
A
A
a

b

A

K
C
R
R
S
R
I

1

W
b
a
b
c

f
c

P

h
R

Data & Knowledge Engineering 163 (2026) 102558 

A
0
(

 

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak  

 commonsense reasoning framework for substitution in cooking
ntonis Bikakis a, Aissatou Diallo b, Luke Dickens a, Anthony Hunter b ,∗, Rob Miller a
Dept of Information Studies, University College London, London, UK
Dept of Computer Science, University College London, London, UK

 R T I C L E  I N F O

eywords:
ommonsense reasoning
easoning about instructions
easoning about cooking
ubstitution
epurposing
nconsistency-directed reasoning

 A B S T R A C T

The ability to substitute some resource or tool for another is a common and important human 
ability. For example, in cooking, we often lack an ingredient for a recipe and we solve this 
problem by finding a substitute ingredient. There are various ways that we may reason about 
this. Often we need to draw on commonsense reasoning to find a substitute. For instance, we can 
think of the properties of the missing item, and try to find similar items with similar properties. 
Despite the importance of substitution in human intelligence, there is a lack of a theoretical 
understanding of the faculty. To address this shortcoming, we propose a commonsense reasoning 
framework for conceptualizing and harnessing substitution. In order to ground our proposal, we 
focus on cooking. Though we believe the proposal can be straightforwardly adapted to other 
applications that require formalization of substitution. Our approach is to produce a general 
framework based on distance measures for determining similarity (e.g. between ingredients, or 
between processing steps), and on identifying inconsistencies between the logical representation 
of recipes and integrity constraints that we use to flag the need for mitigation (e.g. after 
substituting one kind of pasta for another in a recipe, we may identify an inconsistency in 
the cooking time, and this is resolved by updating the cooking time).

. Introduction

An important human ability is that of substitution: We have a task (doing or making something) for which we lack a resource. 
e solve the problem by repurposing an alternative to substitute for the missing thing. For example, we could have a recipe for 
read that includes the ingredient butter. In fact, olive oil can be used as a substitute. Someone unaware of this may nonetheless be 
ble to work it out by reasoning about the relevant common properties of butter and olive oil. Both are used in baking to add fat, 
oth make a relatively small change to the flavour, and both are neutral in their savoury vs sweet impact. In order to mimic this 
apability with scalable computational reasoning, we will present a commonsense reasoning framework for substitution for cooking.
Whilst our focus in this paper is on cooking, we see that substitution is an important issue across the gamut of human activities 

rom every day home life (e.g. cooking, gardening, DIY, first-aid, etc.), working life (e.g. farming, manufacturing, etc.), through to 
risis management (e.g. dealing with the aftermath of earthquakes).
Within the cooking domain, there are various reasons for why there is a need to substitute ingredients including the following:

roblem of availability Substitution can be required when there is a lack of availability of an ingredient. Perhaps we forgot to 
buy the item when we last went shopping or perhaps our local shops do not stock the item or perhaps it is out of season. 
Also, scarcity, arising from fluctuations in supply, price and quality can mean that a planned or desired dish cannot be made 

∗ Corresponding author.
E-mail address: anthony.hunter@ucl.ac.uk (A. Hunter).
ttps://doi.org/10.1016/j.datak.2026.102558
eceived 15 February 2024; Received in revised form 9 December 2025; Accepted 19 January 2026
vailable online 22 January 2026 
169-023X/© 2026 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/datak
https://www.elsevier.com/locate/datak
https://orcid.org/0000-0001-5602-7446
mailto:anthony.hunter@ucl.ac.uk
https://doi.org/10.1016/j.datak.2026.102558
https://doi.org/10.1016/j.datak.2026.102558
http://creativecommons.org/licenses/by/4.0/


A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
exactly as intended. This either means that you do without the dish, that you make it with an overpriced or poor quality 
ingredient, or that you substitute that ingredient for another. This last option is such a common scenario that many recipes 
include notes on reasonable substitutions and some recipe websites have even taken to asking users to propose their own 
ideas about substitutions as a form of crowdsourcing.

Dietary constraints Another reason to replace one or more ingredients with appropriate substitutes in a dish is due to dietary 
constraints. The substituting ingredient here must satisfy competing demands: it must retain some properties of the 
substituted ingredient, omit others, and satisfy the preferences of the consumer. In order to make predictions here a detailed 
understanding of the properties of ingredients is needed, such as is captured in food knowledge graphs Some constraints 
will be hard/strict, particularly where they relate to such things as allergies. Other constraints will be softer, for instance, a 
vegetarian would not want their chips to be deep fried in lard (smoke point 188C), and a suitable substitute may demand 
a similar smoke point, but a number of substitutes are recommended under these circumstances each with slightly different 
smoke points, e.g. sunflower oil (smoke point 230C). As this may be a safety critical objective this also has implications about 
how substitution predictions are integrated with human processes. For instance, a food safety qualified individual may have 
to mediate between an automated decision-support system and the decision to substitute one ingredient for another. As a 
consequence, the reasoning/prediction process may need to be explained/interrogated and the underlying knowledge base 
or model edited/curated.

Environmental impact A third reason for substitution can arise when we take environmental considerations into account. For 
instance, we may want to substitute an ingredient because it is out of season (e.g. substituting broccoli for asparagus in pasta 
dishes), or because there is a desire to reduce the environmental impact of production (e.g. substituting bean burgers for 
meat burgers) or because there is a desire to reduce the environmental impact of transport (e.g. substituting tap water for 
bottled water).

The ability to successfully predict ingredient substitutions has commercial application too. For instance, a number of home 
delivery supermarkets now automatically substitute unavailable items from grocery orders (although not always successfully). 
Ingredient substitution is a challenging problem and isn’t just about the properties of ingredients, as Brian O’Driscoll (an Irish 
rugby player) said: ‘‘Knowledge is knowing that a tomato is a fruit. Wisdom is knowing not to put it in a fruit salad’’.

Proposing substitutions for a given ingredient in a known recipe is a form of recommendation, but with additional complexity 
to other, more conventional recommender systems, e.g. for films, and this is itself an imperfect science. Film recommender systems 
typically offer a list of recommendations from which the user can select, and so only require a high chance that the user will find 
a reasonable suggestion within a list of items that the user can browse through, unlike the online grocery store that has just one 
opportunity to propose an appropriate substitution.

Even in food recommendation systems with a browsing feature, there are other additional complexities. Importantly, the 
recommendation for food substitution must not only satisfy the recipient’s preferences but also work well in the context of the 
dish. Having said this, the other ingredients in the dish may provide important information about the user’s current preferences. 
Finally, the use of different ingredients may require different processing requirements. To fully encompass and reason about the 
implications of a proposed substitution, an account of how this changes the recipe method is also needed. For instance, replacing 
white flour with brown in bread making can lead to longer rising and cooking times.

So we need to not only find substitutions but also identify mitigations for the recipe to still work. We regard this mitigation as
secondary substitutions. So when we make a substitution, we need to check whether there is a need for secondary substitutions, and 
determine what those secondary substitutions are. Our approach to identifying the need for mitigation is to use integrity constraints 
so that a violation of an integrity constraint denotes the need for one or more secondary substitutions.

In many cases, when we make one or more substitutions, we change the recipe so that the final outcome of the cooking is 
somewhat different. This occurs even if we undertake secondary substitutions. So we need to consider what we regard as being 
acceptable for the revised result of the cooking. This in turn depends on the driver (the aim or motivation) for doing a substitution 
with the following being important types of driver.

Similarity to missing item(s). Here the aim is to find a substitute that is as close as possible in key respects to the missing item. 
For example, if we lack spaghetti, and we have other pastas in our cupboard including linguine, fusilli, penne, and lasagne, 
then linguine is the closest to spaghetti. If we lack multiple items, then for each missing item, we consider the nearest item 
independently of the other items. Continuing the above example, if we lacked spaghetti and sea salt, then we might replace 
the spaghetti by linguine and sea salt by mineral salt. Note, for this driver, we are not concerned with the effect on the 
recipe (the other ingredients or cooking actions), nor on the resulting dish. For example, if we are cooking chicken stew, and 
we lack chicken, the nearest substitute might be tofu, but using tofu might involve substantial changes to the recipe, as the 
cooking actions will need to be changed, and the resulting dish will differ noticeably from the original. Note, we will tend 
to discuss the substitution of individual items but this can be generalized to sets of missing items.

Similarity to original dish. Here the aim is to find a revised recipe that results in a dish that is as close as possible in key respects 
to the original dish. For example, suppose we lack eggs for making a cake, and we have two candidates for a substitute that 
are yoghurt and flax seeds. In many respects, yoghurt is more similar to eggs than flax seeds are to egg. Yoghurt, like eggs, 
is a high protein animal product whereas flax seeds are a high fat plant product. So yoghurt would be a better substitute for 
eggs if similarity to missing item is the driver. In contrast, if similarity to the original dish is the driver, then flax seeds are 
likely to be a better substitute for eggs.
2 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Fig. 1. Summary of four key drivers for substitutions in cooking: Similarity to missing item(s) means selecting primary substitutions to 
minimize the distance between each ingredient, and its corresponding ingredient in the revised recipe; Similarity to original dish means 
selecting substitutions to minimize the distance between the dish and the revised dish; Minimal secondary substitutions means after the 
primary substitutions have been chosen, minimal further changes are made to the ingredients, equipment, and actions; and Improve specified 
properties of dish means selecting substitutions to ensure that the revised dish meets specified properties.

Minimal secondary changes to recipe. Once we have identified the substitutes for the missing item(s), i.e. we have identified the 
primary substitution(s), we want to minimize the number of secondary substitutions to ingredients and/or the cooking steps. 
For example, in a recipe for meringue, it is possible to use aquafaba instead of egg white, and it can provide a meringue 
that is very similar to that obtainable with egg white. However, it involves a number of steps to prepare this as a substitute. 
So if our driver is to minimize the changes to the recipe, then we may choose an alternative substitute such as an artificial 
egg powder, which might involve fewer changes to the recipe, even if the resulting dish might be inferior to using aquafaba. 
As a special case we choose to only minimize the secondary substitutions of ingredients (i.e. we don’t mind changing any 
cooking actions, but we don’t want to change ingredients unless necessary) or to only minimize the secondary substitutions 
of cooking actions (i.e. we don’t mind changing any ingredients, but we don’t want to change any cooking actions unless 
necessary).

Improve specified properties of dish. Here the aim is to find a revised recipe that results in a dish that is reasonably close to the 
original but must fit in a revised category (e.g. change the recipe for chicken casserole so that it fits the category of being 
vegetarian necessitates replacing chicken as an ingredient), or improves the dish in a specified way (e.g. improved flavour, 
more spicy, less spicy, less salt, fewer calories, reduced saturated fat, etc.). So the aim is to make minimal substitutions to 
the recipe in order that the revised recipe satisfied the specified properties.

We summarise the difference between primary and secondary substitutions, and the four types of driver in Fig.  1
Since substitution is an important intelligent activity in cooking, and other domains, we need to better understand the underlying 

principles. We also need to develop technologies that are able to undertake substitution. For food, this can lead to better ways to 
use food. This can help us better enjoy food (by allowing us to cook food based on what we have available), reduce food waste (by 
finding uses for ingredients we have available), improve our health (by replacing less healthy ingredients), and make catering more 
efficient (by using ingredients that are more cost effective). Furthermore, in order to make these technologies usable, we need to 
develop technologies that are scalable and robust.

The proposal in this paper provides the first comprehensive framework for computational knowledge representation and 
reasoning with substitution. This gives us a clearer understanding of the nature of substitution. We have focused on the domain of 
cooking but the framework can be adapted to other domains where items are prepared through multi-step processes. Furthermore, 
3 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
with this framework, we have practical technology for automated reasoning with recipes, that can support analysis of recipes, and 
automated identification of substitutes, where the substitutes are based on the underlying nature of the ingredients, equipment, or 
processes, within the overall recipe.

Candidates for substituting an ingredient or item of equipment or cooking step, are identified using a distance measure, so that 
the nearer a candidate is to what is being replaced, the better that candidate. However, such a substitution (a primary substitution) 
may cause an inconsistency with the integrity constraints and background knowledge that requires mitigation. We address the need 
for mitigation by secondary substitutions (one or more further substitutions) that restore consistency with the integrity constraints 
and background knowledge. This then raises different options for regarding a primary substitution acceptable since we may want the 
closest match for the missing item irrespective of the number and nature of the secondary substitutions, or may prefer to compromise 
on the primary substitution in order to limit the number or nature of the secondary substitutions.

In order to show how we can undertake substitutions in recipes, we need a formal language for recipes that capture the 
ingredients, the equipment, and the processes, that are required. We also need this formal language to capture background knowledge 
and integrity constraints. In this paper, we provide a simple language for this. It is based on classical propositional logic. Variables 
can be used and the formulae that contain them are treated as schema. Note that, it is not the aim of this paper to provide a 
comprehensive formalism for representing and reasoning with recipes. Rather, we just give a simple proposal that is sufficient 
for our needs for introducing the substitution framework. We believe that the substitutions framework presented here would be 
applicable for a wide range of formalisms for representing and reasoning with recipes including those based on event calculus (see 
for example [1–3]) or answer set programming (ASP) (see for example [4]). In parallel work, we investigate higher-level formalism 
for recipes than presented in this paper but which can be directly executed using an ASP solver [5].

We proceed as follows: In Section 2, we provide the definitions for a clausal logic that we will use in the rest of the paper; In 
Section 3, we provide a framework for representing and reasoning with recipes in classical propositional logic; In Section 4, we 
provide a framework for candidates for substitution in recipes based on distance functions; In Section 5, we provide a framework 
for syntactic operations for substitution in cooking sessions; In Section 6, we investigate the stages of substitution in recipes (i.e 
how a substitution make cause the need for further substitutions); In Section 7, we investigate different drivers for substitution in 
recipes; In Section 8, we investigate how the need for substitution can be viewed as the resolution of inconsistencies resulting from 
the violation of integrity constraints; In Section 9, we discuss the related literature; And in Section 10, we discuss our contributions 
and how they may be developed in further work.

2. Preliminaries

In this section, we provide a logical formalism that in subsequent sections we will use as the basis for representing and reasoning 
with recipes. For this, we will consider a language based on clauses that we introduce as follows where  is a set of constant symbols, 
 is a set of function symbols,  is a set of variable symbols, and  is a set of predicate symbols.

We form terms in the usual way: If 𝛼 ∈  ∪  , then 𝛼 is term, and if 𝛼 ∈  , and 𝛽1,… , 𝛽𝑛 are terms, then 𝛼(𝛽1,… , 𝛽𝑛) is a term. 
For example, 𝚇 is a variable, and therefore a term, and 𝚏𝚕𝚘𝚞𝚛 and 𝚐 are constant symbols, and therefore terms. Using these terms, 
then 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚇, 𝚐) is a term. We also use arithmetic operators such + and − as infix functions. For example, for variables 𝚇
and 𝚈, 𝚇 − 𝚈 is a term.

If a term contains no variables, then it is a ground term. For example, 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟸𝟻𝟶, 𝚐) is a ground term where 𝚏𝚕𝚘𝚞𝚛, 𝟸𝟻𝟶, 
and 𝚐 are constant symbols. Let   be the set of terms, and let  be the set of ground terms. We will use the policy that a variable in 
an example is represented by a string with an upper case first letter (e.g. 𝚃𝟷 is a variable symbol whereas 𝚝𝟷 is a constant symbol).

We form atoms in the usual way: If 𝛼 ∈  , and 𝛽1,… , 𝛽𝑛 ∈  , then 𝛼(𝛽1,… , 𝛽𝑛) is an atom. For example, 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝚈), 𝚃)
is an atom, where 𝚘𝚗𝚑𝚊𝚗𝚍 is a predicate symbol, 𝚌𝚘𝚞𝚗𝚝 is a function symbol, 𝚎𝚐𝚐𝚜 is a constant symbol, and 𝚈 and 𝚃 are variables with 
𝚃 denoting a timepoint variable. If an atom contains no variables, then it is a ground atom. For example, 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟸), 𝚝𝟸𝟹)
is a ground atom where 𝚎𝚐𝚐𝚜, 𝟸, and 𝚝𝟸𝟹 are constant symbols, with the latter denoting a timepoint constant.

If 𝛿 is an atom, then 𝛿 is a positive literal, and ¬𝛿 is a negative literal. A literal is either a positive literal or a negative literal. 
Let  denote the set of positive literals,   denote the set of negative literals, and let  denote the set of all literals. We assume 
that ⊥ and ⊤ are atomic propositions which we will refer to as falsity and tautology (respectively). So ¬⊤ is equivalent to ⊥, and 
¬⊥ is equivalent to ⊤.

A clause is of the form 𝛿1 ← 𝛿2 ∧⋯ ∧ 𝛿𝑛 where 𝛿1 is a literal and each 𝛿𝑖 where 𝑖 ∈ {2,… , 𝑛} are literals.

Example 1.  If we consume an egg at a timepoint, then we have one less egg at the next timepoint where for a timepoint 𝚃, the 
notation 𝚃 + 𝟷 denotes the next timepoint (as explained in Section 3.3.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟸), 𝚃 + 𝟷) ← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟹), 𝚃) ∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚃)

For a clause 𝜙 of the form 𝛿1 ← 𝛿2 ∧⋯ ∧ 𝛿𝑛, let 𝖧𝖾𝖺𝖽(𝜙) = 𝜓1 and let 𝖳𝖺𝗂𝗅(𝜙) = {𝛿2,… , 𝛿𝑛}. For a clause 𝜙, if 𝖧𝖾𝖺𝖽(𝜙) = ⊥, then 𝜙
is an integrity constraint. And for a clause 𝜙, if 𝖳𝖺𝗂𝗅(𝜙) = ∅, or 𝖳𝖺𝗂𝗅(𝜙) = ⊤, then 𝜙 is a literal. So a literal can be treated as special 
case of a clause.

We assume that the variables in a formula can only be instantiated by a ground term. A grounding is a pair (𝑥∕𝑦) where 𝑥 is 
a variable and 𝑦 is a ground term. A ground set 𝐺 is a set of groundings. For a formula 𝛿, and a grounding set 𝐺, 𝖦𝗋𝗈𝗎𝗇𝖽(𝛿, 𝐺) is 
the formula obtained by replacing each variable 𝑥 by term 𝑦 for each grounding (𝑥∕𝑦) in 𝐺. A formula is ground iff it contains no 
variables. The first clause in Example  2 is a clause that is not ground, and the second clause in Example  2 is a ground clause. We 
generalize the application of a grounding set 𝐺 to a set of formulae 𝛤  as follows: 𝖦𝗋𝗈𝗎𝗇𝖽(𝛤 ,𝐺) = {𝖦𝗋𝗈𝗎𝗇𝖽(𝛿, 𝐺) ∣ 𝛿 ∈ 𝛤 }.
4 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Example 2.  Consider the following clause 𝛿 and grounding set 𝐺 = {(𝚈∕𝟷𝟶𝟶𝟶), (𝚇∕𝟻𝟶𝟶), (𝚃∕𝚝𝟽)}. Here 𝚇, 𝚈 and 𝚃 are variables and 
𝟷𝟶𝟶𝟶, 𝟻𝟶𝟶 and 𝚝 are constants, where 𝚃 is a variable for a timepoint and 𝚝 is a specific timepoint.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚇 − 𝚈, 𝚐), 𝚃 + 𝟷)
← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚇, 𝚐), 𝚃)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚈, 𝚐), 𝚃)

The result of 𝖦𝗋𝗈𝗎𝗇𝖽(𝛿, 𝐺) is the following ground clause.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟷𝟶𝟶𝟶–𝟻𝟶𝟶, 𝚐), 𝚝𝟾)

← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟷𝟶𝟶𝟶, 𝚐), 𝚝𝟽)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟻𝟶𝟶, 𝚐), 𝚝𝟽)

In order to reason with a set of literals and clauses, we use the classical propositional consequence relation. To use it, we assume 
that all the formulae are ground.

3. Representing recipes

Based on the logic we presented in the previous section, we provide a language for representing and reasoning with recipes. We 
provide a number of examples of recipes in the language. We do not advocate a specific set of terms, atoms, or clauses. Rather, we 
leave the exact choice of formulae to the user. Different choices can have different effects on the kinds of inferences we can draw 
from the knowledgebase.

3.1. Modelling dynamics

In this subsection, we outline how we will model dynamics, and we will provide the definitions in the following subsections. 
For this, we assume a point-based representation of time:

• We assume a sequence of timepoints. We will assume that the timepoints are in a linear sequence. Each timepoint is associated 
with a snapshot of the fragment of the world that we are interested in. Furthermore, we will assume we have enough timepoints 
to be able to describe the evolution of the cooking at a certain level of granularity. We will include in the background 
knowledge in the knowledgebase to axiomatize this, as explained later). Each timepoint has an associated set of facts that 
is true at that time point. So we can determine what facts are true or false at each timepoint, and we can see the evaluation 
of the facts over time.

• In addition to timepoints, we also need the notion of durations. A duration is part of the specification of an action. It says 
how long the action should be undertaken. When we specify an action, it might be assumed to be instantaneous (or at least of 
negligible time). For example, pouring 500 g of flour into a mixing boil will normally take negligible time. Really, we mean 
that we do not care how long the action is as it does not affect the outcome of the recipe. For instance, peeling 1 kg of potatoes 
might take a few minutes, but we can regard it as taking negligible time as the time taken is unimportant for the rest of the 
recipe. However, for some actions, the duration is important. For example, if we boil spaghetti, then the time is important. 
If it is too short, then the pasta is too hard, whereas if it is too long, then the pasta becomes mushy. So for each action, we 
associate a specific duration (e.g. 5 min), or duration range (e.g. 5–10 min). If the latter, then the intention is that the action 
is carried for a period within that range.

In order to relate timepoints and durations, we need to be able to consider the period of time elapsed between timepoints. This 
is so that we can represent the period of time that an action is actually undertaken. For instance, we might have the specification 
that an egg should be boiled for 4 min, and we have starting timepoint (e.g. 𝚝𝟷𝟽) and ending timepoint e.g. 𝚝𝟼𝟻 for boiling the egg. 
We then need to check that the time elapsed between the starting timepoint and the ending timepoint is 4 min (i.e. 𝚝𝟼𝟻 − 𝚝𝟷𝟽 is 
(approximately) 4 min).

3.2. Logical language for recipes

We assume a recipe is executed over time. We will represent this by actions occurring over intervals (represented by starting 
and ending timepoints), and we will assume that for each action, there may be preconditions that hold before the action occurs, 
and postconditions that hold after the action has occurred. In the language we introduce below, we will use variables that can be 
instantiated with specific time points. We will also assume constraints on these variables. These will capture the temporal precedence 
of the time points.
5 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
3.2.1. Logical terms for recipes
We start by defining the types of term that are used to define nine types of atom, and then we use the atoms to define the clauses 

that are used to specify the processes.

• A food term is a term of the form 𝛼(𝛽1,… , 𝛽𝑛) where 𝛼 is a function symbol (of arity zero or more) denoting a food item, and 
𝛽1,… , 𝛽𝑛 are ground terms denoting qualities of the item e.g. 𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜 and 𝚕𝚒𝚐𝚑𝚝𝚕𝚢_𝚏𝚛𝚒𝚎𝚍. Some examples of food terms 
are the following.

𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜
𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜)
𝚏𝚛𝚒𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜, 𝚕𝚒𝚐𝚑𝚝𝚕𝚢_𝚏𝚛𝚒𝚎𝚍)

• A count term is a term of the form 𝚌𝚘𝚞𝚗𝚝(𝛼, 𝜂) where 𝛼 is a food term, and 𝜂 is a constant symbol denoting the quantity of 
the item or 𝜂 is a variable symbol or 𝜂 is of the form 𝜌 − 𝜎 or 𝜌 + 𝜎 where 𝜌 and 𝜎 are variable symbols. We can use other 
arithmetic operators similarly. Some examples of count terms are the following.

𝚌𝚘𝚞𝚗𝚝(𝚘𝚗𝚒𝚘𝚗𝚜, 𝟸)
𝚌𝚘𝚞𝚗𝚝(𝚘𝚗𝚒𝚘𝚗𝚜, 𝚇 − 𝚈)

• A measure term is a term of the form 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝛼, 𝜂, 𝜐) where 𝛼 is a food term, and 𝜂 is a constant symbol denoting the quantity 
of the item or 𝜂 is a variable symbol or 𝜂 is of the form 𝜌 − 𝜎 or 𝜌 + 𝜎 where 𝜌 and 𝜎 are variable symbols, and 𝜐 is the unit. 
We can use other arithmetic operators similarly. Some examples of measure terms are the following.

𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟻𝟶, 𝚐)
𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟻𝟶–𝟽𝟻, 𝚐)
𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜), 𝟻𝟶, 𝚐)
𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚛𝚒𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜, 𝚕𝚒𝚐𝚑𝚝𝚕𝚢_𝚏𝚛𝚒𝚎𝚍), 𝟻𝟶, 𝚐)
𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛(𝚠𝚑𝚘𝚕𝚎𝚖𝚎𝚊𝚕), 𝚇 − 𝚈, 𝚐)

• An equipment term is a term of the form 𝛼(𝛽1,… , 𝛽𝑛) where 𝛼 is a function symbol (of arity zero or more) denoting an 
equipment item, and 𝛽1,… , 𝛽𝑛 are constant symbols denoting qualities or quantities of the item. Some examples of equipment 
terms are the following.

𝚙𝚊𝚗

𝚋𝚛𝚎𝚊𝚍_𝚖𝚊𝚔𝚎𝚛(𝟻𝟶𝟶𝚐_𝚌𝚊𝚙𝚊𝚌𝚒𝚝𝚢)
𝚔𝚗𝚒𝚏𝚎

𝚌𝚑𝚎𝚎𝚜𝚎_𝚐𝚛𝚊𝚝𝚎𝚛

• A location term is a term of the form 𝛼(𝛽1,… , 𝛽𝑛) where 𝛼 is a function symbol denoting a location preposition (e.g. 𝚘𝚗, 𝚒𝚗, 
𝚘𝚟𝚎𝚛, etc.), and each 𝛽𝑖 is a food term, a count term, an equipment term, or a location term (by recursion). So a location term 
is a prepositional phrase. Some examples of location terms are the following.

