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Abstract 
Purpose – Anatomical identification during abdominal surgery is subjective given unclear 
boundaries of anatomical structures. Semantic segmentation of these structures relies on 
an accurate identification of the boundaries which carries an unknown uncertainty. Given 
its inherent subjectivity, it is important to assess annotation adequacy. This study aims to 
evaluate variability in anatomical structure identification and segmentation using MedSAM 
by surgical residents. Methods – Images from the Dresden Surgical Anatomy Dataset and 
the Endoscapes2023 Dataset were semantically annotated by a group of surgery residents 
using MedSAM in the following classes: abdominal wall, colon, liver, small bowel, spleen, 
stomach and gallbladder. Each class had 3 to 4 sets of annotations. Inter-annotator 
variability was assessed through DSC, ICC, BIoU and using the Simultaneous Truth and 
Performance Level Estimation algorithm to obtain a consensus mask and by calculating 
Fleiss’ Kappa agreement between all annotations and reference. Results –  The study 
showed strong inter-annotator agreement among surgical residents, with DSC values of 
0.84–0.95 and Fleiss’ Kappa between 0.85 and 0.91. Surface area reliability was good to 
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excellent (ICC = 0.62–0.91), while boundary delineation showed lower reproducibility 
(BIoU = 0.092–0.157). STAPLE consensus masks confirmed consistent overall shape 
annotations despite variability in boundary precision. Conclusion – The study 
demonstrated low variability in the semantic segmentation of intraperitoneal organs in 
minimally invasive abdominal surgery, performed by surgical residents using MedSAM. 
While DSC and Fleiss’ Kappa values confirm strong inter-annotator agreement, the 
relatively low BIoU values point to challenges in boundary precision, especially for 
anatomically complex or variable structures. These results establish a benchmark for 
expanding annotation efforts to larger datasets and more detailed anatomical features. 
 
Keywords: semantic segmentation, surgery, abdominal anatomy, agreement 
 

1​ Background 

1.1​ Introduction 
Learning to identify anatomical structures is a fundamental requirement to adequately 
perform surgical procedures. Surgical residents acquire this skill during their training 
primarily by observing or performing surgeries under the supervision of consultant 
surgeons. The guidance provided to residents during these procedures is 
predominantly verbal. Despite the critical nature of this training, there currently exists 
no method to process intraoperative video at scale, leading to potential discrepancies 
in the understanding of precise anatomical boundaries in the operative setting. This 
gap highlights the need for more systematic and scalable approaches to training and 
evaluating anatomical identification during surgery, particularly with the advent of 
supervised AI algorithms in medical imaging [1]. 

1.2​ Related work 
Supervised learning, a key component in developing AI algorithms for medical imaging, 
relies heavily on high-quality annotations. However, the identification of anatomical 
structures is inherently subjective, influenced by the experience level and familiarity of 
the annotator with the anatomical structures in question [2]. The gold standard for 
medical imaging segmentation has been manual annotation, which is a 
time-consuming process that often requires a high degree of expertise [3]. Annotators 
can achieve high agreement but will likely create different contours when asked to 
annotate the same structure, as shown by Yang et al. [4]. This is further exacerbated 
when evaluating multiple segmentation annotations. Consequently, there exists a 
degree of variability in how different annotators identify these structures. While there 
already exists experience in this assessment in the context of radiology [5] and 
dermoscopy [6] images, there is little knowledge regarding surgical images. 

Furthermore, automation of imaging segmentation through computer vision 
algorithms such as the Medical Segment Anything Model (MedSAM)[7], which uses a 
bounding box mechanism, has the potential to help users efficiently define cohesive 
areas within medical images and potentially accelerating the annotation process[7]. 
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In the intraoperative setting, understanding of the relevant anatomy is still mostly 
based on verbal discussion during an operation. The senior surgeon is not always able 
to outline every structure, as they are scrubbed and therefore unable to interact with 
non-sterile equipment. This variability is crucial to understand because it can affect the 
performance and reliability of AI algorithms trained on these annotations [4]. Despite 
its importance, the degree of variability in anatomical identification among annotators 
has not been adequately characterized in the context of intraoperative images, posing 
an unsolved challenge. 

