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Abstract

Purpose - Anatomical identification during abdominal surgery is subjective given unclear
boundaries of anatomical structures. Semantic segmentation of these structures relies on
an accurate identification of the boundaries which carries an unknown uncertainty. Given
its inherent subjectivity, it is important to assess annotation adequacy. This study aims to
evaluate variability in anatomical structure identification and segmentation using MedSAM
by surgical residents. Methods - Images from the Dresden Surgical Anatomy Dataset and
the Endoscapes2023 Dataset were semantically annotated by a group of surgery residents
using MedSAM in the following classes: abdominal wall, colon, liver, small bowel, spleen,
stomach and gallbladder. Each class had 3 to 4 sets of annotations. Inter-annotator
variability was assessed through DSC, ICC, BloU and using the Simultaneous Truth and
Performance Level Estimation algorithm to obtain a consensus mask and by calculating
Fleiss’ Kappa agreement between all annotations and reference. Results - The study
showed strong inter-annotator agreement among surgical residents, with DSC values of
0.84-0.95 and Fleiss’ Kappa between 0.85 and 0.91. Surface area reliability was good to



excellent (ICC = 0.62-0.91), while boundary delineation showed lower reproducibility
(BloU = 0.092-0.157). STAPLE consensus masks confirmed consistent overall shape
annotations despite variability in boundary precision. Conclusion - The study
demonstrated low variability in the semantic segmentation of intraperitoneal organs in
minimally invasive abdominal surgery, performed by surgical residents using MedSAM.
While DSC and Fleiss’ Kappa values confirm strong inter-annotator agreement, the
relatively low BloU values point to challenges in boundary precision, especially for
anatomically complex or variable structures. These results establish a benchmark for
expanding annotation efforts to larger datasets and more detailed anatomical features.
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1 Background

1.1 Introduction

Learning to identify anatomical structures is a fundamental requirement to adequately
perform surgical procedures. Surgical residents acquire this skill during their training
primarily by observing or performing surgeries under the supervision of consultant
surgeons. The guidance provided to residents during these procedures is
predominantly verbal. Despite the critical nature of this training, there currently exists
no method to process intraoperative video at scale, leading to potential discrepancies
in the understanding of precise anatomical boundaries in the operative setting. This
gap highlights the need for more systematic and scalable approaches to training and
evaluating anatomical identification during surgery, particularly with the advent of
supervised Al algorithms in medical imaging [1].

1.2 Related work

Supervised learning, a key component in developing Al algorithms for medical imaging,
relies heavily on high-quality annotations. However, the identification of anatomical
structures is inherently subjective, influenced by the experience level and familiarity of
the annotator with the anatomical structures in question [2]. The gold standard for
medical imaging segmentation has been manual annotation, which is a
time-consuming process that often requires a high degree of expertise [3]. Annotators
can achieve high agreement but will likely create different contours when asked to
annotate the same structure, as shown by Yang et al. [4]. This is further exacerbated
when evaluating multiple segmentation annotations. Consequently, there exists a
degree of variability in how different annotators identify these structures. While there
already exists experience in this assessment in the context of radiology [5] and
dermoscopy [6] images, there is little knowledge regarding surgical images.
Furthermore, automation of imaging segmentation through computer vision
algorithms such as the Medical Segment Anything Model (MedSAM)[7], which uses a
bounding box mechanism, has the potential to help users efficiently define cohesive
areas within medical images and potentially accelerating the annotation process[7].



In the intraoperative setting, understanding of the relevant anatomy is still mostly
based on verbal discussion during an operation. The senior surgeon is not always able
to outline every structure, as they are scrubbed and therefore unable to interact with
non-sterile equipment. This variability is crucial to understand because it can affect the
performance and reliability of Al algorithms trained on these annotations [4]. Despite
its importance, the degree of variability in anatomical identification among annotators
has not been adequately characterized in the context of intraoperative images, posing
an unsolved challenge.

