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Abstract

Purpose: to compare the statistical power of structural and visual field (VF) outcomes for
randomised clinical trials (RCTs) in glaucoma.

Design: analysis of retrospectively collected data.

Participants: Eighty-two glaucoma patients were recruited to a test—retest study, during
which up to ten 24-2 SITA Standard VF and circumpapillary retinal nerve fibre layer (coRNFL)
Spectralis OCT scans were collected in separate sessions over 3 months.

Methods: Eyes with at least three sessions with a reliable VF (false positives < 15%) and
cpRNFL scan (quality index = 25 dB) were selected (127 eyes, 68 patients) to model the test-
retest variability and the structural floor effect. These estimates were combined with a
published realistic structure-function progression model from the United Kingdom Glaucoma
Treatment Study to simulate longitudinal RCTs (30% neuroprotective effect). Simulations
only included data from eyes with early to moderate VF loss (Mean Deviation, MD, 2-10 dB,
107 eyes, 65 patients). Simulations were repeated 5000 times to estimate sample size
requirements to detect a significant difference (p < 0.05) in the rate of change of MD and
average cpRNFL thickness, estimated with a linear mixed effect model. We also tested the
power of a significant outcome with either metric (p < 0.025). A supplementary analysis was
performed including eyes with early VF loss only (MD >-6 dB).

Main outcome measures: sample size at 80% power for the linear rate of MD, cpRNFL and
their combination.

Results: at 80% power, the required sample size (patients [95%-Confidence Interval]) was
38% smaller for the MD rate (292 [300, 283]) than the cpRNFL rate (470 [481, 459]). The
sample size for the combined outcome was only marginally smaller than the MD alone (275
[283, 268]). The supplementary analysis on eyes with early VF loss showed similar results.

Conclusions: using realistic modelling of structure-function progression and test-retest data,
MD progression showed higher statistical power cpRFNL as an outcome measure for clinical
trials.
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The main objective glaucoma management is to prevent further loss of vision by reducing
the speed of disease progression. Progression of glaucoma is primarily monitored with visual
field (VF) testing, a direct quantification of the patients’ field of vision. The introduction of
optical coherence tomography (OCT) imaging has also allowed the monitoring of structural
changes of the optic nerve head and the circumpapillary retinal nerve fiber layer (cpRNFL).
However, the correlation between functional and structural changes is imperfect?, because
of variability in test results and inherent characteristics of structural and functional
parameters. The biggest discrepancy between structure and function arises from the
structural floor effect?: large changes in VF can occur without apparent loss of RNFL,
especially in more advanced disease. This floor effect is partially a consequence of the
difference in scale (logarithmic for VF, linear for OCT), but it is also a direct effect of non-
neural tissue which contributes to the RNFL thickness measured by imaging?.

At present, lowering the intraocular pressure (IOP) is the only recognized approach to treat
glaucoma. However, there is active research in the discovery and validation of non-IOP
related neuroprotection, with some compounds already being tested in phase Il randomized
clinical trials (RCTs). The most common outcome measure is the rate of VF progression*.
Linear mixed effect models (LMM) are often used to identify statistically significant
differences in the average rate of progression of the Mean Deviation (MD), a global
summary metric of VF loss>~°. OCT metrics, such as cpRNFL, have been considered as
alternative outcomes. Imaging derived metrics are particularly attractive because their
perceived lower variability and the belief that early structural loss precedes functional
changes. However, rigorous comparisons do not confirm this view%!, In a recent analysis of
data from the United Kingdom Glaucoma Treatment Study (UKGTS)3, we have also shown
that the true rate of functional and structural progression are largely the same, once the
confounding effects of measurement scale and structural floor are minimized?.

One important aspect to consider for clinical outcome measures, especially in RCTs, is their
statistical power to detect a treatment effect. This is often quantified with the help of
mathematical approximations or computer simulations®>71>13, These, however, rely on
accurate modelling of test variability and progression. There is evidence to support that MD
progression can be accurately described by a linear decay*!> and its test-retest variability is
well characterized®1°. In contrast, cpRNFL and other structural metrics exhibit a non-linear
behavior over time, also as a consequence of the floor effect?°. The relationship between
structural and functional rates of change is also complex. These intricacies have often been
overlooked in previous research?2! and can greatly affect a fair comparison between
structural and functional metrics.

