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Abstract 

This study investigates how the collective mobility (including movement and visiting) of residents and non-residents 
affects neighbourhood burglary levels. While past research has linked mobility to urban crime, this study explores 
how these relationships vary across population groups and social contexts at the neighbourhood level. Using mobile 
phone GPS data, we distinguished between residents and non-residents based on daily movement patterns. We 
then measured their mobility within defined spatial and temporal units. An explainable machine learning method 
(XGBoost and SHAP) was used to assess how mobility patterns influence burglary in London’s LSOAs from 2020 
to 2021. Results show that increased collective mobility is generally associated with higher burglary levels. Specifically, 
non-resident footfall and residents’ stay-at-home time have a stronger influence than other variables like residents’ 
travelled distance. The impact also varies across neighbourhoods and shifts during periods of COVID-19 restric-
tions and relaxations. These findings confirm the dynamic link between mobility and crime, highlighting the value 
of understanding population-specific patterns to inform more targeted policing strategies.
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1  Introduction
Collective human mobility refers to the aggregated pat-
terns of individual or group movements and visits across 
geographic areas (Barbosa et al. 2018). Typically, human 
mobility is examined through two distinctive dimen-
sions: movement, which captures flows and trajectories 
between locations and reflects the distances and extent 
people travel in daily life (Alessandretti et al. 2020; Gon-
zalez et  al. 2008; Schläpfer et  al. 2021), and visiting, 
which reflects frequency and duration at specific place/

destinations, such as shopping centres or other social 
activity hubs (Papandrea et  al. 2016; Chen et  al. 2016). 
Understanding these mobility patterns is highly valuable 
for urban research as they reveal population movement 
and visiting across urban areas. Linking such collec-
tive mobility patterns to crime patterns can help to dis-
entangle the spatio-temporal crime dynamics in urban 
neighbourhoods.

Opportunity theories suggest that crimes tend to con-
centrate in specific urban areas or locations character-
ised by high volumes of citizen activity and foot traffic 
providing opportunities for offenders to commit crimes 
(Brantingham and Brantingham 2016; Felson and Cohen 
1980; Cohen and Felson 1979). This can be related to the 
population’s collective mobility patterns incorporating 
movement and visiting behaviours, which play a key role 
in the convergence of potential offenders, targets, and 
guardians within a specific urban space, thereby affecting 
crime opportunities (Levy et al. 2020; Cagney et al. 2020). 
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For example, a bustling commercial street with high foot-
fall traffic during business hours might experience higher 
theft crime rates due to the increased opportunities to 
attract offenders. Conversely, residential areas with lit-
tle resident activity during working hours might be more 
susceptible to burglaries due to a lack of guardianship 
(Browning et al. 2010).

In addition, social disorganisation theories argue that 
crime is not simply the result of individual factors but 
is also influenced by the socio-economic characteristics 
of the geographical areas (e.g., neighbourhoods) where 
residents live. This phenomenon is commonly called the 
neighbourhood effect, which refers to the fact that crime 
rates tend to be higher in disadvantaged neighbour-
hoods whose residents tend to have difficulty in develop-
ing social cohesion and informal social control against 
crime occurrences (Shaw and McKay 1942; Sampson 
and Groves 1989; Sampson et al. 1997; Graif et al. 2014). 
While static socioeconomic factors can strongly impact 
the crime rates in neighbourhoods, exploring human 
mobility can further explain the movement and interac-
tions of both residents and outsiders that influence crime 
levels. Previous studies have examined the connections 
between crime levels and neighbourhood disadvantage 
measured by the residents’ mobility dynamics conditions 
in neighbourhoods (Levy et  al. 2020; Browning et  al. 
2020; White and Renk 2012).

The nexus between opportunity and neighbourhood 
theoretical approaches suggests a complex interplay 
between localised crime opportunities and broader 
neighbourhood contextual characteristics, leading to a 
mixed-effect understanding of crime patterns in urban 
neighbourhoods. Simply put, crime rates tend to be 
higher in urban areas with low social cohesion and infor-
mal social control (i.e., more disadvantaged neighbour-
hoods), and with high crime opportunities as well as low 
levels of guardianship (Sampson and Groves 2017; Cohen 
and Felson 1979).

Previous crime studies have used census data to evaluate 
social disorganisation in disadvantaged neighbourhoods, 
specifically considering factors such as poverty, unemploy-
ment, residential instability and deprivation (Sampson and 
Groves 1989; Sampson and Raudenbush 1999; Kawachi 
et  al. 1999; De  Courson and Nettle 2021; Boggess and 
Hipp 2010). In addition, static geographic land use or spe-
cific types of place data have been employed to measure 
crime (opportunity) generator levels, especially represent-
ing the areas frequently visited by a significant portion of 
the population (Brantingham and Brantingham 1995; Eck 
and Weisburd 2015; Kinney et  al. 2008). In recent years, 
there has been a growing interest in utilising geo big data 
for sensing the collective mobility of populations as an 
alternative to traditional static data in the interpretation 

of crime patterns. This emerging stream also focuses on 
discussions regarding the population’s impact on creat-
ing opportunities or offering protection and contribution 
to the social conditions of neighbourhoods (Sampson 
and Levy 2020; Jones and Pridemore 2019; De Nadai et al. 
2020). An initial aspect of interest is that geo big data can 
identify spatial and temporal collective activity patterns 
of populations, such as the number of people present in a 
specific area, including those who work, live, or visit there 
at a given time. This has enabled the evaluation of how col-
lective mobility dynamically influences crime opportuni-
ties in urban areas.

A common approach involves examining geo big data 
gathered from location-based services or mobile ser-
vice towers shared by numerous users to estimate the 
population collective mobility (movement and visit-
ing) and link it with crime patterns in urban regions, 
including geo-tagged social media data (Malleson and 
Andresen 2015) and Call Detail Records (CDR) data 
(Bogomolov et al. 2014; Long et al. 2021; De Nadai et al. 
2020; He et al. 2020; Zhang et al. 2022; Rumi et al. 2018; 
Tai et  al. 2022). Notably, some studies have also lever-
aged sensed population activities (i.e., footfalls in urban 
areas) instead of arbitrarily quantifying the presence of 
ambient population using the numbers of users in data-
sets (Chen et  al. 2023, 2022). This is because measur-
ing visits or stays to represent population activity is 
more directly related to individual exposure to others, 
and thus better reflects the population’s activities across 
urban regions (Chen et al. 2022).

The second aspect of interest in geo big data and crime 
analysis has concentrated on utilising the flow data for-
mat (information for the origin and destination of pop-
ulation movements) to assess the commuting or travel 
patterns of the population linked to crime opportuni-
ties across urban regions, such as crowd-sourced mobile 
phone user’s movement flow (Wu et  al. 2022; Kadar 
et  al. 2020), transportation flows or trips (Kadar and 
Pletikosa 2018; Song et  al. 2018, 2019). Additionally, in 
assessing the relationship between resident mobility and 
crime, unlike some earlier studies that relied on census 
population flow data (Graif et  al. 2017, 2021; Browning 
et  al. 2017), recent research has begun to explore more 
precise measures of resident collective mobility pat-
terns to better understand crime dynamics across neigh-
bourhoods. For example, Levy et al. (2020) used Twitter 
social media data sets to measure residents’ collective 
mobility and how it affects crime levels, and indicated 
that trends in structural mobility (flows) obtain a nota-
ble impact on neighbourhood homicides. Other studies 
have revealed that residents’ mobility patterns (e.g., resi-
dents frequently moving in and out of a neighbourhood) 
can influence levels of neighbourhood disorganisation, 
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consequently disrupting the establishment of community 
cohesion which can help prevent crimes (Browning et al. 
2017, 2020).

While empirical studies have linked population mobil-
ity to crime levels either through the lens of opportunity 
or neighbourhood theories, there has been no extensive 
investigation into the specific influence of different types 
of collective mobility from non-residents or residents on 
crime in neighbourhoods. The availability of high-resolu-
tion geo big data can facilitate the exploration of such dif-
ferent dimensions of sensed collective mobility patterns 
in space and time. This offers a valuable opportunity to 
explore how crimes are impacted by collective mobility 
measured in a way that can separate the movements of 
residents and visitors in neighbourhoods. In addition, 
human mobility experienced substantial changes during 
the COVID-19 pandemic due to social distancing meas-
ures in global cities (Hu et al. 2021; Galeazzi et al. 2021; 
Cheng et al. 2022). These changes affected both the pop-
ulation movement and visiting behaviours, which also 
alter opportunities for crime across urban neighbour-
hoods. Studying collective mobility during this period is 
therefore very useful in understanding how disruptions 
in normal social conditions influence crime dynamics. 
Analysing these variations enables us to understand the 
context-dependent mechanisms through which mobility 
behaviour influences crime and offers insights for devel-
oping adaptive prevention strategies under extraordinary 
societal conditions.

