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problem by finding a substitute ingredient. There are various ways that we may reason about
this. Often we need to draw on commonsense reasoning to find a substitute. For instance, we can
think of the properties of the missing item, and try to find similar items with similar properties.
Despite the importance of substitution in human intelligence, there is a lack of a theoretical
understanding of the faculty. To address this shortcoming, we propose a commonsense reasoning
framework for conceptualizing and harnessing substitution. In order to ground our proposal, we
focus on cooking. Though we believe the proposal can be straightforwardly adapted to other
applications that require formalization of substitution. Our approach is to produce a general
framework based on distance measures for determining similarity (e.g. between ingredients, or
between processing steps), and on identifying inconsistencies between the logical representation
of recipes and integrity constraints that we use to flag the need for mitigation (e.g. after
substituting one kind of pasta for another in a recipe, we may identify an inconsistency in
the cooking time, and this is resolved by updating the cooking time).

1. Introduction

An important human ability is that of substitution: We have a task (doing or making something) for which we lack a resource.
We solve the problem by repurposing an alternative to substitute for the missing thing. For example, we could have a recipe for
bread that includes the ingredient butter. In fact, olive oil can be used as a substitute. Someone unaware of this may nonetheless be
able to work it out by reasoning about the relevant common properties of butter and olive oil. Both are used in baking to add fat,
both make a relatively small change to the flavour, and both are neutral in their savoury vs sweet impact. In order to mimic this
capability with scalable computational reasoning, we will present a commonsense reasoning framework for substitution for cooking.

Whilst our focus in this paper is on cooking, we see that substitution is an important issue across the gamut of human activities
from every day home life (e.g. cooking, gardening, DIY, first-aid, etc.), working life (e.g. farming, manufacturing, etc.), through to
crisis management (e.g. dealing with the aftermath of earthquakes).

Within the cooking domain, there are various reasons for why there is a need to substitute ingredients including the following:

Problem of availability Substitution can be required when there is a lack of availability of an ingredient. Perhaps we forgot to
buy the item when we last went shopping or perhaps our local shops do not stock the item or perhaps it is out of season.
Also, scarcity, arising from fluctuations in supply, price and quality can mean that a planned or desired dish cannot be made
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exactly as intended. This either means that you do without the dish, that you make it with an overpriced or poor quality
ingredient, or that you substitute that ingredient for another. This last option is such a common scenario that many recipes
include notes on reasonable substitutions and some recipe websites have even taken to asking users to propose their own
ideas about substitutions as a form of crowdsourcing.

Dietary constraints Another reason to replace one or more ingredients with appropriate substitutes in a dish is due to dietary
constraints. The substituting ingredient here must satisfy competing demands: it must retain some properties of the
substituted ingredient, omit others, and satisfy the preferences of the consumer. In order to make predictions here a detailed
understanding of the properties of ingredients is needed, such as is captured in food knowledge graphs Some constraints
will be hard/strict, particularly where they relate to such things as allergies. Other constraints will be softer, for instance, a
vegetarian would not want their chips to be deep fried in lard (smoke point 188C), and a suitable substitute may demand
a similar smoke point, but a number of substitutes are recommended under these circumstances each with slightly different
smoke points, e.g. sunflower oil (smoke point 230C). As this may be a safety critical objective this also has implications about
how substitution predictions are integrated with human processes. For instance, a food safety qualified individual may have
to mediate between an automated decision-support system and the decision to substitute one ingredient for another. As a
consequence, the reasoning/prediction process may need to be explained/interrogated and the underlying knowledge base
or model edited/curated.

Environmental impact A third reason for substitution can arise when we take environmental considerations into account. For
instance, we may want to substitute an ingredient because it is out of season (e.g. substituting broccoli for asparagus in pasta
dishes), or because there is a desire to reduce the environmental impact of production (e.g. substituting bean burgers for
meat burgers) or because there is a desire to reduce the environmental impact of transport (e.g. substituting tap water for
bottled water).

The ability to successfully predict ingredient substitutions has commercial application too. For instance, a number of home
delivery supermarkets now automatically substitute unavailable items from grocery orders (although not always successfully).
Ingredient substitution is a challenging problem and isn’t just about the properties of ingredients, as Brian O’Driscoll (an Irish
rugby player) said: “Knowledge is knowing that a tomato is a fruit. Wisdom is knowing not to put it in a fruit salad”.

Proposing substitutions for a given ingredient in a known recipe is a form of recommendation, but with additional complexity
to other, more conventional recommender systems, e.g. for films, and this is itself an imperfect science. Film recommender systems
typically offer a list of recommendations from which the user can select, and so only require a high chance that the user will find
a reasonable suggestion within a list of items that the user can browse through, unlike the online grocery store that has just one
opportunity to propose an appropriate substitution.

Even in food recommendation systems with a browsing feature, there are other additional complexities. Importantly, the
recommendation for food substitution must not only satisfy the recipient’s preferences but also work well in the context of the
dish. Having said this, the other ingredients in the dish may provide important information about the user’s current preferences.
Finally, the use of different ingredients may require different processing requirements. To fully encompass and reason about the
implications of a proposed substitution, an account of how this changes the recipe method is also needed. For instance, replacing
white flour with brown in bread making can lead to longer rising and cooking times.

So we need to not only find substitutions but also identify mitigations for the recipe to still work. We regard this mitigation as
secondary substitutions. So when we make a substitution, we need to check whether there is a need for secondary substitutions, and
determine what those secondary substitutions are. Our approach to identifying the need for mitigation is to use integrity constraints
so that a violation of an integrity constraint denotes the need for one or more secondary substitutions.

In many cases, when we make one or more substitutions, we change the recipe so that the final outcome of the cooking is
somewhat different. This occurs even if we undertake secondary substitutions. So we need to consider what we regard as being
acceptable for the revised result of the cooking. This in turn depends on the driver (the aim or motivation) for doing a substitution
with the following being important types of driver.

Similarity to missing item(s). Here the aim is to find a substitute that is as close as possible in key respects to the missing item.
For example, if we lack spaghetti, and we have other pastas in our cupboard including linguine, fusilli, penne, and lasagne,
then linguine is the closest to spaghetti. If we lack multiple items, then for each missing item, we consider the nearest item
independently of the other items. Continuing the above example, if we lacked spaghetti and sea salt, then we might replace
the spaghetti by linguine and sea salt by mineral salt. Note, for this driver, we are not concerned with the effect on the
recipe (the other ingredients or cooking actions), nor on the resulting dish. For example, if we are cooking chicken stew, and
we lack chicken, the nearest substitute might be tofu, but using tofu might involve substantial changes to the recipe, as the
cooking actions will need to be changed, and the resulting dish will differ noticeably from the original. Note, we will tend
to discuss the substitution of individual items but this can be generalized to sets of missing items.

Similarity to original dish. Here the aim is to find a revised recipe that results in a dish that is as close as possible in key respects
to the original dish. For example, suppose we lack eggs for making a cake, and we have two candidates for a substitute that
are yoghurt and flax seeds. In many respects, yoghurt is more similar to eggs than flax seeds are to egg. Yoghurt, like eggs,
is a high protein animal product whereas flax seeds are a high fat plant product. So yoghurt would be a better substitute for
eggs if similarity to missing item is the driver. In contrast, if similarity to the original dish is the driver, then flax seeds are
likely to be a better substitute for eggs.
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RECIPE

[ Ingredients ]—»[ Actions ]—V[ Dish ]

SECONDARY SUBSTITUTIONS
Substitute alternative ingredient(s)
and/or actions to address problems
arising from primary substitution(s)

PRIMARY SUBSTITUTION(S)
Substitute alternative ingredi-
ent(s) for missing ingredient(s)

REVISED RECIPE

[ Revised ingredients ]—V[ Revised actions ]—V[ Revised dish ]

Fig. 1. Summary of four key drivers for substitutions in cooking: Similarity to missing item(s) means selecting primary substitutions to
minimize the distance between each ingredient, and its corresponding ingredient in the revised recipe; Similarity to original dish means
selecting substitutions to minimize the distance between the dish and the revised dish; Minimal secondary substitutions means after the
primary substitutions have been chosen, minimal further changes are made to the ingredients, equipment, and actions; and Improve specified
properties of dish means selecting substitutions to ensure that the revised dish meets specified properties.

Minimal secondary changes to recipe. Once we have identified the substitutes for the missing item(s), i.e. we have identified the
primary substitution(s), we want to minimize the number of secondary substitutions to ingredients and/or the cooking steps.
For example, in a recipe for meringue, it is possible to use aquafaba instead of egg white, and it can provide a meringue
that is very similar to that obtainable with egg white. However, it involves a number of steps to prepare this as a substitute.
So if our driver is to minimize the changes to the recipe, then we may choose an alternative substitute such as an artificial
egg powder, which might involve fewer changes to the recipe, even if the resulting dish might be inferior to using aquafaba.
As a special case we choose to only minimize the secondary substitutions of ingredients (i.e. we don’t mind changing any
cooking actions, but we don’t want to change ingredients unless necessary) or to only minimize the secondary substitutions
of cooking actions (i.e. we don’t mind changing any ingredients, but we don’t want to change any cooking actions unless
necessary).

Improve specified properties of dish. Here the aim is to find a revised recipe that results in a dish that is reasonably close to the
original but must fit in a revised category (e.g. change the recipe for chicken casserole so that it fits the category of being
vegetarian necessitates replacing chicken as an ingredient), or improves the dish in a specified way (e.g. improved flavour,
more spicy, less spicy, less salt, fewer calories, reduced saturated fat, etc.). So the aim is to make minimal substitutions to
the recipe in order that the revised recipe satisfied the specified properties.

We summarise the difference between primary and secondary substitutions, and the four types of driver in Fig. 1

Since substitution is an important intelligent activity in cooking, and other domains, we need to better understand the underlying
principles. We also need to develop technologies that are able to undertake substitution. For food, this can lead to better ways to
use food. This can help us better enjoy food (by allowing us to cook food based on what we have available), reduce food waste (by
finding uses for ingredients we have available), improve our health (by replacing less healthy ingredients), and make catering more
efficient (by using ingredients that are more cost effective). Furthermore, in order to make these technologies usable, we need to
develop technologies that are scalable and robust.

The proposal in this paper provides the first comprehensive framework for computational knowledge representation and
reasoning with substitution. This gives us a clearer understanding of the nature of substitution. We have focused on the domain of
cooking but the framework can be adapted to other domains where items are prepared through multi-step processes. Furthermore,
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with this framework, we have practical technology for automated reasoning with recipes, that can support analysis of recipes, and
automated identification of substitutes, where the substitutes are based on the underlying nature of the ingredients, equipment, or
processes, within the overall recipe.

Candidates for substituting an ingredient or item of equipment or cooking step, are identified using a distance measure, so that
the nearer a candidate is to what is being replaced, the better that candidate. However, such a substitution (a primary substitution)
may cause an inconsistency with the integrity constraints and background knowledge that requires mitigation. We address the need
for mitigation by secondary substitutions (one or more further substitutions) that restore consistency with the integrity constraints
and background knowledge. This then raises different options for regarding a primary substitution acceptable since we may want the
closest match for the missing item irrespective of the number and nature of the secondary substitutions, or may prefer to compromise
on the primary substitution in order to limit the number or nature of the secondary substitutions.

In order to show how we can undertake substitutions in recipes, we need a formal language for recipes that capture the
ingredients, the equipment, and the processes, that are required. We also need this formal language to capture background knowledge
and integrity constraints. In this paper, we provide a simple language for this. It is based on classical propositional logic. Variables
can be used and the formulae that contain them are treated as schema. Note that, it is not the aim of this paper to provide a
comprehensive formalism for representing and reasoning with recipes. Rather, we just give a simple proposal that is sufficient
for our needs for introducing the substitution framework. We believe that the substitutions framework presented here would be
applicable for a wide range of formalisms for representing and reasoning with recipes including those based on event calculus (see
for example [1-3]) or answer set programming (ASP) (see for example [4]). In parallel work, we investigate higher-level formalism
for recipes than presented in this paper but which can be directly executed using an ASP solver [5].

We proceed as follows: In Section 2, we provide the definitions for a clausal logic that we will use in the rest of the paper; In
Section 3, we provide a framework for representing and reasoning with recipes in classical propositional logic; In Section 4, we
provide a framework for candidates for substitution in recipes based on distance functions; In Section 5, we provide a framework
for syntactic operations for substitution in cooking sessions; In Section 6, we investigate the stages of substitution in recipes (i.e
how a substitution make cause the need for further substitutions); In Section 7, we investigate different drivers for substitution in
recipes; In Section 8, we investigate how the need for substitution can be viewed as the resolution of inconsistencies resulting from
the violation of integrity constraints; In Section 9, we discuss the related literature; And in Section 10, we discuss our contributions
and how they may be developed in further work.

2. Preliminaries

In this section, we provide a logical formalism that in subsequent sections we will use as the basis for representing and reasoning
with recipes. For this, we will consider a language based on clauses that we introduce as follows where C is a set of constant symbols,
F is a set of function symbols, V is a set of variable symbols, and P is a set of predicate symbols.

We form terms in the usual way: If « € CUV, then «a is term, and if « € F, and g, ..., §, are terms, then a(p,, ..., §,) is a term.
For example, X is a variable, and therefore a term, and flour and g are constant symbols, and therefore terms. Using these terms,
then measure(flour,X, g) is a term. We also use arithmetic operators such + and — as infix functions. For example, for variables X
and Y, X — Y is a term.

If a term contains no variables, then it is a ground term. For example, measure(flour, 250, g) is a ground term where flour, 250,
and g are constant symbols. Let 7 be the set of terms, and let G be the set of ground terms. We will use the policy that a variable in
an example is represented by a string with an upper case first letter (e.g. T1 is a variable symbol whereas t1 is a constant symbol).

We form atoms in the usual way: If « € P, and B, ..., 5, € T, then a(f,, ..., f,) is an atom. For example, onhand(count(eggs, Y), T)
is an atom, where onhand is a predicate symbol, count is a function symbol, eggs is a constant symbol, and Y and T are variables with
T denoting a timepoint variable. If an atom contains no variables, then it is a ground atom. For example, onhand(count(eggs, 2), t23)
is a ground atom where eggs, 2, and t23 are constant symbols, with the latter denoting a timepoint constant.

If 5 is an atom, then § is a positive literal, and -6 is a negative literal. A literal is either a positive literal or a negative literal.
Let A denote the set of positive literals, N' denote the set of negative literals, and let £ denote the set of all literals. We assume
that L and T are atomic propositions which we will refer to as falsity and tautology (respectively). So —T is equivalent to L, and
-1 is equivalent to T.

A clause is of the form 6, < 6, A --- A 6, where §, is a literal and each §; where i € {2,...,n} are literals.

Example 1. If we consume an egg at a timepoint, then we have one less egg at the next timepoint where for a timepoint T, the
notation T + 1 denotes the next timepoint (as explained in Section 3.3.

onhand(count(egg,2), T + 1) « onhand(count(egg, 3),T) A consume(count(egg, 1), T)

For a clause ¢ of the form §; < 6, A --- A §,,, let Head(¢p) = y, and let Tail(¢p) = {6,,...,5,}. For a clause ¢, if Head(¢) = L, then ¢
is an integrity constraint. And for a clause ¢, if Tail(¢) = @, or Tail(¢) = T, then ¢ is a literal. So a literal can be treated as special
case of a clause.

We assume that the variables in a formula can only be instantiated by a ground term. A grounding is a pair (x/y) where x is
a variable and y is a ground term. A ground set G is a set of groundings. For a formula §, and a grounding set G, Ground(§, G) is
the formula obtained by replacing each variable x by term y for each grounding (x/y) in G. A formula is ground iff it contains no
variables. The first clause in Example 2 is a clause that is not ground, and the second clause in Example 2 is a ground clause. We
generalize the application of a grounding set G to a set of formulae I" as follows: Ground(I", G) = {Ground(5,G) | 6 € I'}.



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558

Example 2. Consider the following clause § and grounding set G = {(Y/1000), (X/500), (T/t7)}. Here X, Y and T are variables and
1000, 500 and t are constants, where T is a variable for a timepoint and t is a specific timepoint.

onhand(measure(flour,X —-Y,g), T+ 1)
« onhand(measure(flour,X, g),T)
A consume(measure(flour,Y, g), T)

The result of Ground($, G) is the following ground clause.

onhand(measure(flour, 1000-500, g), t8)
« onhand(measure(flour, 1000, g), t7)
A consume(measure(flour, 500, g), t7)

In order to reason with a set of literals and clauses, we use the classical propositional consequence relation. To use it, we assume
that all the formulae are ground.

3. Representing recipes

Based on the logic we presented in the previous section, we provide a language for representing and reasoning with recipes. We
provide a number of examples of recipes in the language. We do not advocate a specific set of terms, atoms, or clauses. Rather, we
leave the exact choice of formulae to the user. Different choices can have different effects on the kinds of inferences we can draw
from the knowledgebase.

3.1. Modelling dynamics

In this subsection, we outline how we will model dynamics, and we will provide the definitions in the following subsections.
For this, we assume a point-based representation of time:

+ We assume a sequence of timepoints. We will assume that the timepoints are in a linear sequence. Each timepoint is associated
with a snapshot of the fragment of the world that we are interested in. Furthermore, we will assume we have enough timepoints
to be able to describe the evolution of the cooking at a certain level of granularity. We will include in the background
knowledge in the knowledgebase to axiomatize this, as explained later). Each timepoint has an associated set of facts that
is true at that time point. So we can determine what facts are true or false at each timepoint, and we can see the evaluation
of the facts over time.