1.3​ Objective 
This study aims to address the identified knowledge gap by analyzing annotations 
performed by surgical residents for intra-abdominal organ segmentation within a large 
dataset, using MedSAM. The primary objective is to quantify inter-annotator variability 
in the segmentation of abdominal anatomy in minimally invasive surgery and to 
evaluate whether segmentation using MedSAM yields consistent results across 
annotators with different levels of surgical experience. The study also aims to validate 
the use of MedSAM for intraoperative organ segmentation and to identify areas of 
higher and lower certainty within each organ. Through this analysis, we seek to 
provide a clearer understanding of segmentation variability and offer 
recommendations to support surgical training and the development of reliable AI 
models for intraoperative use. 

2​ Methods 

2.1​ Overview 
The proposed study assesses the annotation performance of surgical residents on 
intraoperative images from the open-source Dresden Surgical Anatomy Dataset [8] and 
from the Endoscapes2023 Dataset [9] using a semi-automated segmentation tool, 
Medical Segment Anything Model (MedSAM) [7]. 5 annotators were asked to segment 
the same intra-abdominal structure per image among the 7 classes selected for this 
study (abdominal wall, colon, liver, small bowel, spleen, stomach and gallbladder). The 
segmentation masks were then merged using the STAPLE algorithm [10] and 
compared to the expert-annotated reference labels provided in the dataset. Figure 1 
shows an overview of the analysis made in this study. 

2.2​ Datasets 
The Dresden Surgical Anatomy Dataset (DSAD) [8] provides expert semantic 
segmentation labels of 11 anatomical structures in laparoscopic videos of surgeries 
performed on 32 patients. The segmentation masks of intra-abdominal organs were 
manually generated by several resident surgeons using a polygon annotation tool, 
before independent review by a board-certified consultant surgeon in minimally 
invasive surgery. Out of the eleven anatomical classes provided in the dataset, six were 
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selected for annotation in this study (abdominal wall, liver, spleen, colon, small bowel, 
and stomach), with respectively 1206, 1023, 1191, 1374, 1168, and 1430 labels per 
class. The other five intra-abdominal structures of the dataset were not selected 
because of their 
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Fig. 1: Visual representation of the analysis made in this study. Annotations 
done by general surgery residents using MedSAM were compared to 

references (DSAD and Endoscapes). 

. 
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retroperitoneal position (ureter, pancreas), extraperitoneal position (vesicular glands), 
or relatively small size (inferior mesenteric artery, intestinal veins). Crucially, the DSAD 
was chosen for this study to avoid data leakage and bias during the annotation process. 

The Endoscapes2023 [9] is a dataset of 201 laparoscopic cholecystectomy videos 
with annotations targeted at automated assessment of the Critical View of Safety by 
three clinical experts. It’s contents are divided into 3 sub-datasets. For the purpose of 
this work we used the Endoscapes-Seg50 sub-dataset, which contains 493 frames from 
50 videos annotated with instance and semantic segmentation masks for 5 anatomical 
structures/regions (Gallbladder, Cystic Duct, Cystic Artery, Cystic Plate, Hepatocystic 
Triangle Dissection). Only the gallbladder annotations were used in this work.  

These datasets were not used to train MedSAM. Masks from these datasets served 
as reference for this analysis. 

2.3​ Medical Segment Anything Model 
The Medical Segment Anything Model (MedSAM) [7] is a deep-learning foundation 
model for promptable medical image segmentation. It shares the same architecture as 
the original Segment Anything Model (SAM) [11], which is designed to 
semiautomatically generate segmentation masks from prompt inputs (points, 
bounding boxes, binary masks, and text). The MedSAM model has been specifically 
trained on a curated corpus of publicly available medical image segmentation datasets 
to adapt the original SAM model to the medical domain. In the context of data 
annotation, the main benefit of using this model lies in its ability to generate accurate 
segmentation masks in a time-efficient way when compared with manual 
segmentation, which is time-consuming and has variable degrees of consistency, as 
well as enabling the analysis of large-scale datasets. In this study we are now aiming to 
acess inter-annotator variability using MedSAM (bounding box prompting). 

