions like ‘do pigs fly?’). Utterance-only results do

always indicate spurious correlations. We run this experiment for GPT-3.5-turbo

and GPT-4 0-shot and 5-shot (see Table D.14 and Table D.15).

Table D.14: Results of running the benchmark with only the utterance as input,
to test for spurious correlations with the label.

Utterance-only 0-shot 5-shot

GPT-3.5-Turbo 54.3% ± 3.3 41.7% ± 12.4
GPT-4 48.9% ± 10.5 53.7% ± 0.5

D.7. Additional results 219

Table D.15: Results of running the benchmark with only the response as input, to
test what part of the examples can be resolved without the utterance.

Response-only 0-shot 5-shot

GPT-3.5-Turbo 59.2% ± 4.7 58.3% ± 6.6
GPT-4 62.6% ± 1.7 65.5% ± 1.1

We find that models mostly perform random for utterance-only, so spurious correla-

tions do not seem to be an issue. For response-only, GPT-4 5-shot gets 65% accuracy.

Some examples it gets right are: “do fish swim?” and “let’s hope so”.

220 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.16: An example from the dataset for each type of implicature found in
the test set. The rightmost column shows the amount of that type we
manually found in the test set.

Type Example Utterance Example Response Impl. #

Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’ve gotta get up early. No. 94
World knowledge Did you leave fingerprints? I wore gloves. No. 23
Idiom Would he fire me? He’s all bark and no bite. No. 42
Rhetorical question Can you drive that far? Can fish swim? Yes. 11
Other - - - 383

D.7.9 Detailed results type label analysis

In Section 5.3 we do an analysis of two types of examples that occur frequently in

the dataset, namely generalised and particularised implicatures. Here, we detail

the full taxonomy of types of examples occurring in the dataset and report detailed

results for each type per model (see D.17 until Table D.30 below). In Table D.16 the

full taxonomy of the examples is shown, representing types of examples that occur

frequently in the dataset. We manually labeled 217 examples of the 600 examples in

the test set according to this taxonomy. The remaining 383 examples do not fall

as clearly within a category and are grouped together as type other. Generalised

implicatures require little or no context to be understood. They are the simplest type

of example in the test set, and generally imply the same thing (“some” almost always

implies “not all”). Particularised implicatures, by contrast, do require context to be

resolved. For example, from Table D.16, we need the context that it is undesirable

to stay up late drinking when one has to get up early (see in Appendix D more

on generalised vs. particularised). The type world knowledge requires knowledge

of the physical world to be resolved. From the example in Table D.16; we need

to know that you cannot leave fingerprints when wearing gloves to resolve this

implicature. Idiom types contain an idiom or a metaphor that one needs to know or

understand to resolve the implicature, and finally Rhetorical question types contain a

question like “Is the Pope Catholic?”, often requiring factual knowledge to be resolved.

The following tables contain the detailed results broken down per example type: Table

D.17 - Table D.30. The most interesting pattern in this data is that for almost all

models, even the best model (GPT-4 30-shot in Table D.28), there is a significant gap

between human-level performance on the particularised examples. This gap is larger

than the gap for the other labels usually. Few-shot prompting can often mitigate

this (e.g. for GPT-3-175b, Cohere-52b, and text-davinci-002), but not always (e.g.

for GPT-4 the gap remains large for k = 30). However, for GPT-4, chain-of-thought

can mitigate the gap as seen in Table D.30. Where GPT-4 30-shot obtains 71.97%

accuracy on the particularised examples (and humans 83.18%), GPT-4 with 5-shot

D.7. Additional results 221

CoT achieves 81.63%, which is close to human-level. We find that the particularised

examples mostly benefit from CoT prompting. Namely, for the generalised type of

examples, GPT-4 30-shot already achieves 86.23% accuracy and CoT improves this

to 88.66%, which is a much smaller improvement than for the particularised examples.

Table D.17: Accuracy per label for 0-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 50.92 50.00 +/- 2.17 51.52 +/- 9.96 57.58 +/- 10.05
OPT-350m 57.14 57.97 +/- 10.25 64.77 +/- 3.65 65.15 +/- 3.39
OPT-1.3b 60.36 60.14 +/- 5.84 68.94 +/- 5.52 59.09 +/- 4.55
OPT-2.7b 59.56 60.87 +/- 6.15 67.05 +/- 2.18 69.70 +/- 6.78
OPT-6.7b 60.33 59.42 +/- 6.95 59.47 +/- 2.04 53.03 +/- 19.93
OPT-13b 61.03 63.77 +/- 14.78 73.86 +/- 7.51 66.67 +/- 16.32
OPT-30b 61.47 65.94 +/- 10.48 62.88 +/- 8.05 74.24 +/- 6.25
OPT-66b 61.33 69.57 +/- 13.75 60.23 +/- 4.30 59.09 +/- 18.74
OPT-175b 55.33 55.07 +/- 5.42 54.55 +/- 9.19 63.64 +/- 21.64
BLOOM-560m 51.58 54.35 +/- 5.47 54.92 +/- 16.72 50.00 +/- 13.64
BLOOM-1b1 51.17 50.00 +/- 2.17 50.38 +/- 11.77 53.03 +/- 12.22
BLOOM-1b7 53.61 52.17 +/- 6.15 53.79 +/- 8.77 68.18 +/- 6.94
BLOOM-3b 56.89 54.35 +/- 6.02 59.85 +/- 4.48 63.64 +/- 5.25
BLOOM-7b1 58.67 63.77 +/- 14.57 68.94 +/- 5.82 68.18 +/- 4.55
BLOOM-176b 54.22 55.07 +/- 7.39 50.38 +/- 11.01 62.12 +/- 9.70
EleutherAI-125m 51.89 56.52 +/- 9.72 52.65 +/- 8.84 63.64 +/- 5.25
EleutherAI-1.3b 53.14 51.45 +/- 3.90 53.03 +/- 11.19 62.12 +/- 3.39
EleutherAI-2.7b 59.17 60.14 +/- 13.38 65.91 +/- 3.94 68.18 +/- 4.55
EleutherAI-6b 56.36 57.25 +/- 7.28 56.06 +/- 8.87 50.00 +/- 17.99
EleutherAI-20b 57.53 51.45 +/- 3.90 67.80 +/- 5.93 72.73 +/- 5.25
Cohere-409m 51.61 52.17 +/- 4.35 53.41 +/- 11.94 54.55 +/- 12.86
Cohere-6b 57.28 55.80 +/- 5.28 60.23 +/- 5.98 72.73 +/- 9.09
Cohere-13b 57.19 59.42 +/- 4.81 54.55 +/- 10.82 48.48 +/- 10.05
Cohere-52b 58.50 60.14 +/- 13.61 65.15 +/- 3.86 74.24 +/- 11.03
GPT-3-350m 51.47 51.45 +/- 3.90 53.41 +/- 13.56 50.00 +/- 13.64
GPT-3-1.3b 57.72 61.59 +/- 11.06 64.39 +/- 4.08 65.15 +/- 3.39
GPT-3-6.7b 54.83 54.35 +/- 6.99 53.79 +/- 7.61 62.12 +/- 3.39
GPT-3-175b 57.22 55.80 +/- 7.28 68.94 +/- 5.19 77.27 +/- 8.70
T0-3b 48.25 54.35 +/- 4.86 42.42 +/- 4.29 36.36 +/- 0.00
T0-11b 55.61 60.14 +/- 6.84 54.92 +/- 14.93 36.36 +/- 0.00
BlenderBot-90m 46.64 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.44 47.83 +/- 0.00 61.36 +/- 1.31 63.64 +/- 0.00
BlenderBot-9b 53.36 52.17 +/- 6.64 60.98 +/- 4.81 63.64 +/- 0.00
Flan-T5-780m 63.31 72.46 +/- 4.10 71.97 +/- 5.82 54.55 +/- 13.89
Flan-T5-3b 52.50 50.72 +/- 6.95 51.89 +/- 4.23 42.42 +/- 8.57
Flan-T5-11b 60.78 65.94 +/- 5.84 72.35 +/- 7.59 65.15 +/- 6.25
Cohere-command-6b 66.31 72.46 +/- 7.80 78.41 +/- 4.30 37.88 +/- 3.39
Cohere-command-52b 60.22 66.67 +/- 10.85 63.64 +/- 10.33 77.27 +/- 6.94
text-ada-001-unknown 56.50 63.77 +/- 4.10 58.71 +/- 16.04 51.52 +/- 10.05
text-babbage-001-unknown 64.47 67.39 +/- 6.02 76.52 +/- 1.69 60.61 +/- 10.05
text-curie-001-unknown 68.94 76.81 +/- 3.24 76.89 +/- 2.76 54.55 +/- 12.86
text-davinci-001-unknown 72.31 84.78 +/- 7.43 78.79 +/- 4.08 59.09 +/- 13.64
text-davinci-002-unknown 70.58 82.61 +/- 9.05 75.38 +/- 3.05 57.58 +/- 16.32
text-davinci-003-unknown 71.25 86.96 +/- 13.28 72.35 +/- 7.35 48.48 +/- 8.57
ChatGPT-unknown 72.08 82.61 +/- 12.04 83.33 +/- 5.97 56.06 +/- 16.11
GPT-4-unknown 81.78 92.03 +/- 2.99 90.91 +/- 3.21 84.85 +/- 8.57
Humans 86.23 93.04 92.73 92.73

D.7.10 Detailed results per model

This section contains the results used for the zero-shot and few-shot evaluation in

Section 5.3, broken down per prompt template. See Table D.31 until Table D.80.

222 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.18: Accuracy per label for 0-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 50.92 49.43 +/- 5.52 55.07 +/- 21.10 50.56 +/- 1.33
OPT-350m 57.14 47.92 +/- 4.37 69.20 +/- 8.36 56.68 +/- 4.99
OPT-1.3b 60.36 51.52 +/- 6.81 74.64 +/- 2.05 59.65 +/- 3.51
OPT-2.7b 59.56 50.19 +/- 5.06 69.93 +/- 5.53 59.22 +/- 6.14
OPT-6.7b 60.33 52.27 +/- 5.90 75.36 +/- 2.71 60.77 +/- 6.13
OPT-13b 61.03 55.49 +/- 8.79 75.00 +/- 5.72 58.79 +/- 5.51
OPT-30b 61.47 54.55 +/- 4.15 71.38 +/- 5.94 61.11 +/- 2.12
OPT-66b 61.33 55.11 +/- 7.33 69.93 +/- 12.26 61.46 +/- 3.68
OPT-175b 55.33 54.17 +/- 7.70 58.33 +/- 18.51 55.12 +/- 4.21
BLOOM-560m 51.58 50.76 +/- 5.59 48.91 +/- 25.22 51.59 +/- 3.50
BLOOM-1b1 51.17 50.57 +/- 6.32 53.26 +/- 27.40 51.16 +/- 2.41
BLOOM-1b7 53.61 50.38 +/- 7.95 59.78 +/- 18.82 53.23 +/- 1.62
BLOOM-3b 56.89 51.70 +/- 8.27 67.39 +/- 10.35 56.46 +/- 4.39
BLOOM-7b1 58.67 46.59 +/- 2.86 79.35 +/- 2.74 57.11 +/- 4.03
BLOOM-176b 54.22 54.73 +/- 10.61 60.14 +/- 16.73 53.57 +/- 1.65
EleutherAI-125m 51.89 50.38 +/- 5.71 57.25 +/- 20.15 50.90 +/- 0.99
EleutherAI-1.3b 53.14 50.57 +/- 7.03 55.43 +/- 23.20 53.32 +/- 2.05
EleutherAI-2.7b 59.17 50.95 +/- 7.43 74.64 +/- 4.97 58.10 +/- 2.92
EleutherAI-6b 56.36 53.22 +/- 6.86 69.20 +/- 7.36 55.73 +/- 2.43
EleutherAI-20b 57.53 49.43 +/- 6.68 72.83 +/- 5.99 56.20 +/- 3.01
Cohere-409m 51.61 51.33 +/- 4.84 52.54 +/- 22.71 51.25 +/- 2.93
Cohere-6b 57.28 51.52 +/- 6.68 64.49 +/- 16.06 57.06 +/- 3.13
Cohere-13b 57.19 52.27 +/- 5.83 68.12 +/- 10.99 57.45 +/- 3.35
Cohere-52b 58.50 51.52 +/- 7.21 73.91 +/- 5.75 56.85 +/- 3.81
GPT-3-350m 51.47 50.76 +/- 6.96 52.90 +/- 24.07 51.29 +/- 1.63
GPT-3-1.3b 57.72 50.00 +/- 6.29 67.75 +/- 9.84 57.06 +/- 3.78
GPT-3-6.7b 54.83 52.65 +/- 8.16 63.41 +/- 15.14 54.26 +/- 2.12
GPT-3-175b 57.22 53.03 +/- 1.93 71.01 +/- 4.81 54.61 +/- 5.58
T0-3b 48.25 55.68 +/- 0.66 27.17 +/- 2.74 49.83 +/- 1.90
T0-11b 55.61 57.95 +/- 2.18 47.10 +/- 17.15 56.33 +/- 6.49
BlenderBot-90m 46.64 55.49 +/- 0.42 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.44 44.51 +/- 0.42 76.09 +/- 0.00 51.81 +/- 0.20
BlenderBot-9b 53.36 49.24 +/- 4.81 71.01 +/- 5.71 51.03 +/- 1.63
Flan-T5-780m 63.31 59.28 +/- 3.90 68.84 +/- 7.60 62.23 +/- 3.13
Flan-T5-3b 52.50 54.55 +/- 1.61 48.19 +/- 11.73 53.14 +/- 3.15
Flan-T5-11b 60.78 51.52 +/- 3.39 73.19 +/- 7.28 59.60 +/- 2.18
Cohere-command-6b 66.31 58.90 +/- 3.62 73.19 +/- 2.71 66.15 +/- 2.41
Cohere-command-52b 60.22 55.49 +/- 4.66 60.51 +/- 16.67 59.99 +/- 5.09
text-ada-001-unknown 56.50 52.65 +/- 3.86 61.59 +/- 15.96 56.24 +/- 5.74
text-babbage-001-unknown 64.47 56.25 +/- 2.52 72.46 +/- 9.86 63.87 +/- 1.55
text-curie-001-unknown 68.94 66.48 +/- 2.34 68.84 +/- 5.98 68.48 +/- 3.63
text-davinci-001-unknown 72.31 59.66 +/- 5.07 79.35 +/- 9.78 73.17 +/- 2.54
text-davinci-002-unknown 70.58 64.20 +/- 3.75 80.07 +/- 5.67 69.94 +/- 3.69
text-davinci-003-unknown 71.25 63.64 +/- 1.86 82.25 +/- 4.77 71.23 +/- 2.74
ChatGPT-unknown 72.08 68.75 +/- 2.99 69.57 +/- 11.16 71.66 +/- 5.79
GPT-4-unknown 81.78 71.59 +/- 3.47 89.86 +/- 2.05 81.35 +/- 1.66
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 223

Table D.19: Accuracy per label for 1-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 52.72 43.48 +/- 5.02 54.92 +/- 7.24 59.09 +/- 4.55
OPT-350m 52.92 39.86 +/- 1.62 48.11 +/- 2.76 59.09 +/- 6.94
OPT-1.3b 56.31 54.35 +/- 4.16 58.33 +/- 4.48 53.03 +/- 12.22
OPT-2.7b 56.83 64.49 +/- 15.35 64.39 +/- 2.51 66.67 +/- 4.29
OPT-6.7b 60.08 61.59 +/- 13.84 68.94 +/- 6.90 56.06 +/- 6.25
OPT-13b 60.56 68.84 +/- 7.70 69.70 +/- 6.11 54.55 +/- 15.75
OPT-30b 60.33 71.74 +/- 5.47 63.26 +/- 4.81 51.52 +/- 10.05
OPT-66b 63.19 70.29 +/- 11.06 62.50 +/- 2.86 48.48 +/- 13.55
OPT-175b 58.36 63.77 +/- 4.81 66.67 +/- 8.77 57.58 +/- 17.14
BLOOM-560m 54.83 50.00 +/- 5.47 64.02 +/- 4.62 63.64 +/- 0.00
BLOOM-1b1 52.56 56.52 +/- 9.05 59.47 +/- 2.04 59.09 +/- 4.55
BLOOM-1b7 52.81 54.35 +/- 6.52 60.98 +/- 3.57 63.64 +/- 5.25
BLOOM-3b 55.94 50.72 +/- 4.10 64.39 +/- 4.08 59.09 +/- 4.55
BLOOM-7b1 57.00 50.00 +/- 3.32 64.77 +/- 2.86 62.12 +/- 6.25
BLOOM-176b 61.11 77.54 +/- 3.90 66.67 +/- 6.11 50.00 +/- 6.94
EleutherAI-125m 51.67 44.93 +/- 6.95 50.76 +/- 4.29 57.58 +/- 4.29
EleutherAI-1.3b 55.72 47.10 +/- 4.64 55.68 +/- 4.50 50.00 +/- 11.44
EleutherAI-2.7b 55.50 54.35 +/- 5.47 67.42 +/- 4.67 65.15 +/- 9.70
EleutherAI-6b 54.97 57.25 +/- 5.84 60.23 +/- 4.30 53.03 +/- 8.16
EleutherAI-20b 55.86 69.57 +/- 4.35 62.88 +/- 4.85 53.03 +/- 6.25
Cohere-409m 51.89 42.75 +/- 6.84 51.89 +/- 4.62 54.55 +/- 5.25
Cohere-6b 57.86 58.70 +/- 12.74 67.05 +/- 5.83 68.18 +/- 11.44
Cohere-13b 61.78 71.74 +/- 11.43 67.42 +/- 8.47 37.88 +/- 9.70
Cohere-52b 62.97 66.67 +/- 6.48 70.08 +/- 4.43 62.12 +/- 14.29
GPT-3-350m 55.97 50.72 +/- 4.10 61.74 +/- 5.15 69.70 +/- 12.49
GPT-3-1.3b 60.75 58.70 +/- 4.16 65.53 +/- 4.23 54.55 +/- 5.25
GPT-3-6.7b 61.17 60.87 +/- 11.77 69.32 +/- 3.65 56.06 +/- 8.16
GPT-3-175b 65.72 76.81 +/- 3.24 73.48 +/- 2.51 57.58 +/- 16.32
T0-3b 48.89 54.35 +/- 2.17 42.80 +/- 2.04 36.36 +/- 0.00
T0-11b 47.78 52.17 +/- 0.00 40.53 +/- 2.43 36.36 +/- 0.00
BlenderBot-90m 49.94 55.07 +/- 6.48 47.73 +/- 9.99 51.52 +/- 13.55
BlenderBot-3b 53.31 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.53 50.72 +/- 9.61 57.20 +/- 12.95 66.67 +/- 6.78
Flan-T5-780m 62.89 64.49 +/- 7.70 67.42 +/- 13.03 46.97 +/- 8.16
Flan-T5-3b 52.75 65.22 +/- 15.47 55.30 +/- 9.34 45.45 +/- 12.86
Flan-T5-11b 57.44 59.42 +/- 3.24 61.36 +/- 12.17 48.48 +/- 12.49
Cohere-command-6b 65.00 71.74 +/- 6.99 71.59 +/- 3.15 36.36 +/- 0.00
Cohere-command-52b 72.83 83.33 +/- 3.90 83.33 +/- 2.51 71.21 +/- 6.25
text-ada-001-unknown 57.36 60.87 +/- 7.10 67.80 +/- 3.81 66.67 +/- 6.78
text-babbage-001-unknown 63.89 68.84 +/- 3.90 76.89 +/- 2.43 50.00 +/- 11.44
text-curie-001-unknown 64.39 66.67 +/- 5.98 68.56 +/- 9.94 56.06 +/- 6.25
text-davinci-001-unknown 72.72 93.48 +/- 4.16 80.68 +/- 2.18 57.58 +/- 12.49
text-davinci-002-unknown 75.61 91.30 +/- 2.51 87.12 +/- 2.51 56.06 +/- 8.16
text-davinci-003-unknown 74.31 90.58 +/- 5.28 82.20 +/- 1.56 54.55 +/- 7.42
ChatGPT-unknown 75.11 86.23 +/- 2.99 85.61 +/- 3.12 56.06 +/- 14.29
GPT-4-unknown 82.31 97.10 +/- 3.24 88.64 +/- 3.94 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73