𝚘𝚗(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚙𝚕𝚊𝚝𝚎)
𝚘𝚗(𝚐𝚛𝚒𝚍𝚍𝚕𝚎)
𝚒𝚗(𝚘𝚟𝚎𝚗)
𝚘𝚗(𝚙𝚕𝚊𝚝𝚎)
𝚒𝚗(𝚙𝚊𝚗)

• A modification term is a ground term that can be used to modify an action, and so it makes the action more specialized in 
the way it is executed (e.g. for the action 𝚠𝚒𝚜𝚔, the modifier could be 𝚚𝚞𝚒𝚌𝚔𝚕𝚢 or 𝚒𝚗𝚝𝚛𝚘𝚍𝚞𝚌𝚒𝚗𝚐_𝚊𝚒𝚛) or in the nature of the 
result of the action e.g. for the action 𝚌𝚑𝚘𝚙, the modifier can be 𝚒𝚗𝚝𝚘(𝚌𝚞𝚋𝚎), or 𝚒𝚗𝚝𝚘(𝚜𝚕𝚒𝚌𝚎𝚜), or 𝚒𝚗𝚝𝚘(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜).

𝚒𝚗𝚝𝚘(𝚜𝚕𝚒𝚌𝚎𝚜)
𝚒𝚗𝚝𝚘(𝚌𝚞𝚋𝚎𝚜)
𝚒𝚗𝚝𝚘(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜)
𝚚𝚞𝚒𝚌𝚔𝚕𝚢

𝚒𝚗𝚝𝚛𝚘𝚍𝚞𝚌𝚒𝚗𝚐_𝚊𝚒𝚛
𝚞𝚗𝚝𝚒𝚕(𝚐𝚘𝚕𝚍𝚎𝚗_𝚋𝚛𝚘𝚠𝚗)
𝚞𝚗𝚝𝚒𝚕(𝚌𝚛𝚒𝚜𝚙𝚢)

• A duration term is either a constant that denotes a time duration with a unit (e.g. 60secs, 5 min, 1 h, 3days, etc.) which 
we call a fixed duration, or an interval (e.g. 5--10 min, 1--2 h) which we call a interval duration. The informal meaning 
of an interval duration, say 𝟻–𝟷𝟶 𝚖𝚒𝚗 is that the duration is between 5 min and 10 min.

• An action term is a term of the form 𝛼(𝛽) or of the form 𝛼(𝛽, 𝛾1,… , 𝛾𝑛) where 𝛼 is a function symbol denoting an action in 
the form of a verb, and 𝛽 is a food term or a count term or a measure term, and each 𝛾  is a location term or a duration term 
𝑖

6 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
or a modification term. Some examples of action terms are the following.
𝚙𝚞𝚝(𝚝𝚘𝚖𝚊𝚝𝚘𝚎𝚜, 𝚒𝚗(𝚙𝚊𝚗))
𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜)
𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟻 𝚖𝚒𝚗)
𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟻 − 𝟷𝟶 𝚖𝚒𝚗)
𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚒𝚗(𝚙𝚊𝚗), 𝚞𝚗𝚝𝚒𝚕(𝚐𝚘𝚕𝚍𝚎𝚗_𝚋𝚛𝚘𝚠𝚗))
𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗𝚜, 𝚒𝚗𝚝𝚘(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜))

• A temporal term is a variable (that can be instantiated with a constant that denotes a timepoint), or is a constant that denotes 
a timepoint, as illustrated in Example  2.

In this paper, we limit ourselves to these terms, and some subsidiary terms that we will defined later as required. But this choice 
is only illustrative, and alternatives choices of terms could be used as our framework for substitution framework is agnostic about 
the choice of terms.

3.2.2. Logical atoms for recipes
Using the terms defined above, we define the following five types of atom where 𝜏 (and 𝜏′) is a temporal term. In examples, 

we use the variable symbol 𝚃 perhaps with a number, e.g. 𝚃𝟾, to denote variables for timepoints, and we use the constant symbol 
𝚝 perhaps with number, e.g. 𝚝6, to denote specific timepoints.

• A do atom is of the form 𝚍𝚘(𝛼, 𝜏1, 𝜏2) where 𝛼 is an action term and 𝜏1, 𝜏2 are temporal terms (constant or variable). Some 
examples of ground do atoms are the following.

𝚍𝚘(𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗), 𝚝𝟷, 𝚝𝟷)
𝚍𝚘(𝚏𝚛𝚢(𝚘𝚗𝚒𝚘𝚗, 𝟻 𝚖𝚒𝚗), 𝚝𝟷, 𝚝𝟸)
𝚍𝚘(𝚝𝚑𝚊𝚠(𝚏𝚛𝚘𝚣𝚎𝚗_𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝟼𝟶 − 𝟷𝟸𝟶 𝚖𝚒𝚗), 𝚝𝟹, 𝚝𝟽)

• An onhand atom is of the form 𝚘𝚗𝚑𝚊𝚗𝚍(𝛼, 𝜏) where 𝛼 is a food or count term or measure term or equipment term and 𝜏 is a 
temporal term. Some examples of onhand atoms are the following.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚝)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚘𝚗𝚒𝚘𝚗, 𝟻𝟶, 𝚐), 𝚝)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟸), 𝚝)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟸𝟻𝟶, 𝚐), 𝚝)

• A consume atom is of the form 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝛼, 𝑡). where 𝛼 is a food or count or measure term and 𝜏 is a temporal term. Some 
examples of ground consume atoms are the following.

𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚝)
𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟸), 𝚝)
𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝟸𝟻𝟶, 𝚐), 𝚝)

• A temporal atom is the form 𝚋𝚎𝚏𝚘𝚛𝚎(𝜏1, 𝜏2) to denote that temporal term 𝜏1 occurs before temporal term 𝜏2, and
𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏1, 𝜏2) to denote that temporal term 𝜏1 occurs before or at the same time as temporal term 𝜏2

• A period atom is the form 𝚜𝚊𝚖𝚎𝚙𝚎𝚛𝚒𝚘𝚍(𝛿, 𝜏𝟷, 𝜏𝟸) to denote that the duration term 𝛿 is less than or equal to the period from 
temporal term 𝜏1 to temporal term 𝜏2, For example, since the period from 10:46 to 10:51 is less than or equal to 5 min, the 
following holds.

𝚜𝚊𝚖𝚎𝚙𝚎𝚛𝚒𝚘𝚍(𝟻 𝚖𝚒𝚗, 𝟷𝟶 ∶ 𝟺𝟼, 𝟷𝟶 ∶ 𝟻𝟷)

We have considered five key types of atom to give us the ability to capture a wide variety of information found in recipes, and 
thereby give us the ability to consider substitutions. However, this selection of atoms, and the terms that they incorporate, could 
be substantially revised depending on the needs for representing and reasoning with recipes.

3.2.3. Logical formulae for recipes
Based on the above atoms, we now define the clauses of the language. Recall that a clause is of the form 𝛿1 ← 𝛿2 ∧⋯∧ 𝛿𝑛 where 

𝛿1 is a literal and each 𝛿𝑖 where 𝑖 ∈ {2,… , 𝑛} are literals. We will focus on specific kinds of clause including the following.

• A preparation clause which is of the form 𝛿1 ← 𝛿2 ∧⋯ ∧ 𝛿𝑛 where 𝛿1 is an onhand atom and each 𝛿𝑖 such that 𝑖 ∈ {2,… , 𝑛}
is either a do atom or an onhand atom or a consume atom, and one of the atoms is a do atom.

• A consumption clause which is of the form 𝛿1 ← 𝛿2 ∧⋯ ∧ 𝛿𝑛 where 𝛿1 is an onhand atom and each 𝛿𝑖 such that 𝑖 ∈ {2,… , 𝑛}
is either an onhand atom or a consume atom, and one of the atoms is a consume atom.

• A ramification clause which is of the form 𝛿1 ← 𝛿2 ∧ ⋯ ∧ 𝛿𝑛 where 𝛿1 is a negated onhand atom and each 𝛿𝑖 such that 
𝑖 ∈ {2,… , 𝑛} is either an onhand atom or a do atom, and one of the atoms is a do atom.

• A background clause which is of the form 𝛿 ← 𝛿 ∧⋯ ∧ 𝛿  where for each 𝛿  such that 𝑖 ∈ {1,… , 𝑛} is an onhand atom.
1 2 𝑛 𝑖

7 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
• An integrity constraint which is of the form ⊥ ← 𝛿1 ∧⋯ ∧ 𝛿𝑛 where each 𝛿𝑖 is an onhand, or do atom or the negation of an 
onhand, or do atom (i.e. classical negation). Note, we will use ⊥ to denote contradiction.

We will use the preparation and consumption clauses to specify the processes of recipes, and we will use integrity constraints for 
checking the consequences of a recipe are consistent. We will use the ramification, persistence, and background clauses to support 
both tasks. We will use 𝛥 to denote the set of preparation, consumption, ramification, persistence, and background clauses required 
for a recipe, and 𝛩 to denote a set of integrity constraints, required for a recipe. We provide examples of these clauses in the 
following.

Example 3 (Preparation Clause). This clause has the precondition 𝚘𝚗𝚑𝚊𝚗𝚍(𝚑𝚊𝚟𝚎(𝚘𝚗𝚒𝚘𝚗), 𝚃𝟷), the action 𝚍𝚘(𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗), 𝚃𝟸), and the 
postcondition 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚃𝟹).

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚃𝟹)
← 𝚍𝚘(𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗), 𝚃𝟸, 𝚃𝟹)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗𝚒𝚘𝚗, 𝚃𝟷)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

Example 4 (Preparation Clause). Like the previous example, the following preparation clause is for the process of chopping onions. 
However, it is a more specific version.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟻𝟶, 𝚐), 𝚃𝟻)
← 𝚍𝚘(𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗, 𝚒𝚗𝚝𝚘(𝟷𝚌𝚖_𝚙𝚒𝚎𝚌𝚎𝚜)), 𝚃𝟹, 𝚃𝟺)
∧ 𝚍𝚘(𝚛𝚎𝚖𝚘𝚟𝚎(𝚜𝚔𝚒𝚗, 𝚘𝚗𝚒𝚘𝚗), 𝚃𝟷, 𝚃𝟸)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚘𝚗𝚒𝚘𝚗, 𝟻𝟶, 𝚐), 𝚃𝟶)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟶, 𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻])

Example 5 (Preparation Clause). Like the previous examples, the following preparation clause is for the process of chopping onions. 
However, it provides an alternative way of obtaining the desired result.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚃𝟹)
← 𝚍𝚘(𝚝𝚑𝚊𝚠(𝚏𝚛𝚘𝚣𝚎𝚗_𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝟼𝟶 − 𝟷𝟸𝟶 𝚖𝚒𝚗), 𝚃𝟷, 𝚃𝟸)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚏𝚛𝚘𝚣𝚎𝚗_𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚃𝟶)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟶, 𝚃𝟷) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

Example 6 (Preparation Clause). This example shows that we can undertake an action for an unspecified period (i.e. there is not an 
explicit duration), but rather the action continues until another state condition is satisfied.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚏𝚛𝚒𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚃𝟺)
← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗𝚒𝚘𝚗(𝚐𝚘𝚕𝚍𝚎𝚗_𝚋𝚛𝚘𝚠𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗), 𝚃𝟸, 𝚃𝟹)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚃𝟷)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟹, 𝚃𝟺)

We can consider a variant of the above where the atoms 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗𝚒𝚘𝚗(𝚐𝚘𝚕𝚍𝚎𝚗_𝚋𝚛𝚘𝚠𝚗), 𝚃𝟹) and 𝚍𝚘(𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗), 𝚃𝟸, 𝚃𝟹)
are replaced in the above process clause by the following atom that qualifies the period of the frying
𝚍𝚘(𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚞𝚗𝚝𝚒𝚕(𝚐𝚘𝚕𝚍𝚎𝚗_𝚋𝚛𝚘𝚠𝚗)), 𝚃𝟸, 𝚃𝟹).

Each preparation clause can be viewed as capturing an input–output relationship where the input are the 𝚘𝚗𝚑𝚊𝚗𝚍 atoms in the 
antecedent of the clause, and the output is the 𝚘𝚗𝚑𝚊𝚗𝚍 atom in the head. So the input and output provide the pre-conditions and 
post-condition respectively for the process steps in the clause given by the 𝚍𝚘 atoms.

Example 7 (Consumption Clause). The following consumption clause specifies that if we have 𝑁 items of type X (e.g. eggs) and 𝙼
are consumed, then the number of them that are available is reduced to 𝙽 − 𝙼. Note, 𝚃 + 𝟷 denotes the next interval after 𝚃.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽 − 𝙼), 𝚃 + 𝟷)
← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽), 𝚃)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙼), 𝚃)

Example 8 (Consumption Clause). The following consumption clause specifies that if the quantity of flour by weight consumed is 𝚇, 
then the quantity of flour is reduced by 𝚇.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚈 − 𝚇, 𝚐), 𝚃 + 𝟷)
← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚈, 𝚐), 𝚃)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚏𝚕𝚘𝚞𝚛, 𝚇, 𝚐), 𝚃)
8 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Example 9 (Ramification Clause). The following update clause specifies that if an item is moved from a position, then the original 
state does not hold.

¬𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚇, 𝚈), 𝚃 + 𝟷) ← 𝚍𝚘(𝚖𝚘𝚟𝚎(𝚇, 𝚉), 𝚃) ∧ (𝚉 ≠ 𝚈) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚇, 𝚈).𝚃)

We can use integrity constraints to ensure that we prohibit models with multiple quantities of available items.

Example 10 (Integrity Constraint). In this example, we use integrity constraints to ensure that we do not have multiple numbers of 
an item 𝚇 (e.g. eggs).

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙼), 𝚃) ∧ 𝙽 ≠ 𝙼

Example 11 (Integrity Constraint). We use integrity constraints to ensure that for a material 𝚉 (e.g. flour), there is only one quantity 
of that material (i.e. 𝚇 = 𝚈) available at any point in time where is 𝚄 is the unit for the measure.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚉, 𝚇, 𝚄), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚉, 𝚈, 𝚄), 𝚃) ∧ 𝚇 ≠ 𝚈

Example 12 (Integrity Constraint). We use integrity constraints to ensure the timing of actions are consistent with the time required 
for the action. For the constraint below, we assume instant noodles only take 2 min to cook and so if a recipe cooks them for a 
shorter or longer period (e.g. 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚒𝚗𝚜𝚝𝚊𝚗𝚝_𝚗𝚘𝚘𝚍𝚕𝚎𝚜, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟷, 𝚃𝟸)), then this is treated as inconsistent (e.g. since 𝟷𝟶 𝚖𝚒𝚗 ≠ 𝟸 𝚖𝚒𝚗

holds).

⊥← 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚒𝚗𝚜𝚝𝚊𝚗𝚝_𝚗𝚘𝚘𝚍𝚕𝚎𝚜, 𝙳), 𝚃𝟷, 𝚃𝟸) ∧ 𝙳 ≠ 𝟸 𝚖𝚒𝚗

Example 13 (Integrity Constraint). We use integrity constraints to ensure that an action forces some fluents to no longer hold. If 𝚇
is in 𝚈 at time 𝑇 , and 𝚇 is poured onto 𝚉, then 𝚇 is no longer in 𝚈 at time 𝚃 + 𝟷, and so assuming that it is still in 𝚈 at time 𝚃 + 𝟷

causes an inconsistency.
⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚒𝚗(𝚇, 𝚈), 𝚃 + 𝟷) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚒𝚗(𝚇, 𝚈), 𝚃) ∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚇), 𝚘𝚗𝚝𝚘(𝚉), 𝚃)

Example 14 (Integrity Constraint). We use integrity constraints to ensure that there is at most one action 𝙰 undertaken at each point 
in time.

⊥← 𝚍𝚘(𝙰, 𝚃𝟷, 𝚃𝟸) ∧ 𝚍𝚘(𝙰′, 𝚃′
𝟷
, 𝚃′

𝟸
) ∧ 𝙰 ≠ 𝙰′ ∧ 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟷, 𝚃′𝟷) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃′

𝟷
, 𝚃𝟸)

Recipes often express the same information in different ways. For example, an ingredient may be described by a count (e.g., ‘‘one 
250 g packet of butter’’) or by a measure (e.g., ‘‘250 g of butter’’), and quantities may appear in multiple units. To allow the reasoning 
process to handle such variations, we include background clauses that encode simple ontological relationships (e.g., alternative 
names, broader/narrower ingredient types, unit conversions, etc.), so that the system can infer the intended equivalences whenever 
needed.

Example 15 (Background Clause). We use clauses like the following to represent equivalence between a count term and measure 
term.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚞𝚝𝚝𝚎𝚛, 𝟸𝟻𝟶, 𝚐), 𝚃) ← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝟸𝟻𝟶_𝚐_𝚙𝚊𝚌𝚔𝚎𝚝_𝚘𝚏_𝚋𝚞𝚝𝚝𝚎𝚛, 𝟷), 𝚃)

Example 16 (Background Clause). We use clauses like the following to represent an equivalence between measures.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚇, 𝟻𝟶𝟶, 𝚐), 𝚃) ← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚇, 0.5, kg), 𝚃)

Example 17 (Background Clause). We use clauses like the following to represent availability of pan of capacity 𝚇 if we have a pan 
of greater capacity.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝚌𝚊𝚙𝚊𝚌𝚒𝚝𝚢(𝚇)), 𝚃) ← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝚌𝚊𝚙𝚊𝚌𝚒𝚝𝚢(𝚈)), 𝚃) ∧ 𝚇 ≤ 𝚈

For reasoning with time, we assume that 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕 is a linear ordering relation over timepoints. So it is reflexive 
(i.e. for all timepoints 𝜏, 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏) holds), antisymmetric (i.e. for all timepoints 𝜏 and 𝜏′, if 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏′)
and 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏′, 𝜏) hold, then 𝜏 = 𝜏′), transitive (i.e. for all timepoints 𝜏, 𝜏′, and 𝜏′′, if 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏′) and 
𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏′, 𝜏′′) hold, then 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏′′) holds), and linearly connected (i.e. for all timepoints 𝜏 and 𝜏′,
𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏′) or 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏′, 𝜏) holds).

Now we define 𝚋𝚎𝚏𝚘𝚛𝚎 in terms of 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕: For all timepoints 𝜏 and 𝜏′, 𝚋𝚎𝚏𝚘𝚛𝚎(𝜏, 𝜏′) holds iff 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏, 𝜏′)
holds and 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝜏′, 𝜏) does not hold.
9 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Example 18 (Background Clause). We can use the following clauses to reason with time.
𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟹) ← 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)
𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ← 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹,… , 𝚃𝚗])
𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ← 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟷, 𝚃𝟸) ∧ ¬𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟸, 𝚃𝟷)

𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([])
𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟸,… , 𝚃𝚗]) ← 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸,… , 𝚃𝚗])
𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸,… , 𝚃𝚗]) ← 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟸,… , 𝚃𝚗])

𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃, 𝚃)
𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟷, 𝚃𝟸) ← 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸)
𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟷, 𝚃𝟹) ← 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎_𝚘𝚛_𝚎𝚚𝚞𝚊𝚕(𝚃𝟸, 𝚃𝟹)

The examples of clauses presented in this section are meant to be indicative. For specific recipes and for specific reasoning tasks, 
we may wish to adapt them.

3.3. Logical reasoning with recipes

In order to reason with kinds of clauses described in the previous subsections, we require the definition for the subsequent 
timepoint for a timepoint: For all timepoints 𝜏 ∈ 𝑇 , let 𝜏 + 1 denote 𝜏′ ∈ 𝑇  such that there is no 𝜏′′ where 𝜏 is before 𝜏′′ and 𝜏′′ is 
before 𝜏′. For instance, suppose we have the sequence of timepoints [𝚝𝟷, 𝚝𝟽, 𝚝𝟿], where 𝚝𝟷 is before 𝚝𝟿, 𝚝𝟷 is not before 𝚝𝟽 and 𝚝𝟽
is not before 𝚝𝟷, then 𝚝𝟷 + 𝟷 = 𝚝𝟿.

3.3.1. Cooking sessions
In order to deal with actions and consumables, we introduce the notion of assumptions as follows. These capture the ingredients 

and actions that we would require in order to use the process rules.

Definition 1.  A set of assumptions is a set of ground do, onhand, and consume, atoms.
We can select a set of assumed actions for the rules in a knowledgebase. For instance, if 𝜓0 ← 𝜓1 ∧ ⋯ ∧ 𝜓𝑛 is in 𝛥 and 

𝜙 ∈ {𝜓1,… , 𝜓𝑛} and (𝜙 is of the form 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝛼, 𝜏) or 𝜙 is of the form 𝚍𝚘(𝛼, 𝜏, 𝜏′) 𝜙 is of the form 𝚘𝚗𝚑𝚊𝚗𝚍(𝛼, 𝜏)).

Example 19.  Consider the recipe in Fig.  2. The following is a set of assumptions for ingredients.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚝𝟷)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚝𝟷)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚝𝟷)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚝𝚘𝚖𝚊𝚝𝚘𝚎𝚜, 𝚝𝟷)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚒𝚡𝚎𝚍_𝚑𝚎𝚛𝚋𝚜, 𝚝𝟷)

The following is a set of assumptions for action. Note, in general, we do not prohibit multiple actions at the same timepoint, though 
later we will discuss how we can use an integrity constraint to ensure that only one action is undertaken at each timepoint.

𝚍𝚘(𝚙𝚘𝚞𝚛(𝚝𝚘𝚖𝚊𝚝𝚘_𝚜𝚊𝚞𝚌𝚎, 𝚘𝚗𝚝𝚘(𝚘𝚗(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚙𝚕𝚊𝚝𝚎))), 𝚝𝟷𝟷)
𝚍𝚘(𝚙𝚘𝚞𝚛(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚙𝚕𝚊𝚝𝚎), 𝚝𝟷𝟶)
𝚍𝚘(𝚋𝚘𝚒𝚕(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝟷𝟶 − 𝟷𝟺 𝚖𝚒𝚗), 𝚝𝟹, 𝚝𝟿)
𝚍𝚘(𝚙𝚞𝚝(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚒𝚗(𝚙𝚊𝚗𝟸)), 𝚝𝟸)
𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗𝟸)), 𝚝𝟷)
𝚍𝚘(𝚜𝚒𝚖𝚖𝚎𝚛(𝚙𝚊𝚗, 𝟻 𝚖𝚒𝚗), 𝚝𝟻, 𝚝𝟽)
𝚍𝚘(𝚙𝚞𝚝(𝚖𝚒𝚡𝚎𝚍_𝚑𝚎𝚛𝚋𝚜, 𝚒𝚗(𝚙𝚊𝚗)), 𝚝𝟺)
𝚍𝚘(𝚙𝚞𝚝(𝚝𝚘𝚖𝚊𝚝𝚘𝚎𝚜, 𝚒𝚗(𝚙𝚊𝚗)), 𝚝𝟺)
𝚍𝚘(𝚏𝚛𝚢(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟺 − 𝟻 𝚖𝚒𝚗), 𝚝𝟸, 𝚝𝟹)
𝚍𝚘(𝚙𝚞𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚒𝚗(𝚙𝚊𝚗)), 𝚝𝟷)

We also require the assumption 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚝𝟷, 𝚝𝟸, 𝚝𝟹, 𝚝𝟺, 𝚝𝟻, 𝚝𝟼, 𝚝𝟽, 𝚝𝟾, 𝚝𝟿, 𝚝𝟷𝟶]) for timepoints.
We now define a cooking session as recipe (i.e. a set of preparation, consumption, ramification, persistence, and background 

clauses), a set of assumptions, a set of integrity constraints, and an atom (that is intended to denote a food item).

Definition 2.  A cooking session is a tuple (𝛥, 𝛤 ,𝛩) where 𝛥 is a recipe (i.e. a set of preparation, consumption, ramification, 
persistence, and background clauses), 𝛤  is a set of assumptions (i.e. availability of specific set of ingredients, equipment, and actions), 
𝛩 is a set of integrity constraints and background knowledge (i.e. background clauses).

Example 20.  Let 𝛥 be the four preparation clauses in Fig.  2, let 𝛤  be the assumptions given in Example  19, and let 𝛩 = ∅.
10 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Fig. 2.  A set of preparation clauses for preparing a simple pasta dish. The recipe is split into four rules. 

So for a cooking session (𝛥, 𝛤 ,𝛩), 𝛥 provides the processing steps for the recipe, 𝛤  provides the assumed ingredients and actions, 
and 𝛩 provides constraints to check that these work in an acceptable way and background knowledge that may be required to 
support reasoning with the recipe. We separate 𝛥 from 𝛩 because later we will want to update 𝛥 with substitutions for ingredients, 
equipment, and processing steps, but leave 𝛩 unchanged.

Later we will consider how a cooking session can be considered with respect to a specific food item 𝜋. So if 𝜋, say 
𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚊𝚔𝚎𝚍(𝚟𝚒𝚌𝚝𝚘𝚛𝚒𝚊_𝚜𝚙𝚘𝚗𝚐𝚎), 𝚝) is the intended result of a recipe at time 𝚝, then we can use logical consequence as defined 
in the next subsection to show that 𝜋 follows from a cooking session.

3.3.2. Consequence relation
To reason with a recipe, we use the classical propositional logic consequence relation ⊢. For a cooking session (𝛥, 𝛤 ,𝛩), a ground 

literal 𝛼, and a grounding set 𝐺, we denote that 𝛼 is a classical propositional inference from 𝖦𝗋𝗈𝗎𝗇𝖽(𝛥 ∪ 𝛤 ∪ 𝛩,𝐺) by (𝛥, 𝛤 ,𝛩) ⊢ 𝜙. 
Note, we could equivalently treat all formulae with variables as being universally quantified formulae where each variable is in the 
scope of a universal quantifier. Then we could use first-order predicate logic for determining whether 𝛼 is an inference. However, 
using grounding offers a simple solution for implementation since we can use automated reasoning such as SAT solvers with the 
propositional logic formulae.