2.4​ Annotations 
 
A total of 5 general surgery residents performed the annotations in this 
study(annotator 1,2,3,4 and 5). Not all annotators annotated all structures, specifically: 
annotators 1 and 2 annotated all structures, annotator 3 annotated 3 structures 
(abdominall wall, colon and stomach), annotator 4 annotated 3 structures (liver, 
gallbladder and spleen) and annotator 5 annotated 2 structures (galldladder and small 
intestine). Annotators 1 and 2 were 1st year residents. Annotator 3 was a 2nd year 
resident, annotator 4 was a 4th year resident and annotator 5 was a 6th year resident. 
Only the most senior of these residents (annotator 5) had annotation experience 
before this study. 

Image annotations were performed using (MedSAM) [7] through bounding box 
prompting to generate segmentation masks. Among these annotations, 1206 images of 
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the abdominal wall, 1023 images of the liver, and 1191 images of the spleen, 1374 
images of the colon, 1168 images of the small bowel, 1430 images of the stomach 
classes were annotated by five annotators, generating three sets of annotation masks 
per image w.r.t their class. 493 images of the gallbladder were annotated by 4 
annotators, generating 4 sets of annotation masks.  

The MedSAM graphic user interface was used to annotate all images using bounding 
box prompts. The instructions for annotating each anatomical structure were provided 
in the DSAD [8], with additional guidelines put in place to minimize annotation 
variability during the annotation process, namely: each structure or separate portion 
of the structure had to be annotated using only one bounding box; when there was an 
object such as surgical instrument, gauze or other element occluding part of the 
structure, the annotation had to be performed using one bounding box on each side of 
the structure (the occluding object could not be encompassed within the bounding 
box). 

3​ Evaluation Metrics 
In line with current recommendations [3], the Dice Similarity Coefficients (DSC) 
between each annotator’s mask and the reference mask were calculated for each 
image, following: 

2|MaskA ∩ MaskB| 

DSC =  
|MaskA| + |MaskB| Where: 

•​ |MaskA ∩ MaskB| is the intersection area of the two masks. 

•​ |MaskA| is the area of Mask A. • |MaskB| is the area of Mask 

B. 

However, the DSC is a pair-wise comparison, whereas the present study aims to 
assess variability between multiple annotators and the reference. To estimate the 
degree of variability between annotators, the intersection areas of all masks were 
assessed and presented as the intersection of 3, 2, and 1 masks over the union area of 
all masks, according to the formula below. These results were then mapped as heat 
maps to identify the annotated areas with greater and lesser intersections between 
annotators and reference. The general formula for n masks is: 

 Mask  
Variability =  

 Mask Where: 

•​  Mask  is the intersection area of all n masks. 
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•​  Mask  is the union area of all n masks. 

 

A boundary intersection-over-union (BIoU) analysis was performed to better capture 
differences in boundary delineation, which are especially important in abdominal 
organ segmentation where even small contour discrepancies can significantly affect 
clinical interpretation and downstream shape-based analyses. 

The general formula is: 

 

 

 

Where: 

●​  is the intersection of the boundaries of A and B. 

●​ is the union of the boundaries of A and B. 
●​ ∣⋅∣ denotes the cardinality (number of pixels) in the boundary sets. 

To better assess interannotator variability, Intraclass Correlation Coefficient (ICC) was 
measured between each annotator and reference for each structure. It is a statistical 
measure used to assess reliability or agreement of measurements made by different 
observers. High ICC indicated high reliability. 

ICC (2,1) was calculated following: 

 

 

Where: 

●​ n: number of subjects 
●​ k: number of raters 

ICC was calculated for surface area, which reflects size and boundary complexity of the 
masks. 

 

Additionally, according to [4], the Simultaneous Truth and Performance Level 
Estimation (STAPLE) algorithm [10] was used to obtain consensus annotation masks 
from the sets of individually generated annotations. STAPLE is an expectation 
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maximization method designed to combine multiple segmentation masks and estimate 
a consolidated mask to assess the performance of each segmentation approach. The 
method considers a collection of segmentations and computes a probabilistic estimate 
of the true segmentation, as well as measures the performance level of each 
segmentation. The STAPLE algorithm was applied with a foreground prior probability 
of 1.0, assigning equal sensitivity and specificity priors to all annotators. The resulting 
probabilistic consensus map was binarized using a confidence threshold of 0.5 to 
generate the final consensus segmentation mask. 