Our recent description of structural and functional progression in UKGTS offers a
comprehensive framework for realistic simulation of glaucoma progression?. We combine
this improved framework and test-retest data from a cohort of glaucoma patients to provide
accurate estimates of the statistical power of VF and OCT in glaucoma neuroprotection RCTs.
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Methods

RAPID test-retest dataset

Eighty-two clinically stable glaucoma patients were recruited to a test—retest study.?> The
study was undertaken in accordance with good clinical practice guidelines and adhered to
the tenets of the Declaration of Helsinki. The study was approved by the North of Scotland
National Research Ethics Service committee (reference no. 13/NS/0132), and NHS
Permissions for Research were granted by the Joint Research Office at University College
London Hospitals NHS Foundation Trust on December 3, 2013. All patients provided written
informed consent before the screening investigations were carried out. Criteria for inclusion
were: reproducible VF loss with congruent damage to the optic nerve head; no other
condition that could lead to VF loss; age > 18 years old; visual acuity of at least 20/40;
refractive error within £8 diopters (D); an IOP of < 30 mmHg; a VF mean deviation (MD)
better than -16 decibels (dB) in the worse eye and better than -12 dB in the better eye.
Patients performed VF testing and OCT imaging in up to 10 separate appointments over a
period of 3 months, during which no meaningful progression of the disease was expected.
VF testing was undertaken with a Humphrey Field Analyzer (HFA) using a SITA Standard
strategy with a 24-2 pattern. Unreliable tests were repeated on the same day (with a break
of at least 30 minutes). Circumpapillary RNFL OCT imaging (cpRNFL-OCT, 12 degrees scan
diameter) was carried out using a SPECTRALIS Spectral Domain OCT (software version 5.2.4)
in follow-up mode using the same baseline test.

For this study, we selected eyes that had at least three episodes in their test-retest session
with a corresponding reliable VF (false-positive errors < 15%)?3 and a cpRNFL-OCT scan with
a quality index 2 25 dB. Note that, in each session, the operator was allowed multiple scan
attempts, to achieve the highest possible quality. If more than one OCT scan was available at
the same visit, we chose the one with the highest quality scan index. Data from all available
eyes meeting these criteria were used for the characterization of the floor effect and of the
test-retest variability, stratified by damage (see later). However, for the simulations, we only
included eyes with an average MD > -10 dB, replicating previous studies*?. This was meant to
prevent a large influence from the perimetric and structural measurement floor, although
the structural floor effect was explicitly modeled (see later). The variability was quantified as
the standard deviation (SD) of the test-retest series. OCT data were missing for 3 patients (6
eyes); one additional patient (both eyes) did not have any OCT scans of sufficient quality. No
visits were excluded because of unreliable VF tests (see flowchart in supplementary
material for details). The final selection for the simulations was composed of 881 tests
performed in 107 eyes of 65 subjects. The descriptive statistics for this sample are reported
in Table 1. It should be noted that most of this sample (85/107 eyes) had early damage (MD
> -6 dB). However, a supplementary analysis was also performed with simulations including
eyes with a MD = -6 dB.
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Simulation experiments

Simulation model

The simulations were based on the modelling described in Montesano et al.%*3 For VF, the
model describes the observed linear rate of MD progression as a combination of a sign-
reversed exponential distribution, representing the distribution of ‘true’ negative
progression rates, and a Gaussian distribution, modelling the uncertainty introduced by test
variability. The mean of the Gaussian distribution also captures the effect of learning, i.e. a
positive bias in the rates of progression from patients’ initial inexperience with the test.
When fitted on patients’ data, the model can estimate the distribution of ‘true’ rates of
progression in a population. In Montesano et al.?, we extended this model to study the
functional and structural progression in the UKGTS. For structural data, the learning was set
to zero and the data were transformed into a dB scale, to replicate the scale of the MD data.
The model also estimates the correlation between the ‘true’ rates of structural and
functional progression. Of the different implementations of the model in Montesano et al.?,
these simulations used the one where the average measurement floor was removed from
the structural data before taking the logarithm to transform in the dB scale. The elements of
the model relevant for the simulations are described in detail below. A flowchart is provided
as supplementary material.

Structural and functional progression

For each eye, the true rate of MD and cpRNFL progression was sampled from a sign-reversed
exponential distribution. The structural and functional rates were sampled as correlated
observations, as explained in Montesano et al.?, using the within-eye correlation estimated
from the UKGTS data (0.75).