Example 21.  Consider the following clause.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚋𝚘𝚒𝚕𝚎𝚍_𝚎𝚐𝚐), 𝚃𝟸)

← 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚎𝚐𝚐), 𝚃𝟷)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚃𝟷)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸)

Suppose 𝛥 contains the above clause and 𝛤  contains the following atoms.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚝𝟷)
𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚝𝟷)

𝚍𝚘(𝚋𝚘𝚒𝚕(𝚎𝚐𝚐), 𝚝𝟷)

11 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Then we obtain inferences that include the following:
(𝛥, 𝛤 ,𝛩) ⊢ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚝𝟷)
(𝛥, 𝛤 ,𝛩) ⊢ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚝𝟷)
(𝛥, 𝛤 ,𝛩) ⊢ 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚎𝚐𝚐), 𝚝𝟷)
(𝛥, 𝛤 ,𝛩) ⊢ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚋𝚘𝚒𝚕𝚎𝚍_𝚎𝚐𝚐), 𝚝𝟸)

If we also assume the clause in Example  7, then we also have the following inference.
(𝛥, 𝛤 ,𝛩) ⊢ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟶), 𝚝𝟸)

There are many ways that we can specify an inconsistent set of formulae using this language. The following is an example based 
on an integrity constraint.

Example 22.  The atoms 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚃) and 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟼), 𝚃) are inconsistent with the integrity constraint. So if 𝛤
contains the above atoms, and 𝛩 contains the following integrity constraint, we obtain (𝛥, 𝛤 ,𝛩) ⊢ ⊥.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟼), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚃)

In order to ensure the consumption of the same resource at the same time is blocked, we can use integrity constraints of the 
following form.

Example 23.  The atoms 𝚍𝚘(𝚞𝚜𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷)), 𝚝𝟷) and 𝚍𝚘(𝚞𝚜𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟼)), 𝚝𝟸) are inconsistent with the following integrity 
constraint. So if 𝛤  contains the above atoms, and 𝛩 contains the following integrity constraint, we obtain (𝛥, 𝛤 ,𝛩) ⊢ ⊥.

⊥← 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽), 𝚃) ∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙼), 𝚃) ∧ 𝙽 ≠ 𝙼

We can also use integrity constraints to ensure that the consumption of resources sums to not more than the original availability 
of the resource in the assumptions.

Example 24.  The following integrity constraint is for the case when there are two assumptions that a resource is consumed, and 
there is an inconsistency if the sum of these is greater than the available resource.

⊥ ← 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽𝟷), 𝚃𝟸)
∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙽𝟸), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝙼), 𝚃𝟶)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟶, 𝚃𝟷) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟶, 𝚃𝟸)
∧ 𝙽𝟷 + 𝙽𝟸 > 𝙼

We can further restrict the consumption of items by introducing an integrity constraint that blocks the consumption of the same 
item in multiple actions in multiple locations at the same time.

To reason with a recipe, we can execute it. In other words, we can simulate the sequence of steps involved in using the recipe. 
The ingredients gives the details of the starting state, and then the preparation clauses give us the details of the subsequent states.

Definition 3.  Let 𝛥 be a set of clauses, and 𝛤  be a set of assumptions. The execution function, denoted 𝖤𝗑𝖾𝖼𝗎𝗍𝖾, is defined as 
follows.

𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) = {𝜙 ∣ (𝛥, 𝛤 ,𝛩) ⊢ 𝜙}

Example 25.  Consider 𝛥 containing the following clause
𝚘𝚗𝚑𝚊𝚗𝚍(𝚑𝚊𝚛𝚍_𝚋𝚘𝚒𝚕𝚎𝚍_𝚎𝚐𝚐, 𝚝𝟼)

← 𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚎𝚐𝚐_𝚌𝚞𝚙)), 𝚝𝟻)
∧ 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗), 𝟹 − 𝟻 𝚖𝚒𝚗), 𝚝𝟹, 𝚝𝟺)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗𝚝𝚘(𝚙𝚊𝚗)), 𝚝𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚙𝚊𝚗)), 𝚝𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚎𝚐𝚐, 𝚝𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚊𝚝𝚎𝚛, 𝟻𝟶𝟶, 𝚖𝚕), 𝚝𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚝𝟷, 𝚝𝟸, 𝚝𝟹, 𝚝𝟺, 𝚝𝟻])

plus the following assumptions 𝛤 .
𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚎𝚐𝚐_𝚌𝚞𝚙)), 𝚝𝟻) 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗), 𝟹 − 𝟻 𝚖𝚒𝚗), 𝚝𝟹, 𝚝𝟺)
𝚍𝚘(𝚙𝚘𝚞𝚛(𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗𝚝𝚘(𝚙𝚊𝚗)), 𝚝𝟸) 𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚙𝚊𝚗)), 𝚝𝟷)
𝚘𝚗𝚑𝚊𝚗𝚍(𝚎𝚐𝚐, 𝚝𝟷) 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚊𝚝𝚎𝚛, 𝟻𝟶𝟶, 𝚖𝚕), 𝚝𝟷)

From this, we have the execution 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) = 𝛤 ∪ {𝚘𝚗𝚑𝚊𝚗𝚍(𝚑𝚊𝚛𝚍_𝚋𝚘𝚒𝚕𝚎𝚍_𝚎𝚐𝚐, 𝚝𝟼)}.
12 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
The output of a cooking session is defined as the items onhand that are not assumed (i.e. not ingredients) and that are available 
at the last point in time.

Definition 4.  For a cooking session (𝛥, 𝛤 ,𝛩), the dishes function is defined as follows.
𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩) = {𝛼 ∣ 𝚘𝚗𝚑𝚊𝚗𝚍(𝛼, 𝑡) ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩)

 and for all 𝚘𝚗𝚑𝚊𝚗𝚍(𝛼′, 𝑡′) ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), 𝑡 ≥ 𝑡′}

Example 26.  Consider the cooking session in Example  25. From this, we have 𝚑𝚊𝚛𝚍_𝚋𝚘𝚒𝚕𝚎𝚍_𝚎𝚐𝚐 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩).

When we have a cooking session (𝛥, 𝛤 ,𝛩), there is an intended output 𝜋 and we would want that to be in 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩). As we 
will investigate later, if 𝜋 is not in 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩), then we may seek a 𝜋′ in 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩) that is similar to 𝜋.

4. Candidates for substitution

We are interested in substituting one ingredient for another. For example, swapping an onion for a shallot in a recipe for a 
sauce. However, we are also interested in substituting intermediate food items in a recipe such as chopped shallots for chopped 
onions. Furthermore, we are interested in substituting equipment and processes. For example, instead of the process of kneading 
flour, water, and yeast, for 10 min to make dough for bread, we can mix the ingredients in a bowl, and leave it overnight.

We use a distance measure to compare ingredients. So for ingredients 𝛼 and 𝛽, 𝑑(𝛼, 𝛽) denotes the distance between 𝛼 and 𝛽. 
The closer the distance 𝑑(𝛼, 𝛽), the better one would be a substitute for another. So 𝑑(𝛼, 𝛽) = 0 means 𝛼 and 𝛽 would be perfect 
substitutes for each other. Since it is a distance measure, it is always the case that 𝑑(𝛼, 𝛼) = 0, and so any ingredient is a perfect 
substitute for itself.

We are also interested in substitutions of equipment, of actions, and of chunks of recipes. These means that we need to not 
only substitute logical terms but also clauses. So we need to also consider distance between formulae 𝜙 and 𝜓 , and hence consider 
distance of the form 𝑑(𝜙,𝜓) which denotes the distance between 𝜙 and 𝜓 .

There are various ways we can define a distance measure for finding substitutions. We give some options in the rest of this 
section.

4.1. Distance measures based on role

Given a set of recipes 𝛥, we can group them in (overlapping subsets) by recipe type (e.g. breads, cakes, biscuits, baked 
goods, roasts, pasta dishes, stews, soups, etc.). These are based on the nature of the final food item produced by 
the recipe.

Each ingredient in recipe has a role. The are many ways that roles can be described (see for example www.foodafactoflife.org.uk) 
Some examples of roles are thicken, bind, flavour, shorten, sweeten, make_flaky_pastry, glaze, denature, 
retain_moisture, aerate, gel and raise.

A role function 𝜌𝑡, for a recipe type 𝑡, takes an ingredient, and returns the roles of the ingredient in the recipe type. The following 
are some examples of role functions.

• 𝜌𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚋𝚞𝚝𝚝𝚎𝚛) = {𝚋𝚒𝚗𝚍𝚜(𝚏𝚕𝚘𝚞𝚛), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚋𝚞𝚝𝚝𝚎𝚛𝚢)}
• 𝜌𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚖𝚒𝚕𝚔) = {𝚋𝚒𝚗𝚍𝚜(𝚏𝚕𝚘𝚞𝚛), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚋𝚞𝚝𝚝𝚎𝚛𝚢), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚖𝚒𝚕𝚔𝚢)}
• 𝜌𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚑𝚘𝚗𝚎𝚢) = {𝚜𝚠𝚎𝚎𝚝𝚎𝚗𝚜, 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚑𝚘𝚗𝚎𝚢)}
• 𝜌𝚏𝚒𝚜𝚑_𝚌𝚊𝚔𝚎(𝚎𝚐𝚐) = {𝚋𝚒𝚗𝚍𝚜(𝚏𝚒𝚜𝚑_𝚊𝚗𝚍_𝚙𝚘𝚝𝚊𝚝𝚘)}

We can use the role function to define a role distance function which is based on Jaccard distance. Essentially, the more properties 
that are in common, the closer the two ingredients.

Definition 5.  For food items 𝛼 and 𝛽, the role distance function, denoted 𝑑𝑡(𝛼, 𝛽), is defined for recipe type 𝑡

𝑑𝑡(𝛼, 𝛽) = 1 −
|𝜌𝑡(𝛼) ∩ 𝜌𝑡(𝛽)|
|𝜌𝑡(𝛼) ∪ 𝜌𝑡(𝛽)|

Example 27.  For the following specifications of role, 𝑑𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍(𝚋𝚞𝚝𝚝𝚎𝚛, 𝚖𝚒𝚕𝚔) = 𝟸∕𝟹

𝜌𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚋𝚞𝚝𝚝𝚎𝚛) = {𝚋𝚒𝚗𝚍𝚜(𝚏𝚕𝚘𝚞𝚛), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚋𝚞𝚝𝚝𝚎𝚛𝚢)}
𝜌𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚖𝚒𝚕𝚔) = {𝚋𝚒𝚗𝚍𝚜(𝚏𝚕𝚘𝚞𝚛), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚋𝚞𝚝𝚝𝚎𝚛𝚢), 𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚜(𝚖𝚒𝚕𝚔𝚢)}

We can use NLP methods to extract role functions from recipes and other text sources. Recipe types can be learned by using 
hierarchical clustering and/or obtained from ontologies. And/or assignment of types to a recipe can be undertaken with ML 
classification methods.
13 

http://www.foodafactoflife.org.uk)


A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
4.2. Distance measures based on word embeddings

A distance measure can be defined based on a word embedding such as the general purpose word embeddings Word2Vec [6] 
or Glove [7], or the specialized word embedding Food2Vec which is a pre-trained word embeddings for cooking substitution [8]. 
For food items 𝛼 and 𝛽, and a word embedding, the distance function 𝑑(𝛼, 𝛽) is the cosine similarity between 𝛼 and 𝛽 in the word 
embedding.

Word embeddings for food could be improved by considering the following options: (Analogical reasoning with word 
embeddings) For example, determine vector for 𝚌𝚑𝚘𝚙𝚙𝚎𝚍𝚜𝚑𝚊𝚕𝚕𝚘𝚝 from vectors for 𝚌𝚑𝚘𝚙𝚙𝚎𝚍, and 𝚜𝚑𝚊𝚕𝚕𝚘𝚝, using for instance methods 
for combining word-embeddings for individual words, to give the word-embedding for a compound (for a review, see [9,10]); (Word 
embeddings trained by recipe type) For example, train the word embedding only with recipes for baked goods, and so ingredients 
that are near each other are more likely to be substitutes which can be represented as 𝑑𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚘𝚕𝚒𝚟𝚎_𝚘𝚒𝚕, 𝚋𝚞𝚝𝚝𝚎𝚛); (Word 
embeddings trained by role(s)) Train the word embedding to minimize the distance between two ingredients for a specific role, 
and so for example 𝑑𝚋𝚒𝚗𝚍𝚒𝚗𝚐

𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚘𝚕𝚒𝚟𝚎_𝚘𝚒𝚕, 𝚋𝚞𝚝𝚝𝚎𝚛) is low whereas 𝑑𝚋𝚒𝚗𝚍𝚒𝚗𝚐
𝚋𝚊𝚔𝚎𝚍_𝚐𝚘𝚘𝚍𝚜(𝚎𝚐𝚐, 𝚌𝚑𝚎𝚎𝚜𝚎) is high. We can also consider combining 

distance by reducing each distance to unit interval and then using t-norms For more information on developing distance measures 
in the food domain see [11].

4.3. Distance measures based on operational knowledge

We can specify distance measures from knowledge of cooking and/or we can identify common substitutions for ingredients or 
steps in recipes using text mining. For example,

• 1 cup of buttermilk can be substituted by 1 cup yoghurt OR 1 tablespoon lemon juice or vinegar plus enough milk to make 1 
cup

• 1 cup of mayonnaise can be substituted by 1 cup sour cream OR 1 cup plain yoghurt
• 1 whole egg can be substituted by half a banana mashed with 1/2 teaspoon baking powder

There are numerous resources on options for substitutions (e.g. substitutions to transfer a dish into vegan dish [12]) that can be 
used as the basis of specifying distance measures. Alternatively, text mining can be used to identify substitutions that are commonly 
used in recipes online.

Example 28.  Suppose we have the ingredient 𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝟷𝟶𝟶 𝚐), 𝚃), and we have the following clause 
𝜓 , then we can specify 𝑑(𝜙,𝜓) to be low.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗𝚜, 𝚃𝟺)
← 𝚍𝚘(𝚌𝚑𝚘𝚙(𝚘𝚗𝚒𝚘𝚗), 𝚃𝟸, 𝚃𝟹)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗𝚒𝚘𝚗, 𝚃𝟷)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

Example 29.  Suppose we need the ingredient 𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚊𝚙𝚕𝚎_𝚜𝚢𝚛𝚞𝚙, 𝚃), and we have the following clause 𝜓 , then we can specify 
𝑑(𝜙,𝜓) to be low.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚊𝚙𝚕𝚎_𝚜𝚢𝚛𝚞𝚙, 𝚃𝟾)
← 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚙𝚊𝚗, 𝟻 𝚖𝚒𝚗), 𝚃𝟼, 𝚃𝟽)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚟𝚊𝚗𝚒𝚕𝚕𝚊_𝚎𝚡𝚝𝚛𝚊𝚌𝚝, 𝟷𝟶, 𝚐).𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚊𝚝𝚎𝚛, 𝟸𝟶𝟶, 𝚖𝚕).𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟺)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚑𝚒𝚝𝚎_𝚜𝚞𝚐𝚊𝚛, 𝟷𝟶𝟶, 𝚐).𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚛𝚘𝚠𝚗_𝚜𝚞𝚐𝚊𝚛, 𝟸𝟶𝟶, 𝚐).𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚞𝚝𝚝𝚎𝚛, 𝟸𝟶, 𝚐), 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼, 𝚃𝟽, 𝚃𝟾])

We can also specify a distance measure between sets of atoms or sets of clauses as we illustrate in the next example.

Example 30.  If 𝛷 is the set of literals {𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚎𝚐𝚐_𝚠𝚑𝚒𝚝𝚎, 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷)} and 𝛹 is the following set of literals then we can 
specify 𝑑(𝛷,𝛹 ) to be low.

{𝚍𝚘(𝚠𝚑𝚒𝚙(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟷), 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊, 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷)}

It is also possible to construct distance measures from knowledge graphs of food (such as FoodOn) based on ranking of ingredients 
using a range of scoring functions [13].

We explain how we can use these different kinds of distance measure in substitution in the next section.
14 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
5. Substitution operations

As we have discussed in previous sections, a recipe is represented by a set of assumed ingredients and equipment 𝛤 , and a set 
of clauses that capture the processes for producing the intended food item to be output 𝛥, together with clauses for background 
knowledge and integrity constraints 𝛩. Note, we separate the integrity constraints and background knowledge from the process 
clauses because we do not want to make substitutions into the constraints and background, rather we want to focus substitutions 
on the process clauses and assumptions,

There are three levels of substitution that we can make as follows. We explain them informally here, and then formalize them 
in the subsequent subsections.

Term-level substitution Here we substitute a term in a formula or set of formulae. For example, we can swap 𝚌𝚘𝚞𝚗𝚝(𝚊𝚙𝚙𝚕𝚎, 𝟹) for 
𝚌𝚘𝚞𝚗𝚝(𝚙𝚎𝚊𝚛, 𝟹) in a recipe for a cake. We use term substitution to replace specific ingredients and equipment in process clauses 
and assumptions, and to amend specific actions in process clauses (for example, we can swap the term 𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟸 𝚖𝚒𝚗)
for the term 𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟶 𝚖𝚒𝚗) in the condition of a process clause 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃)),

Condition-level substitution Here we substitute an atom or conjunction of atoms in a formula or set of formulae. For example, 
we can swap the atom 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟸 𝚖𝚒𝚗), 𝚃) for the atom 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃) in a recipe for a pasta dish. We 
can generalize to a conjunction of atoms 𝜙1 ∧⋯ ∧ 𝜙𝑚, and 𝜙′

1 ∧⋯ ∧ 𝜙′
𝑛, and so we can replace 𝜙1 ∧⋯ ∧ 𝜙𝑚 by 𝜙′

1 ∧⋯ ∧ 𝜙′
𝑛.

Clause-level substitution Here we substitute a set of clauses for a set of clauses. This allows for more substantial changes to a 
recipe that allow steps of a recipe to be added or removed.

Note, there is some overlap in what these types of substitution can do, depending on the clauses in recipe. So it may be the 
case that replacing a term or replacing an atom have the same effect. For instance, it may be the case that swapping in term 
𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟸 𝚖𝚒𝚗) or swapping in the atom 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟸 𝚖𝚒𝚗), 𝚃) have the same effect.

We formalize these three levels of substitution (i.e. term substitution, condition substitution, and clause substitution) in the 
following subsections.

5.1. Term substitution

We will start with a distance measure 𝑑, and a threshold 𝜏, a substitution candidate, denoted [𝛼∕𝛽], holds for 𝛼 and 𝛽 (where 
𝛼 and 𝛽 are food items, or equipment, or processes) iff we have 𝑑(𝛼, 𝛽) ≤ 𝜏.

Definition 6.  For a term, literal or clause 𝜙, the term substitution of term 𝛼 by term 𝛽, is 𝜙[𝛼∕𝛽]
• If 𝜙 is a ground term, and 𝜙 = 𝛼, then 𝜙[𝛼∕𝛽] is 𝛽
• If 𝜙 is a constant symbol, 𝜙 ≠ 𝛼, then 𝜙[𝛼∕𝛽] is 𝜙
• If 𝜙 is a term or atom of the form 𝛼(𝛾1,… , 𝛾𝑛), then 𝜙[𝛼∕𝛽] is 𝛽(𝛾1[𝛼∕𝛽],… , 𝛾𝑛[𝛼∕𝛽])
• If 𝜙 is ¬𝜓 , then 𝜙[𝛼∕𝛽] is ¬(𝜓[𝛼∕𝛽])
• If 𝜙 is 𝜓1 ← 𝜓2 ∧⋯ ∧ 𝜓𝑛, then 𝜙[𝛼∕𝛽] is 𝜓1[𝛼∕𝛽] ← 𝜓2[𝛼∕𝛽] ∧⋯ ∧ 𝜓𝑛[𝛼∕𝛽]

For a set of formulae 𝛯 = {𝜓1,… , 𝜓𝑛}, 𝛯[𝛼∕𝛽] is {𝜓1[𝛼∕𝛽],… , 𝜓𝑛[𝛼∕𝛽]}

In the following example, we swap an ingredient that is represented by a constant symbol. So we replace the type of ingredient, 
but not the quantity required.

Example 31.  Revisiting the previous example, consider the following substitution of an atom with the substitution candidate 
[𝚋𝚞𝚝𝚝𝚎𝚛∕𝚖𝚊𝚛𝚐𝚊𝚛𝚒𝚗𝚎].

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚞𝚝𝚝𝚎𝚛, 𝟸𝟶, 𝚐), 𝚝𝟷)[𝚋𝚞𝚝𝚝𝚎𝚛∕𝚖𝚊𝚛𝚐𝚊𝚛𝚒𝚗𝚎]
= 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚖𝚊𝚛𝚐𝚊𝚛𝚒𝚗𝚎, 𝟸𝟶, 𝚐), 𝚝𝟷)

In the example in Fig.  3, we consider substituting an ingredient that is represented by a ground term, and we replace both the 
type of food and the quantity required.

We can handle equipment in the same way as food items. So we can use distance both for types of equipment and capacities of 
equipment.

Example 32.  We can define a distance measure, so that for instance 𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝟻𝟶𝟶 𝚖𝚕) is close to 𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝟼𝟶𝟶 𝚖𝚕), and 
𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝟻𝟶𝟶 𝚖𝚕) is close to 𝚏𝚛𝚢𝚒𝚗𝚐_𝚙𝚊𝚗(𝟻𝟶𝟶 𝚖𝚕), but 𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝟻𝟶𝟶 𝚖𝚕) is not close to 𝚜𝚊𝚞𝚌𝚎_𝚙𝚊𝚗(𝟷𝟶𝟶𝟶 𝚖𝚕) since if we require 
a 1000 ml pan for a recipe, a 500 ml pan may be too small.

The following are some basic properties that one may consider holding for a notion of substitution. They may appear to be 
desirable for our substitution operator, but as we show in the following proposition, only the first holds. The others do not hold for 
term substitution because when we substitute, we can in a sense lose distinctions between items, and these are irreversible.
15 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Fig. 3. Example of substitution for a clause in a recipe and a set of assumption.

Proposition 1.  The term substitution operation satisfies reflexivity, but not transitivity, associativity, nor reversibility.
• Reflexivity: 𝜙[𝛼∕𝛼] = 𝛼
• Transitivity: (𝜙[𝛼∕𝛽])[𝛽∕𝛾] = 𝜙[𝛼∕𝛾]
• Associativity: (𝜙[𝛼∕𝛽])[𝛾∕𝛿] = (𝜙[𝛾∕𝛿])[𝛼∕𝛽]
• Reversibility: (𝜙[𝛼∕𝛽])[𝛽∕𝛼] = 𝜙

Proof (Reflexivity). Follows directly from definitions. (Transitivity) For a counterexample, let 𝜙 = 𝚛(𝚊, 𝚋), 𝛼 = 𝚊, 𝛽 = 𝚋, and 𝛾 = 𝚌. 
So (𝜙[𝛼∕𝛽])[𝛽∕𝛾] = 𝚛(𝚌, 𝚌) and 𝜙[𝛼∕𝛾] = 𝚛(𝚌, 𝚋). (Associativity) For a counterexample, let 𝜙 = 𝚛(𝚊, 𝚋), 𝛼 = 𝚊, 𝛽 = 𝚋, 𝛾 = 𝚋 and 𝛿 = 𝚊. 
16 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
So (𝜙[𝛼∕𝛽])[𝛾∕𝛿] = 𝚛(𝚊, 𝚊) and (𝜙[𝛾∕𝛿])[𝛼∕𝛽] = 𝚛(𝚋, 𝚋). (Reversibility) For a counterexample, let 𝜙 = 𝚛(𝚊, 𝚋), 𝛼 = 𝚊, and 𝛽 = 𝚋. So 
(𝜙[𝛼∕𝛽])[𝛽∕𝛼] = 𝚛(𝚊, 𝚊). □

Definition 7.  We define the 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌 function as follows where it returns a multiset, using square braces to denote the multiset 
and ⊕ to denote multiset union.

• If 𝜙 is a constant symbol or a variable symbol, then 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙) = [𝜙].
• If 𝜙 is a term of the form 𝛼(𝛽1,… , 𝛽𝑛), then

𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙) = [𝛼(𝛽1,… , 𝛽𝑛)]⊕ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝛽1)⊕⋯⊕ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝛽𝑛)

• If 𝜙 is an atom of the form 𝛼(𝛽1,… , 𝛽𝑛), then
𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙) = 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝛽1)⊕⋯⊕ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝛽𝑛)

• If 𝜙 is a literal of the form ¬𝜓 , then 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙) = 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜓).
• If 𝜙 is a clause of the form 𝜓1 ← 𝜓2 ∧⋯ ∧ 𝜓𝑛, then

𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙) = 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜓1)⊕⋯⊕ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜓𝑛)

Example 33.  For the clause below, the set of subterms is {𝚖𝚎𝚛𝚒𝚗𝚐𝚞𝚎𝚜, 𝚋𝚊𝚔𝚎(𝚝𝚛𝚊𝚢, 𝟷𝟸𝟶𝙲, 𝟷.𝟽𝟻 𝚑), 𝚝𝚛𝚊𝚢, 𝟷𝟸𝟶𝙲, 𝟷.𝟽𝟻 𝚑,
𝚙𝚘𝚞𝚛(𝚌𝚘𝚗𝚝𝚎𝚗𝚝𝚜(𝚋𝚘𝚠𝚕), 𝚘𝚗(𝚝𝚛𝚊𝚢)), 𝚌𝚘𝚗𝚝𝚎𝚗𝚝𝚜(𝚋𝚘𝚠𝚕), 𝚘𝚗(𝚝𝚛𝚊𝚢), 𝚋𝚘𝚠𝚕, 𝚝𝚛𝚊𝚢, 𝚃𝟼, 𝚃𝟻, 𝚃𝟺}.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚛𝚒𝚗𝚐𝚞𝚎𝚜, 𝚃𝟼)
← 𝚍𝚘(𝚋𝚊𝚔𝚎(𝚝𝚛𝚊𝚢, 𝟷𝟸𝟶𝙲, 𝟷.𝟽𝟻 𝚑), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚌𝚘𝚗𝚝𝚎𝚗𝚝𝚜(𝚋𝚘𝚠𝚕), 𝚘𝚗(𝚝𝚛𝚊𝚢)), 𝚃𝟺)

The following definition of isomorphic specifies that two clauses are isomorphic iff they have the same number of conditions 
and for each condition and for the head, the corresponding atom in the other clause is isomorphic, and two atoms are isomorphic 
if they have the same number of terms.