These consolidated masks were then compared with the external reference masks 
from the Dresden dataset, using the Dice Similarity Coefficient. 

Finally, the Fleiss’ kappa coefficient was used to assess the pixel-wise 
interannotator reliability of segmentation masks generated by multiple annotators [4]. 
Fleiss’ kappa measures the level of agreement between annotators, correcting for the 
likelihood of chance agreement. The Fleiss’ kappa coefficient was computed following: 

Pr(a) − Pr(e) 

κ =  
1 − Pr(e) 

Where Pr(a) represents the actual observed agreement, and Pr(e) represents the 
chance agreement. 

The script used to compute the statistical analysis presented in this study can be 
found in this shared GitHub repository. 

4​ Results 

4.1​ Generated annotations 
A total of 5 annotators independently created 21423 new annotations using 
MedSAM, as can be seen in table 1. DSC was calculated between annotated masks 
and references. Figure 2 shows the usage of the MedSAM interface and example 
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annotations between annotators and reference (DSAD).

 

Fig. 2: Left column: MedSAM interface and annotation process. Right column: 
annotations from general surgery residents (colors) and reference(black). 

Table 1: Generated annotations. Abdominal wall, liver, spleen, colon, 
small bowel and stomach had 3 sets of annotations. The gallbladder 

had 4 sets of annotations. Mean DSC between annotations and 
references ranged from 0.84 to 0.91.  

 Abdom. wall Liver Spleen Colon Sm. bowel. Stomach Gallbladder 

No. annotators 3 3 3 3 3 3 4 
No. images 1206 1023 1191 1374 1168 1430 493 
Tot. annotations 3614 3064 3566 4122 3499 4290 1968 
Mean DSC 0.87 0.91 0.88 0.85 0.85 0.88 0.84 
(95% CI) (0.87-0.88) (0.90-0.91) (0.87-0.88) (0.84-0.85) (0.86-0.87) (0.87-0.88) (0.84-0.85) 
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4.2​ Qualitative variability assessment 
 
As can be seen in table 2, there is a significant intersection between the masks of all 
anatomical structures, indicating high agreement between annotators. The colon and 
stomach had the lowest average of 3 mask intersections, while the liver has the highest. 
 
 

Table 2: Average percentage of mask intersections in different anatomical structures. 

Intersection Type Abdominal 
wall 

Liver Spleen Colon Small 
intestine 

Stomach Gallbladd
er 

4-mask 
intersection 

- - - - - - 63.04 

3-mask 
intersection 

79.84 81.50 79.98 70.00 78.94 75.03 13.37 

2-mask 
intersection 

11.91 9.89 12.00 13.32 9.44 13.67 8.53 

1-mask 
intersection 

8.24 8.61 8.01 16.68 11.62 11.30 10.59 

 

 
Figure 3 represents the areas of overlap as overlay, representative for high and low 
agreement. 
The gallgladder had 4 annotations and had a 4-mask intersection of 63.04%. The other 
structures analysed were annotated by 3 annotators and had 3 mask intersection 
average between 70% (colon) and 81.5% (liver), indicating high agreement between 
annotators. 
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Fig. 3: Areas of annotation mask overlap per class. Red represents the areas of 
4mask intersection, green represents areas of 3-mask intersection, blue 
represents areas of 2-mask intersection, and yellow represents areas of 

one-mask intersection. Figures suffixed by 1 show low agreement and figures 
suffixed by 2 show high agreement. 

 

4.3​ Quantitative variability assessment 

4.3.1​ ICC 
ICC was calculated for surface area between each annotator’s mask and the reference 
mask.  
 

Table 3: Mean Surface Area ICC for Different Anatomical Structures. ICC 
values ranged from 0.63 (abdominal wall) and 0.91 (spleen). 
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Mean surface area intraclass correlation coefficients (ICCs) and corresponding 95% 
confidence intervals (CIs) are presented in Table 3. Reliability was excellent for the 
spleen (ICC = 0.91) and good for the liver (ICC = 0.86) and stomach (ICC = 0.83). 
Moderate reliability was observed for the abdominal wall (ICC = 0.63), colon (ICC = 
0.62), small bowel (ICC = 0.67), and gallbladder (ICC = 0.64). Overall, reproducibility 
was highest for solid abdominal organs, particularly the spleen and liver, whereas 
structures with greater shape variability and less well-defined boundaries, such as the 
bowel and gallbladder, demonstrated lower agreement. 
 