In addition to timepoints, we also need the notion of durations. A duration is part of the specification of an action. It says
how long the action should be undertaken. When we specify an action, it might be assumed to be instantaneous (or at least of
negligible time). For example, pouring 500 g of flour into a mixing boil will normally take negligible time. Really, we mean
that we do not care how long the action is as it does not affect the outcome of the recipe. For instance, peeling 1 kg of potatoes
might take a few minutes, but we can regard it as taking negligible time as the time taken is unimportant for the rest of the
recipe. However, for some actions, the duration is important. For example, if we boil spaghetti, then the time is important.
If it is too short, then the pasta is too hard, whereas if it is too long, then the pasta becomes mushy. So for each action, we
associate a specific duration (e.g. 5 min), or duration range (e.g. 5-10 min). If the latter, then the intention is that the action
is carried for a period within that range.

In order to relate timepoints and durations, we need to be able to consider the period of time elapsed between timepoints. This
is so that we can represent the period of time that an action is actually undertaken. For instance, we might have the specification
that an egg should be boiled for 4 min, and we have starting timepoint (e.g. t;;) and ending timepoint e.g. t¢5 for boiling the egg.
We then need to check that the time elapsed between the starting timepoint and the ending timepoint is 4 min (i.e. tg5 — t47 is
(approximately) 4 min).

3.2. Logical language for recipes

We assume a recipe is executed over time. We will represent this by actions occurring over intervals (represented by starting
and ending timepoints), and we will assume that for each action, there may be preconditions that hold before the action occurs,
and postconditions that hold after the action has occurred. In the language we introduce below, we will use variables that can be
instantiated with specific time points. We will also assume constraints on these variables. These will capture the temporal precedence
of the time points.
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3.2.1. Logical terms for recipes
We start by defining the types of term that are used to define nine types of atom, and then we use the atoms to define the clauses
that are used to specify the processes.

+ A food term is a term of the form a(f, ..., f,) where «a is a function symbol (of arity zero or more) denoting a food item, and
pi..... B, are ground terms denoting qualities of the item e.g. 1cm pieces and 1lightly fried. Some examples of food terms
are the following.

chopped_onions
chopped_onions(lcm_pieces)
fried onions(lcm_pieces,lightly fried)

A count term is a term of the form count(a,#) where « is a food term, and # is a constant symbol denoting the quantity of
the item or # is a variable symbol or # is of the form p — ¢ or p + ¢ where p and ¢ are variable symbols. We can use other
arithmetic operators similarly. Some examples of count terms are the following.

count(onions, 2)
count(onions,X —Y)

A measure term is a term of the form measure(a, 7, v) where « is a food term, and # is a constant symbol denoting the quantity
of the item or 5 is a variable symbol or 7 is of the form p — ¢ or p + 6 where p and ¢ are variable symbols, and v is the unit.
We can use other arithmetic operators similarly. Some examples of measure terms are the following.

measure(chopped_onions, 50, g)

measure(chopped_onions, 50-75, g)
measure(chopped_onions(lcm pieces), 50, g)
measure(fried_onions(lcm pieces,lightly_fried),50, g)
measure(flour(wholemeal),X — Y, g)

An equipment term is a term of the form «(f,,...,p,) where «a is a function symbol (of arity zero or more) denoting an
equipment item, and g, ..., §, are constant symbols denoting qualities or quantities of the item. Some examples of equipment
terms are the following.

pan

bread maker(500g_capacity)
knife

cheese_grater

A location term is a term of the form a(f,, ..., ,) where a is a function symbol denoting a location preposition (e.g. on, in,
over, etc.), and each p; is a food term, a count term, an equipment term, or a location term (by recursion). So a location term
is a prepositional phrase. Some examples of location terms are the following.

on(spaghetti,plate)
on(griddle)

in(oven)

on(plate)

in(pan)

A modification term is a ground term that can be used to modify an action, and so it makes the action more specialized in
the way it is executed (e.g. for the action wisk, the modifier could be quickly or introducing air) or in the nature of the
result of the action e.g. for the action chop, the modifier can be into(cube), or into(slices), or into(lcm pieces).

into(slices)
into(cubes)
into(lcm_pieces)
quickly
introducing air
until(golden_brown)
until(crispy)

A duration term is either a constant that denotes a time duration with a unit (e.g. 60secs, 5 min, 1 h, 3days, etc.) which
we call a fixed duration, or an interval (e.g. 5——10 min, 1--2 h) which we call a interval duration. The informal meaning
of an interval duration, say 5-10 min is that the duration is between 5 min and 10 min.

An action term is a term of the form a(f) or of the form a(8,y,,...,7,) where a is a function symbol denoting an action in
the form of a verb, and f is a food term or a count term or a measure term, and each y; is a location term or a duration term
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or a modification term. Some examples of action terms are the following.

put(tomatoes, in(pan))

fry(chopped_onions)

fry(chopped_onions, 5 min)

fry(chopped_onions,5 — 10 min)
fry(chopped_onions, in(pan), until(golden_brown))
chop(onions, into(lcm_pieces))

» A temporal term is a variable (that can be instantiated with a constant that denotes a timepoint), or is a constant that denotes
a timepoint, as illustrated in Example 2.

In this paper, we limit ourselves to these terms, and some subsidiary terms that we will defined later as required. But this choice
is only illustrative, and alternatives choices of terms could be used as our framework for substitution framework is agnostic about
the choice of terms.

3.2.2. Logical atoms for recipes

Using the terms defined above, we define the following five types of atom where z (and 7’) is a temporal term. In examples,
we use the variable symbol T perhaps with a number, e.g. T8, to denote variables for timepoints, and we use the constant symbol
t perhaps with number, e.g. t6, to denote specific timepoints.

+ A do atom is of the form do(a, 7|, 7,) where « is an action term and 7,7, are temporal terms (constant or variable). Some
examples of ground do atoms are the following.

do(chop(onion),tl,t1)
do(fry(onion, 5 min), t1,t2)
do(thaw(frozen_chopped_onion, 60 — 120 min), t3,t7)

» An onhand atom is of the form onhand(a,r) where « is a food or count term or measure term or equipment term and 7 is a
temporal term. Some examples of onhand atoms are the following.

onhand(chopped_onions,t)
onhand(measure(onion, 50, g), t)
onhand(count(eggs, 2),t)
onhand(measure(flour, 250, g), t)

* A consume atom is of the form consume(a,?). where « is a food or count or measure term and z is a temporal term. Some
examples of ground consume atoms are the following.

consume(chopped_onions, t)
consume(count(eggs, 2),t)
consume(measure(flour, 250, g), t)

* A temporal atom is the form before(z;,7,) to denote that temporal term z; occurs before temporal term 7,, and
before_or_equal(r|,7,) to denote that temporal term 7, occurs before or at the same time as temporal term z,

+ A period atom is the form sameperiod(s, ry,7,) to denote that the duration term § is less than or equal to the period from
temporal term 7, to temporal term 7,, For example, since the period from 10:46 to 10:51 is less than or equal to 5 min, the
following holds.

sameperiod(b min, 10 : 46,10 : 51)

We have considered five key types of atom to give us the ability to capture a wide variety of information found in recipes, and
thereby give us the ability to consider substitutions. However, this selection of atoms, and the terms that they incorporate, could
be substantially revised depending on the needs for representing and reasoning with recipes.

3.2.3. Logical formulae for recipes
Based on the above atoms, we now define the clauses of the language. Recall that a clause is of the form §; « 6, A--- A S, where
6, is a literal and each 6; where i € {2,...,n} are literals. We will focus on specific kinds of clause including the following.

+ A preparation clause which is of the form §; < 6, A --- A §, where §, is an onhand atom and each §; such that i € {2,...,n}
is either a do atom or an onhand atom or a consume atom, and one of the atoms is a do atom.

+ A consumption clause which is of the form §; < §, A --- A §, where §, is an onhand atom and each §; such that i € {2,...,n}
is either an onhand atom or a consume atom, and one of the atoms is a consume atom.

+ A ramification clause which is of the form 6, « 6, A --- A 6, where §, is a negated onhand atom and each §; such that
i €{2,...,n} is either an onhand atom or a do atom, and one of the atoms is a do atom.

+ A background clause which is of the form §; « &, A --- A §, where for each §; such that i € {1,...,n} is an onhand atom.
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+ An integrity constraint which is of the form L « §; A --- A §, where each §; is an onhand, or do atom or the negation of an
onhand, or do atom (i.e. classical negation). Note, we will use L to denote contradiction.

We will use the preparation and consumption clauses to specify the processes of recipes, and we will use integrity constraints for
checking the consequences of a recipe are consistent. We will use the ramification, persistence, and background clauses to support
both tasks. We will use 4 to denote the set of preparation, consumption, ramification, persistence, and background clauses required
for a recipe, and O to denote a set of integrity constraints, required for a recipe. We provide examples of these clauses in the
following.

Example 3 (Preparation Clause). This clause has the precondition onhand(have(onion), T1), the action do(chop(onion),T2), and the
postcondition onhand(chopped_onions, T3).

onhand(chopped_onions, T3)
« do(chop(onion), T2, T3)
A onhand(onion, T1)
A before(T1,T2) A before(T2,T3)

Example 4 (Preparation Clause). Like the previous example, the following preparation clause is for the process of chopping onions.
However, it is a more specific version.

onhand(count(chopped_onions, 50, g), T5)
« do(chop(onion, into(lcm_pieces)), T3, T4)
A do(remove(skin, onion), T1,T2)
A onhand(count(onion, 50, g), TO)
A sequence([T0, T1,T2,T3, T4, T5])

Example 5 (Preparation Clause). Like the previous examples, the following preparation clause is for the process of chopping onions.
However, it provides an alternative way of obtaining the desired result.

onhand(chopped_onions, T3)
« do(thaw(frozen_chopped_onion, 60 — 120 min), T1,T2)
A onhand(frozen_chopped_onion, TO)
A before(TO,T1) Abefore(T1,T2) A before(T2,T3)

Example 6 (Preparation Clause). This example shows that we can undertake an action for an unspecified period (i.e. there is not an
explicit duration), but rather the action continues until another state condition is satisfied.

onhand(fried_onions, T4)
< onhand(onion(golden _brown), T3)
A do(fry(chopped_onion), T2, T3)
A onhand(chopped_onion, T1)
A before(T1,T2) Abefore(T2,T3) A before(T3,T4)

We can consider a variant of the above where the atoms onhand(onion(golden_brown),T3) and do(fry(chopped_onion), T2, T3)
are replaced in the above process clause by the following atom that qualifies the period of the frying
do(fry(chopped_onion,until(golden_brown)), T2, T3).

Each preparation clause can be viewed as capturing an input—-output relationship where the input are the onhand atoms in the
antecedent of the clause, and the output is the onhand atom in the head. So the input and output provide the pre-conditions and
post-condition respectively for the process steps in the clause given by the do atoms.

Example 7 (Consumption Clause). The following consumption clause specifies that if we have N items of type X (e.g. eggs) and M
are consumed, then the number of them that are available is reduced to N — M. Note, T + 1 denotes the next interval after T.

onhand(count(X,N — M), T + 1)
« onhand(count(X,N), T)
A consume(count(X, M), T)

Example 8 (Consumption Clause). The following consumption clause specifies that if the quantity of flour by weight consumed is X,
then the quantity of flour is reduced by X.

onhand(measure(flour,Y —X,g), T+ 1)
« onhand(measure(flour,Y, g),T)
A consume(measure(flour,X, g), T)
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Example 9 (Ramification Clause). The following update clause specifies that if an item is moved from a position, then the original
state does not hold.

—onhand(on(X,Y), T+ 1) « do(move(X,Z),T) A(Z # Y) A onhand(on(X,Y).T)
We can use integrity constraints to ensure that we prohibit models with multiple quantities of available items.

Example 10 (Integrity Constraint). In this example, we use integrity constraints to ensure that we do not have multiple numbers of
an item X (e.g. eggs).

1 <« onhand(count(X,N),T) A onhand(count(X,M),T) AN #M

Example 11 (Integrity Constraint). We use integrity constraints to ensure that for a material Z (e.g. flour), there is only one quantity
of that material (i.e. X = Y) available at any point in time where is U is the unit for the measure.

1 < onhand(measure(Z,X,U), T) A onhand(measure(Z,Y,U),T) AX#Y

Example 12 (Integrity Constraint). We use integrity constraints to ensure the timing of actions are consistent with the time required
for the action. For the constraint below, we assume instant noodles only take 2 min to cook and so if a recipe cooks them for a
shorter or longer period (e.g. do(boil(instant_noodles, 10 min), T1, T2)), then this is treated as inconsistent (e.g. since 10 min # 2 min
holds).

1l « do(boil(instant_noodles,D),T1,T2) AD # 2 min

Example 13 (Integrity Constraint). We use integrity constraints to ensure that an action forces some fluents to no longer hold. If X
isin Y at time 7T, and X is poured onto Z, then X is no longer in Y at time T + 1, and so assuming that it is still in Y at time T + 1
causes an inconsistency.

1 < onhand(in(X,Y),T + 1) A onhand(in(X, Y), T) A do(pour(X), onto(Z), T)

Example 14 (Integrity Constraint). We use integrity constraints to ensure that there is at most one action A undertaken at each point
in time.

L < do(A, Ty, Ty) Ado(A', T}, T)) A A # A" Abefore_or_equal(Ty, T)) A before_or_equal(T;,T,)

Recipes often express the same information in different ways. For example, an ingredient may be described by a count (e.g., “one
250 g packet of butter”) or by a measure (e.g., “250 g of butter”), and quantities may appear in multiple units. To allow the reasoning
process to handle such variations, we include background clauses that encode simple ontological relationships (e.g., alternative
names, broader/narrower ingredient types, unit conversions, etc.), so that the system can infer the intended equivalences whenever
needed.

Example 15 (Background Clause). We use clauses like the following to represent equivalence between a count term and measure
term.

onhand(measure(butter, 250, g), T) < onhand(count(250_g_packet_of_butter,1),T)

Example 16 (Background Clause). We use clauses like the following to represent an equivalence between measures.

onhand(measure(X, 500, g), T) « onhand(measure(X, 0.5, kg),T)

Example 17 (Background Clause). We use clauses like the following to represent availability of pan of capacity X if we have a pan
of greater capacity.

onhand(sauce_pan(capacity(X)), T) < onhand(sauce_pan(capacity(¥)),T)AX <Y

For reasoning with time, we assume that before_or_equal is a linear ordering relation over timepoints. So it is reflexive
(i.e. for all timepoints 7, before_or_equal(r,7) holds), antisymmetric (i.e. for all timepoints = and 7/, if before_or_equal(r,z’)
and before_or_equal(z’,7) hold, then ¢ = ¢’), transitive (i.e. for all timepoints 7, ¢/, and 7", if before_or_equal(r,z’) and
before_or_equal(z’,7”) hold, then before_or_equal(r,7z”) holds), and linearly connected (i.e. for all timepoints z and 7/,
before_or_equal(r,t’) or before_or_equal(z’, r) holds).

Now we define before in terms of before_or_equal: For all timepoints r and 7/, before(z,7’) holds iff before_or_equal(z,z’)
holds and before_or_equal(z’,r) does not hold.
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Example 18 (Background Clause). We can use the following clauses to reason with time.

before(T1,T3) « before(T1,T2) A before(T2,T3)
before(T1,T2) « sequence([T1,T2,T3,...,T,])
before(T1,T2) « before_or_equal(T1l,T2) A “before_or_equal(T2,T1)

sequence([])
sequence([T2,...,Tn]) « sequence([T1,T2,...,T,])
sequence([T1,T2,...,Tn]) « before(T1,T2) A sequence([T2,...,T,])

before_or_equal(T,T)
before_or_equal(T1,T2) « before(T1,T2)
before_or_equal(T1,T3) « before_or_equal(T1,T2) A before_or_equal(T2,T3)

The examples of clauses presented in this section are meant to be indicative. For specific recipes and for specific reasoning tasks,
we may wish to adapt them.

3.3. Logical reasoning with recipes

In order to reason with kinds of clauses described in the previous subsections, we require the definition for the subsequent
timepoint for a timepoint: For all timepoints r € T, let = + 1 denote 7’ € T such that there is no 7" where 7 is before " and 7" is
before 7’. For instance, suppose we have the sequence of timepoints [t1,t7,t9], where t1 is before t9, t1 is not before t7 and t7
is not before t1, then t1 + 1 = t9.

3.3.1. Cooking sessions
In order to deal with actions and consumables, we introduce the notion of assumptions as follows. These capture the ingredients
and actions that we would require in order to use the process rules.

Definition 1. A set of assumptions is a set of ground do, onhand, and consume, atoms.

We can select a set of assumed actions for the rules in a knowledgebase. For instance, if y, < w; A -+ Ay, is in 4 and
¢ € {y,,....w,} and (¢ is of the form consume(a, 7) or ¢ is of the form do(a, z,7") ¢ is of the form onhand(a, 7)).