224 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.20: Accuracy per label for 1-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 52.72 48.30 +/- 1.83 60.87 +/- 13.04 52.89 +/- 1.04
OPT-350m 52.92 47.73 +/- 2.37 60.87 +/- 11.71 54.35 +/- 3.10
OPT-1.3b 56.31 53.41 +/- 2.71 52.17 +/- 9.88 57.41 +/- 1.38
OPT-2.7b 56.83 49.81 +/- 5.31 69.93 +/- 6.33 55.17 +/- 3.94
OPT-6.7b 60.08 52.65 +/- 7.44 73.55 +/- 3.18 59.09 +/- 5.85
OPT-13b 60.56 53.03 +/- 1.82 71.01 +/- 7.60 59.56 +/- 2.75
OPT-30b 60.33 55.87 +/- 3.31 70.65 +/- 8.01 59.26 +/- 4.61
OPT-66b 63.19 60.04 +/- 4.12 67.39 +/- 8.70 63.39 +/- 4.28
OPT-175b 58.36 56.63 +/- 3.96 59.42 +/- 7.06 57.28 +/- 7.30
BLOOM-560m 54.83 43.94 +/- 3.12 66.30 +/- 8.21 54.82 +/- 1.85
BLOOM-1b1 52.56 47.35 +/- 3.12 63.04 +/- 12.36 51.16 +/- 1.54
BLOOM-1b7 52.81 45.64 +/- 3.50 67.03 +/- 9.92 51.29 +/- 1.44
BLOOM-3b 55.94 45.27 +/- 1.21 76.09 +/- 1.26 55.12 +/- 1.93
BLOOM-7b1 57.00 49.62 +/- 4.08 77.17 +/- 1.66 55.56 +/- 3.57
BLOOM-176b 61.11 58.14 +/- 3.31 66.67 +/- 5.98 59.73 +/- 3.66
EleutherAI-125m 51.67 50.19 +/- 2.49 53.99 +/- 8.82 52.11 +/- 0.89
EleutherAI-1.3b 55.72 50.57 +/- 4.67 57.97 +/- 13.44 57.36 +/- 2.66
EleutherAI-2.7b 55.50 48.67 +/- 4.84 65.22 +/- 4.86 54.22 +/- 2.79
EleutherAI-6b 54.97 49.81 +/- 1.21 66.30 +/- 4.82 54.01 +/- 3.36
EleutherAI-20b 55.86 53.03 +/- 3.57 64.49 +/- 6.36 53.83 +/- 2.41
Cohere-409m 51.89 52.84 +/- 3.98 48.55 +/- 3.69 52.54 +/- 1.96
Cohere-6b 57.86 44.13 +/- 1.66 77.54 +/- 2.05 57.15 +/- 5.08
Cohere-13b 61.78 53.98 +/- 2.05 74.28 +/- 3.64 61.41 +/- 1.84
Cohere-52b 62.97 60.42 +/- 8.18 69.20 +/- 5.24 61.76 +/- 4.21
GPT-3-350m 55.97 50.76 +/- 1.82 73.91 +/- 7.94 54.31 +/- 1.92
GPT-3-1.3b 60.75 53.79 +/- 2.98 68.48 +/- 3.26 61.07 +/- 1.82
GPT-3-6.7b 61.17 55.49 +/- 6.83 72.10 +/- 2.64 60.29 +/- 4.09
GPT-3-175b 65.72 62.31 +/- 4.17 64.86 +/- 7.26 65.33 +/- 2.00
T0-3b 48.89 56.25 +/- 1.57 34.06 +/- 4.29 49.83 +/- 0.55
T0-11b 47.78 56.44 +/- 0.54 27.54 +/- 1.02 49.22 +/- 0.53
BlenderBot-90m 49.94 52.46 +/- 4.27 44.57 +/- 15.66 50.00 +/- 1.65
BlenderBot-3b 53.31 44.51 +/- 0.42 76.09 +/- 0.00 51.59 +/- 0.24
BlenderBot-9b 52.53 54.92 +/- 3.45 55.80 +/- 12.90 50.90 +/- 2.60
Flan-T5-780m 62.89 56.44 +/- 3.32 68.84 +/- 12.90 63.44 +/- 6.28
Flan-T5-3b 52.75 55.11 +/- 1.57 44.20 +/- 5.98 52.41 +/- 3.23
Flan-T5-11b 57.44 53.98 +/- 1.94 62.68 +/- 15.85 57.28 +/- 4.79
Cohere-command-6b 65.00 60.61 +/- 3.69 68.12 +/- 9.53 65.25 +/- 1.37
Cohere-command-52b 72.83 67.42 +/- 2.83 80.07 +/- 2.92 71.36 +/- 1.70
text-ada-001-unknown 57.36 46.97 +/- 2.76 74.64 +/- 2.99 55.90 +/- 3.11
text-babbage-001-unknown 63.89 58.52 +/- 1.43 63.41 +/- 7.26 63.70 +/- 1.10
text-curie-001-unknown 64.39 60.98 +/- 2.14 69.93 +/- 3.42 64.04 +/- 5.79
text-davinci-001-unknown 72.72 62.31 +/- 1.66 76.81 +/- 2.71 72.83 +/- 1.70
text-davinci-002-unknown 75.61 68.18 +/- 2.86 77.54 +/- 2.05 75.32 +/- 3.14
text-davinci-003-unknown 74.31 64.20 +/- 1.43 80.43 +/- 5.02 74.50 +/- 1.29
ChatGPT-unknown 75.11 70.08 +/- 4.38 78.99 +/- 7.50 74.46 +/- 1.19
GPT-4-unknown 82.31 74.43 +/- 2.60 86.96 +/- 3.32 81.70 +/- 1.94
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 225

Table D.21: Accuracy per label for 5-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 50.22 44.93 +/- 3.24 57.58 +/- 7.73 57.58 +/- 4.29
OPT-350m 51.47 53.62 +/- 4.81 58.71 +/- 1.56 45.45 +/- 0.00
OPT-1.3b 58.03 68.84 +/- 8.48 63.26 +/- 6.21 30.30 +/- 8.57
OPT-2.7b 57.33 57.97 +/- 4.81 66.67 +/- 4.67 71.21 +/- 3.39
OPT-6.7b 63.31 66.67 +/- 16.20 67.42 +/- 4.08 42.42 +/- 16.32
OPT-13b 67.39 80.43 +/- 4.86 68.94 +/- 4.29 39.39 +/- 6.78
OPT-30b 65.64 84.78 +/- 8.60 66.29 +/- 8.13 37.88 +/- 6.25
OPT-66b 61.50 75.36 +/- 8.20 55.30 +/- 6.90 36.36 +/- 7.42
OPT-175b 63.89 78.26 +/- 7.10 65.15 +/- 2.83 43.94 +/- 3.39
BLOOM-560m 53.75 44.20 +/- 2.99 65.91 +/- 3.94 54.55 +/- 5.25
BLOOM-1b1 57.39 49.28 +/- 6.95 65.15 +/- 4.85 66.67 +/- 6.78
BLOOM-1b7 54.44 61.59 +/- 5.84 56.06 +/- 1.69 43.94 +/- 6.25
BLOOM-3b 57.19 50.72 +/- 3.24 64.77 +/- 4.87 63.64 +/- 12.86
BLOOM-7b1 54.50 50.00 +/- 2.17 62.88 +/- 1.69 69.70 +/- 4.29
BLOOM-176b 65.42 76.09 +/- 6.02 69.32 +/- 4.87 43.94 +/- 3.39
EleutherAI-125m 49.56 50.00 +/- 3.32 50.38 +/- 4.43 34.85 +/- 3.39
EleutherAI-1.3b 57.11 55.07 +/- 5.98 63.64 +/- 4.15 37.88 +/- 11.03
EleutherAI-2.7b 58.03 71.74 +/- 4.16 59.85 +/- 3.12 43.94 +/- 14.29
EleutherAI-6b 58.39 67.39 +/- 6.99 56.82 +/- 6.01 42.42 +/- 18.68
EleutherAI-20b 61.14 65.22 +/- 8.70 64.77 +/- 11.11 30.30 +/- 8.57
Cohere-409m 53.39 47.83 +/- 5.61 59.47 +/- 5.32 31.82 +/- 6.94
Cohere-6b 60.89 65.94 +/- 8.48 66.67 +/- 10.05 45.45 +/- 9.09
Cohere-13b 62.47 81.88 +/- 8.10 62.88 +/- 10.71 34.85 +/- 11.03
Cohere-52b 65.14 73.91 +/- 5.61 67.80 +/- 3.05 51.52 +/- 6.78
GPT-3-350m 55.72 46.38 +/- 3.24 65.53 +/- 1.56 51.52 +/- 4.29
GPT-3-1.3b 62.64 72.46 +/- 10.55 69.70 +/- 4.48 37.88 +/- 12.22
GPT-3-6.7b 62.39 76.81 +/- 14.57 62.50 +/- 5.53 36.36 +/- 7.42
GPT-3-175b 68.72 82.61 +/- 4.35 71.59 +/- 2.54 60.61 +/- 13.55
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 47.00 52.17 +/- 0.00 39.02 +/- 0.85 36.36 +/- 0.00
BlenderBot-90m 46.58 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.36 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.81 47.83 +/- 4.35 60.98 +/- 0.85 63.64 +/- 0.00
Flan-T5-780m 61.03 61.59 +/- 4.64 70.08 +/- 9.59 42.42 +/- 4.29
Flan-T5-3b 54.89 62.32 +/- 7.39 60.61 +/- 8.26 34.85 +/- 3.39
Flan-T5-11b 61.64 68.84 +/- 6.84 67.80 +/- 8.03 43.94 +/- 8.16
Cohere-command-6b 68.56 77.54 +/- 9.86 78.79 +/- 5.36 39.39 +/- 4.29
Cohere-command-52b 75.42 87.68 +/- 3.90 84.09 +/- 1.31 74.24 +/- 9.70
text-ada-001-unknown 57.61 52.17 +/- 3.55 64.39 +/- 2.83 62.12 +/- 8.16
text-babbage-001-unknown 66.14 71.74 +/- 2.17 77.65 +/- 5.15 57.58 +/- 12.49
text-curie-001-unknown 71.33 76.09 +/- 2.17 70.08 +/- 6.07 43.94 +/- 3.39
text-davinci-001-unknown 74.53 88.41 +/- 3.24 78.03 +/- 5.97 66.67 +/- 12.49
text-davinci-002-unknown 79.56 90.58 +/- 1.62 89.02 +/- 2.04 69.70 +/- 6.78
text-davinci-003-unknown 79.67 89.13 +/- 2.17 86.36 +/- 2.27 74.24 +/- 11.03
ChatGPT-unknown 73.89 86.96 +/- 6.15 87.88 +/- 4.85 75.76 +/- 12.49
GPT-4-unknown 82.03 95.65 +/- 2.51 86.74 +/- 2.04 87.88 +/- 6.78
Humans 86.23 93.04 92.73 92.73

226 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.22: Accuracy per label for 5-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 50.22 47.35 +/- 3.12 60.87 +/- 13.28 48.84 +/- 3.71
OPT-350m 51.47 39.58 +/- 1.79 67.39 +/- 3.07 51.38 +/- 0.95
OPT-1.3b 58.03 56.06 +/- 3.63 57.61 +/- 4.12 58.01 +/- 2.84
OPT-2.7b 57.33 47.35 +/- 3.05 72.46 +/- 2.40 56.20 +/- 3.60
OPT-6.7b 63.31 56.63 +/- 6.93 71.01 +/- 6.48 63.74 +/- 3.18
OPT-13b 67.39 60.23 +/- 2.93 64.86 +/- 2.92 69.12 +/- 2.83
OPT-30b 65.64 59.85 +/- 1.42 59.42 +/- 7.70 67.27 +/- 4.36
OPT-66b 61.50 56.44 +/- 3.51 58.70 +/- 9.64 63.65 +/- 3.93
OPT-175b 63.89 61.55 +/- 2.22 52.54 +/- 5.53 65.33 +/- 2.44
BLOOM-560m 53.75 44.89 +/- 2.05 73.19 +/- 6.11 52.50 +/- 0.78
BLOOM-1b1 57.39 48.67 +/- 3.44 70.65 +/- 4.12 57.02 +/- 1.86
BLOOM-1b7 54.44 48.86 +/- 4.91 60.14 +/- 3.24 54.74 +/- 0.96
BLOOM-3b 57.19 50.00 +/- 3.35 72.46 +/- 2.40 56.24 +/- 0.89
BLOOM-7b1 54.50 46.02 +/- 2.25 72.10 +/- 4.24 53.10 +/- 1.04
BLOOM-176b 65.42 65.53 +/- 4.38 49.28 +/- 9.69 66.88 +/- 3.42
EleutherAI-125m 49.56 44.32 +/- 5.76 56.88 +/- 4.05 50.04 +/- 2.49
EleutherAI-1.3b 57.11 50.76 +/- 3.26 69.93 +/- 4.77 56.89 +/- 1.57
EleutherAI-2.7b 58.03 51.52 +/- 2.43 61.59 +/- 4.10 58.61 +/- 1.39
EleutherAI-6b 58.39 49.62 +/- 1.69 63.04 +/- 5.02 59.91 +/- 5.04
EleutherAI-20b 61.14 51.52 +/- 2.43 61.59 +/- 12.78 63.48 +/- 5.29
Cohere-409m 53.39 50.38 +/- 1.69 68.48 +/- 4.82 52.45 +/- 0.99
Cohere-6b 60.89 52.65 +/- 2.14 64.49 +/- 5.98 61.80 +/- 4.77
Cohere-13b 62.47 59.66 +/- 6.11 68.84 +/- 7.28 62.02 +/- 3.56
Cohere-52b 65.14 60.04 +/- 4.07 68.12 +/- 7.39 65.46 +/- 3.30
GPT-3-350m 55.72 44.70 +/- 1.26 74.28 +/- 6.07 55.47 +/- 1.59
GPT-3-1.3b 62.64 49.24 +/- 2.51 67.39 +/- 4.35 64.38 +/- 2.51
GPT-3-6.7b 62.39 51.70 +/- 2.25 64.86 +/- 7.68 64.38 +/- 2.30
GPT-3-175b 68.72 60.98 +/- 5.74 66.67 +/- 8.76 69.90 +/- 0.68
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.15
T0-11b 47.00 55.87 +/- 0.42 25.00 +/- 1.66 48.62 +/- 0.23
BlenderBot-90m 46.58 55.11 +/- 1.27 24.28 +/- 0.81 48.28 +/- 0.31
BlenderBot-3b 53.36 44.32 +/- 0.00 76.09 +/- 0.00 51.72 +/- 0.10
BlenderBot-9b 52.81 44.32 +/- 0.93 75.72 +/- 0.81 50.95 +/- 1.02
Flan-T5-780m 61.03 54.36 +/- 3.50 71.01 +/- 12.96 60.77 +/- 6.09
Flan-T5-3b 54.89 57.01 +/- 1.79 41.30 +/- 9.64 55.47 +/- 4.00
Flan-T5-11b 61.64 56.25 +/- 3.20 64.86 +/- 17.04 61.76 +/- 5.21
Cohere-command-6b 68.56 60.23 +/- 5.00 74.28 +/- 6.57 68.91 +/- 1.47
Cohere-command-52b 75.42 70.08 +/- 3.39 77.17 +/- 3.26 74.68 +/- 2.80
text-ada-001-unknown 57.61 48.86 +/- 2.18 72.83 +/- 1.66 57.11 +/- 3.74
text-babbage-001-unknown 66.14 57.01 +/- 2.82 71.74 +/- 2.81 66.06 +/- 0.85
text-curie-001-unknown 71.33 60.04 +/- 0.78 69.93 +/- 5.67 74.63 +/- 0.98
text-davinci-001-unknown 74.53 60.80 +/- 3.75 81.16 +/- 3.69 75.80 +/- 1.32
text-davinci-002-unknown 79.56 71.02 +/- 2.76 87.68 +/- 1.62 79.03 +/- 2.26
text-davinci-003-unknown 79.67 71.59 +/- 1.86 87.68 +/- 1.02 79.33 +/- 1.12
ChatGPT-unknown 73.89 69.51 +/- 4.80 73.91 +/- 11.64 72.44 +/- 6.16
GPT-4-unknown 82.03 71.21 +/- 2.91 87.32 +/- 3.64 82.30 +/- 2.31
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 227