For the MD, the mean rate was -0.38 dB/year, the average ‘true’ rate reported for a large
cohort of glaucoma patients under active management?!2. For the cpRNFL, the mean rate
was 61% of the MD rate (i.e. -0.23 dB/year). As explained above, this is the cpRNFL rate in dB
scale, after removing the average floor effect. The 61% ratio was derived from the model
estimates in UKGTS. In Montesano et al.2, we have shown that this difference in the true rate
of MD and cpRNFL progression is likely an artifact arising from the fact that the MD is the
average of dB values, whereas the transformed cpRNFL is the logarithm of the average
cpRNFL thickness. Indeed, the average true rates of functional and structural progression
were very similar when the MD was replaced with the logarithm of the average of un-logged
sensitivity values. However, to replicate a typical clinical trial scenario, our simulations use
MD and cpRNFL and therefore retain this artifactual difference in true rate. Note that the
proportional effect of IOP was essentially identical between structure and function,
regardless of the functional metric used. This suggests that the effect of treatment has a
similar proportional effect on progression. We make this assumption in our simulations (see
below).
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Each set of simulated true rates was paired randomly with an eye in the RAPID cohort. The
average MD and cpRNFL calculated from the test-retest data were used as the baseline true
MD and cpRNFL in the simulations. Simulated true values were generated for 16 visits over 2
years, following the testing schedule in UKGTS, with clustering of two test at 0, 2, 16, 18 and
24 months (same testing schedule for VF and OCT). For MD, the linear rate was used to
directly calculate the simulated true values. For the cpRNFL, additional transformations were
required to simulate realistic progression: 1) a structural floor level was randomly generated
(see later) and subtracted from the baseline; 2) the floor-corrected baseline was
transformed into a dB scale (Baseline gz = 10 X loglO(Baseline#m)); 3) the simulated
structural rate was used to generate simulated true cpRNFL values over time, in dB scale; 4)
the dB values were reconverted in linear scale before adding the generated floor value back
in. An example of the simulation for an individual eye is shown in Figure 1.

The structural floor effect cannot be determined directly for individual eyes. The statistical
distribution used to sample the floor value was determined by fitting a linear structure-
function model, similar to the one proposed by Hood and Kardon?, using the un-logged
average MD and the average cpRNFL from the RAPID cohort (Figure 2). As previously
mentioned, this part of the modelling did not exclude patients with an MD < -10 dB, to
obtain a better estimate of the structural floor (127 eyes, 65 patients). In the model, the un-
logged MD is the independent variable and the intercept is an estimate of the floor. The
distribution for the floor effect was a Gaussian with mean equal to the estimated intercept
(56.7 um) and standard deviation equal to the residual standard error (12.1 um). Whenever
the sampled floor value was higher than the assumed cpRNFL baseline thickness, the value
was replaced with the 2.5% confidence quantile of the estimated average baseline
(Baseline,,, —1.96 X SD/\/N), where SD is the test-retest standard deviation for that eye.
It should be noted that, while both cpRNFL and MD are measured with noise, these results
are obtained from averaging at least 3 test results per eye, with 102 / 127 eyes having 5 or
more test results available, improving the accuracy of our estimates.

Simulation of test variability

We used the test-retest data from the RAPID cohort to generate a population model for the
expected average variability according to the level of MD and cpRFNL loss. Similarly to the
floor effect, we did not exclude patients with an MD < -10 dB when constructing our
population model of variability. For MD, we fitted a generalized linear model (logarithmic
link function for the mean with a Gamma distributed error) predicting the test-retest
variance (calculated for each eye) according to the average MD. We used a quadratic
relationship to describe the data (see Figure 2). Note that, because of the logarithmic link
function, the predicted values for the variance cannot be negative. For the cpRNFL, we did
not find any significant relationship with the average thickness (Figure 2, p = 0.951).

To capture the inter-eye variation in test-retest variability, we calculated the ratio between
each eye’s calculated and predicted test-retest variance. Note that, because they are
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calculated for each eye and used as paired values, these variance ratios also capture the
across-eye correlation between the magnitude of variability of structural and functional
tests. Also note that, because there is no change in the assumed cpRNFL variability with the
level of damage, the predicted variability is simply the average variance and this procedure
returns the original SDs for the structural metrics. We then calculated the within-eye
correlation between the standardized structural and functional test-retest residuals, to
guantify how much the test-retest residuals correlated across visits in each eye.

We used the variability models defined above to add realistic noise to our simulations. We
first generated a pair of correlated standardized residuals for each eye, using a standard
bivariate Gaussian distribution and the within-eye residual correlation calculated for each
eye. For clustering visits, we also accounted for the correlation between simulated test
repeats on the same day. Medeiros et al.?* reported a within cluster correlation of
approximately 0.2 for both OCT and VF tests. Their tests were, however, not performed on
the same day. The same-day test correlation is likely to be similar for OCT, but higher for VF,
due to an overall performance effect. In the UKGTS cohort used in Montesano et al.?, we
estimated a same-day VF correlation of 0.33, calculated by adding the visit effect as a
random intercept term to a standard LMM, together with subject specific random intercepts
and slopes, similarly to Bryan et al.'®> This same LMM was also used to estimate the outcome
of a trial accounting for such correlations, and is described in the next paragraph. We
therefore simulated a same-day correlation of 0.2 for OCT tests and 0.33 for VF tests.