Example 19. Consider the recipe in Fig. 2. The following is a set of assumptions for ingredients.

onhand(boiling water,t1)
onhand(spaghetti, tl)
onhand(chopped_onions, t1)
onhand(tomatoes, t1)
onhand(mixed_herbs,t1)

The following is a set of assumptions for action. Note, in general, we do not prohibit multiple actions at the same timepoint, though
later we will discuss how we can use an integrity constraint to ensure that only one action is undertaken at each timepoint.

do(pour(tomato_sauce, onto(on(spaghetti,plate))),t1l)
do(pour(spaghetti,plate), t10)

do(boil(spaghetti, 10 — 14 min), t3,t9)
do(put(spaghetti, in(pan2)), t2)

do(pour(boiling water, in(pan2)),t1)

do(simmer(pan, 5 min), t5,t7)

do(put(mixed_herbs, in(pan)), t4)

do(put(tomatoes, in(pan)), t4)

do(fry(chopped_onions,4 — 5 min), 2, t3)
do(put(chopped_onions, in(pan)), t1)

We also require the assumption sequence([t1,t2,t3,t4,t5,t6,t7,t8,t9,t10]) for timepoints.

We now define a cooking session as recipe (i.e. a set of preparation, consumption, ramification, persistence, and background
clauses), a set of assumptions, a set of integrity constraints, and an atom (that is intended to denote a food item).

Definition 2. A cooking session is a tuple (4, I',©) where 4 is a recipe (i.e. a set of preparation, consumption, ramification,
persistence, and background clauses), I' is a set of assumptions (i.e. availability of specific set of ingredients, equipment, and actions),
O is a set of integrity constraints and background knowledge (i.e. background clauses).

Example 20. Let 4 be the four preparation clauses in Fig. 2, let I' be the assumptions given in Example 19, and let © = @.

10
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onhand (on (spaghetti_pomodoro,plate),T3)
< do(pour(tomato_sauce,on(spaghetti,plate)),T2,T2)
A onhand (tomato_sauce,T1)
A onhand (on(spaghetti,plate),T1)
A before(T1,T2) A before(T2,T3)

onhand (on(spaghetti,plate),T3)
< do(pour (cooked(spaghetti) ,plate),T2,T2)
A onhand (cooked_spaghetti,T1)
A before(T1,T2) A before(T2,T3)

onhand (cooked (spaghetti) ,T5)
< onhand(softness(spaghetti,al_dente),T4)
A do(boil (spaghetti,10-14min) ,T3,T4)
A do (put (spaghetti,in(pan2)),T2,T2)
A do(pour(boiling water,in(pan2)),T1,T1)
A onhand(boiling water,T1)
A onhand (spaghetti,T1)
A sequence([T1,T2,T3,T4,T5])

onhand (tomato_sauce,T8)
¢+ do(simmer(mix,in(pan),5min),T6,T7)
A do(put (mixed herbs,in(pan)),T5,T5)
A do(put (tomatoes,in(pan)) ,T4,T4)
A do(fry(chopped_onions,4-5min) ,T2,T3)
A do(put (chopped_onions,in(pan)),T1,T1)
A onhand(chopped_onions,T1)
A onhand (tomatoes,T1)
A onhand (mixed_herbs,T1)
A sequence([T1,T2,T3,T4,T5,T6,T7,T8])

Fig. 2. A set of preparation clauses for preparing a simple pasta dish. The recipe is split into four rules.

So for a cooking session (4, I', ©), 4 provides the processing steps for the recipe, I" provides the assumed ingredients and actions,
and O provides constraints to check that these work in an acceptable way and background knowledge that may be required to
support reasoning with the recipe. We separate 4 from © because later we will want to update 4 with substitutions for ingredients,
equipment, and processing steps, but leave ® unchanged.

Later we will consider how a cooking session can be considered with respect to a specific food item . So if =, say
onhand(baked(victoria_sponge), t) is the intended result of a recipe at time t, then we can use logical consequence as defined
in the next subsection to show that = follows from a cooking session.

3.3.2. Consequence relation

To reason with a recipe, we use the classical propositional logic consequence relation . For a cooking session (4, I', ©), a ground
literal «, and a grounding set G, we denote that « is a classical propositional inference from Ground(4u I' U ©,G) by (4,',0) - ¢.
Note, we could equivalently treat all formulae with variables as being universally quantified formulae where each variable is in the
scope of a universal quantifier. Then we could use first-order predicate logic for determining whether « is an inference. However,
using grounding offers a simple solution for implementation since we can use automated reasoning such as SAT solvers with the
propositional logic formulae.

Example 21. Consider the following clause.

onhand(cooked(boiled_egg), T2)
« do(boil(egg), T1)
A consume(count(egg, 1), T1)
A onhand(count(egg, 1), T1)
A before(Ty,Tp)

Suppose 4 contains the above clause and I' contains the following atoms.

onhand(count(egg, 1),t1)
consume(count(egg, 1), t1)
do(boil(egg),tl)

11



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558

Then we obtain inferences that include the following:

(4, T, 0) - onhand(count(egg, 1),t1)
(4,T,0) - consume(count(egg, 1), t1)

(4, T,0) - do(boil(egg),tl)

(4, T',0) - onhand(cooked(boiled_egg), t2)

If we also assume the clause in Example 7, then we also have the following inference.

(4, I',0) - onhand(count(egg, 0),t2)

There are many ways that we can specify an inconsistent set of formulae using this language. The following is an example based
on an integrity constraint.

Example 22. The atoms onhand(count(egg, 1), T) and onhand(count(egg, 6), T) are inconsistent with the integrity constraint. So if I"
contains the above atoms, and O contains the following integrity constraint, we obtain (4, I',0) - L.

1 < onhand(count(egg, 6), T) A onhand(count(egg, 1), T)

In order to ensure the consumption of the same resource at the same time is blocked, we can use integrity constraints of the
following form.

Example 23. The atoms do(use(count(egg, 1)),t;) and do(use(count(egg, 6)),t,) are inconsistent with the following integrity
constraint. So if I' contains the above atoms, and © contains the following integrity constraint, we obtain (4, ', ©) I L.

1 « consume(count(X,N), T) A consume(count(X,M), T) AN #M

We can also use integrity constraints to ensure that the consumption of resources sums to not more than the original availability
of the resource in the assumptions.

Example 24. The following integrity constraint is for the case when there are two assumptions that a resource is consumed, and
there is an inconsistency if the sum of these is greater than the available resource.

1 « consume(count(X,N1),T2)
A consume(count(X,N2),T1)
A onhand(count(X, M), TO)
A before(TO,T1) A before(T0,T2)
ANL+N2>M

We can further restrict the consumption of items by introducing an integrity constraint that blocks the consumption of the same
item in multiple actions in multiple locations at the same time.

To reason with a recipe, we can execute it. In other words, we can simulate the sequence of steps involved in using the recipe.
The ingredients gives the details of the starting state, and then the preparation clauses give us the details of the subsequent states.

Definition 3. Let 4 be a set of clauses, and I" be a set of assumptions. The execution function, denoted Execute, is defined as
follows.

Execute(4,I',0) = {¢ | (4, T,0) - ¢}

Example 25. Consider 4 containing the following clause

onhand(hard_boiled_egg, t6)
« do(put(egg, in(egg_cup)), t5)
A do(boil(water, in(pan), 3 — 5 min), t3, t4)
A do(pour(water, into(pan)), t2)
A do(put(egg, in(pan)), t1)
A onhand(egg,t1)
A onhand(measure(water, 500,ml),t1)
A sequence([tl,t2,t3,t4,t5])

plus the following assumptions I.

do(put(egg, in(egg_cup)), t5) do(boil(water, in(pan),3 — 5 min), t3, t4)
do(pour(water, into(pan)),t2) do(put(egg, in(pan)),tl)
onhand(egg, t1) onhand(measure(water, 500,ml),t1)

From this, we have the execution Execute(4, I', ®) = I' U {onhand(hard_boiled_egg, t6)}.

12
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The output of a cooking session is defined as the items onhand that are not assumed (i.e. not ingredients) and that are available
at the last point in time.

Definition 4. For a cooking session (4, I', ©), the dishes function is defined as follows.

Dishes(4, I', ©) = {a | onhand(a, t) € Execute(4, I', O)
and for all onhand(a’, ') € Execute(4, I',0),t > t'}

Example 26. Consider the cooking session in Example 25. From this, we have hard_boiled_egg € Dishes(4, I', ©).

When we have a cooking session (4, I, ©), there is an intended output = and we would want that to be in Dishes(4, I', ©). As we
will investigate later, if « is not in Dishes(4, I', ©), then we may seek a z’ in Dishes(4, I', ©) that is similar to z.

4. Candidates for substitution

We are interested in substituting one ingredient for another. For example, swapping an onion for a shallot in a recipe for a
sauce. However, we are also interested in substituting intermediate food items in a recipe such as chopped shallots for chopped
onions. Furthermore, we are interested in substituting equipment and processes. For example, instead of the process of kneading
flour, water, and yeast, for 10 min to make dough for bread, we can mix the ingredients in a bowl, and leave it overnight.

We use a distance measure to compare ingredients. So for ingredients a and f, d(a, f) denotes the distance between « and g.
The closer the distance d(a, §), the better one would be a substitute for another. So d(«, ) = 0 means a« and f would be perfect
substitutes for each other. Since it is a distance measure, it is always the case that d(a,a) = 0, and so any ingredient is a perfect
substitute for itself.

We are also interested in substitutions of equipment, of actions, and of chunks of recipes. These means that we need to not
only substitute logical terms but also clauses. So we need to also consider distance between formulae ¢ and v, and hence consider
distance of the form d(¢, w) which denotes the distance between ¢ and .

There are various ways we can define a distance measure for finding substitutions. We give some options in the rest of this
section.

4.1. Distance measures based on role

Given a set of recipes 4, we can group them in (overlapping subsets) by recipe type (e.g. breads, cakes, biscuits, baked
goods, roasts, pasta dishes, stews, soups, etc.). These are based on the nature of the final food item produced by
the recipe.

Each ingredient in recipe has a role. The are many ways that roles can be described (see for example www.foodafactoflife.org.uk)
Some examples of roles are thicken, bind, flavour, shorten, sweeten, make_flaky_pastry, glaze, denature,
retain_moisture, aerate, gel and raise.

A role function p,, for a recipe type 7, takes an ingredient, and returns the roles of the ingredient in the recipe type. The following
are some examples of role functions.

* Praked goods(Putter) = {binds(flour), flavours(buttery)}
* Pbaked goods@ilk) = {binds(flour), flavours(buttery), flavours(milky)}
* Poaked_goods(honey) = {sweetens, flavours(honey)}

* Prish caxe(€88) = {binds(fish_and _potato)}

We can use the role function to define a role distance function which is based on Jaccard distance. Essentially, the more properties
that are in common, the closer the two ingredients.

Definition 5. For food items « and f, the role distance function, denoted d,(a, f), is defined for recipe type ¢

[p:(a) N p, ()]

d(a,p) =1 LD TP
e Y P XVPXT3]

Example 27. For the following specifications of role, dy,yeq gooa(Putter,milk) = 2/3

Poaked_gooas(Putter) = {binds(flour), flavours(buttery)}
l’baked,goods(milk) = {binds(flour), flavours(buttery), flavours(milky)}

We can use NLP methods to extract role functions from recipes and other text sources. Recipe types can be learned by using
hierarchical clustering and/or obtained from ontologies. And/or assignment of types to a recipe can be undertaken with ML
classification methods.

13
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4.2. Distance measures based on word embeddings

A distance measure can be defined based on a word embedding such as the general purpose word embeddings Word2Vec [6]
or Glove [7], or the specialized word embedding Food2Vec which is a pre-trained word embeddings for cooking substitution [8].
For food items « and f#, and a word embedding, the distance function d(a, ) is the cosine similarity between « and g in the word
embedding.

Word embeddings for food could be improved by considering the following options: (Analogical reasoning with word
embeddings) For example, determine vector for choppedshallot from vectors for chopped, and shallot, using for instance methods
for combining word-embeddings for individual words, to give the word-embedding for a compound (for a review, see [9,10]); (Word
embeddings trained by recipe type) For example, train the word embedding only with recipes for baked goods, and so ingredients
that are near each other are more likely to be substitutes which can be represented as dp.yeq gooas(01ive 0il, butter); (Word
embeddings trained by role(s)) Train the word embedding to minimize the distance between two ingredients for a specific role,
and so for example d:;;:;fggo bas(0live_oil, butter) is low whereas d:;;:;f‘ggo +as(ege. cheese) is high. We can also consider combining
distance by reducing each distance to unit interval and then using t-norms For more information on developing distance measures
in the food domain see [11].

4.3. Distance measures based on operational knowledge

We can specify distance measures from knowledge of cooking and/or we can identify common substitutions for ingredients or
steps in recipes using text mining. For example,

* 1 cup of buttermilk can be substituted by 1 cup yoghurt OR 1 tablespoon lemon juice or vinegar plus enough milk to make 1
cup

+ 1 cup of mayonnaise can be substituted by 1 cup sour cream OR 1 cup plain yoghurt

» 1 whole egg can be substituted by half a banana mashed with 1/2 teaspoon baking powder

There are numerous resources on options for substitutions (e.g. substitutions to transfer a dish into vegan dish [12]) that can be
used as the basis of specifying distance measures. Alternatively, text mining can be used to identify substitutions that are commonly
used in recipes online.

Example 28. Suppose we have the ingredient ¢ = onhand(measure(chopped_onions, 100 g), T), and we have the following clause
v, then we can specify d(¢,y) to be low.

onhand(chopped_onions, T4)
« do(chop(onion), T2, T3)
A onhand(onion, T1)
A before(T1,T2) Abefore(T2,T3)

Example 29. Suppose we need the ingredient ¢ = onhand(maple_syrup, T), and we have the following clause y, then we can specify
d(¢,y) to be low.

onhand(maple_syrup, T8)
« do(boil(pan,5 min), T6,T7)
A do(put(measure(vanilla_extract, 10, g).in(pan)), T5)
A do(put(measure(water,200,ml).in(pan)), T4)
A do(put(measure(white_sugar, 100, g).in(pan)), T3)
A do(put(measure(brown_sugar, 200, g).in(pan)), T2)
A do(put(measure(butter, 20, g), in(pan)), T1)
A sequence([T1,T2,T3, T4, T5,T6,T7,T8])

We can also specify a distance measure between sets of atoms or sets of clauses as we illustrate in the next example.

Example 30. If @ is the set of literals {onhand(measure(egg_white, 100,m1),T1)} and ¥ is the following set of literals then we can
specify d(®,¥) to be low.

{do(whip(aquafaba, 10 min), T1), onhand(measure(aquafaba, 100,m1), T1)}

It is also possible to construct distance measures from knowledge graphs of food (such as FoodOn) based on ranking of ingredients
using a range of scoring functions [13].
We explain how we can use these different kinds of distance measure in substitution in the next section.

14
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5. Substitution operations

As we have discussed in previous sections, a recipe is represented by a set of assumed ingredients and equipment /', and a set
of clauses that capture the processes for producing the intended food item to be output 4, together with clauses for background
knowledge and integrity constraints ©. Note, we separate the integrity constraints and background knowledge from the process
clauses because we do not want to make substitutions into the constraints and background, rather we want to focus substitutions
on the process clauses and assumptions,

There are three levels of substitution that we can make as follows. We explain them informally here, and then formalize them
in the subsequent subsections.

Term-level substitution Here we substitute a term in a formula or set of formulae. For example, we can swap count(apple, 3) for
count(pear, 3) in a recipe for a cake. We use term substitution to replace specific ingredients and equipment in process clauses
and assumptions, and to amend specific actions in process clauses (for example, we can swap the term boil(fusilli, 12 min)
for the term boil(fusilli, 10 min) in the condition of a process clause do(boil(fusilli, 10 min), T)),

Condition-level substitution Here we substitute an atom or conjunction of atoms in a formula or set of formulae. For example,
we can swap the atom do(boil(fusilli, 12 min), T) for the atom do(boil(fusilli, 10 min),T) in a recipe for a pasta dish. We
can generalize to a conjunction of atoms ¢ A -+ A ¢,,, and @} A -- A ¢, and so we can replace ¢; A - A ¢, by ¢} A - A ],

Clause-level substitution Here we substitute a set of clauses for a set of clauses. This allows for more substantial changes to a
recipe that allow steps of a recipe to be added or removed.

Note, there is some overlap in what these types of substitution can do, depending on the clauses in recipe. So it may be the
case that replacing a term or replacing an atom have the same effect. For instance, it may be the case that swapping in term
boil(fusilli, 12 min) or swapping in the atom do(boil(fusilli, 12 min), T) have the same effect.

We formalize these three levels of substitution (i.e. term substitution, condition substitution, and clause substitution) in the
following subsections.

5.1. Term substitution

We will start with a distance measure d, and a threshold z, a substitution candidate, denoted [«/f], holds for « and p (where
a and p are food items, or equipment, or processes) iff we have d(a, f) < .

Definition 6. For a term, literal or clause ¢, the term substitution of term « by term p, is ¢la/f]

« If ¢ is a ground term, and ¢ = a, then ¢[a/p] is

« If ¢ is a constant symbol, ¢ # a, then ¢[a/p] is ¢

« If ¢ is a term or atom of the form a(y,, ...,7,), then ¢la/p] is p(y,[a/B]. ... v, [a/B])
« If ¢ is ~, then ¢la/B] is ~(wla/B1)

c If @ isy <y A Ay, then @la/pl is yla/fl < yola/BIA - Aw,la/B]

For a set of formulae = = {y,....y,}, Zla/pl is {y,la/p], ..., y,la/B]}

In the following example, we swap an ingredient that is represented by a constant symbol. So we replace the type of ingredient,
but not the quantity required.