Thus, this study focuses on comprehensively inte-
grating opportunity and neighbourhood theories when 
examining the influence of collective mobility on urban 
crime, particularly distinguishing the effects of residents’ 
activities from those of non-residents in neighbour-
hoods. In this study, we focus on the two-dimensional 
aspects of movement and visiting because they capture 
complementary aspects of collective mobility that are 
directly relevant to crime patterns (Browning et al. 2017, 
2020). By disentangling these two dimensions, we are 
better able to evaluate how mobility behaviours of resi-
dents and non-residents differentially influence burglary 
risk in urban neighbourhoods. Burglary was selected 
as the crime type for this research as prior studies have 
shown that the patterns and prevalence of burglary are 
closely linked to a variety of identified factors, including 
residents’ activities and the overall social cohesion within 
the neighbourhood community (Bernasco and Luykx 
2003; Nobles et  al. 2016). Neighbourhoods with more 
resident interaction and stronger community connec-
tions typically have lower rates of burglary. In contrast, 
areas where social engagement is limited and commu-
nity bonds are weaker tend to see higher rates of bur-
glary (Cancino 2003; Markowitz et al. 2001; Sampson and 

Groves 2017). This correlation highlights the suitability 
of using burglary as a case study when considering col-
lective mobility in analysing crime patterns within neigh-
bourhoods. Burglary has also been shown to be sensitive 
to shifting contexts, and studies have shown a relation-
ship between burglary patterns and the mobility restric-
tions that were enforced during the COVID pandemic 
(Halford et al. 2020; Mohler et al. 2020).

In summary, the research questions for the current 
study are: (1) How does the collective mobility of resi-
dents and non-residents affect crime occurrences in 
local neighbourhoods? (2) Does this impact differ across 
neighbourhoods with different conditions (e.g., different 
levels of social disorganisation)? (3) Additionally, does 
this impact change during different societal conditions, 
such as during the pandemic?

This paper is organised as follows: The Data and meth-
ods section introduces the data used in the study area 
and explains how this research defined collective mobility 
patterns (both movement and visiting) for separate resi-
dent and non-resident populations. It also describes the 
explainable machine learning techniques (i.e., XGBoost 
and SHAP) employed in this study. The result section 
presents and compares both global and local interpreta-
tions of the impact of mobility on burglary across a num-
ber of different modelling exercises across the study area 
of London during a two-year observation period covering 
the pandemic. The discussion section explores the signifi-
cance and insights drawn from the results and considers 
the limitations. Finally, the conclusions section summa-
rises the key findings and potential future works from 
this research.

2 � Data and methods
2.1 � Data and study area
As the case study for this analysis, London had a pop-
ulation of over 9.6 million in 2023. The metropolis 
comprises 33 local authorities (LAs) and 4,835 local 
neighbourhood areas officially referred to as Lower Super 
Output Areas (LSOAs) in the UK census. For this study, 
the LSOA geographical boundaries (as the primary geo-
graphical unit of analysis) in London were obtained from 
the ONS data protocol1. The areas of London LSOAs 
ranged from 18,362 m2 to 15,797,244 m2 , with a mean of 
329,828 m2 and a standard deviation of 638,819 m2 . In the 
UK context, the LSOA is commonly adopted as the unit 
of analysis to reduce analytic complexity in crime studies 
(Malleson and Andresen 2015; Tompson et al. 2015).

Burglary incident data covering the period from 2020 
to 2021 were downloaded from the Metropolitan Police 

1  Office for National Statistics: https://​www.​ons.​gov.​uk/

https://www.ons.gov.uk/
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Service section of the UK Online Police Data Portal2. The 
data include each crime event with corresponding spatial 
(latitude, longitude, LSOA index) and temporal (month 
and year) information.

The mobile phone GPS trajectory data set, including 
spatial coordinates and timestamps for each point, was 
anonymously collected from various applications (e.g., 
navigation, route planning, and outdoor sports) that 
utilise location-based services (LBS)3. This anonymous 
mobile phone data collection was conducted in compli-
ance with user agreements established under the Gen-
eral Data Protection Regulation (GDPR) to guarantee 
the privacy and security of user information. This study 
included 1,979,081 users representing approximately 22% 
of the total resident population in London during the 
two-year observation period from 2020 to 2021.

As the key neighbourhood condition factor considered 
in understanding crime patterns (Bursik Jr and Grasmick 
1993; Messer et  al. 2006), the latest urban deprivation 
indices (2019 version) data in London were downloaded 
from the Ministry of Housing, Communities & Local 
Government website4. The ‘Indices of Deprivation’ data 
of London is the measurement of several types of depri-
vation for the 4,835 LSOAs. The main index used in this 
work is called the ‘Index of Multiple Deprivation (IMD)’, 
which combines weighted measurement across seven 
distinct subtypes of aspects of deprivation, including 
‘Income Score (rate)’, ‘Employment Score (rate)’, ‘Educa-
tion, Skills and Training Score’, ‘Health Deprivation and 
Disability Score’, ‘Crime Score’, ‘Barriers to Housing and 
Services Score’ and ‘Living Environment Score’. As the 
IMD measures the level of deprivation within a neigh-
bourhood reflecting the overall socio-economic condi-
tions of the area, it is a commonly used variable in crime 
studies across the UK (Lymperopoulou and Bannister 
2022; Weir 2019).

2.2 � Characterising collective mobility (movement 
and visiting) from mobile phone GPS data

To characterise collective mobility (movement and visit-
ing behaviours) within the study’s spatio-temporal units 
(i.e., the LSOA-level and month-level) of different groups 
of populations, the GPS data obtained from anonymous 
users were prepared and analysed. The detection and 
measurement of movement and visiting behaviours for 
residents and non-residents are presented in Fig.  1 and 
consist of two main steps: The objective of ‘Step 1’ is to 
differentiate between residents and non-residents by 

identifying users’ stay patterns and then determining the 
home location based on daily GPS trajectory data from 
users’ mobile phones. Then, for each observation spatial 
and temporal unit/grid, ‘Step 2’ defines and measures the 
movement behaviours for residents only, including stay-
at-home duration time, maximum distance from home, 
travelled distance, mobility entropy and radius of gyra-
tion. A separate variable is then created in ‘Step 2’ which 
represents visiting behaviours, i.e., aggregated stays as 
footfalls that are not at home or work locations, for both 
resident and non-resident groups.

To clarify the mobility behaviour variables for residents 
and non-residents, Table 1 outlines the main definitions/
descriptions of residents, non-residents and collective 
mobility variables used in this study.

2.2.1 � Resident and non‑resident discrimination based 
on stay and home location detection

Stay definition. A stay refers to a single user u spending 
some time at one location, where the user’s recorded GPS 
points are concentrated at or around the same location 
during the observed duration (Hariharan and Toyama 
2004; Zheng 2015; Zhao et al. 2016). Figure 2 illustrates 
the process of detecting a user’s stay trajectory using sev-
eral stay points from raw GPS data. Formally, a user’s raw 
GPS trajectory P can be represented as a set of locations l 
with temporal information, so each GPS point can be 
denoted as Pi = (li, ti) . Given that a stay trajectory S can 
be extracted from Pi , each stay can be represented as 
Si = li, t

start
i , t endi .

In this analysis, the stay detection algorithm proposed 
by Hariharan and Toyama (2004) was implemented. This 
algorithm relies on two pre-defined parameters: �d – the 
maximum Euclidean distance that the recorded points 
of a user’s movement around a point/location to count 
as a stay, and �t – the minimum duration that the GPS 
records stay within time distance to qualify as a stay at 
that location. For this study, �d and �t were set to 50 
meters and 5 minutes to delineate stays from the raw GPS 
trajectory data. The parameters are based on the assump-
tion that stays identified from GPS points using these 
thresholds represent the typical range of an individual’s 
visits to a location, and have been commonly used in 
urban analytics (Zhao et al. 2015; Chen et al. 2023, 2025). 
For example, using a threshold of 5 minutes and 50 meters 
to define stays, Kang et al. (2005) demonstrated that these 
parameter settings effectively identify significant places 
from GPS location points. It is acknowledged, however, 
that this tests a single stay threshold and further research 
might explore the implications of this choice further.

