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Abstract

This study investigates how the collective mobility (including movement and visiting) of residents and non-residents
affects neighbourhood burglary levels. While past research has linked mobility to urban crime, this study explores
how these relationships vary across population groups and social contexts at the neighbourhood level. Using mobile
phone GPS data, we distinguished between residents and non-residents based on daily movement patterns. We
then measured their mobility within defined spatial and temporal units. An explainable machine learning method
(XGBoost and SHAP) was used to assess how mobility patterns influence burglary in London’s LSOAs from 2020

to 2021. Results show that increased collective mobility is generally associated with higher burglary levels. Specifically,
non-resident footfall and residents’ stay-at-home time have a stronger influence than other variables like residents’
travelled distance. The impact also varies across neighbourhoods and shifts during periods of COVID-19 restric-

tions and relaxations. These findings confirm the dynamic link between mobility and crime, highlighting the value

of understanding population-specific patterns to inform more targeted policing strategies.

Keywords Mobile phone GPS data, Human mobility, Explainable machine learning, Geo big data, Crime analysis

1 Introduction

Collective human mobility refers to the aggregated pat-
terns of individual or group movements and visits across
geographic areas (Barbosa et al. 2018). Typically, human
mobility is examined through two distinctive dimen-
sions: movement, which captures flows and trajectories
between locations and reflects the distances and extent
people travel in daily life (Alessandretti et al. 2020; Gon-
zalez et al. 2008; Schlidpfer et al. 2021), and visiting,
which reflects frequency and duration at specific place/
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destinations, such as shopping centres or other social
activity hubs (Papandrea et al. 2016; Chen et al. 2016).
Understanding these mobility patterns is highly valuable
for urban research as they reveal population movement
and visiting across urban areas. Linking such collec-
tive mobility patterns to crime patterns can help to dis-
entangle the spatio-temporal crime dynamics in urban
neighbourhoods.

Opportunity theories suggest that crimes tend to con-
centrate in specific urban areas or locations character-
ised by high volumes of citizen activity and foot traffic
providing opportunities for offenders to commit crimes
(Brantingham and Brantingham 2016; Felson and Cohen
1980; Cohen and Felson 1979). This can be related to the
population’s collective mobility patterns incorporating
movement and visiting behaviours, which play a key role
in the convergence of potential offenders, targets, and
guardians within a specific urban space, thereby affecting
crime opportunities (Levy et al. 2020; Cagney et al. 2020).
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For example, a bustling commercial street with high foot-
fall traffic during business hours might experience higher
theft crime rates due to the increased opportunities to
attract offenders. Conversely, residential areas with lit-
tle resident activity during working hours might be more
susceptible to burglaries due to a lack of guardianship
(Browning et al. 2010).

In addition, social disorganisation theories argue that
crime is not simply the result of individual factors but
is also influenced by the socio-economic characteristics
of the geographical areas (e.g., neighbourhoods) where
residents live. This phenomenon is commonly called the
neighbourhood effect, which refers to the fact that crime
rates tend to be higher in disadvantaged neighbour-
hoods whose residents tend to have difficulty in develop-
ing social cohesion and informal social control against
crime occurrences (Shaw and McKay 1942; Sampson
and Groves 1989; Sampson et al. 1997; Graif et al. 2014).
While static socioeconomic factors can strongly impact
the crime rates in neighbourhoods, exploring human
mobility can further explain the movement and interac-
tions of both residents and outsiders that influence crime
levels. Previous studies have examined the connections
between crime levels and neighbourhood disadvantage
measured by the residents’ mobility dynamics conditions
in neighbourhoods (Levy et al. 2020; Browning et al.
2020; White and Renk 2012).

The nexus between opportunity and neighbourhood
theoretical approaches suggests a complex interplay
between localised crime opportunities and broader
neighbourhood contextual characteristics, leading to a
mixed-effect understanding of crime patterns in urban
neighbourhoods. Simply put, crime rates tend to be
higher in urban areas with low social cohesion and infor-
mal social control (i.e., more disadvantaged neighbour-
hoods), and with high crime opportunities as well as low
levels of guardianship (Sampson and Groves 2017; Cohen
and Felson 1979).

Previous crime studies have used census data to evaluate
social disorganisation in disadvantaged neighbourhoods,
specifically considering factors such as poverty, unemploy-
ment, residential instability and deprivation (Sampson and
Groves 1989; Sampson and Raudenbush 1999; Kawachi
et al. 1999; De Courson and Nettle 2021; Boggess and
Hipp 2010). In addition, static geographic land use or spe-
cific types of place data have been employed to measure
crime (opportunity) generator levels, especially represent-
ing the areas frequently visited by a significant portion of
the population (Brantingham and Brantingham 1995; Eck
and Weisburd 2015; Kinney et al. 2008). In recent years,
there has been a growing interest in utilising geo big data
for sensing the collective mobility of populations as an
alternative to traditional static data in the interpretation
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of crime patterns. This emerging stream also focuses on
discussions regarding the population’s impact on creat-
ing opportunities or offering protection and contribution
to the social conditions of neighbourhoods (Sampson
and Levy 2020; Jones and Pridemore 2019; De Nadai et al.
2020). An initial aspect of interest is that geo big data can
identify spatial and temporal collective activity patterns
of populations, such as the number of people present in a
specific area, including those who work, live, or visit there
at a given time. This has enabled the evaluation of how col-
lective mobility dynamically influences crime opportuni-
ties in urban areas.

A common approach involves examining geo big data
gathered from location-based services or mobile ser-
vice towers shared by numerous users to estimate the
population collective mobility (movement and visit-
ing) and link it with crime patterns in urban regions,
including geo-tagged social media data (Malleson and
Andresen 2015) and Call Detail Records (CDR) data
(Bogomolov et al. 2014; Long et al. 2021; De Nadai et al.
2020; He et al. 2020; Zhang et al. 2022; Rumi et al. 2018;
Tai et al. 2022). Notably, some studies have also lever-
aged sensed population activities (i.e., footfalls in urban
areas) instead of arbitrarily quantifying the presence of
ambient population using the numbers of users in data-
sets (Chen et al. 2023, 2022). This is because measur-
ing visits or stays to represent population activity is
more directly related to individual exposure to others,
and thus better reflects the population’s activities across
urban regions (Chen et al. 2022).

The second aspect of interest in geo big data and crime
analysis has concentrated on utilising the flow data for-
mat (information for the origin and destination of pop-
ulation movements) to assess the commuting or travel
patterns of the population linked to crime opportuni-
ties across urban regions, such as crowd-sourced mobile
phone user’s movement flow (Wu et al. 2022; Kadar
et al. 2020), transportation flows or trips (Kadar and
Pletikosa 2018; Song et al. 2018, 2019). Additionally, in
assessing the relationship between resident mobility and
crime, unlike some earlier studies that relied on census
population flow data (Graif et al. 2017, 2021; Browning
et al. 2017), recent research has begun to explore more
precise measures of resident collective mobility pat-
terns to better understand crime dynamics across neigh-
bourhoods. For example, Levy et al. (2020) used Twitter
social media data sets to measure residents’ collective
mobility and how it affects crime levels, and indicated
that trends in structural mobility (flows) obtain a nota-
ble impact on neighbourhood homicides. Other studies
have revealed that residents’ mobility patterns (e.g., resi-
dents frequently moving in and out of a neighbourhood)
can influence levels of neighbourhood disorganisation,
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consequently disrupting the establishment of community
cohesion which can help prevent crimes (Browning et al.
2017, 2020).

While empirical studies have linked population mobil-
ity to crime levels either through the lens of opportunity
or neighbourhood theories, there has been no extensive
investigation into the specific influence of different types
of collective mobility from non-residents or residents on
crime in neighbourhoods. The availability of high-resolu-
tion geo big data can facilitate the exploration of such dif-
ferent dimensions of sensed collective mobility patterns
in space and time. This offers a valuable opportunity to
explore how crimes are impacted by collective mobility
measured in a way that can separate the movements of
residents and visitors in neighbourhoods. In addition,
human mobility experienced substantial changes during
the COVID-19 pandemic due to social distancing meas-
ures in global cities (Hu et al. 2021; Galeazzi et al. 2021;
Cheng et al. 2022). These changes affected both the pop-
ulation movement and visiting behaviours, which also
alter opportunities for crime across urban neighbour-
hoods. Studying collective mobility during this period is
therefore very useful in understanding how disruptions
in normal social conditions influence crime dynamics.
Analysing these variations enables us to understand the
context-dependent mechanisms through which mobility
behaviour influences crime and offers insights for devel-
oping adaptive prevention strategies under extraordinary
societal conditions.

Thus, this study focuses on comprehensively inte-
grating opportunity and neighbourhood theories when
examining the influence of collective mobility on urban
crime, particularly distinguishing the effects of residents’
activities from those of non-residents in neighbour-
hoods. In this study, we focus on the two-dimensional
aspects of movement and visiting because they capture
complementary aspects of collective mobility that are
directly relevant to crime patterns (Browning et al. 2017,
2020). By disentangling these two dimensions, we are
better able to evaluate how mobility behaviours of resi-
dents and non-residents differentially influence burglary
risk in urban neighbourhoods. Burglary was selected
as the crime type for this research as prior studies have
shown that the patterns and prevalence of burglary are
closely linked to a variety of identified factors, including
residents’ activities and the overall social cohesion within
the neighbourhood community (Bernasco and Luykx
2003; Nobles et al. 2016). Neighbourhoods with more
resident interaction and stronger community connec-
tions typically have lower rates of burglary. In contrast,
areas where social engagement is limited and commu-
nity bonds are weaker tend to see higher rates of bur-
glary (Cancino 2003; Markowitz et al. 2001; Sampson and
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Groves 2017). This correlation highlights the suitability
of using burglary as a case study when considering col-
lective mobility in analysing crime patterns within neigh-
bourhoods. Burglary has also been shown to be sensitive
to shifting contexts, and studies have shown a relation-
ship between burglary patterns and the mobility restric-
tions that were enforced during the COVID pandemic
(Halford et al. 2020; Mohler et al. 2020).

In summary, the research questions for the current
study are: (1) How does the collective mobility of resi-
dents and non-residents affect crime occurrences in
local neighbourhoods? (2) Does this impact differ across
neighbourhoods with different conditions (e.g., different
levels of social disorganisation)? (3) Additionally, does
this impact change during different societal conditions,
such as during the pandemic?

This paper is organised as follows: The Data and meth-
ods section introduces the data used in the study area
and explains how this research defined collective mobility
patterns (both movement and visiting) for separate resi-
dent and non-resident populations. It also describes the
explainable machine learning techniques (i.e., XGBoost
and SHAP) employed in this study. The result section
presents and compares both global and local interpreta-
tions of the impact of mobility on burglary across a num-
ber of different modelling exercises across the study area
of London during a two-year observation period covering
the pandemic. The discussion section explores the signifi-
cance and insights drawn from the results and considers
the limitations. Finally, the conclusions section summa-
rises the key findings and potential future works from
this research.