Example 31. Revisiting the previous example, consider the following substitution of an atom with the substitution candidate
[butter/margarine].

onhand(measure(butter, 20, g), t1)[butter /margarine]
= onhand(measure(margarine, 20, g), t1)

In the example in Fig. 3, we consider substituting an ingredient that is represented by a ground term, and we replace both the
type of food and the quantity required.

We can handle equipment in the same way as food items. So we can use distance both for types of equipment and capacities of
equipment.

Example 32. We can define a distance measure, so that for instance sauce_pan(500 ml) is close to sauce_pan(600 ml), and
sauce_pan(500 m1) is close to frying pan(500 ml), but sauce_pan(500 ml) is not close to sauce_pan(1000 ml) since if we require
a 1000 ml pan for a recipe, a 500 ml pan may be too small.

The following are some basic properties that one may consider holding for a notion of substitution. They may appear to be
desirable for our substitution operator, but as we show in the following proposition, only the first holds. The others do not hold for
term substitution because when we substitute, we can in a sense lose distinctions between items, and these are irreversible.
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Consider the following preparation clause ¢.

onhand(measure(bread, 500, g), t7)

So ¢la/B] results in the following clause where «
measure(rape_seed_oil, 25,ml).

onhand(measure(bread, 500, g),t7)

Similarly, for the ingredients that are assumed in I'.

onhand(measure(water,330,ml)),t1),
onhand(measure(yeast, 5,g)), t1),

The term substitution I'[a;/3] results in the following.

onhand(measure(water, 330,ml)), t1),
onhand(measure(yeast, 5,g)), t1),

<+ do(switch_on(bread maker, programme_3), t6)
A do(put(water, in(bread maker)), t5)

A do(put(flour, in(bread maker)), t4)

A do(put(yeast, in(bread maker)), t3)

A do(put(rape_seed_oil, in(bread maker)), t2)
A consume(measure(water,330,m1)),t1)

A consume(measure(flour, 500, g)),t1)

A consume(measure(yeast,5,g)),t1)

A consume(measure(butter, 30,g)),t1)

A onhand(measure(water,330,ml)),t1)

A onhand(measure(flour, 500, g)),t1)

A onhand(measure(yeast,5,g)),t1)

A onhand(measure(butter, 30,g)),t1)

A sequence([t1,t2,t3,t4,t5,t6,t7])

<+ do(switch_on(bread maker, programme_3), t6)
A do(put(water, in(bread maker)), t5)

A do(put(flour, in(bread maker)), t4)

A do(put(yeast, in(bread maker)), t3)

A do(put(rape_seed_oil, in(bread maker)), t2)
A consume(measure(water,330,m1)),t1)

A consume(measure(flour, 500, g)),t1)

A consume(measure(yeast,5,g)),t1)

A consume(measure(rape_seed_oil,25,ml)),t1)
A onhand(measure(water,330,ml)),t1)

A onhand(measure(flour, 500, g)),t1)

A onhand(measure(yeast,5,g)),t1)

A onhand(measure(rape_seed_oil, 25,ml1)), t1)
A sequence([t1,t2,t3,t4,t5,t6,t7])

onhand(measure(flour, 500,g)),t1),
onhand(measure(butter, 30, g)),t1)

onhand(measure(flour, 500, g)),t1),
onhand(measure(rape_seed_0il,25,ml)),il)

= nmeasure(butter,30,g) and 8 =

Fig. 3. Example of substitution for a clause in a recipe and a set of assumption.

Proposition 1.

* Reflexivity: ¢la/a] = a

+ Transitivity: (¢pla/BDIB/r]1 = ¢la/v]

* Associativity: (¢la/pDIy /561 = (¢ly/éDla/p]
« Reversibility: (¢[a/BD[S/al = ¢

The term substitution operation satisfies reflexivity, but not transitivity, associativity, nor reversibility.

Proof (Reflexivity). Follows directly from definitions. (Transitivity) For a counterexample, let ¢ = r(a,b), a = a, f =b, and y = c.

So (¢pla/PDIB/y] = x(c,c) and ¢la/y] = r(c,b). (Associativity) For a counterexample, let ¢ = r(a,b), a =a, f=b, y =b and § = a.
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So (pla/BDIy/8] = r(a,a) and (¢ply/5])a/B] = r(b,b). (Reversibility) For a counterexample, let ¢ = r(a,b), « = a, and f = b. So
(pla/pDIf/al =x(a,a). O

Definition 7. We define the Subterms function as follows where it returns a multiset, using square braces to denote the multiset
and @ to denote multiset union.

« If ¢ is a constant symbol or a variable symbol, then Subterms(¢) = [¢].
« If ¢ is a term of the form a(f,, ..., B,), then

Subterms(¢p) = [a(f), ..., f,)] @ Subterms(f;) & --- @ Subterms(f,)
« If ¢ is an atom of the form «(f, ..., B,), then
Subterms(¢) = Subterms(f;) @ --- @ Subterms(f,)

« If ¢ is a literal of the form -, then Subterms(¢) = Subterms(y).
« If ¢ is a clause of the form y;, < y, A - Ay, then

Subterms(¢) = Subterms(y;) @ --- @ Subterms(y,,)

Example 33. For the clause below, the set of subterms is {meringues, bake(tray,120C,1.75h), tray,120C,1.75h,
pour(contents(bowl), on(tray)), contents(bowl), on(tray), bowl, tray, T6, T5, T4}.

onhand(meringues, T6)
« do(bake(tray, 120C, 1.75 h), T5)
A do(pour(contents(bowl), on(tray)), T4)

The following definition of isomorphic specifies that two clauses are isomorphic iff they have the same number of conditions
and for each condition and for the head, the corresponding atom in the other clause is isomorphic, and two atoms are isomorphic
if they have the same number of terms.

Definition 8. For formulae ¢ and y, ¢ is isomorphic with y iff (1) ¢ is a clause of the form ¢, < ¢, A -+ A ¢, and y is a clause
of the form y; < y, A--- Ay, and for each i € {1,...,n}, ¢; is isomorphic with y;; Or (2) ¢ is an atom of the form a(f,, ..., f,,) and
w is an atom of the form o’(4/, ..., ).

Example 34. The clauses in Examples 7 and 8 are isomorphic, and the clauses in Fig. 3 are isomorphic.

The following result shows that we can turn one formula into another using term substitution when all the subterms are unique,
and the two formulae are isomorphic. For this, we use the notion of a syntax tree. Each formula can equivalently be represented
by a syntax tree where the subformulae and terms are subtrees: For each node in the tree, we label it with a formula, subformula,
term or subterm. Each leaf is labelled with constant or variable symbol. If a node is labelled with a (sub)term a(f,. ..., $,), then the
children are labelled with the subterms g, to §,. If a node is labelled with an atom «(f, ..., f,), then the children are labelled with
the terms g, to f,. If a node is labelled with a literal —«, then the child is labelled with the atom «a. If a node is labelled with a
clause y; < y, A -+ Ay, then the children are labelled with the literals y, to y,. We assume that a syntax tree for a formula ¢
labelling the root is the smallest tree that satisfies the above constraints. Finally, a syntax tree T for ¢ has unique leaves iff n and
n' are leaves in T and n # n’ and g labels n and §’ labels »’ then g # .

Proposition 2. For clauses ¢ and vy, if ¢ has syntax tree T and T has unique leaves, and ¢ is isomorphic to y, then there is
[ay/Bi, ..., [a,/B,] such that
ooy /Bil, - L, /B,]) = w

Proof. Since ¢ and y are isomorphic, they have identical syntax trees. Let T, be the syntax tree for ¢ and let 7,, be the syntax tree
for w. And let L be the set of labels for T, (i.e. L, = {6|n is a node in T, and n is labelled with §}). Since T is uniquely labelled,
there is a surjective function f from L, to L,,. Therefore, for each a € L, there is a § € L,,, where f(a) = f. Therefore, f can be
represented by a sequence of term substitutions [«, /8], ..., [a,/B,] such that ¢([a;/B;].....[a,/B,D=w. O

Another way to constrain term substitution is to only introduce terms that do not already appear in the formula which we define
as follows.

Definition 9. Let X = (II,, ..., II,) be a substitution tuple where each I7; is a term substitution. ¥ is independent iff for each i,
where 11, is of the form [«;/f;], and for each j, where i # j and I, is of the form [a;/f;], &; # a; and a; # B;.

Proposition 3. If the substitution tuple of term substitutions X~ = ([« /p,], ... . [a;/B;]) is independent, then the sequence of substitutions is
associative (i.e. $X = ¢p X', for any formula ¢, and any permutation X' of X).
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Proof. Assume X is independent. So for each [¢;/f;] in X, there is no [a;/f;] such that &; = @;, or a; = ;. So if [a;/f;] is applied to
(... (@lay /81D .. )a;_y /B~ ), then the following holds

a; & Subterms((... (pla; /4] .. )le;_1/Bi—1]) \ Subterms(¢)

but it may be the case that «; € Subterms(¢b). So f; € Subterms(¢pX) iff a; € Subterms(¢h). So f; € Subterms(¢pX’) iff a; € Subterms(¢h). So
pZ=¢2'. O

To conclude, term substitution replaces specific ingredients and equipment in process clauses in 4 and in assumptions in I, and
it replaces specific actions in process clauses in 4.

5.2. Condition substitution
Now we consider the second level of substitution which is for replacing conditions in a clause as defined next.

Definition 10. For a clause ¢ of the form y; < y, A - A y,,, the condition substitution of the set of literals @, by the set of
literals ¥, is ¢[®/¥] defined as follows where {y,...,w,} is (v, ..., ¥, } \ @) UP.

PP/ P]=w) <y A Ay,
If Tail(¢) = @, then let ¢p[® /@] = Head(¢p) < T. Also, for a set of formulae = = {¢,,....¢,}, let E[®/¥] be {¢,[®/¥],.... ), [@/P]}.

Using condition substitution, we can handle complex substitutions such as ingredient plus action as illustrated by the following
example.

Example 35. Consider the need to substitute the following conditions

¢, = onhand(measure(egg_white, 100,m1), T1)
¢, = do(put(measure(egg white, 100,ml), in(bowl)), T1)

in the following process clause y.

onhand(meringues, T6)
« do(bake(tray, 120C, 1.75 h), T5)
A do(pour(contents(bowl), on(tray)), T4)
A do(use_electric_mixer(bowl, 15 min), T3)
A do(put(measure(castor_sugar, 50, g), in(bowl)), T2)
A do(put(measure(egg white, 100,ml1), in(bowl)), T1)
A onhand(measure(castor_sugar, 50, g), T1)
A onhand(measure(egg_white, 100,ml1), T1)
A sequence([T1, T2, T3, T4, T5, T6])

Let qﬁ’l = onhand(measure(aquafaba), 100,m1), T1), and ¢’2 = do(whip(aquafaba, 10 min), T1). So we can undertake the condition
substitution y[{¢;, P>}/ ’l,qﬁ’z}] to give the following revised process clause.

onhand(meringues, T6)
« do(bake(tray, 120C, 1.75 h), T5)
A do(pour(contents(bowl), on(tray)), T4)
A do(use_electric_mixer(bowl, 15 min), T3)
A do(put(measure(castor_sugar, 50, g), in(bowl)), T2)
A onhand(measure(castor_sugar, 50, g), T1)
A do(whip(aquafaba, 10 min), T1)
A onhand(measure(aquafaba, 100,m1), T1)
A sequence([T1,T2, T3, T4, T5, T6])

When comparing term substitution with condition substitution, we see that term substitution is across all of the recipe. Every
occurrence of the term in the recipe is substituted. But we may want to only substitute in parts of the recipe. For example, we may
want to replace egg for making the base of the cake, but use egg in the cream filling for the cake. We can do this by just substituting
in individual formulae using condition substitution. So we can focus on individual clauses using condition substitutions. To support
this, there is an advantage in splitting a recipe into a larger number of shorter process clauses as this will allow more targeted
substitutions.

Proposition 4. The condition substitution operation satisfies reflexivity, but not transitivity, associativity, nor reversibility.

* Reflexivity: ¢p[@/P] = ¢
+ Transitivity: (¢[@,/P,])[D, /D3] = P[P, /P;]
+ Associativity: (p[@,/D,])[@3/D4] = (P[D3/D,])[®, /D]
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* Reversibility: (¢[®@, /P, D[P, /P]1= ¢

Proof (Reflexivity). Follows directly from the definition. (Transitivity) For counterexample, let ¢ be y < y’., let &, =, @, = {y'},
and @; = §. So (P[@|/D,)[D,/P3] = w « T and ¢[P,/P;] = y < y'. (Associativity) For counterexample, let ¢ be y « ., let
D, =0, @, ={y'}, @3 = {y'}, and &, = 0. So (P[P, /D,))[@3/P,] = w « T, and (¢[@3/P,4))[@,/P,] = w < y'. (Reversibility) For
counterexample, let ¢ be y < y., let &, =@, and &, = {y'}. So (P[P, /P, D[P, /P 1=y <« T. O

Proposition 5. For clauses ¢ and v, if Head(¢p) = Head(y), then there are sets @ and ¥ such that ¢[®/¥] = w.

Proof. Let ¢ be § < 6;A--A, and let ¢ be § « 6] A--AS, . If welet @ = {5, ...6,), and we let ¥ = {4 ... 5} }, then $[®@/P1=y. [

Since a recipe is composed of one or more process clauses, if we want to add or delete ingredients and/or equipment, or we
want to add or delete actions, then we can use condition substitution.

5.3. Clause substitution

The third level of substitution is clause substitution which allows for substitution of large components of recipes as defined
below.

Definition 11. For a set of clauses 4, the clause substitution of the set of clauses @, by the set of clauses ¥, denoted A[®/¥], is
defined as A[®@/¥]=(A\ ®)U Y.

Example 36. Consider the recipe 4 = {¢,} where ¢, is the following clause. Also suppose we lack a beef_patty (i.e. onhand(count
(beef_patty, 1), T1) is not in our assumptions).

onhand(beef_burger, T4)
« do(put(beef_patty, in(burger_bap), T3)
A do(cook(burger_bap, on(griddle), 8 min), T2)
A do(cook(beef_patty,on(griddle),5 min), T1)
A onhand(count(burger_bap, 1), T1)
A onhand(count(beef_patty,1),T1)
A sequence([T1, T2, T3, T4])

If we have the necessary ingredients, then we can add the following process clause ¢, to the recipe. In other words, we can make
the clause substitution A[@#/{¢,}] which results in {¢;,$,}.

onhand(count(beef_patty, 1), T6)
« do(mix(bowl), T5)
Ado(put(minced meat, in(bowl)), T4)
Ado(put(chopped_onion, in(bowl)), T3)
Ado(put(egg, in(bowl)), T2)
Ado(put(pepper, in(bowl)), T1)
A sequence([T1,T2,T3, T4, T5, T6])

We also use clause substitutions to effect the condition substitutions on a set of clauses. A condition substitution is of the form
¢[®@ /%] which specifies that the conditions of clause ¢ to be updated. However, this then needs to be done on the set of clauses.
We do this by embedding the condition substitution within a clause substitution as follows: A[{¢}/{¢[®@/¥]}]. So this says that ¢
is replaced by ¢[®/¥] in A.

Example 37. Returning to Example 35 where the condition substitution is y[{¢, $,}/{¢’, q‘); }1. Suppose 4 = {y}. So the condition
substitution can be embedded in the clause substitution as follows.

ALY/ (wlidr. ) /1. $)10]

Proposition 6. For a set of clauses A, the clause substitution operation satisfies empty and reflexivity but not transitivity, associativity, nor
reversibility.

- Empty: A[4/0] = ¢
* Reflexivity: A[@/®] = A

+ Transitivity: (A[®@,/®,])[P,/P;] = A[®@, /P5]

- Associativity: (A[®, /@,])[D;/®,] = (A[D;/D,])[D, /D,]
« Reversibility: (A[®, /®,])[®,/P,] = 4
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Proof. Recall A[®@/¥] = (A\ @) UY. (Empty) A[4/@] = (A\ A) U@ = @. (Reflexivity) A[@/®] = 4 = (4\ ®) U ® = A. (Transitivity)
Consider the counterexample where 4 = {¢}, & = §, @, = {¢}, and @; = 0. So (A[P/D,])[P,/P;] = # whereas A[D, /P;] = A.
(Associativity) Consider the counterexample where 4 = §§, @, = @, @, = {¢}, @3 = {¢}, and &, = @. So (A[D,/D,D[P;/P,] =
@, whereas (A[®@;/®,)D[®@,/P,] = {¢}. (Reversibility) Consider the counterexample where 4 = {¢}, &, = 0, and @, = {¢}. So
(A[D,/®@,))[@, /D] = whereas 4 = {¢}. []

So clause substitution is a straightforward way to add and delete clauses. For instance, to add intermediate steps as in Example
36. We can use it directly or use as a vehicle for effecting condition substitutions as in Example 37.

5.4. Sequences of substitutions

In the previous subsections, we have introduced three types of substitution, namely term substitutions, condition substitutions,
and clause substitutions. As we will see in the next section, we often need to consider sequences of substitutions in order to obtain
a satisfactory recipe.

In order to use all three types of substitution in a sequence, we first need to generalize term substitutions and condition
substitutions to sets of clauses.

« if IT is a term substitution of the form [a/f], then AIT = {¢IT | ¢ € A}.
« if IT is a condition substitution of the form [®@/¥], then Al = {¢[D/¥] | ¢ € A}.

