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ABSTRACT

Building foundation models for MRI has emerged as a
promising direction for advancing medical image analysis
and improving accessibility of task specific models. Existing
approaches primarily focus on effective pretraining strategies
and evaluating their performance across diverse downstream
tasks. While these methods show performance gains, lim-
ited attention has been given to understanding task alignment
between pretraining and downstream objectives. Unlike lan-
guage models, where the two stages are naturally aligned,
such alignment is less evident in vision based applications.
Motivated by this gap, we explore continual pretraining.
Specifically, continually pretraining a pretrained ViT en-
coder using Low-Rank Adaptation (LoRA) on a prostate
segmentation task to enhance task alignment and downstream
performance. We further perform layer-wise representational
analysis using Centered Kernel Alignment (CKA) to assess
representational shifts and their correlation with task out-
comes. Our experiments show improved performance in 3 of
6 downstream tasks and comparable results in the others. Our
Feature analysis reveals that, for segmentation tasks, contin-
ually pretrained encoder features exhibit greater similarity to
those of the finetuned encoder than the original pretrained
encoder, correlating with observed performance gains.

Index Terms— Foundation model, continual pretraining,
geometric feature analysis

1. INTRODUCTION

Prostate MRI has an important role in reducing number of
biopsies and damage to surrounding tissues during clinical
diagnosis [1]. With the help of AI models, automation of in-
formation extraction, such as lesion segmentation, can further
enhance clinical decision making [2]. Traditionally, indepen-
dent models have been developed for different tasks, which is
resource intensive, limits practical deployment, and hinders
generalisation to out-of-distribution data [3]. Motivated by
the success of large language models (LLMs), recent efforts
to develop large scale medical vision models have shown con-
siderable promise but continue to face several limitations. No-

tably, features learned through both general-purpose [4] and
domain-specific [5] pretraining have not consistently trans-
lated to strong performance in medical downstream tasks, of-
ten requiring extensive task-specific fine-tuning. Although
various pretraining strategies such as MAE, DINO, and CLIP
have been explored [6, 7], each offering task-dependent ad-
vantages, they still seem to lack balanced representations for
capturing the shared semantics across downstream tasks [8].

In this work, we propose a continual pretraining approach
aimed at improving the learning of shared downstream task
representations. Continual pretraining generally involves fur-
ther pretraining an already pretrained encoder to better align
its learned features with those relevant to downstream tasks.
A recent study [8] explored a similar idea by continually
pretraining self-supervised DINOv2 and supervised CLIP
models on domain-specific data at scales of 30k, 50k, 100k,
1M, and 1.3M samples, reporting consistent performance im-
provements with larger in-domain datasets—where, in some
cases, as few as 30k samples outperformed the original pre-
trained weights. While our dataset is considerably smaller,
we nevertheless observe improved performance in several
in-domain and out-of-domain downstream tasks.

Specifically, we employ a pretrained Vision Transformer
(ViT) encoder [9] trained using 5,524 3D prostate MRI scans
on a self-supervised Masked Autoencoder (MAE) objective
to capture multi-level general features from MRI data. We
continually pretrain this encoder using Low-Rank Adapta-
tion (LoRA) [10] on a prostate segmentation task compris-
ing 396 training and 113 test samples. The prostate segmen-
tation task was chosen due to its close relevance to several
downstream tasks, including prostate lesion and anatomical
segmentation, PI-RADS score classification, and prostate vol-
ume regression. Across six downstream task examples, we
observe performance improvements in three tasks following
continual pretraining. Two of which involve segmentation,
highlighting the significance of task similarity for achieving
better alignment during continual pretraining.

To further analyse representational changes, we utilise
the Centered Kernel Alignment (CKA) similarity metric [11]
to quantify pairwise feature representation similarities across



three encoders: the pretrained baseline, the fine-tuned model
(initialised from the pretrained encoder), and our contin-
ual pretrained encoder. We analyse the difference between
CKA(pretrained, fine-tuned) and CKA(continual-pretrained,
fine-tuned) to assess whether continual pretraining shifts the
feature geometry closer to that of the fine-tuned model, in-
dicating improved task alignment. Furthermore, we examine
whether the change in representational similarity correlates
with the downstream performance difference between fine-
tuned models initialised from pretrained and continually
pretrained encoders. Our results show that this correlation
holds when a measurable representational similarity shift
is observed, suggesting that geometric feature alignment is
indeed important in improved downstream performance.

