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Achieving effective decarbonization requires technological innovation and understanding of behavior.
Drawing on an interdisciplinary workshop, this paper emphasizes integrating behavioral insights into
climate policy design to ensure technical effectiveness, social acceptability, and equity. We propose a
framework combining behavioral data, choice modeling, agent-based simulation, and optimization to
assess policy impacts under deep uncertainty. Although focused on transport, the approach

generalizes across sectors.

Designing and implementing actions for decarbonization necessitates a
comprehensive understanding of human behavior. While technological
advancements are essential, they alone cannot resolve the multifaceted
challenges of eliminating greenhouse gas emissions. Behavioral change
is also necessary, and achieving it requires the use of targeted inter-
ventions or behavior change strategies that address individual and
contextual factors influencing decision-making. Effective decarboniza-
tion strategies must integrate behavioral insights pertaining to multiple
actors, including individuals/households, businesses, and government
organizations — all of whom experience uncertainty in their decision-
making. Behavioral choices significantly influence final consumer
demand, mobility patterns, energy choices, and the adoption and use of
new technologies. For instance, promoting sustainable mobility beha-
viors requires not only the availability of ecofriendly transportation
options but also the willingness of individuals to adopt and use these
options. Understanding these behavioral aspects is critical for designing
climate policies that are technically sound, socially acceptable, and
balance the dual objectives of achieving zero carbon emissions while
enhancing well-being and happiness.

Our workshop participants, authors of this paper, who include experts
in transportation and energy research and have disciplinary backgrounds in
engineering, economics, econometrics, environmental psychology, applied
math and data collection, identified a range of strategies influencing climate
mitigation actions, including technology development, policy and regula-
tion, information and education, compensation and redistribution of the
costs and benefits, as well as strategies that account for key aspects of
behavior. One such aspect is behavioral heterogeneity. Individuals have
different beliefs, preferences, needs, and constraints that will affect their
responses to emissions mitigation measures. Other overarching behavioral
factors include willingness to pay and public acceptance, and the role of
emotions and seemingly “irrational” responses.

Designing decarbonization policies presents several significant chal-
lenges. The objective of achieving zero carbon emissions requires substantial
changes in energy production, consumption, and overall societal behavior.
Simultaneously, policies must account for adverse impacts on well-being
and happiness, ensuring that transitions to low-carbon systems do not
adversely affect quality of life, which is also important to secure public
support. Additionally, minimizing the costs of new technologies and energy
is crucial to make decarbonization economically viable and politically
acceptable. Furthermore, forecasting and assessing the impact of individual
and combined climate change mitigation actions is complicated by deep
uncertainty. This uncertainty arises from various sources, including
unpredictable technological advancements, variable economic conditions,
complex human behavior and contextual factors, and uncertainties about
how the climate system will develop. Deep uncertainty makes it challenging
to predict long-term outcomes and to design robust policies that remain
effective under a wide range of future scenarios. Therefore, policymakers
must adopt flexible, adaptive approaches and continuously update their
strategies based on new information and insights'’.

This complexity is illustrated in Fig. 1, which is presented in two panels.
In both panels, the x-axis represents the degree of decarbonization. The top
panel shows the corresponding mitigation costs, while the bottom panel
shows the associated level of well-being. In both cases, the shaded areas
around the curves represent the uncertainty in the estimation of these
indicators. Two examples are highlighted: integrated land-use planning
(e.g., ref. 3), which achieves a relatively low degree of decarbonization at low
cost while enhancing well-being, and electric vehicles (e.g., ref. 4), which
contribute to a higher degree of decarbonization but at higher costs and with
smaller well-being gains.

While the figure is conceptual, its form is grounded in empirical and
theoretical evidence on the cost-effectiveness and complexity of transport
decarbonization measures. The steep initial rise in decarbonization
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Fig. 1 | Trade-offs between decarbonization, mitigation costs, and well-being. In
both panels, the horizontal axis represents the degree of decarbonization. a The top
panel reports mitigation costs, which rise nonlinearly as decarbonization increases.
Thelight-blue shaded region around the curve indicates uncertainty in the estimated
costs. b The bottom panel reports the associated level of well-being for two con-
ceptual trajectories, each surrounded by a light-blue uncertainty band. In both
panels, the orange-filled circles highlight the case of integrated land-use planning,
which achieves a relatively low degree of decarbonization at low cost while enhan-
cing well-being. The vermillion-filled circles highlight electric vehicles, which con-
tribute to a higher degree of decarbonization but at higher costs and with smaller
well-being gains.

effectiveness at low cost reflects well-documented findings from integrated
land-use and transport planning, which can deliver substantial emission
reductions alongside co-benefits such as improved public health, equity, and
accessibility, often at relatively modest investment levels’. Similarly,
investment in high-quality cycling infrastructure can increase cycling rates
by 60-90% with moderate spending, reinforcing the steep early gains
depicted".