Table D.23: Accuracy per label for 10-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 52.89 55.80 +/- 8.48 55.68 +/- 8.78 66.67 +/- 6.78
OPT-350m 56.72 57.97 +/- 4.10 60.61 +/- 3.86 65.15 +/- 16.11
OPT-1.3b 59.92 70.29 +/- 4.64 54.17 +/- 3.57 34.85 +/- 3.39
OPT-2.7b 58.03 52.17 +/- 2.51 65.53 +/- 2.76 63.64 +/- 5.25
OPT-6.7b 63.28 71.01 +/- 5.42 65.53 +/- 6.07 53.03 +/- 17.73
OPT-13b 65.75 77.54 +/- 6.84 63.26 +/- 4.23 50.00 +/- 10.16
OPT-30b 63.36 78.99 +/- 4.64 56.06 +/- 8.57 33.33 +/- 4.29
OPT-66b 60.81 71.01 +/- 7.80 54.55 +/- 9.46 36.36 +/- 0.00
OPT-175b 60.75 76.81 +/- 4.10 58.33 +/- 6.52 43.94 +/- 11.03
BLOOM-560m 54.56 49.28 +/- 3.24 64.39 +/- 3.12 63.64 +/- 0.00
BLOOM-1b1 57.31 55.07 +/- 5.42 60.61 +/- 5.36 59.09 +/- 8.70
BLOOM-1b7 53.14 68.12 +/- 6.48 45.45 +/- 2.62 59.09 +/- 11.44
BLOOM-3b 59.39 54.35 +/- 4.86 65.53 +/- 5.32 66.67 +/- 4.29
BLOOM-7b1 56.11 53.62 +/- 7.39 65.53 +/- 3.81 69.70 +/- 6.78
BLOOM-176b 63.47 75.36 +/- 5.98 68.18 +/- 9.00 42.42 +/- 4.29
EleutherAI-125m 54.39 58.70 +/- 6.02 52.27 +/- 5.41 83.33 +/- 19.93
EleutherAI-1.3b 57.83 67.39 +/- 5.47 60.61 +/- 5.19 62.12 +/- 11.03
EleutherAI-2.7b 57.03 73.19 +/- 2.99 55.68 +/- 5.37 66.67 +/- 13.55
EleutherAI-6b 57.64 64.49 +/- 3.90 51.14 +/- 11.04 56.06 +/- 16.94
EleutherAI-20b 59.33 67.39 +/- 5.47 62.12 +/- 10.47 37.88 +/- 6.25
Cohere-409m 53.92 63.04 +/- 5.47 46.21 +/- 6.90 51.52 +/- 11.34
Cohere-6b 58.72 66.67 +/- 9.61 63.26 +/- 14.46 50.00 +/- 12.59
Cohere-13b 60.36 76.81 +/- 6.48 56.06 +/- 9.52 34.85 +/- 3.39
Cohere-52b 63.31 72.46 +/- 5.98 68.18 +/- 4.55 51.52 +/- 10.05
GPT-3-350m 57.72 53.62 +/- 3.24 63.64 +/- 6.01 65.15 +/- 8.16
GPT-3-1.3b 60.92 73.19 +/- 7.28 59.47 +/- 5.78 48.48 +/- 8.57
GPT-3-6.7b 63.94 71.01 +/- 7.80 67.80 +/- 1.56 40.91 +/- 8.70
GPT-3-175b 67.28 76.81 +/- 9.61 68.56 +/- 5.32 81.82 +/- 10.50
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.72 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.36 42.03 +/- 4.10 62.12 +/- 3.12 63.64 +/- 0.00
Flan-T5-780m 60.19 63.04 +/- 2.17 68.56 +/- 10.77 40.91 +/- 4.55
Flan-T5-3b 55.14 61.59 +/- 6.84 58.71 +/- 10.37 36.36 +/- 0.00
Flan-T5-11b 60.56 67.39 +/- 7.43 70.83 +/- 10.45 40.91 +/- 4.55
Cohere-command-6b 68.22 78.99 +/- 5.28 74.62 +/- 5.32 36.36 +/- 0.00
Cohere-command-52b 75.64 88.41 +/- 3.24 84.85 +/- 2.51 66.67 +/- 8.57
text-ada-001-unknown 57.36 64.49 +/- 7.28 56.44 +/- 5.78 57.58 +/- 6.78
text-babbage-001-unknown 63.53 67.39 +/- 2.17 73.11 +/- 4.62 68.18 +/- 4.55
text-curie-001-unknown 70.17 83.33 +/- 1.62 76.14 +/- 2.86 45.45 +/- 5.25
text-davinci-001-unknown 74.97 89.13 +/- 2.17 83.33 +/- 2.83 59.09 +/- 6.94
text-davinci-002-unknown 79.56 93.48 +/- 2.17 88.26 +/- 0.85 66.67 +/- 8.57
text-davinci-003-unknown 79.00 94.93 +/- 3.90 85.61 +/- 3.39 66.67 +/- 4.29
ChatGPT-unknown 74.28 84.06 +/- 6.48 86.36 +/- 4.35 62.12 +/- 11.03
GPT-4-unknown 81.31 94.93 +/- 2.99 86.74 +/- 4.03 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73

228 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.24: Accuracy per label for 10-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 52.89 51.33 +/- 4.52 57.97 +/- 15.30 51.68 +/- 1.58
OPT-350m 56.72 55.11 +/- 1.57 72.10 +/- 2.32 54.39 +/- 1.50
OPT-1.3b 59.92 60.23 +/- 0.93 61.23 +/- 2.32 60.34 +/- 2.77
OPT-2.7b 58.03 49.62 +/- 3.32 74.64 +/- 2.05 57.19 +/- 3.77
OPT-6.7b 63.28 58.33 +/- 3.97 73.19 +/- 3.48 62.70 +/- 3.22
OPT-13b 65.75 60.23 +/- 2.45 72.10 +/- 3.18 66.37 +/- 2.84
OPT-30b 63.36 62.31 +/- 2.40 65.22 +/- 6.28 64.17 +/- 3.73
OPT-66b 60.81 57.58 +/- 1.26 60.51 +/- 7.98 62.36 +/- 3.33
OPT-175b 60.75 60.98 +/- 2.24 56.16 +/- 2.92 60.94 +/- 3.42
BLOOM-560m 54.56 46.21 +/- 1.26 73.19 +/- 2.99 53.06 +/- 0.77
BLOOM-1b1 57.31 47.54 +/- 4.97 64.13 +/- 7.40 58.31 +/- 3.30
BLOOM-1b7 53.14 53.03 +/- 3.45 53.62 +/- 4.64 52.80 +/- 1.74
BLOOM-3b 59.39 55.49 +/- 2.22 69.57 +/- 5.89 58.35 +/- 0.41
BLOOM-7b1 56.11 49.62 +/- 5.07 71.38 +/- 2.92 54.35 +/- 3.34
BLOOM-176b 63.47 68.18 +/- 3.47 50.36 +/- 9.00 63.35 +/- 4.15
EleutherAI-125m 54.39 55.11 +/- 3.13 63.41 +/- 6.20 52.20 +/- 2.23
EleutherAI-1.3b 57.83 50.00 +/- 2.78 69.20 +/- 2.32 57.15 +/- 1.52
EleutherAI-2.7b 57.03 57.20 +/- 2.76 57.25 +/- 6.23 55.77 +/- 0.96
EleutherAI-6b 57.64 56.25 +/- 2.76 59.42 +/- 10.25 58.05 +/- 4.71
EleutherAI-20b 59.33 57.39 +/- 1.83 63.04 +/- 13.63 59.04 +/- 3.30
Cohere-409m 53.92 57.39 +/- 2.60 66.30 +/- 4.98 51.94 +/- 1.99
Cohere-6b 58.72 51.70 +/- 2.34 64.86 +/- 6.33 58.74 +/- 5.75
Cohere-13b 60.36 58.52 +/- 1.27 70.29 +/- 5.98 59.73 +/- 5.24
Cohere-52b 63.31 53.41 +/- 2.93 67.75 +/- 7.88 64.17 +/- 2.12
GPT-3-350m 57.72 50.95 +/- 2.89 73.91 +/- 1.26 56.59 +/- 1.79
GPT-3-1.3b 60.92 57.01 +/- 5.01 63.77 +/- 2.71 61.15 +/- 1.10
GPT-3-6.7b 63.94 58.52 +/- 4.19 66.67 +/- 5.28 64.56 +/- 1.31
GPT-3-175b 67.28 63.45 +/- 2.66 68.84 +/- 4.64 66.75 +/- 2.65
T0-3b 46.67 55.68 +/- 0.00 24.28 +/- 0.81 48.28 +/- 0.10
T0-11b 46.72 55.68 +/- 0.00 24.28 +/- 0.81 48.36 +/- 0.10
BlenderBot-90m 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.25 44.70 +/- 0.54 76.09 +/- 0.00 51.46 +/- 0.23
BlenderBot-9b 53.36 45.27 +/- 1.21 76.09 +/- 1.77 51.77 +/- 0.69
Flan-T5-780m 60.19 54.17 +/- 2.51 71.38 +/- 10.75 59.60 +/- 4.49
Flan-T5-3b 55.14 54.92 +/- 1.42 43.48 +/- 12.10 56.29 +/- 3.84
Flan-T5-11b 60.56 59.66 +/- 3.33 57.61 +/- 13.09 60.03 +/- 5.13
Cohere-command-6b 68.22 63.07 +/- 4.44 77.17 +/- 6.73 67.79 +/- 2.45
Cohere-command-52b 75.64 70.27 +/- 1.53 76.45 +/- 4.24 75.15 +/- 1.17
text-ada-001-unknown 57.36 49.24 +/- 3.32 61.96 +/- 5.14 58.23 +/- 1.53
text-babbage-001-unknown 63.53 56.63 +/- 2.22 65.22 +/- 5.47 63.35 +/- 1.49
text-curie-001-unknown 70.17 62.69 +/- 2.12 67.75 +/- 7.36 71.32 +/- 1.01
text-davinci-001-unknown 74.97 63.83 +/- 1.21 80.80 +/- 1.95 75.41 +/- 1.79
text-davinci-002-unknown 79.56 70.08 +/- 1.56 84.78 +/- 2.51 79.59 +/- 2.79
text-davinci-003-unknown 79.00 68.18 +/- 1.31 87.32 +/- 1.49 79.07 +/- 1.38
ChatGPT-unknown 74.28 68.37 +/- 4.37 75.36 +/- 11.06 73.90 +/- 4.82
GPT-4-unknown 81.31 70.83 +/- 4.29 86.96 +/- 2.81 81.31 +/- 3.82
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 229

Table D.25: Accuracy per label for 15-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 51.86 44.93 +/- 4.10 53.41 +/- 8.48 43.94 +/- 19.93
OPT-350m 55.42 48.55 +/- 2.99 48.48 +/- 2.51 42.42 +/- 6.78
OPT-1.3b 61.61 64.49 +/- 5.28 68.94 +/- 4.67 42.42 +/- 6.78
OPT-2.7b 59.53 55.80 +/- 5.84 62.50 +/- 2.18 60.61 +/- 4.29
OPT-6.7b 64.72 55.80 +/- 7.28 68.18 +/- 3.47 60.61 +/- 16.32
OPT-13b 65.17 64.49 +/- 6.36 66.67 +/- 6.11 54.55 +/- 5.25
OPT-30b 64.06 68.84 +/- 4.64 60.23 +/- 5.98 43.94 +/- 8.16
OPT-66b 61.83 65.94 +/- 11.34 55.30 +/- 8.26 39.39 +/- 4.29
OPT-175b 64.78 76.09 +/- 11.16 67.05 +/- 9.44 50.00 +/- 6.94
BLOOM-560m 55.00 47.83 +/- 2.51 59.09 +/- 2.27 62.12 +/- 3.39
BLOOM-1b1 57.58 50.00 +/- 4.86 53.03 +/- 2.51 57.58 +/- 4.29
BLOOM-1b7 55.14 60.14 +/- 12.40 50.38 +/- 4.98 53.03 +/- 16.94
BLOOM-3b 58.69 44.93 +/- 3.24 61.36 +/- 6.94 57.58 +/- 6.78
BLOOM-7b1 55.67 55.07 +/- 7.80 61.36 +/- 2.93 56.06 +/- 8.16
BLOOM-176b 61.89 77.54 +/- 9.86 70.08 +/- 7.59 37.88 +/- 3.39
EleutherAI-125m 56.03 60.14 +/- 7.70 42.80 +/- 4.62 59.09 +/- 13.64
EleutherAI-1.3b 57.44 49.28 +/- 2.05 51.52 +/- 6.11 39.39 +/- 15.45
EleutherAI-2.7b 58.08 53.62 +/- 4.81 57.20 +/- 4.81 56.06 +/- 11.03
EleutherAI-6b 58.81 58.70 +/- 10.87 56.06 +/- 10.47 56.06 +/- 6.25
EleutherAI-20b 59.86 55.80 +/- 2.99 63.64 +/- 9.19 42.42 +/- 4.29
Cohere-409m 55.19 50.00 +/- 4.16 50.76 +/- 4.85 42.42 +/- 6.78
Cohere-6b 60.44 65.94 +/- 9.19 67.05 +/- 9.88 50.00 +/- 17.99
Cohere-13b 62.83 67.39 +/- 13.92 64.77 +/- 5.53 43.94 +/- 9.70
Cohere-52b 64.72 63.04 +/- 6.52 69.32 +/- 7.28 63.64 +/- 13.89
GPT-3-350m 58.83 50.00 +/- 7.43 53.41 +/- 1.74 42.42 +/- 13.55
GPT-3-1.3b 62.86 53.62 +/- 7.39 65.91 +/- 3.71 50.00 +/- 14.61
GPT-3-6.7b 65.17 62.32 +/- 6.95 63.64 +/- 2.27 51.52 +/- 10.05
GPT-3-175b 68.31 78.26 +/- 5.02 66.67 +/- 4.48 56.06 +/- 11.03
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.81 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.56 52.17 +/- 0.00 38.64 +/- 0.00 34.85 +/- 3.39
BlenderBot-3b 53.14 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.19 45.65 +/- 3.32 60.61 +/- 5.03 65.15 +/- 3.39
Flan-T5-780m 61.50 65.94 +/- 5.84 67.42 +/- 10.71 42.42 +/- 4.29
Flan-T5-3b 55.08 66.67 +/- 10.55 60.23 +/- 11.64 36.36 +/- 0.00
Flan-T5-11b 60.83 65.94 +/- 7.28 68.56 +/- 8.65 45.45 +/- 7.42
Cohere-command-6b 70.03 80.43 +/- 3.32 78.41 +/- 2.18 45.45 +/- 10.50
Cohere-command-52b 75.39 89.13 +/- 2.17 83.33 +/- 1.69 72.73 +/- 5.25
text-ada-001-unknown 58.28 55.07 +/- 5.98 56.06 +/- 5.67 63.64 +/- 13.89
text-babbage-001-unknown 65.19 63.04 +/- 4.86 77.27 +/- 3.71 68.18 +/- 6.94
text-curie-001-unknown 69.92 79.71 +/- 2.05 73.11 +/- 1.56 45.45 +/- 10.50
text-davinci-001-unknown 75.31 88.41 +/- 2.05 82.95 +/- 2.86 57.58 +/- 8.57
text-davinci-002-unknown 79.06 94.93 +/- 1.62 85.23 +/- 2.86 72.73 +/- 15.75
text-davinci-003-unknown 79.03 91.30 +/- 0.00 85.61 +/- 1.69 69.70 +/- 15.45
ChatGPT-unknown 75.56 86.23 +/- 4.64 86.74 +/- 4.03 60.61 +/- 10.05
GPT-4-unknown 82.08 95.65 +/- 2.51 81.44 +/- 2.43 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73

230 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.26: Accuracy per label for 15-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 51.86 50.95 +/- 4.32 55.80 +/- 20.34 51.94 +/- 0.84
OPT-350m 55.42 55.30 +/- 3.39 60.51 +/- 4.24 56.29 +/- 0.75
OPT-1.3b 61.61 57.39 +/- 5.90 63.77 +/- 6.60 61.76 +/- 3.50
OPT-2.7b 59.53 49.24 +/- 2.98 75.00 +/- 1.66 59.78 +/- 5.03
OPT-6.7b 64.72 58.71 +/- 7.78 74.28 +/- 5.24 65.12 +/- 2.69
OPT-13b 65.17 64.02 +/- 2.34 65.22 +/- 7.32 65.50 +/- 1.25
OPT-30b 64.06 62.50 +/- 3.99 61.59 +/- 6.84 65.42 +/- 3.99
OPT-66b 61.83 58.71 +/- 7.21 57.61 +/- 5.14 64.25 +/- 3.20
OPT-175b 64.78 64.20 +/- 4.03 59.78 +/- 3.92 64.90 +/- 3.66
BLOOM-560m 55.00 44.13 +/- 2.58 74.64 +/- 4.64 54.78 +/- 1.75
BLOOM-1b1 57.58 45.45 +/- 1.74 64.13 +/- 5.58 60.42 +/- 2.34
BLOOM-1b7 55.14 52.27 +/- 5.21 57.61 +/- 8.40 55.73 +/- 0.84
BLOOM-3b 58.69 49.81 +/- 1.21 74.28 +/- 2.92 59.30 +/- 0.95
BLOOM-7b1 55.67 48.67 +/- 3.74 70.29 +/- 3.90 54.78 +/- 3.23
BLOOM-176b 61.89 64.02 +/- 4.43 46.38 +/- 11.20 62.02 +/- 4.53
EleutherAI-125m 56.03 56.82 +/- 3.47 54.35 +/- 5.89 57.11 +/- 0.65
EleutherAI-1.3b 57.44 51.14 +/- 3.21 61.59 +/- 9.11 59.95 +/- 2.44
EleutherAI-2.7b 58.08 57.58 +/- 2.24 61.96 +/- 6.49 58.27 +/- 1.50
EleutherAI-6b 58.81 54.17 +/- 6.07 66.67 +/- 8.48 59.35 +/- 4.11
EleutherAI-20b 59.86 55.11 +/- 3.98 62.68 +/- 11.87 60.85 +/- 4.53
Cohere-409m 55.19 52.65 +/- 1.69 61.23 +/- 8.08 56.12 +/- 2.19
Cohere-6b 60.44 49.62 +/- 2.60 71.01 +/- 6.48 60.85 +/- 4.38
Cohere-13b 62.83 57.77 +/- 3.17 71.01 +/- 5.98 63.09 +/- 2.62
Cohere-52b 64.72 57.39 +/- 2.69 71.01 +/- 4.81 65.16 +/- 1.07
GPT-3-350m 58.83 55.68 +/- 2.54 65.22 +/- 8.96 60.29 +/- 1.99
GPT-3-1.3b 62.86 56.06 +/- 5.67 63.04 +/- 7.63 64.86 +/- 1.78
GPT-3-6.7b 65.17 58.33 +/- 4.62 73.55 +/- 7.88 66.37 +/- 2.47
GPT-3-175b 68.31 64.77 +/- 4.10 71.38 +/- 6.33 68.60 +/- 3.97
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
T0-11b 46.81 55.68 +/- 0.00 25.00 +/- 1.09 48.41 +/- 0.12
BlenderBot-90m 46.56 55.68 +/- 0.00 23.91 +/- 0.00 48.19 +/- 0.13
BlenderBot-3b 53.14 44.32 +/- 0.00 75.36 +/- 1.02 51.46 +/- 0.23
BlenderBot-9b 53.19 44.13 +/- 1.79 75.72 +/- 1.49 51.72 +/- 0.74
Flan-T5-780m 61.50 56.63 +/- 2.22 71.74 +/- 11.30 60.90 +/- 4.55
Flan-T5-3b 55.08 56.82 +/- 1.31 45.65 +/- 12.92 55.04 +/- 3.39
Flan-T5-11b 60.83 57.01 +/- 3.37 60.14 +/- 15.81 61.02 +/- 5.34
Cohere-command-6b 70.03 60.80 +/- 4.72 72.83 +/- 8.30 70.84 +/- 1.68
Cohere-command-52b 75.39 69.89 +/- 2.43 76.81 +/- 3.90 74.76 +/- 1.01
text-ada-001-unknown 58.28 52.08 +/- 3.74 69.20 +/- 3.42 58.57 +/- 2.04
text-babbage-001-unknown 65.19 58.33 +/- 2.43 67.03 +/- 3.42 65.12 +/- 2.40
text-curie-001-unknown 69.92 62.50 +/- 1.47 68.84 +/- 6.72 71.40 +/- 0.93
text-davinci-001-unknown 75.31 64.58 +/- 2.12 83.70 +/- 1.66 75.54 +/- 0.95
text-davinci-002-unknown 79.06 72.92 +/- 1.02 86.96 +/- 3.97 77.99 +/- 2.77
text-davinci-003-unknown 79.03 69.32 +/- 2.37 87.68 +/- 1.62 78.94 +/- 1.12
ChatGPT-unknown 75.56 72.16 +/- 4.81 77.54 +/- 7.90 74.63 +/- 4.41
GPT-4-unknown 82.08 72.92 +/- 1.02 86.23 +/- 2.99 82.69 +/- 3.87
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 231

Table D.27: Accuracy per label for 30-shot evaluation.