1.3 Objective

This study aims to address the identified knowledge gap by analyzing annotations
performed by surgical residents for intra-abdominal organ segmentation within a large
dataset, using MedSAM. The primary objective is to quantify inter-annotator variability
in the segmentation of abdominal anatomy in minimally invasive surgery and to
evaluate whether segmentation using MedSAM yields consistent results across
annotators with different levels of surgical experience. The study also aims to validate
the use of MedSAM for intraoperative organ segmentation and to identify areas of
higher and lower certainty within each organ. Through this analysis, we seek to
provide a clearer understanding of segmentation variability and offer
recommendations to support surgical training and the development of reliable Al
models for intraoperative use.

2 Methods

2.1 Overview

The proposed study assesses the annotation performance of surgical residents on
intraoperative images from the open-source Dresden Surgical Anatomy Dataset [8] and
from the Endoscapes2023 Dataset [9] using a semi-automated segmentation tool,
Medical Segment Anything Model (MedSAM) [7]. 5 annotators were asked to segment
the same intra-abdominal structure per image among the 7 classes selected for this
study (abdominal wall, colon, liver, small bowel, spleen, stomach and gallbladder). The
segmentation masks were then merged using the STAPLE algorithm [10] and
compared to the expert-annotated reference labels provided in the dataset. Figure 1
shows an overview of the analysis made in this study.

2.2 Datasets

The Dresden Surgical Anatomy Dataset (DSAD) [8] provides expert semantic
segmentation labels of 11 anatomical structures in laparoscopic videos of surgeries
performed on 32 patients. The segmentation masks of intra-abdominal organs were
manually generated by several resident surgeons using a polygon annotation tool,
before independent review by a board-certified consultant surgeon in minimally
invasive surgery. Out of the eleven anatomical classes provided in the dataset, six were



selected for annotation in this study (abdominal wall, liver, spleen, colon, small bowel,
and stomach), with respectively 1206, 1023, 1191, 1374, 1168, and 1430 labels per
class. The other five intra-abdominal structures of the dataset were not selected
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Fig. 1: Visual representation of the analysis made in this study. Annotations
done by general surgery residents using MedSAM were compared to
references (DSAD and Endoscapes).




retroperitoneal position (ureter, pancreas), extraperitoneal position (vesicular glands),
or relatively small size (inferior mesenteric artery, intestinal veins). Crucially, the DSAD
was chosen for this study to avoid data leakage and bias during the annotation process.

The Endoscapes2023 [9] is a dataset of 201 laparoscopic cholecystectomy videos
with annotations targeted at automated assessment of the Critical View of Safety by
three clinical experts. It's contents are divided into 3 sub-datasets. For the purpose of
this work we used the Endoscapes-Seg50 sub-dataset, which contains 493 frames from
50 videos annotated with instance and semantic segmentation masks for 5 anatomical
structures/regions (Gallbladder, Cystic Duct, Cystic Artery, Cystic Plate, Hepatocystic
Triangle Dissection). Only the gallbladder annotations were used in this work.

These datasets were not used to train MedSAM. Masks from these datasets served
as reference for this analysis.

2.3 Medical Segment Anything Model

The Medical Segment Anything Model (MedSAM) [7] is a deep-learning foundation
model for promptable medical image segmentation. It shares the same architecture as
the original Segment Anything Model (SAM) [11], which is designed to
semiautomatically generate segmentation masks from prompt inputs (points,
bounding boxes, binary masks, and text). The MedSAM model has been specifically
trained on a curated corpus of publicly available medical image segmentation datasets
to adapt the original SAM model to the medical domain. In the context of data
annotation, the main benefit of using this model lies in its ability to generate accurate
segmentation masks in a time-efficient way when compared with manual
segmentation, which is time-consuming and has variable degrees of consistency, as
well as enabling the analysis of large-scale datasets. In this study we are now aiming to
acess inter-annotator variability using MedSAM (bounding box prompting).

2.4 Annotations

A total of 5 general surgery residents performed the annotations in this
study(annotator 1,2,3,4 and 5). Not all annotators annotated all structures, specifically:
annotators 1 and 2 annotated all structures, annotator 3 annotated 3 structures
(abdominall wall, colon and stomach), annotator 4 annotated 3 structures (liver,
gallbladder and spleen) and annotator 5 annotated 2 structures (galldladder and small
intestine). Annotators 1 and 2 were 1st year residents. Annotator 3 was a 2nd year
resident, annotator 4 was a 4th year resident and annotator 5 was a 6th year resident.
Only the most senior of these residents (annotator 5) had annotation experience
before this study.