Home location delineation. Using the semantic infor-
mation in relation to human residence behaviour, we 

2  Data.police.uk: https://​data.​police.​uk/
3  Sources: Location Sciences AI, now known as Sorted: https://​sorted.​com/
4  Ministry of Housing, Communities & Local Government: https://​www.​
gov.​uk/​gover​nment/​stati​stics/​engli​sh-​indic​es-​of-​depri​vation-​2019

https://data.police.uk/
https://sorted.com/
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
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can infer the user’s home location based on the move-
ment and stay pattern from their detected stay trajec-
tory (Csáji et al. 2013; Phithakkitnukoon et al. 2012). In 
this analysis, a user’s (u) home location was defined as 
the detected stay location that the user visits the most 

frequently during the nighttime period of a day. Home 
location detection h can be described as:

(1)h(S;u) = arg max
i

∣

∣

∣

{

Si | t
start
i , tendi ∈

[

tnight_begin , tnight_end
]

}
∣

∣

∣

Fig. 1  The measurement of movement and visiting behaviours for residents and non-residents based on GPS mobile phone trajectory data

Table 1  A checklist for the definitions/descriptions of residents, non-residents and mobility variables used in this study

*LSOA- and month-level measurement can be found in Sect. 2.2.2

 **LSOA- and month-level measurement can be found in Sect. 2.2.3

Name Definition/description

Residents For one specific neighbourhood (LSOA), a resident is characterised as a user who has a home location 
within this LSOA in one day’s observation

Non-residents For one specific neighbourhood (LSOA), a non-resident is characterised as a user without a home location 
within this neighbourhood in one day’s observation, or without home location detected

Residents’ movement behaviour variables* Resident’s movement behaviour variables are a set of five categories to characterise the distance, entropy, 
and duration of this resident’s movement, including residents’ maximum distance from home (RMDH), 
residents’ radius of gyration (RRG), residents’ travelled distance (RTD), residents’ mobility entropy (RME), 
residents’ stay-at-home duration time (RSHDT)

Residents’ visiting behaviour variable** For one LSOA, residents’ visiting behaviour variable is represented by residents’ footfalls (RF), counts 
of stays within this LSOA where the home location is situated

Non-residents’ visiting behaviour variable** For one LSOA, non-resident’s visiting behaviour variable is represented by non-residents’ footfalls (NRF)
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For the purpose of this analysis, the night-time period 
is set to be from 11 PM to 6 AM for implementing the 
home location detection, i.e., one user’s home location is 
where a stay occurs most frequently from 11 PM to 6 AM 
during the stay trajectories in one day. By implementing 
stay detection and delineating home locations, it is pos-
sible to link each user’s home location to a neighbour-
hood area (represented by LSOAs in this study). Within 
the context of LSOAs, stays can be categorised either as 
those shared by residents or by non-residents within a 
given day. For example, the stays are labelled as a resi-
dent of LSOA X (see Fig. 2) because the home location 
( S0 ) is identified in LSOA X though other stays of LSOA 
X although this resident does undertake stays in other 
LSOAs (here LSOA Y and Z) in a day. Thus, for LSOA 
X, stays made by residents (individuals whose home 
locations are in LSOA X) within LSOA X are labelled as 
‘resident stays’ ( S0 and S4 are the resident stays for LSOA 
X) while stays they make to other LSOAs are labelled as 
‘non-resident stays’ ( S2 and S3 are the non-resident stays 
for LSOA Y). In home location delineation, the mobile 
phone data was securely processed for safe storage and 
the home location information was eventually disposed 
after the completion of this work.

2.2.2 � Measuring movement variables for residents
In terms of resident movement behaviours, longer routine 
trips may reflect reduced availability of capable guardi-
anship at home (Felson et  al. 2020; Tseloni et  al. 2004). 
For example, when individuals travel further from their 

residence, they are absent for a longer duration, which 
weakens the routine guardianship and increases oppor-
tunities for residential burglary. In this regard, we employ 
several distance-based variables, such as maximum dis-
tance from home and total travelled distance to capture 
resident movements. Conversely, we also calculate the 
duration of time spent at home to reflect the resident’s 
presence at home. Following the movement distance meas-
ures that reflect guardianship in neighbourhoods, we also 
include the radius of gyration, which captures the extent of 
an individual’s habitual activity space. A larger radius indi-
cates greater spatial dispersion of daily routines, which may 
weaken local guardianship by reducing time spent within 
the immediate neighbourhood. Similarly, we incorporate 
mobility entropy, which reflects the diversity and unpre-
dictability of routine movements. High entropy indicates 
irregular schedules and spatial patterns with less predict-
able routines. Such irregularity may increase burglary 
risk by reducing the consistency of natural guardianship 
at home and it also makes guardianship level less predict-
able to offenders who might perceive this as an increased 
risk of discovery. Another implication is that these mobility 
behaviours are closely linked to the socioeconomic status 
of residents and may indirectly influence neighbourhood 
social control according to social disorganisation theory 
(Browning et al. 2020). Therefore, including these variables 
in our analysis allows us to examine the broader connec-
tions between different aspects of mobility behaviours and 
burglary levels.

Fig. 2  A user’s stay trajectory (across three LSOAs) generated from raw GPS points through stay detection. The grey boundaries are denoted 
as LSOA X, LSOA Y, and LSOA Z
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In this analysis, the daily movement patterns of individ-
ual residents are measured based on their daily stay trajec-
tories. Subsequently, the measurements for all residents 
across all LSOAs are aggregated at the LSOA- and month-
level as collective mobility variables. There are some spe-
cial variables that can be measured for resident movement, 
including stay-at-home duration time, the maximum dis-
tance from home, the travelled distance, mobility entropy 
and radius of gyration. Whilst measured from the home 
location ( S0 ), these movement variables reflect the resi-
dent’s whole daily mobility trajectory across the urban 
areas (i.e. they are not restricted to movement within the 
home LSOA). These are now defined in turn.

Stay-at-home duration time. A resident’s stay-at-home 
duration time (hours) is the total stay duration time length 
at the home location. This duration time (including the 
night-time period) can be measured from the detected 
home location in Sect. 2.2.1. In detail, based on an individ-
ual (u) home location’s (h) stay ( Sh =

(

lh, t
start
h

, t end
h

)

 ), one 
user’s (u) stay-at-home duration time ( �t,h ) can be calcu-
lated by �t,h = t starth − t endh .

The maximum distance from home. The maximum dis-
tance from home is the maximum value of the Euclidean 
distance between stays at the home location (Canzian and 
Musolesi 2015). For a resident’s stay trajectory S , the maxi-
mum distance from home dhmax(S;u) is calculated as:

where 
∣

∣Si, h(u)
∣

∣ is the Euclidean distance (km) between a 
stay Si and the home location h(S;u) (see Eq. 1), consid-
ering n stays. For example, the maximum distance from 
home in Fig.  2 is between the home location S0 and S2 
(i.e., |S0, S2|).

Travelled distance. This is the sum of the Euclidean dis-
tance between two consecutive (time-ordered) stays (Wil-
liams et al. 2015; Lu et al. 2012). For a user’s stay trajectory 
S , the travelled distance can be denoted as:

where Si−1 and Si are two successive stays in the n stays. 
In Fig.  2, the travelled distance can be calculated as 
td = |S0, S1| + |S1, S2| + |S2, S3| + |S3, S4| + |S4, S0|.

Radius of gyration. The radius of gyration, as a 
radial distance to a point, is used to characterise 
the typical distance travelled by a centre stay (time-
ordered) in the mobility trajectory (Gonzalez et  al. 
2008). Specifically, the radius of gyration is the root-
mean-square distance of the object’s parts from the 
axis of rotation. For a user’s stay trajectory S , the 
radius of gyration is defined as:

(2)dhmax(S;u) = max
1≤i<n

∣

∣Si, h(S;u)
∣

∣,

(3)td(S;u) =

n
∑

i=1

|Si−1, Si|,

For example, the radius of gyration in the trajectory 
in Fig.  2 (the centre stay is S2 ) can be calculated as 
rg =

√

1
5 (|S2, S0|)

2 + (|S2, S1|)2 + (|S2, S3|)2 + (|S2, S4|)2

.
Mobility entropy. The mobility entropy captures the 

full spatio-temporal order in an individual’s (u) mobil-
ity patterns (stay trajectories), which depends not only 
on the frequency of stays but also on the order in which 
the location nodes were visited and the time spent at 
each location (Song et  al. 2010). The mobility entropy 
of an individual is defined as

where P
(

T ′
u

)

 is the probability of finding a particu-
lar time-ordered sequence T ′

u in the trajectory Tu . 
For the stay at a distinct location at T, the probabil-
ity is determined by the fraction of the duration time 
an individual spent in the location divided by the total 
number of observations (i.e., 24 hours). Notably, mobil-
ity entropy measures the diversity of individual trajecto-
ries and higher entropy implies higher diversity with less 
predictability.