As we define next, a substitution tuple is a list of zero or more substitutions where each substitution is a term substitution,
condition substitution, or clause substitution. We illustrate this in Fig. 4.

Definition 12. A substitution tuple is an n-tuple ([T, ..., IT,) where n > 0 and each [7; is a term, condition, or clause, substitution.

Using a substitution tuple, we can make a sequence substitution which is the first substitution in the list applied to the
knowledgebase, and then with the result of this substitution, the second substitution in the list applied, and so on.

Definition 13. Let 4 be a set of formulae, and let > = (11, ..., I1,) be a substitution tuple. A sequence substitution is

AS = (... (AHHM)) .. )1,

If the substitution tuple is empty (i.e. £ = ()), then AX = A. Also, we can concatenate sequence substitution (i.e. (4X))%, =
A(X| + %,) where X; + %, is the concatenation of substitution tuples =, and X,).

Following from the results in the previous subsections, we have reflexivity (i.e. if every substitution in a substitution tuple
X is reflexive, then AX = A). However, as for the individual types of substitution, we do not have transitivity, associativity, or
reversibility, in general.

The following result shows that we could just use a single clause substitution instead of a substitution sequence since the single
clause substitution gives exactly the required revised knowledgebase. In other words, there is a clause substitution IT such that
for any recipes 4 and 4’, AIT = A’. However, in general, we do not want to use a single clause substitution because we require:
(dynamic substitutions), i.e. we want to be able infer the required substitutions from other knowledge as required by the context
(whereas using a single clause substitution means that we have these substitutions known in advance); (explainable substitutions)
i.e. we want to be able give the substitutions as minimal changes to the recipe and where these are clearly expounded in terms of
the exact changes to the ingredients and steps in the recipe and why (whereas just using a single clause substitution would be like
saying that we reject the original recipe and replace it with a new recipe).

Proposition 7. For all substitution tuples > = (II, ... II,,), there is a clause substitution IT* such that AX = AIT*.

Proof. Let A* be the knowledgebase resulting from the sequence substitution AX. Now let IT* be [4/4*]. So AIT* = A*. []

For explainable substitutions, we want to make minimal changes to a knowledgebase. For instance, if we need to change one
ingredient from a to f in a clause in a recipe, then a single term substitution [«/#] might be sufficient, and so doing this, we clearly
see what has changed, whereas for a clause substitution that changes 4 into 4’, we do not know exactly what has changed without
looking at all the clauses in 4’ and have changed from A.

So if we need minimal changes, then we need to consider how we can define these. We start with the following subsidiary
definitions which provide a partitioning of the substitutions in a substitution tuple.

» TermSubs(X) = {Il € X | II is a term substitution }
+ ConditionSubs(X) = {IT € X | II is a condition substitution }
* ClauseSubs(X) = {IT € X | II is a clause substitution }

We now consider three criteria for measuring substitutions below that we will use as the basis of identifying a notion of
minimality for substitution tuples. We explain these as follows: the length is simply the number of substitutions in the substitution
tuple; the number of conditions revised is the number of clauses that have conditions amended; and the number of clauses revised
is the number of clauses that have been removed plus the number of clauses that have been added.
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We start with the recipe A = {¢} where ¢ is defined as follows that is for cooking spaghetti.

¢ = onhand(cooked(spaghetti),T4) +
do(boil (spaghetti,10min),T3)
A do(put (spaghetti,in(pan)),T2)
A do (pour (boiling water,in(pan)),T1)
A sequence([T1,T2, T3, T4])

First we consider a primary substitution because we lack spaghetti (using term substitution). Let
« = spaghetti and = fusilli.

¢la/B] = onhand(cooked(fusilli),T4) «+
do(boil(fusilli,10Omin),T3)
A do(put (fusilli,in(pan)),T2)
A do(pour (boiling water,in(pan)),T1)
A sequence([T1,T2, T3, T4])

Now we consider a secondary substitution (using condition substitution) to deal with change
in cooking time for the substituted pasta. Let o/ = do(boil(fusilli,1Omin),T3) and B’ =
do(boil(fusilli,12min),T3).

(¢la/B])[/ /Bl = onhand(cooked(fusilli),T4) «
do(boil(fusilli,12min),T3)
A do (put (fusilli,in(pan)),T2)
A do(pour (boiling water,in(pan)),T1)
A sequence([T1,T2, T3, T4])

We conclude with another primary substitution because we also lack a pan (using term sibstitu-
tion). Let o’/ = pan and 8" = iron_casserole dish.

((pla/BD]e’/B'])]e” /B"] = onhand(cooked(fusilli),t4) <
do(boil(fusilli, 12min),T3)
A do(put (fusilli,in(iron_casserole_dish)),T2)
A do(pour(boiling water,in(iron_casserole_dish)),T1)
A sequence([T1, T2, T3, T4])

Fig. 4. Example with substitution tuple involving primary and secondary substitutions. Let I1, = [«/f], II, = [a'/f'], and II, = [a” /f"]. So
(Il,, I, IT,) is a substitution tuple.

+ X has length » iff ¥ is an n-tuple.
» X has n conditions revised iff

l{p € 4| p[@/¥] # ¢ and [®@/¥] € ConditionSubs(Z)}| = n
» X has n clauses revised iff

|((A \ U[tb/'{’]ECIauseSubs(Z) (D) u (U[tb/lP]GCIauseSubs(Z) lp))l =hn

In the following definition, we specify that substitution sequence X is smaller than substitution sequence X’ iff one of the
following three options holds: (Option 1) X has fewer clause revisions than X’; (Option 2) ¥ and X’ have equal clause revisions
and X has fewer condition revisions than X’; (Option 3) ¥ and X’ have equal clause revisions and ¥ and X’ have equal conditions
revisions and X is shorter than X’.

Definition 14. For substitution tuples ¥ and ', let X have length n,,,,,, have n,,, .5 conditions revised, and have n,;,,,, clauses

revised, and let X’ have length »/ ,have n’ ~  conditions revised, and have n’ clauses revised. X is smaller than X’ iff
length conditions clauses

one of the following three options holds:

. : ! .
(Option 1) njguses < My pus0ss

. . o ’ .
(OPUOU 2) Retauses = Mepguses and Reonditions < R eonditions?

. : - R f
(OPUOU 3) Nelauses = nclauses and Reonditions ncgnd,';iom and Miength < nlength'
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The smaller-than-or-equal relation is defined as follows: X is smaller-than-or-equal to X’ iff X is smaller than X’ or n, ;s =
and n and 7,5, =

n/
clauses

12 /
conditions conditions ”length'

The empty sequence () is smaller than any non-empty sequence, and it constitutes the minimal element in the posit containing
all substitution tuples.

Proposition 8. The smaller-than-or-equal relation is a partial ordering (reflexive, anti-symmetric, and transitive) over the set of all
substitution tuples.

Proof. Since each substitution tuple is characterized in terms of three numbers (1,055 Mcongirions @0 Hejguses)> @nd the definition of the
relation is in terms of the relative magnitude of these numbers, we satisfy the reflexive, anti-symmetric, and transitive conditions. []

In the rest of the paper, we will investigate in detail how we use substitutions, and how we meet our desiderata of dynamic and
explainable substitutions.

6. Stages of substitution

We now consider how we identify and apply substitutions. As we introduced earlier, a primary substitution is a substitution
that has been undertaken because we lack some food item or equipment, or possibly we lack the ability or desire to carry out some
action, whereas a secondary substitution is a substitution that has been carried out to deal with problems raised by the primary
substitution. We give an example of primary and secondary substitutions in Fig. 4.

We can substitute intermediate products in a recipe (e.g. sliced_carrot for diced_carrot) as shown in Example 38. This involves
swapping the intermediate as a primary substitution, and then change the process clause as secondary substitution. This also needs
an integrity constraint that captures sliced carrot requires a slice action in recipe.

Example 38. Consider a substitution of sliced_carrot for diced_carrot in the following clause.
onhand(diced_carrot, T3) « do(dice(carrot), T2) A onhand(carrot,T1)
This gives the following clause
onhand(sliced_carrot,T3) « do(dice(carrot), T2) A onhand(carrot,T1)
The following integrity constraint then identifies that we cannot obtain sliced_carrot from the action do(dice(carrot)).
1 « onhand(sliced_carrot,T3) A do(dice(carrot),T2)
The secondary substitution that involves changing do(dice(carrot), T2) to do(slice(carrot), T2) results in the following clause.
onhand(sliced_carrot,T3) « do(slice(carrot), T2) A onhand(carrot,T1)

We now consider the steps required for substitution starting with the item to be substituted which raises the primary substitution,
and then potentially secondary substitutions. We formalize these in the following sections.

6.1. Primary substitutions

Primary substitution in this section is about making a substitution for something that is missing (equipment/ingredient) or the
lack of desire or ability to carry out a specific action. For this, we use the following definition to identify candidates for substitution.

Definition 15. Let (4, I',0) be a cooking scenario. let a be the item that is to be replaced, let d is a distance measure, and w is a
threshold value. Note, we formalize primary substitutions as term substitutions.

Substitutions(a, 4, I', d, w, ©) = {[a/p] | d(a, f) < w}

Example 39. Consider the clause y defined as follows that is for cooking spaghetti.

w = onhand(cooked(spaghetti), T4) <
do(boil(spaghetti, 10 min), T3
A do(put(spaghetti, in(pan)), T2)
A do(pour(boiling water, in(pan)), T1)
A sequence([T1, T2, T3, T4])
Also suppose we have fusilli,tagliatelle,penne,linguine,canneloni,lasagne,rigitoni and farfalle as alternatives to
spaghetti, with the following distance measures.
d(spaghetti,fusilli) =0.65 d(spaghetti,tagliatelle) = 0.44
d(spaghetti, penne) = 0.67 d(spaghetti,linguine) = 0.21
d(spaghetti, canneloni) = 0.88 d(spaghetti,lasagne)=0.98
d(spaghetti,rigitoni) = 0.63 d(spaghetti,farfalle) =0.52
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So if we set w = 0.45, then we obtain the following

Substitutions(a, 4, I, d, w, ©) = {[spaghetti/tagliatelle], [spaghetti/linguine]}

For a choice of missing ingredient «, recipe 4, and assumptions I', and d being the role distance function, if @ = 0, then
Substitutions(a, 4, I', d, w) will contain the substitutions [a/f#] where g has the same roles as «, and if w = 1, then Substitutions(a, 4, I', d, w)
will contain all possibles substitutions [«¢/f] where « and f are ingredients (i.e. anything can be a substitution). For most word
embeddings d, one would expect that Substitutions(a, 4, I, d, @) will just be the substitution [«/«] (as for most word embeddings, and
for almost all pairs of words a and g, there is non-zero distance between them).

If we are missing multiple ingredients, then we make multiple substitutions. For instance, if we miss two ingredients, then we
find the best substitute for the first missing ingredient, and then find the best substitute for the second. But, since each substitution
is with respect to a missing ingredient and not the other ingredients, the sequence for this does not matter.

Example 40. Consider the clause y defined as follows that is for cooking spaghetti.

w = onhand(cooked(spaghetti), T4) <
do(boil(spaghetti, 10 min), T3
A do(put(spaghetti, in(pan)), T2)
A do(pour(boiling water, in(pan)), T1)
A sequence([T1, T2, T3, T4])

Suppose we lack spaghetti and we lack boiling water, then finding the substitute for spaghetti is not affected by what we use
to substitute for boiling water and vice versa.

Because the choice of each substitution is made with respect to the original ingredients, the other primary substitutions do not
interfere with each other, and so we have the following result.

Proposition 9. If §; € Substitutions(a;, 4, I',d, w, ©), and B, € Substitutions(a,, 4, I', d, ®, ©), then (Ala; /B, Dlay /] = (Alay /B D), /B -

Proof. Follows directly from associativity for term substitution (Proposition 1). []
The Substitutions function is monotonic in the threshold. So for and a, 4, I', and d, if ® < ', then we have the following.
Substitutions(a, A, I, d, w, ©) C Substitutions(a, 4, I', d, @', ©)
Similarly, the Substitutions function is monotonic in 4, and in I'. Hence, if A C A’ and I" C I'"’, then we have the following.
Substitutions(a, 4, I', d, », ©) C Substitutions(a, 4, I'", d, w, ©)

In addition, the Substitutions function is monotonic in the scope of the distance function. In other words, if {8 | d(«, )} C {# | d'(a, B)},
then we have the following.

Substitutions(a, 4, I, d, w, ©) C Substitutions(a, 4, I',d’, @, ©)

However, the process of substituting for an ingredient, equipment, or action, does not take account of how a substitution might
fundamentally change the final dish that is produced by a recipe. For example, suppose we have a recipe 4 for chickensupreme,
a is count(chicken(breast,skin_on),2), and # is count(can(butter_beans, 400 g),2). The recipe A[a/f] is not really for chicken
supreme, but rather for a dish that we might call bean supreme.

A consequence of this issue (i.e. that a substitution does not necessarily change the name of the final food item being produced)
means that we do not change the properties of the item being produced. Continuing the example of substituting chicken for butter
beans in the recipe for chicken beans, if we do not change the name of the final item (in this case, chicken supreme), the properties
of the final food item will be unchanged. So even if we have substituted butter beans, and thereby have a vegetarian dish, this will
be recognized as property of the dish since the name of the dish has not changed. We will deal with issue in the next subsection
using a secondary substitution.

6.2. Secondary substitutions

One or more secondary substitutions are required when a primary substitution causes the resulting recipe to be inconsistent with
the integrity constraints and background knowledge.

Example 41. In a recipe for spaghetti bolognese, we can substitute spaghetti with fusilli: But fusilli only takes 12 min to cook. So
if we do this substitution, then it is essential to substitute the cooking time. To do this, we use integrity constraints (which we can
extract from recipes). For example,

1l « do(boil(fusilli,$),T)AS # 12 min
So continuing Fig. 4, if we have say do(boil(fusilli, 10 min), i3) € I', then with the integrity constraint, we obtain the inference

1 (i.e. an inconsistency). Hence, mitigation is required.
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In order to identify the need for mitigation, we need to identify any inconsistencies between the atoms that arise in the execution.
A mitigation is required if the following holds.

1 € Execute(4, I', 0)

As defined later in this subsection, a mitigation is one or more substitutions that ensures the execution is consistent with the
integrity constraints.

Definition 16. A mitigation for a cooking session (4, I',©) is a substitution tuple X s.t. for some set of assumptions I/, L ¢
Execute(4X, I'', ©). A minimal mitigation is a mitigation X for (4, I', ©) and no X' that is a mitigation for (4, I', ©) such that X’ is
smaller than X.

Example 42. Continuing Example 41, we can use the substitution [a/f] as a mitigation, where a = do(boil(fusilli, 10 min),T)
and f = do(boil(fusilli, 12 min), T). This will ensure the conditions L ¢ Execute(4[a/f], I’,0) and ¢ € Execute(... (A[a/p], ", O))
are satisfied. Furthermore, this mitigation is a minimal mitigation.

Proposition 10. If (4, I',0) is a cooking session, and 1 ¢ Execute(4, I', ©), and for some output = € Dishes(4, I, ©), it is the case that
r € Execute(4, I', ©), then the empty substitution tuple (i.e. ()) is the minimal mitigation for (4, I, ©).

Proof. Because L ¢ Execute(4, I', ©), and output z € Execute(4, I', @), the substitution tuple () is trivially a mitigation for (4, I', ©).
Since there is no substitution tuple that is smaller than (), () is the minimal mitigation for (4, I',0). []

As shown by the following result, it is not necessarily the case that we can find a secondary substitution that resolves the
inconsistencies (or if we resolve it, we introduce another).

Proposition 11. For a cooking session (4, I', ©), it is not necessarily the case that there is a substitution tuple ¥ such that X is a mitigation
for (A, T, 0).

Proof. If for all X and I, it is the case that L € Execute(4X, I'’, ©) holds, then the there is no mitigation for this cooking session.
This can arise for instance if we have an integrity constraint L « ¢ for each onhand atom ¢ in the language. []

Whilst the above proof is based on an extreme situation, it shows that in order to find a mitigation, there is a need to consider
how the space of solutions is constrained by the cooking session including its integrity constraints and background knowledge.
Furthermore, to show that it is normally possible to find mitigations, we consider the following property of @ that allows us to
allow get mitigations.

Definition 17. For a set of integrity constraints and background knowledge O is sensible iff there is a 4 and I' such that
1 ¢ Execute(4, I', ©) and Dishes(4, I, ©) # @.

Proposition 12. Let (4,1,0) is a cooking session. If O is sensible, then there is a substitution tuple X such that X is a mitigation for
(4,T,0).

Proof. Assume O is sensible. So there is a A’ and I'” such that | ¢ Execute(4’, I'’, ©) and Dishes(4’, I'’, ©) # . So there is a substitution
tuple X such that AX = A’. So X is a mitigation for (4, I',0). []J
We now return to the issue of a substitution that can result in a final food item that has fundamentally changed key properties.
We illustrate how we can view this as the need for a mitigation, and how it can be addressed using secondary substitution.
Example 43. Consider a recipe 4 for chicken supreme, where r is chickensupreme, « is count(chicken(breast, skin_on),2), and
B is count(can(butter_beans, 400 g),2). Now consider the following integrity constraint.
1 « onhand(prepared(chicken_supreme), 7) A "use(chicken)

where use(chicken) is defined as holding when there is an onhand atom holding in the first interval for butter beans in some form.
A mitigation could be to substitute chicken_supreme with bean_supreme.