Image annotations were performed using (MedSAM) [7] through bounding box
prompting to generate segmentation masks. Among these annotations, 1206 images of



the abdominal wall, 1023 images of the liver, and 1191 images of the spleen, 1374
images of the colon, 1168 images of the small bowel, 1430 images of the stomach
classes were annotated by five annotators, generating three sets of annotation masks
per image wrt their class. 493 images of the gallbladder were annotated by 4
annotators, generating 4 sets of annotation masks.

The MedSAM graphic user interface was used to annotate all images using bounding
box prompts. The instructions for annotating each anatomical structure were provided
in the DSAD [8], with additional guidelines put in place to minimize annotation
variability during the annotation process, namely: each structure or separate portion
of the structure had to be annotated using only one bounding box; when there was an
object such as surgical instrument, gauze or other element occluding part of the
structure, the annotation had to be performed using one bounding box on each side of
the structure (the occluding object could not be encompassed within the bounding
box).

3 Evaluation Metrics

In line with current recommendations [3], the Dice Similarity Coefficients (DSC)
between each annotator’s mask and the reference mask were calculated for each
image, following:

2|Mask, N Maskg|
DSC =

|[Mask,| + [Maskg| Where:

e |Mask, N Masky]| is the intersection area of the two masks.
e |Mask,| is the area of Mask A. ¢ |Mask;| is the area of Mask
B.

However, the DSC is a pair-wise comparison, whereas the present study aims to
assess variability between multiple annotators and the reference. To estimate the
degree of variability between annotators, the intersection areas of all masks were
assessed and presented as the intersection of 3, 2, and 1 masks over the union area of
all masks, according to the formula below. These results were then mapped as heat

maps to identify the annotated areas with greater and lesser intersections between
annotators and reference. The general formula for n masks is:

1} m?:l Mask
Variability =

‘Ui:l Mask Where:

n
. |ﬂz‘:1 Mask | is the intersection area of all n masks.


https://github.com/bowang-lab/MedSAM

T
. |Uz‘:1 Maski| is the union area of all n masks.

A boundary intersection-over-union (BloU) analysis was performed to better capture
differences in boundary delineation, which are especially important in abdominal
organ segmentation where even small contour discrepancies can significantly affect
clinical interpretation and downstream shape-based analyses.

The general formula is:

|0A N 8B|

Boundary IoU = ————
Y DAL OB

Where:

° 0ANJIB is the intersection of the boundaries of A and B.

) 0AU aBis the union of the boundaries of A and B.
e || denotes the cardinality (number of pixels) in the boundary sets.

To better assess interannotator variability, Intraclass Correlation Coefficient (ICC) was
measured between each annotator and reference for each structure. It is a statistical
measure used to assess reliability or agreement of measurements made by different
observers. High ICC indicated high reliability.

ICC (2,1) was calculated following:

MSg — MSg

IcC(2,1) =
1) MSg + (k— 1)MSg + E(MSc — MSg)

Where:

e n:number of subjects
e k: number of raters

ICC was calculated for surface area, which reflects size and boundary complexity of the
masks.

Additionally, according to [4], the Simultaneous Truth and Performance Level
Estimation (STAPLE) algorithm [10] was used to obtain consensus annotation masks
from the sets of individually generated annotations. STAPLE is an expectation



maximization method designed to combine multiple segmentation masks and estimate
a consolidated mask to assess the performance of each segmentation approach. The
method considers a collection of segmentations and computes a probabilistic estimate
of the true segmentation, as well as measures the performance level of each
segmentation. The STAPLE algorithm was applied with a foreground prior probability
of 1.0, assigning equal sensitivity and specificity priors to all annotators. The resulting
probabilistic consensus map was binarized using a confidence threshold of 0.5 to
generate the final consensus segmentation mask.