Model Mean World knowledge Idiom Rhetorical question

OPT-125m 51.50 55.80 +/- 5.28 54.55 +/- 9.28 54.55 +/- 9.09
OPT-350m 54.61 49.28 +/- 7.39 56.82 +/- 1.86 37.88 +/- 9.70
OPT-1.3b 61.67 71.01 +/- 3.24 67.80 +/- 5.48 28.79 +/- 11.03
OPT-2.7b 59.86 58.70 +/- 10.87 71.21 +/- 8.37 46.97 +/- 11.03
OPT-6.7b 63.61 62.32 +/- 11.13 67.05 +/- 2.86 46.97 +/- 19.93
OPT-13b 63.39 60.14 +/- 5.28 60.98 +/- 5.93 46.97 +/- 6.25
OPT-30b 65.47 71.74 +/- 8.23 62.88 +/- 7.38 37.88 +/- 3.39
OPT-66b 60.83 60.14 +/- 3.90 51.52 +/- 11.79 43.94 +/- 6.25
OPT-175b 62.44 65.94 +/- 10.77 62.50 +/- 13.43 60.61 +/- 4.29
BLOOM-560m 55.00 47.10 +/- 1.62 60.98 +/- 2.43 62.12 +/- 3.39
BLOOM-1b1 56.89 49.28 +/- 3.24 54.92 +/- 8.65 46.97 +/- 8.16
BLOOM-1b7 52.28 52.90 +/- 7.28 47.35 +/- 9.32 36.36 +/- 16.60
BLOOM-3b 58.64 50.72 +/- 2.05 62.50 +/- 5.68 59.09 +/- 6.94
BLOOM-7b1 57.61 50.72 +/- 5.98 61.74 +/- 3.81 54.55 +/- 9.09
BLOOM-176b 61.06 73.19 +/- 8.85 66.29 +/- 9.41 48.48 +/- 4.29
EleutherAI-125m 53.44 47.10 +/- 4.64 47.73 +/- 6.43 39.39 +/- 15.45
EleutherAI-1.3b 55.97 44.93 +/- 4.81 51.89 +/- 6.74 37.88 +/- 6.25
EleutherAI-2.7b 57.36 62.32 +/- 5.98 53.41 +/- 2.86 37.88 +/- 11.03
EleutherAI-6b 58.75 59.42 +/- 12.21 52.27 +/- 14.43 36.36 +/- 5.25
EleutherAI-20b 57.36 57.97 +/- 5.42 60.61 +/- 10.30 31.82 +/- 8.70
Cohere-409m 57.17 47.83 +/- 3.55 53.41 +/- 3.15 53.03 +/- 3.39
Cohere-6b 60.36 58.70 +/- 13.92 62.50 +/- 10.23 54.55 +/- 10.50
Cohere-13b 64.81 70.29 +/- 21.65 65.91 +/- 7.07 45.45 +/- 5.25
Cohere-52b 65.72 67.39 +/- 8.60 66.29 +/- 1.56 53.03 +/- 11.03
GPT-3-350m 60.25 55.07 +/- 2.05 57.95 +/- 5.83 51.52 +/- 10.05
GPT-3-1.3b 60.19 61.59 +/- 3.90 54.92 +/- 6.99 43.94 +/- 9.70
GPT-3-6.7b 62.86 56.52 +/- 4.35 65.53 +/- 3.32 50.00 +/- 6.94
GPT-3-175b 68.31 67.39 +/- 5.47 72.73 +/- 2.62 75.76 +/- 4.29
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.75 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 51.45 +/- 1.62 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.72 46.38 +/- 4.10 63.26 +/- 3.32 63.64 +/- 0.00
Flan-T5-780m 61.50 67.39 +/- 8.60 70.83 +/- 6.35 42.42 +/- 4.29
Flan-T5-3b 56.11 65.22 +/- 7.10 62.50 +/- 13.04 36.36 +/- 0.00
Flan-T5-11b 62.11 67.39 +/- 10.27 72.73 +/- 10.66 51.52 +/- 15.45
Cohere-command-6b 70.44 81.16 +/- 3.24 78.03 +/- 2.83 46.97 +/- 8.16
Cohere-command-52b 75.00 85.51 +/- 2.05 78.41 +/- 1.14 78.79 +/- 6.78
text-ada-001-unknown 55.58 50.72 +/- 7.39 57.58 +/- 4.29 57.58 +/- 8.57
text-babbage-001-unknown 66.00 67.39 +/- 5.47 71.59 +/- 3.15 63.64 +/- 5.25
text-curie-001-unknown 70.33 75.36 +/- 3.24 76.52 +/- 5.03 60.61 +/- 8.57
text-davinci-001-unknown 75.83 85.51 +/- 2.05 84.09 +/- 1.86 65.15 +/- 8.16
text-davinci-002-unknown 80.64 97.83 +/- 2.17 87.50 +/- 2.18 83.33 +/- 3.39
text-davinci-003-unknown 79.53 94.93 +/- 1.62 84.85 +/- 3.39 81.82 +/- 9.09
ChatGPT-unknown 75.64 87.68 +/- 4.64 89.02 +/- 4.43 83.33 +/- 9.70
GPT-4-unknown 82.17 95.65 +/- 3.55 87.12 +/- 3.12 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73

232 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.28: Accuracy per label for 30-shot evaluation.

Model Mean Particularised Generalised Other

OPT-125m 51.50 50.38 +/- 4.29 52.17 +/- 23.95 50.99 +/- 2.42
OPT-350m 54.61 55.30 +/- 1.26 49.28 +/- 3.48 55.51 +/- 1.92
OPT-1.3b 61.67 56.25 +/- 2.76 56.16 +/- 4.05 63.14 +/- 5.41
OPT-2.7b 59.86 50.19 +/- 2.89 69.57 +/- 4.16 59.95 +/- 5.23
OPT-6.7b 63.61 58.90 +/- 6.48 72.10 +/- 8.08 63.74 +/- 4.30
OPT-13b 63.39 59.47 +/- 2.14 64.86 +/- 6.07 65.07 +/- 2.24
OPT-30b 65.47 63.64 +/- 3.01 63.04 +/- 7.94 66.93 +/- 5.52
OPT-66b 60.83 63.07 +/- 3.64 55.43 +/- 9.29 62.62 +/- 4.98
OPT-175b 62.44 64.39 +/- 2.34 51.09 +/- 5.72 63.18 +/- 2.85
BLOOM-560m 55.00 47.92 +/- 2.31 71.01 +/- 6.23 54.18 +/- 1.82
BLOOM-1b1 56.89 49.81 +/- 4.93 56.88 +/- 8.46 59.35 +/- 3.16
BLOOM-1b7 52.28 55.49 +/- 1.79 40.94 +/- 8.82 53.83 +/- 1.25
BLOOM-3b 58.64 52.46 +/- 1.53 68.84 +/- 3.69 58.74 +/- 1.44
BLOOM-7b1 57.61 54.36 +/- 8.98 70.29 +/- 2.05 56.76 +/- 4.88
BLOOM-176b 61.06 67.42 +/- 1.93 50.00 +/- 9.05 60.08 +/- 4.01
EleutherAI-125m 53.44 59.47 +/- 2.43 46.74 +/- 4.65 54.18 +/- 1.21
EleutherAI-1.3b 55.97 51.70 +/- 5.20 56.52 +/- 10.80 58.40 +/- 1.35
EleutherAI-2.7b 57.36 57.39 +/- 2.25 51.81 +/- 3.18 58.79 +/- 0.89
EleutherAI-6b 58.75 57.77 +/- 4.22 58.33 +/- 9.92 60.38 +/- 4.52
EleutherAI-20b 57.36 51.52 +/- 4.08 59.42 +/- 14.51 58.79 +/- 2.39
Cohere-409m 57.17 51.14 +/- 3.99 64.49 +/- 8.57 58.66 +/- 2.15
Cohere-6b 60.36 51.52 +/- 2.51 70.29 +/- 6.11 61.20 +/- 5.15
Cohere-13b 64.81 58.14 +/- 2.96 68.12 +/- 8.20 65.98 +/- 3.57
Cohere-52b 65.72 64.96 +/- 4.17 69.93 +/- 2.32 65.50 +/- 2.01
GPT-3-350m 60.25 57.58 +/- 2.51 65.22 +/- 6.28 60.98 +/- 1.63
GPT-3-1.3b 60.19 57.77 +/- 5.66 57.61 +/- 9.12 62.06 +/- 4.02
GPT-3-6.7b 62.86 61.17 +/- 6.41 63.41 +/- 7.98 63.65 +/- 2.52
GPT-3-175b 68.31 64.58 +/- 5.06 70.29 +/- 6.23 68.17 +/- 2.01
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
T0-11b 46.75 55.87 +/- 0.42 23.91 +/- 0.00 48.41 +/- 0.12
BlenderBot-90m 46.67 55.68 +/- 0.00 23.55 +/- 0.81 48.41 +/- 0.24
BlenderBot-3b 53.25 44.32 +/- 0.00 76.09 +/- 0.00 51.55 +/- 0.20
BlenderBot-9b 53.72 45.08 +/- 1.82 75.36 +/- 1.02 52.11 +/- 0.93
Flan-T5-780m 61.50 57.01 +/- 3.85 73.19 +/- 8.67 60.16 +/- 3.75
Flan-T5-3b 56.11 56.44 +/- 1.56 47.83 +/- 11.71 56.29 +/- 4.18
Flan-T5-11b 62.11 61.36 +/- 4.50 57.25 +/- 16.68 61.58 +/- 6.25
Cohere-command-6b 70.44 64.96 +/- 1.21 78.62 +/- 5.53 69.81 +/- 1.60
Cohere-command-52b 75.00 71.78 +/- 1.66 75.00 +/- 3.49 74.55 +/- 0.49
text-ada-001-unknown 55.58 53.41 +/- 1.97 56.52 +/- 4.35 55.86 +/- 3.03
text-babbage-001-unknown 66.00 60.80 +/- 2.69 62.32 +/- 6.11 66.88 +/- 2.36
text-curie-001-unknown 70.33 60.42 +/- 5.01 74.28 +/- 6.20 71.32 +/- 1.42
text-davinci-001-unknown 75.83 67.05 +/- 1.97 83.33 +/- 3.48 75.67 +/- 1.02
text-davinci-002-unknown 80.64 74.43 +/- 1.83 83.70 +/- 2.74 79.76 +/- 1.44
text-davinci-003-unknown 79.53 72.92 +/- 2.49 86.59 +/- 1.95 78.55 +/- 1.20
ChatGPT-unknown 75.64 67.99 +/- 2.74 78.26 +/- 6.15 74.55 +/- 3.90
GPT-4-unknown 82.17 71.97 +/- 2.83 86.23 +/- 3.48 82.34 +/- 2.67
Humans 86.23 83.18 92.17 84.86

D.7. Additional results 233

Table D.29: Accuracy per label for model group Example IT for 5-shot chain-of-
thought evaluation.

Model Mean World knowledge Idiom Rhetorical question

Cohere-command-6b 69.14 72.46 +/- 5.98 78.03 +/- 3.12 62.12 +/- 8.16
Cohere-command-52b 75.28 78.99 +/- 1.62 84.47 +/- 3.57 51.52 +/- 8.57
text-ada-001-unknown 15.33 11.59 +/- 8.20 17.42 +/- 9.43 10.61 +/- 9.70
text-babbage-001-unknown 47.67 47.83 +/- 11.50 55.30 +/- 16.21 42.42 +/- 8.57
text-curie-001-unknown 68.22 69.57 +/- 6.64 79.17 +/- 0.85 69.70 +/- 10.05
text-davinci-001-unknown 67.25 69.57 +/- 7.10 71.59 +/- 3.65 60.61 +/- 11.34
text-davinci-002-unknown 80.06 92.03 +/- 1.62 88.26 +/- 3.57 46.97 +/- 24.29
text-davinci-003-unknown 83.61 93.48 +/- 2.17 93.18 +/- 0.00 69.70 +/- 10.05
ChatGPT-unknown 77.19 89.86 +/- 4.10 87.88 +/- 3.63 65.15 +/- 9.70
GPT-4-unknown 86.47 93.48 +/- 3.32 93.18 +/- 2.93 87.88 +/- 4.29
Humans 86.23 93.04 92.73 92.73

Table D.30: Accuracy per label for model group Example IT for 5-shot chain-of-
thought evaluation.

Model Mean Particularised Generalised Other

Cohere-command-6b 69.14 58.33 +/- 1.93 81.52 +/- 2.08 69.04 +/- 2.04
Cohere-command-52b 75.28 68.94 +/- 3.19 77.17 +/- 2.08 75.88 +/- 0.53
text-ada-001-unknown 15.33 15.53 +/- 7.73 14.86 +/- 9.26 15.50 +/- 8.33
text-babbage-001-unknown 47.67 45.27 +/- 11.94 40.94 +/- 19.34 48.19 +/- 14.11
text-curie-001-unknown 68.22 59.47 +/- 5.15 74.28 +/- 7.88 68.04 +/- 1.75
text-davinci-001-unknown 67.25 64.58 +/- 3.85 64.13 +/- 5.14 67.92 +/- 3.30
text-davinci-002-unknown 80.06 75.95 +/- 3.68 80.07 +/- 6.69 80.23 +/- 1.07
text-davinci-003-unknown 83.61 77.46 +/- 1.02 87.32 +/- 3.18 83.25 +/- 0.96
ChatGPT-unknown 77.19 72.35 +/- 1.56 80.43 +/- 5.47 76.23 +/- 1.11
GPT-4-unknown 86.47 81.63 +/- 2.58 88.77 +/- 4.05 86.05 +/- 1.17
Humans 86.23 83.18 92.17 84.86

Table D.31: Accuracy per prompt template for BERT-cased.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 47.3 48.8 50.5 49.8 46.7 46.7
2 46.8 50.3 45.5 50.2 46.7 46.5
3 57.3 51.5 50.0 50.0 47.0 46.7
4 48.8 51.0 49.5 48.5 46.8 46.7
5 46.7 50.3 44.5 47.7 46.7 46.7
6 46.7 50.3 45.8 47.8 46.8 46.7

Mean 48.9 50.4 47.6 49.0 46.8 46.7
– std 3.81 0.832 2.42 1.04 0.107 0.0745

Structured 51.1 50.4 50.0 49.4 46.8 46.7
– std 4.4 1.17 0.408 0.665 0.125 7.11e-15

Natural 46.7 50.3 45.3 48.6 46.7 46.6
– std 0.0471 7.11e-15 0.556 1.16 0.0471 0.0943

234 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.32: Accuracy per prompt template for BERT-uncased.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.0 53.2 51.8 55.2 51.7 49.3
2 53.7 50.3 54.0 48.7 49.0 49.3
3 54.7 54.7 57.3 55.5 53.3 52.8
4 56.7 51.5 52.3 54.0 50.3 49.5
5 53.2 50.2 50.2 48.3 48.2 47.2
6 53.3 50.3 54.2 49.2 53.0 53.5

Mean 54.8 51.7 53.3 51.8 50.9 50.3
– std 1.55 1.71 2.24 3.13 1.92 2.19

Structured 56.1 53.1 53.8 54.9 51.8 50.5
– std 1.02 1.31 2.48 0.648 1.23 1.6

Natural 53.4 50.3 52.8 48.7 50.1 50.0
– std 0.216 0.0471 1.84 0.368 2.1 2.62

Table D.33: Accuracy per prompt template for RoBERTa-base.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.0 55.8 58.0 58.7 58.3 57.8
2 56.5 50.5 52.0 55.8 56.0 54.2
3 53.0 56.8 56.8 61.3 59.5 58.8
4 55.2 56.0 58.7 59.8 56.8 57.2
5 55.7 50.3 52.3 54.8 55.5 53.0
6 59.2 50.3 54.2 55.8 55.7 55.3

Mean 55.6 53.3 55.3 57.7 57.0 56.1
– std 1.97 2.93 2.65 2.38 1.47 2.05

Structured 54.1 56.2 57.8 59.9 58.2 57.9
– std 0.899 0.432 0.785 1.07 1.1 0.66

Natural 57.1 50.4 52.8 55.5 55.7 54.2
– std 1.5 0.0943 0.974 0.471 0.205 0.939

D.7. Additional results 235

Table D.34: Accuracy per prompt template for RoBERTa-large.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.7 50.2 62.0 64.7 64.7 60.5
2 46.7 53.3 58.5 64.2 61.2 55.7
3 60.8 54.8 64.5 62.8 61.8 59.5
4 66.2 50.3 64.0 59.0 57.0 58.2
5 46.7 53.3 58.8 63.5 60.5 56.5
6 46.7 55.5 59.3 60.0 60.8 52.3

Mean 54.1 52.9 61.2 62.4 61.0 57.1
– std 7.84 2.03 2.45 2.13 2.26 2.7

Structured 61.6 51.8 63.5 62.2 61.2 59.4
– std 3.51 2.15 1.08 2.37 3.18 0.942

Natural 46.7 54.0 58.9 62.6 60.8 54.8
– std 7.11e-15 1.04 0.33 1.84 0.287 1.82

Table D.35: Accuracy per prompt template for GPT-2-medium.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.7 54.0 53.8 53.8 55.0
2 52.8 53.7 55.8 57.2 60.3 57.2
3 53.7 54.0 52.5 56.5 55.8 55.3
4 53.5 55.7 53.3 55.8 55.5 54.3
5 59.2 54.3 56.7 57.7 60.7 58.8
6 58.3 54.8 55.7 57.7 61.7 57.8

Mean 55.1 54.4 54.7 56.4 58.0 56.4
– std 2.6 0.706 1.5 1.36 3.03 1.63

Structured 53.5 54.5 53.3 55.4 55.0 54.9
– std 0.205 0.881 0.613 1.14 0.881 0.419

Natural 56.8 54.3 56.1 57.5 60.9 57.9
– std 2.83 0.45 0.45 0.236 0.589 0.66

236 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.36: Accuracy per prompt template for GPT-2-large.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.3 54.5 53.5 55.3 56.2
2 47.5 56.7 57.5 57.8 60.8 61.0
3 55.0 53.8 55.7 54.0 54.8 56.0
4 54.0 53.7 56.2 53.5 54.8 56.7
5 47.2 54.5 56.7 58.8 61.2 60.8
6 47.0 53.3 57.2 59.5 60.3 60.8

Mean 50.7 54.2 56.3 56.2 57.9 58.6
– std 3.47 1.18 1.0 2.57 2.92 2.29

Structured 54.1 53.6 55.5 53.7 55.0 56.3
– std 0.698 0.216 0.713 0.236 0.236 0.294

Natural 47.2 54.8 57.1 58.7 60.8 60.9
– std 0.205 1.41 0.33 0.698 0.368 0.0943

Table D.37: Accuracy per prompt template for GPT-2-xl.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.3 57.0 54.5 54.7 56.2
2 48.7 61.3 57.3 63.7 62.0 60.5
3 55.0 55.2 59.5 59.0 58.0 60.7
4 54.2 54.3 56.0 54.5 54.3 56.3
5 48.0 59.7 58.3 60.8 62.7 61.7
6 48.5 60.8 58.0 61.8 61.5 61.5

Mean 51.3 57.4 57.7 59.1 58.9 59.5
– std 2.92 3.25 1.1 3.5 3.43 2.32

Structured 54.1 54.3 57.5 56.0 55.7 57.7
– std 0.736 0.776 1.47 2.12 1.66 2.1

Natural 48.4 60.6 57.9 62.1 62.1 61.2
– std 0.294 0.668 0.419 1.2 0.492 0.525

D.7. Additional results 237

Table D.38: Accuracy per prompt template for EleutherAI-125M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.7 52.7 56.2 56.2 54.0
2 52.2 50.0 47.5 53.5 55.7 53.3
3 53.3 53.8 51.2 55.8 54.8 52.8
4 53.7 52.5 51.2 53.8 55.8 53.2
5 50.7 50.2 47.3 53.8 56.2 53.8
6 48.2 49.8 47.5 53.2 57.5 53.5