2 Data and methods
2.1 Data and study area
As the case study for this analysis, London had a pop-
ulation of over 9.6 million in 2023. The metropolis
comprises 33 local authorities (LAs) and 4,835 local
neighbourhood areas officially referred to as Lower Super
Output Areas (LSOAs) in the UK census. For this study,
the LSOA geographical boundaries (as the primary geo-
graphical unit of analysis) in London were obtained from
the ONS data protocol'. The areas of London LSOAs
ranged from 18,362 m? to 15,797,244 m?, with a mean of
329,828 m? and a standard deviation of 638,819 m?. In the
UK context, the LSOA is commonly adopted as the unit
of analysis to reduce analytic complexity in crime studies
(Malleson and Andresen 2015; Tompson et al. 2015).
Burglary incident data covering the period from 2020
to 2021 were downloaded from the Metropolitan Police

! Office for National Statistics: https://www.ons.gov.uk/
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Service section of the UK Online Police Data Portal®. The
data include each crime event with corresponding spatial
(latitude, longitude, LSOA index) and temporal (month
and year) information.

The mobile phone GPS trajectory data set, including
spatial coordinates and timestamps for each point, was
anonymously collected from various applications (e.g.,
navigation, route planning, and outdoor sports) that
utilise location-based services (LBS)®. This anonymous
mobile phone data collection was conducted in compli-
ance with user agreements established under the Gen-
eral Data Protection Regulation (GDPR) to guarantee
the privacy and security of user information. This study
included 1,979,081 users representing approximately 22%
of the total resident population in London during the
two-year observation period from 2020 to 2021.

As the key neighbourhood condition factor considered
in understanding crime patterns (Bursik Jr and Grasmick
1993; Messer et al. 2006), the latest urban deprivation
indices (2019 version) data in London were downloaded
from the Ministry of Housing, Communities & Local
Government website*. The ‘Indices of Deprivation’ data
of London is the measurement of several types of depri-
vation for the 4,835 LSOAs. The main index used in this
work is called the ‘Index of Multiple Deprivation (IMD),
which combines weighted measurement across seven
distinct subtypes of aspects of deprivation, including
‘Income Score (rate), ‘Employment Score (rate), ‘Educa-
tion, Skills and Training Score, ‘Health Deprivation and
Disability Score; ‘Crime Score; ‘Barriers to Housing and
Services Score’ and ‘Living Environment Score’ As the
IMD measures the level of deprivation within a neigh-
bourhood reflecting the overall socio-economic condi-
tions of the area, it is a commonly used variable in crime
studies across the UK (Lymperopoulou and Bannister
2022; Weir 2019).

2.2 Characterising collective mobility (movement
and visiting) from mobile phone GPS data

To characterise collective mobility (movement and visit-
ing behaviours) within the study’s spatio-temporal units
(i.e., the LSOA-level and month-level) of different groups
of populations, the GPS data obtained from anonymous
users were prepared and analysed. The detection and
measurement of movement and visiting behaviours for
residents and non-residents are presented in Fig. 1 and
consist of two main steps: The objective of ‘Step 1’ is to
differentiate between residents and non-residents by

% Data.police.uk: https://data.police.uk/
3 Sources: Location Sciences Al, now known as Sorted: https://sorted.com/

* Ministry of Housing, Communities & Local Government: https://www.
gov.uk/government/statistics/english-indices-of-deprivation-2019
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identifying users’ stay patterns and then determining the
home location based on daily GPS trajectory data from
users’ mobile phones. Then, for each observation spatial
and temporal unit/grid, ‘Step 2’ defines and measures the
movement behaviours for residents only, including stay-
at-home duration time, maximum distance from home,
travelled distance, mobility entropy and radius of gyra-
tion. A separate variable is then created in ‘Step 2’ which
represents visiting behaviours, i.e., aggregated stays as
footfalls that are not at home or work locations, for both
resident and non-resident groups.

To clarify the mobility behaviour variables for residents
and non-residents, Table 1 outlines the main definitions/
descriptions of residents, non-residents and collective
mobility variables used in this study.

2.2.1 Resident and non-resident discrimination based
on stay and home location detection

Stay definition. A stay refers to a single user u spending
some time at one location, where the user’s recorded GPS
points are concentrated at or around the same location
during the observed duration (Hariharan and Toyama
2004; Zheng 2015; Zhao et al. 2016). Figure 2 illustrates
the process of detecting a user’s stay trajectory using sev-
eral stay points from raw GPS data. Formally, a user’s raw
GPS trajectory P can be represented as a set of locations 1
with temporal information, so each GPS point can be
denoted as P; = (1;, ;). Given that a stay trajectory S can
be extracted from P;, each stay can be represented as
S; = (li: tistart , tiend )

In this analysis, the stay detection algorithm proposed
by Hariharan and Toyama (2004) was implemented. This
algorithm relies on two pre-defined parameters: Ad — the
maximum Euclidean distance that the recorded points
of a user’s movement around a point/location to count
as a stay, and At — the minimum duration that the GPS
records stay within time distance to qualify as a stay at
that location. For this study, Ad and At were set to 50
meters and 5 minutes to delineate stays from the raw GPS
trajectory data. The parameters are based on the assump-
tion that stays identified from GPS points using these
thresholds represent the typical range of an individual’s
visits to a location, and have been commonly used in
urban analytics (Zhao et al. 2015; Chen et al. 2023, 2025).
For example, using a threshold of 5 minutes and 50 meters
to define stays, Kang et al. (2005) demonstrated that these
parameter settings effectively identify significant places
from GPS location points. It is acknowledged, however,
that this tests a single stay threshold and further research
might explore the implications of this choice further.

Home location delineation. Using the semantic infor-
mation in relation to human residence behaviour, we
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Step 2: Measuring mobility for residents and non-residents

Movement behaviours (only Visiting behaviours (both
residents) residents and non-residents)

1. Stay at home duration time
2. Maximum distance from home
3. Travelled distance
4. Mobility entropy
5. Radius of gyration

1. Footfall
(Aggregated stay counts)

Fig. 1 The measurement of movement and visiting behaviours for residents and non-residents based on GPS mobile phone trajectory data

Table 1 A checklist for the definitions/descriptions of residents, non-residents and mobility variables used in this study

Name Definition/description

Residents For one specific neighbourhood (LSOA), a resident is characterised as a user who has a home location
within this LSOA in one day's observation

Non-residents For one specific neighbourhood (LSOA), a non-resident is characterised as a user without a home location
within this neighbourhood in one day's observation, or without home location detected

Residents’movement behaviour variables*  Resident’s movement behaviour variables are a set of five categories to characterise the distance, entropy,
and duration of this resident’s movement, including residents'maximum distance from home (RMDH),
residents'radius of gyration (RRG), residents’travelled distance (RTD), residents mobility entropy (RME),
residents’ stay-at-home duration time (RSHDT)

Residents'visiting behaviour variable** For one LSOA, residents' visiting behaviour variable is represented by residents'footfalls (RF), counts
of stays within this LSOA where the home location is situated

Non-residents'visiting behaviour variable**  For one LSOA, non-resident’s visiting behaviour variable is represented by non-residents’footfalls (NRF)

*LSOA- and month-level measurement can be found in Sect. 2.2.2
**| SOA- and month-level measurement can be found in Sect. 2.2.3

can infer the user’s home location based on the move- frequently during the nighttime period of a day. Home
ment and stay pattern from their detected stay trajec- location detection % can be described as:

tory (Csdji et al. 2013; Phithakkitnukoon et al. 2012). In

this analysis, a user’s () home location was defined as h(S;u) = “’gmf’x‘{s" Rt [t"ighhbeg“"'t"ighffe"d}H (1)
the detected stay location that the user visits the most
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Fig. 2 A user’s stay trajectory (across three LSOAs) generated from raw GPS points through stay detection. The grey boundaries are denoted

as LSOA X, LSOAY, and LSOA Z

For the purpose of this analysis, the night-time period
is set to be from 11 PM to 6 AM for implementing the
home location detection, i.e., one user’s home location is
where a stay occurs most frequently from 11 PM to 6 AM
during the stay trajectories in one day. By implementing
stay detection and delineating home locations, it is pos-
sible to link each user’s home location to a neighbour-
hood area (represented by LSOAs in this study). Within
the context of LSOAs, stays can be categorised either as
those shared by residents or by non-residents within a
given day. For example, the stays are labelled as a resi-
dent of LSOA X (see Fig. 2) because the home location
(So) is identified in LSOA X though other stays of LSOA
X although this resident does undertake stays in other
LSOAs (here LSOA Y and Z) in a day. Thus, for LSOA
X, stays made by residents (individuals whose home
locations are in LSOA X) within LSOA X are labelled as
‘resident stays’ (Sp and Sy are the resident stays for LSOA
X) while stays they make to other LSOAs are labelled as
‘non-resident stays’ (Sz and Ss3 are the non-resident stays
for LSOA Y). In home location delineation, the mobile
phone data was securely processed for safe storage and
the home location information was eventually disposed
after the completion of this work.

2.2.2 Measuring movement variables for residents

In terms of resident movement behaviours, longer routine
trips may reflect reduced availability of capable guardi-
anship at home (Felson et al. 2020; Tseloni et al. 2004).
For example, when individuals travel further from their

residence, they are absent for a longer duration, which
weakens the routine guardianship and increases oppor-
tunities for residential burglary. In this regard, we employ
several distance-based variables, such as maximum dis-
tance from home and total travelled distance to capture
resident movements. Conversely, we also calculate the
duration of time spent at home to reflect the resident’s
presence at home. Following the movement distance meas-
ures that reflect guardianship in neighbourhoods, we also
include the radius of gyration, which captures the extent of
an individual’s habitual activity space. A larger radius indi-
cates greater spatial dispersion of daily routines, which may
weaken local guardianship by reducing time spent within
the immediate neighbourhood. Similarly, we incorporate
mobility entropy, which reflects the diversity and unpre-
dictability of routine movements. High entropy indicates
irregular schedules and spatial patterns with less predict-
able routines. Such irregularity may increase burglary
risk by reducing the consistency of natural guardianship
at home and it also makes guardianship level less predict-
able to offenders who might perceive this as an increased
risk of discovery. Another implication is that these mobility
behaviours are closely linked to the socioeconomic status
of residents and may indirectly influence neighbourhood
social control according to social disorganisation theory
(Browning et al. 2020). Therefore, including these variables
in our analysis allows us to examine the broader connec-
tions between different aspects of mobility behaviours and
burglary levels.
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In this analysis, the daily movement patterns of individ-
ual residents are measured based on their daily stay trajec-
tories. Subsequently, the measurements for all residents
across all LSOAs are aggregated at the LSOA- and month-
level as collective mobility variables. There are some spe-
cial variables that can be measured for resident movement,
including stay-at-home duration time, the maximum dis-
tance from home, the travelled distance, mobility entropy
and radius of gyration. Whilst measured from the home
location (Sp), these movement variables reflect the resi-
dent’s whole daily mobility trajectory across the urban
areas (i.e. they are not restricted to movement within the
home LSOA). These are now defined in turn.