Monthly daily average measurement of residents’ col-
lective movement for LSOAs. The prior measurements 
focused on an individual resident’s daily movement 
patterns. These can be aggregated to capture the collec-
tive movement behaviours (i.e., the five types of move-
ment variables) of residents at the month level for each 
LSOA. The monthly daily average movement variable 
( M̄monthly ) is defined as

where 
∑Nd

i=1 Mi,d

Nd
 is the calculation of daily mean movement 

variable per resident for one day observation (d) in a 
LSOA. Specifically, Mi,d is the movement variable value 
for resident i on day d and Nd is the total number of resi-
dents observed in the LSOA on day d. Then, M̄monthly is 
the mean value of the movement variables over all days of 
the month ( 1D

∑D
d=1 ) in one LSOA. D is the total number 

of days of a month.
As a point of clarification, for each LSOA, this study 

does not include calculations related to the movement 
patterns of non-residents, primarily due to the complexi-
ties introduced by the dynamic shifts in population, e.g., 
a neighbourhood area (LSOA) can experience very large 

(4)rg(S;u) =

√

√

√

√

1

n

n
∑

i=1

(|Si, Sm|)2.

(5)E(u) = −
∑

T ′
u

P
(

T ′
u

)

log2

[

P
(

Ti
u

)]

(6)M̄monthly =
1

D

D
∑

d=1

(

∑Nd
i=1Mi,d

Nd

)
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amounts of visiting from non-residents. Instead, this 
focus is solely on understanding how the range of move-
ment behaviours of residents influences the neighbour-
hood’s effect on crime levels.

2.2.3 � Measuring visiting variables for residents 
and non‑residents

To measure the variables associated with visits in LSOAs, 
each day’s stays within the LSOAs are categorised into 
two types: stays by residents and stays by non-residents. 
The residents’ footfalls, as measured by a monthly daily 
average value, in a specific LSOA refer to the number 
of visits made by local residents whose primary resi-
dence is within that LSOA. In contrast, the non-resident 
footfall measured for an LSOA encompasses the visits 
made by individuals who are not local to the area. This 
non-resident population group includes residents from 
other LSOAs as well as visitors from beyond this study 
area (London) who do not have detected home locations 
within London in this analysis.

It is important to highlight that aggregated stays pri-
marily focus on specific visitation or social activities at 
place services and venues. Consequently, certain types 
of stays unrelated to visitation patterns were intention-
ally excluded: (1) Stays occurring during the early morn-
ing hours (0 AM to 6 AM) are typically excluded, as 
these hours are characterised by minimal social activity 
and widespread business closures. Consequently, such 
stays are not considered representative of typical human 
mobility patterns (Traunmueller et  al. 2018). (2) The 
user’s home location is defined as the place most fre-
quently visited during nighttime hours (11 PM to 6 AM), 
reflecting habitual residential presence, so these stays are 
excluded (Pappalardo et al. 2016; Verma et al. 2024). (3) 
A user’s workplace is defined as any location where they 
remain for more than six consecutive hours between 7 
AM and midnight. Work-related stays are distinguished 
from general visits and excluded, as they represent 
unique behavioural patterns that could otherwise bias the 
analysis. This method aligns with prior studies that have 
inferred workplace locations using mobile phone data 
(Yan et al. 2019).

Following this categorisation, for one LSOA, the accu-
mulated stays of both residents (whose home locations 
are within this LSOA) and non-residents (whose home 
locations are not within this LSOA, but within other 
LSOAs, or without a home location detected) were first 
compiled to determine footfalls (or the counts of stays) 
at the LSOA level and daily level. Then, the monthly daily 
average footfall is introduced as a metric representing 
visitation variables.

In line with the approach used to measure movement 
variables for residents, we aggregated visiting variables 

for both residents and non-residents at the monthly level. 
This aggregation ensures consistency with the temporal 
resolution of the crime data employed in this analysis, 
which is available only at the monthly temporal scale. To 
clarify, calculating the monthly daily average footfall for 
a single LSOA involves firstly summing up the footfalls 
within the LSOA over a month. Subsequently, this sum 
is divided by the total number of days in the month to 
determine the monthly daily average value.

2.3 � Explainable machine learning models
2.3.1 � XGBoost and SHAP
Explainable machine learning (ML) refers to methods 
and techniques in the field of artificial intelligence (AI) 
that offer insights into the impact of input predictors on 
outcomes of machine learning models (Molnar 2020). 
A machine learning model named XGBoost (short for 
‘Extreme Gradient Boosting’) with an explainability tech-
nique known as ‘SHapley Additive exPlanations’ (SHAP) 
was selected for interpreting the impact of collective 
mobility variables on burglary incident levels in this 
study. XGBoost is a widely used machine learning algo-
rithm valued for its efficiency and accuracy across diverse 
data types. It can manage multicollinearity effectively 
and is well-suited to capturing non-linear relationships 
within data as it employs an ensemble of tree-based mod-
els as base learners. It utilises gradient boosting machines 
(GBMs) to iteratively refine the predictions of multiple 
weak learners (decision trees) to enhance both accuracy 
and generalisation (Freund et  al. 1999; Chen and Gues-
trin 2016). Furthermore, existing work demonstrates 
that XGBoost together with SHAP can also detect spatial 
effects in the data compared to traditional geostatistical 
models applied in urban analytics (Li 2022).

While traditional feature importance indices in tree-
based models provide valuable insights, there are sig-
nificant limitations in achieving full interpretability of 
the trained model. These limitations mainly arise from 
feature importance calculations that depend on heuris-
tic methods, such as Gini importance or mean decrease 
impurity, which often inadequately reflect the complex 
interactions between input features. These feature impor-
tance methods often exhibit bias, particularly in their 
treatment of features with a higher number of categories. 
Furthermore, they fail to indicate the direction of a fea-
ture’s influence, leaving it unclear whether an increase 
in a feature’s value will positively or negatively affect the 
predicted outcome.

SHAP (Shapley Additive Explanations) proposed by 
Lundberg and Lee (2017) is a powerful tool for interpret-
ing model outputs. By integrating the concept of game 
theory and local explanations (Štrumbelj and Kononenko 
2014; Ribeiro et al. 2016; Shapley 1953), SHAP provides a 
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systematic approach to quantify the contribution of each 
feature to the model’s predictions. The SHAP value for 
feature i represents the average contribution of feature 
i in the model’s prediction when it is added to different 
subsets of features, weighted by the probability of each 
subset forming before feature i is added. Thus, the SHAP 
value ∅i(v) for each feature i can be denoted as:

Where N is the set of all features and n is the total 
number of features, S is a subset of features not includ-
ing feature i, and v is the model function that gives 
the prediction for each subset of features. So, the 
v(S ∪ {i})− v(s) represents the prediction changes after 
we include the new feature i in the model and |S|!(n−|S|−1)!

n!  
represents the associated weight (i.e., marginal contribu-
tion). Then, 

∑

S⊆N\{i}
|S|!(n−|S|−1)!

n!  is the weight by sum-
ming up the weights from all possible subsets S.

Hence, an absolute SHAP value represents the magni-
tude or strength of the impact that a feature has on the 
model’s prediction compared to the baseline prediction. 
Specifically, a larger absolute SHAP value for a feature 
indicates its greater importance in influencing the mod-
el’s output compared to other input features. Positive 
SHAP values ( > 0 ) for a feature i suggest that higher val-
ues of this feature contribute to increasing the predicted 
dependent variable, indicating a positive impact on the 
model’s predictions. Conversely, negative SHAP val-
ues ( < 0 ) for a feature i imply that higher values of this 
feature contribute to decreasing the predicted depend-
ent variable, signifying a negative impact on the model’s 
predictions.