Mean 51.9 51.7 49.6 54.4 56.0 53.4
– std 1.93 1.72 2.19 1.17 0.806 0.394

Structured 53.4 53.3 51.7 55.3 55.6 53.3
– std 0.189 0.591 0.707 1.05 0.589 0.499

Natural 50.4 50.0 47.4 53.5 56.5 53.5
– std 1.65 0.163 0.0943 0.245 0.759 0.205

Table D.39: Accuracy per prompt template for EleutherAI-1.3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.3 53.7 54.8 57.5 57.2 56.2
2 51.8 56.8 57.5 59.0 55.8 54.7
3 58.0 55.5 59.5 58.0 61.5 57.5
4 53.2 57.5 56.8 55.2 56.5 54.7
5 49.7 55.2 57.5 58.7 57.2 56.7
6 51.8 55.7 56.5 58.7 56.5 56.2

Mean 53.1 55.7 57.1 57.8 57.4 56.0
– std 2.59 1.21 1.4 1.29 1.87 1.02

Structured 55.2 55.6 57.0 56.9 58.4 56.1
– std 2.05 1.55 1.93 1.22 2.21 1.14

Natural 51.1 55.9 57.2 58.8 56.5 55.9
– std 0.99 0.668 0.471 0.141 0.572 0.85

Table D.40: Accuracy per prompt template for EleutherAI-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.0 52.8 58.2 57.8 59.5 56.7
2 62.0 56.2 57.7 55.8 57.8 57.7
3 58.7 60.0 58.8 59.2 57.8 57.8
4 56.5 54.2 57.5 56.2 57.5 55.5
5 62.7 54.7 58.7 55.7 57.3 57.8
6 61.2 55.2 57.3 57.5 58.5 58.7

Mean 59.2 55.5 58.0 57.0 58.1 57.4
– std 3.13 2.25 0.576 1.26 0.741 1.02

Structured 56.4 55.7 58.2 57.7 58.3 56.7
– std 1.92 3.12 0.531 1.23 0.881 0.939

Natural 62.0 55.4 57.9 56.3 57.9 58.1
– std 0.613 0.624 0.589 0.826 0.492 0.45

238 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.41: Accuracy per prompt template for EleutherAI-6B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 57.5 58.8 52.7 53.0 52.5 51.3
2 57.7 51.8 63.2 62.7 64.3 65.3
3 56.2 58.2 57.2 53.0 54.7 54.5
4 52.8 55.5 53.3 52.2 54.0 53.8
5 56.8 52.7 62.7 63.2 65.2 64.2
6 57.2 52.8 61.3 61.8 62.2 63.3

Mean 56.4 55.0 58.4 57.6 58.8 58.7
– std 1.67 2.75 4.28 4.94 5.2 5.65

Structured 55.5 57.5 54.4 52.7 53.7 53.2
– std 1.98 1.44 1.99 0.377 0.918 1.37

Natural 57.2 52.4 62.4 62.6 63.9 64.3
– std 0.368 0.45 0.804 0.579 1.26 0.818

Table D.42: Accuracy per prompt template for EleutherAI-20B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.0 58.0 55.3 54.3 52.8 54.3
2 61.3 54.2 65.8 63.3 65.0 60.3
3 54.3 58.3 58.5 56.7 55.3 52.0
4 56.2 58.2 55.3 57.2 57.0 58.7
5 59.0 53.0 66.7 62.8 65.0 59.2
6 61.3 53.5 65.2 61.7 64.0 59.7

Mean 57.5 55.9 61.1 59.3 59.9 57.4
– std 3.25 2.33 4.9 3.42 4.98 3.09

Structured 54.5 58.2 56.4 56.1 55.0 55.0
– std 1.31 0.125 1.51 1.27 1.72 2.78

Natural 60.5 53.6 65.9 62.6 64.7 59.7
– std 1.08 0.492 0.616 0.668 0.471 0.45

Table D.43: Accuracy per prompt template for BLOOM-560M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.3 54.2 53.5 53.8 53.8 53.5
2 46.7 56.3 54.0 54.8 56.0 55.3
3 58.8 53.3 53.8 53.3 54.5 54.0
4 56.3 54.8 53.5 54.8 52.7 56.7
5 46.7 54.3 53.7 55.3 56.3 55.5
6 46.7 56.0 54.0 55.2 56.7 55.0

Mean 51.6 54.8 53.8 54.5 55.0 55.0
– std 5.05 1.04 0.206 0.734 1.45 1.04

Structured 56.5 54.1 53.6 54.0 53.7 54.7
– std 1.84 0.616 0.141 0.624 0.741 1.41

Natural 46.7 55.5 53.9 55.1 56.3 55.3
– std 7.11e-15 0.881 0.141 0.216 0.287 0.205

D.7. Additional results 239

Table D.44: Accuracy per prompt template for BLOOM-1B1.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.5 56.2 54.2 55.2 54.5
2 49.0 51.5 58.2 59.8 58.8 60.8
3 57.2 54.2 55.8 54.0 55.5 50.8
4 53.3 54.0 54.2 53.3 55.7 55.8
5 47.3 51.2 59.8 61.3 60.2 60.0
6 46.8 51.0 60.2 61.2 60.2 59.3

Mean 51.2 52.6 57.4 57.3 57.6 56.9
– std 3.75 1.36 2.18 3.51 2.19 3.53

Structured 54.6 53.9 55.4 53.8 55.5 53.7
– std 1.84 0.294 0.864 0.386 0.205 2.12

Natural 47.7 51.2 59.4 60.8 59.7 60.0
– std 0.942 0.205 0.864 0.685 0.66 0.613

Table D.45: Accuracy per prompt template for BLOOM-1B7.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.5 54.7 53.8 54.0 55.7 56.5
2 57.7 52.2 56.3 55.5 55.8 52.0
3 54.7 53.2 53.8 51.0 54.5 54.0
4 54.5 53.8 54.5 51.2 55.5 50.3
5 50.0 51.2 54.3 53.2 54.7 50.0
6 51.3 51.8 53.8 54.0 54.7 50.8

Mean 53.6 52.8 54.4 53.1 55.1 52.3
– std 2.49 1.2 0.886 1.6 0.528 2.31

Structured 54.2 53.9 54.0 52.1 55.2 53.6
– std 0.525 0.616 0.33 1.37 0.525 2.55

Natural 53.0 51.7 54.8 54.2 55.1 50.9
– std 3.37 0.411 1.08 0.953 0.519 0.822

Table D.46: Accuracy per prompt template for BLOOM-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.0 54.0 56.8 59.5 60.0 58.2
2 62.5 58.0 58.2 59.7 57.5 60.0
3 53.5 54.0 57.2 58.7 59.2 58.2
4 54.8 55.3 55.7 59.0 58.2 55.8
5 58.5 57.5 58.0 59.7 58.8 60.2
6 59.0 56.8 57.3 59.8 58.5 59.5

Mean 56.9 55.9 57.2 59.4 58.7 58.6
– std 3.4 1.6 0.823 0.408 0.783 1.5

Structured 53.8 54.4 56.6 59.1 59.1 57.4
– std 0.759 0.613 0.634 0.33 0.736 1.13

Natural 60.0 57.4 57.8 59.7 58.3 59.9
– std 1.78 0.492 0.386 0.0471 0.556 0.294

240 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.47: Accuracy per prompt template for BLOOM-7B1.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.2 55.2 55.2 52.0 53.0 52.7
2 61.2 59.0 53.7 58.3 58.8 61.7
3 58.7 53.3 53.0 53.3 53.0 52.8
4 53.5 53.5 55.2 52.8 54.3 53.5
5 62.0 61.0 55.3 60.3 58.5 62.5
6 63.5 60.0 54.7 59.8 56.3 62.5

Mean 58.7 57.0 54.5 56.1 55.7 57.6
– std 4.03 3.11 0.871 3.46 2.39 4.63

Structured 55.1 54.0 54.5 52.7 53.4 53.0
– std 2.52 0.852 1.04 0.535 0.613 0.356

Natural 62.2 60.0 54.6 59.5 57.9 62.2
– std 0.953 0.816 0.66 0.85 1.11 0.377

Table D.48: Accuracy per prompt template for BLOOM-176B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.8 58.8 58.5 57.7 55.7 56.7
2 55.8 60.8 68.0 65.7 64.2 62.7
3 53.5 66.7 69.3 71.8 71.7 69.8
4 54.3 59.8 64.8 62.2 60.7 61.3
5 52.3 61.3 66.2 61.8 58.8 57.5
6 55.5 59.2 65.7 61.7 60.3 58.3

Mean 54.2 61.1 65.4 63.5 61.9 61.1
– std 1.19 2.65 3.43 4.38 5.06 4.44

Structured 53.9 61.8 64.2 63.9 62.7 62.6
– std 0.33 3.51 4.43 5.88 6.68 5.43

Natural 54.5 60.4 66.6 63.1 61.1 59.5
– std 1.58 0.896 0.988 1.86 2.28 2.29

D.7. Additional results 241

Table D.49: Accuracy per prompt template for OPT-125M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 55.2 54.0 55.2 54.2 55.0
2 49.5 50.5 47.5 52.7 50.5 48.2
3 53.5 55.5 53.0 55.0 53.7 56.0
4 53.3 54.5 54.2 53.8 54.3 53.8
5 48.5 50.5 46.3 50.7 49.5 48.0
6 47.3 50.2 46.3 50.0 49.0 48.0

Mean 50.9 52.7 50.2 52.9 51.9 51.5
– std 2.55 2.35 3.56 1.99 2.25 3.49

Structured 53.4 55.1 53.7 54.7 54.1 54.9
– std 0.0943 0.419 0.525 0.618 0.262 0.899

Natural 48.4 50.4 46.7 51.1 49.7 48.1
– std 0.899 0.141 0.566 1.14 0.624 0.0943

Table D.50: Accuracy per prompt template for OPT-350M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.8 51.5 56.5 54.2 54.7
2 60.5 50.3 50.8 56.5 55.2 54.0
3 53.3 56.3 52.8 58.7 55.0 56.2
4 53.7 56.3 52.0 55.2 55.2 56.3
5 62.3 50.3 50.8 57.0 56.5 53.5
6 59.7 50.3 50.8 56.5 56.5 53.0

Mean 57.1 52.9 51.4 56.7 55.4 54.6
– std 3.78 2.71 0.752 1.04 0.826 1.26

Structured 53.4 55.5 52.1 56.8 54.8 55.7
– std 0.189 1.18 0.535 1.44 0.432 0.732

Natural 60.8 50.3 50.8 56.7 56.1 53.5
– std 1.09 7.11e-15 7.11e-15 0.236 0.613 0.408

Table D.51: Accuracy per prompt template for OPT-1.3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 57.8 56.2 55.5 60.2 59.8 62.7
2 62.2 57.0 61.2 61.8 64.8 67.2
3 60.8 59.5 57.2 59.7 60.3 58.2
4 54.8 55.8 59.2 56.5 57.0 54.7
5 62.5 56.2 59.3 61.7 65.0 64.5
6 64.0 53.2 55.8 59.7 62.7 62.8

Mean 60.4 56.3 58.0 59.9 61.6 61.7
– std 3.13 1.85 2.05 1.76 2.86 4.11

Structured 57.8 57.2 57.3 58.8 59.0 58.5
– std 2.45 1.66 1.51 1.64 1.45 3.27

Natural 62.9 55.5 58.8 61.1 64.2 64.8
– std 0.787 1.64 2.24 0.967 1.04 1.81

242 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.52: Accuracy per prompt template for OPT-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 53.0 53.2 53.8 54.3 53.7
2 64.0 60.3 60.2 60.3 61.3 64.5
3 55.8 53.3 55.2 55.8 57.0 56.5
4 54.5 53.3 54.8 55.5 56.8 57.0
5 64.8 60.7 60.7 62.2 64.3 64.3
6 63.5 60.3 60.0 60.5 63.3 63.2

Mean 59.6 56.8 57.4 58.0 59.5 59.9
– std 4.58 3.62 3.02 3.11 3.68 4.28

Structured 55.0 53.2 54.4 55.0 56.0 55.7
– std 0.572 0.141 0.864 0.881 1.23 1.45

Natural 64.1 60.4 60.3 61.0 63.0 64.0
– std 0.535 0.189 0.294 0.852 1.25 0.572

Table D.53: Accuracy per prompt template for OPT-6.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.7 54.3 60.8 61.2 61.2 58.5
2 64.2 68.0 66.8 65.7 66.3 66.3
3 54.2 53.5 59.5 61.2 63.3 60.5
4 58.8 56.3 61.8 62.2 63.5 63.2
5 64.2 65.2 66.0 65.2 67.7 67.5
6 65.0 63.2 64.8 64.3 66.3 65.7

Mean 60.4 60.1 63.3 63.3 64.7 63.6
– std 4.34 5.62 2.73 1.84 2.23 3.23

Structured 56.2 54.7 60.7 61.5 62.7 60.7
– std 1.92 1.18 0.942 0.471 1.04 1.93

Natural 64.5 65.5 65.9 65.1 66.8 66.5
– std 0.377 1.97 0.822 0.579 0.66 0.748

Table D.54: Accuracy per prompt template for OPT-13B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 64.0 69.8 68.2 67.8 62.2
2 68.2 57.8 69.5 68.0 66.8 63.7
3 54.3 62.2 65.2 63.2 64.3 66.3
4 58.3 63.3 64.3 63.7 63.5 64.0
5 66.0 58.5 67.2 65.3 63.7 62.7
6 64.7 57.5 68.3 66.2 64.8 61.5

Mean 61.0 60.6 67.4 65.8 65.1 63.4
– std 5.51 2.68 2.06 1.92 1.6 1.55

Structured 55.8 63.2 66.4 65.0 65.2 64.2
– std 1.8 0.741 2.41 2.25 1.87 1.68

Natural 66.3 57.9 68.3 66.5 65.1 62.6
– std 1.44 0.419 0.939 1.12 1.28 0.899

D.7. Additional results 243

Table D.55: Accuracy per prompt template for OPT-30B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 62.2 62.7 66.0 65.2 65.5 65.0
2 62.0 58.7 69.0 65.7 66.3 69.0
3 60.3 63.5 62.7 60.8 60.5 61.5
4 65.0 66.8 57.8 57.2 57.2 56.2
5 60.3 55.8 70.0 66.0 67.2 71.0
6 59.0 54.5 68.3 65.3 67.7 70.2

Mean 61.5 60.3 65.6 63.4 64.1 65.5
– std 1.92 4.37 4.24 3.27 3.87 5.28

Structured 62.5 64.3 62.2 61.1 61.1 60.9
– std 1.93 1.77 3.37 3.27 3.41 3.62

Natural 60.4 56.3 69.1 65.7 67.1 70.1
– std 1.23 1.76 0.698 0.287 0.579 0.822

Table D.56: Accuracy per prompt template for OPT-66B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 59.3 56.2 56.7 56.5 55.7 54.3
2 66.5 67.3 65.3 64.2 67.2 65.2
3 56.5 64.3 55.5 55.0 56.2 52.2
4 62.0 61.5 66.5 63.0 61.7 63.7
5 62.5 66.0 64.8 63.7 65.7 65.0
6 61.2 63.8 60.2 62.5 64.7 64.7

Mean 61.3 63.2 61.5 60.8 61.9 60.8
– std 3.06 3.61 4.3 3.65 4.5 5.43

Structured 59.3 60.7 59.6 58.2 57.9 56.7
– std 2.25 3.36 4.93 3.47 2.72 5.0

Natural 63.4 65.7 63.4 63.5 65.9 65.0
– std 2.26 1.44 2.3 0.713 1.03 0.205

244 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.57: Accuracy per prompt template for OPT-175B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 56.7 58.0 64.8 61.0 65.0 62.3
2 52.7 53.3 67.3 63.2 68.0 65.8
3 54.5 68.5 60.0 55.3 57.8 56.7
4 64.0 66.7 61.5 58.0 62.0 58.7
5 52.0 52.0 65.0 63.8 67.8 65.2
6 52.2 51.7 64.7 63.2 68.0 66.0

Mean 55.3 58.4 63.9 60.8 64.8 62.4
– std 4.19 6.87 2.42 3.13 3.79 3.62

Structured 58.4 64.4 62.1 58.1 61.6 59.2
– std 4.06 4.58 2.0 2.33 2.95 2.32

Natural 52.3 52.3 65.7 63.4 67.9 65.7
– std 0.294 0.694 1.16 0.283 0.0943 0.34

Table D.58: Accuracy per prompt template for Cohere-409.3M (Cohere-small).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.2 49.7 52.7 51.7 53.5 56.0
2 47.5 50.7 52.7 53.2 55.8 57.8
3 57.2 55.5 55.2 55.5 55.7 57.0
4 54.8 53.8 54.5 56.8 54.8 54.5
5 48.5 50.7 52.8 52.7 56.0 58.8
6 47.5 51.0 52.5 53.7 55.3 58.8

Mean 51.6 51.9 53.4 53.9 55.2 57.2
– std 3.91 2.05 1.05 1.72 0.847 1.54

Structured 55.4 53.0 54.1 54.7 54.7 55.8
– std 1.3 2.43 1.05 2.16 0.903 1.03

Natural 47.8 50.8 52.7 53.2 55.7 58.5
– std 0.471 0.141 0.125 0.408 0.294 0.471

D.7. Additional results 245

Table D.59: Accuracy per prompt template for Cohere-6.067B (Cohere-medium).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 54.2 55.3 51.8 56.3 55.3
2 61.8 62.8 64.3 63.8 65.2 64.7
3 57.2 53.3 58.5 55.3 57.8 55.3
4 56.0 53.3 57.0 53.2 55.8 56.7
5 57.8 60.7 64.0 64.2 64.7 64.2
6 56.2 62.8 66.2 64.0 62.8 66.0

Mean 57.3 57.9 60.9 58.7 60.4 60.4
– std 2.24 4.32 4.11 5.38 3.92 4.65

Structured 56.0 53.6 56.9 53.4 56.6 55.8
– std 1.02 0.424 1.31 1.44 0.85 0.66

Natural 58.6 62.1 64.8 64.0 64.2 65.0
– std 2.36 0.99 0.974 0.163 1.03 0.759

Table D.60: Accuracy per prompt template for Cohere-13.12B (Cohere-large).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.3 57.3 56.3 55.0 58.5 59.0
2 59.2 64.2 68.0 66.3 64.7 69.5
3 57.2 62.8 61.0 59.0 64.2 62.3
4 55.5 61.3 56.3 54.0 59.0 59.8
5 56.8 64.3 66.7 64.2 65.7 69.8
6 59.2 60.7 66.5 63.7 65.0 68.3

Mean 57.2 61.8 62.5 60.4 62.9 64.8
– std 1.56 2.41 4.88 4.69 2.94 4.55

Structured 56.0 60.5 57.9 56.0 60.6 60.4
– std 0.852 2.32 2.22 2.16 2.58 1.41

Natural 58.4 63.1 67.1 64.7 65.1 69.2
– std 1.13 1.67 0.665 1.13 0.419 0.648

Table D.61: Accuracy per prompt template for Cohere-52B (Cohere-xl).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 56.0 60.7 70.3 65.3 66.3 68.7
2 62.8 65.0 64.3 64.2 65.0 64.3
3 54.0 65.3 62.8 60.2 64.0 63.5
4 53.8 55.5 61.8 64.8 64.3 64.7
5 62.2 65.7 67.3 63.0 63.7 65.3
6 62.2 65.7 64.2 62.3 65.0 67.8