Stay-at-home duration time. A resident’s stay-at-home
duration time (hours) is the total stay duration time length
at the home location. This duration time (including the
night-time period) can be measured from the detected
home location in Sect. 2.2.1. In detail, based on an individ-
ual (#) home location’s (/) stay (s, = (1h,thstart,thend )), one
user’s () stay-at-home duration time (A, ) can be calcu-
lated by A, = £t — ¢ end,

The maximum distance from home. The maximum dis-
tance from home is the maximum value of the Euclidean
distance between stays at the home location (Canzian and
Musolesi 2015). For a resident’s stay trajectory S, the maxi-
mum distance from home dh,,,,, (S; u) is calculated as:

ANynax(S; u) = max ‘Si,h(S; u)|, )
1<i<m

where {Si, h(u)| is the Euclidean distance (km) between a

stay S; and the home location %(S; u) (see Eq. 1), consid-

ering n stays. For example, the maximum distance from

home in Fig. 2 is between the home location Sy and Sy

(i.e.,|So, S2)).

Travelled distance. This is the sum of the Euclidean dis-
tance between two consecutive (time-ordered) stays (Wil-
liams et al. 2015; Lu et al. 2012). For a user’s stay trajectory
S, the travelled distance can be denoted as:

n
td(S; u) =Y 1S;1,Sil, (3)
i=1

where S;_; and S; are two successive stays in the # stays.
In Fig. 2, the travelled distance can be calculated as
td = S0, S11+ 151, S2| + 1S2, S31 + 1S3, Sa| + 1S4, Sol.

Radius of gyration. The radius of gyration, as a
radial distance to a point, is used to characterise
the typical distance travelled by a centre stay (time-
ordered) in the mobility trajectory (Gonzalez et al.
2008). Specifically, the radius of gyration is the root-
mean-square distance of the object’s parts from the
axis of rotation. For a user’s stay trajectory S, the
radius of gyration is defined as:
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1 n
rg(Siw) = | > (IS5 Smb? (4)
i=1

For example, the radius of gyration in the trajectory
in Fig. 2 (the centre stay is Sp) can be calculated as

rg = /552, S0D? + (12, S1D? + (152, S3D? + (152, Sal)?

Mobility entropy. The mobility entropy captures the
full spatio-temporal order in an individual’s () mobil-
ity patterns (stay trajectories), which depends not only
on the frequency of stays but also on the order in which
the location nodes were visited and the time spent at
each location (Song et al. 2010). The mobility entropy
of an individual is defined as

E@) =—)Y P(T,)log, {P(Tm (5)
z,

where P(T,;) is the probability of finding a particu-
lar time-ordered sequence T, in the trajectory T.
For the stay at a distinct location at 7, the probabil-
ity is determined by the fraction of the duration time
an individual spent in the location divided by the total
number of observations (i.e., 24 hours). Notably, mobil-
ity entropy measures the diversity of individual trajecto-
ries and higher entropy implies higher diversity with less
predictability.

Monthly daily average measurement of residents’ col-
lective movement for LSOAs. The prior measurements
focused on an individual resident’s daily movement
patterns. These can be aggregated to capture the collec-
tive movement behaviours (i.e., the five types of move-
ment variables) of residents at the month level for each
LSOA. The monthly daily average movement variable

(Mmonthly) is defined as

D N,
- 1 z_d M; 4
Mmonthly = B E ( l}\l[ ! ) (6)
d=1 d
Ny

Ei=1 Mi,d
Ny

where

is the calculation of daily mean movement
variable per resident for one day observation (d) in a
LSOA. Specifically, M; ; is the movement variable value
for resident i on day d and Ny is the total number of resi-
dents observed in the LSOA on day d. Then, Mmonthly is
the mean value of the movement variables over all days of
the month (% 25:1) in one LSOA. D is the total number
of days of a month.

As a point of clarification, for each LSOA, this study
does not include calculations related to the movement
patterns of non-residents, primarily due to the complexi-
ties introduced by the dynamic shifts in population, e.g.,
a neighbourhood area (LSOA) can experience very large
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amounts of visiting from non-residents. Instead, this
focus is solely on understanding how the range of move-
ment behaviours of residents influences the neighbour-
hood’s effect on crime levels.

2.2.3 Measuring visiting variables for residents
and non-residents

To measure the variables associated with visits in LSOAs,
each day’s stays within the LSOAs are categorised into
two types: stays by residents and stays by non-residents.
The residents’ footfalls, as measured by a monthly daily
average value, in a specific LSOA refer to the number
of visits made by local residents whose primary resi-
dence is within that LSOA. In contrast, the non-resident
footfall measured for an LSOA encompasses the visits
made by individuals who are not local to the area. This
non-resident population group includes residents from
other LSOAs as well as visitors from beyond this study
area (London) who do not have detected home locations
within London in this analysis.

It is important to highlight that aggregated stays pri-
marily focus on specific visitation or social activities at
place services and venues. Consequently, certain types
of stays unrelated to visitation patterns were intention-
ally excluded: (1) Stays occurring during the early morn-
ing hours (0 AM to 6 AM) are typically excluded, as
these hours are characterised by minimal social activity
and widespread business closures. Consequently, such
stays are not considered representative of typical human
mobility patterns (Traunmueller et al. 2018). (2) The
user’s home location is defined as the place most fre-
quently visited during nighttime hours (11 PM to 6 AM),
reflecting habitual residential presence, so these stays are
excluded (Pappalardo et al. 2016; Verma et al. 2024). (3)
A user’s workplace is defined as any location where they
remain for more than six consecutive hours between 7
AM and midnight. Work-related stays are distinguished
from general visits and excluded, as they represent
unique behavioural patterns that could otherwise bias the
analysis. This method aligns with prior studies that have
inferred workplace locations using mobile phone data
(Yan et al. 2019).

Following this categorisation, for one LSOA, the accu-
mulated stays of both residents (whose home locations
are within this LSOA) and non-residents (whose home
locations are not within this LSOA, but within other
LSOAs, or without a home location detected) were first
compiled to determine footfalls (or the counts of stays)
at the LSOA level and daily level. Then, the monthly daily
average footfall is introduced as a metric representing
visitation variables.

In line with the approach used to measure movement
variables for residents, we aggregated visiting variables
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for both residents and non-residents at the monthly level.
This aggregation ensures consistency with the temporal
resolution of the crime data employed in this analysis,
which is available only at the monthly temporal scale. To
clarify, calculating the monthly daily average footfall for
a single LSOA involves firstly summing up the footfalls
within the LSOA over a month. Subsequently, this sum
is divided by the total number of days in the month to
determine the monthly daily average value.

2.3 Explainable machine learning models

2.3.1 XGBoost and SHAP

Explainable machine learning (ML) refers to methods
and techniques in the field of artificial intelligence (AI)
that offer insights into the impact of input predictors on
outcomes of machine learning models (Molnar 2020).
A machine learning model named XGBoost (short for
‘Extreme Gradient Boosting’) with an explainability tech-
nique known as ‘SHapley Additive exPlanations’ (SHAP)
was selected for interpreting the impact of collective
mobility variables on burglary incident levels in this
study. XGBoost is a widely used machine learning algo-
rithm valued for its efficiency and accuracy across diverse
data types. It can manage multicollinearity effectively
and is well-suited to capturing non-linear relationships
within data as it employs an ensemble of tree-based mod-
els as base learners. It utilises gradient boosting machines
(GBMs) to iteratively refine the predictions of multiple
weak learners (decision trees) to enhance both accuracy
and generalisation (Freund et al. 1999; Chen and Gues-
trin 2016). Furthermore, existing work demonstrates
that XGBoost together with SHAP can also detect spatial
effects in the data compared to traditional geostatistical
models applied in urban analytics (Li 2022).

While traditional feature importance indices in tree-
based models provide valuable insights, there are sig-
nificant limitations in achieving full interpretability of
the trained model. These limitations mainly arise from
feature importance calculations that depend on heuris-
tic methods, such as Gini importance or mean decrease
impurity, which often inadequately reflect the complex
interactions between input features. These feature impor-
tance methods often exhibit bias, particularly in their
treatment of features with a higher number of categories.
Furthermore, they fail to indicate the direction of a fea-
ture’s influence, leaving it unclear whether an increase
in a feature’s value will positively or negatively affect the
predicted outcome.

SHAP (Shapley Additive Explanations) proposed by
Lundberg and Lee (2017) is a powerful tool for interpret-
ing model outputs. By integrating the concept of game
theory and local explanations (Strumbelj and Kononenko
2014; Ribeiro et al. 2016; Shapley 1953), SHAP provides a
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Table 2 The description of explanatory variables (i.e., movement and visiting and neighbourhood deprivation) and dependent

variable (burglary numbers) of 4,835 LSOAs and 24 months. All variables are measured at the LSOA level

Variables Mean Std Min Max
Residents’maximum distance from home (RMDH) (km) 4.18 2.38 0.36 192.77
Residents’radius of gyration (RRG) (km) 1.74 0.94 0.15 46.72
Residents'travelled distance (RTD) (km) 9.14 472 1.11 386.81
Residents’mobility entropy (RME) 221 032 0.63 374
Residents’stay-at-home duration time (RSHDT) (hour) 76 1.55 0.70 14.06
Residents'footfalls (RF) 5.66 891 0.00 920.52
Non-residents’ footfalls (NRF) 58.12 142.91 0.00 17368.10
Index of multiple deprivation (IMD) 21.50 1091 0.00 64.70
Burglary incident numbers 0.98 135 0.00 40.00

systematic approach to quantify the contribution of each
feature to the model’s predictions. The SHAP value for
feature i represents the average contribution of feature
i in the model’s prediction when it is added to different
subsets of features, weighted by the probability of each
subset forming before feature i is added. Thus, the SHAP
value @;(v) for each feature i can be denoted as:

S|l(m—|S| = 1)!

o= > W@(sum)—m»
SEN\{i} '

(7)

Where N is the set of all features and # is the total
number of features, S is a subset of features not includ-
ing feature i, and v is the model function that gives
the prediction for each subset of features. So, the
v(S U {i}) — v(s) represents the prediction changes after
we include the new feature i in the model and W
represents the associated weight (i.e., marginal contribu-
tion). Then, > scan (s W is the weight by sum-
ming up the weights from all possible subsets S.