Definition 8.  For formulae 𝜙 and 𝜓 , 𝜙 is isomorphic with 𝜓 iff (1) 𝜙 is a clause of the form 𝜙1 ← 𝜙2 ∧⋯ ∧ 𝜙𝑛 and 𝜓 is a clause 
of the form 𝜓1 ← 𝜓2 ∧⋯ ∧ 𝜓𝑛 and for each 𝑖 ∈ {1,… , 𝑛}, 𝜙𝑖 is isomorphic with 𝜓𝑖; Or (2) 𝜙 is an atom of the form 𝛼(𝛽1,… , 𝛽𝑚) and 
𝜓 is an atom of the form 𝛼′(𝛽′1,… , 𝛽′𝑚).

Example 34.  The clauses in Examples  7 and 8 are isomorphic, and the clauses in Fig.  3 are isomorphic.
The following result shows that we can turn one formula into another using term substitution when all the subterms are unique, 

and the two formulae are isomorphic. For this, we use the notion of a syntax tree. Each formula can equivalently be represented 
by a syntax tree where the subformulae and terms are subtrees: For each node in the tree, we label it with a formula, subformula, 
term or subterm. Each leaf is labelled with constant or variable symbol. If a node is labelled with a (sub)term 𝛼(𝛽1,… , 𝛽𝑛), then the 
children are labelled with the subterms 𝛽1 to 𝛽𝑛. If a node is labelled with an atom 𝛼(𝛽1,… , 𝛽𝑛), then the children are labelled with 
the terms 𝛽1 to 𝛽𝑛. If a node is labelled with a literal ¬𝛼, then the child is labelled with the atom 𝛼. If a node is labelled with a 
clause 𝜓1 ← 𝜓2 ∧ ⋯ ∧ 𝜓𝑛, then the children are labelled with the literals 𝜓1 to 𝜓𝑛. We assume that a syntax tree for a formula 𝜙
labelling the root is the smallest tree that satisfies the above constraints. Finally, a syntax tree 𝑇  for 𝜙 has unique leaves iff 𝑛 and 
𝑛′ are leaves in 𝑇  and 𝑛 ≠ 𝑛′ and 𝛽 labels 𝑛 and 𝛽′ labels 𝑛′ then 𝛽 ≠ 𝛽′.

Proposition 2.  For clauses 𝜙 and 𝜓 , if 𝜙 has syntax tree 𝑇  and 𝑇  has unique leaves, and 𝜙 is isomorphic to 𝜓 , then there is 
[𝛼1∕𝛽1],… , [𝛼𝑛∕𝛽𝑛] such that

𝜙([𝛼1∕𝛽1],… , [𝛼𝑛∕𝛽𝑛]) = 𝜓

Proof.  Since 𝜙 and 𝜓 are isomorphic, they have identical syntax trees. Let 𝑇𝜙 be the syntax tree for 𝜙 and let 𝑇𝜓  be the syntax tree 
for 𝜓 . And let 𝐿𝜙 be the set of labels for 𝑇𝜙 (i.e. 𝐿𝜙 = {𝛿|𝑛 is a node in 𝑇𝜙 and 𝑛 is labelled with 𝛿}). Since 𝑇𝜙 is uniquely labelled, 
there is a surjective function 𝑓 from 𝐿𝜙 to 𝐿𝜓 . Therefore, for each 𝛼 ∈ 𝐿𝜙, there is a 𝛽 ∈ 𝐿𝜓 , where 𝑓 (𝛼) = 𝛽. Therefore, 𝑓 can be 
represented by a sequence of term substitutions [𝛼1∕𝛽1],… , [𝛼𝑛∕𝛽𝑛] such that 𝜙([𝛼1∕𝛽1],… , [𝛼𝑛∕𝛽𝑛]) = 𝜓 . □

Another way to constrain term substitution is to only introduce terms that do not already appear in the formula which we define 
as follows.

Definition 9.  Let 𝛴 = ⟨𝛱1,… ,𝛱𝑛⟩ be a substitution tuple where each 𝛱𝑖 is a term substitution. 𝛴 is independent iff for each 𝑖, 
where 𝛱𝑖 is of the form [𝛼𝑖∕𝛽𝑖], and for each 𝑗, where 𝑖 ≠ 𝑗 and 𝛱𝑗 is of the form [𝛼𝑗∕𝛽𝑗 ], 𝛼𝑖 ≠ 𝛼𝑗 and 𝛼𝑖 ≠ 𝛽𝑗 .

Proposition 3.  If the substitution tuple of term substitutions 𝛴 = ⟨[𝛼1∕𝛽1],… , [𝛼𝑖∕𝛽𝑖]⟩ is independent, then the sequence of substitutions is 
associative (i.e. 𝜙𝛴 = 𝜙𝛴′, for any formula 𝜙, and any permutation 𝛴′ of 𝛴).
17 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Proof.  Assume 𝛴 is independent. So for each [𝛼𝑖∕𝛽𝑖] in 𝛴, there is no [𝛼𝑗∕𝛽𝑗 ] such that 𝛼𝑖 = 𝛼𝑗 , or 𝛼𝑖 = 𝛽𝑗 . So if [𝛼𝑖∕𝛽𝑖] is applied to 
(… (𝜙[𝛼1∕𝛽1])…)[𝛼𝑖−1∕𝛽𝑖−1], then the following holds

𝛼𝑖 ∉ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌((… (𝜙[𝛼1∕𝛽1])…)[𝛼𝑖−1∕𝛽𝑖−1]) ⧵ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙)

but it may be the case that 𝛼𝑖 ∈ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙). So 𝛽𝑖 ∈ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙𝛴) iff 𝛼𝑖 ∈ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙). So 𝛽𝑖 ∈ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙𝛴′) iff 𝛼𝑖 ∈ 𝖲𝗎𝖻𝗍𝖾𝗋𝗆𝗌(𝜙). So 
𝜙𝛴 = 𝜙𝛴′. □

To conclude, term substitution replaces specific ingredients and equipment in process clauses in 𝛥 and in assumptions in 𝛤 , and 
it replaces specific actions in process clauses in 𝛥.

5.2. Condition substitution

Now we consider the second level of substitution which is for replacing conditions in a clause as defined next.

Definition 10.  For a clause 𝜙 of the form 𝜓1 ← 𝜓2 ∧ ⋯ ∧ 𝜓𝑚, the condition substitution of the set of literals 𝛷, by the set of 
literals 𝛹 , is 𝜙[𝛷∕𝛹 ] defined as follows where {𝜓 ′

2,… , 𝜓 ′
𝑛} is ({𝜓2,… , 𝜓𝑚} ⧵𝛷) ∪ 𝛹 .

𝜙[𝛷∕𝛹 ] = 𝜓1 ← 𝜓 ′
2 ∧⋯ ∧ 𝜓 ′

𝑛

If 𝖳𝖺𝗂𝗅(𝜙) = 𝛷, then let 𝜙[𝛷∕∅] = 𝖧𝖾𝖺𝖽(𝜙) ← ⊤. Also, for a set of formulae 𝛯 = {𝜙1,… , 𝜙𝑛}, let 𝛯[𝛷∕𝛹 ] be {𝜙1[𝛷∕𝛹 ],… , 𝜙𝑛[𝛷∕𝛹 ]}.

Using condition substitution, we can handle complex substitutions such as ingredient plus action as illustrated by the following 
example.

Example 35.  Consider the need to substitute the following conditions
𝜙1 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚎𝚐𝚐_𝚠𝚑𝚒𝚝𝚎, 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷)

𝜙2 = 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚎𝚐𝚐_𝚠𝚑𝚒𝚝𝚎, 𝟷𝟶𝟶, 𝚖𝚕), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)

in the following process clause 𝜓 .
𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚛𝚒𝚗𝚐𝚞𝚎𝚜, 𝚃𝟼)

← 𝚍𝚘(𝚋𝚊𝚔𝚎(𝚝𝚛𝚊𝚢, 𝟷𝟸𝟶𝙲, 𝟷.𝟽𝟻 𝚑), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚌𝚘𝚗𝚝𝚎𝚗𝚝𝚜(𝚋𝚘𝚠𝚕), 𝚘𝚗(𝚝𝚛𝚊𝚢)), 𝚃𝟺)
∧ 𝚍𝚘(𝚞𝚜𝚎_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚋𝚘𝚠𝚕, 𝟷𝟻 𝚖𝚒𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚊𝚜𝚝𝚘𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟻𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚎𝚐𝚐_𝚠𝚑𝚒𝚝𝚎, 𝟷𝟶𝟶, 𝚖𝚕), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚊𝚜𝚝𝚘𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟻𝟶, 𝚐), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚎𝚐𝚐_𝚠𝚑𝚒𝚝𝚎, 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

Let 𝜙′
1 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊), 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷), and 𝜙′

2 = 𝚍𝚘(𝚠𝚑𝚒𝚙(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟷). So we can undertake the condition 
substitution 𝜓[{𝜙1, 𝜙2}∕{𝜙′

1, 𝜙
′
2}] to give the following revised process clause.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚛𝚒𝚗𝚐𝚞𝚎𝚜, 𝚃𝟼)
← 𝚍𝚘(𝚋𝚊𝚔𝚎(𝚝𝚛𝚊𝚢, 𝟷𝟸𝟶𝙲, 𝟷.𝟽𝟻 𝚑), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚌𝚘𝚗𝚝𝚎𝚗𝚝𝚜(𝚋𝚘𝚠𝚕), 𝚘𝚗(𝚝𝚛𝚊𝚢)), 𝚃𝟺)
∧ 𝚍𝚘(𝚞𝚜𝚎_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚋𝚘𝚠𝚕, 𝟷𝟻 𝚖𝚒𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚊𝚜𝚝𝚘𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟻𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚌𝚊𝚜𝚝𝚘𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟻𝟶, 𝚐), 𝚃𝟷)
∧ 𝚍𝚘(𝚠𝚑𝚒𝚙(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚊𝚚𝚞𝚊𝚏𝚊𝚋𝚊, 𝟷𝟶𝟶, 𝚖𝚕), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

When comparing term substitution with condition substitution, we see that term substitution is across all of the recipe. Every 
occurrence of the term in the recipe is substituted. But we may want to only substitute in parts of the recipe. For example, we may 
want to replace egg for making the base of the cake, but use egg in the cream filling for the cake. We can do this by just substituting 
in individual formulae using condition substitution. So we can focus on individual clauses using condition substitutions. To support 
this, there is an advantage in splitting a recipe into a larger number of shorter process clauses as this will allow more targeted 
substitutions.

Proposition 4.  The condition substitution operation satisfies reflexivity, but not transitivity, associativity, nor reversibility.
• Reflexivity: 𝜙[𝛷∕𝛷] = 𝜙
• Transitivity: (𝜙[𝛷1∕𝛷2])[𝛷2∕𝛷3] = 𝜙[𝛷1∕𝛷3]
• Associativity: (𝜙[𝛷 ∕𝛷 ])[𝛷 ∕𝛷 ] = (𝜙[𝛷 ∕𝛷 ])[𝛷 ∕𝛷 ]
1 2 3 4 3 4 1 2

18 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
• Reversibility: (𝜙[𝛷1∕𝛷2])[𝛷2∕𝛷1] = 𝜙

Proof (Reflexivity). Follows directly from the definition. (Transitivity) For counterexample, let 𝜙 be 𝜓 ← 𝜓 ′., let 𝛷1 = ∅, 𝛷2 = {𝜓 ′}, 
and 𝛷3 = ∅. So (𝜙[𝛷1∕𝛷2])[𝛷2∕𝛷3] = 𝜓 ← ⊤ and 𝜙[𝛷1∕𝛷3] = 𝜓 ← 𝜓 ′. (Associativity) For counterexample, let 𝜙 be 𝜓 ← 𝜓 ., let 
𝛷1 = ∅, 𝛷2 = {𝜓 ′}, 𝛷3 = {𝜓 ′}, and 𝛷4 = ∅. So (𝜙[𝛷1∕𝛷2])[𝛷3∕𝛷4] = 𝜓 ← ⊤, and (𝜙[𝛷3∕𝛷4])[𝛷1∕𝛷2] = 𝜓 ← 𝜓 ′. (Reversibility) For 
counterexample, let 𝜙 be 𝜓 ← 𝜓 ., let 𝛷1 = ∅, and 𝛷2 = {𝜓 ′}. So (𝜙[𝛷1∕𝛷2])[𝛷2∕𝛷1] = 𝜓 ← ⊤. □

Proposition 5.  For clauses 𝜙 and 𝜓 , if 𝖧𝖾𝖺𝖽(𝜙) = 𝖧𝖾𝖺𝖽(𝜓), then there are sets 𝛷 and 𝛹 such that 𝜙[𝛷∕𝛹 ] = 𝜓 .

Proof.  Let 𝜙 be 𝛿 ← 𝛿1∧⋯∧𝛿𝑛 and let 𝜙 be 𝛿 ← 𝛿′1∧⋯∧𝛿′𝑚. If we let 𝛷 = {𝛿1 … 𝛿𝑛}, and we let 𝛹 = {𝛿′1 … 𝛿′𝑚}, then 𝜙[𝛷∕𝛹 ] = 𝜓 . □

Since a recipe is composed of one or more process clauses, if we want to add or delete ingredients and/or equipment, or we 
want to add or delete actions, then we can use condition substitution.

5.3. Clause substitution

The third level of substitution is clause substitution which allows for substitution of large components of recipes as defined 
below.

Definition 11.  For a set of clauses 𝛥, the clause substitution of the set of clauses 𝛷, by the set of clauses 𝛹 , denoted 𝛥[𝛷∕𝛹 ], is 
defined as 𝛥[𝛷∕𝛹 ] = (𝛥 ⧵𝛷) ∪ 𝛹 .

Example 36.  Consider the recipe 𝛥 = {𝜙1} where 𝜙1 is the following clause. Also suppose we lack a 𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢 (i.e. 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝
(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟷) is not in our assumptions).

𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚃𝟺)
← 𝚍𝚘(𝚙𝚞𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝚒𝚗(𝚋𝚞𝚛𝚐𝚎𝚛_𝚋𝚊𝚙), 𝚃𝟹)
∧ 𝚍𝚘(𝚌𝚘𝚘𝚔(𝚋𝚞𝚛𝚐𝚎𝚛_𝚋𝚊𝚙, 𝚘𝚗(𝚐𝚛𝚒𝚍𝚍𝚕𝚎), 𝟾 𝚖𝚒𝚗), 𝚃𝟸)
∧ 𝚍𝚘(𝚌𝚘𝚘𝚔(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝚘𝚗(𝚐𝚛𝚒𝚍𝚍𝚕𝚎), 𝟻 𝚖𝚒𝚗), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚞𝚛𝚐𝚎𝚛_𝚋𝚊𝚙, 𝟷), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

If we have the necessary ingredients, then we can add the following process clause 𝜙2 to the recipe. In other words, we can make 
the clause substitution 𝛥[∅∕{𝜙2}] which results in {𝜙1, 𝜙2}.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟼)
← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧𝚍𝚘(𝚙𝚞𝚝(𝚖𝚒𝚗𝚌𝚎𝚍_𝚖𝚎𝚊𝚝, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧𝚍𝚘(𝚙𝚞𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧𝚍𝚘(𝚙𝚞𝚝(𝚙𝚎𝚙𝚙𝚎𝚛, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

We also use clause substitutions to effect the condition substitutions on a set of clauses. A condition substitution is of the form 
𝜙[𝛷∕𝛹 ] which specifies that the conditions of clause 𝜙 to be updated. However, this then needs to be done on the set of clauses. 
We do this by embedding the condition substitution within a clause substitution as follows: 𝛥[{𝜙}∕{𝜙[𝛷∕𝛹 ]}]. So this says that 𝜙
is replaced by 𝜙[𝛷∕𝛹 ] in 𝛥.

Example 37.  Returning to Example  35 where the condition substitution is 𝜓[{𝜙1, 𝜙2}∕{𝜙′
1, 𝜙

′
2}]. Suppose 𝛥 = {𝜓}. So the condition 

substitution can be embedded in the clause substitution as follows.

𝛥[{𝜓}∕{𝜓[{𝜙1, 𝜙2}∕{𝜙′
1, 𝜙

′
2}]}]

Proposition 6.  For a set of clauses 𝛥, the clause substitution operation satisfies empty and reflexivity but not transitivity, associativity, nor 
reversibility.

• Empty: 𝛥[𝛥∕∅] = ∅
• Reflexivity: 𝛥[𝛷∕𝛷] = 𝛥
• Transitivity: (𝛥[𝛷1∕𝛷2])[𝛷2∕𝛷3] = 𝛥[𝛷1∕𝛷3]
• Associativity: (𝛥[𝛷1∕𝛷2])[𝛷3∕𝛷4] = (𝛥[𝛷3∕𝛷4])[𝛷1∕𝛷2]
• Reversibility: (𝛥[𝛷 ∕𝛷 ])[𝛷 ∕𝛷 ] = 𝛥
1 2 2 1

19 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Proof.  Recall 𝛥[𝛷∕𝛹 ] = (𝛥 ⧵ 𝛷) ∪ 𝛹 . (Empty) 𝛥[𝛥∕∅] = (𝛥 ⧵ 𝛥) ∪ ∅ = ∅. (Reflexivity) 𝛥[𝛷∕𝛷] = 𝛥 = (𝛥 ⧵ 𝛷) ∪ 𝛷 = 𝛥. (Transitivity) 
Consider the counterexample where 𝛥 = {𝜙}, 𝛷1 = ∅, 𝛷2 = {𝜙}, and 𝛷3 = ∅. So (𝛥[𝛷1∕𝛷2])[𝛷2∕𝛷3] = ∅ whereas 𝛥[𝛷1∕𝛷3] = 𝛥. 
(Associativity) Consider the counterexample where 𝛥 = ∅, 𝛷1 = ∅, 𝛷2 = {𝜙}, 𝛷3 = {𝜙}, and 𝛷4 = ∅. So (𝛥[𝛷1∕𝛷2])[𝛷3∕𝛷4] = 
∅, whereas (𝛥[𝛷3∕𝛷4])[𝛷1∕𝛷2] = {𝜙}. (Reversibility) Consider the counterexample where 𝛥 = {𝜙}, 𝛷1 = ∅, and 𝛷2 = {𝜙}. So 
(𝛥[𝛷1∕𝛷2])[𝛷2∕𝛷1] = ∅ whereas 𝛥 = {𝜙}. □

So clause substitution is a straightforward way to add and delete clauses. For instance, to add intermediate steps as in Example 
36. We can use it directly or use as a vehicle for effecting condition substitutions as in Example  37.

5.4. Sequences of substitutions

In the previous subsections, we have introduced three types of substitution, namely term substitutions, condition substitutions, 
and clause substitutions. As we will see in the next section, we often need to consider sequences of substitutions in order to obtain 
a satisfactory recipe.

In order to use all three types of substitution in a sequence, we first need to generalize term substitutions and condition 
substitutions to sets of clauses.

• if 𝛱 is a term substitution of the form [𝛼∕𝛽], then 𝛥𝛱 = {𝜙𝛱 ∣ 𝜙 ∈ 𝛥}.
• if 𝛱 is a condition substitution of the form [𝛷∕𝛹 ], then 𝛥𝛱 = {𝜙[𝛷∕𝛹 ] ∣ 𝜙 ∈ 𝛥}.

As we define next, a substitution tuple is a list of zero or more substitutions where each substitution is a term substitution, 
condition substitution, or clause substitution. We illustrate this in Fig.  4.

Definition 12.  A substitution tuple is an n-tuple ⟨𝛱0,… ,𝛱𝑛⟩ where 𝑛 ≥ 0 and each 𝛱𝑖 is a term, condition, or clause, substitution.
Using a substitution tuple, we can make a sequence substitution which is the first substitution in the list applied to the 

knowledgebase, and then with the result of this substitution, the second substitution in the list applied, and so on.

Definition 13.  Let 𝛥 be a set of formulae, and let 𝛴 = ⟨𝛱0,… ,𝛱𝑛⟩ be a substitution tuple. A sequence substitution is
𝛥𝛴 = (… ((𝛥𝛱0)𝛱1)…)𝛱𝑛

If the substitution tuple is empty (i.e. 𝛴 = ⟨⟩), then 𝛥𝛴 = 𝛥. Also, we can concatenate sequence substitution (i.e. (𝛥𝛴1)𝛴2 =
𝛥(𝛴1 + 𝛴2) where 𝛴1 + 𝛴2 is the concatenation of substitution tuples 𝛴1 and 𝛴2).

Following from the results in the previous subsections, we have reflexivity (i.e. if every substitution in a substitution tuple 
𝛴 is reflexive, then 𝛥𝛴 = 𝛥). However, as for the individual types of substitution, we do not have transitivity, associativity, or 
reversibility, in general.

The following result shows that we could just use a single clause substitution instead of a substitution sequence since the single 
clause substitution gives exactly the required revised knowledgebase. In other words, there is a clause substitution 𝛱 such that 
for any recipes 𝛥 and 𝛥′, 𝛥𝛱 = 𝛥′. However, in general, we do not want to use a single clause substitution because we require: 
(dynamic substitutions), i.e. we want to be able infer the required substitutions from other knowledge as required by the context 
(whereas using a single clause substitution means that we have these substitutions known in advance); (explainable substitutions) 
i.e. we want to be able give the substitutions as minimal changes to the recipe and where these are clearly expounded in terms of 
the exact changes to the ingredients and steps in the recipe and why (whereas just using a single clause substitution would be like 
saying that we reject the original recipe and replace it with a new recipe).

Proposition 7.  For all substitution tuples 𝛴 = ⟨𝛱1 …𝛱𝑛⟩, there is a clause substitution 𝛱∗ such that 𝛥𝛴 = 𝛥𝛱∗.

Proof.  Let 𝛥∗ be the knowledgebase resulting from the sequence substitution 𝛥𝛴. Now let 𝛱∗ be [𝛥∕𝛥∗]. So 𝛥𝛱∗ = 𝛥∗. □

For explainable substitutions, we want to make minimal changes to a knowledgebase. For instance, if we need to change one 
ingredient from 𝛼 to 𝛽 in a clause in a recipe, then a single term substitution [𝛼∕𝛽] might be sufficient, and so doing this, we clearly 
see what has changed, whereas for a clause substitution that changes 𝛥 into 𝛥′, we do not know exactly what has changed without 
looking at all the clauses in 𝛥′ and have changed from 𝛥.

So if we need minimal changes, then we need to consider how we can define these. We start with the following subsidiary 
definitions which provide a partitioning of the substitutions in a substitution tuple.

• 𝖳𝖾𝗋𝗆𝖲𝗎𝖻𝗌(𝛴) = {𝛱 ∈ 𝛴 ∣ 𝛱 is a term substitution }
• 𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇𝖲𝗎𝖻𝗌(𝛴) = {𝛱 ∈ 𝛴 ∣ 𝛱 is a condition substitution }
• 𝖢𝗅𝖺𝗎𝗌𝖾𝖲𝗎𝖻𝗌(𝛴) = {𝛱 ∈ 𝛴 ∣ 𝛱 is a clause substitution }

We now consider three criteria for measuring substitutions below that we will use as the basis of identifying a notion of 
minimality for substitution tuples. We explain these as follows: the length is simply the number of substitutions in the substitution 
tuple; the number of conditions revised is the number of clauses that have conditions amended; and the number of clauses revised 
is the number of clauses that have been removed plus the number of clauses that have been added.
20 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Fig. 4. Example with substitution tuple involving primary and secondary substitutions. Let 𝛱0 = [𝛼∕𝛽], 𝛱1 = [𝛼′∕𝛽′], and 𝛱2 = [𝛼′′∕𝛽′′]. So 
⟨𝛱0,𝛱1,𝛱2⟩ is a substitution tuple.

• 𝛴 has length 𝑛 iff 𝛴 is an n-tuple.
• 𝛴 has 𝑛 conditions revised iff

|{𝜙 ∈ 𝛥 ∣ 𝜙[𝛷∕𝛹 ] ≠ 𝜙 and [𝛷∕𝛹 ] ∈ 𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇𝖲𝗎𝖻𝗌(𝛴)}| = 𝑛

• 𝛴 has 𝑛 clauses revised iff
|((𝛥 ⧵

⋃

[𝛷∕𝛹 ]∈𝖢𝗅𝖺𝗎𝗌𝖾𝖲𝗎𝖻𝗌(𝛴)𝛷) ∪ (
⋃

[𝛷∕𝛹 ]∈𝖢𝗅𝖺𝗎𝗌𝖾𝖲𝗎𝖻𝗌(𝛴) 𝛹 ))| = 𝑛

In the following definition, we specify that substitution sequence 𝛴 is smaller than substitution sequence 𝛴′ iff one of the 
following three options holds: (Option 1) 𝛴 has fewer clause revisions than 𝛴′; (Option 2) 𝛴 and 𝛴′ have equal clause revisions 
and 𝛴 has fewer condition revisions than 𝛴′; (Option 3) 𝛴 and 𝛴′ have equal clause revisions and 𝛴 and 𝛴′ have equal conditions 
revisions and 𝛴 is shorter than 𝛴′.