These consolidated masks were then compared with the external reference masks
from the Dresden dataset, using the Dice Similarity Coefficient.

Finally, the Fleiss’ kappa coefficient was used to assess the pixel-wise
interannotator reliability of segmentation masks generated by multiple annotators [4].
Fleiss’ kappa measures the level of agreement between annotators, correcting for the
likelihood of chance agreement. The Fleiss’ kappa coefficient was computed following:

Pr(a) — Pr(e)

1-Pr(e)
Where Pr(a) represents the actual observed agreement, and Pr(e) represents the
chance agreement.
The script used to compute the statistical analysis presented in this study can be
found in this shared GitHub repository.

4 Results

4.1 Generated annotations

A total of 5 annotators independently created 21423 new annotations using
MedSAM, as can be seen in table 1. DSC was calculated between annotated masks
and references. Figure 2 shows the usage of the MedSAM interface and example


https://github.com/LauraTxCastro/MedSAM_inter-annotator_variability/tree/main

annotations between annotators and reference (DSAD).

Fig. 2: Left column: MedSAM interface and annotation process. Right column:
annotations from general surgery residents (colors) and reference(black).

Table 1: Generated annotations. Abdominal wall, liver, spleen, colon,

small bowel and stomach had 3 sets of annotations. The gallbladder
had 4 sets of annotations. Mean DSC between annotations and

references ranged from 0.84 to 0.91.

Abdom. wall Liver Spleen Colon Sm. bowel. Stomach Gallbladder
No. annotators 3 3 3 3 3 3 4
No. images 1206 1023 1191 1374 1168 1430 493
Tot. annotations 3614 3064 3566 4122 3499 4290 1968
Mean DSC 0.87 0.91 0.88 0.85 0.85 0.88 0.84
(95% CI) (0.87-0.88) (0.90-0.91) (0.87-0.88)  (0.84-0.85) (0.86-0.87)  (0.87-0.88) (0.84-0.85)




4.2 Qualitative variability assessment

As can be seen in table 2, there is a significant intersection between the masks of all
anatomical structures, indicating high agreement between annotators. The colon and
stomach had the lowest average of 3 mask intersections, while the liver has the highest.

Table 2: Average percentage of mask intersections in different anatomical structures.

Intersection Type Abdominal Liver Spleen Colon Small Stomach Gallbladd
wall intestine er

4-mask - - - - - - 63.04
intersection

3-mask 79.84 81.50 79.98 70.00 78.94 75.03 13.37
intersection

2-mask 11.91 9.89 12.00 13.32 9.44 13.67 8.53
intersection

1-mask 8.24 861 801 16.68 11.62 11.30 10.59
intersection

Figure 3 represents the areas of overlap as overlay, representative for high and low
agreement.
The gallgladder had 4 annotations and had a 4-mask intersection of 63.04%. The other
structures analysed were annotated by 3 annotators and had 3 mask intersection
average between 70% (colon) and 81.5% (liver), indicating high agreement between
annotators.
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Fig. 3: Areas of annotation mask overlap per class. Red represents the areas of
4mask intersection, green represents areas of 3-mask intersection, blue
represents areas of 2-mask intersection, and yellow represents areas of

one-mask intersection. Figures suffixed by 1 show low agreement and figures

suffixed by 2 show high agreement.

4.3 Quantitative variability assessment
4.3.1 ICC

ICC was calculated for surface area between each annotator’s mask and the reference
mask.

Table 3: Mean Surface Area ICC for Different Anatomical Structures. ICC
values ranged from 0.63 (abdominal wall) and 0.91 (spleen).
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Structure Surface area 95% CI

Abdominal 0.63 0.60-0.66
wall
Liver 0.86 0.84-0.87
Spleen 091 0.90-0.92
Colon 0.62 0.59-0.66
Small bowel 0.67 0.59-0.74
Stomach 0.83 0.82-0.85
Gallbladder 0.64 0.60-0.68

Mean surface area intraclass correlation coefficients (ICCs) and corresponding 95%
confidence intervals (CIs) are presented in Table 3. Reliability was excellent for the
spleen (ICC = 0.91) and good for the liver (ICC = 0.86) and stomach (ICC = 0.83).
Moderate reliability was observed for the abdominal wall (ICC = 0.63), colon (ICC =
0.62), small bowel (ICC = 0.67), and gallbladder (ICC = 0.64). Overall, reproducibility
was highest for solid abdominal organs, particularly the spleen and liver, whereas
structures with greater shape variability and less well-defined boundaries, such as the
bowel and gallbladder, demonstrated lower agreement.