Hence, an absolute SHAP value represents the magni-
tude or strength of the impact that a feature has on the
model’s prediction compared to the baseline prediction.
Specifically, a larger absolute SHAP value for a feature
indicates its greater importance in influencing the mod-
el's output compared to other input features. Positive
SHAP values (> 0) for a feature i suggest that higher val-
ues of this feature contribute to increasing the predicted
dependent variable, indicating a positive impact on the
model’s predictions. Conversely, negative SHAP val-
ues (< 0) for a feature i imply that higher values of this
feature contribute to decreasing the predicted depend-
ent variable, signifying a negative impact on the model’s
predictions.

2.3.2 Modelling procedures
The modelling process includes training and testing
an XGBoost regression model using seven collective

mobility variables (summarised in the first column
of Table 2), a neighbourhood deprivation index, and
burglary incident numbers. Subsequently, the SHAP
approach is applied to analyse and interpret the impact of
mobility variables on burglary levels across spatio-tem-
poral units.

In the data preparation phase, z-score standardisa-
tion was applied to both the explanatory variable matrix
X with a dimension of 4,835 LSOAs x 24 months x 8
explanatory variables and the response variable y (bur-
glary incident counts) for both the training and testing
sets. In the training and testing process, the training set
covers the 19-month data from January 2020 to July 2021
(about 80% of the total dataset) and the testing set cov-
ers a period of five months from August 2021 to Decem-
ber 2021 (about 20% of the total dataset). This follows
the ‘80/20" rule commonly used in a standard machine
learning training setup (Hastie et al. 2009). Then, perfor-
mance metrics such as Root Mean Square Error (RMSE)
and the coefficient of determination (R?) were used for
the trained XGBoost regressor. Specifically, R? illustrates
the percentage of the variance in the target variable that
the model accounts for, whereas RMSE measures the dis-
crepancy between the model’s predictions and the actual
values. A higher R? coupled with a lower RMSE signifies
superior model performance.

During the training phase of the XGBoost regressor,
gradient boosting iteratively builds a collection of deci-
sion trees by minimising the cost function at each step.
For hyperparameter tuning of the XGBoost regressor,
grid search and cross-validation were employed to opti-
mise the parameter settings defining decision trees, then
the assembled XGBoost regressor (with the maximum
tree depth, a sub-sample ratio of columns when con-
structing each tree, and learning rate) was selected by
using 10-fold cross-validation in GridSearchCV®.

® GridSearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html
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3 Results

By analysing mobile phone data from 1,979,081 users,
1,055,438 residents were identified (the user obtains a
home location) in London from 2020 to 2021. The initial
step (described in Sect. 2.2.1) identified the home loca-
tions for distinguishing residents (who have detected
home locations in London LSOAs) and non-residents
(who can be either residents from other LSOAs of Lon-
don or visitors from outside areas of London who do
not have a detected home location in London LSOAs)
for each LSOA on a daily basis. Subsequently, collec-
tive movement variables (including RMDH, RRG, RTD,
RME and RSHDT shown in Table 1) were measured
from each resident’s stay trajectory and visiting vari-
ables were aggregated to footfalls shared by residents
and non-residents in LSOAs. Next, monthly daily aver-
age measurements were computed for 4,835 LSOAs over
24 months to generate the collective mobility (movement
and visiting) variables at the LSOA- and month-level (see
Table 2).

Following this, the XGBoost regression model was
trained (with a maximum tree depth of 17, a learning
rate of 0.02, and a sub-sample ratio of columns when
constructing each tree of 0.9). The best model perfor-
mance metric was an RMSE of 0.79 and R? of 0.66 using
the given 19-month training dataset. During the test-
ing phase, model performance metrics (RMSE of 1.19
and R? of 0.42) were determined by comparing the pre-
dicted burglary levels from the trained XGBoost regres-
sor to the actual burglary levels in the 5-month dataset.
Lastly, the SHAP strategy was applied to explain the opti-
mised XGBoost model for both the training and testing
sets by measuring the impact of the collective mobility
variable levels on burglary levels from global and local
perspective.

In this section, Sect. 3.1 describes the variations in
collective mobility (movement and visiting behaviours)
of both residents and non-residents in London LSOAs
over 24 months. Subsection 3.2 describes the global
impact of the collective mobility on burglary levels in
different neighbourhoods including an exploration of
how this changed over the COVID pandemic period.
Subsection 3.3 then outlines how the model interprets
local impacts by examining how the collective mobil-
ity variables influence burglary levels in specific LSOAs
and months.

3.1 The shifting of collective mobility in London from 2020
to 2021

In analysing the explanatory variables summarised in

Table 2 (such as movement and visiting behaviour and

neighbourhood disadvantage variables) and the depend-

ent variable (burglary incident levels), it is important to
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note that in some cases the minimum count of both resi-
dent and non-resident footfall traffic (i.e., RF and NRF)
drops to zero. This indicates a lack of visiting activi-
ties within a particular spatial-temporal unit/grid (i.e.,
one LSOA in one month) of 4,835 LSOAs across the 24
months. Table 2 also indicates that burglary is a sparse
variable with a mean value of less than 1 in each LSOA
per month.

Figure 3 shows the temporal change (monthly) of
‘Non-residents’ footfalls’ (per LSOA) from 2020 to 2021,
and the spatial distribution in four distinct pandemic
restriction/relaxation months during the periods of
‘Normal times/before lockdown’ (February 2020), ‘First
national lockdown’ (April 2020), ‘First lockdown restric-
tions eased’ (September 2020), and ‘Third national lock-
down’ (January 2021) in London. The average footfalls
of non-residents (NRF) in London’s LSOAs experienced
a decrease during restriction periods such as April 2020
and January 2021, while it increased during relaxation
periods such as September 2020. Regarding the spatial
dynamics of non-residential footfall, a discernible shift
can be observed in the location of the areas with high-
volume footfall across London LSOAs over the pandemic
period. High volume footfall shifts from the city’s central
regions to its peripheral urban areas from months under
normal circumstances to the first national lockdown in
the context of the overall decline in citizen activities (A
similar pattern of local residents’ footfalls can also be
found in Fig. 16 of Appendix A).

The fluctuations in footfalls correlate with pandemic
policy adjustments and there are similar temporal pat-
terns observed in movement behaviours of local resi-
dents as indicated in Fig. 4. This demonstrates a change
in the average travel distance of residents during dis-
tinct months coinciding with the lockdown policy. Fur-
thermore, the maps in Fig. 4 show that residents living
in the peripheries of London typically travel greater
distances than those in central London during normal
times (e.g., February 2020). However, the travelling dis-
tances of residents living in outer London decreased
notably and some indicated shorter travelling distances
than the residents in inner London during the lockdown
month (e.g., April 2020).

In line with this, the residents’ mobility entropy (rep-
resenting movement diversity —see Fig. 5) also dem-
onstrates a decrease during periods of restriction and
an increase during relaxation times (other movement
variables can be found in Appendix A: ‘Residents’
maximum distance from home’ shown in Fig. 17 in
Appendix and ‘Residents’ radius of gyration’ shown in
Fig. 18 in Appendix). Conversely, the residents’ stay-
at-home duration time (shown in Fig. 19 in Appendix
A) exhibited a marked spike during lockdown periods
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Fig. 3 The temporal change (monthly) of ‘Non-residents'footfalls’ (per LSOA) from 2020 to 2021, and the spatial distribution in selected four distinct
restriction/relaxation months in London: February 2020 —'Normal times/before lockdown; April 2020 - First national lockdown, September 2020
—'First lockdown restrictions eased; and January 2021 —Third national lockdown’ Three vertical grey lines denote the specific national lockdown
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and reached its lowest level during relaxation phases,
reflecting adjustments in working and social activities
in response to policy changes.

3.2 Global impacts of collective mobility on burglary
Utilising the SHAP strategy for interpreting the trained
XGBoost model in conjunction with the explanatory var-
iables, the generated SHAP values indicate the influence
of collective mobility variables and neighbourhood disad-
vantage variable (IMD) on burglary levels across 4,835 x
24 spatio-temporal observational units/grids.

In Fig. 6, the global impacts quantifying the influence
of each explanatory variable on the burglary level are
measured by the average absolute SHAP values of the
corresponding variable in all LSOAs and months from
the optimised XGBoost regression model. It can be
observed that the footfall traffic from non-residents (i.e.,
non-residents’ footfalls) obtained the highest value fol-
lowed by the neighbourhood disadvantage variable (i.e.,
IMD), while the duration of residents’ time spent at home
(RSHDT) ranked third in its influence on burglary levels
in neighbourhoods. Additionally, residents’ movement

variables (e.g., residents’ travelled distance (RTD), resi-
dents’” mobility entropy (RME), residents’ maximum
distance from home (RMDH) and residents’ radius of
gyration (RRG)) take limited influence on burglary levels.

To test for the potential impact of multicollinearity, we
include the correlation matrix (see Fig. 14 in Appendix)
and the variance inflation factors (VIF) (see Fig. 15 in
Appendix) of the collective mobility variables in Appen-
dix A. The results are mixed. The movement variables
were found to be correlated based on Pearson correla-
tion. IMD, however, is not strongly correlated with any of
the variables across all samples. We also provide the VIF
results, which indicate that RMDH and RRG exhibit high
multicollinearity. However, in our XGBoost model, the
SHAP values of these two variables show only minimal
impact on the model output (see Fig. 6). This suggests
that XGBoost is able to handle multicollinearity in the
data while capturing the nonlinear relationships among
variables. Although highly correlated variables can some-
times influence linear regression model outputs, in our
case, their effect is limited in XGBoost.
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Fig. 4 The temporal change (monthly) of ‘Residents'travelled distance’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected

four distinct restriction/relaxation months in London

In Fig. 7, the distributions of SHAP values in all spa-
tio-temporal observation units are systematically plot-
ted. Recall that positive SHAP values show a positive
impact on burglary (i.e., larger positive SHAP values
mean increased levels of burglary). For each explanatory
variable (feature), the red colour signifies higher values
and the blue colour represents lower values of the mobil-
ity and disadvantage variables. The figure illustrates the
global correlations between different levels of explana-
tory variables and their impacts (measured by SHAP val-
ues) on the burglary levels in all observation units/grids
consisting of 4,835 LSOAs and 24 months. For example,
higher values of NRF (non-residents’ footfalls) correlate
with a pronounced increased in burglary levels, as dem-
onstrated by the cluster of red dots to the right. A similar
pattern is also observed with Index of Multiple Depri-
vation (IMD), where higher levels of IMD correspond
to increased burglary levels. In contrast, RSHDT (resi-
dents’ stay-at-home duration time) imposes a negative
impact on burglary levels, i.e., higher values of RSHDT
are related to decreased crime levels (and vice versa,
lower values of RSHDT are associated with an increase
in crime levels).