2.3.2 � Modelling procedures
The modelling process includes training and testing 
an XGBoost regression model using seven collective 

(7)

∅i(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(s))

mobility variables (summarised in the first column 
of Table  2), a neighbourhood deprivation index, and 
burglary incident numbers. Subsequently, the SHAP 
approach is applied to analyse and interpret the impact of 
mobility variables on burglary levels across spatio-tem-
poral units.

In the data preparation phase, z-score standardisa-
tion was applied to both the explanatory variable matrix 
X with a dimension of 4,835 LSOAs × 24 months × 8 
explanatory variables and the response variable y (bur-
glary incident counts) for both the training and testing 
sets. In the training and testing process, the training set 
covers the 19-month data from January 2020 to July 2021 
(about 80% of the total dataset) and the testing set cov-
ers a period of five months from August 2021 to Decem-
ber 2021 (about 20% of the total dataset). This follows 
the ‘80/20’ rule commonly used in a standard machine 
learning training setup (Hastie et al. 2009). Then, perfor-
mance metrics such as Root Mean Square Error (RMSE) 
and the coefficient of determination ( R2 ) were used for 
the trained XGBoost regressor. Specifically, R2 illustrates 
the percentage of the variance in the target variable that 
the model accounts for, whereas RMSE measures the dis-
crepancy between the model’s predictions and the actual 
values. A higher R2 coupled with a lower RMSE signifies 
superior model performance.

During the training phase of the XGBoost regressor, 
gradient boosting iteratively builds a collection of deci-
sion trees by minimising the cost function at each step. 
For hyperparameter tuning of the XGBoost regressor, 
grid search and cross-validation were employed to opti-
mise the parameter settings defining decision trees, then 
the assembled XGBoost regressor (with the maximum 
tree depth, a sub-sample ratio of columns when con-
structing each tree, and learning rate) was selected by 
using 10-fold cross-validation in GridSearchCV5.

Table 2  The description of explanatory variables (i.e., movement and visiting and neighbourhood deprivation) and dependent 
variable (burglary numbers) of 4,835 LSOAs and 24 months. All variables are measured at the LSOA level

Variables Mean Std Min Max

Residents’ maximum distance from home (RMDH) (km) 4.18 2.38 0.36 192.77

Residents’ radius of gyration (RRG) (km) 1.74 0.94 0.15 46.72

Residents’ travelled distance (RTD) (km) 9.14 4.72 1.11 386.81

Residents’ mobility entropy (RME) 2.21 0.32 0.63 3.74

Residents’ stay-at-home duration time (RSHDT) (hour) 7.6 1.55 0.70 14.06

Residents’ footfalls (RF) 5.66 8.91 0.00 920.52

Non-residents’ footfalls (NRF) 58.12 142.91 0.00 17368.10

Index of multiple deprivation (IMD) 21.50 10.91 0.00 64.70

Burglary incident numbers 0.98 1.35 0.00 40.00

5  GridSearchCV: https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​
model_​selec​tion.​GridS​earch​CV.​html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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3 � Results
By analysing mobile phone data from 1,979,081 users, 
1,055,438 residents were identified (the user obtains a 
home location) in London from 2020 to 2021. The initial 
step (described in Sect.  2.2.1) identified the home loca-
tions for distinguishing residents (who have detected 
home locations in London LSOAs) and non-residents 
(who can be either residents from other LSOAs of Lon-
don or visitors from outside areas of London who do 
not have a detected home location in London LSOAs) 
for each LSOA on a daily basis. Subsequently, collec-
tive movement variables (including RMDH, RRG, RTD, 
RME and RSHDT shown in Table  1) were measured 
from each resident’s stay trajectory and visiting vari-
ables were aggregated to footfalls shared by residents 
and non-residents in LSOAs. Next, monthly daily aver-
age measurements were computed for 4,835 LSOAs over 
24 months to generate the collective mobility (movement 
and visiting) variables at the LSOA- and month-level (see 
Table 2).

Following this, the XGBoost regression model was 
trained (with a maximum tree depth of 17, a learning 
rate of 0.02, and a sub-sample ratio of columns when 
constructing each tree of 0.9). The best model perfor-
mance metric was an RMSE of 0.79 and R2 of 0.66 using 
the given 19-month training dataset. During the test-
ing phase, model performance metrics (RMSE of 1.19 
and R2 of 0.42) were determined by comparing the pre-
dicted burglary levels from the trained XGBoost regres-
sor to the actual burglary levels in the 5-month dataset. 
Lastly, the SHAP strategy was applied to explain the opti-
mised XGBoost model for both the training and testing 
sets by measuring the impact of the collective mobility 
variable levels on burglary levels from global and local 
perspective.

In this section, Sect.  3.1 describes the variations in 
collective mobility (movement and visiting behaviours) 
of both residents and non-residents in London LSOAs 
over 24 months. Subsection  3.2 describes the global 
impact of the collective mobility on burglary levels in 
different neighbourhoods including an exploration of 
how this changed over the COVID pandemic period. 
Subsection  3.3 then outlines how the model interprets 
local impacts by examining how the collective mobil-
ity variables influence burglary levels in specific LSOAs 
and months.

3.1 � The shifting of collective mobility in London from 2020 
to 2021

In analysing the explanatory variables summarised in 
Table  2 (such as movement and visiting behaviour and 
neighbourhood disadvantage variables) and the depend-
ent variable (burglary incident levels), it is important to 

note that in some cases the minimum count of both resi-
dent and non-resident footfall traffic (i.e., RF and NRF) 
drops to zero. This indicates a lack of visiting activi-
ties within a particular spatial-temporal unit/grid (i.e., 
one LSOA in one month) of 4,835 LSOAs across the 24 
months. Table  2 also indicates that burglary is a sparse 
variable with a mean value of less than 1 in each LSOA 
per month.

Figure  3 shows the temporal change (monthly) of 
‘Non-residents’ footfalls’ (per LSOA) from 2020 to 2021, 
and the spatial distribution in four distinct pandemic 
restriction/relaxation months during the periods of 
‘Normal times/before lockdown’ (February 2020), ‘First 
national lockdown’ (April 2020), ‘First lockdown restric-
tions eased’ (September 2020), and ‘Third national lock-
down’ (January 2021) in London. The average footfalls 
of non-residents (NRF) in London’s LSOAs experienced 
a decrease during restriction periods such as April 2020 
and January 2021, while it increased during relaxation 
periods such as September 2020. Regarding the spatial 
dynamics of non-residential footfall, a discernible shift 
can be observed in the location of the areas with high-
volume footfall across London LSOAs over the pandemic 
period. High volume footfall shifts from the city’s central 
regions to its peripheral urban areas from months under 
normal circumstances to the first national lockdown in 
the context of the overall decline in citizen activities (A 
similar pattern of local residents’ footfalls can also be 
found in Fig. 16 of Appendix A).

The fluctuations in footfalls correlate with pandemic 
policy adjustments and there are similar temporal pat-
terns observed in movement behaviours of local resi-
dents as indicated in Fig. 4. This demonstrates a change 
in the average travel distance of residents during dis-
tinct months coinciding with the lockdown policy. Fur-
thermore, the maps in Fig. 4 show that residents living 
in the peripheries of London typically travel greater 
distances than those in central London during normal 
times (e.g., February 2020). However, the travelling dis-
tances of residents living in outer London decreased 
notably and some indicated shorter travelling distances 
than the residents in inner London during the lockdown 
month (e.g., April 2020).

In line with this, the residents’ mobility entropy (rep-
resenting movement diversity –see Fig.  5) also dem-
onstrates a decrease during periods of restriction and 
an increase during relaxation times (other movement 
variables can be found in Appendix A: ‘Residents’ 
maximum distance from home’ shown in Fig.  17 in 
Appendix and ‘Residents’ radius of gyration’ shown in 
Fig.  18 in Appendix). Conversely, the residents’ stay-
at-home duration time (shown in Fig.  19 in Appendix 
A) exhibited a marked spike during lockdown periods 
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and reached its lowest level during relaxation phases, 
reflecting adjustments in working and social activities 
in response to policy changes.

3.2 � Global impacts of collective mobility on burglary
Utilising the SHAP strategy for interpreting the trained 
XGBoost model in conjunction with the explanatory var-
iables, the generated SHAP values indicate the influence 
of collective mobility variables and neighbourhood disad-
vantage variable (IMD) on burglary levels across 4,835 × 
24 spatio-temporal observational units/grids.