Note, the substitution in the above example is more than changing the name of the dish. The name connects the output of the
recipe to properties of that output. So for instance, the food item chicken_supreme has properties such as meat_based_food, and
chicken_dish, whereas the food item bean_supreme has properties such as vegetarian_dish. Both would have properties such as
contains_cream and contains_garlic.

7. Drivers for substitution

We consider four drivers for substitution as summarized in Table 1. These are similarity to missing item, similarity to original
dish, minimal change to recipe, and improvement to final dish. We investigate these approaches in the following subsections.
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Table 1
Four drivers for substitution in cooking.
Type of driver Problem Solution
Similarity to missing item Unavailable item (ingredient or Minimize change to ingredient or equipment by minimizing distance
equipment) or action between original and its substitute
Similarity to original dish Unavailable item (ingredient or Do primary and secondary substitutions to produce a dish as similar
equipment) or action as possible to original dish.

Minimal secondary change to ~ Unavailable item (ingredient or  Minimize change to recipe by minimizing number of secondary

recipe equipment) or action substitutions
Improve specified properties  Change final food output to im- Do primary and secondary substitutions to produce a dish satisfying
of dish prove its properties specified properties.

7.1. Substitution for similarity to unavailable item or action

The following set is the set of candidates that are closest to the unavailable item (ingredient or equipment) or action. So an
arbitrary member of this set is chosen as the primary substitution.
BestFirst(a, 4, I', d, w, ©) = {# € Substitutions(a, 4, I', d, w, O) |
for all g’ € Substitutions(a, 4, ', d, w, ©) d(a, f) < d(a, )}

Then any necessary secondary substitutions are undertaken to ensure consistency. So the substitution tuple (I1;, IT,, ..., II;) is a
substitution for similarity to missing item « in 4, where I1, = [a/f] and § € BestFirst(a, 4, I', d, ,0) and (I1,, ..., IT;) is a minimal
mitigation.

Example 44. We start with a cooking session (4, I', ©) for cooking spaghetti where 4 = {¢p} where ¢ € 4 is defined as follows.

¢ = onhand(cooked(spaghetti), T4) «
do(boil(spaghetti, 10 min), T3)
A do(put(spaghetti, in(pan)), T2)
A do(pour(boiling water, in(pan)), T1)
A sequence([T1, T2, T3, T4])

First we consider a primary substitution. Let « = spaghetti and let the nearest ingredient be # = linguine.

¢la/f]l = onhand(cooked(linguine), T4) «
do(boil(linguine, 10 min), T3)
A do(put(linguine, in(pan)), T2)
A do(pour(boiling water, in(pan)), T1)
A sequence([T1,T2, T3, T4])

Now we consider a secondary substitution to deal with change in cooking time for the substituted pasta. Let a’ = do(boil(linguine,
10 min), T3) and p’ = do(boil(linguine, 12 min), T3).

(¢pla/BDla’/B'1 = onhand(cooked(linguine), T4) «
do(boil(linguine, 12 min), T3)
A do(put(linguine, in(pan)), T2)
A do(pour(boiling water, in(pan)), T1)
A sequence([T1,T2, T3, T4])

So the substitution tuple for similarity to missing item is ([a/f], [¢’/f']).

Downsides of substitution for similarity to missing item include: (Potentially unnecessary secondary substitutions) there may
be one or more secondary substitutions that would be unnecessary if we compromised on the primary substitution; And (Potentially
substantially different output) the substitution tuple is only guaranteed to provide a final food output with a recipe that is
consistent with the integrity constraints and properties, and this final output might be quite different to the original intended output
of the recipe. We address these issue with other kinds of substitution in the next two subsections.

7.2. Substitution for minimal change to recipe

Making a poor choice of primary substitution may cause more significant changes to a recipe when doing mitigation. To address
this, we may compromise on the closeness of the primary substitution in order to limit the number or type of secondary substitutions.

Let Ala/f] be the result of the primary substitution on the recipe. Let Secondary(4, a, f,©) be the set of minimal secondary
substitutions (i.e. each element is a minimal mitigation for (A[a/f], I'’, ©) where I'"’ is a set of assumptions) as defined below. So a
minimal change to a recipe is the concatenation of the primary substitution and secondary substitution that is shortest, as defined
next.
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Definition 18. For a cooking session (4, I', ©),

1. if [a/B] € Substitutions(a, 4, I',d, w, ©)
2. and X € Secondary(4, a, §, ©)
3. and for all [a/p’] € Substitutions(a, 4, I',d, w, ©) and for all X’ € Secondary(4, a, ', ),

X is shorter than >’

then a minimal change to a recipe 4 is the substitution tuple (II,, ..., II;) where II, is [a/f] and (II,, ..., II;) is 2.

Example 45. Continuing Example 44, suppose the distance between spaghetti and farfalle is higher than between spaghetti
and linguine but also suppose that the cooking time for farfalle is the same as spaghetti. So we have a = spaghetti and
p = farfalle where

* [a/p] € Substitutions(a, A, I', d, w, ©)
+ X =) is the minimal mitigation.

Therefore, the minimal change to the recipe is {([a/f]). In contrast, for f’ = fusilli, any minimal mitigation is not equal to the
empty tuple.

Whilst the above example would result in a dish that involves a minor compromise in the final dish, in general, trying to substitute
an ingredient and then minimize the change to the recipe might result in a dish that is somewhat distant from the original dish. For
example, we may lack a beef patty for a beefburger, and we may have the ingredients to make a beef patty (minced meet, chopped
onion, egg, etc.) and we may also have a bean burger patty. If we wanted a substitution that minimizes the change to the recipe,
then we would pick the bean burger patty, whereas we may prefer to make a more substantial change to the recipe to allow for
making the beef burger patty. We consider how we might get the latter using the next method.

7.3. Substitution for similarity to original dish

In order to choose a sequence of substitutions that ensures similarity to an intended original dish =, we use integrity constraints
that capture when a substitution causes the revised dish to deviate from the original dish. For example, if we substitute beans for
beef in a burger, we lose the property that the burger is a meat dish, or that it has a meaty flavour. So we represent this as an
integrity constraint as in Example 46.

When we have a violation of an integrity constraint that captures the deviation from the original intended dish, we have two
options: (rectification by change of dish name) which involves taking the original name = of the intended dish and replacing it
with a name 7’ that is consistent with the integrity constraints concerning the properties of the dish (e.g. changing the name from
beef_burger to bean_burger when the revised recipe does not have meat); or (rectification by change of recipe) which involves
changing the recipe so that it meats the basic requirements of the intended dish (e.g. for the intended dish meat_burger, changing
the recipe so that it contains meat or something meat-flavoured). We capture both kinds of rectification in the following definition
for substitution for similarity to original.

Definition 19. Let (4, I, ©) be a cooking session for dish z and let [a/f] be a primary substitution. A substitution for similarity to
original dish is a substitution tuple X = (11}, ..., II,) for ingredient substitution /7, = [«/f#] and mitigation (IT,, ..., IT;) and output
n' € Dishes(4, I', ©) and distance measure d over dishes and threshold for similarity for dishes A:

1. L & Execute(4Z, I, ©)
2. n' € Dishes(4X,I”,0)
3. d(m,7")< A

In the above definition, either there is a #’ in the final outcome where the distance between = and z’ is below a threshold
(rectification by change of name) or ¥ modifies the recipe so that = is in the final output and d(x, z) < 4 for all A (rectification by
change of recipe). We illustrate the former in the first example below, and the latter in the subsequent two examples below.

Example 46. Consider a recipe 4 for a burger that involves cooking a beef patty and a bun on a griddle, and then putting the beef
patty in the bun.

¢ = onhand(beef _burger, 1), T7)
« do(put(beef_patty, in(bun)), T6)
A do(grill(beef patty, 10 min), T3, T5)
A do(grill(bun, 2 min)), T2, T4)
A onhand(count(bun, 1), T1)
A onhand(count(beef_patty,1),T1)
A sequence([T1,T2,T3,T4,T5,T6, T7])
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Now let @ = beef _patty and f = bean_patty, and so we replace the beef patty with a bean patty. In this, the recipe 4[a/f] would
result in L € Execute(4[a/p], I'[#/¥], ©) when O contains the following integrity constraint.

1 « flavour(beef_burger,meaty) A “contains(bean_burger,meat)

So the mitigation is to change the name to bean_burger (i.e. [beef_burger/bean_burger]). So we can use rectification by change of
dish name. So the revised recipe is

¢ = onhand(bean_burger, 1), T7)
« do(put(bean_patty, in(bun)), T6)
A do(grill(bean_patty, 10 min), T3, T5)
A do(grill(bun, 2 min), T2, T4)
A onhand(count(bun, 1), T1)
A onhand(count(bean_patty,1),T1)
A sequence([T1,T2,T3, T4, T5,T6, T7])

Example 47. We revisit Example 46 concerning a recipe A for a burger that involves cooking a beef patty on a griddle. In contrast
to Example 46 where the output is a bean_burger, we can add the following clause ¢, to 4

¢ = onhand(count(beef_patty, 1), T6)
« do(mix(bowl), T5)
A do(put(minced meat, in(bowl)), T4)
A do(put(chopped_onion, in(bowl)), T3)
A do(put(egg, in(bowl)), T2)
A do(put(pepper, in(bowl)), T1)
A sequence([T1,T2,T3, T4, T5, T6])

Therefore, IT = [#/{¢,}], and so the resulting cooking session is (411, I'’, ©) for some set of assumptions I"’. This solution would be
obviate the inconsistency with the integrity constraint given in Example 46.

As we saw above, a primary substitution can change the properties of the intermediate (product). For example, if we substitute
meat with tofu in a burger, the result could be less flavourful (which can be identified by an integrity constraints as above). From
a culinary point of view, a solution is to first cook tofu in mushroom sauce.

Example 48. Consider a similar example to that of Example 46 concerning a recipe 4 for a burger that involves cooking a beef
patty on a griddle. Here, the intended output from clause ¢, below is burger_patty rather than beef_patty.

onhand(count(burger_patty, 1), T6)

« do(mix(bowl), T5)

A do(put(minced_meat, in(bowl)), T4)

A do(put(chopped_onion, in(bowl)), T3)

A do(put(egg, in(bowl)), T2)

A do(put(pepper, in(bowl)), T1)

A sequence([T1, T2, T3, T4, T5, T6])
And suppose we want to make the primary substitution that replaces minced meat with tofu. However, if we may also have the
following integrity constraint, then we obtain an inconsistency

1 « flavour(burger_patty,meaty) A “contains(burger_burger,meat) A ~contains(burger_burger, mushroom)

To ensure that the burger has a meaty taste, we could first marinade the tofu in mushroom. For this we could add the following
clause ¢, to A4 using clause substitution;

onhand(mushroom_flavoured_tofu), T6)
« do(fry(frying_pan, 10 min), T5)
A do(put(tofu, in(frying pan)), T4)
A do(put(mushrooms, in(frying pan)), T4)
A sequence([T1,T2,T3, T4, T5, T6])

And then update the clause ¢, that resulted from the primary substitution as follows using condition substitution where the condition
do(put(egg, in(bowl)), T2) is removed and the condition do(put(mushroom_flavoured_tofu, in(bowl)), T4) is added.

onhand(count(burger_patty, 1), T6)
« do(mix(bowl), T5)
A do(put(mushroom_flavoured_tofu, in(bowl)), T4)
A do(put(chopped_onion, in(bowl)), T3)
A do(put(milk, in(bowl)), T2)
A do(put(flour, in(bowl)), T1)
A do(put(pepper, in(bowl)), T1)
A sequence([T1,T2,T3, T4, T5, T6])
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So instead of using tofu, we use mushroom_flavoured_tofu, and provide a clause for producing this food item. The resulting recipe
does not violate the integrity constraint.

In each of the above examples, we need to ensure that the distance between the intended dish = and the dish obtained by the
revised recipe z’ are sufficiently close. For Example 46, whether d(beef_burger, bean_burger) < 4 depends on the specification of
the distance measure d and the subjective choice for 1. For Example 47, the intended dish and the dish obtained by the revised
recipe are the same (i.e. beef_burger) and so the distance is zero. For Example 48, the intended dish and the dish obtained by
the revised recipe are the same (i.e. burger_patty) and so the distance is zero, but we have seen how the integrity constraint can
force the refinement of the recipe from using the ingredient tofu directly by updating the recipe to include a step for making
mushroom flavoured_tofu.

7.4. Substitution for improvement to dish

We now consider substitution to meet specific requirements. For example, changing a recipe so that it is vegetarian, gluten-free,
or reduced calories. We will assume that we are dealing with binary categories. For example, a recipe for 200 g of digestive biscuits
has the property of reduced calories if the number of calories is below 300 calories. Or we can reduce or remove salt from a recipe
with a property that salt level is below a certain level.

In order to represent and reason with properties, we introduce a property atom as an atom of the form property(a, ) where a
is a term denoting a food item, and p is a property of the food item. For example, property(porridge, gluten_free) denotes that
porridge is gluten-free. We define a property clause as a clause ¢ where head(¢) is a property atom. The following is an example
of a property clause.

property(biscuit_mix, gluten_free)
« contains(biscuit, oat_flour)
A ncontains(biscuit,plain_flour)

We use property atoms and property clauses in the following definition where we use substitutions to ensure that a property
holds.

Definition 20. Let (4, I', ©) be a cooking session. Let = be an intended dish. Let y be a property literal. Let I'” be a set of assumptions.
A substitution for improving a dish according to y is a substitution tuple X~ = (II,, ..., I1;) such that

1. L ¢ Execute(AX,I"" U {¢p},0O)
2. 7 € Dishes(4X, I, 0)
3. y € Execute(4X, I, ©)

Example 49. Consider a recipe which includes the following process clause that uses wheat flour.

onhand(biscuit_mix, T6)
« do(mix(bowl), T5)
A do(add(measure(white_caster_sugar, 200, g), in(bowl)), T4)
A do(add(measure(unsalted_butter, 200, g), in(bowl)), T3)
A do(add(count(egg, 1), in(bowl)), T2)
A do(add(measure(plain_flour, 400, g), in(bowl)), T1)
A sequence([T1,T2,T3, T4, T5, T6])

Suppose we have a I' such that biscuit_mix is in Execute(4, I', ©). If we also have the following clause in 4, then we would get
—property(biscuit_mix, gluten_free) in Execute(4, I', O).

—property(biscuit_mix, gluten_free)
« contains(biscuit,plain_flour)
A —contains(biscuit, oat_flour)

Now suppose we make a substitution in the process clause where « is plain_flour and f is oat_flour. Then we would get
property(biscuit_mix, gluten_free) in Execute(4, I', ©) if we have the following clause in ©.

property(biscuit_mix,gluten_free)
« contains(biscuit, oat_flour)
A —contains(biscuit, plain_flour)

Example 50. Continuing Example 49, suppose we also want that biscuits are low fat, then we might have the property
property(measure(biscuit_mix, 800 g), low_calorie) defined by the following clause.

property(measure(biscuit_mix, 800, g), low_calorie)
« contains(measure(biscuit_mix, 800, g), measure(butter, X))
A lessthan(X, 100, g)

28



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558

The property can be satisfied with a term substitution of measure(unsalted butter,200,g) by measure(unsalted_butter, 100, g)
giving the following updated version of the process clause.

onhand(biscuit_mix, T6)
« do(mix(bowl), T5)
A do(add(measure(white_caster_sugar, 200, g), in(bowl)), T4)
A do(add(measure(unsalted_butter, 100, g), in(bowl)), T3)
A do(add(count(egg, 1), in(bowl)), T2)
A do(add(measure(plain_flour, 400, g), in(bowl)), T1)
A sequence([T1,T2,T3, T4, T5, T6])

This method assumes that we turn continuous improvements into binary improvements. Also, the method does not take into
account the trade-off of realizing improvements and minimizing changes. However, we could combine this method with previous
methods to be able to take into account secondary substitutions with the aim of satisfying desired properties and minimizing
secondary changes.

7.5. Comparison of approaches to substitution

The four drivers for substitution methods (as summarized in Table 1) have lead to methods that can be compared pairwise to
show there are situations where each gives different results to the others.

Similarity to missing item versus minimal change to recipe These give different substitutions when the former picks the nearest
ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that requires a shorter
mitigation. For example, if there are two choices g, and g, for the missing item « where d(a, §|) < d(a, f,), and if we choose
B, then we require the minimal mitigation ¥, and if we choose f, then we require the minimal mitigation ¥, where ¥, is
shorter than X;. So the similarity to missing item method picks g, whereas the minimal change to recipe method picks g,.

Similarity to missing item versus similarity to original dish These give different substitutions when the former picks the nearest
ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that together with any
mitigation results in a dish that is nearest to the original dish. For example, if there are two choices g, and g, for the missing
item a where d(a, §;) < d(a, B,), and if we choose #, then with the minimal mitigation X, we get dish =, and if we choose
p, then with the minimal mitigation ¥,, we get dish z,, where d(x, z|) > d(x, z,). So the similarity to missing item method
picks p, whereas the similarity to original dish method picks f,.

Similarity to missing item versus improve specified properties of dish These give different substitutions when the former picks
the nearest ingredient or equipment to the missing item, whereas the latter picks the ingredient or equipment that as part
of a substitution sequence leads to a dish with required properties. For example, if there are two choices g, and g, for the
missing item a where d(a, ;) < d(a,f,), and if we choose #; then with the minimal mitigation X, but we get a cooking
session that does not satisfy the desired property ¢, whereas if we choose g, then with the minimal mitigation X,, we get
a cooking session that does satisfy the desired property ¢. So the similarity to missing item method picks g, whereas the
improvement to dish method picks f,.