To disentangle how the explanatory variables contribute
to the strength of impact on the burglary outcomes, Fig. 8

indicates the top four selected explanatory variable values
(standardised values) and corresponding SHAP values in
the majority of all samples (by excluding the outline sam-
ple points in the figure) from 4,835 LSOAs and 24 months
(The figures of the SHAP values and features values for all
samples can be found in Fig. 20 of Appendix A). It can be
observed that the higher NRF values (as illustrated in sub-
figure 8a) generally relate to a higher SHAP value. Further,
negative SHAP values of NRF (i.e., below zero) are mainly
found in low-level NRF values. Similarly, in sub-figure 8b,
the higher SHAP values of IMD are generally correlated
with higher IMD values.

In contrast, higher RSHDT (residents’ stay-at-home
duration time) values tend to correlate with lower SHAP
values shown in sub-figure 8c. In terms of the positive or
negative influences of RSHDT on burglary levels in the
observed samples, the inflexion point is observed approx-
imately at 0 of the RSHDT standardised value (the real
RSHDT value is about 3.8 hours). Further, the RF (resi-
dents’ footfalls) shown in sub-figure 8d did not demon-
strate a significant correlation where higher RF values are
associated with increased SHAP values, except when the
RF value is above approximately 1 (true footfall value is
14.4), indicating that there might be a threshold at which
resident footfall has an impact.
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Fig. 6 The impact of each explanatory variable (measured by the average absolute SHAP values of all months and LSOAs) on burglary levels
in the trained XGBoost model

To demonstrate the interplay of different variables on  burglary levels. It shows the SHAP values for the IMD
burglary levels, Fig. 9 presents an example illustrating  variable in different spatial-temporal units categorised
the impacts of the interaction between neighbourhood by the corresponding level of the NRF values (higher
deprivation (IMD) and non-residents’ footfalls (NRF) on  levels of non-residents’ footfalls are coded as red while
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lower ones are blue). It is evident that the marginal blue
dot in the top-right blue of sub-figure 9a indicates a high
impact of IMD at elevated levels of deprivation in the
context of a lower level of non-residents’ footfalls. Such
interplay shows that the low-level non-resident visit-
ing footfalls also can have a high and positive impact on
burglary levels in a neighbourhood (LSOA) with high-
level deprivation. Further, sub-figure 9b (selected range
of IMDs) reveals a prevalence of red dots representing
high-level NRF in less deprived neighbourhoods (i.e.,
the range below —1 on the x-axis of IMD values), that
are exhibiting negative SHAP values (specifically, below
zero). This means the high-level non-resident footfalls
and less deprivation can contribute to an overall negative
impact on burglary levels (i.e., decrease the burglary) in
the neighbourhoods.

By measuring the average absolute SHAP values per
LSOA, Fig. 10 shows that the global impacts of the top
four variables on burglary levels are modulated by pan-
demic-related policies during the 24 months observation
period in London LSOAs. For instance, the SHAP values
of NRF show a lower relative impact of NRF on burglary
during the first national lockdown period (e.g., April 2020
and May 2020) while it recovered to a higher impact level
in the relaxation period (e.g., September 2020) followed by
a second reduction during the second national lockdown
(e.g., November 2020). Figure 10 also shows that the SHAP
values of residents’ footfalls follow a similar pattern of
fluctuation in impact, compared to no significant change
in the impact of IMD on burglary during the 24 observed
months. Examining the SHAP values for RSHDT, a

difference can be observed in the SHAP values in response
to restriction periods. Specifically, there was a decline in
the SHAP values during the first national lockdown phase,
followed by an increase subsequent to the second national
lockdown period commencing in November 2020.

3.3 Local impacts of collective mobility on burglary

The localised impacts of the population’s movement and
mobility on burglary levels predominantly examine these
influences at the neighbourhood area level (LSOA level)
in London. By mapping the distribution of the SHAP
values of three selected variables (NRF, RSHDT and RF)
for the ‘Before lockdown’ (represented by February 2020)
and ‘First national lockdown’ (represented by April 2020)
periods, Fig. 11 denotes the difference across the selected
variables in the different contexts of pandemic policy
shifts. In an examination of the spatial distribution in
London before the lockdown, a concentration of high and
positive SHAP values (i.e., large positive impact on bur-
glary) of NRF (plotted as red areas) was observed within
the city centre surrounded by other dispersed high and
positive value areas (see the map of ‘NRF 2020-02). Con-
versely, during the first national lockdown (see the map
of ‘NRF 2020-04’), the negative SHAP values (plotted as
blue areas) dominated the majority of the urban areas,
demonstrating a reversal in relationships (between NRF
and burglary levels) excluding the city centre areas. Nota-
bly, several urban regions (e.g., western areas) were iden-
tified where high and positive SHAP values of NRF (high
positive impact on burglary levels) persisted even during
this period.
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Fig. 8 The dependency plot of the top four explanatory variable values (standardised) and corresponding SHAP values with proportions

above and below zero

In the distribution of SHAP values of RF and RSHDT,
the high and positive SHAP values (above 1.5) were
discernibly concentrated within urban centres in nor-
mal times (see the map of ‘RF 2020-02° and ‘RSHDT
2020-02"). During the first lockdown, though there
was a noticeable reduction in SHAP values across the
urban areas, the high and positive SHAP values of RF
and RSHDT remained clustered in the same (inner city)
areas. Distinctive variations in the distribution of SHAP
values of explanatory variables are also evident in the
three selected variables (NRF, RF and RSHDT) during the
‘Lockdown easing period’ (as exemplified by September
2020) and the ‘Second national lockdown’ (as exemplified
by November 2020) periods (see Fig. 21 in Appendix A).

To examine the shifting of the local impact of all mobil-
ity variables and IMD on burglary levels in single LSOAs
during the different observation periods, further analy-
sis selected four LSOAs as an example (see Fig. 12) to
explore the shifting in the impacts of various explanatory
variables on burglary levels during two distinct pandemic
periods. Figure 13 illustrates the force plotting of SHAP
values for several variables (with standardised values) in
February 2020 (‘Before lockdown’) and April 2020 (‘First
national lockdown’), respectively. The length of the verti-
cal bar represents the magnitude (measured by the SHAP
absolute value) of the contribution/impact of each vari-
able on burglary level prediction. A longer bar indicates
a stronger impact (higher absolute SHAP value) and vice
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Fig. 9 The SHAP values of IMD alongside IMD values with interactional NRF (non-residents’footfalls) values. The red dots denote the high NRF

values, while the blue dots denote the low NRF values
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versa. The colour indicates the direction of the variable/
feature’s impact on the prediction of burglary levels: red
shows a positive (increased) impact while blue shows a
negative (decreased) impact on the burglary level predic-
tion. The standardised values of each variable are labelled
under their respective vertical bars.

In the sub-figure in Fig. 13 corresponding to LSOA A
(LSOA index in E01000599) in February 2020 (before
the lockdown), the IMD (with a standardised value of
2.74) exhibited the largest and positive SHAP value

in comparison to other variables. In the first national
lockdown (e.g., April 2020), NRF standardised values
in LSOA A decreased to —0.32 and had the largest and
negative SHAP value (i.e., the longest bar in blue denot-
ing a high and negative SHAP value of NRF). Accord-
ingly, the standardised values of burglary level (i.e.,
the flx) predicted by the XGBoost model) in LSOA
A have been shifted from 0.27 (the observed value of
burglary level is 2.95 and the observed number of bur-
glary incidents is 5) in February 2020 to —0.32 (the



Chen et al. Computational Urban Science (2026) 6:2

NRF 2020-02

Page 17 of 31

NRF 2020-04

SHAP value levels

Hl <-15
I (-1.5, -0.75]

I (-0.75, —0.25]
[ (-0.25,0)

=0

B (0.25,0.75]
. (0.75,1.5]

mm 15
(0,0.25]

Fig. 11 The distribution of the SHAP values of three selected variables (NRF, RSHDT and RF) during the ‘Before lockdown' (represented by February

2020) and ‘First national lockdown' (represented by April 2020) periods

observed standardised value of burglary level is —0.73
and observed burglary number is 0) in April 2020. This
means that the model predicts lower crime levels in
lockdown because of the lower mobility variable val-
ues. Another shifting pattern can be seen in the sub-
figure of LSOA D (LSOA index in E01001885): the
SHAP values of IMD consistently exhibit a high level
and stay positive (above 0) in the selected two months.

There is an observable increase (i.e., the length of the
blue area became longer) in the absolute SHAP values
of NRF (with the NRF value reduced from —0.19 to
—0.32) from ‘Before lockdown’ to ‘First national lock-
down’ in LSOA D. In addition, a noticeable transition
is also observed wherein residents’ stay-at-home dura-
tion time (RSHDT) increased from —1.16 in February
2020 to 0.63 in April 2020 (as restriction policy during
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Fig. 12 The map of four selected LSOAs in London

the first national lockdown), while the SHAP value of
RSHDT changed from a positive value in February 2020
to a negative value in April 2020.

Considering the shifting of SHAP values of features
in LSOA B (LSOA index is E01004091) and LSOA C
(LSOA index is E01000707), it is observed that the low-
level IMD value (—1.55 for LSOA B and —1.67 for LSOA
C) obtained significant negative SHAP values (below
zero) in February and April 2020. The SHAP values

(See figure on next page.)

of population mobility variables (e.g., NRF, RRG and
RMDH) shifted from positive to negative (the impact of
these mobility variables on the burglary levels switched
directions) from normal month to restriction month.
The shifting of SHAP values for certain variables is also
evident in LSOA C, which is concomitant with altera-
tions in the variable’s value levels across distinct pan-
demic periods (from ‘Before lockdown’ to ‘First national
lockdown’).