4.3.2 Boundary Intersection Over Unit (BloU)

Table 4 represents the average Boundary Intersection Over Unit (BloU) between new
annotations and reference.

Table 4: BloU for Different Anatomical Structures

Structure Average BloU 95% Confidence
Interval
Abdominal 0.124 0.122-0.126
wall

Liver 0.146 0.144-0.149
Spleen 0.157 0.154-0.160
Colon 0.092 0.090-0.093
Small bowel 0.129 0.127-0.130
Stomach 0.122 0.120-0.124
Gallbladder 0.148 0.144-0.152

The highest agreement in boundary delineation was observed for the spleen (BloU =
0.157, 95% CI: 0.154-0.160), followed by the gallbladder (BloU = 0.148, 95% CI:
0.144-0.152) and liver (BloU = 0.146, 95% CI: 0.144-0.149). Lower boundary
agreement was noted for the abdominal wall (BloU = 0.124, 95% CI: 0.122-0.126),
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stomach (BloU = 0.122, 95% CI: 0.120-0.124), and small bowel (BloU = 0.129, 95% CI:
0.127-0.130). The lowest BloU was found for the colon (BloU = 0.092, 95% CI:
0.090-0.093).

Boundary reproducibility was highest for solid organs (with clearly defined borders),
while hollow organs and structures with greater shape variability demonstrated lower
agreement.

4.3.3 Fleiss’ Kappa agreement

Table 5 represents the average Fleiss’ Kappa agreement between new annotations and
reference. The agreement is extremely high across all classes, from 0.85 (gallbladder)
to 0.91(liver), indicating high similarity between annotations and reference. The
lowest agreement was found for the gallbladder, colon and abdominal wall classes.

Table 5: Fleiss’ Kappa Agreement for Different Anatomical Structures

Structure Average Fleiss’ Kappa 95% Confidence
agreement Interval
Abdominal 0.86 0.85-0.87
wall

Liver 091 0.90-0.91
Spleen 0.89 0.88-0.90
Colon 0.86 0.85-0.86
Small bowel 0.89 0.89-0.90
Stomach 0.89 0.89-0.90
Gallbladder 0.85 0.84-0.86

Fleiss Kappa per class

Gallbladder *

Stomach

Abdominal Wall

o
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Fig. 4: Boxplot of Fleiss Kappa per class. The first quartile values range widely
from 0 to 0.86. In the second and third quartiles variability is minimal
(ranging from 0.86 to 0.91).

4.4 Consensus assessment using the STAPLE algorithm

The STAPLE algorithm was used to create a consensus mask between annotators and
compare it with the reference mask.

As can be seen in table 6, there is an extremely high DSC between the STAPLE
consensus masks and the reference in this dataset. The lowest agreement was found
for the gallbladder class.

Table 6: Dice similarity coefficient average between dataset
reference and STAPLE masks. Mean DSC was above 0.84 for
all structures. The liver and small bowel achieved the
highest mean DSC (0.95).

Structure  Mean DSC 95% Confidence

Interval
Abdominal 0.93 0.93-0.94
wall

Liver 0.95 0.95-0.96

Spleen 0.91 0.92-0.93

Colon 0.94 0.92-0.93

Small bowel 0.95 0.95-0.95

Stomach 0.93 0.92-0.93

Gallbladder 0.84 0.82-0.86

DSC STAPLE vs Ground Truth

Galltladder .
Stomach -
Spléen .
Small Intestine -
ver -
Abdominal Wall --
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Fig. 5: Boxplot of DSC calculated between STAPLE masks and reference masks. The
first quartile values range widely from 0 to 0.84. In the second and third quartiles
variability is minimal (ranging from 0.84 to 0.95).