2. METHOD

2.1. Applying LoRA to a Pretrained Encoder

We propose a continual pretraining framework in which a
3D Vision Transformer (ViT) encoder, pretrained on a self-
supervised Masked Autoencoder (MAE) objective, is further
aligned to downstream tasks using Low-Rank Adaptation
(LoRA) through supervised prostate segmentation. Specif-
ically, LoRA is integrated into the attention mechanism of
each transformer block within the encoder. This modifies
the original query, key, value, and output projection matri-
ces (WQ,WK ,WV ,WO) by introducing trainable low-rank
update matrices, formulated as:

W = W0 + αBA, (1)

where W0∈{Q,K,V,O} represents the original weight matrix,
A and B are low-rank matrices capturing essential modes
of variation within the weight space, and α is a scaling fac-
tor controlling the adaptation magnitude. The adapted trans-
former block can be expressed as:

Ẑ(ℓ) = LayerNormalisation
(
Z(ℓ−1)

)
, (2)

Q = Ẑ(ℓ)WQ, K = Ẑ(ℓ)WK , V = Ẑ(ℓ)WV , (3)

Attention(Q,K, V ) = softmax

(
QK⊤
√
dh

)
V, (4)

Z(ℓ,1) = Z(ℓ−1) +Attention(Q,K, V )WO, (5)

Z(ℓ) = Z(ℓ,1) +MLP
(
LayerNormalisation

(
Z(ℓ,1)

))
, (6)

where Ẑ(ℓ) denotes the normalized layer output, dh is the
dimensionality of the query/key vectors, W0∈{Q,K,V,O} are
the LoRA-adapted weight matrices and MLP is Multilayer
Perceptron.

2.2. Continual Pretraining

During continual pretraining, the pretrained encoder weights
W are frozen, and an adapter module is used to connect a Uni-
fied Perceptual Parsing (UperNet) decoder for segmentation.

The adapter receives hidden states {Hi}4i=1 from selected lay-
ers of the ViT encoder and reshapes each token sequence into
a 3D feature map Xi = Reshape(Hi) ∈ RB×C×D×H×W .
The UperNet decoder integrates these multiscale feature maps
by downsampling the first two and upsampling the last to
align them to the spatial scale of the third map. The fused rep-
resentation is then passed through a softmax classifier to pro-
duce voxel-level segmentation. LoRA parameters are trained
to adapt the encoder from generating general features learned
during pretraining to producing task-aligned representations
more suitable for related downstream tasks.

2.3. Downstream Tasks

Following continual pretraining, the encoder’s original weights
are unfrozen and evaluated across a range of downstream
tasks using both in-domain (identical to continual pretrain-
ing data) and out-of-domain datasets, as summarised in Ta-
ble 1. To isolate encoder effects, we employ simple task
specific heads. A lightweight two layer linear head is at-
tached for prostate zone classification and prostate volume
regression. For lesion and prostate zone segmentation, we
employ the same UperNet decoder architecture. Finally, a
super-resolution module from [12] is attached to the encoder
to enhance low-resolution T2 inputs by a factor of four.

2.4. Geometric Feature Analysis Metric

To analyse layer-wise representational similarity across the
pretrained, continual-pretrained, and fine-tuned encoders, we
employ the Centered Kernel Alignment (CKA) similarity
metric. CKA quantifies the degree to which two sets of fea-
ture representations encode similar geometric structures in
their respective feature spaces. We compute pairwise CKA
values between encoder layers (e.g. l1 and l2) for tasks ex-
hibiting a performance difference of approximately 0.2% or
greater. For given layer outputs Z(l1)

1 and Z
(l2)
2 from encoders

Z1 and Z2, the linear CKA similarity is defined as:

CKA
(
Z

(l1)
1 , Z

(l2)
2

)
=

∥Z(l1)
1

⊤
Z

(l2)
2 ∥2F
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1
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,

(7)
where ∥ · ∥F denotes the Frobenius norm. In our experi-
ments, CKA similarities are computed for layers 3, 5, 7, and
11 across the three encoders to evaluate how fine-tuning and
continual pretraining influence internal feature representa-
tions relative to the pretrained baseline.