In summary, for the simulations, we calculated the predicted variance of structural and
functional tests (a function of the simulated MD for VF tests; the average variance for
cpRNFL). We scaled this predicted variance by the specific variance ratio of the eye being
simulated. These variances were transformed into standard deviations and used to scale the
standardized residuals calculated in the previous step. These residuals were finally added to
the simulated true values.

Simulated outcomes for randomized clinical trials

For each simulated trial, we generated simulated test series for an increasing number of
eyes (from 100 to 2000, in steps of 100), sampled with replacement from the main selection
cohort (MD > -10 dB). These eyes were randomly assigned to the treatment or placebo arm.
For the treatment arm, the true rate of progression was reduced by 30% (-0.27 dB/year for
MD, -0.16 dB/year for cpRNFL), i.e. the same proportional change was applied to both
structure and function. A 30% treatment effect was chosen since it is often reported as being
clinically meaningful and detectable with feasible sample sizes in neuroprotection RCTs>12,
Note that larger effects would affect the sample size but not the relative differences in
power of the two outcomes. A supplementary analysis assuming the same baseline rate and
the same treatment difference (in dB/year) for both structure and function was also
performed.
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For each run of the simulation, following previous literature>®!?, we tested the difference in
the average rates of structural and functional progression between the two arms using a
LMM, with random intercepts and slopes. The LMM used either the MD or the linear cpRNFL
as outcome variables. Note that this is different from the more complex model used to
simulate realistic structural and functional progression, described above, and that the
structural outcome for the LMM was the linear cpRNFL (um/year). We also tested an
alternative version of the LMM, that would model the same-day variability with the addition
of a random intercept term for the test cluster, similar to the global visit effect proposed by
Bryan et al.'®. This LMM was the same used to calculate the 0.33 same-day correlation from
UKGTS data and used for our simulations (see previous paragraph).

Subj Subj isi
yij = ,30 + ﬁltij + BzArmi + :83(tij X Arml—) + bol: ) + bl:J Jtij + bg}SIt + gij

In the formula, By, B1, B2, B3 are the fixed effects, with 5 representing the difference in rate

between the two arms. The random slopes are represented by the term bi’;’bj. The two

random intercept terms bgli’bj and b(\)’}S“ represent the subject and visit effect respectively. All

random effects and the residuals are assumed to follow a Gaussian distribution. The
standard LMM is identical, but missing the b(\)’}-s” term. The same-day correlation can be
estimated as
2
O\

Same-day correlation = ——— VIitO >
Ovisito T O
The simulations were repeated 5000 times. A p-value < 0.05 was considered statistically
significant. The statistical power was calculated as the percentage of simulations with a
statistically significant difference. The standard error for the power were calculated as SE =

\/Pp<0.05 X (1 - Pp<0_05)/N, where N is the number of simulations and Py, o5 is the

proportion of p-values below the significance threshold. Following Wu and Medeiros*?, a
combination outcome (significant difference in either the MD or the cpRNFL progression)
was also tested. For the combination outcome, the significance threshold was lowered to
0.025, to maintain the same false-discovery rate. A null-hypothesis simulation is provided as
supplementary material, confirming a false discovery rate close to the expected 5% for all
outcomes. Statistical testing was not performed to compare the power curves, because
simulations allow for arbitrarily large sample sizes.

Results

The within-eye residual correlation between MD and cpRNFL was, on average, very small
(Mean + SD: -0.07 + 0.4). The power and sample size calculations obtained from the
simulations are reported in Figure 3 and Table 2. In general, MD showed higher statistical
power than cpRNFL as an outcome. At 80% power, the estimated sample size was 38% lower
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for MD than for cpRNFL. The combined outcome (significant difference in either the MD or
cpRNFL progression) performed marginally better than either outcome in isolation, but
overall very similarly to MD alone. Modelling the same-day test correlation (i.e. the global
visit effect) did not have any meaningful impact on the statistical power of either outcome,
beyond small random fluctuations in the simulations (Table 2).