Mean 58.5 63.0 65.1 63.3 64.7 65.7
– std 3.97 3.77 2.87 1.72 0.855 1.89

Structured 54.6 60.5 65.0 63.4 64.9 65.6
– std 0.993 4.0 3.79 2.3 1.02 2.22

Natural 62.4 65.5 65.3 63.2 64.6 65.8
– std 0.283 0.33 1.44 0.785 0.613 1.47

246 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.62: Accuracy per prompt template for GPT-3-350M (ada).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.3 57.2 58.3 57.5 58.2 60.5
2 46.7 56.8 56.3 59.5 59.2 61.7
3 54.0 54.5 53.3 54.0 56.5 56.7
4 53.5 52.8 54.7 56.7 58.8 59.7
5 49.8 57.3 55.3 58.5 58.8 61.8
6 49.5 57.2 56.3 60.2 61.5 61.2

Mean 51.5 56.0 55.7 57.7 58.8 60.3
– std 3.02 1.72 1.55 2.04 1.48 1.75

Structured 54.3 54.8 55.4 56.1 57.8 59.0
– std 0.759 1.81 2.11 1.5 0.974 1.64

Natural 48.7 57.1 56.0 59.4 59.8 61.6
– std 1.4 0.216 0.471 0.698 1.19 0.262

Table D.63: Accuracy per prompt template for GPT-3-1.3B (babbage).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.7 60.7 61.0 59.0 60.7 57.8
2 63.0 62.5 65.7 61.7 63.0 59.3
3 56.2 59.0 60.5 59.3 64.8 61.0
4 53.3 59.7 60.7 62.5 65.0 66.7
5 59.2 62.5 63.7 61.8 61.5 58.7
6 59.0 60.2 64.3 61.2 62.2 57.7

Mean 57.7 60.8 62.6 60.9 62.9 60.2
– std 3.1 1.33 2.01 1.31 1.6 3.11

Structured 55.1 59.8 60.7 60.3 63.5 61.8
– std 1.27 0.698 0.205 1.58 1.98 3.68

Natural 60.4 61.7 64.6 61.6 62.2 58.6
– std 1.84 1.08 0.838 0.262 0.613 0.66

Table D.64: Accuracy per prompt template for GPT-3-6.7B (curie).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 58.3 63.0 64.8 67.7 64.0
2 57.5 65.2 63.2 65.3 65.8 65.2
3 57.0 54.2 59.2 61.2 60.8 59.3
4 53.3 61.7 62.8 63.8 64.7 60.7
5 55.3 64.2 62.5 64.5 65.8 63.7
6 52.5 63.5 63.7 64.0 66.2 64.3

Mean 54.8 61.2 62.4 63.9 65.2 62.9
– std 1.92 3.83 1.48 1.32 2.14 2.12

Structured 54.5 58.1 61.7 63.3 64.4 61.3
– std 1.74 3.07 1.75 1.52 2.82 1.97

Natural 55.1 64.3 63.1 64.6 65.9 64.4
– std 2.05 0.698 0.492 0.535 0.189 0.616

D.7. Additional results 247

Table D.65: Accuracy per prompt template for GPT-3-175B (davinci).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 61.2 67.3 66.3 62.7 66.7 66.2
2 53.7 65.3 68.8 69.3 71.0 69.7
3 58.7 65.8 68.2 64.7 65.0 65.3
4 64.0 62.8 71.3 68.7 66.2 67.8
5 54.2 66.3 69.0 70.0 70.0 70.8
6 51.7 66.7 68.7 68.3 71.0 70.0

Mean 57.2 65.7 68.7 67.3 68.3 68.3
– std 4.4 1.44 1.46 2.65 2.43 2.03

Structured 61.3 65.3 68.6 65.4 66.0 66.4
– std 2.16 1.87 2.06 2.49 0.713 1.03

Natural 53.2 66.1 68.8 69.2 70.7 70.2
– std 1.08 0.589 0.125 0.698 0.471 0.464

Table D.66: Accuracy per prompt template for BlenderBot-90M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 46.7 51.5 46.7 46.7 46.5 46.5
2 46.7 51.3 46.5 46.7 46.7 46.7
3 46.7 46.7 46.7 46.7 46.3 46.8
4 46.7 46.7 46.7 46.7 46.5 46.7
5 46.7 50.0 46.7 46.7 46.7 46.7
6 46.5 53.5 46.3 46.7 46.7 46.7

Mean 46.7 49.9 46.6 46.7 46.6 46.7
– std 0.0745 2.52 0.153 7.11e-15 0.149 0.0898

Structured 46.7 48.3 46.7 46.7 46.4 46.7
– std 7.11e-15 2.26 7.11e-15 7.11e-15 0.0943 0.125

Natural 46.6 51.6 46.5 46.7 46.7 46.7
– std 0.0943 1.44 0.163 7.11e-15 7.11e-15 7.11e-15

Table D.67: Accuracy per prompt template for BlenderBot-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.0 53.2 53.3 53.0 52.8 53.3
2 53.3 53.3 53.3 53.3 53.3 53.3
3 53.2 53.2 53.3 53.2 53.2 53.2
4 53.5 53.5 53.5 53.3 52.8 53.0
5 53.3 53.3 53.3 53.3 53.3 53.3
6 53.3 53.3 53.3 53.3 53.3 53.3

Mean 53.4 53.3 53.3 53.2 53.1 53.2
– std 0.269 0.1 0.0745 0.111 0.227 0.111

Structured 53.6 53.3 53.4 53.2 52.9 53.2
– std 0.33 0.141 0.0943 0.125 0.189 0.125

Natural 53.3 53.3 53.3 53.3 53.3 53.3
– std 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15

248 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.68: Accuracy per prompt template for BlenderBot-9.4B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.7 51.5 53.0 53.0 53.0 54.0
2 53.2 53.8 54.2 52.5 52.2 52.2
3 53.3 49.7 52.0 54.0 54.2 55.5
4 54.0 55.3 52.5 54.0 53.5 53.7
5 53.3 52.8 53.5 53.2 53.5 53.3
6 52.7 52.0 51.7 53.5 52.8 53.7

Mean 53.4 52.5 52.8 53.4 53.2 53.7
– std 0.407 1.77 0.859 0.537 0.63 0.978

Structured 53.7 52.2 52.5 53.7 53.6 54.4
– std 0.287 2.33 0.408 0.471 0.492 0.787

Natural 53.1 52.9 53.1 53.1 52.8 53.1
– std 0.262 0.736 1.05 0.419 0.531 0.634

Table D.69: Accuracy per prompt template for T0-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 48.7 49.5 46.5 46.7 46.7 46.7
2 46.7 47.5 46.7 46.7 46.7 46.7
3 49.2 48.3 46.7 46.7 46.7 46.7
4 51.7 49.0 46.7 46.7 46.7 46.7
5 46.7 49.2 46.7 46.7 46.7 46.7
6 46.7 49.8 46.8 46.7 46.7 46.7

Mean 48.3 48.9 46.7 46.7 46.7 46.7
– std 1.84 0.773 0.0898 7.11e-15 7.11e-15 7.11e-15

Structured 49.9 48.9 46.6 46.7 46.7 46.7
– std 1.31 0.492 0.0943 7.11e-15 7.11e-15 7.11e-15

Natural 46.7 48.8 46.7 46.7 46.7 46.7
– std 7.11e-15 0.974 0.0471 7.11e-15 7.11e-15 7.11e-15

D.7. Additional results 249

Table D.70: Accuracy per prompt template for T0-11B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.5 47.7 47.3 46.8 46.7 46.7
2 49.3 47.5 46.7 46.7 46.8 46.7
3 65.3 48.8 47.3 46.7 46.7 46.7
4 63.8 48.0 47.0 46.7 46.7 46.7
5 48.0 47.2 46.7 46.7 47.0 46.8
6 49.7 47.5 47.0 46.8 47.0 47.0

Mean 55.6 47.8 47.0 46.7 46.8 46.8
– std 7.04 0.515 0.245 0.0471 0.134 0.111

Structured 62.2 48.2 47.2 46.7 46.7 46.7
– std 3.38 0.464 0.141 0.0471 7.11e-15 7.11e-15

Natural 49.0 47.4 46.8 46.7 46.9 46.8
– std 0.726 0.141 0.141 0.0471 0.0943 0.125

Table D.71: Accuracy per prompt template for Flan-T5-780M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.5 63.3 62.2 60.7 61.5 60.2
2 66.5 65.8 65.3 62.8 65.5 65.0
3 61.7 60.2 58.8 60.8 59.8 59.7
4 58.0 50.2 50.7 51.3 52.3 54.8
5 63.8 69.0 64.3 63.2 65.2 65.5
6 65.3 68.8 64.8 62.3 64.7 63.8

Mean 63.3 62.9 61.0 60.2 61.5 61.5
– std 2.79 6.44 5.1 4.08 4.61 3.73

Structured 61.4 57.9 57.2 57.6 57.9 58.2
– std 2.66 5.59 4.82 4.45 4.0 2.44

Natural 65.2 67.9 64.8 62.8 65.1 64.8
– std 1.1 1.46 0.408 0.368 0.33 0.713

250 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.72: Accuracy per prompt template for Flan-T5-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 58.8 56.8 56.7 57.5 60.0
2 51.2 50.8 59.0 59.2 59.0 59.7
3 54.8 51.3 49.7 49.0 48.7 48.5
4 55.3 50.0 48.0 49.0 49.3 50.8
5 51.0 54.3 57.2 58.0 58.0 57.8
6 48.0 51.2 58.7 59.0 58.0 59.8

Mean 52.5 52.7 54.9 55.1 55.1 56.1
– std 2.65 3.02 4.37 4.42 4.33 4.67

Structured 54.9 53.4 51.5 51.6 51.8 53.1
– std 0.262 3.88 3.81 3.63 4.01 4.97

Natural 50.1 52.1 58.3 58.7 58.3 59.1
– std 1.46 1.56 0.787 0.525 0.471 0.92

Table D.73: Accuracy per prompt template for Flan-T5-11B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.3 61.0 63.7 65.0 62.5 64.3
2 61.5 59.7 63.2 62.3 64.0 68.0
3 56.5 63.0 60.2 57.3 56.7 56.8
4 61.7 47.7 51.7 50.3 50.3 49.5
5 61.5 55.8 64.8 64.7 65.5 66.3
6 59.2 57.5 66.3 63.7 66.0 67.7

Mean 60.8 57.4 61.7 60.5 60.8 62.1
– std 2.42 4.94 4.82 5.25 5.62 6.78

Structured 60.8 57.2 58.5 57.5 56.5 56.9
– std 3.24 6.79 5.04 6.0 4.98 6.04

Natural 60.7 57.7 64.8 63.6 65.2 67.3
– std 1.08 1.6 1.27 0.984 0.85 0.741

D.7. Additional results 251

Table D.74: Accuracy per prompt template for Cohere-command-6b.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 65.0 63.2 71.7 70.2 71.3 70.3
2 64.8 64.2 66.8 67.5 69.8 71.7
3 68.0 65.5 69.2 65.5 66.8 68.2
4 70.0 68.5 69.2 71.2 71.7 73.2
5 66.3 65.0 66.8 67.5 70.5 69.8
6 63.7 63.7 67.7 67.5 70.0 69.5

Mean 66.3 65.0 68.6 68.2 70.0 70.5
– std 2.13 1.74 1.71 1.9 1.59 1.61

Structured 67.7 65.7 70.0 69.0 69.9 70.6
– std 2.05 2.17 1.18 2.49 2.22 2.05

Natural 64.9 64.3 67.1 67.5 70.1 70.3
– std 1.07 0.535 0.424 0.0 0.294 0.974

Table D.75: Accuracy per prompt template for Cohere-command-52b.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 65.2 74.2 77.8 75.8 75.5 76.0
2 61.7 72.0 73.5 75.3 75.2 74.5
3 56.7 74.5 77.3 77.2 76.5 75.0
4 68.2 70.7 76.0 74.8 75.3 75.3
5 54.8 72.7 74.8 76.2 74.8 74.7
6 54.8 73.0 73.0 74.5 75.0 74.5

Mean 60.2 72.8 75.4 75.6 75.4 75.0
– std 5.19 1.29 1.8 0.903 0.546 0.529

Structured 63.4 73.1 77.0 75.9 75.8 75.4
– std 4.87 1.72 0.759 0.984 0.525 0.419

Natural 57.1 72.6 73.8 75.3 75.0 74.6
– std 3.25 0.419 0.759 0.694 0.163 0.0943

252 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.76: Accuracy per prompt template for text-ada-001-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 60.8 62.8 60.8 59.0 58.7 58.8
2 50.7 56.3 54.8 56.0 57.7 52.7
3 63.7 58.5 60.8 59.0 56.7 57.5
4 61.8 56.3 59.3 58.3 61.0 56.7
5 53.3 55.5 55.2 55.7 58.0 54.3
6 48.7 54.7 54.7 56.2 57.7 53.5

Mean 56.5 57.3 57.6 57.4 58.3 55.6
– std 5.82 2.7 2.75 1.43 1.34 2.22

Structured 62.1 59.2 60.3 58.8 58.8 57.7
– std 1.2 2.7 0.707 0.33 1.76 0.865

Natural 50.9 55.5 54.9 56.0 57.8 53.5
– std 1.88 0.653 0.216 0.205 0.141 0.653

Table D.77: Accuracy per prompt template for text-babbage-001-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 67.5 64.0 66.3 63.0 64.0 64.7
2 63.0 62.5 66.2 64.2 66.5 68.2
3 65.3 65.2 66.0 63.2 64.7 64.5
4 65.2 63.5 65.7 62.7 63.0 64.8
5 61.8 64.3 66.5 64.0 66.3 67.8
6 64.0 63.8 66.2 64.2 66.7 66.0

Mean 64.5 63.9 66.1 63.6 65.2 66.0
– std 1.82 0.815 0.25 0.605 1.4 1.5

Structured 66.0 64.2 66.0 63.0 63.9 64.7
– std 1.06 0.713 0.245 0.205 0.698 0.125

Natural 62.9 63.5 66.3 64.1 66.5 67.3
– std 0.899 0.759 0.141 0.0943 0.163 0.957

Table D.78: Accuracy per prompt template for text-curie-001-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 70.7 70.2 72.5 70.8 70.8 70.7
2 66.5 59.3 70.3 69.7 68.3 71.2
3 73.2 70.2 73.5 69.7 71.8 69.7
4 71.3 68.0 71.0 69.8 71.0 69.0
5 65.5 58.8 70.0 70.2 68.5 70.7
6 66.5 59.8 70.7 70.8 69.0 70.8

Mean 69.0 64.4 71.3 70.2 69.9 70.4
– std 2.9 5.14 1.25 0.478 1.35 0.754

Structured 71.7 69.5 72.3 70.1 71.2 69.8
– std 1.07 1.04 1.03 0.497 0.432 0.698

Natural 66.2 59.3 70.3 70.2 68.6 70.9
– std 0.471 0.408 0.287 0.45 0.294 0.216

D.7. Additional results 253

Table D.79: Accuracy per prompt template for text-davinci-001-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 76.5 73.7 75.7 75.7 76.3 76.8
2 72.0 72.5 74.3 75.2 76.0 75.3
3 74.8 74.2 75.7 77.2 75.8 76.8
4 68.0 70.2 72.8 72.8 73.3 75.0
5 72.5 73.2 74.3 74.3 75.3 75.7
6 70.0 72.7 74.3 74.7 75.0 75.3

Mean 72.3 72.7 74.5 75.0 75.3 75.8
– std 2.82 1.28 0.991 1.34 0.986 0.724

Structured 73.1 72.7 74.7 75.2 75.1 76.2
– std 3.67 1.78 1.37 1.83 1.31 0.849

Natural 71.5 72.8 74.3 74.7 75.4 75.4
– std 1.08 0.294 0.0 0.368 0.419 0.189

Table D.80: Accuracy per prompt template for text-davinci-002-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 73.7 76.2 80.2 79.5 79.8 80.7
2 69.5 73.5 78.2 78.5 76.7 79.8
3 73.0 78.7 82.8 82.8 82.7 82.8
4 71.3 79.7 80.5 80.8 82.0 81.5
5 67.5 72.5 79.2 79.2 77.0 79.8
6 68.5 73.2 76.5 76.5 76.2 79.2

Mean 70.6 75.6 79.6 79.5 79.1 80.6
– std 2.28 2.79 1.96 1.94 2.6 1.22

Structured 72.7 78.2 81.2 81.0 81.5 81.7
– std 1.01 1.47 1.16 1.36 1.24 0.865

Natural 68.5 73.1 78.0 78.1 76.6 79.6
– std 0.816 0.419 1.11 1.14 0.33 0.283

254 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.81: Accuracy per prompt template for text-davinci-003-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 74.3 71.7 79.8 80.2 80.7 80.3
2 71.8 75.0 80.2 78.8 78.2 78.3
3 71.8 73.7 79.7 79.5 79.2 81.2
4 65.2 74.2 78.5 78.2 79.7 79.5
5 72.2 75.3 80.2 78.5 78.2 78.8
6 72.2 76.0 79.7 78.8 78.3 79.0

Mean 71.2 74.3 79.7 79.0 79.0 79.5
– std 2.84 1.38 0.57 0.666 0.929 0.975

Structured 70.4 73.2 79.3 79.3 79.9 80.3
– std 3.84 1.08 0.591 0.829 0.624 0.694

Natural 72.1 75.4 80.0 78.7 78.2 78.7
– std 0.189 0.419 0.236 0.141 0.0471 0.294

Table D.82: Accuracy per prompt template for ChatGPT-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 77.8 73.3 72.7 72.7 74.2 74.5
2 73.2 76.2 78.7 78.2 79.7 79.2
3 72.7 74.0 74.3 74.7 75.0 74.8
4 59.3 73.7 60.8 63.5 66.0 68.0
5 74.7 76.8 77.8 77.7 79.3 78.8
6 74.8 76.7 79.0 79.0 79.2 78.5

Mean 72.1 75.1 73.9 74.3 75.6 75.6
– std 5.94 1.48 6.29 5.29 4.79 3.9

Structured 69.9 73.7 69.3 70.3 71.7 72.4
– std 7.8 0.287 6.02 4.88 4.07 3.14

Natural 74.2 76.6 78.5 78.3 79.4 78.8
– std 0.732 0.262 0.51 0.535 0.216 0.287

D.7. Additional results 255

Table D.83: Accuracy per prompt template for GPT-4-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 83.3 82.7 84.0 84.2 85.5 84.5
2 81.8 80.8 80.8 78.0 79.3 79.7
3 84.7 83.7 84.2 85.3 85.5 85.3
4 80.5 84.3 82.5 84.3 83.3 83.7
5 79.5 81.0 80.8 77.0 79.0 79.0
6 80.8 81.3 79.8 79.0 79.8 80.8

Mean 81.8 82.3 82.0 81.3 82.1 82.2
– std 1.76 1.36 1.67 3.37 2.81 2.44

Structured 82.8 83.6 83.6 84.6 84.8 84.5
– std 1.75 0.66 0.759 0.497 1.04 0.653

Natural 80.7 81.0 80.5 78.0 79.4 79.8
– std 0.942 0.205 0.471 0.816 0.33 0.741

256 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.8 Timestamps API calls
For reproducibility purposes, Table D.84, D.85, and D.86 contain the dates and times

the APIs from OpenAI and Cohere were queried for the results.