4.3.2​ Boundary Intersection Over Unit (BIoU) 
 
Table 4 represents the average Boundary Intersection Over Unit (BIoU) between new 
annotations and reference. 
 

Table 4: BIoU for Different Anatomical Structures 

Structure Average BIoU 95% Confidence 
Interval 

Abdominal 
wall 

0.124 0.122-0.126 

Liver 0.146 0.144-0.149 

Spleen 0.157 0.154-0.160 

Colon 0.092 0.090-0.093 

Small bowel 0.129 0.127-0.130 

Stomach 0.122 0.120-0.124 

Gallbladder 0.148 0.144-0.152 
 

The highest agreement in boundary delineation was observed for the spleen (BIoU = 
0.157, 95% CI: 0.154–0.160), followed by the gallbladder (BIoU = 0.148, 95% CI: 
0.144–0.152) and liver (BIoU = 0.146, 95% CI: 0.144–0.149). Lower boundary 
agreement was noted for the abdominal wall (BIoU = 0.124, 95% CI: 0.122–0.126), 
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Structure Surface area 95% CI 

 Abdominal 
wall 

0.63 0.60-0.66 

Liver 0.86 0.84-0.87 

Spleen 0.91 0.90-0.92 

Colon 0.62 0.59-0.66 

Small bowel 0.67 0.59-0.74 

Stomach 0.83 0.82-0.85 

Gallbladder 0.64 0.60-0.68 



stomach (BIoU = 0.122, 95% CI: 0.120–0.124), and small bowel (BIoU = 0.129, 95% CI: 
0.127–0.130). The lowest BIoU was found for the colon (BIoU = 0.092, 95% CI: 
0.090–0.093).  
Boundary reproducibility was highest for solid organs (with clearly defined borders), 
while hollow organs and structures with greater shape variability demonstrated lower 
agreement. 
 

4.3.3​ Fleiss’ Kappa agreement 
Table 5 represents the average Fleiss’ Kappa agreement between new annotations and 
reference. The agreement is extremely high across all classes, from 0.85 (gallbladder) 
to 0.91(liver), indicating high similarity between annotations and reference. The 
lowest agreement was found for the gallbladder, colon and abdominal wall classes. 

Table 5: Fleiss’ Kappa Agreement for Different Anatomical Structures 

Structure Average Fleiss’ Kappa 
agreement 

95% Confidence 
Interval 

Abdominal 
wall 

0.86 0.85-0.87 

Liver 0.91 0.90-0.91 

Spleen 0.89 0.88-0.90 

Colon 0.86 0.85-0.86 

Small bowel 0.89 0.89-0.90 

Stomach 0.89 0.89-0.90 

Gallbladder 0.85 0.84-0.86 
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Fig. 4: Boxplot of Fleiss Kappa per class. The first quartile values range widely 
from 0 to 0.86. In the second and third quartiles variability is minimal 

(ranging from 0.86 to 0.91). 

4.4​ Consensus assessment using the STAPLE algorithm 
The STAPLE algorithm was used to create a consensus mask between annotators and 
compare it with the reference mask. 
As can be seen in table 6, there is an extremely high DSC between the STAPLE 
consensus masks and the reference in this dataset. The lowest agreement was found 
for the gallbladder class. 
 

Table 6: Dice similarity coefficient average between dataset 
reference and STAPLE masks. Mean DSC was above 0.84 for 
all structures. The liver and small bowel achieved the 
highest mean DSC (0.95). 

Structure Mean DSC 95% Confidence 
Interval 

Abdominal 
wall 

0.93 0.93-0.94 

Liver 0.95 0.95-0.96 

Spleen 0.91 0.92-0.93 

Colon 0.94 0.92-0.93 

Small bowel 0.95 0.95-0.95 

Stomach 0.93 0.92-0.93 

Gallbladder 0.84 0.82-0.86 
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Fig. 5: Boxplot of DSC calculated between STAPLE masks and reference masks.  The 
first quartile values range widely from 0 to 0.84. In the second and third quartiles 
variability is minimal (ranging from 0.84 to 0.95). 
 