Importantly, neglecting the same-day correlations did not cause any systematic bias in the
estimates (Figure 4). The LMMs explicitly accounting for the visit effect were able to
correctly estimate these correlations, on average, with a much larger variability in the
estimate for the cpRNFL outcome. For the largest sample size, in the control arm, the
average estimated rate of progression across simulations (reported as mean + SD of the trial
results, not of individual-level data) was -0.38 + 0.02 dB/year and -0.91 + 0.02 um/year for
the MD and cpRNFL respectively. The estimated average difference due to treatment across
trial simulations was 0.11 + 0.02 dB/year and 0.26 + 0.02 um/year for the MD and cpRNFL.

The supplementary analysis including only eyes with early damage (MD >-6 dB) showed
similar results. The supplementary analysis assuming the same baseline rate and the same
treatment difference (in dB/year) for both structure and function also confirmed our main
results. These results are provided as supplementary material.

Discussion

In our simulation experiments, MD progression performed better than average cpRNFL
progression as a clinical outcome for RCTs in terms of statistical power and sample size
requirements. The treatment effect on the rate of progression was measured with a LMM, a
standard approach for establishing statistically significant differences in the rate of glaucoma
progression®. Differently from previous literature, the power of LMMs was tested with
simulated data derived from a realistic model of MD and cpRNFL progression in glaucoma.
We used a combination of sophisticated modelling based on data from a landmark clinical
trial (UKGTS) and extensive test-retest data collected from a cohort of glaucoma patients.
Additionally, we have evaluated an implementation of the LMM that accounts for
correlations between tests performed on the same visit. This version of the LMM was able to
correctly identify these correlations, explicitly introduced in the simulations and based on
published and experimental data?*. However, this did not have a meaningful impact on the
results in terms of statistical power and accuracy of the estimates.

Determining the optimal outcome measure is an essential step in the design of glaucoma
RCTs. The recent development and testing of novel neuroprotective treatments has reignited
the interest in efficient outcome measures®>?°. VF testing is a proven and well-established
technology to monitor glaucoma progression, and has a direct linkage to patients’ vision-
related quality of life?’~2, Indeed, VF has been successfully used to establish the
effectiveness of glaucoma treatment®*. However, proving IOP independent neuroprotection
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in patients actively treated to lower their IOP is particularly challenging because of the
slower rate of progression compared to untreated patients. The detection of differences in
the rate of MD progression with LMM has been proposed as a more powerful technique
compared to traditional event-based analyses®’. The rate of MD progression has also been

7-9

shown to be predictive of event-based progression’~, an outcome generally accepted by

regulatory bodies®.

Owing to the considerable test-retest variability of VF tests!®~*8, often dependent on
patients’ performance®®, imaging outcomes have been proposed as a more robust
alternative to functional testing'%?1. However, translating loss of cpRNFL thickness measured
by OCT into functional loss is challenging. So far, standard OCT metrics have not been shown
to be superior to VF as trial outcomes'2. Moreover, the hypothesized advantage of structural
endpoints is predicated upon their higher repeatability. However, good repeatability alone
does not guarantee better detection of progression, especially when not considered in the
context of a the measurements dynamic range, which might be limited by the floor
effect229,

Characterizing the interplay between structural and functional progression is challenging but
crucial to develop realistic models of glaucoma progression, necessary for sample size
calculations. In a recent analysis of UKGTS data?, we have used empirical data from a clinical
trial to show that the rate of progression and proportional effect of IOP are very similar for
structural and functional loss once the differences in scaling and the structural floor effect
are taken into account. We used a model designed to characterize the distribution of true
rates of functional and structural progression, minimizing the effect of test variability on
measured rates and, for VF tests, the effect of learning®3. Taken together, those results
support a description of progression based on a proportional loss of retinal ganglion cell
axons. This would translate to a linear decay in a logarithmic (dB) scale for both structure
and function. The constant proportional effect of IOP on the rate of structural and functional
progression (i.e. a constant change in dB/year per mmHg) also justifies the modelling of the
same 30% treatment effect for both metrics'3. It however is possible that IOP-independent
neuroprotective treatments might behave differently for structure and function, also based
on their specific mechanism of action. This would need to be better characterized when data
on non-lOP neuroprotective treatments become widely available. Our simulations also
assumed a moderate correlation of 0.75 between the true rates of MD and cpRNFL
progression, based on our empirical results from UKGTS?. A sensitivity analysis assuming a
lower correlation (0.4) was also performed, and is provided as supplementary material. The
results were largely similar to our main simulations, although the combined outcome
performed marginally better.