Definition 14.  For substitution tuples 𝛴 and 𝛴′, let 𝛴 have length 𝑛𝑙𝑒𝑛𝑔𝑡ℎ, have 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 conditions revised, and have 𝑛𝑐𝑙𝑎𝑢𝑠𝑒𝑠 clauses 
revised, and let 𝛴′ have length 𝑛′𝑙𝑒𝑛𝑔𝑡ℎ, have 𝑛′𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 conditions revised, and have 𝑛′𝑐𝑙𝑎𝑢𝑠𝑒𝑠 clauses revised. 𝛴 is smaller than 𝛴′ iff 
one of the following three options holds:

• (Option 1) 𝑛𝑐𝑙𝑎𝑢𝑠𝑒𝑠 < 𝑛′𝑐𝑙𝑎𝑢𝑠𝑒𝑠;
• (Option 2) 𝑛𝑐𝑙𝑎𝑢𝑠𝑒𝑠 = 𝑛′𝑐𝑙𝑎𝑢𝑠𝑒𝑠 and 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 < 𝑛′𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠;
• (Option 3) 𝑛 = 𝑛′  and 𝑛 = 𝑛′  and 𝑛 < 𝑛′ .
𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

21 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
The smaller-than-or-equal relation is defined as follows: 𝛴 is smaller-than-or-equal to 𝛴′ iff 𝛴 is smaller than 𝛴′ or 𝑛𝑐𝑙𝑎𝑢𝑠𝑒𝑠 = 𝑛′𝑐𝑙𝑎𝑢𝑠𝑒𝑠
and 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑛′𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑛𝑙𝑒𝑛𝑔𝑡ℎ = 𝑛′𝑙𝑒𝑛𝑔𝑡ℎ.

The empty sequence ⟨⟩ is smaller than any non-empty sequence, and it constitutes the minimal element in the posit containing 
all substitution tuples.

Proposition 8.  The smaller-than-or-equal relation is a partial ordering (reflexive, anti-symmetric, and transitive) over the set of all 
substitution tuples.

Proof.  Since each substitution tuple is characterized in terms of three numbers (𝑛𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑛𝑐𝑙𝑎𝑢𝑠𝑒𝑠), and the definition of the 
relation is in terms of the relative magnitude of these numbers, we satisfy the reflexive, anti-symmetric, and transitive conditions. □

In the rest of the paper, we will investigate in detail how we use substitutions, and how we meet our desiderata of dynamic and 
explainable substitutions.

6. Stages of substitution

We now consider how we identify and apply substitutions. As we introduced earlier, a primary substitution is a substitution 
that has been undertaken because we lack some food item or equipment, or possibly we lack the ability or desire to carry out some 
action, whereas a secondary substitution is a substitution that has been carried out to deal with problems raised by the primary 
substitution. We give an example of primary and secondary substitutions in Fig.  4.

We can substitute intermediate products in a recipe (e.g. 𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 for 𝚍𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝) as shown in Example  38. This involves 
swapping the intermediate as a primary substitution, and then change the process clause as secondary substitution. This also needs 
an integrity constraint that captures sliced carrot requires a slice action in recipe. 

Example 38.  Consider a substitution of 𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 for 𝚍𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 in the following clause.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚍𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟹) ← 𝚍𝚘(𝚍𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟷)

This gives the following clause
𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟹) ← 𝚍𝚘(𝚍𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟷)

The following integrity constraint then identifies that we cannot obtain 𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 from the action 𝚍𝚘(𝚍𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝)).
⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟹) ∧ 𝚍𝚘(𝚍𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸)

The secondary substitution that involves changing 𝚍𝚘(𝚍𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸) to 𝚍𝚘(𝚜𝚕𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸) results in the following clause.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟹) ← 𝚍𝚘(𝚜𝚕𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟷)

We now consider the steps required for substitution starting with the item to be substituted which raises the primary substitution, 
and then potentially secondary substitutions. We formalize these in the following sections.

6.1. Primary substitutions

Primary substitution in this section is about making a substitution for something that is missing (equipment/ingredient) or the 
lack of desire or ability to carry out a specific action. For this, we use the following definition to identify candidates for substitution.

Definition 15.  Let (𝛥, 𝛤 ,𝛩) be a cooking scenario. let 𝛼 be the item that is to be replaced, let 𝑑 is a distance measure, and 𝜔 is a 
threshold value. Note, we formalize primary substitutions as term substitutions.

𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) = {[𝛼∕𝛽] ∣ 𝑑(𝛼, 𝛽) ≤ 𝜔}

Example 39.  Consider the clause 𝜓 defined as follows that is for cooking spaghetti.
𝜓 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒), 𝚃𝟺) ←

𝚍𝚘(𝚋𝚘𝚒𝚕(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

Also suppose we have 𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝚝𝚊𝚐𝚕𝚒𝚊𝚝𝚎𝚕𝚕𝚎, 𝚙𝚎𝚗𝚗𝚎, 𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝚌𝚊𝚗𝚗𝚎𝚕𝚘𝚗𝚒, 𝚕𝚊𝚜𝚊𝚐𝚗𝚎, 𝚛𝚒𝚐𝚒𝚝𝚘𝚗𝚒 and 𝚏𝚊𝚛𝚏𝚊𝚕𝚕𝚎 as alternatives to 
𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, with the following distance measures.

𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚏𝚞𝚜𝚒𝚕𝚕𝚒) = 0.65 𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚝𝚊𝚐𝚕𝚒𝚊𝚝𝚎𝚕𝚕𝚎) = 0.44
𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚙𝚎𝚗𝚗𝚎) = 0.67 𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎) = 0.21
𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚌𝚊𝚗𝚗𝚎𝚕𝚘𝚗𝚒) = 0.88 𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚕𝚊𝚜𝚊𝚐𝚗𝚎) = 0.98

𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚛𝚒𝚐𝚒𝚝𝚘𝚗𝚒) = 0.63 𝑑(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚏𝚊𝚛𝚏𝚊𝚕𝚕𝚎) = 0.52

22 



A. Bikakis et al.

)

Data & Knowledge Engineering 163 (2026) 102558 
So if we set 𝜔 = 0.45, then we obtain the following
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) = {[𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒∕𝚝𝚊𝚐𝚕𝚒𝚊𝚝𝚎𝚕𝚕𝚎], [𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒∕𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎]}

For a choice of missing ingredient 𝛼, recipe 𝛥, and assumptions 𝛤 , and 𝑑 being the role distance function, if 𝜔 = 0, then 
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔) will contain the substitutions [𝛼∕𝛽] where 𝛽 has the same roles as 𝛼, and if 𝜔 = 1, then 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔
will contain all possibles substitutions [𝛼∕𝛽] where 𝛼 and 𝛽 are ingredients (i.e. anything can be a substitution). For most word 
embeddings 𝑑, one would expect that 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔) will just be the substitution [𝛼∕𝛼] (as for most word embeddings, and 
for almost all pairs of words 𝛼 and 𝛽, there is non-zero distance between them).

If we are missing multiple ingredients, then we make multiple substitutions. For instance, if we miss two ingredients, then we 
find the best substitute for the first missing ingredient, and then find the best substitute for the second. But, since each substitution 
is with respect to a missing ingredient and not the other ingredients, the sequence for this does not matter.

Example 40.  Consider the clause 𝜓 defined as follows that is for cooking spaghetti.
𝜓 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒), 𝚃𝟺) ←

𝚍𝚘(𝚋𝚘𝚒𝚕(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

Suppose we lack 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒 and we lack 𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, then finding the substitute for 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒 is not affected by what we use 
to substitute for 𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛 and vice versa.

Because the choice of each substitution is made with respect to the original ingredients, the other primary substitutions do not 
interfere with each other, and so we have the following result.

Proposition 9.  If 𝛽1 ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼1, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩), and 𝛽2 ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼2, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩), then (𝛥[𝛼1∕𝛽1])[𝛼2∕𝛽2] = (𝛥[𝛼2∕𝛽2])[𝛼1∕𝛽1].

Proof.  Follows directly from associativity for term substitution (Proposition  1). □

The 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌 function is monotonic in the threshold. So for and 𝛼, 𝛥, 𝛤 , and 𝑑, if 𝜔 ≤ 𝜔′, then we have the following.
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) ⊆ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔′, 𝛩)

Similarly, the 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌 function is monotonic in 𝛥, and in 𝛤 . Hence, if 𝛥 ⊆ 𝛥′ and 𝛤 ⊆ 𝛤 ′, then we have the following.
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) ⊆ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥′, 𝛤 ′, 𝑑, 𝜔,𝛩)

In addition, the 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌 function is monotonic in the scope of the distance function. In other words, if {𝛽 ∣ 𝑑(𝛼, 𝛽)} ⊆ {𝛽 ∣ 𝑑′(𝛼, 𝛽)}, 
then we have the following.

𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) ⊆ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑′, 𝜔, 𝛩)

However, the process of substituting for an ingredient, equipment, or action, does not take account of how a substitution might 
fundamentally change the final dish that is produced by a recipe. For example, suppose we have a recipe 𝛥 for 𝚌𝚑𝚒𝚌𝚔𝚎𝚗𝚜𝚞𝚙𝚛𝚎𝚖𝚎, 
𝛼 is 𝚌𝚘𝚞𝚗𝚝(𝚌𝚑𝚒𝚌𝚔𝚎𝚗(𝚋𝚛𝚎𝚊𝚜𝚝, 𝚜𝚔𝚒𝚗_𝚘𝚗), 𝟸), and 𝛽 is 𝚌𝚘𝚞𝚗𝚝(𝚌𝚊𝚗(𝚋𝚞𝚝𝚝𝚎𝚛_𝚋𝚎𝚊𝚗𝚜, 𝟺𝟶𝟶 𝚐), 𝟸). The recipe 𝛥[𝛼∕𝛽] is not really for chicken 
supreme, but rather for a dish that we might call bean supreme.

A consequence of this issue (i.e. that a substitution does not necessarily change the name of the final food item being produced) 
means that we do not change the properties of the item being produced. Continuing the example of substituting chicken for butter 
beans in the recipe for chicken beans, if we do not change the name of the final item (in this case, chicken supreme), the properties 
of the final food item will be unchanged. So even if we have substituted butter beans, and thereby have a vegetarian dish, this will 
be recognized as property of the dish since the name of the dish has not changed. We will deal with issue in the next subsection 
using a secondary substitution.

6.2. Secondary substitutions

One or more secondary substitutions are required when a primary substitution causes the resulting recipe to be inconsistent with 
the integrity constraints and background knowledge.

Example 41.  In a recipe for spaghetti bolognese, we can substitute spaghetti with fusilli: But fusilli only takes 12 min to cook. So 
if we do this substitution, then it is essential to substitute the cooking time. To do this, we use integrity constraints (which we can 
extract from recipes). For example,

⊥← 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝛿), 𝚃) ∧ 𝛿 ≠ 𝟷𝟸 𝚖𝚒𝚗

So continuing Fig.  4, if we have say 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚒𝟹) ∈ 𝛤 , then with the integrity constraint, we obtain the inference 
⊥ (i.e. an inconsistency). Hence, mitigation is required.
23 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
In order to identify the need for mitigation, we need to identify any inconsistencies between the atoms that arise in the execution. 
A mitigation is required if the following holds.

⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩)

As defined later in this subsection, a mitigation is one or more substitutions that ensures the execution is consistent with the 
integrity constraints.

Definition 16.  A mitigation for a cooking session (𝛥, 𝛤 ,𝛩) is a substitution tuple 𝛴 s.t. for some set of assumptions 𝛤 ′, ⊥ ∉
𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩). A minimal mitigation is a mitigation 𝛴 for (𝛥, 𝛤 ,𝛩) and no 𝛴′ that is a mitigation for (𝛥, 𝛤 ,𝛩) such that 𝛴′ is 
smaller than 𝛴.

Example 42.  Continuing Example  41, we can use the substitution [𝛼∕𝛽] as a mitigation, where 𝛼 = 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃)
and 𝛽 = 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚏𝚞𝚜𝚒𝚕𝚕𝚒, 𝟷𝟸 𝚖𝚒𝚗), 𝚃). This will ensure the conditions ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥[𝛼∕𝛽], 𝛤 ′, 𝛩) and 𝜙 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(… (𝛥[𝛼∕𝛽], 𝛤 ′, 𝛩))
are satisfied. Furthermore, this mitigation is a minimal mitigation.

Proposition 10.  If (𝛥, 𝛤 ,𝛩) is a cooking session, and ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), and for some output 𝜋 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩), it is the case that 
𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then the empty substitution tuple (i.e. ⟨⟩) is the minimal mitigation for (𝛥, 𝛤 ,𝛩).

Proof.  Because ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), and output 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), the substitution tuple ⟨⟩ is trivially a mitigation for (𝛥, 𝛤 ,𝛩). 
Since there is no substitution tuple that is smaller than ⟨⟩, ⟨⟩ is the minimal mitigation for (𝛥, 𝛤 ,𝛩). □

As shown by the following result, it is not necessarily the case that we can find a secondary substitution that resolves the 
inconsistencies (or if we resolve it, we introduce another).

Proposition 11.  For a cooking session (𝛥, 𝛤 ,𝛩), it is not necessarily the case that there is a substitution tuple 𝛴 such that 𝛴 is a mitigation 
for (𝛥, 𝛤 ,𝛩).

Proof.  If for all 𝛴 and 𝛤 ′, it is the case that ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩) holds, then the there is no mitigation for this cooking session. 
This can arise for instance if we have an integrity constraint ⊥← 𝜙 for each onhand atom 𝜙 in the language. □

Whilst the above proof is based on an extreme situation, it shows that in order to find a mitigation, there is a need to consider 
how the space of solutions is constrained by the cooking session including its integrity constraints and background knowledge. 
Furthermore, to show that it is normally possible to find mitigations, we consider the following property of 𝛩 that allows us to 
allow get mitigations.

Definition 17.  For a set of integrity constraints and background knowledge 𝛩 is sensible iff there is a 𝛥 and 𝛤  such that 
⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) and 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩) ≠ ∅.

Proposition 12.  Let (𝛥, 𝛤 ,𝛩) is a cooking session. If 𝛩 is sensible, then there is a substitution tuple 𝛴 such that 𝛴 is a mitigation for 
(𝛥, 𝛤 ,𝛩).

Proof.  Assume 𝛩 is sensible. So there is a 𝛥′ and 𝛤 ′ such that ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥′, 𝛤 ′, 𝛩) and 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥′, 𝛤 ′, 𝛩) ≠ ∅. So there is a substitution 
tuple 𝛴 such that 𝛥𝛴 = 𝛥′. So 𝛴 is a mitigation for (𝛥, 𝛤 ,𝛩). □

We now return to the issue of a substitution that can result in a final food item that has fundamentally changed key properties. 
We illustrate how we can view this as the need for a mitigation, and how it can be addressed using secondary substitution.

Example 43.  Consider a recipe 𝛥 for chicken supreme, where 𝜋 is 𝚌𝚑𝚒𝚌𝚔𝚎𝚗𝚜𝚞𝚙𝚛𝚎𝚖𝚎, 𝛼 is 𝚌𝚘𝚞𝚗𝚝(𝚌𝚑𝚒𝚌𝚔𝚎𝚗(𝚋𝚛𝚎𝚊𝚜𝚝, 𝚜𝚔𝚒𝚗_𝚘𝚗), 𝟸), and 
𝛽 is 𝚌𝚘𝚞𝚗𝚝(𝚌𝚊𝚗(𝚋𝚞𝚝𝚝𝚎𝚛_𝚋𝚎𝚊𝚗𝚜, 𝟺𝟶𝟶 𝚐), 𝟸). Now consider the following integrity constraint.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚙𝚛𝚎𝚙𝚊𝚛𝚎𝚍(𝚌𝚑𝚒𝚌𝚔𝚎𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎), 𝜏) ∧ ¬𝚞𝚜𝚎(𝚌𝚑𝚒𝚌𝚔𝚎𝚗)

where 𝚞𝚜𝚎(𝚌𝚑𝚒𝚌𝚔𝚎𝚗) is defined as holding when there is an onhand atom holding in the first interval for butter beans in some form. 
A mitigation could be to substitute 𝚌𝚑𝚒𝚌𝚔𝚎𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎 with 𝚋𝚎𝚊𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎.

Note, the substitution in the above example is more than changing the name of the dish. The name connects the output of the 
recipe to properties of that output. So for instance, the food item 𝚌𝚑𝚒𝚌𝚔𝚎𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎 has properties such as 𝚖𝚎𝚊𝚝_𝚋𝚊𝚜𝚎𝚍_𝚏𝚘𝚘𝚍, and 
𝚌𝚑𝚒𝚌𝚔𝚎𝚗_𝚍𝚒𝚜𝚑, whereas the food item 𝚋𝚎𝚊𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎 has properties such as 𝚟𝚎𝚐𝚎𝚝𝚊𝚛𝚒𝚊𝚗_𝚍𝚒𝚜𝚑. Both would have properties such as 
𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜_𝚌𝚛𝚎𝚊𝚖 and 𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜_𝚐𝚊𝚛𝚕𝚒𝚌.

7. Drivers for substitution

We consider four drivers for substitution as summarized in Table  1. These are similarity to missing item, similarity to original 
dish, minimal change to recipe, and improvement to final dish. We investigate these approaches in the following subsections.
24 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Table 1
Four drivers for substitution in cooking.
Type of driver Problem Solution

Similarity to missing item Unavailable item (ingredient or 
equipment) or action

Minimize change to ingredient or equipment by minimizing distance 
between original and its substitute

Similarity to original dish Unavailable item (ingredient or 
equipment) or action

Do primary and secondary substitutions to produce a dish as similar 
as possible to original dish.

Minimal secondary change to 
recipe

Unavailable item (ingredient or 
equipment) or action

Minimize change to recipe by minimizing number of secondary 
substitutions

Improve specified properties 
of dish

Change final food output to im-
prove its properties

Do primary and secondary substitutions to produce a dish satisfying 
specified properties.

7.1. Substitution for similarity to unavailable item or action

The following set is the set of candidates that are closest to the unavailable item (ingredient or equipment) or action. So an 
arbitrary member of this set is chosen as the primary substitution.

𝖡𝖾𝗌𝗍𝖥𝗂𝗋𝗌𝗍(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) = {𝛽 ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) ∣
 for all 𝛽′ ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) 𝑑(𝛼, 𝛽) ≤ 𝑑(𝛼, 𝛽′)}

Then any necessary secondary substitutions are undertaken to ensure consistency. So the substitution tuple ⟨𝛱1,𝛱2,… ,𝛱𝑘⟩ is a 
substitution for similarity to missing item 𝛼 in 𝛥, where 𝛱1 = [𝛼∕𝛽] and 𝛽 ∈ 𝖡𝖾𝗌𝗍𝖥𝗂𝗋𝗌𝗍(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) and ⟨𝛱2,… ,𝛱𝑘⟩ is a minimal 
mitigation.

Example 44.  We start with a cooking session (𝛥, 𝛤 ,𝛩) for cooking spaghetti where 𝛥 = {𝜙} where 𝜙 ∈ 𝛥 is defined as follows.
𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒), 𝚃𝟺) ←

𝚍𝚘(𝚋𝚘𝚒𝚕(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

First we consider a primary substitution. Let 𝛼 = 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒 and let the nearest ingredient be 𝛽 = 𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎.

𝜙[𝛼∕𝛽] = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎), 𝚃𝟺) ←
𝚍𝚘(𝚋𝚘𝚒𝚕(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

Now we consider a secondary substitution to deal with change in cooking time for the substituted pasta. Let 𝛼′ = 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎,
𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹) and 𝛽′ = 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝟷𝟸 𝚖𝚒𝚗), 𝚃𝟹).

(𝜙[𝛼∕𝛽])[𝛼′∕𝛽′] = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚘𝚔𝚎𝚍(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎), 𝚃𝟺) ←
𝚍𝚘(𝚋𝚘𝚒𝚕(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝟷𝟸 𝚖𝚒𝚗), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚋𝚘𝚒𝚕𝚒𝚗𝚐_𝚠𝚊𝚝𝚎𝚛, 𝚒𝚗(𝚙𝚊𝚗)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

So the substitution tuple for similarity to missing item is ⟨[𝛼∕𝛽], [𝛼′∕𝛽′]⟩.
Downsides of substitution for similarity to missing item include: (Potentially unnecessary secondary substitutions) there may 

be one or more secondary substitutions that would be unnecessary if we compromised on the primary substitution; And (Potentially 
substantially different output) the substitution tuple is only guaranteed to provide a final food output with a recipe that is 
consistent with the integrity constraints and properties, and this final output might be quite different to the original intended output 
of the recipe. We address these issue with other kinds of substitution in the next two subsections.

7.2. Substitution for minimal change to recipe

Making a poor choice of primary substitution may cause more significant changes to a recipe when doing mitigation. To address 
this, we may compromise on the closeness of the primary substitution in order to limit the number or type of secondary substitutions.

Let 𝛥[𝛼∕𝛽] be the result of the primary substitution on the recipe. Let 𝖲𝖾𝖼𝗈𝗇𝖽𝖺𝗋𝗒(𝛥, 𝛼, 𝛽, 𝛩) be the set of minimal secondary 
substitutions (i.e. each element is a minimal mitigation for (𝛥[𝛼∕𝛽], 𝛤 ′, 𝛩) where 𝛤 ′ is a set of assumptions) as defined below. So a 
minimal change to a recipe is the concatenation of the primary substitution and secondary substitution that is shortest, as defined 
next.
25 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Definition 18.  For a cooking session (𝛥, 𝛤 ,𝛩),
1. if [𝛼∕𝛽] ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩)
2. and 𝛴 ∈ 𝖲𝖾𝖼𝗈𝗇𝖽𝖺𝗋𝗒(𝛥, 𝛼, 𝛽, 𝛩)
3. and for all [𝛼∕𝛽′] ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩) and for all 𝛴′ ∈ 𝖲𝖾𝖼𝗈𝗇𝖽𝖺𝗋𝗒(𝛥, 𝛼, 𝛽′, 𝛩),

𝛴 is shorter than 𝛴′

then a minimal change to a recipe 𝛥 is the substitution tuple ⟨𝛱1,… ,𝛱𝑘⟩ where 𝛱1 is [𝛼∕𝛽] and ⟨𝛱2,… ,𝛱𝑘⟩ is 𝛴.

Example 45.  Continuing Example  44, suppose the distance between 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒 and 𝚏𝚊𝚛𝚏𝚊𝚕𝚕𝚎 is higher than between 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒
and 𝚕𝚒𝚗𝚐𝚞𝚒𝚗𝚎 but also suppose that the cooking time for 𝚏𝚊𝚛𝚏𝚊𝚕𝚕𝚎 is the same as 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒. So we have 𝛼 = 𝚜𝚙𝚊𝚐𝚑𝚎𝚝𝚝𝚒 and 
𝛽 = 𝚏𝚊𝚛𝚏𝚊𝚕𝚕𝚎 where

• [𝛼∕𝛽] ∈ 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇𝗌(𝛼, 𝛥, 𝛤 , 𝑑, 𝜔,𝛩)
• 𝛴 = ⟨⟩ is the minimal mitigation.

Therefore, the minimal change to the recipe is ⟨[𝛼∕𝛽]⟩. In contrast, for 𝛽′ = 𝚏𝚞𝚜𝚒𝚕𝚕𝚒, any minimal mitigation is not equal to the 
empty tuple.

Whilst the above example would result in a dish that involves a minor compromise in the final dish, in general, trying to substitute 
an ingredient and then minimize the change to the recipe might result in a dish that is somewhat distant from the original dish. For 
example, we may lack a beef patty for a beefburger, and we may have the ingredients to make a beef patty (minced meet, chopped 
onion, egg, etc.) and we may also have a bean burger patty. If we wanted a substitution that minimizes the change to the recipe, 
then we would pick the bean burger patty, whereas we may prefer to make a more substantial change to the recipe to allow for 
making the beef burger patty. We consider how we might get the latter using the next method.

7.3. Substitution for similarity to original dish

In order to choose a sequence of substitutions that ensures similarity to an intended original dish 𝜋, we use integrity constraints 
that capture when a substitution causes the revised dish to deviate from the original dish. For example, if we substitute beans for 
beef in a burger, we lose the property that the burger is a meat dish, or that it has a meaty flavour. So we represent this as an 
integrity constraint as in Example  46.

When we have a violation of an integrity constraint that captures the deviation from the original intended dish, we have two 
options: (rectification by change of dish name) which involves taking the original name 𝜋 of the intended dish and replacing it 
with a name 𝜋′ that is consistent with the integrity constraints concerning the properties of the dish (e.g. changing the name from 
𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛 to 𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛 when the revised recipe does not have meat); or (rectification by change of recipe) which involves 
changing the recipe so that it meats the basic requirements of the intended dish (e.g. for the intended dish 𝚖𝚎𝚊𝚝_𝚋𝚞𝚛𝚐𝚎𝚛, changing 
the recipe so that it contains meat or something meat-flavoured). We capture both kinds of rectification in the following definition 
for substitution for similarity to original.

Definition 19.  Let (𝛥, 𝛤 ,𝛩) be a cooking session for dish 𝜋 and let [𝛼∕𝛽] be a primary substitution. A substitution for similarity to 
original dish is a substitution tuple 𝛴 = ⟨𝛱1,… ,𝛱𝑘⟩ for ingredient substitution 𝛱1 = [𝛼∕𝛽] and mitigation ⟨𝛱2,… ,𝛱𝑘⟩ and output 
𝜋′ ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩) and distance measure 𝑑 over dishes and threshold for similarity for dishes 𝜆:

1. ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩)
2. 𝜋′ ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥𝛴, 𝛤 ′, 𝛩)
3. 𝑑(𝜋, 𝜋′) ≤ 𝜆

In the above definition, either there is a 𝜋′ in the final outcome where the distance between 𝜋 and 𝜋′ is below a threshold 
(rectification by change of name) or 𝛴 modifies the recipe so that 𝜋 is in the final output and 𝑑(𝜋, 𝜋) ≤ 𝜆 for all 𝜆 (rectification by 
change of recipe). We illustrate the former in the first example below, and the latter in the subsequent two examples below.

Example 46.  Consider a recipe 𝛥 for a burger that involves cooking a beef patty and a bun on a griddle, and then putting the beef 
patty in the bun.

𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝟷), 𝚃𝟽)
← 𝚍𝚘(𝚙𝚞𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝚒𝚗(𝚋𝚞𝚗)), 𝚃𝟼)
∧ 𝚍𝚘(𝚐𝚛𝚒𝚕𝚕(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹, 𝚃𝟻)
∧ 𝚍𝚘(𝚐𝚛𝚒𝚕𝚕(𝚋𝚞𝚗, 𝟸 𝚖𝚒𝚗)), 𝚃𝟸, 𝚃𝟺)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚞𝚗, 𝟷), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟷)

∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼, 𝚃𝟽])

26 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Now let 𝛼 = 𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢 and 𝛽 = 𝚋𝚎𝚊𝚗_𝚙𝚊𝚝𝚝𝚢, and so we replace the beef patty with a bean patty. In this, the recipe 𝛥[𝛼∕𝛽] would 
result in ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥[𝛼∕𝛽], 𝛤 [∅∕∅], 𝛩) when 𝛩 contains the following integrity constraint.

⊥← 𝚏𝚕𝚊𝚟𝚘𝚞𝚛(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚖𝚎𝚊𝚝𝚢) ∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚖𝚎𝚊𝚝)

So the mitigation is to change the name to 𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛 (i.e. [𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛∕𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛]). So we can use rectification by change of 
dish name. So the revised recipe is

𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛, 𝟷), 𝚃𝟽)
← 𝚍𝚘(𝚙𝚞𝚝(𝚋𝚎𝚊𝚗_𝚙𝚊𝚝𝚝𝚢, 𝚒𝚗(𝚋𝚞𝚗)), 𝚃𝟼)
∧ 𝚍𝚘(𝚐𝚛𝚒𝚕𝚕(𝚋𝚎𝚊𝚗_𝚙𝚊𝚝𝚝𝚢, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟹, 𝚃𝟻)
∧ 𝚍𝚘(𝚐𝚛𝚒𝚕𝚕(𝚋𝚞𝚗, 𝟸 𝚖𝚒𝚗), 𝚃𝟸, 𝚃𝟺)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚞𝚗, 𝟷), 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚎𝚊𝚗_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼, 𝚃𝟽])

Example 47.  We revisit Example  46 concerning a recipe 𝛥 for a burger that involves cooking a beef patty on a griddle. In contrast 
to Example  46 where the output is a 𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛, we can add the following clause 𝜙2 to 𝛥

𝜙 = 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟼)
← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚒𝚗𝚌𝚎𝚍_𝚖𝚎𝚊𝚝, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚙𝚎𝚙𝚙𝚎𝚛, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

Therefore, 𝛱 = [∅∕{𝜙2}], and so the resulting cooking session is (𝛥𝛱,𝛤 ′, 𝛩) for some set of assumptions 𝛤 ′. This solution would be 
obviate the inconsistency with the integrity constraint given in Example  46.

As we saw above, a primary substitution can change the properties of the intermediate (product). For example, if we substitute 
meat with tofu in a burger, the result could be less flavourful (which can be identified by an integrity constraints as above). From 
a culinary point of view, a solution is to first cook tofu in mushroom sauce.

Example 48.  Consider a similar example to that of Example  46 concerning a recipe 𝛥 for a burger that involves cooking a beef 
patty on a griddle. Here, the intended output from clause 𝜙1 below is 𝚋𝚞𝚛𝚐𝚎𝚛_𝚙𝚊𝚝𝚝𝚢 rather than 𝚋𝚎𝚎𝚏_𝚙𝚊𝚝𝚝𝚢.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚞𝚛𝚐𝚎𝚛_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟼)
← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚒𝚗𝚌𝚎𝚍_𝚖𝚎𝚊𝚝, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚙𝚎𝚙𝚙𝚎𝚛, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

And suppose we want to make the primary substitution that replaces 𝚖𝚒𝚗𝚌𝚎𝚍_𝚖𝚎𝚊𝚝 with 𝚝𝚘𝚏𝚞. However, if we may also have the 
following integrity constraint, then we obtain an inconsistency

⊥← 𝚏𝚕𝚊𝚟𝚘𝚞𝚛(𝚋𝚞𝚛𝚐𝚎𝚛_𝚙𝚊𝚝𝚝𝚢, 𝚖𝚎𝚊𝚝𝚢) ∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚞𝚛𝚐𝚎𝚛_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚖𝚎𝚊𝚝) ∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚞𝚛𝚐𝚎𝚛_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖)

To ensure that the burger has a meaty taste, we could first marinade the tofu in mushroom. For this we could add the following 
clause 𝜙2 to 𝛥 using clause substitution;

𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖_𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚎𝚍_𝚝𝚘𝚏𝚞), 𝚃𝟼)
← 𝚍𝚘(𝚏𝚛𝚢(𝚏𝚛𝚢𝚒𝚗𝚐_𝚙𝚊𝚗, 𝟷𝟶 𝚖𝚒𝚗), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚝𝚘𝚏𝚞, 𝚒𝚗(𝚏𝚛𝚢𝚒𝚗𝚐_𝚙𝚊𝚗)), 𝚃𝟺)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖𝚜, 𝚒𝚗(𝚏𝚛𝚢𝚒𝚗𝚐_𝚙𝚊𝚗)), 𝚃𝟺)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

And then update the clause 𝜙1 that resulted from the primary substitution as follows using condition substitution where the condition 
𝚍𝚘(𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸) is removed and the condition 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖_𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚎𝚍_𝚝𝚘𝚏𝚞, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺) is added.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚋𝚞𝚛𝚐𝚎𝚛_𝚙𝚊𝚝𝚝𝚢, 𝟷), 𝚃𝟼)
← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖_𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚎𝚍_𝚝𝚘𝚏𝚞, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚌𝚑𝚘𝚙𝚙𝚎𝚍_𝚘𝚗𝚒𝚘𝚗, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚖𝚒𝚕𝚔, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚏𝚕𝚘𝚞𝚛, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚍𝚘(𝚙𝚞𝚝(𝚙𝚎𝚙𝚙𝚎𝚛, 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)

∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

27 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
So instead of using 𝚝𝚘𝚏𝚞, we use 𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖_𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚎𝚍_𝚝𝚘𝚏𝚞, and provide a clause for producing this food item. The resulting recipe 
does not violate the integrity constraint.

In each of the above examples, we need to ensure that the distance between the intended dish 𝜋 and the dish obtained by the 
revised recipe 𝜋′ are sufficiently close. For Example  46, whether 𝑑(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚋𝚎𝚊𝚗_𝚋𝚞𝚛𝚐𝚎𝚛) ≤ 𝜆 depends on the specification of 
the distance measure 𝑑 and the subjective choice for 𝜆. For Example  47, the intended dish and the dish obtained by the revised 
recipe are the same (i.e. 𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛) and so the distance is zero. For Example  48, the intended dish and the dish obtained by 
the revised recipe are the same (i.e. 𝚋𝚞𝚛𝚐𝚎𝚛_𝚙𝚊𝚝𝚝𝚢) and so the distance is zero, but we have seen how the integrity constraint can 
force the refinement of the recipe from using the ingredient 𝚝𝚘𝚏𝚞 directly by updating the recipe to include a step for making 
𝚖𝚞𝚜𝚑𝚛𝚘𝚘𝚖_𝚏𝚕𝚊𝚟𝚘𝚞𝚛𝚎𝚍_𝚝𝚘𝚏𝚞.

7.4. Substitution for improvement to dish

We now consider substitution to meet specific requirements. For example, changing a recipe so that it is vegetarian, gluten-free, 
or reduced calories. We will assume that we are dealing with binary categories. For example, a recipe for 200 g of digestive biscuits 
has the property of reduced calories if the number of calories is below 300 calories. Or we can reduce or remove salt from a recipe 
with a property that salt level is below a certain level.

In order to represent and reason with properties, we introduce a property atom as an atom of the form 𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝛼, 𝛽) where 𝛼
is a term denoting a food item, and 𝛽 is a property of the food item. For example, 𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚙𝚘𝚛𝚛𝚒𝚍𝚐𝚎, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎) denotes that 
porridge is gluten-free. We define a property clause as a clause 𝜙 where 𝗁𝖾𝖺𝖽(𝜙) is a property atom. The following is an example 
of a property clause.

𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎)
← 𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚘𝚊𝚝_𝚏𝚕𝚘𝚞𝚛)
∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛)

We use property atoms and property clauses in the following definition where we use substitutions to ensure that a property 
holds.

Definition 20.  Let (𝛥, 𝛤 ,𝛩) be a cooking session. Let 𝜋 be an intended dish. Let 𝜓 be a property literal. Let 𝛤 ′ be a set of assumptions. 
A substitution for improving a dish according to 𝜓 is a substitution tuple 𝛴 = ⟨𝛱1,… ,𝛱𝑘⟩ such that

1. ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′ ∪ {𝜙}, 𝛩)
2. 𝜋 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥𝛴, 𝛤 ′, 𝛩)
3. 𝜓 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩)

Example 49.  Consider a recipe which includes the following process clause that uses wheat flour.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚃𝟼)

← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚑𝚒𝚝𝚎_𝚌𝚊𝚜𝚝𝚎𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟸𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚞𝚗𝚜𝚊𝚕𝚝𝚎𝚍_𝚋𝚞𝚝𝚝𝚎𝚛, 𝟸𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛, 𝟺𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

Suppose we have a 𝛤  such that 𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡 is in 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩). If we also have the following clause in 𝛥, then we would get 
¬𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎) in 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩).

¬𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎)
← 𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛)
∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚘𝚊𝚝_𝚏𝚕𝚘𝚞𝚛)

Now suppose we make a substitution in the process clause where 𝛼 is 𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛 and 𝛽 is 𝚘𝚊𝚝_𝚏𝚕𝚘𝚞𝚛. Then we would get 
𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎) in 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) if we have the following clause in 𝛩.

𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚐𝚕𝚞𝚝𝚎𝚗_𝚏𝚛𝚎𝚎)
← 𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚘𝚊𝚝_𝚏𝚕𝚘𝚞𝚛)
∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚒𝚜𝚌𝚞𝚒𝚝, 𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛)

Example 50.  Continuing Example  49, suppose we also want that biscuits are low fat, then we might have the property 
𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝟾𝟶𝟶 𝚐), 𝚕𝚘𝚠_𝚌𝚊𝚕𝚘𝚛𝚒𝚎) defined by the following clause.

𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝟾𝟶𝟶, 𝚐), 𝚕𝚘𝚠_𝚌𝚊𝚕𝚘𝚛𝚒𝚎)
← 𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝟾𝟶𝟶, 𝚐), 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚋𝚞𝚝𝚝𝚎𝚛, 𝚇))

∧ 𝚕𝚎𝚜𝚜𝚝𝚑𝚊𝚗(𝚇, 𝟷𝟶𝟶, 𝚐)

28 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
The property can be satisfied with a term substitution of 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚞𝚗𝚜𝚊𝚕𝚝𝚎𝚍_𝚋𝚞𝚝𝚝𝚎𝚛, 𝟸𝟶𝟶, 𝚐) by 𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚞𝚗𝚜𝚊𝚕𝚝𝚎𝚍_𝚋𝚞𝚝𝚝𝚎𝚛, 𝟷𝟶𝟶, 𝚐)
giving the following updated version of the process clause.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚒𝚜𝚌𝚞𝚒𝚝_𝚖𝚒𝚡, 𝚃𝟼)
← 𝚍𝚘(𝚖𝚒𝚡(𝚋𝚘𝚠𝚕), 𝚃𝟻)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚠𝚑𝚒𝚝𝚎_𝚌𝚊𝚜𝚝𝚎𝚛_𝚜𝚞𝚐𝚊𝚛, 𝟸𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟺)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚞𝚗𝚜𝚊𝚕𝚝𝚎𝚍_𝚋𝚞𝚝𝚝𝚎𝚛, 𝟷𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟹)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐, 𝟷), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟸)
∧ 𝚍𝚘(𝚊𝚍𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚙𝚕𝚊𝚒𝚗_𝚏𝚕𝚘𝚞𝚛, 𝟺𝟶𝟶, 𝚐), 𝚒𝚗(𝚋𝚘𝚠𝚕)), 𝚃𝟷)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺, 𝚃𝟻, 𝚃𝟼])

This method assumes that we turn continuous improvements into binary improvements. Also, the method does not take into 
account the trade-off of realizing improvements and minimizing changes. However, we could combine this method with previous 
methods to be able to take into account secondary substitutions with the aim of satisfying desired properties and minimizing 
secondary changes.

7.5. Comparison of approaches to substitution

The four drivers for substitution methods (as summarized in Table  1) have lead to methods that can be compared pairwise to 
show there are situations where each gives different results to the others.

Similarity to missing item versus minimal change to recipe These give different substitutions when the former picks the nearest 
ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that requires a shorter 
mitigation. For example, if there are two choices 𝛽1 and 𝛽2 for the missing item 𝛼 where 𝑑(𝛼, 𝛽1) < 𝑑(𝛼, 𝛽2), and if we choose 
𝛽1 then we require the minimal mitigation 𝛴1 and if we choose 𝛽2 then we require the minimal mitigation 𝛴2 where 𝛴2 is 
shorter than 𝛴1. So the similarity to missing item method picks 𝛽1 whereas the minimal change to recipe method picks 𝛽2.

Similarity to missing item versus similarity to original dish These give different substitutions when the former picks the nearest 
ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that together with any 
mitigation results in a dish that is nearest to the original dish. For example, if there are two choices 𝛽1 and 𝛽2 for the missing 
item 𝛼 where 𝑑(𝛼, 𝛽1) < 𝑑(𝛼, 𝛽2), and if we choose 𝛽1 then with the minimal mitigation 𝛴1, we get dish 𝜋1, and if we choose 
𝛽2 then with the minimal mitigation 𝛴2, we get dish 𝜋2, where 𝑑(𝜋, 𝜋1) > 𝑑(𝜋, 𝜋2). So the similarity to missing item method 
picks 𝛽1 whereas the similarity to original dish method picks 𝛽2.

Similarity to missing item versus improve specified properties of dish These give different substitutions when the former picks 
the nearest ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that as part 
of a substitution sequence leads to a dish with required properties. For example, if there are two choices 𝛽1 and 𝛽2 for the 
missing item 𝛼 where 𝑑(𝛼, 𝛽1) < 𝑑(𝛼, 𝛽2), and if we choose 𝛽1 then with the minimal mitigation 𝛴1, but we get a cooking 
session that does not satisfy the desired property 𝜙, whereas if we choose 𝛽2 then with the minimal mitigation 𝛴2, we get 
a cooking session that does satisfy the desired property 𝜙. So the similarity to missing item method picks 𝛽1 whereas the 
improvement to dish method picks 𝛽2.

Minimal secondary changes versus similarity to original dish These give different substitutions when the former picks the 
ingredient or equipment that requires a shorter mitigation, whereas the latter picks the ingredient or equipment that together 
with any mitigation results in a dish that is nearest to the original dish. For example, if there are two choices 𝛽1 and 𝛽2 for 
the missing item 𝛼, and if we choose 𝛽1 then we require the minimal mitigation 𝛴1 and if we choose 𝛽2 then we require 
the minimal mitigation 𝛴2 where 𝛴1 is shorter than 𝛴2. Also, if we choose 𝛽1 then with the minimal mitigation 𝛴1, we get 
dish 𝜋1, and if we choose 𝛽2 then with the minimal mitigation 𝛴2, we get dish 𝜋2, where 𝑑(𝜋, 𝜋1) > 𝑑(𝜋, 𝜋2). So the minimal 
change to recipe method picks 𝛽1, whereas the similarity to original dish method picks 𝛽2.

Minimal secondary changes versus improve specified properties of dish These give different substitutions when the former 
picks the ingredient or equipment that requires a shorter mitigation, whereas the latter picks the ingredient or equipment 
that as part of a substitution sequence leads to a dish with required properties. For example, if there are two choices 𝛽1 and 
𝛽2 for the missing item 𝛼, and if we choose 𝛽1 then we require the minimal mitigation 𝛴1, but we get a cooking session that 
does not satisfy the desired property 𝜙, and if we choose 𝛽2 then we require the minimal mitigation 𝛴2, but we get a cooking 
session that does satisfy the desired property 𝜙. Also suppose that 𝛴1 is shorter than 𝛴2. So the minimal change to recipe 
method picks 𝛽1, whereas the improvement to dish method picks 𝛽2.

Similarity to original dish versus improve specified properties of dish The former picks the ingredient or equipment that to-
gether with any mitigation results in a dish that is nearest to the original dish, whereas the latter picks the ingredient or 
equipment that as part of substitution sequence leads to a dish with required properties. For example, if there are two choices 
𝛽1 and 𝛽2 for the missing item 𝛼, and if we choose 𝛽1 then we require the minimal mitigation 𝛴1, and we get dish 𝜋1, but we 
get a cooking session that does not satisfy the desired property 𝜙, and if we choose 𝛽2 then we require the minimal mitigation 
𝛴2, and we get dish 𝜋2, but we get a cooking session that does satisfy the desired property 𝜙. Also suppose 𝑑(𝜋, 𝜋1) < 𝑑(𝜋, 𝜋2). 
So the similarity to original dish method picks 𝛽 , whereas the improvement to dish method picks 𝛽 .
1 2

29 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
So the four methods give us a range of different options for how to do substitution. Therefore, it is necessary to know the driver 
for substitution for deciding which method to use as we can clearly see that the resulting recipe can be quite different to the original 
recipe.

8. Inconsistency-directed substitution

In this paper, we have presented secondary substitutions as being identified via inconsistencies with integrity constraints. In 
this section we consider types of integrity constraints, and therefore types of situation that require mitigation following primary 
substitution, and we consider how we can reason and resolve inconsistencies efficiently. Note, we could also make primary 
substitution inconsistency-directed. For this, we could include integrity constraints for the ingredients and equipment, and so if 
any are missing, then we infer an inconsistency. We leave consideration of inconsistency-directed primary substitutions and instead 
focus on inconsistency-directed secondary substitutions in this section.

8.1. Types of integrity constraints

Integrity constraints are central to identifying the need for mitigation. These integrity constraints conform to specific formats, 
and importantly, they may be generated automatically. We start by considering the following typology of integrity constraints, and 
then consider how we can generate them automatically.

Action duration Many actions have a specified duration (fixed or range). For example, the following is a duration range term 
𝚋𝚘𝚒𝚕(𝚙𝚎𝚗𝚗𝚎, 𝟷𝟸 − 𝟷𝟺 𝚖𝚒𝚗). However, it is possible that the specified duration differs from what is recorded in the knowledge 
graph about the ingredients and actions on them. For example, we may have the condition 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚙𝚎𝚗𝚗𝚎, 𝟸 𝚖𝚒𝚗), 𝚃) in a 
process clause, whereas the knowledge graph may have the tuple 𝚙𝚎𝚗𝚗𝚎, 𝚋𝚘𝚒𝚕_𝚝𝚒𝚖𝚎, 𝟷𝟸 − 𝟷𝟺 𝚖𝚒𝚗. So we have the integrity 
constraint.

⊥← 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚙𝚎𝚗𝚗𝚎, 𝙳), 𝚃) ∧ 𝙳 ≠ 𝟷𝟸 − 𝟷𝟺 𝚖𝚒𝚗

Onhand quantity Many onhand atoms involve either count or measure terms. For example, 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟺), 𝚃). So if we can 
infer multiple onhand atoms with the same food item but with a different count, then we have inconsistency.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚈), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚉), 𝚃) ∧ 𝚈 ≠ 𝚉

Similarly, if we can infer multiple onhand atoms for the same food item but with a different count, then we have inconsistency.
⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚇, 𝚈), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚖𝚎𝚊𝚜𝚞𝚛𝚎(𝚇, 𝚉), 𝚃) ∧ 𝚈 ≠ 𝚉

The use of the above measure integrity constraints assumes that we have sufficient background knowledge to deal with 
different units.

Consume quantity As with onhand count/measure integrity constraints, we require integrity constraints to ensure the same 
food item is not consumed in different quantities at the same time. For example, the atoms 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟺), 𝚝) and 
𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚎𝚐𝚐𝚜, 𝟹), 𝚝) would imply an inconsistency.

⊥← 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚈), 𝚃) ∧ 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚉), 𝚃) ∧ 𝚈 ≠ 𝚉

Consume availability If a consume atom specifies that a certain quantity of a food item is required, but the onhand atom specifies 
a different quantity, then we have an inconsistency.

⊥← 𝚌𝚘𝚗𝚜𝚞𝚖𝚎(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚈), 𝚃) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚇, 𝚉), 𝚃) ∧ 𝚈 ≠ 𝚉

Onhand location Onhand atoms can incorporate location features. For example, the onhand atom 𝚘𝚗𝚑𝚊𝚗𝚍(𝚒𝚗(𝚎𝚐𝚐𝚜, 𝚋𝚘𝚠𝚕), 𝚃)
specifies that the eggs are in the bowl. Various kinds of constraints are required to ensure that items are in the correct 
location (i.e conform to the change of location that follow from an action), and not in two places at the same time.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚒𝚗(𝚇, 𝚈), 𝚃 + 𝟷) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚒𝚗(𝚇, 𝚈), 𝚃) ∧ 𝚍𝚘(𝚙𝚘𝚞𝚛(𝚇, 𝚉), 𝚃) ∧ 𝚈 ≠ 𝚉

Parallel actions We can use integrity constraints to ensure that there is at most one action undertaken at each point in time.
⊥← 𝚍𝚘(𝚇, 𝚃𝟷, 𝚃𝟸) ∧ 𝚍𝚘(𝚈, 𝚃𝟹, 𝚃𝟺) ∧ 𝚇 ≠ 𝚈 ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟹) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟹, 𝚃𝟸)

Preparation The following integrity constraint then identifies that we cannot have 𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 if we do not have the action 
𝚍𝚘(𝚜𝚕𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝) and we did not start with 𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝 as an initial ingredient. Here, we have assumed an extra kind of 
atom for the ingredients.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟹)
∧ ¬𝚍𝚘(𝚜𝚕𝚒𝚌𝚎(𝚌𝚊𝚛𝚛𝚘𝚝), 𝚃𝟸)
∧ ¬𝚒𝚗𝚐𝚛𝚎𝚍𝚒𝚎𝚗𝚝(𝚜𝚕𝚒𝚌𝚎𝚍_𝚌𝚊𝚛𝚛𝚘𝚝, 𝚃𝟷)

∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

30 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Equipment For simple equipment, we may assume that we have an unlimited supply (i.e. more than would be required for any 
normal recipe). So we have many plates, bowls, etc. However, some equipment will be limited. For example, we might assume 
that we have one oven, one electric mixer, one bread making machine, one microwave, etc. So we may need constraints on 
actions that would use the same equipment for multiple tasks.

⊥← 𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚇, 𝙳), 𝚃)
∧ 𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚈, 𝙳), 𝚃)
∧ 𝚇 ≠ 𝚈

We can define finer grained constraints to deal with more complex situations such as ovens where multiple items can go in 
if use the same temperature. So it two items are in the oven at the same time and they need different temperatures, then 
there is an inconsistency.

⊥← 𝚍𝚘(𝚙𝚞𝚝_𝚒𝚗_𝚘𝚟𝚎𝚗(𝚇, 𝙷𝟷, 𝙳𝟷), 𝚃𝟷, 𝚃𝟸)
∧ 𝚍𝚘(𝚙𝚞𝚝_𝚒𝚗_𝚘𝚟𝚎𝚗(𝚈, 𝙷𝟸, 𝙳𝟸), 𝚃𝟹, 𝚃𝟺)
∧ 𝚇 ≠ 𝚈 ∧ 𝙷𝟷 ≠ 𝙷𝟸 ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟹) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

Properties of food items Specific food items have specific properties. If we change the ingredients used to prepare a food item or 
we change the cooking steps, then we may change some of those specific properties. For instance, if we do not use meat in 
the preparation of a beef burger, then it may lose the property of having a meaty flavour.

⊥← 𝚏𝚕𝚊𝚟𝚘𝚞𝚛(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚋𝚎𝚎𝚏𝚢) ∧ ¬𝚌𝚘𝚗𝚝𝚊𝚒𝚗𝚜(𝚋𝚎𝚎𝚏_𝚋𝚞𝚛𝚐𝚎𝚛, 𝚋𝚎𝚎𝚏)

As another example, if we do not use chicken in the preparation of chicken supreme, then the name is incorrect. This is 
captured by the following integrity constraint.

⊥← 𝚘𝚗𝚑𝚊𝚗𝚍(𝚙𝚛𝚎𝚙𝚊𝚛𝚎𝚍(𝚌𝚑𝚒𝚌𝚔𝚎𝚗_𝚜𝚞𝚙𝚛𝚎𝚖𝚎), 𝜏) ∧ ¬𝚞𝚜𝚎(𝚌𝚑𝚒𝚌𝚔𝚎𝚗)

In the next subsection, we will consider how we can group these different types of integrity constraint according to how we 
obtain them.

8.2. Generating integrity constraints

We group the integrity constraints in the previous section into three groups where each group indicates how we can obtain them.

Fixed group For this group, there is a fixed number of the integrity constraints irrespective of the language (i.e. the number of 
actions, ingredients, etc.). For instance, if we adopt the onhand integrity constraints, then there be two of them irrespective of 
the actions, ingredients, and equipment. Similarly, if we adopt the consume quantity integrity constraint, consume availability 
integrity constraint, and parallel actions integrity constraint, then there would be one each of them.

Pattern-based group For this group, there is a schema for the integrity constraint, and that this schema can be instantiated with 
the actions, equipment, ingredients, etc in the language. Members of this group include action duration integrity constraints, 
onhand location integrity constraints, preparation integrity constraints, and equipment integrity constraints. For each type 
of schema, the number of integrity constraints can be calculated. For instance, for the schema for the equipment integrity 
constraints, the number of these integrity constraints will equal the number of items of equipment in the language since each 
item of equipment gives an integrity constraint. Similarly, for the schema for the action duration integrity constraints, the 
number of these integrity constraints will equal the product of the number of items of actions, and the number of food items, 
in the language.