4.5 Annotator performance analysis

An annotator performance analysis was performed by calculating mean DSC between
the annotated masks and references. Table 5 demonstrates average annotator DSC per
organ.

Table 5: Mean DSC per annotator per structure

Structure Annotator Annotato Annotator Annotator Annotator 5

1 r2 3 4
Abdominal 0.89 0.90 0.83 - -
wall
Liver 0.92 0.90 - 0.90 -
Spleen 0.90 0.90 - 0.84 -
Colon 0.85 0.84 0.86 - -
Small bowel 0.90 0.89 - - 0.80
Stomach 0.88 0.88 0.87 - -
Gallbladder 0.85 0.83 - 0.88 0.83
Average 0.88 0.89 0.85 0.87 0.82
DSC

Higher DSC were observed for annotators 1 and 2. These annotators annotated all 7
structures. The lowest DSC were observed for annotator 5. This annotator only
annotated 2 structures (small bowel and gallbladder).

4.6 Qualitative analysis of factors influencing lower performance

We performed a qualitative analysis of masks with the lowest mask intersection
percentages (3-mask intersection for the abdominal wall, liver, spleen, colon, small
bowel and stomach, and 4-mask intersection for the gallbladder). Representative
images of each class are represented in Figure 6.
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Abdominal wall

Stomach

Fig. 6: Examples of masks with the lowest mask intersection percentages, per
structure. Red represents the areas of 4-mask intersection, green represents areas of
3-mask intersection, blue represents areas of 2-mask intersection, and yellow
represents areas of one-mask intersection.

Transversally to all structures, surgical conditions influenced accuracy mainly due to
shadows and surgical smoke. Anatomical positioning difficultated interface
identification as interference with other structures created areas of low contrast,
particularly in the case of background structures, which generally achieved lower
accuracy.

Besides these general limitations, accuracy of segmentation was mainly influenced by
two categories of factors: organ-specific factors and MedSAM-related factors.

Organ-specific challenges varied by structure. For the liver and spleen, segmentation
was hindered by frequent shadows and their appearance as background structures.
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The presence of mesocolic fat in the colon and discontinuous visualization complicated
boundary identification. The variable position and discontinuous visualization of the
small bowel often created areas of low contrast, making segmentation difficult. For the
stomach, the presence of gastroepiploic vessels and coverage by the greater omentum
were the main challenges. Finally, the gallbladder segmentation accuracy was heavily
influenced by the stage of dissection, with the cystic plate and surrounding peritoneum
presented as confounding structures.

The MedSAM-related factors included a tendency to demarcate regions based on
textural similarity rather than anatomical boundaries, particularly under poor lighting
conditions, or interference from surgical instruments or gauze within the field.

5 Discussion

The findings of this study demonstrate that the overall variability in intra-abdominal
organ segmentation in laparoscopic images, when combining human assessment by a
surgery resident and the MedSAM algorithm, is minimal. This low variability was
consistently observed across all classes of intraperitoneal organs studied, including the
abdominal wall.

These results were obtained through three distinct analyses: the intersection of
different annotations as a percentage of total annotation pixels, the Dice similarity
coefficients (DSC) between STAPLE consensus masks and dataset reference ground
truth, and Fleiss’ kappa values. When examining the percentage of total annotation
pixels (Table 2) and Fleiss’ kappa agreement (Table 5 and Figure 4), the gallbladder
and colon classes frequently showed the lowest values, while the liver class
consistently exhibited some of the highest agreement. We hypothesize that these
differences are attributable to organ-specific factors; for example, the presence of
colonic haustrae and mesocolic fat appendages may complicate segmentation, whereas
the liver’s more compact structure and fewer interposed tissues likely facilitate more
consistent delineation.