4.5​ Annotator performance analysis 
 
An annotator performance analysis was performed by calculating mean DSC between 
the annotated masks and references. Table 5 demonstrates average annotator DSC per 
organ. 
 

Table 5: Mean DSC per annotator per structure 

Structure Annotator 
1 

Annotato
r 2 

Annotator 
3 

Annotator 
4 

Annotator 5 

Abdominal 
wall 

0.89 0.90 0.83 - - 

Liver 0.92 0.90 - 0.90 - 

Spleen 0.90 0.90 - 0.84 - 

Colon 0.85 0.84 0.86 - - 

Small bowel 0.90 0.89 - - 0.80 

Stomach 0.88 0.88 0.87 - - 

Gallbladder 0.85 0.83 - 0.88 0.83 

Average 
DSC 

0.88 0.89 0.85 0.87 0.82 

 

Higher DSC were observed for annotators 1 and 2. These annotators annotated all 7 
structures. The lowest DSC were observed for annotator 5. This annotator only 
annotated 2 structures (small bowel and gallbladder).   
 

4.6​ Qualitative analysis of factors influencing lower performance 
 
We performed a qualitative analysis of masks with the lowest mask intersection 
percentages (3-mask intersection for the abdominal wall, liver, spleen, colon, small 
bowel and stomach, and 4-mask intersection for the gallbladder). Representative 
images of each class are represented in Figure 6. 
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Fig. 6: Examples of masks with the lowest mask intersection percentages, per 

structure. Red represents the areas of 4-mask intersection, green represents areas of 
3-mask intersection, blue represents areas of 2-mask intersection, and yellow 

represents areas of one-mask intersection.  
 
 
Transversally to all structures, surgical conditions influenced accuracy mainly due to 
shadows and surgical smoke. Anatomical positioning difficultated interface 
identification as interference with other structures created areas of low contrast, 
particularly in the case of background structures, which generally achieved lower 
accuracy. 
 
Besides these general limitations, accuracy of segmentation was mainly influenced by 
two categories of factors: organ-specific factors and MedSAM-related factors.  
 
Organ-specific challenges varied by structure. For the liver and spleen, segmentation 
was hindered by frequent shadows and their appearance as background structures. 
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The presence of mesocolic fat in the colon and discontinuous visualization complicated 
boundary identification. The variable position and discontinuous visualization of the 
small bowel often created areas of low contrast, making segmentation difficult. For the 
stomach, the presence of gastroepiploic vessels and coverage by the greater omentum 
were the main challenges. Finally, the gallbladder segmentation accuracy was heavily 
influenced by the stage of dissection, with the cystic plate and surrounding peritoneum 
presented as confounding structures. 
 
The MedSAM-related factors included a tendency to demarcate regions based on 
textural similarity rather than anatomical boundaries, particularly under poor lighting 
conditions, or interference from surgical instruments or gauze within the field.  
 
5​ Discussion 

The findings of this study demonstrate that the overall variability in intra-abdominal 
organ segmentation in laparoscopic images, when combining human assessment by a 
surgery resident and the MedSAM algorithm, is minimal. This low variability was 
consistently observed across all classes of intraperitoneal organs studied, including the 
abdominal wall. 

These results were obtained through three distinct analyses: the intersection of 
different annotations as a percentage of total annotation pixels, the Dice similarity 
coefficients (DSC) between STAPLE consensus masks and dataset reference ground 
truth, and Fleiss’ kappa values. When examining the percentage of total annotation 
pixels (Table 2) and Fleiss’ kappa agreement (Table 5 and Figure 4), the gallbladder 
and colon classes frequently showed the lowest values, while the liver class 
consistently exhibited some of the highest agreement. We hypothesize that these 
differences are attributable to organ-specific factors; for example, the presence of 
colonic haustrae and mesocolic fat appendages may complicate segmentation, whereas 
the liver’s more compact structure and fewer interposed tissues likely facilitate more 
consistent delineation. 