D.8. Timestamps API calls 257

Table D.84: Timestamp each was evaluated through OpenAI’s API (1/2).

model timestamp

GPT-3-ada/0-shot 2022-09-22 13:13:29
GPT-3-ada/1-shot 2022-09-22 15:11:13
GPT-3-ada/5-shot 2022-09-22 15:40:12
GPT-3-ada/10-shot 2022-09-22 18:14:18
GPT-3-ada/15-shot 2022-09-22 19:15:29
GPT-3-ada/30-shot 2022-09-22 22:47:58
GPT-3-babbage/0-shot 2022-09-22 23:19:05
GPT-3-babbage/1-shot 2022-09-22 23:39:53
GPT-3-babbage/5-shot 2022-09-23 00:01:32
GPT-3-babbage/10-shot 2022-09-23 00:24:27
GPT-3-babbage/15-shot 2022-09-23 00:49:13
GPT-3-babbage/30-shot 2022-09-23 01:15:44
GPT-3-curie/0-shot 2022-09-22 14:04:32
GPT-3-curie/1-shot 2022-09-23 02:09:14
GPT-3-curie/5-shot 2022-09-23 02:32:20
GPT-3-curie/10-shot 2022-09-23 02:56:43
GPT-3-curie/15-shot 2022-09-23 03:23:19
GPT-3-curie/30-shot 2022-09-23 03:52:30
GPT-3-davinci/0-shot 2022-09-22 12:21:48
GPT-3-davinci/1-shot 2022-09-23 14:27:15
GPT-3-davinci/5-shot 2022-09-23 15:10:40
GPT-3-davinci/10-shot 2022-09-23 16:04:53
GPT-3-davinci/15-shot 2022-09-23 17:17:04
GPT-3-davinci/30-shot 2022-09-23 18:36:38
OpenAI-text-ada-001/0-shot 2022-08-17 16:59:45
OpenAI-text-ada-001/1-shot 2022-08-17 18:23:12
OpenAI-text-ada-001/5-shot 2022-08-17 19:16:48
OpenAI-text-ada-001/10-shot 2022-08-17 20:24:16
OpenAI-text-ada-001/15-shot 2022-08-17 21:21:46
OpenAI-text-ada-001/30-shot 2022-08-17 22:44:47
OpenAI-text-babbage-001/0-shot 2022-08-17 11:50:44
OpenAI-text-babbage-001/1-shot 2022-08-17 12:22:08
OpenAI-text-babbage-001/5-shot 2022-08-17 12:50:59
OpenAI-text-babbage-001/10-shot 2022-08-17 13:27:52
OpenAI-text-babbage-001/15-shot 2022-08-17 14:57:43
OpenAI-text-babbage-001/30-shot 2022-08-17 15:45:16
OpenAI-text-curie-001/0-shot 2022-08-18 04:39:55
OpenAI-text-curie-001/1-shot 2022-08-18 05:10:17
OpenAI-text-curie-001/5-shot 2022-08-18 05:40:56
OpenAI-text-curie-001/10-shot 2022-08-18 06:15:28
OpenAI-text-curie-001/15-shot 2022-08-18 06:53:09
OpenAI-text-curie-001/30-shot 2022-08-18 07:35:40
OpenAI-text-davinci-001/0-shot 2022-08-26 20:26:21
OpenAI-text-davinci-001/1-shot 2022-08-26 21:02:31
OpenAI-text-davinci-001/5-shot 2022-08-26 21:35:19
OpenAI-text-davinci-001/10-shot 2022-08-27 07:14:02
OpenAI-text-davinci-001/15-shot 2022-08-27 07:58:25
OpenAI-text-davinci-001/30-shot 2022-08-27 08:44:42

258 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.85: Timestamp each was evaluated through OpenAI’s API - continued
(2/2).

model timestamp

OpenAI-text-davinci-002/0-shot 2022-08-10 21:41:50
OpenAI-text-davinci-002/1-shot 2022-08-11 10:04:17
OpenAI-text-davinci-002/5-shot 2022-08-12 15:41:45
OpenAI-text-davinci-002/10-shot 2022-08-12 16:41:14
OpenAI-text-davinci-002/15-shot 2022-08-16 12:11:43
OpenAI-text-davinci-002/30-shot 2022-08-16 14:35:38
OpenAI-text-davinci-003/0-shot 2023-03-15 11:35:23
OpenAI-text-davinci-003/1-shot 2023-04-04 13:12:05
OpenAI-text-davinci-003/5-shot 2023-03-15 12:30:39
OpenAI-text-davinci-003/10-shot 2023-04-04 14:01:03
OpenAI-text-davinci-003/15-shot 2023-04-04 15:23:29
OpenAI-text-davinci-003/30-shot 2023-04-06 15:08:38
OpenAI-gpt-3.5.turbo/0-shot 2023-04-05 13:33:09
OpenAI-gpt-3.5.turbo/1-shot 2023-04-05 16:36:45
OpenAI-gpt-3.5.turbo/5-shot 2023-04-06 08:46:09
OpenAI-gpt-3.5.turbo/10-shot 2023-04-06 09:54:07
OpenAI-gpt-3.5.turbo/15-shot 2023-04-06 10:57:18
OpenAI-gpt-3.5.turbo/30-shot 2023-04-06 12:03:59
OpenAI-gpt-4/0-shot 2023-04-06 17:38:16
OpenAI-gpt-4/1-shot 2023-04-06 19:41:59
OpenAI-gpt-4/5-shot 2023-04-06 22:56:31
OpenAI-gpt-4/10-shot 2023-04-08 12:06:03
OpenAI-gpt-4/15-shot 2023-04-08 17:32:04
OpenAI-gpt-4/30-shot 2023-04-08 19:56:26

D.8. Timestamps API calls 259

Table D.86: Timestamp each model was evaluated through Cohere’s API.

model timestamp
Cohere-small/0-shot 2022-08-16 22:22:17
Cohere-small/1-shot 2022-08-17 08:22:43
Cohere-small/5-shot 2022-08-17 09:19:57
Cohere-small/10-shot 2022-08-17 10:43:53
Cohere-small/15-shot 2022-08-17 12:53:02
Cohere-small/30-shot 2022-08-17 13:46:08
Cohere-medium/0-shot 2022-08-17 15:14:02
Cohere-medium/1-shot 2022-08-17 16:00:21
Cohere-medium/5-shot 2022-08-17 18:23:38
Cohere-medium/10-shot 2022-08-17 19:16:00
Cohere-medium/15-shot 2022-08-17 20:24:12
Cohere-medium/30-shot 2022-08-17 21:20:28
Cohere-large/0-shot 2022-08-17 22:47:49
Cohere-large/1-shot 2022-08-17 23:27:00
Cohere-large/5-shot 2022-08-18 00:10:08
Cohere-large/10-shot 2022-08-18 00:56:55
Cohere-large/15-shot 2022-08-18 01:48:30
Cohere-large/30-shot 2022-08-18 02:47:14
Cohere-xl/0-shot 2022-07-29
Cohere-xl/1-shot 2022-07-31
Cohere-xl/5-shot 2022-08-02
Cohere-xl/10-shot 2022-08-02 15:16:45
Cohere-xl/15-shot 2022-08-07 13:55:44
Cohere-xl/30-shot 2022-08-16 19:51:08
Cohere-command-medium/0-shot 2023-04-04 09:54:27
Cohere-command-medium/1-shot 2023-04-04 11:51:07
Cohere-command-medium/5-shot 2023-04-04 13:03:07
Cohere-command-medium/10-shot 2023-04-04 13:31:47
Cohere-command-medium/15-shot 2023-04-04 14:06:10
Cohere-command-medium/30-shot 2023-04-04 14:42:13
Cohere-command-xl/0-shot 2023-04-04 10:25:30
Cohere-command-xl/1-shot 2023-04-04 15:27:01
Cohere-command-xl/5-shot 2023-04-04 15:59:47
Cohere-command-xl/10-shot 2023-04-04 16:36:22
Cohere-command-xl/15-shot 2023-04-04 17:22:58
Cohere-command-xl/30-shot 2023-04-04 18:16:54

260 Appendix D. A Case Study in Social Reasoning: Pragmatics

D.9 Compute and Emissions
Find below in Table D.87 until Table D.92 the timestamps, durations, and emissions

per experiment (calculated with the CodeCarbon library in Python). Find below in

Table D.93 until Table D.96 the cpu-type and count and gpu-type and count per

experiment. In terms of compute the following GPU hours can be estimated if we

assume each run is entirely done on the GPU (which is not true in reality, but worst

case):

NVIDIA A100-SXM4-40GB used for 926.4291392151515 hours.

Tesla V100-PCIE-32GB used for 29.282544113265143 hours.

Tesla V100-PCIE-16GB used for 11.462701331244574 hours.

D.9. Compute and Emissions 261

Table D.87: Timestamp, duration, and emissions per experiment with non-API
models. (1/6)

model timestamp duration

EleutherAI-125m-0-shot 2022-09-01T21:33:14 8549.649220
EleutherAI-125m-1-shot 2022-09-02T00:10:03 640.861120
EleutherAI-125m-5-shot 2022-09-02T00:26:27 982.369876
EleutherAI-125m-10-shot 2022-09-02T00:51:24 1495.525381
EleutherAI-125m-15-shot 2022-09-02T01:29:03 2257.290708
EleutherAI-125m-30-shot 2022-09-02T09:04:03 27298.375266
EleutherAI-2.7b-0-shot 2022-09-03T00:36:14 3752.897449
EleutherAI-2.7b-1-shot 2022-09-03T02:04:16 5279.884696
EleutherAI-2.7b-5-shot 2022-09-03T04:28:19 8641.654516
EleutherAI-2.7b-10-shot 2022-09-03T08:18:13 13792.592126
EleutherAI-2.7b-15-shot 2022-09-03T13:33:25 18909.551123
EleutherAI-2.7b-30-shot 2022-09-03T22:47:06 33219.682098
EleutherAI-20b-0-shot 2022-08-25T07:40:55 1378.197924
EleutherAI-20b-1-shot 2022-08-25T08:15:23 807.702344
EleutherAI-20b-5-shot 2022-08-25T15:39:51 859.585535
EleutherAI-20b-10-shot 2022-08-25T16:18:50 1175.128651
EleutherAI-20b-15-shot 2022-08-25T16:47:30 1713.266182
EleutherAI-20b-30-shot 2022-08-25T17:45:28 3469.811664
EleutherAI-6b-0-shot 2022-08-24T22:29:30 1287.627453
EleutherAI-6b-1-shot 2022-08-24T23:22:30 1831.554774
EleutherAI-6b-5-shot 2022-08-25T00:16:57 3255.128955
EleutherAI-6b-10-shot 2022-08-25T01:23:21 3971.650578
EleutherAI-6b-15-shot 2022-08-25T02:26:23 3772.113814
EleutherAI-6b-30-shot 2022-08-25T04:18:30 6719.419030
EleutherAI-1.3b-0-shot 2022-09-02T09:54:06 3000.666020
EleutherAI-1.3b-1-shot 2022-09-02T10:46:30 3142.207699
EleutherAI-1.3b-5-shot 2022-09-02T12:25:25 5933.046596
EleutherAI-1.3b-10-shot 2022-09-02T12:39:00 8509.257493
EleutherAI-1.3b-15-shot 2022-09-02T18:00:39 11615.289366
EleutherAI-1.3b-30-shot 2022-09-02T23:33:39 19978.306457

262 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.88: Timestamp, duration, and emissions per experiment with non-API
models. (2/6)

model timestamp duration

BLOOM-3b-0-shot 2022-08-31T12:54:37 5178.369790
BLOOM-3b-1-shot 2022-08-31T14:39:32 6292.560350
BLOOM-3b-5-shot 2022-08-31T17:37:29 10675.230701
BLOOM-3b-10-shot 2022-08-31T21:59:27 15715.744792
BLOOM-3b-15-shot 2022-09-01T03:41:02 20492.823278
BLOOM-3b-30-shot 2022-09-01T15:47:21 43577.882397
BLOOM-7b1-0-shot 2022-08-25T04:56:35 625.931470
BLOOM-7b1-1-shot 2022-08-25T05:07:13 630.628939
BLOOM-7b1-5-shot 2022-08-25T05:24:22 1022.138932
BLOOM-7b1-10-shot 2022-08-25T05:49:00 1471.008220
BLOOM-7b1-15-shot 2022-08-25T06:23:26 2058.455127
BLOOM-7b1-30-shot 2022-08-25T07:29:46 3972.772039
BLOOM-560m-0-shot 2022-08-29T15:35:52 2541.248956
BLOOM-560m-1-shot 2022-08-29T18:52:16 2532.794568
BLOOM-560m-5-shot 2022-08-29T20:16:16 5038.547060
BLOOM-560m-10-shot 2022-08-29T22:17:43 7285.239875
BLOOM-560m-15-shot 2022-08-30T00:38:23 8438.096533
BLOOM-560m-30-shot 2022-08-30T04:38:44 14419.447170
BLOOM-1b1-0-shot 2022-08-30T05:18:44 2398.828856
BLOOM-1b1-1-shot 2022-08-30T06:06:45 2879.435828
BLOOM-1b1-5-shot 2022-08-30T07:35:59 5352.607075
BLOOM-1b1-10-shot 2022-08-30T10:15:02 9541.535419
BLOOM-1b1-15-shot 2022-08-30T13:22:42 11257.077128
BLOOM-1b1-30-shot 2022-08-30T18:08:15 17131.797610
BLOOM-176b-0-shot 2022-10-14T12:51:11 3015.240235
BLOOM-176b-1-shot 2022-10-14T13:57:53 3906.461752
BLOOM-176b-5-shot 2022-10-14T20:41:10 7411.725385
BLOOM-176b-10-shot 2022-10-23T21:43:21 14462.201855
BLOOM-176b-15-shot 2022-10-24T01:14:10 12609.026736
BLOOM-176b-30-shot 2022-10-14T20:47:02 33159.499966

D.9. Compute and Emissions 263

Table D.89: Timestamp, duration, and emissions per experiment with non-API
models. (3/6)

model timestamp duration

OPT-13b-0-shot 2022-08-25T07:07:08 878.202579
OPT-13b-1-shot 2022-08-25T07:31:30 458.133617
OPT-13b-5-shot 2022-08-25T07:37:39 578.308507
OPT-13b-10-shot 2022-08-25T08:01:50 821.158826
OPT-13b-15-shot 2022-08-25T08:20:49 1131.479665
OPT-13b-30-shot 2022-08-25T16:05:27 2235.869414
OPT-350m-0-shot 2022-09-16T17:26:28 389.173905
OPT-350m-1-shot 2022-09-16T17:33:42 424.832551
OPT-350m-5-shot 2022-09-16T18:00:14 1583.824094
OPT-350m-10-shot 2022-09-16T18:32:12 1908.822462
OPT-350m-15-shot 2022-09-16T19:03:23 1863.625027
OPT-350m-30-shot 2022-09-16T19:47:29 2637.811867
OPT-125m-0-shot 2022-09-16T15:15:56 273.178967
OPT-125m-1-shot 2022-09-16T15:20:28 259.680856
OPT-125m-5-shot 2022-09-16T15:41:37 1259.801105
OPT-125m-10-shot 2022-09-16T16:09:59 1693.598805
OPT-125m-15-shot 2022-09-16T16:41:46 1899.415318
OPT-125m-30-shot 2022-09-16T17:19:51 2276.441314
OPT-6.7b-0-shot 2022-08-24T23:03:07 1140.485014
OPT-6.7b-1-shot 2022-08-24T23:17:51 872.225225
OPT-6.7b-5-shot 2022-08-24T23:34:40 995.894396
OPT-6.7b-10-shot 2022-08-24T23:55:44 1252.956499
OPT-6.7b-15-shot 2022-08-25T00:23:04 1627.749039
OPT-6.7b-30-shot 2022-08-25T01:05:49 2553.054289
OPT-2.7b-0-shot 2022-09-18T16:35:05 686.197892
OPT-2.7b-1-shot 2022-09-18T16:45:11 593.508211
OPT-2.7b-5-shot 2022-09-18T17:12:11 1613.313387
OPT-2.7b-10-shot 2022-09-18T17:44:48 1949.808232
OPT-2.7b-15-shot 2022-09-18T18:22:02 2225.927837
OPT-2.7b-30-shot 2022-09-18T19:09:05 2815.327871
OPT-30b-0-shot 2022-08-25T19:03:37 591.665447
OPT-30b-1-shot 2022-08-25T19:14:32 645.923823
OPT-30b-5-shot 2022-08-25T16:44:22 1825.821606
OPT-30b-10-shot 2022-08-25T17:07:22 1372.752916
OPT-30b-15-shot 2022-08-25T17:41:05 2015.006104
OPT-30b-30-shot 2022-08-25T18:10:39 3859.078056
OPT-1.3b-0-shot 2022-09-17T17:53:50 595.193443
OPT-1.3b-1-shot 2022-09-17T18:03:45 579.367790
OPT-1.3b-5-shot 2022-09-17T18:33:18 1759.103432
OPT-1.3b-10-shot 2022-09-17T19:12:19 2327.300123
OPT-1.3b-15-shot 2022-09-17T19:48:32 2161.637401
OPT-1.3b-30-shot 2022-09-17T20:37:00 2893.829010

264 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.90: Timestamp, duration, and emissions per experiment with non-API
models. (4/6)

model timestamp duration

OPT-175b-0-shot 2022-10-19T15:02:56 2387.104187
OPT-175b-1-shot 2022-10-19T16:34:06 1589.972279
OPT-175b-5-shot 2022-10-19T17:25:58 3072.591171
OPT-175b-10-shot 2022-10-19T17:33:15 6211.692086
OPT-175b-15-shot 2022-10-19T21:29:16 8019.585246
OPT-175b-30-shot 2022-10-19T21:36:53 19901.470347
OPT-66b-0-shot 2022-08-25T18:58:11 2834.901372
OPT-66b-1-shot 2022-08-25T19:22:09 1427.806986
OPT-66b-5-shot 2022-08-25T19:47:39 1521.168440
OPT-66b-10-shot 2022-08-25T20:24:56 2228.407874
OPT-66b-15-shot 2022-08-25T21:41:21 3370.689256
OPT-66b-30-shot 2022-08-26T00:31:36 6816.312183

D.9. Compute and Emissions 265

Table D.91: Timestamp, duration, and emissions per experiment with non-API
models. (5/6)

model timestamp duration

BlenderBot-2.7b-0-shot 2022-09-04T08:09:56 3656.381540
BlenderBot-2.7b-1-shot 2022-09-12T15:58:01 4051.858183
BlenderBot-2.7b-5-shot 2022-09-12T17:16:20 4696.628979
BlenderBot-2.7b-10-shot 2022-09-12T18:35:53 4772.083818
BlenderBot-2.7b-15-shot 2022-09-12T19:54:13 4698.638356
BlenderBot-2.7b-30-shot 2022-09-12T21:10:34 4579.460884
BlenderBot-9.4b-0-shot 2022-10-22T04:04:24 614.201131
BlenderBot-9.4b-1-shot 2022-10-22T17:17:21 659.975971
BlenderBot-9.4b-5-shot 2022-10-22T17:31:48 839.336277
BlenderBot-9.4b-10-shot 2022-10-22T17:46:18 843.852691
BlenderBot-9.4b-15-shot 2022-10-22T17:53:41 1262.038660
BlenderBot-9.4b-30-shot 2022-10-22T18:23:25 853.334728
BlenderBot-90m-0-shot 2022-09-14T15:11:44 273.134700
BlenderBot-90m-1-shot 2022-09-14T15:17:38 351.542638
BlenderBot-90m-5-shot 2022-09-14T15:29:50 730.774348
BlenderBot-90m-10-shot 2022-09-14T15:47:22 1050.647882
BlenderBot-90m-15-shot 2022-09-14T16:07:27 1204.079804
BlenderBot-90m-30-shot 2022-09-14T16:28:55 1285.913686
T0-3b-0-shot 2022-10-21T17:33:36 348.245298
T0-3b-1-shot 2022-10-24T23:20:57 350.730799
T0-3b-5-shot 2022-10-24T23:29:21 474.378557
T0-3b-10-shot 2022-10-25T15:56:54 676.111759
T0-3b-15-shot 2022-10-25T16:12:55 928.215524
T0-3b-30-shot 2022-10-24T23:30:17 1961.897054
T0-11b-0-shot 2022-10-21T15:38:13 2289.815276
T0-11b-1-shot 2022-10-22T19:18:25 814.872760
T0-11b-5-shot 2022-10-22T19:41:45 1368.644314
T0-11b-10-shot 2022-10-22T20:17:30 2112.628515
T0-11b-15-shot 2022-10-22T21:06:30 2904.655213
T0-11b-30-shot 2022-10-22T22:41:16 5648.105648