General group For this group, the format depends on the kind of knowledge available. Some of them could be obtained by 
a transformation from knowledge graphs as we explain below. Members of this group include onhand location integrity 
constraints and properties of food items integrity constraints. Furthermore, for this type of integrity constraint, there is a 
potentially open-ended number of them.

So some types of integrity constraint (namely, onhand quantity, consume quantity, consume availability, multiple keys, and 
parallel actions) are either as specified in the previous section or they can be adapted from them, whereas some types of integrity 
constraint are more challenging to develop as there may be a large number of them, and there may be a need to have adequate 
knowledge graphs, as well as methods for automatically generating them (action duration, onhand location, preparation, and 
properties of food items).

Example 51.  Consider the example of an action duration integrity constraint given in the previous subsection. Assuming, we have 
a knowledge graph with an appropriate structure, we can automatically generate such integrity constraints. For instance, if we have 
relations of the form 𝚌𝚘𝚘𝚔𝚒𝚗𝚐_𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗 and 𝚌𝚘𝚘𝚔𝚒𝚗𝚐_𝚜𝚝𝚢𝚕𝚎, and these appear in the following knowledgegraph triples, then we can 
generate the atoms 𝚍𝚘(𝚋𝚘𝚒𝚕(𝚙𝚎𝚗𝚗𝚎, 𝙳), 𝚃) and 𝟷𝟸 − 𝟷𝟺 𝚖𝚒𝚗, and hence obtain the integrity constraint.

(𝚙𝚎𝚗𝚗𝚎, 𝚌𝚘𝚘𝚔𝚒𝚗𝚐_𝚜𝚝𝚢𝚕𝚎, 𝚋𝚘𝚒𝚕)
(𝚙𝚎𝚗𝚗𝚎, 𝚌𝚘𝚘𝚔𝚒𝚗𝚐_𝚍𝚞𝚛𝚊𝚝𝚒𝚘𝚗, 𝟷𝟸 − 𝟷𝟺 𝚖𝚒𝚗)
31 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
We do not specify the structure of the knowledge graph here as this as is an open-ended task. However, we may assume that a 
knowledge graph has relations that capture knowledge including: cooking styles for an ingredient (e.g. boil for pasta, toast 
for bread); cooking times for an ingredient (e.g. 10-12 min for fusilli); result of an action on an ingredient or intermediate 
food item (e.g. sliced_carrot is the result of the action slice on the ingredient carrot or dough is the result of the action 
mix on the ingredients flour, yeast, and water); locations of ingredients after actions (e.g. location of ingredient salt 
after action pour qualified by prepositional phrase in_bowl is bowl); equipment availability which provides local context 
constraints about equipment (e.g. the number of available bread_making_machine is 1, microwave is 0, and mixing_bowl 
is 4); key ingredients for a dish for example, beef and bap are key ingredients for the dish beef_burger); descriptors for 
ingredients and dishes (for example, the dish beef_burger has the type of descriptor flavour with the parameter meaty, 
the ingredient honey has the descriptor flavour with the parameter sweet, the dish biscuit with the parameter texture 
has the parameter crumbly, and the ingredient oat_flour with the parameter allergy_information has the parameter 
gluten_free). More general knowledge representation formalisms than a knowledge graph may also be required for generating 
integrity constraints concerning properties of food.

8.3. Localizing issues via minimal inconsistencies

Inconsistencies are central to identification of the need of mitigation, and furthermore, they point to the kind of mitigation. 
For example, if we have an inconsistency involving an integrity constraint of the action duration type, then we can try to fix the 
inconsistency by changing the duration of the action.

Definition 21.  Let (𝛥, 𝛤 ,𝛩) be a cooking session. A minimal inconsistent subset of a cooking session is 𝛷 ⊆ (𝛥∪𝛤 ∪𝛩) such that 
𝛷 ⊢ ⊥, and for all 𝛷′ ⊂ 𝛷, 𝛷′ ⊬ ⊥. Let 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥, 𝛤 ,𝛩) be the set of minimal inconsistent subsets of (𝛥, 𝛤 ,𝛩).

Example 52.  Consider a cooking session (𝛥, 𝛤 ,𝛩) for a multi-layer cake with different cake mixes for each layer. Let 𝛤  contain the 
following two atoms.

𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚌𝚊𝚛𝚛𝚘𝚝_𝚌𝚊𝚔𝚎_𝚖𝚒𝚡, 𝟺 𝚖𝚒𝚗), 𝚝𝟷𝟹, 𝚝𝟷𝟻)
𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚜𝚙𝚘𝚗𝚐𝚎_𝚌𝚊𝚔𝚎__𝚖𝚒𝚡, 𝟹 𝚖𝚒𝚗), 𝚝𝟷𝟸, 𝚝𝟷𝟺)

Let the following clause be in 𝛩. Hence, there is a 𝛷 ∈ 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥, 𝛤 ,𝛩) that contains exactly these three formulae.
⊥ ← 𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚇, 𝙳), 𝚃𝟷, 𝚃𝟸)

∧ 𝚍𝚘(𝚖𝚒𝚡_𝚠𝚒𝚝𝚑_𝚎𝚕𝚎𝚌𝚝𝚛𝚒𝚌_𝚖𝚒𝚡𝚎𝚛(𝚈, 𝙳), 𝚃𝟹, 𝚃𝟺)
∧ 𝚇 ≠ 𝚈 ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟹) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟹, 𝚃𝟸)

Proposition 13.  Let (𝛥, 𝛤 ,𝛩) be a cooking session. For each 𝛷 ∈ 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥, 𝛤 ,𝛩), |𝛷 ∩ 𝛩| = 1.

Proof.  For 𝛷 ∈ 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥, 𝛤 ,𝛩), (𝛥, 𝛤 ,𝛩) ⊢ ⊥. Therefore, there is a 𝜙 ∈ 𝛷 such that 𝖧𝖾𝖺𝖽(𝜙) = ⊥ and for all 𝜓 ∈ 𝖳𝖺𝗂𝗅(𝜙), (𝛥, 𝛤 ,𝛩) ⊢ 𝜓 . 
Since there is no 𝛷′ ⊂ 𝛷 such that 𝛷′ ⊢ ⊥, there is no 𝜙′ ∈ 𝛷 such that 𝖧𝖾𝖺𝖽(𝜙′) = ⊥ and 𝜙 ≠ 𝜙′. Therefore, |𝛷 ∩ 𝛩| = 1. □

Given the above result, we can classify inconsistencies according to the type of integrity constraint. In addition, inconsistencies 
can arise because the assumptions are problematic or because the recipe is problematic.

Recipe inconsistency: A recipe inconsistency arises whenever there are sufficient assumptions to give the intended dish 𝜋 there 
is also an inconsistency just involving 𝛥. In this case, for all 𝛤 , if 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩). So the cause 
of the inconsistency is in 𝛥.

Process inconsistency: A process inconsistency arises whenever there are sufficient assumptions to give the intended dish 𝜋 there is 
also an inconsistency involving an integrity constraint. In this case, for all 𝛤 , if 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩)
and ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 , ∅). So the cause of the inconsistency is between 𝛥 and 𝛩.

Assumption inconsistency: This is an inconsistency involving the assumptions and so the inconsistency is for a specific cooking 
session (𝛥, 𝛤 ,𝛩). If ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) and there is a 𝛤 ′ such that 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ′, 𝛩), and ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ′, 𝛩). So whilst 
the session is inconsistency, there exists a set of assumptions, for which the intended item is produced and the session is 
consistent.

If a cooking session is inconsistent, there is always a substitution that makes it consistent and still allows the intended food item 
to be inferred. So any of the above three types of inconsistency can be fixed. The simple way to obtain this is to delete clauses using 
clause substitution, or alternatively add conditions to clauses using condition substitution.

Proposition 14.  Let (𝛥, 𝛤 ,𝛩) be a cooking session for 𝜋. If ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then there is a substitution tuple 𝛴 = ⟨𝛱1,… ,𝛱𝑘⟩ such 
that ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ,𝛩)
32 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Proof.  A drastic solution is to remove all the clauses in 𝛥 and add a clause 𝜙 where 𝖧𝖾𝖺𝖽(𝜙) = 𝜋 to 𝛥, and replacing all the 
assumptions with the conditions for this clause. Hence, the revised cooking session is given by (𝛥[𝛥∕{𝜙}], 𝛤 [𝛤∕𝖳𝖺𝗂𝗅(𝜙)], 𝛩). So this 
revised cooking session can be chosen to be consistent and entail 𝜋. □

The above proof concerns a quite drastic situation, and normally it is not necessary for substitutions to be so drastic. For instance, 
using term substitution is likely to be less drastic by maintaining more of the original recipe. However, term substitution does not 
always resolve the problem as shown next.

Example 53.  Consider the following clause in a recipe 𝛥. and 𝛤  contain the conditions of this clause. Here, there are two knead 
actions in the clause.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚛𝚊𝚒𝚜𝚎𝚍_𝚍𝚘𝚞𝚐𝚑, 𝚃𝟺)
← 𝚍𝚘(𝚕𝚎𝚊𝚟𝚎_𝚝𝚘_𝚛𝚊𝚒𝚜𝚎(𝚍𝚘𝚞𝚐𝚑, 𝟹𝟶 𝚖𝚒𝚗), 𝚃𝟹, 𝚃𝟺)
∧ 𝚍𝚘(𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟻 𝚖𝚒𝚗), 𝚃𝟸, 𝚃𝟹)
∧ 𝚍𝚘(𝚕𝚎𝚊𝚟𝚎_𝚝𝚘_𝚛𝚊𝚒𝚜𝚎(𝚍𝚘𝚞𝚐𝚑, 𝟿𝟶 𝚖𝚒𝚗), 𝚃𝟷, 𝚃𝟸)
∧ 𝚍𝚘(𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟷𝟻 𝚖𝚒𝚗), 𝚃𝟶, 𝚃𝟷)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚍𝚘𝚞𝚐𝚑, 𝚃𝟶)
∧ 𝚜𝚎𝚚𝚞𝚎𝚗𝚌𝚎([𝚃𝟶, 𝚃𝟷, 𝚃𝟸, 𝚃𝟹, 𝚃𝟺])

Suppose there is an integrity constraint that is violated (e.g. assume that dough should be kneaded for 10 min as given below).

⊥← 𝚍𝚘(𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝙳) ∧ 𝙳 ≠ 𝟷𝟶 𝚖𝚒𝚗

To fix the clause, we might not be able to just use a substitution where the term 𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟷𝟶 𝚖𝚒𝚗) for 𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟻 𝚖𝚒𝚗) since 
we would also swap 𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟷𝟶 𝚖𝚒𝚗) for 𝚔𝚗𝚎𝚊𝚍(𝚍𝚘𝚞𝚐𝚑, 𝟷𝟻 𝚖𝚒𝚗) which may be incorrect for producing the desired food item. A 
solution would be to separate the actions so that for instance, we have the actions 𝚏𝚒𝚛𝚜𝚝_𝚔𝚗𝚎𝚊𝚍 and 𝚜𝚎𝚌𝚘𝚗𝚍_𝚔𝚗𝚎𝚊𝚍. In this way, we 
could substitute for one action and not the other.

Proposition 15.  Let (𝛥, 𝛤 ,𝛩) be a cooking session. If ⊥ ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then there is not necessarily a substitution tuple 𝛴 =
⟨𝛱0,𝛱1,… ,𝛱𝑘⟩ such that each 𝛱𝑖 is a term substitution and ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩).

Proof.  Consider Example  53 as a counterexample. □

The above proof is based on showing that if the terms are the same in the conflicting atoms, then term substitution won’t remove 
the conflict as both atoms will be the same. However, with condition substitution and clause substitution, the recipe can always be 
revised so that it is consistent with the integrity constraints.

Proposition 16.  Let (𝛥, 𝛤 ,𝛩) be a cooking session for the food item 𝜋. If 𝜋 ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩), then there is a substitution tuple 
𝛴 = ⟨𝛱0,𝛱1,… ,𝛱𝑘⟩ such that 𝜋 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥𝛴, 𝛤 ′, 𝛩) and ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥𝛴, 𝛤 ′, 𝛩).

Proof.  We can choose these substitutions so that 𝜋 follows from the revised session. For example, we can do a clause sub-
stitution [𝛥∕{𝜙}] where 𝖧𝖾𝖺𝖽(𝜙) = 𝜋, and 𝖳𝖺𝗂𝗅(𝜙) is consistent with 𝛩. So 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥[𝛥∕{𝜙}], 𝛤 [𝛤 ⧵ 𝖳𝖺𝗂𝗅(𝜙)], 𝛩) and ⊥ ∉
𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥[𝛥∕{𝜙}], 𝛤 [𝛤 ⧵ 𝖳𝖺𝗂𝗅(𝜙)], 𝛩). □

We can have a trivial recipe that just says that we have the dish (such as Example  54).

Example 54.  The following process clause ensures that the final food product i.e. 𝚟𝚒𝚌𝚝𝚘𝚛𝚒𝚊_𝚜𝚙𝚘𝚗𝚐𝚎 is always available.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚊𝚔𝚎𝚍(𝚟𝚒𝚌𝚝𝚘𝚛𝚒𝚊_𝚜𝚙𝚘𝚗𝚐𝚎), 𝚃) ← ⊤

We can stop this by insisting that there are ingredients that are not the final item. For instance, we could prohibit executions 
where the intended output is in the assumptions.

Example 55.  The following process clauses is for a one-step recipe (i.e. from the cake mix, we get the cake). So this would be 
acceptable according to the above restriction.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚋𝚊𝚔𝚎𝚍(𝚟𝚒𝚌𝚝𝚘𝚛𝚒𝚊_𝚜𝚙𝚘𝚗𝚐𝚎), 𝚃)
← 𝚍𝚘(𝚌𝚘𝚘𝚔(𝚌𝚊𝚔𝚎_𝚖𝚒𝚡), 𝚃)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚊𝚔𝚎_𝚖𝚒𝚡, 𝚃)

With our logic-based approach, we can specify a recipe in arbitrary detail. So we can choose the level of granularity that actions 
are described. At one extreme, we can put all the actions in a recipe into a single process clause, and at the other extreme, we can 
put each action in a separate clause. We illustrate these extremes in the following example.
33 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Example 56.  Consider the following process clause that involves three actions for preparing scone with clotted cream and jam. As 
a culinary note, this is the Devon method rather the Cornwall method for preparing scones.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚙𝚛𝚎𝚙𝚊𝚛𝚎𝚍(𝚜𝚌𝚘𝚗𝚎_𝚌𝚛𝚎𝚊𝚖_𝚊𝚗𝚍_𝚓𝚊𝚖), 𝚃)
← 𝚍𝚘(𝚜𝚙𝚛𝚎𝚊𝚍_𝚓𝚊𝚖(𝚜𝚌𝚘𝚗𝚎), 𝚃)
∧ 𝚍𝚘(𝚜𝚙𝚛𝚎𝚊𝚍_𝚌𝚛𝚎𝚊𝚖(𝚜𝚌𝚘𝚗𝚎), 𝚃)
∧ 𝚍𝚘(𝚌𝚞𝚝_𝚒𝚗_𝚝𝚠𝚘(𝚜𝚌𝚘𝚗𝚎), 𝚃)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚌𝚘𝚗𝚎, 𝚃)

Th above process clause can be split into the following three process clauses with each containing one process clause.
𝚘𝚗𝚑𝚊𝚗𝚍(𝚙𝚛𝚎𝚙𝚊𝚛𝚎𝚍(𝚜𝚌𝚘𝚗𝚎_𝚌𝚛𝚎𝚊𝚖_𝚊𝚗𝚍_𝚓𝚊𝚖), 𝚃)

← 𝚍𝚘(𝚜𝚙𝚛𝚎𝚊𝚍_𝚓𝚊𝚖(𝚘𝚗(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜(𝚠𝚒𝚝𝚑(𝚌𝚛𝚎𝚊𝚖_𝚘𝚗_𝚝𝚘𝚙))), 𝚃)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜(𝚠𝚒𝚝𝚑(𝚌𝚛𝚎𝚊𝚖_𝚘𝚗_𝚝𝚘𝚙), 𝟸), 𝚃)

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜(𝚠𝚒𝚝𝚑(𝚌𝚛𝚎𝚊𝚖_𝚘𝚗_𝚝𝚘𝚙), 𝟸)), 𝚃)
← 𝚍𝚘(𝚜𝚙𝚛𝚎𝚊𝚍_𝚌𝚛𝚎𝚊𝚖(𝚘𝚗(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜)), 𝚃)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜, 𝟸), 𝚃)

𝚘𝚗𝚑𝚊𝚗𝚍(𝚌𝚘𝚞𝚗𝚝(𝚜𝚌𝚘𝚗𝚎_𝚑𝚊𝚕𝚟𝚎𝚜, 𝟸), 𝚃)
← 𝚍𝚘(𝚌𝚞𝚝_𝚒𝚗_𝚝𝚠𝚘(𝚜𝚌𝚘𝚗𝚎), 𝚃)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚜𝚌𝚘𝚗𝚎, 𝚃)

When a minimal inconsistent subset is the result of an action duration or parallel action or multiple key integrity constraints, 
then there is a substitution into the assumptions such that the minimal inconsistency is resolved and no new minimal inconsistency 
is produced by the substitution. Essentially, the assumptions are revised so that the timepoints used ensure that the action duration 
are sufficiently long, and actions are done sequentially.

Proposition 17.  Let (𝛥, 𝛤 ,𝛩) be a cooking session for dish 𝜋. If 𝜋 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ,𝛩), and 𝛷 ∈ 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥 ∪ 𝛤 ∪ 𝛩), and there is a 
𝜙 ∈ 𝛷 such that 𝜙 is the parallel action integrity constraint, then there is a set of assumptions 𝛤 ′ such that 𝛷 ∉ 𝖬𝗂𝗇𝖨𝗇𝖼(𝛥 ∪ 𝛤 ′ ∪ 𝛩) and 
𝜋 ∈ 𝖣𝗂𝗌𝗁𝖾𝗌(𝛥, 𝛤 ′, 𝛩).

Proof.  Since, the overall recipe with timings can be represented by a proof tree, resolving the inconsistency is about making the 
actions sequential rather than parallel, and therefore making the satisfaction of each process clause sequential rather than parallel. 
Let 𝜙 be the parallel actions integrity constraint. Since 𝜙 is in a minimal inconsistent subset, there are assumptions 𝚍𝚘(𝛼, 𝜏𝟷, 𝜏𝟸) and 
𝚍𝚘(𝛼′, 𝜏𝟹, 𝜏𝟺) such that 𝛼 ≠ 𝛼′ and 𝜏1 is before 𝜏3 and 𝜏3 is before 𝜏2. So there is a revised set of assumptions such that 𝚍𝚘(𝛼, 𝜏𝟷, 𝜏𝟸)
and 𝚍𝚘(𝛼′, 𝜏′

𝟹
, 𝜏′

𝟺
) such that 𝜏2 is before 𝜏3. In order to ensure that 𝜋 is maintained in the final output, this may require other actions 

to similarly have their timings separated. □

More generally, we can resolve the minimal inconsistencies that arise from substitutions. Whilst some substitutions might cause 
further minimal in consistences, if we assume that our set of integrity constraints and background knowledge is sensible (Definition 
17), then by Proposition  12, we can always find a substitution tuple that is a mitigation.

9. Related work

The use of computational methods to solve problems in cooking has been the focus of several studies and projects in the last 
two decades. Some series of workshops have also been dedicated to this topic, such as the ‘‘Computer Cooking Contest’’ (CCC) from 
2008 to 2017, the ‘‘Cooking with Computers’’ (CWC) workshops in 2012 and 2013 and the ‘‘Integrated Food Ontology Workshops’’ 
(IFOW) since 2020. The focus of CCC was specifically on the adaptation of recipes using Case-Based Reasoning (CBR) techniques, 
CWC was about the use of AI methods in cooking, while IFOW focuses on the development of vocabularies and data models for 
various aspects of food such as nutritional data, eating patterns, agricultural treatments, etc. Below, we discuss how our work relates 
to some of the studies presented in these forums, as well as to the broader literature in this area, focusing more on three topics: 
representation and reasoning with recipes; ontologies and knowledge graphs; and computational methods for substitution.

9.1. Representation and reasoning with recipes

Most of the CBR-based solutions presented in CCC rely on a structured (XML or ontology-based) representation of recipes. Each 
ingredient as well as the dish produced by the recipe are commonly represented as separate entities. This doesn’t however hold for 
the preparation steps, which in most cases have the form of a single block of text. Because of that, their substitution methods do 
not take into account the adaptation of the cooking actions that may be required for processing the new ingredients. Two notable 
exceptions are the Taaable [14,15] and CookingCAKE systems [16]. The former uses a tree representation of recipes where nodes 
represent recipe ingredients or outputs of cooking actions and edges represent actions. They use this representation either to enable 
users to correct or complete recipe trees, which have been created from recipe texts using NLP, using a graph editing tool [15]; or to 
enable the textual adaptation of recipe preparations by identifying common sequences of actions applied to a single ingredient (they 
34 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
call such sequences ‘‘prototypes’’) and finding, using Formal Concept Analysis, the prototype that best fits the given recipe [14]. Their 
tree representation is similar but less expressive than the recipe graphs that we propose (for example, it cannot model by-products 
of a cooking action), and they do not deal with some of the reasoning tasks that we address such as the comparison or composition 
of recipes. The RDF representation of recipes that they proposed more recently [17] captures other aspects of a recipe such as the 
type of the produced dish and the types and quantities of the ingredients, but not the cooking actions.

CookingCAKE is another CBR system aimed at the adaptation of recipes that is based on the representation of recipes as 
workflows and the use of Process-Oriented Case-Based Reasoning (POCBR) techniques. The adaptation methods they use are based 
on decomposing workflows into meaningful sub-components called workflow streams [16]. A workflow stream is a collection of 
connected tasks that create a new item. A workflow (modelling a recipe) can be adapted by using the workflow streams of other 
workflows (recipes) that produce the same item in a different manner, e.g., with other tasks (cooking actions) or data (ingredients). 
Their methods are based on similar ideas with ours, especially with respect to the composition of recipes and structural substitution. 
They do not, however, provide methods for validating the generated recipes. Moreover, being based on CBR, the proposed solution 
cannot easily be extended with other types of knowledge (e.g. commonsense knowledge, user preferences, etc.); on the other hand, 
declarative systems such as the one we present in this paper are much more modular and adaptable to new types of knowledge.

Other studies that represent recipes as workflows are [18–22]; their aims, however, are different from ours. Most of them focus on 
extracting workflow graphs from recipe texts using NLP [19,21,22]. The system described in [18] aims at facilitating the retrieval 
of recipes from workflow repositories, while [20] focuses on clustering recipes. Graphs for representing recipes were also used 
in [23,24]. Similarly to our recipe graphs, both ingredients and cooking actions are modelled as nodes; however, their graphs do 
not include intermediate products or by-products. Their aims were also different; [23] developed methods for retrieving recipes 
from the Web, while [24] aimed at the analysis of recipes for example to identify usage patterns of ingredients and cooking actions 
and to compare recipes.

A representation of recipes as plans was recently proposed in [25]. A recipe is represented as a sequence of steps, each of which 
corresponds to a cooking action and includes various parameters such as the input ingredients, the output of the action, allergen 
information, etc. A plan-based representation is indeed a promising alternative; however, reasoning on recipes is left by the authors 
for future work.

Whilst the primary of our paper is to investigate the notion of substitution, we have outlined how recipes can be modelled using 
classical logic. Our approach therefore differs from the proposals we have discussed in this subsection. Classical logic provides an 
expressive formalism for capturing key details of recipes such as dealing with time and quantities, and using clauses allows for a 
direct representation of the preconditions and actions of a recipe to be the preconditions of a clause, and the post-conditions to be 
the consequent of a clause. Another advantage of our approach is that we can ground the recipe steps to give a set of ground clauses 
which can then be used directly with a SAT solver to check for consistency or entailment.

9.2. Ontologies and knowledge graphs

The use of ontologies for formally representing food or recipes has recently been gaining interest. Many of the CBR-based systems 
that participated in CCC used a simple ontology of ingredients to identify possible ingredient substitutions [14,16,26–29]. Most of 
these ontologies were implemented in RDFS but, apart from the taxonomic (subclass) relations, they do not capture any other types 
of relations among the ingredients or between the ingredients and the cooking actions. They are not, therefore, able to support most 
of the reasoning tasks that we address in this paper.

A more comprehensive, general-purpose ontology for foods is the FoodOn ontology [30,31]. This has the form of a multi-faceted 
taxonomy organizing foods by source organism, harvest state, region of origin, colour, production process, chemical composition, 
physical state, etc. The ontology contains two elements, which could be used for modelling substitutions in cooking: a symmetric 
property called ‘‘has food substance analog’’; and a set of classes (e.g. beverage analog, chocolate product analog, egg product 
analog, etc.), which are used to explicitly model food product analogs for various types of food. Both elements, however, are aimed at 
modelling generic food analogs, rather than recipe-specific substitutions of ingredients. Due to the small number of object properties, 
it cannot support reasoning over recipes. It nevertheless provides a very comprehensive classification of foods, which we plan to 
exploit in the future, for example, for developing the comestibles hierarchy.

An ontology design pattern for ingredient substitution in recipes was recently proposed in [32]. The model captures different 
aspects of a dish (diet, technology, tastiness). It models a recipe as a set of ingredients and a set of instructions, and ingredient 
substitution as transformations of these sets, which may be required to encompass ingredient change. Its value, however, is mostly 
representational, as it does not support reasoning over recipes and ingredient substitution.

FoodKG is a large-scale food knowledge graph, which integrates nutrition information, general food substitutions, recipe data 
and food taxonomies [33]. It describes each recipe as a set of ingredients, each of which is associated with a quantity and a unit 
of measurement. It does not, however, describe cooking actions or the sequence in which the ingredients are processed and cannot 
therefore support most of the reasoning tasks that we describe in this paper.