Minimal secondary changes versus similarity to original dish These give different substitutions when the former picks the
ingredient or equipment that requires a shorter mitigation, whereas the latter picks the ingredient or equipment that together
with any mitigation results in a dish that is nearest to the original dish. For example, if there are two choices g, and g, for
the missing item «, and if we choose , then we require the minimal mitigation ¥, and if we choose g, then we require
the minimal mitigation X, where X, is shorter than X%,. Also, if we choose f; then with the minimal mitigation X, we get
dish 7, and if we choose f, then with the minimal mitigation X,, we get dish z,, where d(z, z;) > d(x, 7,). So the minimal
change to recipe method picks f;, whereas the similarity to original dish method picks g,.

Minimal secondary changes versus improve specified properties of dish These give different substitutions when the former
picks the ingredient or equipment that requires a shorter mitigation, whereas the latter picks the ingredient or equipment
that as part of a substitution sequence leads to a dish with required properties. For example, if there are two choices §; and
B, for the missing item a, and if we choose #, then we require the minimal mitigation X, but we get a cooking session that
does not satisfy the desired property ¢, and if we choose f, then we require the minimal mitigation X,, but we get a cooking
session that does satisfy the desired property ¢. Also suppose that X, is shorter than %,. So the minimal change to recipe
method picks g;, whereas the improvement to dish method picks g,.

Similarity to original dish versus improve specified properties of dish The former picks the ingredient or equipment that to-
gether with any mitigation results in a dish that is nearest to the original dish, whereas the latter picks the ingredient or
equipment that as part of substitution sequence leads to a dish with required properties. For example, if there are two choices
p, and p, for the missing item «, and if we choose g, then we require the minimal mitigation |, and we get dish z,, but we
get a cooking session that does not satisfy the desired property ¢, and if we choose g, then we require the minimal mitigation
%,, and we get dish z,, but we get a cooking session that does satisfy the desired property ¢. Also suppose d(x, ;) < d(x, 75).
So the similarity to original dish method picks g,, whereas the improvement to dish method picks g,.

29



A. Bikakis et al. Data & Knowledge Engineering 163 (2026) 102558

So the four methods give us a range of different options for how to do substitution. Therefore, it is necessary to know the driver
for substitution for deciding which method to use as we can clearly see that the resulting recipe can be quite different to the original
recipe.

8. Inconsistency-directed substitution

In this paper, we have presented secondary substitutions as being identified via inconsistencies with integrity constraints. In
this section we consider types of integrity constraints, and therefore types of situation that require mitigation following primary
substitution, and we consider how we can reason and resolve inconsistencies efficiently. Note, we could also make primary
substitution inconsistency-directed. For this, we could include integrity constraints for the ingredients and equipment, and so if
any are missing, then we infer an inconsistency. We leave consideration of inconsistency-directed primary substitutions and instead
focus on inconsistency-directed secondary substitutions in this section.

8.1. Types of integrity constraints

Integrity constraints are central to identifying the need for mitigation. These integrity constraints conform to specific formats,
and importantly, they may be generated automatically. We start by considering the following typology of integrity constraints, and
then consider how we can generate them automatically.

Action duration Many actions have a specified duration (fixed or range). For example, the following is a duration range term
boil(penne, 12 — 14 min). However, it is possible that the specified duration differs from what is recorded in the knowledge
graph about the ingredients and actions on them. For example, we may have the condition do(boil(penne,2 min),T) in a
process clause, whereas the knowledge graph may have the tuple penne,boil_time, 12 — 14 min. So we have the integrity
constraint.

1 < do(boil(penne,D),T) AD # 12 — 14 min
Onhand quantity Many onhand atoms involve either count or measure terms. For example, onhand(count(eggs, 4), T). So if we can
infer multiple onhand atoms with the same food item but with a different count, then we have inconsistency.
1 « onhand(count(X,Y),T) A onhand(count(X,Z), T) AY # Z
Similarly, if we can infer multiple onhand atoms for the same food item but with a different count, then we have inconsistency.
1 <« onhand(measure(X,Y),T) A onhand(measure(X,Z),T)AY # Z

The use of the above measure integrity constraints assumes that we have sufficient background knowledge to deal with
different units.

Consume quantity As with onhand count/measure integrity constraints, we require integrity constraints to ensure the same
food item is not consumed in different quantities at the same time. For example, the atoms consume(count(eggs,4),t) and
consume(count(eggs, 3),t) would imply an inconsistency.

1 « consume(count(X,Y),T) A consume(count(X,Z), T) AY # Z

Consume availability If a consume atom specifies that a certain quantity of a food item is required, but the onhand atom specifies
a different quantity, then we have an inconsistency.

1 « consume(count(X,Y), T) A onhand(count(X,Z2),T)AY # Z

Onhand location Onhand atoms can incorporate location features. For example, the onhand atom onhand(in(eggs,bowl), T)
specifies that the eggs are in the bowl. Various kinds of constraints are required to ensure that items are in the correct
location (i.e conform to the change of location that follow from an action), and not in two places at the same time.

1 < onhand(in(X,Y),T + 1) A onhand(in(X,Y),T) A do(pour(X,Z),T) AY # Z

Parallel actions We can use integrity constraints to ensure that there is at most one action undertaken at each point in time.

1 « do(X,T1,T2) Ado(Y,T3,T4) AX # Y Abefore(T1,T3) A before(T3,T2)

Preparation The following integrity constraint then identifies that we cannot have sliced_carrot if we do not have the action
do(slice(carrot) and we did not start with sliced_carrot as an initial ingredient. Here, we have assumed an extra kind of
atom for the ingredients.

1 <« onhand(sliced_carrot,T3)
A ~do(slice(carrot), T2)
A mingredient(sliced_carrot,T1)
A before(T1,T2) A before(T2,T3)
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Equipment For simple equipment, we may assume that we have an unlimited supply (i.e. more than would be required for any
normal recipe). So we have many plates, bowls, etc. However, some equipment will be limited. For example, we might assume
that we have one oven, one electric mixer, one bread making machine, one microwave, etc. So we may need constraints on
actions that would use the same equipment for multiple tasks.

1 <« do(mix with electric_mixer(X,D),T)
A do(mix_with_electric_mixer(Y,D),T)
AX#Y

We can define finer grained constraints to deal with more complex situations such as ovens where multiple items can go in
if use the same temperature. So it two items are in the oven at the same time and they need different temperatures, then
there is an inconsistency.

1 < do(put_in_oven(X, H1,D1),T1,T2)
A do(put_in_oven(Y,H2,D2), T3, T4)
AX#YAHL #H2 Abefore(T1,T3) A before(T2,T3)

Properties of food items Specific food items have specific properties. If we change the ingredients used to prepare a food item or
we change the cooking steps, then we may change some of those specific properties. For instance, if we do not use meat in
the preparation of a beef burger, then it may lose the property of having a meaty flavour.

1 « flavour(beef_burger,beefy) A ~contains(beef_burger,beef)

As another example, if we do not use chicken in the preparation of chicken supreme, then the name is incorrect. This is
captured by the following integrity constraint.

1 <« onhand(prepared(chicken_supreme), 7) A "use(chicken)

In the next subsection, we will consider how we can group these different types of integrity constraint according to how we
obtain them.

8.2. Generating integrity constraints

We group the integrity constraints in the previous section into three groups where each group indicates how we can obtain them.

Fixed group For this group, there is a fixed number of the integrity constraints irrespective of the language (i.e. the number of
actions, ingredients, etc.). For instance, if we adopt the onhand integrity constraints, then there be two of them irrespective of
the actions, ingredients, and equipment. Similarly, if we adopt the consume quantity integrity constraint, consume availability
integrity constraint, and parallel actions integrity constraint, then there would be one each of them.

Pattern-based group For this group, there is a schema for the integrity constraint, and that this schema can be instantiated with
the actions, equipment, ingredients, etc in the language. Members of this group include action duration integrity constraints,
onhand location integrity constraints, preparation integrity constraints, and equipment integrity constraints. For each type
of schema, the number of integrity constraints can be calculated. For instance, for the schema for the equipment integrity
constraints, the number of these integrity constraints will equal the number of items of equipment in the language since each
item of equipment gives an integrity constraint. Similarly, for the schema for the action duration integrity constraints, the
number of these integrity constraints will equal the product of the number of items of actions, and the number of food items,
in the language.

General group For this group, the format depends on the kind of knowledge available. Some of them could be obtained by
a transformation from knowledge graphs as we explain below. Members of this group include onhand location integrity
constraints and properties of food items integrity constraints. Furthermore, for this type of integrity constraint, there is a
potentially open-ended number of them.

So some types of integrity constraint (namely, onhand quantity, consume quantity, consume availability, multiple keys, and
parallel actions) are either as specified in the previous section or they can be adapted from them, whereas some types of integrity
constraint are more challenging to develop as there may be a large number of them, and there may be a need to have adequate
knowledge graphs, as well as methods for automatically generating them (action duration, onhand location, preparation, and
properties of food items).

Example 51. Consider the example of an action duration integrity constraint given in the previous subsection. Assuming, we have
a knowledge graph with an appropriate structure, we can automatically generate such integrity constraints. For instance, if we have
relations of the form cooking duration and cooking_style, and these appear in the following knowledgegraph triples, then we can
generate the atoms do(boil(penne,D),T) and 12 — 14 min, and hence obtain the integrity constraint.

(penne, cooking style,boil)
(penne, cooking duration, 12 — 14 min)
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We do not specify the structure of the knowledge graph here as this as is an open-ended task. However, we may assume that a
knowledge graph has relations that capture knowledge including: cooking styles for an ingredient (e.g. boil for pasta, toast
for bread); cooking times for an ingredient (e.g. 10-12 min for fusilli); result of an action on an ingredient or intermediate
food item (e.g. sliced_carrot is the result of the action slice on the ingredient carrot or dough is the result of the action
mix on the ingredients flour, yeast, and water); locations of ingredients after actions (e.g. location of ingredient salt
after action pour qualified by prepositional phrase in_bowl is bowl); equipment availability which provides local context
constraints about equipment (e.g. the number of available bread_making_machine is 1, microwave is 0, and mixing_bowl
is 4); key ingredients for a dish for example, beef and bap are key ingredients for the dish beef_burger); descriptors for
ingredients and dishes (for example, the dish beef_burger has the type of descriptor flavour with the parameter meaty,
the ingredient honey has the descriptor £1lavour with the parameter sweet, the dish biscuit with the parameter texture
has the parameter crumbly, and the ingredient oat_flour with the parameter allergy_information has the parameter
gluten_free). More general knowledge representation formalisms than a knowledge graph may also be required for generating
integrity constraints concerning properties of food.

8.3. Localizing issues via minimal inconsistencies

Inconsistencies are central to identification of the need of mitigation, and furthermore, they point to the kind of mitigation.
For example, if we have an inconsistency involving an integrity constraint of the action duration type, then we can try to fix the
inconsistency by changing the duration of the action.

Definition 21. Let (4, I', ©) be a cooking session. A minimal inconsistent subset of a cooking session is @ C (AU I' U ©) such that
@+ 1, and for all @' c &, @' ¥ L. Let MinInc(4, I', ©) be the set of minimal inconsistent subsets of (4, I, ).

Example 52. Consider a cooking session (4, I', ©) for a multi-layer cake with different cake mixes for each layer. Let I' contain the
following two atoms.

do(mix_with_electric_mixer(carrot_cake_mix,4 min),t13,t15)
do(mix_with_electric_mixer(sponge_cake_mix, 3 min), t12,t14)

Let the following clause be in ©. Hence, there is a @ € MinInc(4, I', ©) that contains exactly these three formulae.

1 <« do(mix with electric_mixer(X,D),T1,T2)
A do(mix_with_electric_mixer(Y,D),T3,T4)
A X #Y Abefore(T1,T3) Abefore(T3,T2)

Proposition 13. Let (4, I', ©) be a cooking session. For each @ € MinInc(4,1,0), |® N O| = 1.

Proof. For @ € MinInc(4, I',0), (A, I',0) - L. Therefore, there is a ¢ € @ such that Head(¢)) = L and for all w € Tail(¢), (4, I',0) - w.
Since there is no @’ C @ such that @' I~ L, there is no ¢/ € @ such that Head(¢') = L and ¢ # ¢'. Therefore, |[®nO| =1.

Given the above result, we can classify inconsistencies according to the type of integrity constraint. In addition, inconsistencies
can arise because the assumptions are problematic or because the recipe is problematic.

Recipe inconsistency: A recipe inconsistency arises whenever there are sufficient assumptions to give the intended dish 7 there
is also an inconsistency just involving A. In this case, for all I', if = € Execute(4, I', ©), then L € Execute(4, I', ©). So the cause
of the inconsistency is in 4.

Process inconsistency: A process inconsistency arises whenever there are sufficient assumptions to give the intended dish = there is
also an inconsistency involving an integrity constraint. In this case, for all I', if # € Execute(4, I', ©), then L € Execute(4, I, ©)
and L ¢ Execute(4, I, #). So the cause of the inconsistency is between 4 and 6.

Assumption inconsistency: This is an inconsistency involving the assumptions and so the inconsistency is for a specific cooking
session (4, I', ©). If 1 € Execute(4, I', ©) and there is a I'’ such that = € Execute(4, I'', ©), and 1 ¢ Execute(4, I'!, ©). So whilst
the session is inconsistency, there exists a set of assumptions, for which the intended item is produced and the session is
consistent.

If a cooking session is inconsistent, there is always a substitution that makes it consistent and still allows the intended food item
to be inferred. So any of the above three types of inconsistency can be fixed. The simple way to obtain this is to delete clauses using

clause substitution, or alternatively add conditions to clauses using condition substitution.

Proposition 14. Let (4, I', ©) be a cooking session for z. If L € Execute(4, I', ©), then there is a substitution tuple ¥ = (II,, ..., I1;.) such
that | & Execute(4X, I, 0)
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Proof. A drastic solution is to remove all the clauses in 4 and add a clause ¢ where Head(¢)) = = to 4, and replacing all the
assumptions with the conditions for this clause. Hence, the revised cooking session is given by (4[4/{¢}], I'[I"/Tail(¢)], ®). So this
revised cooking session can be chosen to be consistent and entail z. []

The above proof concerns a quite drastic situation, and normally it is not necessary for substitutions to be so drastic. For instance,
using term substitution is likely to be less drastic by maintaining more of the original recipe. However, term substitution does not
always resolve the problem as shown next.

Example 53. Consider the following clause in a recipe 4. and I" contain the conditions of this clause. Here, there are two knead
actions in the clause.

onhand(raised_dough, T4)
« do(leave_to_raise(dough, 30 min), T3, T4)
A do(knead(dough, 5 min), T2, T3)
A do(leave_to_raise(dough, 90 min), T1, T2)
A do(knead(dough, 15 min), TO, T1)
A onhand(dough, TO)
A sequence([T0, T1,T2, T3, T4])

Suppose there is an integrity constraint that is violated (e.g. assume that dough should be kneaded for 10 min as given below).
1 « do(knead(dough,D) AD # 10 min

To fix the clause, we might not be able to just use a substitution where the term knead(dough, 10 min) for knead(dough, 5 min) since
we would also swap knead(dough, 10 min) for knead(dough, 15 min) which may be incorrect for producing the desired food item. A
solution would be to separate the actions so that for instance, we have the actions first_knead and second_knead. In this way, we
could substitute for one action and not the other.

Proposition 15. Let (4,I,0) be a cooking session. If L € Execute(4, I', ©), then there is not necessarily a substitution tuple ¥ =
(Ily, I, ..., ;) such that each II, is a term substitution and 1 ¢ Execute(4X, I, O).

Proof. Consider Example 53 as a counterexample. []

The above proof is based on showing that if the terms are the same in the conflicting atoms, then term substitution won’t remove
the conflict as both atoms will be the same. However, with condition substitution and clause substitution, the recipe can always be
revised so that it is consistent with the integrity constraints.

Proposition 16. Let (4,1,0) be a cooking session for the food item =. If = & Execute(4, I’,©), then there is a substitution tuple
X =, 1,,...,II,) such that = € Dishes(4X, I'',0) and L & Execute(AX, I, 0).

Proof. We can choose these substitutions so that = follows from the revised session. For example, we can do a clause sub-
stitution [A/{¢}] where Head(¢) = =, and Tail(¢) is consistent with ©. So = € Execute(4[4/{¢p}], [T \ Tail(¢)],0) and L ¢
Execute(A[A/{¢}], ['[T \ Tail(¢)],0). [

We can have a trivial recipe that just says that we have the dish (such as Example 54).

Example 54. The following process clause ensures that the final food product i.e. victoria_sponge is always available.

onhand(baked(victoria_sponge),T) « T

We can stop this by insisting that there are ingredients that are not the final item. For instance, we could prohibit executions
where the intended output is in the assumptions.