Fig. 13 The SHAP values of contributed explanatory variables of four selected LSOAs in February 2020 (‘Before lockdown’) and April 2020

(‘First national lockdown’). The length of the vertical bar represents the magnitude (measured by the SHAP absolute value) of the contribution/
impact of each variable on burglary-level prediction. A longer bar indicates a stronger impact and vice versa. The colour indicates the direction
of the variable/feature’s impact on the prediction of burglary levels: red shows a positive (increased) impact while blue shows a negative
(decreased) impact on the burglary level prediction. The standardised values of each variable are labelled under their respective vertical bars. The
dark value under f(x) represents the burglary level predicted by the trained XGBoost model (note that this is different from the observed burglary
levels). The base value refers to the mean of all predicted burglary levels across all samples, which in this study is 0.000038



Page 19 of 31

(2026) 6:2

Chen et al. Computational Urban Science

2020-04

2020-02

s

A

0 / ‘
\ RME = -1.2 21 \ RRG = -0.89 \ RF =-0.6 \\ RRG =-1.51
— g et — Y = 3 £
=/ RMDH = -1.09 ] = . RMDH = -0.85 2 \ RRG = -1.54 L l’.\ RMDH = -1.42
S - o S -
3 in -
” . RF = -0.52 3 ] . RF = -0.26 l\ RMDH = -1.46 2 . e Ss00s
: . RSHDT = 1.94 7 £ I\wmxoa =324 : . . R =
. ° =19 =) | . RME = -1.97 m 2 m s
2 . RRG = -1.27 7 8 s - RF =-0.18
= <1 @ Qo S
- .1_u. NRF = -0.21 °
o - -
7 s m IMD =-1.67 S
S g
o 9 A
T 9] ~ T
3 8 7 & 2
9] S 2 8
2 P ! . e .. M 5 NRF = -0.32
.m <~ m g NRF = -0.32 0 W am 3 N —
g = © IMD = 2.74 oy R 3 _don NRF = -0.35 5 S 7 IMD = 2.67
£ C 2 _ fl X M .9y 5 g
=) - alw < m <] IMD = -1.55 5 - 9 RTD = -1.59 B °
= . X N - . Z
S 5 =~ ¢ 7| HE RSHDT =-1.04 2 M_ . RTD = -1.4
c © )(
. RTD=-106 = i RTD = -1.1 S N RME = -2.87 a
|
S \ NRF = -0.19 0 A pvE=-211 e 0 i RME = 1.7
S Y = 21 pemm I | RF = -0.41 S £
" RTD = 0.83 . RF = -0.23 S =
0 y . ] RF =-0.08
°| = RSHDT = 0.52 2] g 2
. L | e e 3 = 3 - RTD = 0.44
= m © = =
gy by . RF = -045 " 3 3 NRF = -0.25
5 ¥ & & IMD = 2.74 e S T 2
5 ° 2 5 2 5 3
= o - & £ o 2
S ¢ 38 ° i S5 _ o NRF = -0.19
° -2 = i ne
7% 6 o IMD = -1.55 4 ] s © g IMD = 2.67
4 T 5 Q 9] RSHDT = -1.2 g 5 3 s
— (0] o
) = = B3 oL 2
2 24 alw = N9 IMD = -1.67 s 3
[ = . <
- e Bl 5 T 6 o N RRG = -0.11 _ RSHDT = -1.16
N RMDH = 0.84 2 . o 5 R -
o ° ' e E ! lézo: =-0.18 °
3 o . RRG = 0.17 o S
9 g S m RTD = -0.45 T
2 RME = 1.0 a RMDH = 0.08 — .
Q g . T o RSHDT = -0.42 RMDH = 0.01
o wn
AN | RRG = 0.82 RTD = -0.16 2 9 b
m ] T RME = -1.74 ° RRG = -0.15
|

Fig. 13 (See legend on previous page.)



Chen et al. Computational Urban Science (2026) 6:2

4 Discussion

The present study sought to understand how burglary
incident levels are impacted by the collective mobility
(movements and visiting) of residents and non-resi-
dents inferred from geo big data throughout London’s
neighbourhood areas and focusing on distinct social
change scenarios during the pandemic periods. The
analytical methodologies have demonstrated that the
movement and visiting variables of residents and non-
residents can be efficiently measured and observed to
be associated with burglary levels. In the analytical
approach, residents and non-residents in local LSOAs
were first distinguished based on mobility trajectory
patterns. Subsequently, movement and visiting vari-
ables were quantified for residents and non-residents
at LSOA- and month-levels. An explainable machine
learning approach incorporating the XGBoost regres-
sion model and SHAP strategy was used to deconstruct
the impact of mobility and neighbourhood disadvan-
tage variables on the burglary levels in various London
LSOAs over the two-year observational period. Rely-
ing on SHAP values as an impact metric, this study has
addressed the three research questions posed in the
Introduction by providing empirical evidence on the
relationship between collective mobility and burglary
in urban neighbourhoods.

First, the study found that the collective mobility pat-
terns of residents and non-residents differentially influ-
ence burglary levels in local neighbourhoods. The global
results reveal that higher non-resident footfall is associ-
ated with increased burglary levels, while the extended
residents’ stay-at-home duration time is correlated with
reduced burglary levels in urban neighbourhood areas.
Second, this study also found that the influence of mobil-
ity on burglary levels varies across neighbourhoods
with different levels of deprivation. Local examination
of specific local urban neighbourhood areas (LSOAs)
showed the influences of mobility variables on burglary
levels were moderated by the neighbourhood’s depriva-
tion levels. Third, the results show that both global and
local impacts of collective mobility varied across different
societal conditions. In particular, local impact analysis
indicated that residents’ footfall and time spent at home
influence burglary differently depending on neighbour-
hood deprivation levels. Collective mobility effects on
crime were also moderated by pandemic-related restric-
tions and easing measures. Overall, this investigation
demonstrated that there were a varied set of mechanisms
through which population collective mobility influenced
burglary levels across different local neighbourhoods and
social conditions.

The observed heterogeneity in the results demonstrates
that the interactions between movement and visiting
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variables and levels of neighbourhood deprivation dif-
ferentially influence burglary levels. This indicates that
complex mechanisms are in play and understanding
neighbourhood burglary levels from a singular perspec-
tive would fail to account for the specific mechanisms of
crime within neighbourhoods driven by human mobil-
ity patterns. For instance, while higher neighbourhood
deprivation is generally associated with increased bur-
glary incident levels as been found elsewhere (Tilley
et al. 2011), such risks also interact with other population
mobility factors.

Considering the shifting impacts of collective mobility
and neighbourhood deprivation on burglary levels across
diverse observation periods and specific urban neigh-
bourhoods, it is observed that the influence of popula-
tion-based opportunity manifests a pronounced dynamic
and changing pattern. One potential explanation is that
pandemic-induced lockdowns significantly changed
natural surveillance mechanisms, thereby influencing
offender target selection in urban neighbourhoods. In
normal times, the high volumes of non-resident foot-
fall traffic can diminish the efficacy of natural surveil-
lance, thereby potentially reducing the perceived risk of
potential burglars being identified or reported by local
residents in neighbourhoods. During lockdown, the
restriction policy disrupted the population activities (like
travelling to other neighbourhoods) so as to potentially
changing the burglary risks in urban areas. Local resi-
dents’ mobility was also restricted during the restriction
period, as demonstrated by the extended stay-at-home
duration time and reduced travel distance, also contrib-
uting to the local guardianship of local neighbourhoods
against burglary crimes.

A further explanation is that mobility (movement and
visiting behaviour) patterns are associated with the soci-
oeconomic conditions of local residents, which in turn
shape the dynamic opportunities of burglary in neigh-
bourhoods. Specifically, the socio-economic status of res-
idents critically determines their mobility patterns, which
reflects the range of opportunities available in their
immediate surroundings (Chen et al. 2023). Furthermore,
the offender population mobility patterns are also related
to area-level and individual socio-economic conditions
which affect the decision-making process. This process
involves identifying general urban areas deemed to be
more conducive to offending and then choosing particu-
lar locations to commit crimes (Clarke 1995; Branting-
ham 2016; Bernasco and Block 2009).

Analysing the collective mobility of both non-residents
and local residents in each neighbourhood is crucial for
understanding the crime generation mechanisms. It not
only assists in pinpointing high-risk patterns related
to the dynamic population’s mobility but also provides
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insight into the types of neighbourhoods where specific
mobility patterns have a pronounced impact on crime
occurrence. For example, a neighbourhood characterised
by low deprivation that attracts non-resident visitations
might exhibit distinct burglary risks compared to an
area with a higher level of deprivation. Hence, it is vital
to recognise how different population groups and their
mobility behaviours influence burglary within urban
neighbourhoods, especially during changing social con-
texts. With a comprehensive understanding of mobility
patterns and neighbourhood characteristics, authorities
and policymakers can develop tailored strategies to com-
bat neighbourhood burglary effectively. For instance, in
neighbourhood areas where burglary spikes correlate
with increased non-resident visitation, strategies like
heightened police patrols during peak hours or enhanced
home security measures have promise in being effectively
deployed.

There are several limitations of the analysis that
should be articulated concerning this study. First, the
effectiveness of classifying the population (from mobile
phone users) to residents or non-residents using the
method in this study remains unverified. The heu-
ristic method of home location detection applied in
this study may not adequately consider the individual
mobility complexities leading to potential inaccura-
cies in the classification of different population groups.
For example, hotels and other temporary accommo-
dations can introduce bias as residential short-term
stays in such locations will not accurately represent an
individual’s true home location. To address this, one
approach would be to apply alternative methods that
leverage location records across different time spans.
For example, there might be a frequency of location
rule that defines a stay as being taken by a ‘resident’ and
excludes the stays within hotel or accommodation loca-
tions. This helps to infer the home location more reli-
ably and in turn allows for more precise classification
of resident and non-resident populations. This method
would however have the practical drawback of involv-
ing many complex calculations that track individuals in
the data over time. Furthermore, a more precise clas-
sification of population groups could be considered as
a potential direction for further analysis. For example,
distinguishing between the movements of employed
and unemployed populations. This would better cap-
ture the varying impacts of different population activi-
ties on crime patterns during weekly cycles and periods
of social change. Second, the current analysis focuses
solely and directly on the interplay between guardian-
ship as measured by collective mobility and the impact
of social conditions on burglary levels, without exam-
ining the influence of different built environments and
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urban land use within neighbourhoods. Additionally,
the extent of the impact of collective mobility factors on
burglary levels within specific geospatial units requires
further investigation which might suggest a differently
sized unit of analysis is appropriate. Since burglars
often operate across nearby neighbourhood areas which
can leads to the near-repeat patterns in burglary (Bow-
ers and Johnson 2005; Chen et al. 2020), the impacts of
crime and mobility in urban areas may spill over into
adjacent areas. Therefore, explicitly incorporating spa-
tial and temporal dependencies as input variables could
enhance model performance in future analyses. Third,
the impact of diversity of mobility behaviours (meas-
ured as the resident’s mobility entropy in this study)
on crime levels in neighbourhoods requires further
exploration as evidence for a significant impact was not
found in this study. In parallel, the duration of stay for
residents and visitors could also be further explored in
urban areas as stay-at-home duration has been found
to have a significant association with crime levels in
this study. For example, it might be that the degree
to which high footfall is criminogenic or protective
at place varies with the typical length of stay in those
locations. Fourth, this study does not undertake causal
inference analysis but can only examine associations in
terms of impact and therefore experimental approaches
are required to provide stronger evidence in terms of
policy implications. This study is therefore limited in
its ability to draw clear causal connections between the
collective mobility and burglary levels examined in dif-
ferent contexts of social conditions.