Our logical framework is ontology-agnostic but, being based on propositional logic, is fully compatible with ontologies. It can 
therefore be enriched with ontological knowledge available in the food ontologies and knowledge graphs discussed above. For 
example, background clauses (see Section 3.2.3) could be automatically populated with class-hierarchy information from FoodOn 
or other related ontologies, while property clauses (see Section 7.4) could be instantiated with nutritional, compositional, or flavour 
data available in FoodKG. Furthermore, ontology-based semantic similarity metrics can complement our distance functions (see 
Section 4.1), offering an alternative way to identify candidate substitutes using taxonomic proximity or shared properties. Exploring 
such integrations is part of our future work plans.
35 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
9.3. Substitution

There are a number of proposals that explore how substitutions could be found for ingredients in recipes. By analysing existing 
recipes, cooking actions and the ingredients that they are commonly applied to can be identified, and this can then be used to identify 
candidates for substitution [34]. More generally, large datasets of recipes can be analysed to determine whether an ingredient tends 
to be essential or can be dropped or added, whether the quantity of an ingredient can be modified, which ingredients tend to co-
occur frequently, and user-generated suggestions for functionally equivalent ingredients, and for healthier variants of a recipe [35]. 
They can also be identified by combining explicit information about the ingredients in FoodKG, and implicit information from word 
embeddings [13]. A common approach followed by systems that use an ontology of ingredients is to pick substitute ingredients from 
classes that are close to the class of the original ingredient; for example, from a parent or a sibling class [14,16,26–29]. In some of 
these systems, the ingredient ontology is enriched with values on the subclass relations, which indicate how suitable it is to replace 
one type of ingredient with another [26,28]. None of these methods provide a formalism for representing or reasoning with recipes, 
but they could be used for finding candidates for substitution for use in our framework.

Finally, there are two other proposals that, although not specifically focused on cooking, could also be applied to this domain. 
The first one is a proposal for using a formalism to capture features of objects (namely, shape, material, and role of the object) 
and then reason with that knowledge to identify alternative uses [36]. Potentially, this logic-based approach could be adapted for 
recipes by perhaps drawing on the approach in our proposal. The second is a logic-based approach to activity recognition, based 
on a logic programming implementation of Event Calculus [37]. The focus of that work is on the representation and recognition of 
long-term activities as temporal combinations of short-term activities. Although their approach cannot be applied as it is to address 
ingredient substitution or any other reasoning tasks that are specific to recipes, mainly due to the lack of an explicit representation 
of comestibles and their relations with cooking actions, it does provide some ideas that we might implement in future extensions 
of this work, e.g. to model and reason with the temporal aspects of recipes.

10. Discussion

In this paper, we have proposed a commonsense reasoning framework for substitutions in cooking. Overall, our perspective 
has been to reduce the problem to a combination of using distance measures to compare food items (ingredients, intermediate 
items, and dishes), to compare equipment, and to compare processing steps, and using inconsistency management where integrity 
constraints are used to flag when mitigations are required, and inconsistency resolution is via second substitutions.

To develop our perspective, we have made the following contributions: (1) Representation of candidates for substitution using 
notions of distance between the original and possible substitutes; (2) Specification of substitution as one or more syntactic operations 
on the logical representation of recipes; (3) Conceptualization of the primary and secondary stages of substitution; (4) Methods for 
four types of driver for substitution (i.e. similarity to missing item; similarity to original dish; minimal change to recipe; improve 
final dish); And (5) Investigation of secondary substitutions as the identification and resolution of inconsistencies.

We see substitution as part of a broader range of abilities for repurposing. We can consider cases of both substitution, i.e. finding 
an alternative for a missing resource, and exploitation, i.e. identifying a new role for an existing resource. For a discussion of 
repurposing, see [38]. The human ability to repurpose objects and processes is universal, but it is not a well-understood aspect of 
human intelligence. Repurposing arises in everyday situations such as finding substitutes for missing ingredients when cooking, or 
for unavailable tools when doing DIY. It also arises in critical, unprecedented situations needing crisis management. After natural 
disasters and during wartime, people must repurpose the materials and processes available to make shelter, distribute food, etc.

In parallel work, we have developed a graph-based formalism for representation and reasoning with recipes. It incorporates 
subset of the features that we incorporate in this paper — essentially comestibles (ingredient, intermediate food items, and final 
products) and actions — but it can be directly encoded as a programme in answer set programming [5]. In future work, we will 
extend this computational approach with the features of the logic-based approach in this paper. Furthermore, there is a pipeline 
we could develop starting with recipes in free text that can be translated into graphical formalism, which can then reasoned with 
using ASP, and substitutions being identified using the framework proposed in this paper. Investigations into the NLP translation 
of into graphical formalism include those that focus on the explicit information in recipes [22,23,39,40], and an investigation into 
the implicit information in recipes, i.e the intermediate comestibles that arise in recipes that might not be explicitly mentioned in 
the recipe, [41].

Once we have a recipe represented in the logic (i.e. a specific set of clauses 𝛥), there are various properties that we can consider 
for it including the following.

Finite session This means that the execution of the cooking session results in a finite set of inferences. So (𝛥, 𝛤 ,𝛩) is a finite 
session iff 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) is finite.

Finite recipe This means that there is no set of assumptions that would result in an infinite execution. So 𝛥 is a finite recipe iff 
𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩) is finite for all finite 𝛤 .

Viable session With respect to a specific food item to be prepared, a cooking session is viable means that the execution of the 
session would result in the food item being produced. So 𝛥 is viable session for 𝜋 iff 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩).
36 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Viable recipe With respect to a specific food item to be prepared, a recipe is viable means that there is a set of assumption that 
would result in an execution with food item being produced. So 𝛥 is viable recipe for 𝜋 iff there is a 𝛤  s.t. 𝜋 ∈ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩).

Minimal recipe With respect to a specific food item to be prepared, a recipe is minimal means that any subset of the recipe would 
not produce the item. So 𝛥 is minimal recipe for 𝜋 iff for all 𝛥′ ⊂ 𝛥 s.t. 𝜋 ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥′, 𝛤 , 𝛩).

Trivial session With respect to a specific food item to be prepared, a cooking session is trivia means that the item is assumed 
(i.e. it is given as an ingredient). So (𝛥, 𝛤 ,𝛩) is trivial session for 𝜋 iff 𝜋 ∈ 𝛤 .

Consistent session This means that the execution of a cooking session is consistent. So (𝛥, 𝛤 ,𝛩) is consistent session iff ⊥ ∉
𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩).

Consistent recipe This means that for all sets of assumptions that are consistent with the integrity constraints and background 
knowledge, the execution is consistent. So 𝛥 is consistent recipe w.r.t. 𝛩 iff for all consistent 𝛤 , ⊥ ∉ 𝖤𝗑𝖾𝖼𝗎𝗍𝖾(𝛥, 𝛤 ,𝛩).

We now consider specific examples of recipes, and how they can be analysed using the above properties. The following example 
illustrates failure of the finite property.

Example 57.  The following preparation clauses can give an infinite execution since the egg can be moved from one plate to the 
other.

𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚎𝚐𝚐, 𝚙𝚕𝚊𝚝𝚎𝟸), 𝚃𝟹) 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚎𝚐𝚐, 𝚙𝚕𝚊𝚝𝚎𝟷), 𝚃𝟹)
← 𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚘𝚗(𝚙𝚕𝚊𝚝𝚎𝟸), 𝚃𝟸) ← 𝚙𝚞𝚝(𝚎𝚐𝚐, 𝚘𝚗(𝚙𝚕𝚊𝚝𝚎𝟷), 𝚃𝟸)
∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚎𝚐𝚐, 𝚙𝚕𝚊𝚝𝚎𝟷), 𝚃𝟷) ∧ 𝚘𝚗𝚑𝚊𝚗𝚍(𝚘𝚗(𝚎𝚐𝚐, 𝚙𝚕𝚊𝚝𝚎𝟸), 𝚃𝟷)
∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟷, 𝚃𝟸) ∧ 𝚋𝚎𝚏𝚘𝚛𝚎(𝚃𝟸, 𝚃𝟹)

An empty recipe (i.e. 𝛥 = ∅) does not give a viable session unless it is a trivial session. In general, minimality of assumptions is 
desirable, so that we minimize the ingredients and actions required, and minimality of process clauses in the recipe is desirable so 
that we minimize the ingredients consumed, the actions undertaken, and the production of unnecessary food items

The finite, viable, consistent, trivial, and minimal, properties capture simple and natural commonsense questions one might ask 
of a recipe. When one of these properties fails, they can be explained in terms of the specific clauses that cause the failure.

In future work, we will further investigate integrity constraints and background knowledge including generating integrity 
constraints automatically from knowledge graphs where there are potentially many triples in a knowledge graph and do we decide 
which pairs of triples can be used to make an integrity constraints; development of methods for generating inconsistency constraints 
and background knowledge from data; acquiring and representing negative properties (e.g. bread made with yeast but we don’t want 
it to taste of yeast); consideration of refinement of the methods to allow for use of hard and soft constraints.

Also, in future work, we will consider how to reason about the persistence of ingredients using non-monotonic reasoning, and 
provide more detailed coverage of how to represent and reason about recipes including how to keep track of the quantities of 
intermediate products and by-products of cooking. Persistence is required when fluents that have been unchanged. In other words, 
if there is no consume atom for some quantity of that item, then the same quantity of the item is available at the next point in time. 
So if it cannot be inferred that the item has not been consumed, we can make the default inference that the item is still available 
to be consumed. This future work is likely to draw on formalisms for analogical reasoning [42–44], temporal reasoning [2,3,45], 
and commonsense reasoning [46–51].

CRediT authorship contribution statement

Antonis Bikakis: Writing – original draft, Formal analysis, Conceptualization. Aissatou Diallo: Formal analysis, Conceptualiza-
tion. Luke Dickens: Writing – original draft, Formal analysis, Conceptualization. Anthony Hunter: Writing – original draft, Formal 
analysis, Conceptualization. Rob Miller: Writing – original draft, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Anthony Hunter reports financial support was provided by Leverhulme Trust. If there are other authors, they declare that 
they have no known competing financial interests or personal relationships that could have appeared to influence the work reported 
in this paper.

Acknowledgements

The authors are grateful to the Leverhulme Trust for supporting the project Repurposing of Resources: from Everyday Problem 
Solving through to Crisis Management (2022–2025).
37 



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
Data availability

No data was used for the research described in the article.

References

[1] Dalal Alrajeh, Rob Miller, Alessandra Russo, Sebastian Uchitel, Reasoning about triggered scenarios in logic programming, Theory Pract. Log. Program. 
13 (4-5-Online-Supplement) (2013).

[2] Jiefei Ma, Rob Miller, Leora Morgenstern, Theodore Patkos, An epistemic event calculus for ASP-based reasoning about knowledge of the past, present 
and future, in: Proceedings of International Conference on Logic for Programming, vol. 26, 2013, pp. 75–87.

[3] Rob Miller, Murray Shanahan, Some alternative formulations of the event calculus, in: Computational Logic: Logic Programming and beyond, Springer, 
2002, pp. 452–490.

[4] Vladimir Lifschitz, What is answer set programming? in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, 
Illinois, USA, July 13-17, 2008, AAAI Press, 2008, pp. 1594–1597.

[5] Antonis Bikakis, Aïssatou Diallo Luke Dickens, Anthony Hunter, Rob Miller, A graphical formalism for commonsense reasoning with recipes, 2023, CoRR, 
abs/2306.09042.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient estimation of word representations in vector space, CoRR 1301.3781 (2013).
[7] Jeffrey Pennington, Richard Socher, Christopher Manning, Glove: Global vectors for word representation, in: Proceedings of EMNLP’14, Association for 

Computational Linguistics, 2014, pp. 1532–1543.
[8] Chantal Pellegrini, Ege Özsoy, Monika Wintergerst, Georg Groh, Exploiting food embeddings for ingredient substitution, in: Proceedings of the 14th 

International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, Volume 5: HEALTHINF, SCITEPRESS, 2021, pp. 
67–77.

[9] Corina Dima, Daniel de Kok, Neele Witte, Erhard Hinrichs, No word is an Island—A transformation weighting model for semantic composition, Trans. 
Assoc. Comput. Linguist. 7 (2019) 437–451.

[10] Vered Shwartz, A Systematic Comparison of English Noun Compound Representations, Technical Report, 2019, arXiv, 10.48550/ARXIV.1906.04772.
[11] Jason Youn, Tarini Naravane, Ilias Tagkopoulos, Using word embeddings to learn a better food ontology, Front. Artif. Intell. 3 (2020).
[12] Celine Steen, Joni-Marie Newman, The Complete Guide to Vegan Food Substitutions, Fair Winds Press, 2010.
[13] Sola S. Shirai, Oshani Seneviratne, Minor E. Gordon, Ching-Hua Chen, Deborah L. McGuinness, Identifying ingredient substitutions using a knowledge 

graph of food, Front. Artif. Intell. 3 (2021) 621766.
[14] Alexandre Blansché, Julien Cojan, Valmi Dufour-Lussier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, Yannick Toussaint, TAAABLE 3: 

Adaptation of ingredient quantities and of textual preparations, in: 18h International Conference on Case-Based Reasoning - ICCBR 2010, ’’Computer 
Cooking Contest’’ Workshop Proceedings, Alessandria, Italy, 2010.

[15] Valmi Dufour-Lussier, Florence Le Ber, Jean Lieber, Thomas Meilender, Emmanuel Nauer, Semi-automatic annotation process for procedural texts: An 
application on cooking recipes, in: Emmanuel Nauer Amélie Cordier (Ed.), Cooking with Computers Workshop - ECAI 2012, Montpellier, France, 2012.

[16] Gilbert Müller, Ralph Bergmann, Cookingcake: A framework for the adaptation of cooking recipes represented as workflows, in: Workshop Proceedings of 
ICCBR’15, in: CEUR Workshop Proceedings, vol. 1520, CEUR-WS.org, 2015, pp. 221–232.

[17] Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer, Adaptation of TAAABLE to the ccc’2017 mixology and salad challenges, adaptation of the cocktail 
names, in: Antonio A. Sánchez-Ruiz, Anders Kofod-Petersen (Eds.), Proceedings of ICCBR 2017 Workshops (CAW, CBRDL, PO-CBR), Doctoral Consortium, 
and Competitions Co-Located with the 25th International Conference on Case-Based Reasoning (ICCBR 2017), Trondheim, Norway, June 26-28, 2017, in: 
CEUR Workshop Proceedings, vol. 2028, CEUR-WS.org, 2017, pp. 253–268.

[18] Qihong Shao, Peng Sun, Yi Chen, WISE: a workflow information search engine, in: Proceedings of ICDE’09, IEEE Computer Society, 2009, pp. 1491–1494.
[19] Pol Schumacher, Mirjam Minor, Kirstin Walter, Ralph Bergmann, Extraction of procedural knowledge from the web: a comparison of two workflow 

extraction approaches, in: Proceedings of WWW’12, ACM, 2012, pp. 739–747.
[20] Ralph Bergmann, Gilbert Müller, Daniel Wittkowsky, Workflow clustering using semantic similarity measures, in: Proceedings of KI’13, in: Lecture Notes 

in Computer Science, vol. 8077, Springer, 2013, pp. 13–24.
[21] Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang, Tat-Seng Chua, Multi-modal cooking workflow 

construction for food recipes, in: Proceedings of ACM Multimedia’20, 2020, pp. 1132–1141.
[22] Yoko Yamakata, Shinsuke Mori, John Carroll, English recipe flow graph corpus, in: Proceedings of LREC’20, European Language Resources Association, 

2020, pp. 5187–5194.
[23] Liping Wang, Qing Li, Na Li, Guozhu Dong, Yu Yang, Substructure similarity measurement in Chinese recipes, in: Proceedings of WWW’08, Association 

for Computing Machinery, 2008, pp. 979–988.
[24] Minsuk Chang, Leonore V. Guillain, Hyeungshik Jung, Vivian M. Hare, Juho Kim, Maneesh Agrawala, RecipeScape: An interactive tool for analyzing 

cooking instructions at scale, in: Proceedings of CHI’18, Association for Computing Machinery, 2018, pp. 1–12.
[25] Vishal Pallagani, Priyadharsini Ramamurthy, Vedant Khandelwal, Revathy Venkataramanan, Kausik Lakkaraju, Sathyanarayanan N. Aakur, Biplav Srivastava, 

A rich recipe representation as plan to support expressive multi modal queries on recipe content and preparation process, 2022, CoRR, arXiv:2203.17109.
[26] Juan DeMiguel, Laura Plaza, Belén Díaz-Agudo, Colibricook: A CBR system for ontology-based recipe retrieval and adaptation, in: Martin Schaaf (Ed.), 

ECCBR 2008, the 9th European Conference on Case-Based Reasoning, Trier, Germany, September 1-4, 2008, Workshop Proceedings, 2008, pp. 199–208.
[27] P. Javier Herrera, Pablo Iglesias, David Romero, Ignacio Rubio, Belén Díaz-Agudo, JaDaCook: Java application developed and cooked over ontological 

knowledge, in: Martin Schaaf (Ed.), ECCBR 2008, the 9th European Conference on Case-Based Reasoning, Trier, Germany, September 1-4, 2008, Workshop 
Proceedings, 2008, pp. 209–218.

[28] Régis Newo, Kerstin Bach, Alexandre Hanft, Klaus-Dieter Althoff, On-demand recipe processing based on CBR, in: Cindy Marling (Ed.), ICCBR-2010 
Workshop Proceedings: Computer Cooking Contest Workshop, Karlsruhe, Germany, 2010, pp. 209–218.

[29] Sérgio Mota, Belén Díaz-Agudo, Acook: Recipe adaptation using ontologies, case-based reasoning systems and knowledge discovery, in: Emmanuel Nauer 
Amélie Cordier (Ed.), Cooking with Computers Workshop - ECAI 2012, Montpellier, France, 2012.

[30] Damion M. Dooley, Emma J. Griffiths, Gurinder Pal Singh Gosal, Pier Luigi Buttigieg, R. Hoehndorf, Matthew Lange, Lynn M. Schriml, Fiona S.L. Brinkman, 
William W.L. Hsiao, Foodon: a harmonized food ontology to increase global food traceability, quality control and data integration, NPJ Sci. Food 2 (2018).

[31] Damion Dooley, Magalie Weber, Liliana Ibanescu, Matthew Lange, Lauren Chan, Larisa Soldatova, Chen Yang, Robert Warren, Cogan Shimizu, Hande K. 
McGinty, William Hsiao, Food process ontology requirements, Semant. Web (2022) 1–32.

[32] Agnieszka Ławrynowicz, Anna Wr0́blewska, Weronika T. Adrian, Bartosz Kulczyński, Anna Gramza-Michał owska, Food recipe ingredient substitution 
ontology design pattern, Sensors 22 (3) (2022) 1095.

[33] Steven Haussmann, Oshani Seneviratne, Yu Chen, Yarden Ne’eman, James Codella, Ching-Hua Chen, Deborah L. McGuinness, Mohammed J. Zaki, FoodKG: 
A semantics-driven knowledge graph for food recommendation, in: Proceedings of ISWC’19, Springer-Verlag, 2019, pp. 146–162.
38 

http://refhub.elsevier.com/S0169-023X(26)00005-4/sb1
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb1
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb1
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb2
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb2
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb2
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb3
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb3
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb3
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb4
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb4
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb4
http://arxiv.org/abs/2306.09042
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb6
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb7
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb7
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb7
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb8
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb8
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb8
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb8
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb8
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb9
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb9
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb9
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb10
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb11
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb12
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb13
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb13
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb13
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb14
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb14
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb14
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb14
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb14
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb15
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb15
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb15
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb16
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb16
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb16
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb17
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb18
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb19
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb19
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb19
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb20
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb20
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb20
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb21
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb21
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb21
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb22
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb22
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb22
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb23
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb23
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb23
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb24
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb24
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb24
http://arxiv.org/abs/2203.17109
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb26
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb26
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb26
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb27
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb27
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb27
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb27
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb27
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb28
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb28
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb28
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb29
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb29
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb29
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb30
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb30
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb30
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb31
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb31
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb31
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb32
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb32
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb32
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb33
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb33
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb33


A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558 
[34] Yuka Shidochi, Tomokazu Takahashi, Ichiro Ide, Hiroshi Murase, Finding replaceable materials in cooking recipe texts considering characteristic cooking 
actions, in: Proceedings of the ACM Multimedia’09 Workshop on Multimedia for Cooking and Eating Activities, Association for Computing Machinery, 
2009, pp. 9–14.

[35] Chun-Yuen Teng, Yu-Ru Lin, Lada A. Adamic, Recipe recommendation using ingredient networks, in: Proceedings of ACM Web Science Conference, in: 
WebSci ’12, Association for Computing Machinery, 2012, pp. 298–307.

[36] Ana-Maria Olteteanu, Zoe Falomir, Object replacement and object composition in a creative cognitive system. Towards a computational solver of the 
alternative uses test, Cogn. Syst. Res. 39 (2016) 15–32.

[37] Alexander Artikis, Marek J. Sergot, Georgios Paliouras, A logic programming approach to activity recognition, in: Ansgar Scherp, Ramesh C. Jain, Mohan S. 
Kankanhalli, Vasileios Mezaris (Eds.), Proceedings of the 2nd ACM International Workshop on Events in Multimedia, EIMM 2010, Firenze, Italy, October 
25 - 29, 2010, ACM, 2010, pp. 3–8.

[38] Antonis Bikakis, Luke Dickens, Anthony Hunter, Rob Miller, Repurposing of resources: from everyday problem solving through to crisis management, 2021, 
CoRR, abs/2109.08425.

[39] Yi Fan, Anthony Hunter, Understanding the cooking process with english recipe text, in: Anna Rogers, Jordan L. Boyd-Graber, Naoaki Okazaki (Eds.), 
Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, Association for Computational Linguistics, 2023, 
pp. 4244–4264.

[40] Aïssatou Diallo, Antonis Bikakis, Luke Dickens, Anthony Hunter, Rob Miller, Unsupervised learning of graph from recipes, 2024, arXiv:2401.12088.
[41] Aïssatou Diallo, Antonis Bikakis, Luke Dickens, Anthony Hunter, Rob Miller, Pizzacommonsense: Learning to model commonsense reasoning about 

intermediate steps in cooking recipes, 2024.
[42] Rogers Hall, Computational approaches to analogical reasoning: A comparative analysis, Artificial Intelligence 39 (1989) 39–120.
[43] Henri Prade, Gilles Richard, Analogical proportions: Why they are useful in AI, in: Zhi-Hua Zhou (Ed.), Proceedings of the Thirtieth International Joint 

Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, ijcai.org, 2021, pp. 4568–4576.
[44] Suryani Lim, Henri Prade, Gilles Richard, Using analogical proportions for explanations, in: Florence Dupin de Saint-Cyr, Meltem Öztürk-Escoffier, Nico 

Potyka (Eds.), Scalable Uncertainty Management - 15th International Conference, SUM 2022, Paris, France, October 17-19, 2022, Proceedings, in: Lecture 
Notes in Computer Science, vol. 13562, Springer, 2022, pp. 309–325.

[45] James F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832–843.
[46] Gerd Brewka, Nonmonotonic Reasoning: Logical Foundations of Commonsense, Cambridge University Press, 1991.
[47] Ernest Davis, The naive physics perplex, AI Mag. 19 (4) (1998) 51–79.
[48] Erik T. Mueller, Commonsense Reasoning, Morgan Kaufmann, 2006.
[49] Ernest Davis, Logical formalizations of commonsense reasoning: A survey, J. Artificial Intelligence Res. 59 (2017) 651–723.
[50] Ernest Davis, Gary Marcus, Noah Frazier-Logue, Commonsense reasoning about containers using radically incomplete information, Artificial Intelligence 

248 (2017) 46–84.
[51] Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, Rob Miller, Probabilistic reasoning about epistemic action narratives, Artificial Intelligence 287 

(2020) 103352.

Antonis Bikakis is an associate professor in the Dept of Information Studies, University College London, London, UK.

Aissatou Diallo is a research fellow in the Dept of Computer Science, University College London, London, UK.

Luke Dickens is an associate professor in the Dept of Information Studies, University College London, London, UK.

Anthony Hunter is a professor in the Dept of Computer Science, University College London, London, UK.

Rob Miller is an associate professor in the Dept of Information Studies, University College London, London, UK.
39 

http://refhub.elsevier.com/S0169-023X(26)00005-4/sb34
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb34
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb34
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb34
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb34
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb35
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb35
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb35
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb36
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb36
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb36
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb37
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb37
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb37
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb37
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb37
http://arxiv.org/abs/2109.08425
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb39
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb39
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb39
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb39
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb39
http://arxiv.org/abs/2401.12088
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb41
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb41
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb41
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb42
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb43
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb43
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb43
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb44
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb44
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb44
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb44
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb44
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb45
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb46
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb47
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb48
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb49
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb50
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb50
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb50
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb51
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb51
http://refhub.elsevier.com/S0169-023X(26)00005-4/sb51

	A commonsense reasoning framework for substitution in cooking
	Introduction
	Preliminaries
	Representing recipes
	Modelling dynamics
	Logical language for recipes
	Logical terms for recipes
	Logical atoms for recipes
	Logical formulae for recipes

	Logical reasoning with recipes
	Cooking sessions
	Consequence relation


	Candidates for substitution
	Distance measures based on role
	Distance measures based on word embeddings
	Distance measures based on operational knowledge

	Substitution operations
	Term substitution
	Condition substitution
	Clause substitution
	Sequences of substitutions

	Stages of substitution
	Primary substitutions
	Secondary substitutions

	Drivers for substitution
	Substitution for similarity to unavailable item or action
	Substitution for minimal change to recipe
	Substitution for similarity to original dish
	Substitution for improvement to dish
	Comparison of approaches to substitution

	Inconsistency-directed substitution
	Types of integrity constraints
	Generating integrity constraints
	Localizing issues via minimal inconsistencies

	Related Work
	Representation and reasoning with recipes
	Ontologies and knowledge graphs
	Substitution

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