Example 55. The following process clauses is for a one-step recipe (i.e. from the cake mix, we get the cake). So this would be
acceptable according to the above restriction.

onhand(baked(victoria_sponge), T)
« do(cook(cake mix), T)
A onhand(cake mix, T)

With our logic-based approach, we can specify a recipe in arbitrary detail. So we can choose the level of granularity that actions
are described. At one extreme, we can put all the actions in a recipe into a single process clause, and at the other extreme, we can
put each action in a separate clause. We illustrate these extremes in the following example.
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Example 56. Consider the following process clause that involves three actions for preparing scone with clotted cream and jam. As
a culinary note, this is the Devon method rather the Cornwall method for preparing scones.

onhand(prepared(scone_cream and_jam), T)
« do(spread_jam(scone), T)
A do(spread_cream(scone), T)
A do(cut_in_two(scone), T)
A onhand(scone, T)

Th above process clause can be split into the following three process clauses with each containing one process clause.

onhand(prepared(scone_cream and_jam), T)
« do(spread_jam(on(scone_halves(with(cream_on_top))), T)
A onhand(count(scone_halves(with(cream on_top),2),T)

onhand(count(scone_halves(with(cream_ on_top), 2)),T)
« do(spread_cream(on(scone_halves)), T)
A onhand(count(scone_halves,2),T)

onhand(count(scone_halves,2),T)
« do(cut_in_two(scone), T)
A onhand(scone, T)

When a minimal inconsistent subset is the result of an action duration or parallel action or multiple key integrity constraints,
then there is a substitution into the assumptions such that the minimal inconsistency is resolved and no new minimal inconsistency
is produced by the substitution. Essentially, the assumptions are revised so that the timepoints used ensure that the action duration
are sufficiently long, and actions are done sequentially.

Proposition 17. Let (4,T,0) be a cooking session for dish z. If = € Dishes(4, I',0), and @ € MinInc(4 U I' U O), and there is a
¢ € @ such that ¢ is the parallel action integrity constraint, then there is a set of assumptions I"’ such that @ ¢ MinInc(4 U I'" U ©) and
z € Dishes(4, I'’, ©).

Proof. Since, the overall recipe with timings can be represented by a proof tree, resolving the inconsistency is about making the
actions sequential rather than parallel, and therefore making the satisfaction of each process clause sequential rather than parallel.
Let ¢ be the parallel actions integrity constraint. Since ¢ is in a minimal inconsistent subset, there are assumptions do(«, 7;,7,) and
do(a’, 73,74) such that @ # o' and 7, is before z; and z; is before 7,. So there is a revised set of assumptions such that do(a, 71, 75)
and do(a’, 7}, 7;) such that 7, is before 73. In order to ensure that # is maintained in the final output, this may require other actions
to similarly have their timings separated. []

More generally, we can resolve the minimal inconsistencies that arise from substitutions. Whilst some substitutions might cause
further minimal in consistences, if we assume that our set of integrity constraints and background knowledge is sensible (Definition
17), then by Proposition 12, we can always find a substitution tuple that is a mitigation.

9. Related work

The use of computational methods to solve problems in cooking has been the focus of several studies and projects in the last
two decades. Some series of workshops have also been dedicated to this topic, such as the “Computer Cooking Contest” (CCC) from
2008 to 2017, the “Cooking with Computers” (CWC) workshops in 2012 and 2013 and the “Integrated Food Ontology Workshops”
(IFOW) since 2020. The focus of CCC was specifically on the adaptation of recipes using Case-Based Reasoning (CBR) techniques,
CWC was about the use of Al methods in cooking, while IFOW focuses on the development of vocabularies and data models for
various aspects of food such as nutritional data, eating patterns, agricultural treatments, etc. Below, we discuss how our work relates
to some of the studies presented in these forums, as well as to the broader literature in this area, focusing more on three topics:
representation and reasoning with recipes; ontologies and knowledge graphs; and computational methods for substitution.

9.1. Representation and reasoning with recipes

Most of the CBR-based solutions presented in CCC rely on a structured (XML or ontology-based) representation of recipes. Each
ingredient as well as the dish produced by the recipe are commonly represented as separate entities. This doesn’t however hold for
the preparation steps, which in most cases have the form of a single block of text. Because of that, their substitution methods do
not take into account the adaptation of the cooking actions that may be required for processing the new ingredients. Two notable
exceptions are the Taaasie [14,15] and CookingCAKE systems [16]. The former uses a tree representation of recipes where nodes
represent recipe ingredients or outputs of cooking actions and edges represent actions. They use this representation either to enable
users to correct or complete recipe trees, which have been created from recipe texts using NLP, using a graph editing tool [15]; or to
enable the textual adaptation of recipe preparations by identifying common sequences of actions applied to a single ingredient (they
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call such sequences “prototypes”) and finding, using Formal Concept Analysis, the prototype that best fits the given recipe [14]. Their
tree representation is similar but less expressive than the recipe graphs that we propose (for example, it cannot model by-products
of a cooking action), and they do not deal with some of the reasoning tasks that we address such as the comparison or composition
of recipes. The RDF representation of recipes that they proposed more recently [17] captures other aspects of a recipe such as the
type of the produced dish and the types and quantities of the ingredients, but not the cooking actions.

CookingCAKE is another CBR system aimed at the adaptation of recipes that is based on the representation of recipes as
workflows and the use of Process-Oriented Case-Based Reasoning (POCBR) techniques. The adaptation methods they use are based
on decomposing workflows into meaningful sub-components called workflow streams [16]. A workflow stream is a collection of
connected tasks that create a new item. A workflow (modelling a recipe) can be adapted by using the workflow streams of other
workflows (recipes) that produce the same item in a different manner, e.g., with other tasks (cooking actions) or data (ingredients).
Their methods are based on similar ideas with ours, especially with respect to the composition of recipes and structural substitution.
They do not, however, provide methods for validating the generated recipes. Moreover, being based on CBR, the proposed solution
cannot easily be extended with other types of knowledge (e.g. commonsense knowledge, user preferences, etc.); on the other hand,
declarative systems such as the one we present in this paper are much more modular and adaptable to new types of knowledge.

Other studies that represent recipes as workflows are [18-22]; their aims, however, are different from ours. Most of them focus on
extracting workflow graphs from recipe texts using NLP [19,21,22]. The system described in [18] aims at facilitating the retrieval
of recipes from workflow repositories, while [20] focuses on clustering recipes. Graphs for representing recipes were also used
in [23,24]. Similarly to our recipe graphs, both ingredients and cooking actions are modelled as nodes; however, their graphs do
not include intermediate products or by-products. Their aims were also different; [23] developed methods for retrieving recipes
from the Web, while [24] aimed at the analysis of recipes for example to identify usage patterns of ingredients and cooking actions
and to compare recipes.

A representation of recipes as plans was recently proposed in [25]. A recipe is represented as a sequence of steps, each of which
corresponds to a cooking action and includes various parameters such as the input ingredients, the output of the action, allergen
information, etc. A plan-based representation is indeed a promising alternative; however, reasoning on recipes is left by the authors
for future work.

Whilst the primary of our paper is to investigate the notion of substitution, we have outlined how recipes can be modelled using
classical logic. Our approach therefore differs from the proposals we have discussed in this subsection. Classical logic provides an
expressive formalism for capturing key details of recipes such as dealing with time and quantities, and using clauses allows for a
direct representation of the preconditions and actions of a recipe to be the preconditions of a clause, and the post-conditions to be
the consequent of a clause. Another advantage of our approach is that we can ground the recipe steps to give a set of ground clauses
which can then be used directly with a SAT solver to check for consistency or entailment.

9.2. Ontologies and knowledge graphs

The use of ontologies for formally representing food or recipes has recently been gaining interest. Many of the CBR-based systems
that participated in CCC used a simple ontology of ingredients to identify possible ingredient substitutions [14,16,26-29]. Most of
these ontologies were implemented in RDFS but, apart from the taxonomic (subclass) relations, they do not capture any other types
of relations among the ingredients or between the ingredients and the cooking actions. They are not, therefore, able to support most
of the reasoning tasks that we address in this paper.

A more comprehensive, general-purpose ontology for foods is the FoodOn ontology [30,31]. This has the form of a multi-faceted
taxonomy organizing foods by source organism, harvest state, region of origin, colour, production process, chemical composition,
physical state, etc. The ontology contains two elements, which could be used for modelling substitutions in cooking: a symmetric
property called “has food substance analog”; and a set of classes (e.g. beverage analog, chocolate product analog, egg product
analog, etc.), which are used to explicitly model food product analogs for various types of food. Both elements, however, are aimed at
modelling generic food analogs, rather than recipe-specific substitutions of ingredients. Due to the small number of object properties,
it cannot support reasoning over recipes. It nevertheless provides a very comprehensive classification of foods, which we plan to
exploit in the future, for example, for developing the comestibles hierarchy.

An ontology design pattern for ingredient substitution in recipes was recently proposed in [32]. The model captures different
aspects of a dish (diet, technology, tastiness). It models a recipe as a set of ingredients and a set of instructions, and ingredient
substitution as transformations of these sets, which may be required to encompass ingredient change. Its value, however, is mostly
representational, as it does not support reasoning over recipes and ingredient substitution.

FoodKG is a large-scale food knowledge graph, which integrates nutrition information, general food substitutions, recipe data
and food taxonomies [33]. It describes each recipe as a set of ingredients, each of which is associated with a quantity and a unit
of measurement. It does not, however, describe cooking actions or the sequence in which the ingredients are processed and cannot
therefore support most of the reasoning tasks that we describe in this paper.

Our logical framework is ontology-agnostic but, being based on propositional logic, is fully compatible with ontologies. It can
therefore be enriched with ontological knowledge available in the food ontologies and knowledge graphs discussed above. For
example, background clauses (see Section 3.2.3) could be automatically populated with class-hierarchy information from FoodOn
or other related ontologies, while property clauses (see Section 7.4) could be instantiated with nutritional, compositional, or flavour
data available in FoodKG. Furthermore, ontology-based semantic similarity metrics can complement our distance functions (see
Section 4.1), offering an alternative way to identify candidate substitutes using taxonomic proximity or shared properties. Exploring
such integrations is part of our future work plans.
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9.3. Substitution

There are a number of proposals that explore how substitutions could be found for ingredients in recipes. By analysing existing
recipes, cooking actions and the ingredients that they are commonly applied to can be identified, and this can then be used to identify
candidates for substitution [34]. More generally, large datasets of recipes can be analysed to determine whether an ingredient tends
to be essential or can be dropped or added, whether the quantity of an ingredient can be modified, which ingredients tend to co-
occur frequently, and user-generated suggestions for functionally equivalent ingredients, and for healthier variants of a recipe [35].
They can also be identified by combining explicit information about the ingredients in FoodKG, and implicit information from word
embeddings [13]. A common approach followed by systems that use an ontology of ingredients is to pick substitute ingredients from
classes that are close to the class of the original ingredient; for example, from a parent or a sibling class [14,16,26-29]. In some of
these systems, the ingredient ontology is enriched with values on the subclass relations, which indicate how suitable it is to replace
one type of ingredient with another [26,28]. None of these methods provide a formalism for representing or reasoning with recipes,
but they could be used for finding candidates for substitution for use in our framework.

Finally, there are two other proposals that, although not specifically focused on cooking, could also be applied to this domain.
The first one is a proposal for using a formalism to capture features of objects (namely, shape, material, and role of the object)
and then reason with that knowledge to identify alternative uses [36]. Potentially, this logic-based approach could be adapted for
recipes by perhaps drawing on the approach in our proposal. The second is a logic-based approach to activity recognition, based
on a logic programming implementation of Event Calculus [37]. The focus of that work is on the representation and recognition of
long-term activities as temporal combinations of short-term activities. Although their approach cannot be applied as it is to address
ingredient substitution or any other reasoning tasks that are specific to recipes, mainly due to the lack of an explicit representation
of comestibles and their relations with cooking actions, it does provide some ideas that we might implement in future extensions
of this work, e.g. to model and reason with the temporal aspects of recipes.

10. Discussion

In this paper, we have proposed a commonsense reasoning framework for substitutions in cooking. Overall, our perspective
has been to reduce the problem to a combination of using distance measures to compare food items (ingredients, intermediate
items, and dishes), to compare equipment, and to compare processing steps, and using inconsistency management where integrity
constraints are used to flag when mitigations are required, and inconsistency resolution is via second substitutions.

To develop our perspective, we have made the following contributions: (1) Representation of candidates for substitution using
notions of distance between the original and possible substitutes; (2) Specification of substitution as one or more syntactic operations
on the logical representation of recipes; (3) Conceptualization of the primary and secondary stages of substitution; (4) Methods for
four types of driver for substitution (i.e. similarity to missing item; similarity to original dish; minimal change to recipe; improve
final dish); And (5) Investigation of secondary substitutions as the identification and resolution of inconsistencies.

We see substitution as part of a broader range of abilities for repurposing. We can consider cases of both substitution, i.e. finding
an alternative for a missing resource, and exploitation, i.e. identifying a new role for an existing resource. For a discussion of
repurposing, see [38]. The human ability to repurpose objects and processes is universal, but it is not a well-understood aspect of
human intelligence. Repurposing arises in everyday situations such as finding substitutes for missing ingredients when cooking, or
for unavailable tools when doing DIY. It also arises in critical, unprecedented situations needing crisis management. After natural
disasters and during wartime, people must repurpose the materials and processes available to make shelter, distribute food, etc.

In parallel work, we have developed a graph-based formalism for representation and reasoning with recipes. It incorporates
subset of the features that we incorporate in this paper — essentially comestibles (ingredient, intermediate food items, and final
products) and actions — but it can be directly encoded as a programme in answer set programming [5]. In future work, we will
extend this computational approach with the features of the logic-based approach in this paper. Furthermore, there is a pipeline
we could develop starting with recipes in free text that can be translated into graphical formalism, which can then reasoned with
using ASP, and substitutions being identified using the framework proposed in this paper. Investigations into the NLP translation
of into graphical formalism include those that focus on the explicit information in recipes [22,23,39,40], and an investigation into
the implicit information in recipes, i.e the intermediate comestibles that arise in recipes that might not be explicitly mentioned in
the recipe, [41].

Once we have a recipe represented in the logic (i.e. a specific set of clauses 4), there are various properties that we can consider
for it including the following.

Finite session This means that the execution of the cooking session results in a finite set of inferences. So (4, I',0) is a finite
session iff Execute(4, I', ©) is finite.

Finite recipe This means that there is no set of assumptions that would result in an infinite execution. So 4 is a finite recipe iff
Execute(4, I', O) is finite for all finite I'.

Viable session With respect to a specific food item to be prepared, a cooking session is viable means that the execution of the
session would result in the food item being produced. So 4 is viable session for = iff = € Execute(4, I', ©).
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Viable recipe With respect to a specific food item to be prepared, a recipe is viable means that there is a set of assumption that
would result in an execution with food item being produced. So 4 is viable recipe for = iff there isa I' s.t. 7 € Execute(4, I', ©).

Minimal recipe With respect to a specific food item to be prepared, a recipe is minimal means that any subset of the recipe would
not produce the item. So 4 is minimal recipe for r iff for all 4’ C A s.t. = & Execute(4’, T, ©).

Trivial session With respect to a specific food item to be prepared, a cooking session is trivia means that the item is assumed
(i.e. it is given as an ingredient). So (4, I', ©) is trivial session for = iff 7 € I'.

Consistent session This means that the execution of a cooking session is consistent. So (4, I', ©) is consistent session iff L ¢
Execute(4, I', ©).

Consistent recipe This means that for all sets of assumptions that are consistent with the integrity constraints and background
knowledge, the execution is consistent. So 4 is consistent recipe w.r.t. O iff for all consistent I', L ¢ Execute(4, I', ©).

We now consider specific examples of recipes, and how they can be analysed using the above properties. The following example
illustrates failure of the finite property.

Example 57. The following preparation clauses can give an infinite execution since the egg can be moved from one plate to the
other.

onhand(on(egg, plate2), T3) onhand(on(egg, platel), T3)
< put(egg, on(plate2), T,) « put(egg, on(platel), Ty)
A onhand(on(egg, platel), T;) A onhand(on(egg, plate2),T;)
A before(Ty, Ty) Abefore(T,, Tg) A before(Ty,T,) A before(T,, T3)

An empty recipe (i.e. 4 = f) does not give a viable session unless it is a trivial session. In general, minimality of assumptions is
desirable, so that we minimize the ingredients and actions required, and minimality of process clauses in the recipe is desirable so
that we minimize the ingredients consumed, the actions undertaken, and the production of unnecessary food items

The finite, viable, consistent, trivial, and minimal, properties capture simple and natural commonsense questions one might ask
of a recipe. When one of these properties fails, they can be explained in terms of the specific clauses that cause the failure.

In future work, we will further investigate integrity constraints and background knowledge including generating integrity
constraints automatically from knowledge graphs where there are potentially many triples in a knowledge graph and do we decide
which pairs of triples can be used to make an integrity constraints; development of methods for generating inconsistency constraints
and background knowledge from data; acquiring and representing negative properties (e.g. bread made with yeast but we don’t want
it to taste of yeast); consideration of refinement of the methods to allow for use of hard and soft constraints.

Also, in future work, we will consider how to reason about the persistence of ingredients using non-monotonic reasoning, and
provide more detailed coverage of how to represent and reason about recipes including how to keep track of the quantities of
intermediate products and by-products of cooking. Persistence is required when fluents that have been unchanged. In other words,
if there is no consume atom for some quantity of that item, then the same quantity of the item is available at the next point in time.
So if it cannot be inferred that the item has not been consumed, we can make the default inference that the item is still available
to be consumed. This future work is likely to draw on formalisms for analogical reasoning [42-44], temporal reasoning [2,3,45],
and commonsense reasoning [46-51].
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