5 Conclusions

This study investigated the impact of collective mobil-
ity of local and non-local residents on burglary levels
through the utilisation of explainable machine learning
techniques in London’s neighbourhood areas from 2020
to 2021. The analysis revealed that collective mobility
sensed from geo big data showed a strong impact on
burglary levels, especially in terms of the frequency of
non-residents’ visitations and the time duration of resi-
dents’ stays at home. This interplay between mobility,
neighbourhood deprivation and crime changes dem-
onstrates various contextual mechanisms of burglary
shifting across local areas. This analysis has also under-
scored the relevance of considering local population
mobility patterns in formulating more precise crime
mitigation measures. In further studies, an in-depth
and high-resolution spatial-temporal analysis of local
residents’ mobility patterns with other crime types may
offer a deeper understanding of their interactions.
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Fig. 16 The temporal change (monthly) of local residents’footfalls (per LSOA) from 2020 to 2021, and the spatial distribution in the selected four
distinct restriction/relaxation months in London
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Fig. 17 The temporal change (monthly) of residents’maximum distance from home (per LSOA) from 2020 to 2021, and the spatial distribution
in the selected four distinct restriction/relaxation months in London
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Fig. 18 The temporal change (monthly) of ‘Residents’radius of gyration’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected four
distinct restriction/relaxation months in London
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Fig. 19 The temporal change (monthly) of ‘Residents’stay-at-home duration’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected
four distinct restriction/relaxation months in London
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Fig. 21 The distribution of the SHAP values of three selected variables (NRF, RSHDT and RF) during the ‘Lockdown easing period’ (represented
by September 2020) and ‘Second national lockdown’ (represented by November 2020) periods



Chen et al. Computational Urban Science (2026) 6:2

Acknowledgements
The authors thank the editor and the anonymous reviewers for their com-
ments to improve this work.

Authors’ contributions

Conceptualization: Tongxin Chen, Kate Bowers, and Tao Cheng; Methodology:
Tongxin Chen; Formal analysis and investigation: Tongxin Chen; Writing -
original draft preparation: Tongxin Chen; Writing - review and editing: Tongxin
Chen, Kate Bowers, and Tao Cheng; Funding acquisition: Kate Bowers and Tao
Cheng; Resources: Kate Bowers and Tao Cheng; Supervision: Kate Bowers and
Tao Cheng. All authors read and approved the final manuscript.

Funding

This research was partially supported by the UK. Economic and Social
Research Council Consumer Data Research Centre (CDRC) under Grant ES/
L011840/1.

The second author is funded by the Economic and Social Research Council
under the UK. Research and Innovation open call on COVID-19 under Grant
ES/V00445X/1.

Data availability
The data and materials in this work are available upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 July 2025 Revised: 14 October 2025 Accepted: 25 December
2025
Published online: 13 January 2026

References

Alessandretti, L., Aslak, U., & Lehmann, S. (2020). The scales of human mobility.
Nature,587(7834), 402-407.

Barbosa, H., Barthelemy, M., Ghoshal, G, et al. (2018). Human mobility: Models
and applications. Physics Reports, 734, 1-74.

Bernasco, W., & Block, R. (2009). Where offenders choose to attack: A discrete
choice model of robberies in Chicago. Criminology, 47(1), 93-130.

Bernasco, W, & Luykx, F. (2003). Effects of attractiveness, opportunity and
accessibility to burglars on residential burglary rates of urban neighbor-
hoods. Criminology,41(3), 981-1002.

Boggess, L. N, & Hipp, J. R. (2010). Violent crime, residential instability and
mobility: Does the relationship differ in minority neighborhoods? Journal
of Quantitative Criminology,26, 351-370.

Bogomolov, A, Lepri, B, Staiano, J, Oliver, N., Pianesi, F, & Pentland, A. (2014).
Once upon a crime: towards crime prediction from demographics and
mobile data. Proceedings of the 16th international conference on multi-
modal interaction. New York: Association for Computing Machinery, pp.
427-434.

Bowers, K. J., & Johnson, S. D. (2005). Domestic burglary repeats and space-
time clusters: The dimensions of risk. European Journal of Criminology, 2(1),
67-92.

Brantingham, P. J. (2016). Crime diversity. Criminology, 54(4), 553-586.

Brantingham, P. J,, & Brantingham, P. L. (1995). Criminality of place: Crime
generators and crime attractors. European Journal on Criminal Policy and
Research, 3, 5-26.

Brantingham, P. J,, & Brantingham, P. L. (2016). The geometry of crime and
crime pattern theory. Environmental criminology and crime analysis (pp.
117-135). Routledge.

Browning, C. R, Byron, R. A, Calder, C. A, et al. (2010). Commercial density,
residential concentration, and crime: Land use patterns and violence
in neighborhood context. Journal of Research in Crime and Delinquency,
47(3), 329-357.

Browning, C. R, Calder, C. A, Boettner, B, et al. (2017). Ecological networks and
urban crime: The structure of shared routine activity locations and neigh-
borhood-level informal control capacity. Criminology, 55(4), 754-778.

Page 29 of 31

Browning, C. R, Pinchak, N. P, & Calder, C. A. (2020). Human mobility and crime:
Theoretical approaches and novel data collection strategies. Annual
Reviews. Annual Review of Criminology, 4, 99-123

Bursik Jr, R. J,, & Grasmick, H. G. (1993). Economic deprivation and neighbor-
hood crime rates, 1960-1980. Law & Society Review, 27, 263.

Cagney, K. A, York Cornwell, E.,, Goldman, A. W, et al. (2020). Urban mobility
and activity space. Annual Review of Sociology, 46(1), 623-648.

Cancino, J. M. (2003). Breaking from orthodoxy: The effects of social disorgani-
zation on perceived burglary in nonmetropolitan communities. American
Journal of Criminal Justice,28, 125-145.

Canzian, L, & Musolesi, M. (2015). Trajectories of depression: unobtrusive
monitoring of depressive states by means of smartphone mobility
traces analysis. In Proceedings of the 2015 ACM international joint confer-
ence on pervasive and ubiquitous computing. New York: Association for
Computing Machinery, pp. 1293-1304

Chen, C, Ma, J,, Susilo, Y, et al. (2016). The promises of big data and small
data for travel behavior (aka human mobility) analysis. Transportation
Research Part C, Emerging Technologies, 68, 285-299.

Chen, T, & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on know!-
edge discovery and data mining. New York: Association for Computing
Machinery, pp. 785-794

Chen, T, Bowers, K, Cheng, T, & et al. (2020). Exploring the homogeneity of
theft offenders in spatio-temporal crime hotspots. Crime Science,9(1),
1-13.

Chen, T, Bowers, K, Zhu, D,, & et al. (2022). Spatio-temporal stratified asso-
ciations between urban human activities and crime patterns: a case
study in san francisco around the covid-19 stay-at-home mandate.
Computational Urban Science,2(1), 1-12.

Chen, T, Bowers, K, & Cheng, T. (2023a). Applying dynamic human activ-
ity to disentangle property crime patterns in London during the
pandemic: An empirical analysis using geo-tagged big data. ISPRS
International Journal of Geo-Information, 12(12), Article 488.

Chen, T, Gao, X, & Cheng, T. (2023b). Revealing the relationship between
human mobility and urban deprivation using geo-big data: a case study
from london in the post-pandemic era. Geographical Information Sci-
ence Research UK (GISRUK).

Chen, T, Bowers, K, & Cheng, T. (2025). The impacts of specific place visita-
tions on theft patterns: A case study in greater London, UK. Computa-
tional Urban Science, 5(1), Article 30.

Cheng, T, Chen, T, Liu, Y, et al. (2022). Human mobility variations in
response to restriction policies during the COVID-19 pandemic: An
analysis from the virus watch community cohort in England, UK. Fron-
tiers in Public Health, 10, Article 999521.

Clarke, R. V. (1995). Situational crime prevention. Crime and justice, 19, 91-150.

Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A
routine activity approach. American Sociological Review, 44(4), 588-608.

Csaji, B. C, Browet, A, Traag, V. A, et al. (2013). Exploring the mobility of
mobile phone users. Physica A, Statistical Mechanics and Its Applications,
392(6), 1459-1473.

De Courson, B, & Nettle, D. (2021) Why do inequality and deprivation pro-
duce high crime and low trust? Scientific Reports, 11(1):1937

De Nadai, M., Xu, Y., Letouzé, E., & et al. (2020). Socio-economic, built
environment, and mobility conditions associated with crime: a study of
multiple cities. Scientific reports, 10(1), 1-12.

Eck, J., & Weisburd, D. L. (2015). Crime places in crime theory. Hebrew
University of Jerusalem Legal Studies Research Paper. Crime and place:
Crime prevention studies, 4, 1-33

Felson, M., & Cohen, L. E. (1980). Human ecology and crime: A routine activ-
ity approach. Human Ecology,8(4), 389-406.

Felson, M., & Jiang, S. (2020). Xu Y (2020) routine activity effects of the covid-
19 pandemic on burglary in detroit, march. Crime Science, 9(1), 1-7.

Freund, Y., Schapire, R, & Abe, N. (1999). A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780), 1612.

Galeazzi, A, Cinelli, M., Bonaccorsi, G, & et al. (2021). Human mobility in response
to covid-19in france, italy and uk. Scientific reports, 11(1), 1-10.

Gonzalez, M. C,, Hidalgo, C. A, & Barabasi, A. L. (2008). Understanding indi-
vidual human mobility patterns. nature,453(7196), 779-782.

Graif, C, Gladfelter, A. S., & Matthews, S. A. (2014). Urban poverty and
neighborhood effects on crime: Incorporating spatial and network
perspectives. Sociology Compass, 8(9), 1140-1155.



Chen et al. Computational Urban Science (2026) 6:2

Graif, C, Lungeanu, A, & Yetter, A. M. (2017). Neighborhood isolation in
Chicago: Violent crime effects on structural isolation and homophily in
inter-neighborhood commuting networks. Social Networks, 51, 40-59.

Graif, C, Freelin, B.N., Kuo, Y. H., et al. (2021). Network spillovers and neigh-
borhood crime: A computational statistics analysis of employment-
based networks of neighborhoods. Justice Quarterly, 38(2), 344-374.

Halford, E., Dixon, A, Farrell, G, & et al. (2020). Crime and coronavirus: Social
distancing, lockdown, and the mobility elasticity of crime. Crime sci-
ence,9(1), 1-12.

Hariharan, R., & Toyama, K. (2004). Project lachesis: parsing and modeling
location histories. In International Conference on Geographic Information
Science (pp. 106-124). Springer.