In Fig. 6, the global impacts quantifying the influence 
of each explanatory variable on the burglary level are 
measured by the average absolute SHAP values of the 
corresponding variable in all LSOAs and months from 
the optimised XGBoost regression model. It can be 
observed that the footfall traffic from non-residents (i.e., 
non-residents’ footfalls) obtained the highest value fol-
lowed by the neighbourhood disadvantage variable (i.e., 
IMD), while the duration of residents’ time spent at home 
(RSHDT) ranked third in its influence on burglary levels 
in neighbourhoods. Additionally, residents’ movement 

variables (e.g., residents’ travelled distance (RTD), resi-
dents’ mobility entropy (RME), residents’ maximum 
distance from home (RMDH) and residents’ radius of 
gyration (RRG)) take limited influence on burglary levels.

To test for the potential impact of multicollinearity, we 
include the correlation matrix (see Fig. 14 in Appendix) 
and the variance inflation factors (VIF) (see Fig.  15 in 
Appendix) of the collective mobility variables in Appen-
dix A. The results are mixed. The movement variables 
were found to be correlated based on Pearson correla-
tion. IMD, however, is not strongly correlated with any of 
the variables across all samples. We also provide the VIF 
results, which indicate that RMDH and RRG exhibit high 
multicollinearity. However, in our XGBoost model, the 
SHAP values of these two variables show only minimal 
impact on the model output (see Fig.  6). This suggests 
that XGBoost is able to handle multicollinearity in the 
data while capturing the nonlinear relationships among 
variables. Although highly correlated variables can some-
times influence linear regression model outputs, in our 
case, their effect is limited in XGBoost.

Fig. 3  The temporal change (monthly) of ‘Non-residents’ footfalls’ (per LSOA) from 2020 to 2021, and the spatial distribution in selected four distinct 
restriction/relaxation months in London: February 2020 –‘Normal times/before lockdown’, April 2020 – ‘First national lockdown’, September 2020 
– ‘First lockdown restrictions eased’, and January 2021 – ‘Third national lockdown’. Three vertical grey lines denote the specific national lockdown 
months in the UK, including the ‘First national lockdown’ (from March 23, 2020 to June 23, 2020), ‘Second national lockdown’ (from November 5, 
2020 to December 2, 2020) and ‘Third national lockdown’ (started from January 6, 2021 to February 22, 2021)
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In Fig.  7, the distributions of SHAP values in all spa-
tio-temporal observation units are systematically plot-
ted. Recall that positive SHAP values show a positive 
impact on burglary (i.e., larger positive SHAP values 
mean increased levels of burglary). For each explanatory 
variable (feature), the red colour signifies higher values 
and the blue colour represents lower values of the mobil-
ity and disadvantage variables. The figure illustrates the 
global correlations between different levels of explana-
tory variables and their impacts (measured by SHAP val-
ues) on the burglary levels in all observation units/grids 
consisting of 4,835 LSOAs and 24 months. For example, 
higher values of NRF (non-residents’ footfalls) correlate 
with a pronounced increased in burglary levels, as dem-
onstrated by the cluster of red dots to the right. A similar 
pattern is also observed with Index of Multiple Depri-
vation (IMD), where higher levels of IMD correspond 
to increased burglary levels. In contrast, RSHDT (resi-
dents’ stay-at-home duration time) imposes a negative 
impact on burglary levels, i.e., higher values of RSHDT 
are related to decreased crime levels (and vice versa, 
lower values of RSHDT are associated with an increase 
in crime levels).

To disentangle how the explanatory variables contribute 
to the strength of impact on the burglary outcomes, Fig. 8 

indicates the top four selected explanatory variable values 
(standardised values) and corresponding SHAP values in 
the majority of all samples (by excluding the outline sam-
ple points in the figure) from 4,835 LSOAs and 24 months 
(The figures of the SHAP values and features values for all 
samples can be found in Fig. 20 of Appendix A). It can be 
observed that the higher NRF values (as illustrated in sub-
figure 8a) generally relate to a higher SHAP value. Further, 
negative SHAP values of NRF (i.e., below zero) are mainly 
found in low-level NRF values. Similarly, in sub-figure 8b, 
the higher SHAP values of IMD are generally correlated 
with higher IMD values.

In contrast, higher RSHDT (residents’ stay-at-home 
duration time) values tend to correlate with lower SHAP 
values shown in sub-figure 8c. In terms of the positive or 
negative influences of RSHDT on burglary levels in the 
observed samples, the inflexion point is observed approx-
imately at 0 of the RSHDT standardised value (the real 
RSHDT value is about 3.8 hours). Further, the RF (resi-
dents’ footfalls) shown in sub-figure 8d did not demon-
strate a significant correlation where higher RF values are 
associated with increased SHAP values, except when the 
RF value is above approximately 1 (true footfall value is 
14.4), indicating that there might be a threshold at which 
resident footfall has an impact.

Fig. 4  The temporal change (monthly) of ‘Residents’ travelled distance’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected 
four distinct restriction/relaxation months in London
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To demonstrate the interplay of different variables on 
burglary levels, Fig.  9 presents an example illustrating 
the impacts of the interaction between neighbourhood 
deprivation (IMD) and non-residents’ footfalls (NRF) on 

burglary levels. It shows the SHAP values for the IMD 
variable in different spatial-temporal units categorised 
by the corresponding level of the NRF values (higher 
levels of non-residents’ footfalls are coded as red while 

Fig. 5  The temporal change (monthly) of ‘Residents’ mobility entropy’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected four 
distinct restriction/relaxation months in London

Fig. 6  The impact of each explanatory variable (measured by the average absolute SHAP values of all months and LSOAs) on burglary levels 
in the trained XGBoost model
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lower ones are blue). It is evident that the marginal blue 
dot in the top-right blue of sub-figure 9a indicates a high 
impact of IMD at elevated levels of deprivation in the 
context of a lower level of non-residents’ footfalls. Such 
interplay shows that the low-level non-resident visit-
ing footfalls also can have a high and positive impact on 
burglary levels in a neighbourhood (LSOA) with high-
level deprivation. Further, sub-figure  9b (selected range 
of IMDs) reveals a prevalence of red dots representing 
high-level NRF in less deprived neighbourhoods (i.e., 
the range below −1 on the x-axis of IMD values), that 
are exhibiting negative SHAP values (specifically, below 
zero). This means the high-level non-resident footfalls 
and less deprivation can contribute to an overall negative 
impact on burglary levels (i.e., decrease the burglary) in 
the neighbourhoods.

By measuring the average absolute SHAP values per 
LSOA, Fig.  10 shows that the global impacts of the top 
four variables on burglary levels are modulated by pan-
demic-related policies during the 24 months observation 
period in London LSOAs. For instance, the SHAP values 
of NRF show a lower relative impact of NRF on burglary 
during the first national lockdown period (e.g., April 2020 
and May 2020) while it recovered to a higher impact level 
in the relaxation period (e.g., September 2020) followed by 
a second reduction during the second national lockdown 
(e.g., November 2020). Figure 10 also shows that the SHAP 
values of residents’ footfalls follow a similar pattern of 
fluctuation in impact, compared to no significant change 
in the impact of IMD on burglary during the 24 observed 
months. Examining the SHAP values for RSHDT, a 

difference can be observed in the SHAP values in response 
to restriction periods. Specifically, there was a decline in 
the SHAP values during the first national lockdown phase, 
followed by an increase subsequent to the second national 
lockdown period commencing in November 2020.

3.3 � Local impacts of collective mobility on burglary
The localised impacts of the population’s movement and 
mobility on burglary levels predominantly examine these 
influences at the neighbourhood area level (LSOA level) 
in London. By mapping the distribution of the SHAP 
values of three selected variables (NRF, RSHDT and RF) 
for the ‘Before lockdown’ (represented by February 2020) 
and ‘First national lockdown’ (represented by April 2020) 
periods, Fig. 11 denotes the difference across the selected 
variables in the different contexts of pandemic policy 
shifts. In an examination of the spatial distribution in 
London before the lockdown, a concentration of high and 
positive SHAP values (i.e., large positive impact on bur-
glary) of NRF (plotted as red areas) was observed within 
the city centre surrounded by other dispersed high and 
positive value areas (see the map of ‘NRF 2020-02’). Con-
versely, during the first national lockdown (see the map 
of ‘NRF 2020-04’), the negative SHAP values (plotted as 
blue areas) dominated the majority of the urban areas, 
demonstrating a reversal in relationships (between NRF 
and burglary levels) excluding the city centre areas. Nota-
bly, several urban regions (e.g., western areas) were iden-
tified where high and positive SHAP values of NRF (high 
positive impact on burglary levels) persisted even during 
this period.