Comparing the DSC between the STAPLE consensus masks and the reference ground 
truth (Table 5 and Figure 5), the mean DSC exceeded 0.80, indicating a very high level 
of agreement. Notably, the boxplots reveal that while the first quartile values range 
widely from 0 to 0.8 (representing 25% of the data), this subset reflects annotations 
with comparatively poorer agreement or performance, highlighting an area where 
annotation consistency or model reliability still requires improvement. Future 
research should focus on identifying the factors contributing to this variability. 
However, in the second and third quartiles(covering 75% of the data)variability is 
minimal (ranging from 0.8 to 1), with mean DSC values above 0.8 across all structures. 
This indicates a strong correlation among new masks as assessed by STAPLE and 
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Fleiss’ kappa, and a high degree of overlap with expert manual annotations, as 
reflected by elevated DSC scores. 

An analysis of interobserver reliability for surface area annotations further supports 
the robustness of this metric across different abdominal structures. Excellent 
reliability was observed for solid, well-defined organs such as the spleen (ICC = 0.91) 
and liver (ICC = 0.86), with good agreement for the stomach (ICC = 0.83). In contrast, 
structures with greater shape variability and less distinct boundaries,including the 
abdominal wall (ICC = 0.63), colon (ICC = 0.62), small bowel (ICC = 0.67), and 
gallbladder (ICC = 0.64),showed moderate reproducibility. These results suggest that 
surface area measurements are highly reproducible for solid organs but more sensitive 
to segmentation variability in morphologically complex or flexible structures. Overall, 
MedSAM provides reliable performance in capturing surface area of anatomically 
consistent structures, while more variable shapes present greater challenges for 
consistent boundary delineation. 

Boundary delineation results, as reflected by generally low Boundary Intersection over 
Union (BIoU) values, highlight a key limitation of the segmentation approach. The 
highest boundary agreement was observed for the spleen (BIoU = 0.157), gallbladder 
(BIoU = 0.148), and liver (BIoU = 0.146), yet even these values suggest modest 
reproducibility. Lower agreement was seen for the abdominal wall (BIoU = 0.124), 
stomach (BIoU = 0.122), and small bowel (BIoU = 0.129), with the colon exhibiting the 
lowest boundary reproducibility (BIoU = 0.092). These findings indicate once more 
that MedSAM is more reliable in capturing the overall shape and surface area of 
anatomical structures than in precisely defining their boundaries. Reduced BIoU scores 
for hollow and morphologically complex organs likely reflect the inherent challenges of 
consistent boundary delineation due to shape variability and indistinct anatomical 
landmarks. While the method provides robust global segmentation, further refinement 
is needed to enhance boundary accuracy, especially for complex or flexible structures. 

The consistency of these findings across annotations created independently by surgery 
residents with varying levels of operative experience underscores the reliability of the 
results. Although boundary-specific metrics remain challenging, overall agreement 
metrics support the validity and reproducibility of the annotations used in this study. 

Interestingly, annotators 1 and 2, both first-year residents, consistently achieved some 
of the highest DSC scores across all structures. These annotators had the least clinical 
experience, but the most experience with medical imaging segmentation using 
MedSAM, as they annotated the most images in the study. Since annotation was 
performed using MedSAM, a semi-automatic segmentation tool based on bounding box 
initialization, repeated use likely contributed to their improved performance. By 
annotating more images, these residents may have developed a better understanding 
of how to optimally position bounding boxes to guide MedSAM’s segmentation, 
effectively compensating for some of the model’s limitations. This increased familiarity 

18 



probably translated into more consistent and accurate annotations, reflected in their 
higher agreement scores. Similarly, some of the lowest DSC scores were achieved by 
annotator 5. Although annotator 5 had the most clinical experience (6th year resident), 
they had the least experience using MedSAM, as they only annotated 2 structures. 
These findings suggest that, beyond clinical expertise, experience in using MedSAM is a 
critical factor for achieving higher agreement—a key consideration for future 
annotation workflows and training protocols. 

Finally, we identified several factors affecting segmentation performance (Figure 6), 
which can be categorized as organ-specific—such as the presence of mesocolic fat, 
vessels, blood, shadows, or poor lighting conditions—and MedSAM-related factors, 
including a tendency to demarcate regions based on textural similarity rather than 
anatomical boundaries, especially in areas of textural heterogeneity, or interference 
from surgical instruments or gauze within the field. These factors appear to negatively 
impact interface identification between structures, thereby reducing segmentation 
accuracy. 