Our modelling also allowed us to integrate the non-linear effect of the structural floor (see
Methods). It is important to clarify that there is a substantial difference between the
measurement floor in VF and OCT data. In the VF, the floor is the result of censoring the

10
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measurement at 0 dB, although also likely close to the ‘true’ floor3%32; in contrast, the
structural floor is an intrinsic property of the tissue being measured, whose minimum is
biased by the presence of non-neural tissue>??°. For the VF, this means that global
measurements, such as the MD, are only affected once the floor has been reached at one or
more locations. The rate of proportional loss estimated for the cpRNFL is instead always
distorted by the offset introduced by non-neural tissue in the measured thickness. For
example, a change from 100 pum to 70 pum is a 30% reduction in cpRNFL thickness. However,
subtracting the average floor (56.7 um in our estimates) from both values, would imply a
70% loss in neural tissue. This effect was captured in our simulations (Figure 1). This also
explains why simply log-transforming the data would not address the influence of the floor
effect. This also implies that, differently from VFs, restricting the selection to patients with
an earlier baseline damage, such as with an MD > -10 dB, would have a limited impact in
addressing this issue, even when the floor level is not reached for the duration of the trial.
To show this, we have performed a supplementary analysis, restricting the inclusion to
patients with early damage (MD > -6 dB), with little change to our results despite some
improvement in the power of cpRNFL. It should be noted that the vast majority of the
originally selected sample (85 / 107 eyes) was already in this category, so these results are
unsurprising. Methods exist to address the censoring floor in VF data3?, they have not yet
been developed for structural measurements. Addressing this issue will likely involve a
customized estimate of the floor based on the specific anatomy of each eye and might prove
challenging. The measured rates of progression for structure and function are also
influenced by how the summary metrics are calculated (average of dB values for MD, dB
transformation of the average thickness for coRNFL?). However, defining the treatment
effect in proportional terms largely eliminates the influence of this discrepancy. This is
shown by our supplementary analysis assuming the same baseline rate and the same
treatment difference (in dB/year) for both structure and function, which confirmed our main
results (supplementary material).

Our results have important implications for clinical trial design. Our simulations show a
higher statistical power with MD based outcomes as opposed to cpRNFL. This is in contrast
with Wu et al.*2, who showed very similar power for the two metrics. Our sample was
selected to be similar in terms of baseline damage (MD > -10 dB), but other differences
could explain the discrepancy. The main difference is that Wu et al.22 imposed a 30%
reduction in both the rate of MD progression and the linear rate of cpRNFL loss. In our
simulation, the effect of treatment was applied to the proportional rate of loss in both
structure and function. This was justified by the very similar proportional effect of IOP in the
UKGTS cohort?. Critically, the simplification adopted by Wu et al. is able to approximate the
average change (the treatment effect was approximately 28% in linear scale for cpRFNL, see
Results and Figure 4), but fails to capture the non-linear behavior of cpRNFL thickness
change within the same eyes as it progresses and the variability across eyes with different
levels of initial cpRNFL loss?°. Wu et al.'? also showed that a combined outcome would be
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more powerful than either in isolation. This is in partial agreement with our results: despite
a small improvement in statistical power, there was little difference compared to only using
the MD (Figure 3 and Table 2). However, the power of a combined outcome was sensitive to
some of our assumptions (see supplementary material), showing marginally better power
when the MD variability was increased or the correlation in the true rates of structure-
function progression was reduced. It should be noted that this combined outcome would
propose two alternative statistical hypotheses. We do not think that this framework would
be easily accepted by a regulatory body, because if would prevent the definition of a clear
primary outcome. A more promising option could be the integration of structural data to
refine the assessment of VF progression3334 or to improve the precision of the VF test
itself3>. Of course, different simulated effect sizes would provide different sample size
requirements. A 30% treatment effect was chosen for comparison with previous literature,
in which it is often reported as both clinically meaningful and detectable with practically
achievable sample sizes in neuroprotection RCTs>®12, Note that different effect sizes would
not change the power comparison between the two outcomes.

Our analyses also address other important issues in the quantification of progression for
clinical trials. Our simulations capture many of the complex features of test variability and
the correlations between structural and functional metrics. Taking advantage of our well
curated test-retest data collected over a short period of time, we modeled both the
systematic change in variability with the level of VF loss and retained the heterogeneous
variability of individual eyes. Our simulations also replicated the correlation of pairs of
structural and functional measurements obtained on the same visit. Variability in structural
and functional measurements is expected to be largely independent (patients performing
poorly on a VF on one day would not necessarily exhibit a similar fluctuation in their
structural measurement). Our data generally confirm this expectation, because the
correlation between structural and functional residuals was, on average, close to zero (see
Results). This indicates that such correlations could be disregarded in future modelling. This
has implication for clinical practice as well, because it would allow the use of structural and
functional assessments as independent metrics of glaucoma progression. It should be noted,
however, that long-term correlations might still exist, especially when these are caused by
changes in media opacity (such as dry eye and development of cataract or corneal
opacities).