Fig. 7  The distribution of SHAP values of each explanatory variable. The x-axis represents the levels of SHAP values. Values greater than 0 
indicate a positive impact, while values less than 0 suggest a negative impact. In the legend, different levels of feature values, including mobility 
and neighbourhood disadvantage variables, are represented by colour variations: red signifies a higher level, while blue indicates a lower level
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In the distribution of SHAP values of RF and RSHDT, 
the high and positive SHAP values (above 1.5) were 
discernibly concentrated within urban centres in nor-
mal times (see the map of ‘RF 2020-02’ and ‘RSHDT 
2020-02’). During the first lockdown, though there 
was a noticeable reduction in SHAP values across the 
urban areas, the high and positive SHAP values of RF 
and RSHDT remained clustered in the same (inner city) 
areas. Distinctive variations in the distribution of SHAP 
values of explanatory variables are also evident in the 
three selected variables (NRF, RF and RSHDT) during the 
‘Lockdown easing period’ (as exemplified by September 
2020) and the ‘Second national lockdown’ (as exemplified 
by November 2020) periods (see Fig. 21 in Appendix A).

To examine the shifting of the local impact of all mobil-
ity variables and IMD on burglary levels in single LSOAs 
during the different observation periods, further analy-
sis selected four LSOAs as an example (see Fig.  12) to 
explore the shifting in the impacts of various explanatory 
variables on burglary levels during two distinct pandemic 
periods. Figure 13 illustrates the force plotting of SHAP 
values for several variables (with standardised values) in 
February 2020 (‘Before lockdown’) and April 2020 (‘First 
national lockdown’), respectively. The length of the verti-
cal bar represents the magnitude (measured by the SHAP 
absolute value) of the contribution/impact of each vari-
able on burglary level prediction. A longer bar indicates 
a stronger impact (higher absolute SHAP value) and vice 

Fig. 8  The dependency plot of the top four explanatory variable values (standardised) and corresponding SHAP values with proportions 
above and below zero
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versa. The colour indicates the direction of the variable/
feature’s impact on the prediction of burglary levels: red 
shows a positive (increased) impact while blue shows a 
negative (decreased) impact on the burglary level predic-
tion. The standardised values of each variable are labelled 
under their respective vertical bars.

In the sub-figure in Fig. 13 corresponding to LSOA A 
(LSOA index in E01000599) in February 2020 (before 
the lockdown), the IMD (with a standardised value of 
2.74) exhibited the largest and positive SHAP value 

in comparison to other variables. In the first national 
lockdown (e.g., April 2020), NRF standardised values 
in LSOA A decreased to −0.32 and had the largest and 
negative SHAP value (i.e., the longest bar in blue denot-
ing a high and negative SHAP value of NRF). Accord-
ingly, the standardised values of burglary level (i.e., 
the f(x) predicted by the XGBoost model) in LSOA 
A have been shifted from 0.27 (the observed value of 
burglary level is 2.95 and the observed number of bur-
glary incidents is 5) in February 2020 to −0.32 (the 

Fig. 9  The SHAP values of IMD alongside IMD values with interactional NRF (non-residents’ footfalls) values. The red dots denote the high NRF 
values, while the blue dots denote the low NRF values

Fig. 10  The monthly variation of average absolute SHAP values (per LSOA) of four selected variables (i.e., NRF, IMD, RSHDT and RF) during 24 
months. The vertical lines denote the three distinct national lockdown periods
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observed standardised value of burglary level is −0.73 
and observed burglary number is 0) in April 2020. This 
means that the model predicts lower crime levels in 
lockdown because of the lower mobility variable val-
ues. Another shifting pattern can be seen in the sub-
figure of LSOA D (LSOA index in E01001885): the 
SHAP values of IMD consistently exhibit a high level 
and stay positive (above 0) in the selected two months. 

There is an observable increase (i.e., the length of the 
blue area became longer) in the absolute SHAP values 
of NRF (with the NRF value reduced from −0.19 to 
−0.32) from ‘Before lockdown’ to ‘First national lock-
down’ in LSOA D. In addition, a noticeable transition 
is also observed wherein residents’ stay-at-home dura-
tion time (RSHDT) increased from −1.16 in February 
2020 to 0.63 in April 2020 (as restriction policy during 

Fig. 11  The distribution of the SHAP values of three selected variables (NRF, RSHDT and RF) during the ‘Before lockdown’ (represented by February 
2020) and ‘First national lockdown’ (represented by April 2020) periods
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the first national lockdown), while the SHAP value of 
RSHDT changed from a positive value in February 2020 
to a negative value in April 2020.

Considering the shifting of SHAP values of features 
in LSOA B (LSOA index is E01004091) and LSOA C 
(LSOA index is E01000707), it is observed that the low-
level IMD value (−1.55 for LSOA B and −1.67 for LSOA 
C) obtained significant negative SHAP values (below 
zero) in February and April 2020. The SHAP values 

of population mobility variables (e.g., NRF, RRG and 
RMDH) shifted from positive to negative (the impact of 
these mobility variables on the burglary levels switched 
directions) from normal month to restriction month. 
The shifting of SHAP values for certain variables is also 
evident in LSOA C, which is concomitant with altera-
tions in the variable’s value levels across distinct pan-
demic periods (from ‘Before lockdown’ to ‘First national 
lockdown’).

Fig. 12  The map of four selected LSOAs in London

Fig. 13  The SHAP values of contributed explanatory variables of four selected LSOAs in February 2020 (‘Before lockdown’) and April 2020 
(‘First national lockdown’). The length of the vertical bar represents the magnitude (measured by the SHAP absolute value) of the contribution/
impact of each variable on burglary-level prediction. A longer bar indicates a stronger impact and vice versa. The colour indicates the direction 
of the variable/feature’s impact on the prediction of burglary levels: red shows a positive (increased) impact while blue shows a negative 
(decreased) impact on the burglary level prediction. The standardised values of each variable are labelled under their respective vertical bars. The 
dark value under f(x) represents the burglary level predicted by the trained XGBoost model (note that this is different from the observed burglary 
levels). The base value refers to the mean of all predicted burglary levels across all samples, which in this study is 0.000038

(See figure on next page.)
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Fig. 13  (See legend on previous page.)
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4 � Discussion
The present study sought to understand how burglary 
incident levels are impacted by the collective mobility 
(movements and visiting) of residents and non-resi-
dents inferred from geo big data throughout London’s 
neighbourhood areas and focusing on distinct social 
change scenarios during the pandemic periods. The 
analytical methodologies have demonstrated that the 
movement and visiting variables of residents and non-
residents can be efficiently measured and observed to 
be associated with burglary levels. In the analytical 
approach, residents and non-residents in local LSOAs 
were first distinguished based on mobility trajectory 
patterns. Subsequently, movement and visiting vari-
ables were quantified for residents and non-residents 
at LSOA- and month-levels. An explainable machine 
learning approach incorporating the XGBoost regres-
sion model and SHAP strategy was used to deconstruct 
the impact of mobility and neighbourhood disadvan-
tage variables on the burglary levels in various London 
LSOAs over the two-year observational period. Rely-
ing on SHAP values as an impact metric, this study has 
addressed the three research questions posed in the 
Introduction by providing empirical evidence on the 
relationship between collective mobility and burglary 
in urban neighbourhoods.

First, the study found that the collective mobility pat-
terns of residents and non-residents differentially influ-
ence burglary levels in local neighbourhoods. The global 
results reveal that higher non-resident footfall is associ-
ated with increased burglary levels, while the extended 
residents’ stay-at-home duration time is correlated with 
reduced burglary levels in urban neighbourhood areas. 
Second, this study also found that the influence of mobil-
ity on burglary levels varies across neighbourhoods 
with different levels of deprivation. Local examination 
of specific local urban neighbourhood areas (LSOAs) 
showed the influences of mobility variables on burglary 
levels were moderated by the neighbourhood’s depriva-
tion levels. Third, the results show that both global and 
local impacts of collective mobility varied across different 
societal conditions. In particular, local impact analysis 
indicated that residents’ footfall and time spent at home 
influence burglary differently depending on neighbour-
hood deprivation levels. Collective mobility effects on 
crime were also moderated by pandemic-related restric-
tions and easing measures. Overall, this investigation 
demonstrated that there were a varied set of mechanisms 
through which population collective mobility influenced 
burglary levels across different local neighbourhoods and 
social conditions.