Comparing the DSC between the STAPLE consensus masks and the reference ground
truth (Table 5 and Figure 5), the mean DSC exceeded 0.80, indicating a very high level
of agreement. Notably, the boxplots reveal that while the first quartile values range
widely from 0 to 0.8 (representing 25% of the data), this subset reflects annotations
with comparatively poorer agreement or performance, highlighting an area where
annotation consistency or model reliability still requires improvement. Future
research should focus on identifying the factors contributing to this variability.
However, in the second and third quartiles(covering 75% of the data)variability is
minimal (ranging from 0.8 to 1), with mean DSC values above 0.8 across all structures.
This indicates a strong correlation among new masks as assessed by STAPLE and
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Fleiss’ kappa, and a high degree of overlap with expert manual annotations, as
reflected by elevated DSC scores.

An analysis of interobserver reliability for surface area annotations further supports
the robustness of this metric across different abdominal structures. Excellent
reliability was observed for solid, well-defined organs such as the spleen (ICC = 0.91)
and liver (ICC = 0.86), with good agreement for the stomach (ICC = 0.83). In contrast,
structures with greater shape variability and less distinct boundaries,including the
abdominal wall (ICC = 0.63), colon (ICC = 0.62), small bowel (ICC = 0.67), and
gallbladder (ICC = 0.64),showed moderate reproducibility. These results suggest that
surface area measurements are highly reproducible for solid organs but more sensitive
to segmentation variability in morphologically complex or flexible structures. Overall,
MedSAM provides reliable performance in capturing surface area of anatomically
consistent structures, while more variable shapes present greater challenges for
consistent boundary delineation.

Boundary delineation results, as reflected by generally low Boundary Intersection over
Union (BloU) values, highlight a key limitation of the segmentation approach. The
highest boundary agreement was observed for the spleen (BloU = 0.157), gallbladder
(BloU = 0.148), and liver (BloU = 0.146), yet even these values suggest modest
reproducibility. Lower agreement was seen for the abdominal wall (BloU = 0.124),
stomach (BloU = 0.122), and small bowel (BloU = 0.129), with the colon exhibiting the
lowest boundary reproducibility (BloU = 0.092). These findings indicate once more
that MedSAM is more reliable in capturing the overall shape and surface area of
anatomical structures than in precisely defining their boundaries. Reduced BloU scores
for hollow and morphologically complex organs likely reflect the inherent challenges of
consistent boundary delineation due to shape variability and indistinct anatomical
landmarks. While the method provides robust global segmentation, further refinement
is needed to enhance boundary accuracy, especially for complex or flexible structures.

The consistency of these findings across annotations created independently by surgery
residents with varying levels of operative experience underscores the reliability of the
results. Although boundary-specific metrics remain challenging, overall agreement
metrics support the validity and reproducibility of the annotations used in this study.

Interestingly, annotators 1 and 2, both first-year residents, consistently achieved some
of the highest DSC scores across all structures. These annotators had the least clinical
experience, but the most experience with medical imaging segmentation using
MedSAM, as they annotated the most images in the study. Since annotation was
performed using MedSAM, a semi-automatic segmentation tool based on bounding box
initialization, repeated use likely contributed to their improved performance. By
annotating more images, these residents may have developed a better understanding
of how to optimally position bounding boxes to guide MedSAM’s segmentation,
effectively compensating for some of the model’s limitations. This increased familiarity
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probably translated into more consistent and accurate annotations, reflected in their
higher agreement scores. Similarly, some of the lowest DSC scores were achieved by
annotator 5. Although annotator 5 had the most clinical experience (6th year resident),
they had the least experience using MedSAM, as they only annotated 2 structures.
These findings suggest that, beyond clinical expertise, experience in using MedSAM is a
critical factor for achieving higher agreement—a key consideration for future
annotation workflows and training protocols.

Finally, we identified several factors affecting segmentation performance (Figure 6),
which can be categorized as organ-specific—such as the presence of mesocolic fat,
vessels, blood, shadows, or poor lighting conditions—and MedSAM-related factors,
including a tendency to demarcate regions based on textural similarity rather than
anatomical boundaries, especially in areas of textural heterogeneity, or interference
from surgical instruments or gauze within the field. These factors appear to negatively
impact interface identification between structures, thereby reducing segmentation
accuracy.