Another important aspect explored in our analysis is the effect of correlations within clusters
of test repeats performed on the same visit. Medeiros et al. have shown a correlation of
approximately 0.2 for both VF and OCT results for tests taken close together, but not on the
same day?*. The correlations were expected to be higher for VFs performed on the same day,
because fluctuations in performance are likely to affect all the tests taken on a given day.
This was confirmed by the data from the UKGTS cohort, in which the correlation was 0.33.
Clarifying the impact of these correlations on the statistical power and the accuracy of the
estimates from LMMs is crucial, since these are often neglected in most implementations’~
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913 Conveniently, LMMs can be easily modified to account for these correlations (see
Methods), which were replicated in our simulated data. However, our results show no
difference in statistical power and accuracy of the estimates when modelling these
correlations (see Figure 3, Figure 4 and Table 2), suggesting a small impact for clinical trial
results for testing schedules like the one in the UKGTS. It should be noted, however, that the
impact of these correlations would greatly vary based on the number of tests per cluster, the
number of clusters in the series and their collocation within the testing schedule (large
clusters at the beginning or the end of the trial would have a strong leverage on the slopes).
Interestingly, the extended LMMs were able to correctly estimate, on average, the
correlations in the simulated data (Figure 4), and might be a promising approach to evaluate
their effect on different study designs.

Despite its relative complexity, our realistic model is mostly characterized by a series of
parameters, provide in the Methods, Figures and Tables, that can be used to replicate our
simulations. This has implications beyond the design of clinical trials, because simulations
have become widespread tool to assess the clinical effectiveness of global OCT and VF
metrics in clinical monitoring. These have often relied on simplistic assumptions, especially
when modelling cpRFNL progression!?2%3¢,

One limitation of our model is the lack of characterization of specific subgroups, the diversity
of which is known to have a large impact on structural metrics36-38, This is, however, mostly a
limitation of the available data rather than the methodology. Better characterization of these
sources of variability could be easily integrated into our framework and improve the
accuracy of the results. A limitation of our test-retest dataset is the inability to inform about
long-term variability, which might be larger than short-term3. However, long-term
fluctuations can only be evaluated over a long period of time, during which progression
cannot be excluded, compromising the accuracy of their quantification. In UKGTS, the overall
residual standard deviation (using the same longitudinal LMM used to estimate the GVE in
the methods) was 1.19 dB for an average MD of -4 dB. The prediction from our variability
model at the same MD would be 0.95 dB. Despite being similar, we performed a set of
simulations in which we proportionally increased the predicted variability for MD to match
the expected long-term variability from UKGTS (supplementary material). Despite not
changing the cpRNFL variability in a similar way, the rate of MD progression still showed
better statistical power. There was, however, a bigger advantage in using the combined
outcome compared to our main results.

Naturally, the limited number of patients in our test-retest cohort meant that the same eyes,
many of which were pairs from the same patient, had to be sampled multiple times in our
simulations. While this procedure does, on average, replicate the distribution of the data, it
does not generate fully independent eyes. However, the impact on the results would be
small, because the correlated rates of MD and cpRNFL progression were generated
independently for each simulated eye. It should also be mentioned that other analyses could
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focus on point-wise progression for VF and sectoral changes for coRNFL, as well as different
OCT metrics, such as those based on detailed maps of the macular ganglion cell layer and
RNFL. These might change the results of our power calculation. However, MD rates of
progression are now preferred to point-wise event-based analyses since they have shown
better statistical power>’. This makes the average cpRNFL a good candidate for a fair
comparison of the statistical power between structural and functional progression. In the
current implementation, our simulations do not model the systematic correlation between
baseline damage and rates of progression. While this would not affect our power
calculations, it would have an important effect when exploring the impact of different
inclusion criteria.

One important caveat is that all our calculations assume a model developed from a single
trial. The UKGTS is peculiar in that it provides data on structural and functional glaucoma
progression in patients without treatment or treated without escalation. Very few trials have
collected similar data®, making a full independent validation difficult. However, given the
broad range of disease and IOP in UKGTS, its results are likely to be generalizable. Another
important aspect to consider is that the model assumes the same average neuroprotective
effect regardless of the level of damage. The predictions of the model are interpreted as
indicating a consistent proportional loss of retinal ganglion cell axons and bodies, leading to
a similar proportional rate of true structural and functional loss. We do not have reason to
think that this proportional effect would change systematically across levels of damage and
this interpretation is consistent with previous modelling based on histology from Harwerth
et al.*? Finally, the model allows disagreement between structural and functional
progression, assuming a within-eye correlation of 0.752. This, however, does not take into
account systematic sources of structure-function discrepancy, which might influence these
correlations. This influence would be difficult to quantify in practice, because of the
confounding effect of the structural floor and test-retest variability.