The observed heterogeneity in the results demonstrates 
that the interactions between movement and visiting 

variables and levels of neighbourhood deprivation dif-
ferentially influence burglary levels. This indicates that 
complex mechanisms are in play and understanding 
neighbourhood burglary levels from a singular perspec-
tive would fail to account for the specific mechanisms of 
crime within neighbourhoods driven by human mobil-
ity patterns. For instance, while higher neighbourhood 
deprivation is generally associated with increased bur-
glary incident levels as been found elsewhere (Tilley 
et al. 2011), such risks also interact with other population 
mobility factors.

Considering the shifting impacts of collective mobility 
and neighbourhood deprivation on burglary levels across 
diverse observation periods and specific urban neigh-
bourhoods, it is observed that the influence of popula-
tion-based opportunity manifests a pronounced dynamic 
and changing pattern. One potential explanation is that 
pandemic-induced lockdowns significantly changed 
natural surveillance mechanisms, thereby influencing 
offender target selection in urban neighbourhoods. In 
normal times, the high volumes of non-resident foot-
fall traffic can diminish the efficacy of natural surveil-
lance, thereby potentially reducing the perceived risk of 
potential burglars being identified or reported by local 
residents in neighbourhoods. During lockdown, the 
restriction policy disrupted the population activities (like 
travelling to other neighbourhoods) so as to potentially 
changing the burglary risks in urban areas. Local resi-
dents’ mobility was also restricted during the restriction 
period, as demonstrated by the extended stay-at-home 
duration time and reduced travel distance, also contrib-
uting to the local guardianship of local neighbourhoods 
against burglary crimes.

A further explanation is that mobility (movement and 
visiting behaviour) patterns are associated with the soci-
oeconomic conditions of local residents, which in turn 
shape the dynamic opportunities of burglary in neigh-
bourhoods. Specifically, the socio-economic status of res-
idents critically determines their mobility patterns, which 
reflects the range of opportunities available in their 
immediate surroundings (Chen et al. 2023). Furthermore, 
the offender population mobility patterns are also related 
to area-level and individual socio-economic conditions 
which affect the decision-making process. This process 
involves identifying general urban areas deemed to be 
more conducive to offending and then choosing particu-
lar locations to commit crimes (Clarke 1995; Branting-
ham 2016; Bernasco and Block 2009).

Analysing the collective mobility of both non-residents 
and local residents in each neighbourhood is crucial for 
understanding the crime generation mechanisms. It not 
only assists in pinpointing high-risk patterns related 
to the dynamic population’s mobility but also provides 
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insight into the types of neighbourhoods where specific 
mobility patterns have a pronounced impact on crime 
occurrence. For example, a neighbourhood characterised 
by low deprivation that attracts non-resident visitations 
might exhibit distinct burglary risks compared to an 
area with a higher level of deprivation. Hence, it is vital 
to recognise how different population groups and their 
mobility behaviours influence burglary within urban 
neighbourhoods, especially during changing social con-
texts. With a comprehensive understanding of mobility 
patterns and neighbourhood characteristics, authorities 
and policymakers can develop tailored strategies to com-
bat neighbourhood burglary effectively. For instance, in 
neighbourhood areas where burglary spikes correlate 
with increased non-resident visitation, strategies like 
heightened police patrols during peak hours or enhanced 
home security measures have promise in being effectively 
deployed.

There are several limitations of the analysis that 
should be articulated concerning this study. First, the 
effectiveness of classifying the population (from mobile 
phone users) to residents or non-residents using the 
method in this study remains unverified. The heu-
ristic method of home location detection applied in 
this study may not adequately consider the individual 
mobility complexities leading to potential inaccura-
cies in the classification of different population groups. 
For example, hotels and other temporary accommo-
dations can introduce bias as residential short-term 
stays in such locations will not accurately represent an 
individual’s true home location. To address this, one 
approach would be to apply alternative methods that 
leverage location records across different time spans. 
For example, there might be a frequency of location 
rule that defines a stay as being taken by a ‘resident’ and 
excludes the stays within hotel or accommodation loca-
tions. This helps to infer the home location more reli-
ably and in turn allows for more precise classification 
of resident and non-resident populations. This method 
would however have the practical drawback of involv-
ing many complex calculations that track individuals in 
the data over time. Furthermore, a more precise clas-
sification of population groups could be considered as 
a potential direction for further analysis. For example, 
distinguishing between the movements of employed 
and unemployed populations. This would better cap-
ture the varying impacts of different population activi-
ties on crime patterns during weekly cycles and periods 
of social change. Second, the current analysis focuses 
solely and directly on the interplay between guardian-
ship as measured by collective mobility and the impact 
of social conditions on burglary levels, without exam-
ining the influence of different built environments and 

urban land use within neighbourhoods. Additionally, 
the extent of the impact of collective mobility factors on 
burglary levels within specific geospatial units requires 
further investigation which might suggest a differently 
sized unit of analysis is appropriate. Since burglars 
often operate across nearby neighbourhood areas which 
can leads to the near-repeat patterns in burglary (Bow-
ers and Johnson 2005; Chen et al. 2020), the impacts of 
crime and mobility in urban areas may spill over into 
adjacent areas. Therefore, explicitly incorporating spa-
tial and temporal dependencies as input variables could 
enhance model performance in future analyses. Third, 
the impact of diversity of mobility behaviours (meas-
ured as the resident’s mobility entropy in this study) 
on crime levels in neighbourhoods requires further 
exploration as evidence for a significant impact was not 
found in this study. In parallel, the duration of stay for 
residents and visitors could also be further explored in 
urban areas as stay-at-home duration has been found 
to have a significant association with crime levels in 
this study. For example, it might be that the degree 
to which high footfall is criminogenic or protective 
at place varies with the typical length of stay in those 
locations. Fourth, this study does not undertake causal 
inference analysis but can only examine associations in 
terms of impact and therefore experimental approaches 
are required to provide stronger evidence in terms of 
policy implications. This study is therefore limited in 
its ability to draw clear causal connections between the 
collective mobility and burglary levels examined in dif-
ferent contexts of social conditions.

5 � Conclusions
This study investigated the impact of collective mobil-
ity of local and non-local residents on burglary levels 
through the utilisation of explainable machine learning 
techniques in London’s neighbourhood areas from 2020 
to 2021. The analysis revealed that collective mobility 
sensed from geo big data showed a strong impact on 
burglary levels, especially in terms of the frequency of 
non-residents’ visitations and the time duration of resi-
dents’ stays at home. This interplay between mobility, 
neighbourhood deprivation and crime changes dem-
onstrates various contextual mechanisms of burglary 
shifting across local areas. This analysis has also under-
scored the relevance of considering local population 
mobility patterns in formulating more precise crime 
mitigation measures. In further studies, an in-depth 
and high-resolution spatial-temporal analysis of local 
residents’ mobility patterns with other crime types may 
offer a deeper understanding of their interactions.
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Appendix

Fig. 14  The correlation matrix of explanatory variables (collective mobility and IMD) and burglary variables

Fig. 15  The variance inflation factors (VIF) of collective mobility variables and IMD
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Fig. 16  The temporal change (monthly) of local residents’ footfalls (per LSOA) from 2020 to 2021, and the spatial distribution in the selected four 
distinct restriction/relaxation months in London
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Fig. 17  The temporal change (monthly) of residents’ maximum distance from home (per LSOA) from 2020 to 2021, and the spatial distribution 
in the selected four distinct restriction/relaxation months in London
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Fig. 18  The temporal change (monthly) of ‘Residents’ radius of gyration’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected four 
distinct restriction/relaxation months in London
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Fig. 19  The temporal change (monthly) of ‘Residents’ stay-at-home duration’ (per LSOA) from 2020 to 2021, and the spatial distribution in the selected 
four distinct restriction/relaxation months in London
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Fig. 20  The dependency plot of the top four explanatory variable values (standardised) and corresponding SHAP values at full range
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Fig. 21  The distribution of the SHAP values of three selected variables (NRF, RSHDT and RF) during the ‘Lockdown easing period’ (represented 
by September 2020) and ‘Second national lockdown’ (represented by November 2020) periods
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