5.1 Limitations

While the study presents robust evidence for low variability in segmentation, it is
important to acknowledge its limitations. The dataset used for this study involved the
segmentation of whole organs in their intraperitoneal position during elective
surgeries. Consequently, the findings may not be directly applicable to the
segmentation of extraperitoneal organs, different parts of the same anatomical
structure, or cases involving more severe disease states.

There is significant concern regarding the low number of annotators. The low
number was a convenience sample where the goal was to have a high number of
annotations by annotator, as opposed to a lower number from a higher number of
annotators. This decision stemmed from the will to address extensively what the
difference in annotation that stemmed from differences in anatomical structures found
intraoperatively, hence the emphasis on increasing the number of annotations per
annotator. These limitations should be further addressed in future work.

5.2 Implications Moving Forward

The results of this study have significant implications for the future of surgical training
and Al development in medical imaging. The evidence of low variability among surgery
residents in annotating laparoscopic images of whole intraperitoneal anatomy using
MedSAM suggests that it is feasible to scale annotations performed by residents to
other datasets. This finding also sets a benchmark for evaluating the performance of
annotations by medical students or non-clinical annotators. However, the observed
challenges in precise boundary delineation indicate that additional training or
refinement may be necessary when annotating structures with complex or variable
borders and highlights possible limitations of Al algorithms trained based on these
masks Furthermore, this study opens the door for surgery residents to annotate more
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complex structures, such as different parts of the same anatomical structures, more
severe disease states, and dissection planes. To build on these findings, future research
should focus on several key areas:
e Segmentation of Extraperitoneal Organs and Complex Structures:
Extending the analysis to include extraperitoneal organs, different parts of the same
anatomical structure, blood vessels and other structures, as well as more severe
disease states to determine if the low variability observed in this study holds in
these contexts.

e Impact of Surgical Experience: Investigating how different levels of surgical
experience affect annotation quality and consistency to provide more tailored
training and support.

e Task Shifting and Non-Clinical Annotators: Exploring the potential for task
shifting, allowing medical students or non-clinical annotators to perform initial
annotations, which can then be refined by more experienced annotators. This
approach could significantly increase the scalability of annotation efforts.

In conclusion, this study provides strong evidence of low variability in
intraabdominal organ segmentation among surgical residents, laying the groundwork
for more efficient and scalable annotation practices in medical imaging. By addressing
the identified limitations and exploring new avenues for research, the medical
community can continue to enhance the accuracy and consistency of anatomical
annotations, ultimately improving the quality of Al models and surgical training
programs.

6 Conclusion

This study makes several key contributions to the field of surgical data annotation and
algorithm validation for intraoperative image segmentation. First, it demonstrates that
semantic segmentation of intraperitoneal organs using MedSAM, when guided by
surgical residents, results in consistently high inter-annotator agreement, indicating
low variability across users with differing levels of clinical experience. This confirms
the reliability of MedSAM-assisted annotations for laparoscopic anatomy and
intraoperative images. The study provides quantitative validation of MedSAM for
intraoperative use, showing that surface area features are particularly robust, with
high inter-class correlation (ICC > 0.87) across all structures. This positions MedSAM
as a viable tool for generating high-quality ground truth segmentations in minimally
invasive surgery datasets.

Furthermore, this work reveals that experience with the annotation tool, rather than
clinical seniority, was the strongest predictor of segmentation quality. Annotators who
labeled more images, even if less clinically experienced, produced more consistent
results—highlighting the importance of tool-specific training in annotation workflows.
However, a notable limitation of MedSAM was observed in boundary delineation
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accuracy, particularly for hollow or morphologically complex organs, where boundary
agreement was modest. This highlights an area for future refinement to improve the
precision of boundary segmentation.

Finally, by identifying specific factors contributing to segmentation
uncertainty—including anatomical complexity, textural variability, and interference
from surgical instruments—this study offers valuable insights into current model
limitations and guidance for future model development.

Together, these findings establish a validated framework for scaling surgical annotation
using semi-automated tools like MedSAM and offer a foundation for task-shifting
annotation to medical students or non-clinical staff, thereby accelerating dataset
creation and Al development in surgical imaging.
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