In conclusion, our results show no advantage in using cpRNFL over MD as an outcome for
clinical trials and a limited impact of their combination. Future efforts should focus on
improving the analysis of coRNFL change and on more effectively integrating the information
from structural and functional data to improve statistical power.

Figure captions

Figure 1. Example of a simulation for an individual eye. A pair of correlated true rates of
structural and functional progression (in dB) is sampled from their respective exponential
distribution (top-left). The linear rate is applied directly to simulate the functional
progression (bottom-left). The structural rate is converted in linear units, considering the
structural floor as explained in the text (top-right). The residuals are simulated based on the
correlation observed in the test-retest data for the selected eye (-0.55 in this example,

i.e. anticorrelated). The black lines and dots represent the true and simulated values, the red
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dots represent the residuals. MD = Mean Deviation; OCT = Optical Coherence Tomography;
cpRNFL = circum-papillary Retinal Nerve Fibre Layer.

Figure 2. In all plots, the lighter colored points indicate eyes that were excluded from the
simulations, because their MD was < -10 dB. They were however included in these
calculations. The top panel shows the structure-function model used to estimate the
distribution of floor values (dashed line and blue Gaussian on the left). The structure-
function relation is shown with a solid black line. The two bottom panel show the variability
model for the MD (left). The data are shown in blue, the model predictions are in black. No
model was used for the structural data. The axes are in logarithmic steps. One eye had a very
large cpRNFL test-retest variability (standard deviation = 17.15 microns). This was excluded
when attempting the model fits described in the methods, but was used in the simulations.
MD = Mean Deviation; cpRNFL = circum-papillary Retinal Nerve Fibre Layer; SD = Standard
deviation.

Figure 3. Power curves for a 30% effect with the different outcomes. Results obtained with
two types of linear mixed effect models are reported, one neglecting and one modelling the
correlations among test results obtained on the same visit. The shaded areas represent the
95% confidence bands. MD = Mean Deviation; cpRNFL = circumpapillary retinal nerve fiber
layer.

Figure 4. Parameter estimates obtained from the models during the simulations. The error
bars represent + one standard deviation. Results obtained with two types of linear mixed
effect models are reported, one neglecting and one modelling the correlations among test
results obtained on the same visit. The correlation values are only estimated with the second
type of model. MD = Mean Deviation; cpRNFL = circumpapillary retinal nerve fiber layer.
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Characteristic Visual Field (MD, dB), N = 107" cpRNFL Thickness (um), N = 107’

Average -2.34 (-5.47, -1.02) 72.85 (63.84, 84.19)
Variability, SD 0.66 (0.49, 0.95) 0.62 (0.47, 0.82)
False positive rate, % 1.43 (0.50, 2.56)

Quality, dB 28.22 (27.17, 29.35)
Number of tests 9(7,10) 9 (7,10)

"Median (IQR)
Table 1. Descriptive statistics of the sample selected for the simulations (MD = -10 dB). SD =

Standard deviation; RNFL = Retinal Nerve Fibre Layer; MD = Mean Deviation; IQR =
Interquartile Range.



Sample size [95% Cls]

Model Outcome

80% power

90% power

MD rate
w/o same-day correlation cpRNFL rate

Combined

292 [300, 283]
470 [481, 459]
275 [283, 268]

386 [398, 374]
616 [636, 597]
363 [374, 352]

MD rate
w/ same-day correlation cpRNFL rate

Combined

289 [298, 281]
469 [480, 457]
274 [281, 266]

385 [397, 373]

616 [636, 596]
364 [374, 353]

Table 2. Sample size calculations to detect a 30% effect (p < 0.05) for the different outcomes.
Results obtained with two types of linear mixed effect models are reported, one neglecting
and one modelling the correlations among test results obtained on the same visit. MD =
Mean Deviation; cpRNFL = circumpapillary retinal nerve fiber layer; Cl = confidence intervals.
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Floor distribution
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Power
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Using a realistic simulation model, the rate of progression of visual field mean deviation
showed higher statistical power than the rate of the average retinal nerve fiber thickness as
an outcome for neuroprotection trials.