5.1​ Limitations 
While the study presents robust evidence for low variability in segmentation, it is 
important to acknowledge its limitations. The dataset used for this study involved the 
segmentation of whole organs in their intraperitoneal position during elective 
surgeries. Consequently, the findings may not be directly applicable to the 
segmentation of extraperitoneal organs, different parts of the same anatomical 
structure, or cases involving more severe disease states.  

There is significant concern regarding the low number of annotators. The low 
number was a convenience sample where the goal was to have a high number of 
annotations by annotator, as opposed to a lower number from a higher number of 
annotators. This decision stemmed from the will to address extensively what the 
difference in annotation that stemmed from differences in anatomical structures found 
intraoperatively, hence the emphasis on increasing the number of annotations per 
annotator. These limitations should be further addressed in future work. 

5.2​ Implications Moving Forward 
The results of this study have significant implications for the future of surgical training 
and AI development in medical imaging. The evidence of low variability among surgery 
residents in annotating laparoscopic images of whole intraperitoneal anatomy using 
MedSAM suggests that it is feasible to scale annotations performed by residents to 
other datasets. This finding also sets a benchmark for evaluating the performance of 
annotations by medical students or non-clinical annotators. However, the observed 
challenges in precise boundary delineation indicate that additional training or 
refinement may be necessary when annotating structures with complex or variable 
borders and highlights possible limitations of AI algorithms trained based on these 
masks  Furthermore, this study opens the door for surgery residents to annotate more 
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complex structures, such as different parts of the same anatomical structures, more 
severe disease states, and dissection planes. To build on these findings, future research 
should focus on several key areas:  
• Segmentation of Extraperitoneal Organs and Complex Structures: 

Extending the analysis to include extraperitoneal organs, different parts of the same 
anatomical structure, blood vessels and other structures, as well as more severe 
disease states to determine if the low variability observed in this study holds in 
these contexts. 

•​ Impact of Surgical Experience: Investigating how different levels of surgical 
experience affect annotation quality and consistency to provide more tailored 
training and support. 

•​ Task Shifting and Non-Clinical Annotators: Exploring the potential for task 
shifting, allowing medical students or non-clinical annotators to perform initial 
annotations, which can then be refined by more experienced annotators. This 
approach could significantly increase the scalability of annotation efforts. 

In conclusion, this study provides strong evidence of low variability in 
intraabdominal organ segmentation among surgical residents, laying the groundwork 
for more efficient and scalable annotation practices in medical imaging. By addressing 
the identified limitations and exploring new avenues for research, the medical 
community can continue to enhance the accuracy and consistency of anatomical 
annotations, ultimately improving the quality of AI models and surgical training 
programs. 

 

6​ Conclusion 

This study makes several key contributions to the field of surgical data annotation and 
algorithm validation for intraoperative image segmentation. First, it demonstrates that 
semantic segmentation of intraperitoneal organs using MedSAM, when guided by 
surgical residents, results in consistently high inter-annotator agreement, indicating 
low variability across users with differing levels of clinical experience. This confirms 
the reliability of MedSAM-assisted annotations for laparoscopic anatomy and 
intraoperative images. The study provides quantitative validation of MedSAM for 
intraoperative use, showing that surface area features are particularly robust, with 
high inter-class correlation (ICC > 0.87) across all structures. This positions MedSAM 
as a viable tool for generating high-quality ground truth segmentations in minimally 
invasive surgery datasets. 

Furthermore, this work reveals that experience with the annotation tool, rather than 
clinical seniority, was the strongest predictor of segmentation quality. Annotators who 
labeled more images, even if less clinically experienced, produced more consistent 
results—highlighting the importance of tool-specific training in annotation workflows. 
However, a notable limitation of MedSAM was observed in boundary delineation 
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accuracy, particularly for hollow or morphologically complex organs, where boundary 
agreement was modest. This highlights an area for future refinement to improve the 
precision of boundary segmentation. 

Finally, by identifying specific factors contributing to segmentation 
uncertainty—including anatomical complexity, textural variability, and interference 
from surgical instruments—this study offers valuable insights into current model 
limitations and guidance for future model development. 

Together, these findings establish a validated framework for scaling surgical annotation 
using semi-automated tools like MedSAM and offer a foundation for task-shifting 
annotation to medical students or non-clinical staff, thereby accelerating dataset 
creation and AI development in surgical imaging. 
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