3. EXPERIMENTS

3.1. Dataset and Experimental Setup

Four datasets were used in this study: PROMIS for contin-
ual pretraining, Anatomy for downstream anatomy segmen-
tation, RISK for PIRADS score classification, and UCL Set



Fig. 1. Overview of the proposed continual pretraining frame-
work, integrating LoRA within a pretrained ViT encoder to
continually pretrain the encoder for better task alignment and
downstream performance.

for Prostate volume regression [13, 14, 15]. Their respec-
tive data splits, input modalities, and target outputs are sum-
marised in Table 1. All models were trained with an input size
of (64, 256, 256), except for the super-resolution task where
the depth dimension (64) was reduced by a factor of four.
The inputs underwent standard preprocessing and augmen-
tation procedures, including normalisation, centre cropping,
random rotation, flipping, zooming, and intensity variation.

All experiments were conducted on an NVIDIA A40
GPU for 100 epochs. The Adam optimiser was used across all
tasks, with Dice loss applied to segmentation, cross-entropy
loss to classification, mean squared error (MSE) to regression,
and mean absolute error (MAE) to super-resolution. Batch
sizes were set to 4 for segmentation and super-resolution
tasks, and 16 for classification and regression tasks.

Dataset Data Split MRI Input Output

PROMIS (396,57,113) T2W, DWI, ADC Lesion Mask

Anatomy (412,60,117) T2W Prostate Zones Mask

RISK (718,103,207) T2W, DWI, ADC PIRADS Score (2–5)

UCL Set (1386,178,387) T2W Prostate Volume

Table 1. Overview of datasets, data splits, and corresponding
input–output configurations.

3.2. Results

Model performance was compared across three configura-
tions sharing identical architectures but differing in weight
initialisation. The first, ViT Random Weights, was trained
from scratch. The second, ProFound ViT OMW, initialised
with pretrained encoder weights, served as the baseline. The

third, ProFound ViT Ours, utilised our continually pretrained
encoder weights.
Performance on Classification Tasks: Two classification
tasks were evaluated. The first employed the RISK dataset for
four-class PIRADS score classification (2–5), where higher
scores indicate increased malignancy risk. The second used
the PROMIS dataset for 20-zone prostate classification. As
shown in Table 2, for PIRADS classification, the baseline
model achieved the highest overall AUC, outperforming our
model by approximately 0.4%. However, for AUC thresholds
≥ 3 and ≥ 4, our model surpassed the baseline by over 5%
in AUC≥ 3, suggesting improved discrimination of higher-
risk PIRADS scores. For zone classification, the baseline
outperformed our model by 2.3% on average.

Feature representation analysis (Section 3.2.5) revealed
that encoder representations from the continually pretrained
and finetuned models were highly similar to the pretrained
encoder. This suggests that for classification tasks, glob-
ally learned representations during pretraining remain largely
transferable, and performance differences are likely influ-
enced by subtle variations in discriminative feature direc-
tions [16].
Performance on Regression Task: As presented in Table 3,
regression results showed a marginal 0.2% decrease com-
pared to the baseline, indicating limited benefit of continual
pretraining for this specific alignment task.
Performance on Segmentation Tasks: We evaluated two
segmentation tasks: lesion segmentation using the PROMIS
dataset and prostate zone segmentation using the Anatomy
dataset (eight zones in total). Table 4 shows that our model
outperformed the baseline by approximately 0.5% in average
Dice score for lesion segmentation and 0.1% for zone seg-
mentation. These improvements suggest that continual pre-
training on a similar segmentation task enhances alignment
for downstream segmentation objectives. This observation
is further examined in Section 3.1.1, where representational
similarity is analysed.
Performance on Super-Resolution Task: Table 5 presents
results for the super-resolution task, where the baseline model
achieved a slightly higher SSIM (0.1% improvement). Simi-
lar to the regression case, continual pretraining did not yield
improved task alignment for this setting.

PIRADS Classification (RISK Data)
AUC AUC ≥3 AUC ≥4 Avg Std

ViT Random Weights 58.81 69.98 62.82 2.51
ProFound ViT OMW 61.36 74.76 64.03 2.56
ProFound ViT Ours 60.94 79.92 64.00 2.63

Zone Classification (PROMIS Data)
ViT Random Weights 64.41 – – 1.97
ProFound ViT OMW 72.64 – – 1.75
ProFound ViT Ours 70.36 – – 1.86

Table 2. Results for classification tasks.