Hastie, T, Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical
learning: Data mining, inference, and prediction (Vol. 2). Springer.

He, L, Pdez, A, Jiao, J, et al. (2020). Ambient population and larceny-theft: A
spatial analysis using mobile phone data. ISPRS International Journal of
Geo-Information, 9(6), Article 342.

Hu, T, Wang, S., She, B, et al. (2021). Human mobility data in the COVID-19
pandemic: Characteristics, applications, and challenges. International
Journal of Digital Earth, 14(9), 1126-1147.

Jones, R.W.,, & Pridemore, W. A. (2019). Toward an integrated multilevel
theory of crime at place: Routine activities, social disorganization, and
the law of crime concentration. Journal of Quantitative Criminology,
35(3), 543-572.

Kadar, C., & Pletikosa, I. (2018). Mining large-scale human mobility data for
long-term crime prediction. EPJ Data Science,7(1), 1-27.

Kadar, C,, Feuerriegel, S., Noulas, A., & et al. (2020). Leveraging mobility flows
from location technology platforms to test crime pattern theory in
large cities. In: Proceedings of the international AAAI conference on web
and social media. Washington: Association for the Advancement of
Artificial Intelligence, 14, 339-350

Kang, J. H., Welbourne, W., Stewart, B, et al. (2005). Extracting places from
traces of locations. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 9(3), 58-68.

Kawachi, I, Kennedy, B. P, & Wilkinson, R. G. (1999). Crime: Social disor-
ganization and relative deprivation. Social Science & Medicine, 48(6),
719-731.

Kinney, J. B, Brantingham, P. L, Wuschke, K., et al. (2008). Crime attractors,
generators and detractors: Land use and urban crime opportunities. Built
Environment, 34(1), 62-74.

Levy, B. L., Phillips, N. E, & Sampson, R. J. (2020). Triple disadvantage: Neighbor-
hood networks of everyday urban mobility and violence in us cities.
American Sociological Review,85(6), 925-956.

Li, Z. (2022). Extracting spatial effects from machine learning model using local
interpretation method: An example of shap and xgboost. Computers,
Environment and Urban Systems,96, 101845.

Long, D, Liu, L, Xu, M., et al. (2021). Ambient population and surveillance
cameras: The guardianship role in street robbers' crime location choice.
Cities, 115, Article 103223.

Lu, X, Bengtsson, L., & Holme, P. (2012). Predictability of population displace-
ment after the 2010 Haiti earthquake. Proceedings of the National Acad-
emy of Sciences of the United States of America, 109(29), 11576-11581.

Lundberg SM, & Lee S. (2017) A unified approach to interpreting model pre-
dictions. Advances in neural information processing systems. New York:
Curran Associates, Inc. 30

Lymperopoulou, K, & Bannister, J. (2022). The spatial reordering of poverty and
crime: A study of Glasgow and Birmingham (United Kingdom), 2001/2 to
2015/16. Cities, 130, 103874.

Malleson, N., & Andresen, M. A. (2015). The impact of using social media data
in crime rate calculations: Shifting hot spots and changing spatial pat-
terns. Cartography and Geographic Information Science,42(2), 112-121.

Markowitz, F. E., Bellair, P E,, Liska, A. E., et al. (2001). Extending social disorgani-
zation theory: Modeling the relationships between cohesion, disorder,
and fear. Criminology, 39(2), 293-319.

Messer, L. C, Kaufman, J. S., Dole, N, et al. (2006). Neighborhood crime, depri-
vation, and preterm birth. Annals of Epidemiology, 16(6), 455-462.

Mobhler, G, Bertozzi, A. L, Carter, J,, et al. (2020). Impact of social distancing
during COVID-19 pandemic on crime in Los Angeles and Indianapolis.
Journal of Criminal Justice, 68, Article 101692.

Molnar C (2020) Interpretable machine learning. Lulu. com

Page 30 of 31

Nobles, M. R, Ward, J. T, &Tillyer, R. (2016). The impact of neighborhood con-
text on spatiotemporal patterns of burglary. Journal of Research in Crime
and Delinquency,53(5), 711-740.

Papandrea, M., Jahromi, K. K., Zignani, M., et al. (2016). On the properties of
human mobility. Computer Communications, 87, 19-36.

Pappalardo, L, Rinzivillo, S., & Simini, F. (2016). Human mobility modelling:
Exploration and preferential return meet the gravity model. Procedia
Computer Science, 83,934-939.

Phithakkitnukoon, S., Smoreda, Z,, & Olivier, P. (2012). Socio-geography of
human mobility: A study using longitudinal mobile phone data. PLoS
One, 7(6),€39253.

Ribeiro, M. T, Singh, S., & Guestrin, C. (2016). Why should i trust you? Explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. New
York: Association for Computing Machinery, pp. 1135-1144

Rumi, S. K, Deng, K., & Salim, F. D. (2018). Crime event prediction with dynamic
features. EPJ Data Science,7(1), 43.

Sampson, R. J,, & Groves, W. B. (1989). Community structure and crime: Test-
ing social-disorganization theory. American Journal of Sociology, 94(4),
774-802.

Sampson, R. J,, & Groves, W. B. (2017). 8 community structure and crime: Test-
ing social-disorganization theory 1. Social, Ecological and Environmental
Theories of Crime (pp. 93-122). Routledge.

Sampson, R. J,, & Levy, B. L. (2020). Beyond residential segregation: Mobility-
based connectedness and rates of violence in large cities. Race and Social
Problems, 12(1), 77-86.

Sampson, R. J, & Raudenbush, S. W. (1999). Systematic social observation of
public spaces: A new look at disorder in urban neighborhoods. American
Journal of Sociology, 105(3), 603-651.

Sampson, R. J, Raudenbush, S.W,, & Earls, F. (1997). Neighborhoods and violent
crime: A multilevel study of collective efficacy. Science, 277(5328), 918-924.

Schlapfer, M., Dong, L, O'Keeffe, K, et al. (2021). The universal visitation law of
human mobility. Nature, 593(7860), 522-527.

Shapley, L. S. (1953). A value for n-person games. Contribution to the Theory of
Games. Princeton University Press Princeton, 2, 307-317

Shaw, C. R, & McKay, H. D. (1942). Juvenile delinquency and urban areas. Univer-
sity of Chicago press.

Song, C, Qu, Z, Blumm, N., et al. (2010). Limits of predictability in human
mobility. Science, 327(5968), 1018-1021.

Song, G, Liu, L, Bernasco, W, et al. (2018). Testing indicators of risk popula-
tions for theft from the person across space and time: The significance
of mobility and outdoor activity. Annals of the American Association of
Geographers, 108(5), 1370-1388.

Song, G, Bernasco, W, Liu, L, et al. (2019). Crime feeds on legal activities: Daily
mobility flows help to explain thieves'target location choices. Journal of
Quantitative Criminology, 35(4), 831-854.

Strumbelj, E,, & Kononenko, I. (2014). Explaining prediction models and indi-
vidual predictions with feature contributions. Knowledge and Information
Systems, 41, 647-665.

Tai, X. H,, Mehra, S., & Blumenstock, J. E. (2022). Mobile phone data reveal
the effects of violence on internal displacement in Afghanistan. Nature
Human Behaviour, 6(5), 624-634.

Tilley, N., Tseloni, A, & Farrell, G. (2011). Income disparities of burglary risk:
Security availability during the crime drop. The British Journal of Criminol-
0gy,51(2), 296-313.

Tompson, L., Johnson, S., Ashby, M, et al. (2015). Uk open source crime data:
Accuracy and possibilities for research. Cartography and Geographic
Information Science, 42(2), 97-111.

Traunmueller, M. W, Johnson, N., Malik, A, et al. (2018). Digital footprints: Using
wifi probe and locational data to analyze human mobility trajectories in
cities. Computers, Environment and Urban Systems, 72, 4-12.

Tseloni, A, Wittebrood, K., Farrell, G, & et al. (2004). Burglary victimization in
england and wales, the united states and the netherlands: A cross-
national comparative test of routine activities and lifestyle theories. British
Journal of Criminology,44(1), 66-91.

Verma, R, Mittal, S, Lei, Z, et al. (2024). Comparison of home detection algo-
rithms using smartphone gps data. EP/ Data Science, 13(1), Article 6.

Weir, R. (2019). Using geographically weighted regression to explore
neighborhood-level predictors of domestic abuse in the UK. Transactions
in GIS, 23(6), 1232-1250.



Chen et al. Computational Urban Science (2026) 6:2

White, R, & Renk, K. (2012). Externalizing behavior problems during adoles-
cence: An ecological perspective. Journal of Child and Family Studies, 21(1),
158-171.

Williams, N. E, Thomas, T. A, Dunbar, M., et al. (2015). Measures of human
mobility using mobile phone records enhanced with gis data. PLoS One,
10(7), Article e0133630.

Wu, J,, Abrar, S. M., Awasthi, N, et al. (2022). Enhancing short-term crime pre-
diction with human mobility flows and deep learning architectures. £P/
Data Science, 11(1), Article 53.

Yan, L, Wang, D, Zhang, S, et al. (2019). Evaluating the multi-scale patterns of
jobs-residence balance and commuting time-cost using cellular signal-
ing data: A case study in Shanghai. Transportation, 46, 777-792.

Zhang, X, Liu, L, Lan, M, et al. (2022). Interpretable machine learning models
for crime prediction. Computers, Environment and Urban Systems, 94,
Article 101789.

Zhao, F, Ghorpade, A, Pereira, F. C, et al. (2015). Stop detection in smartphone-
based travel surveys. Transportation Research Procedia, 11, 218-226.

Zhao, K, Tarkoma, S,, Liy, S., & et al. (2016). Urban human mobility data mining:
An overview. In 2016 IEEE International Conference on Big Data (Big Data)
(op. 1911-1920), IEEE.

Zheng, Y. (2015). Trajectory data mining: An overview. ACM Transactions on
Intelligent Systems and Technology (TIST), 6(3), 1-41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Page 31 of 31



	Disentangling the impacts of collective mobility of residents and non-residents on burglary levels
	Abstract 
	1 Introduction
	2 Data and methods
	2.1 Data and study area
	2.2 Characterising collective mobility (movement and visiting) from mobile phone GPS data
	2.2.1 Resident and non-resident discrimination based on stay and home location detection
	2.2.2 Measuring movement variables for residents
	2.2.3 Measuring visiting variables for residents and non-residents

	2.3 Explainable machine learning models
	2.3.1 XGBoost and SHAP
	2.3.2 Modelling procedures


	3 Results
	3.1 The shifting of collective mobility in London from 2020 to 2021
	3.2 Global impacts of collective mobility on burglary
	3.3 Local impacts of collective mobility on burglary

	4 Discussion
	5 Conclusions
	Appendix
	Acknowledgements
	References