266 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.92: Timestamp, duration, and emissions per experiment with non-API
models. (6/6)

model timestamp duration

Flan-T5-3b-0-shot 2022-10-24T11:20:36 617.820384
Flan-T5-3b-1-shot 2022-10-25T12:29:59 348.405589
Flan-T5-3b-5-shot 2022-10-25T12:38:24 474.872964
Flan-T5-3b-10-shot 2022-10-25T12:50:00 665.592482
Flan-T5-3b-15-shot 2022-10-25T13:05:34 902.197151
Flan-T5-3b-30-shot 2022-10-25T13:37:14 1864.885266
Flan-T5-780m-0-shot 2022-10-24T11:54:09 160.503411
Flan-T5-780m-1-shot 2022-10-25T14:41:28 3816.321305
Flan-T5-780m-5-shot 2022-10-25T14:46:09 251.699700
Flan-T5-780m-10-shot 2022-10-25T14:52:09 331.340966
Flan-T5-780m-15-shot 2022-10-25T14:59:00 381.107934
Flan-T5-780m-30-shot 2022-10-25T15:11:18 705.711192
Flan-T5-11b-0-shot 2022-10-24T10:25:09 1111.283857
Flan-T5-11b-1-shot 2022-10-24T10:56:52 654.411412
Flan-T5-11b-5-shot 2022-10-25T17:26:50 1403.159768
Flan-T5-11b-10-shot 2022-10-25T18:29:59 3756.529085
Flan-T5-11b-15-shot 2022-10-25T19:21:15 3042.271478
Flan-T5-11b-30-shot 2022-10-25T20:57:13 5722.244579

Table D.93: Compute used per experiment with non-API models. (1/4)

model cpus cpu model gpu model

EleutherAI-125m-0-shot 10 Apple M1 Max
EleutherAI-125m-1-shot 10 Apple M1 Max
EleutherAI-125m-5-shot 10 Apple M1 Max
EleutherAI-125m-10-shot 10 Apple M1 Max
EleutherAI-125m-15-shot 10 Apple M1 Max
EleutherAI-125m-30-shot 10 Apple M1 Max
EleutherAI-2.7b-0-shot 10 Apple M1 Max
EleutherAI-2.7b-1-shot 10 Apple M1 Max
EleutherAI-2.7b-5-shot 10 Apple M1 Max
EleutherAI-2.7b-10-shot 10 Apple M1 Max
EleutherAI-2.7b-15-shot 10 Apple M1 Max
EleutherAI-2.7b-30-shot 10 Apple M1 Max
EleutherAI-20b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-1.3b-0-shot 10 Apple M1 Max
EleutherAI-1.3b-1-shot 10 Apple M1 Max
EleutherAI-1.3b-5-shot 10 Apple M1 Max
EleutherAI-1.3b-10-shot 10 Apple M1 Max
EleutherAI-1.3b-15-shot 10 Apple M1 Max
EleutherAI-1.3b-30-shot 10 Apple M1 Max

D.9. Compute and Emissions 267

Table D.94: Compute used per experiment with non-API models. (2/4)

model cpus cpu model gpu model

BLOOM-3b-0-shot 10 Apple M1 Max
BLOOM-3b-1-shot 10 Apple M1 Max
BLOOM-3b-5-shot 10 Apple M1 Max
BLOOM-3b-10-shot 10 Apple M1 Max
BLOOM-3b-15-shot 10 Apple M1 Max
BLOOM-3b-30-shot 10 Apple M1 Max
BLOOM-7b1-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-560m-0-shot 10 Apple M1 Max
BLOOM-560m-1-shot 10 Apple M1 Max
BLOOM-560m-5-shot 10 Apple M1 Max
BLOOM-560m-10-shot 10 Apple M1 Max
BLOOM-560m-15-shot 10 Apple M1 Max
BLOOM-560m-30-shot 10 Apple M1 Max
BLOOM-1b1-0-shot 10 Apple M1 Max
BLOOM-1b1-1-shot 10 Apple M1 Max
BLOOM-1b1-5-shot 10 Apple M1 Max
BLOOM-1b1-10-shot 10 Apple M1 Max
BLOOM-1b1-15-shot 10 Apple M1 Max
BLOOM-1b1-30-shot 10 Apple M1 Max
BLOOM-176b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB

268 Appendix D. A Case Study in Social Reasoning: Pragmatics

Table D.95: Compute used per experiment with non-API models. (3/4)

model cpus cpu model gpu model

OPT-13b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-350m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-6.7b-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-2.7b-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-30b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-1.3b-0-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-1-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-5-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-10-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-15-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-30-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-175b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-66b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB

D.9. Compute and Emissions 269

Table D.96: Compute used per experiment with non-API models. (4/4)

model cpus cpu model gpu model

BlenderBot-2.7b-0-shot 10 Apple M1 Max
BlenderBot-2.7b-1-shot 10 Apple M1 Max
BlenderBot-2.7b-5-shot 10 Apple M1 Max
BlenderBot-2.7b-10-shot 10 Apple M1 Max
BlenderBot-2.7b-15-shot 10 Apple M1 Max
BlenderBot-2.7b-30-shot 10 Apple M1 Max
BlenderBot-9.4b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-90m-0-shot 10 Apple M1 Max
BlenderBot-90m-1-shot 10 Apple M1 Max
BlenderBot-90m-5-shot 10 Apple M1 Max
BlenderBot-90m-10-shot 10 Apple M1 Max
BlenderBot-90m-15-shot 10 Apple M1 Max
BlenderBot-90m-30-shot 10 Apple M1 Max
T0-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB

Appendix E

A Case Study in Social

Reasoning: Theory of Mind

This chapter contains the raw counts for the experiments in Chapter 6.

E.1 Detailed results
Table E.1 and E.2 show the results for GPT-4 on the pillar target templates and fruit

target templates respectively. Table E.3 and E.4 show the results for GPT-3.5-turbo

on the pillar target templates and fruit target templates respectively. Table E.5 and

E.6 show the results for text-davinci-003 on the pillar target templates and fruit

target templates respectively.

Table E.1: Animate, inanimate, and control object and location bias for GPT-4
on prompts from the group Pillar targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate
denotation.

Category Model H Anim N obj bias N loc bias N unclassified

Animate

GPT-4 0 N 3.8 +/- 4.5 3.0 +/- 4.3 3.2 +/- 4.4
GPT-4 6 N 0.4 +/- 1.4 9.6 +/- 1.4 0.0 +/- 0.1

GPT-4 0 Y 3.7 +/- 4.3 3.2 +/- 4.0 3.0 +/- 3.9
GPT-4 6 Y 0.5 +/- 1.6 9.5 +/- 1.6 0.0 +/- 0.0

Inanimate

GPT-4 0 N 3.6 +/- 4.5 3.4 +/- 4.4 3.1 +/- 4.3
GPT-4 6 N 0.1 +/- 0.7 9.9 +/- 0.7 0.0 +/- 0.0

GPT-4 0 Y 3.6 +/- 4.6 3.2 +/- 4.5 3.3 +/- 4.5
GPT-4 6 Y 0.0 +/- 0.1 10.0 +/- 0.1 0.0 +/- 0.1

Control

GPT-4 0 N 3.6 +/- 3.9 3.2 +/- 3.5 3.2 +/- 3.6
GPT-4 6 N 0.1 +/- 0.3 9.9 +/- 0.3 0.0 +/- 0.0

GPT-4 0 Y 3.7 +/- 3.5 3.3 +/- 3.4 3.0 +/- 3.4
GPT-4 6 Y 0.0 +/- 0.0 10.0 +/- 0.0 0.0 +/- 0.0

272 Appendix E. A Case Study in Social Reasoning: Theory of Mind

Table E.2: Animate, inanimate, and control object and location bias for GPT-4
on prompts from the group Fruit targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate
denotation.

Category Model H Anim N obj bias N loc bias N unclassified

Animate

GPT-4 0 N 0.0 +/- 0.0 0.0 +/- 0.1 10.0 +/- 0.1
GPT-4 6 N 6.1 +/- 3.7 2.0 +/- 3.2 1.8 +/- 3.0

GPT-4 0 Y 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0
GPT-4 6 Y 5.4 +/- 3.8 1.0 +/- 2.4 3.6 +/- 3.7

Inanimate

GPT-4 0 N 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0
GPT-4 6 N 3.0 +/- 3.5 5.7 +/- 4.1 1.3 +/- 2.5

GPT-4 0 Y 0.0 +/- 0.1 0.0 +/- 0.1 10.0 +/- 0.2
GPT-4 6 Y 2.3 +/- 3.1 5.8 +/- 4.0 1.9 +/- 3.1

Control

GPT-4 0 N 0.0 +/- 0.2 0.0 +/- 0.2 9.9 +/- 0.3
GPT-4 6 N 5.5 +/- 3.5 1.6 +/- 2.9 2.9 +/- 3.1

GPT-4 0 Y 0.0 +/- 0.0 0.0 +/- 0.0 10.0 +/- 0.0
GPT-4 6 Y 5.0 +/- 3.6 2.6 +/- 3.7 2.4 +/- 3.0

Table E.3: Animate, inanimate, and control object and location bias for GPT-
3.5-turbo on prompts from the group Pillar targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template
has animate denotation.

Category Model H Anim N obj bias N loc bias N unclassified

Animate

GPT-3.5-turbo 0 N 3.7 +/- 4.4 2.7 +/- 4.0 3.6 +/- 4.4
GPT-3.5-turbo 6 N 4.5 +/- 4.3 5.3 +/- 4.2 0.2 +/- 0.6

GPT-3.5-turbo 0 Y 3.2 +/- 4.4 2.7 +/- 4.2 4.1 +/- 4.6
GPT-3.5-turbo 6 Y 5.2 +/- 4.5 4.7 +/- 4.5 0.1 +/- 0.5

Inanimate

GPT-3.5-turbo 0 N 3.2 +/- 3.7 3.0 +/- 3.6 3.9 +/- 3.8
GPT-3.5-turbo 6 N 3.3 +/- 3.7 6.0 +/- 3.8 0.7 +/- 1.5

GPT-3.5-turbo 0 Y 3.1 +/- 4.2 2.9 +/- 4.0 4.0 +/- 4.3
GPT-3.5-turbo 6 Y 3.3 +/- 3.9 6.2 +/- 3.9 0.5 +/- 1.2

Control

GPT-3.5-turbo 0 N 3.1 +/- 4.4 2.9 +/- 4.4 4.0 +/- 4.7
GPT-3.5-turbo 6 N 3.7 +/- 4.4 5.3 +/- 4.3 0.9 +/- 2.2

GPT-3.5-turbo 0 Y 3.2 +/- 4.4 2.8 +/- 4.1 4.1 +/- 4.6
GPT-3.5-turbo 6 Y 3.8 +/- 4.4 6.0 +/- 4.4 0.2 +/- 0.7

E.1. Detailed results 273

Table E.4: Animate, inanimate, and control object and location bias for GPT-3.5-
turbo on prompts from the group Fruit targets. H stands for habitua-
tions, and Anim for whether (Y) or not (N) the prompt template has
animate denotation.

Category Model H Anim N obj bias N loc bias N unclassified

Animate

GPT-3.5-turbo 0 N 0.1 +/- 0.3 0.1 +/- 0.4 9.8 +/- 0.4
GPT-3.5-turbo 6 N 6.0 +/- 3.4 1.8 +/- 3.2 2.2 +/- 2.3

GPT-3.5-turbo 0 Y 0.1 +/- 0.3 0.1 +/- 0.3 9.9 +/- 0.4
GPT-3.5-turbo 6 Y 7.4 +/- 2.6 0.8 +/- 2.2 1.8 +/- 2.0

Inanimate

GPT-3.5-turbo 0 N 0.3 +/- 0.6 0.2 +/- 0.7 9.5 +/- 0.9
GPT-3.5-turbo 6 N 6.3 +/- 3.8 2.8 +/- 3.6 0.8 +/- 1.5

GPT-3.5-turbo 0 Y 0.9 +/- 1.4 0.7 +/- 1.1 8.4 +/- 1.6
GPT-3.5-turbo 6 Y 5.3 +/- 4.2 4.0 +/- 4.3 0.7 +/- 1.4

Control

GPT-3.5-turbo 0 N 0.0 +/- 0.2 0.0 +/- 0.2 9.9 +/- 0.2
GPT-3.5-turbo 6 N 7.8 +/- 3.1 1.6 +/- 3.2 0.6 +/- 1.0

GPT-3.5-turbo 0 Y 0.0 +/- 0.2 0.1 +/- 0.2 9.9 +/- 0.3
GPT-3.5-turbo 6 Y 8.2 +/- 2.8 1.3 +/- 2.8 0.5 +/- 0.8

Table E.5: Animate, inanimate, and control object and location bias for text-
davinci-003 on prompts from the group Pillar targets. H stands for
habituations, and Anim for whether (Y) or not (N) the prompt template
has animate denotation.

Category Model H Anim Obj p Loc p Obj bias

Animate

text-davinci-003 0 N 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 N 0.0 +/- 0.1 1.0 +/- 0.1 0.0 +/- 0.1

text-davinci-003 0 Y 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 Y 0.0 +/- 0.1 1.0 +/- 0.1 0.0 +/- 0.1

Inanimate

text-davinci-003 0 N 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2
text-davinci-003 6 N 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0

text-davinci-003 0 Y 0.2 +/- 0.1 0.2 +/- 0.1 0.5 +/- 0.2
text-davinci-003 6 Y 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0

Control

text-davinci-003 0 N 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 N 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0

text-davinci-003 0 Y 0.3 +/- 0.2 0.3 +/- 0.2 0.5 +/- 0.2
text-davinci-003 6 Y 0.0 +/- 0.0 1.0 +/- 0.0 0.0 +/- 0.0

274 Appendix E. A Case Study in Social Reasoning: Theory of Mind

Table E.6: Animate, inanimate, and control object and location bias for text-davinci-
003 on prompts from the group Fruit targets. H stands for habituations,
and Anim for whether (Y) or not (N) the prompt template has animate
denotation.

Category Model H Anim Obj p Loc p Obj bias

Animate

text-davinci-003 0 N 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2
text-davinci-003 6 N 0.9 +/- 0.2 0.1 +/- 0.2 0.9 +/- 0.2

text-davinci-003 0 Y 0.1 +/- 0.1 0.1 +/- 0.1 0.5 +/- 0.2
text-davinci-003 6 Y 1.0 +/- 0.2 0.0 +/- 0.2 1.0 +/- 0.2

Inanimate

text-davinci-003 0 N 0.1 +/- 0.0 0.1 +/- 0.0 0.5 +/- 0.2
text-davinci-003 6 N 0.7 +/- 0.4 0.3 +/- 0.4 0.7 +/- 0.4

text-davinci-003 0 Y 0.0 +/- 0.0 0.0 +/- 0.0 0.5 +/- 0.2
text-davinci-003 6 Y 0.8 +/- 0.3 0.2 +/- 0.3 0.8 +/- 0.3

Control

text-davinci-003 0 N 0.0 +/- 0.0 0.0 +/- 0.0 0.5 +/- 0.3
text-davinci-003 6 N 1.0 +/- 0.0 0.0 +/- 0.0 1.0 +/- 0.0

text-davinci-003 0 Y 0.1 +/- 0.0 0.1 +/- 0.0 0.5 +/- 0.2
text-davinci-003 6 Y 1.0 +/- 0.0 0.0 +/- 0.1 1.0 +/- 0.0

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Outline
	List of Publications

	Background
	Reasoning
	Social Reasoning

	Large Language Models
	Pre-training
	Post-training
	Compute scaling

	Influence Functions

	How Models Learn to Reason from Pre-training Data
	Overview
	Method
	Experimental Setup
	Experiments and Results
	Quantitative analysis
	Qualitative analysis

	Related work
	Discussion, Limitations, and Future Work

	How Models Learn to Reason from Code Data
	Overview
	LLMs as Interpreters: Programming LLMs by Training on Code
	Experimental Setup
	Datasets
	Training Details

	Results
	Random Arithmetic Results
	Leetcode and Cipher Results

	Related Work
	Discussion, Limitations, and Future Work

	A Case Study in Social Reasoning: Pragmatics
	Overview
	Evaluation Protocol
	Experiments
	Related Work
	Discussion, Limitations, and Future Work

	A Case Study in Social Reasoning: Theory of Mind
	Overview
	Evaluation Protocol
	Experiments
	Related Work
	Discussion, Limitations, and Future Work

	Conclusions
	The Nature of LLM Reasoning
	Discussion
	Stochastic Parrots, or Not?
	The Surprising Effectiveness of Next-token Prediction at Scale
	Pre-training or Post-training, Where do Models Learn to Reason?
	Scaling Compute Infinitely

	Concrete Future Directions

	Bibliography
	How to Kick Your Appendix-Skipping Habit
	How Models Learn to Reason from Pre-training Data
	Counterfactual Re-training Experiments with Influence Functions
	EKFAC Influence Functions
	Justifying Approximations
	Full implementation

	Query sets
	Query keywords for finding the answer
	Prompts given to Command R+ for finding the answer
	Prompts for characterising the query-document relation
	Further discussion of limitations
	Additional qualitative analysis
	Answers to questions in pre-training data
	Cross-lingual transfer
	Characterise relation top documents to query
	Source dataset analysis
	Content analysis of relevant documents

	Additional quantitative analysis
	Correlation analysis
	Magnitude of influence
	Influence spread: power laws

	How Models Learn to Reason from Code Data
	Hyperparameters
	SFT
	RL

	Data Scaling
	Ablation over Dataset Size
	Ablation over Number of IO Pairs

	Single-Stage Programming by Backprop
	Online vs. Offline Retroactive-PBB
	Ciphers Data
	Natural Language Descriptions
	Compute Requirements

	A Case Study in Social Reasoning: Pragmatics
	Background on implicature
	Detailed prompt templates
	Model categorisation
	Human evaluation
	Comparison with BIG-bench implicatures task
	Discarding ambiguous examples
	Overestimation of performance on implicature understanding
	Other limitations

	Chain-of-thought completions by GPT-4
	Additional results
	Contrastive experiment
	Variance over prompt ordering
	Different zero-shot instruction prompts
	The effect of in-context examples on sensitivity to prompt wording
	Variance over API runs
	Experiment with random in-context labels
	Chain-of-thought on base models
	Testing for spurious correlations
	Detailed results type label analysis
	Detailed results per model

	Timestamps API calls
	Compute and Emissions

	A Case Study in Social Reasoning: Theory of Mind
	Detailed results