Prostate Volume Regression (UCL Data)
MSE Std

ViT Random Weights 0.038 0.028
ProFound ViT OMW 0.013 0.009
ProFound ViT Ours 0.015 0.012

Table 3. Results for regression task.

Lesion Segmentation (PROMIS Data)
Avg Dice Class Dice Std

ViT Random Weights 0.216 – 0.186
ProFound ViT OMW 0.248 – 0.203
ProFound ViT Ours 0.253 – 0.206

Zone Segmentation (Anatomy Data)
Avg Dice Class Dice Std

ViT Random Weights 0.830 0.910, 0.913,
0.868, 0.771,
0.875, 0.907,
0.750, 0.646

0.093

ProFound ViT OMW 0.835 0.916, 0.908,
0.866, 0.782,
0.880, 0.912,
0.765, 0.653

0.095

ProFound ViT Ours 0.836 0.917, 0.909,
0.866, 0.780,
0.881, 0.912,
0.765, 0.657

0.095

Table 4. Results for segmentation tasks.

T2 MRI Super-Resolution (PROMIS Data)
SSIM Std

ViT Random Weights 0.900 0.009
ProFound ViT OMW 0.931 0.005
ProFound ViT Ours 0.930 0.005

Table 5. Results for super-resolution task.

Feature Representation Analysis: Table 6 presents the layer
wise and average CKA similarity scores between encoder
pairs across four selected layers (3, 5, 7, and 11). For the
pretrained–continual pair, the encoders exhibit high similar-
ity across all layers, with a gradual decrease in deeper layers,
suggesting that LoRA primarily refines high-level semantic
representations while inducing task-specific adaptations in
later layers.

In the lesion segmentation task, finetuned encoder repre-
sentations (using pretrained weights) show decreasing sim-
ilarity to both pretrained and continual pretrained encoders
with layer depth. Notably, at the deepest layer, similarity with
the continual pretrained encoder increases by approximately
0.4%, aligning with the observed improvement in segmenta-
tion performance (Table 4). This supports the hypothesis that
continual pretraining facilitates better task-aligned represen-
tation learning.

For the PIRADS classification task, the finetuned encoder
remains nearly identical to both pretrained and continual pre-
trained encoders, implying minimal representational shifts

during finetuning. This suggests that classification primarily
benefits from globally stable representations rather than layer
specific adaptations.

Encoder Pair (Z1 − Z2) L3 L5 L7 L11 Avg.
Pretrained–Continual 0.997 0.996 0.997 0.995 0.996

CKA Similarity for Lesion Segmentation
Pretrained–Finetuned 0.918 0.915 0.893 0.340 0.767
Continual–Finetuned 0.915 0.910 0.890 0.344 0.765

CKA Similarity for PIRADS Classification
Pretrained–Finetuned 1.000 1.000 1.000 0.993 0.998
Continual–Finetuned 0.997 0.997 0.997 0.989 0.995

Table 6. Layer-wise and average CKA similarity between en-
coder pairs. “Pretrained” denotes the encoder with pretrained
weights; “Continual” indicates the pretrained encoder further
trained with LoRA on the prostate segmentation task; “Fine-
tuned” refers to the encoder finetuned on downstream tasks
(lesion segmentation or PIRADS classification).

4. CONCLUSION

In this work, we investigated a novel direction of continual
pretraining as a means of advancing foundation model de-
velopment for prostate MRI analysis. The objective was to
enhance task alignment and improve downstream task perfor-
mance. Our experimental results demonstrate improved and
comparable performances in all 6 downstream tasks, two of
which involve segmentation, suggesting that task similarity
during continual pretraining contributes to improved align-
ment. Our Feature analysis results show that, for segmenta-
tion tasks, the output feature representations of the continual
pretrained encoder exhibit greater similarity to those of the
finetuned (initialised from the pretrained) encoder compared
to the pretrained encoder itself. This increased representa-
tional closeness correlates with the observed performance
improvements when finetuning from continual pretrained
weights. Conversely, for classification tasks, the representa-
tional geometry exhibited minimal change during finetuning,
likely due to a stronger focus on fine grained discriminative
details, therefore limiting the ability to infer a clear correla-
tion with performance.

Future work may explore integrating a Mixture-of-Experts
(MoE) approach in the later layers of the encoder to facilitate
multi-task continual pretraining and achieve more gener-
alisable task alignment. Moreover, employing alternative
representational similarity metrics could provide deeper in-
sights into the impact of continual pretraining on feature
representations.
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