As costs increase toward more capital-intensive measures, the curve
flattens, consistent with marginal abatement cost (MAC) curves in energy-
system studies’. These curves typically result from ranking mitigation
measures by cost-effectiveness, beginning with the lowest-cost options and
progressing to those with higher unit costs. In the transport sector, this
pattern reflects the greater technical, institutional, and behavioral challenges
of deeper decarbonization, such as shifting entire vehicle fleets to zero-
emission technologies or overhauling infrastructure networks.

We propose a methodological framework to help policymakers deal
with uncertainty; design policies and regulations; understand public
responses; and forecast the impact of policies and technologies on behavior,
while identifying effective strategies for communicating these impacts to
stakeholders.

The framework includes surveys of human behavior, choice models of
technology and policy adoption, choice of energy sources, and consumption
behavior. Bundles of decarbonization measures can then be evaluated using
agent-based simulations where behavioral models predict the reactions by
different stakeholders and the consequent reduction in emissions. We focus
on decarbonization of the transport sector for the remainder of this paper;
however, the framework we employ is applicable to other sectors as well.

While the framework is designed to support evidence-based policy
design by anticipating behavioral responses and emissions outcomes, we
recognize that decarbonization is ultimately embedded in broader societal
and institutional contexts. Structural factors such as infrastructure

provision, planning decisions, market dynamics, and regulatory environ-
ments shape both behavioral possibilities and technological pathways.
Furthermore, the distributional impacts of climate policies and the processes
through which they are designed raise important questions of justice, equity,
and political legitimacy. Although these issues are not explicitly modeled
within our framework, they can be partially addressed through the eva-
luation of distributional outcomes® and the design of compensatory or
reinvestment mechanisms. The framework is thus best understood as a
decision-support tool that can inform policy within a wider governance
process — one that must also account for questions of voice, representation,
and institutional power.

Kaya identity for transport sector decarbonization
The Kaya identity’ is a simple generalized formula that expresses carbon
emissions as the product of three factors.

The total CO, emissions of the transport sector can be decomposed
using the Kaya identity as follows:

CO E
0.=3 (%), - (aer) v o

m

where the sum runs over all transport modes m, E is the amount of energy
consumed, and PKT stands for passenger kilometers traveled. Reducing the
total CO, emissions can therefore be achieved by addressing each of these
three factors:

. (%)m represents the fuel choice for mode m. This factor can be
reduced through the adoption of energy carriers with a lower-carbon
content, such as electricity, biofuels, synthetic fuels, or hydrogen.
Importantly, this ratio needs to be evaluated on a lifecycle basis.
(3£7),, represents mainly the technology choice for each mode m,
indicating how efficiently energy is used per unit of transport activity.
Enhancing fuel efficiency through technological advancements in
vehicle design and improving traffic flows to minimize congestion
leads to lower values of this factor. In theory, this factor also includes a
behavioral element, that is, the occupancy level. However, multiple
studies have shown that increasing vehicle occupancy is extremely
challenging'®"". Still, supportive policies and measures that facilitate
and encourage shared mobility — such as incentives for carpooling,
improved ride-sharing platforms, and flexible mobility services that
address concerns around convenience, privacy, and reliability — have
the potential to create favorable conditions for individuals to adopt
higher-occupancy travel behaviors.

» PKT,, reflects the total travel demand in passenger-kilometers of each
mode, that is, travel behavior. Strategies to reduce this component
involve promoting modal shifts to more fuel-efficient modes of
transport, encouraging travel at different times of the day to avoid
congestion, reducing the overall need to travel (e.g, through
telecommuting or digital services), combining trips to improve
efficiency, and supporting active mobility options such as cycling
and walking, which do not rely on fuel consumption.

The Kaya identity provides a useful and intuitive decomposition of
CO, emissions into analytically tractable components. Its multiplicative
structure highlights measurable factors — such as fuel carbon content,
energy efficiency, and passenger-kilometers traveled — which make it a
practical tool for organizing the various contributors to emissions. At the
same time, it should be seen as one lens among many, offering a structured
view of key drivers while not capturing the full complexity or societal
dimensions of transport decarbonization.

The Avoid-Shift-Improve (ASI) framework shares similarities with the
Kaya decomposition in that both organize emissions drivers into distinct
components”. In broad terms, “Avoid” corresponds to reducing travel
demand, “Shift” to changes in mode and energy carrier, and “Improve” to
technological efficiency and lower-carbon energy. AST has clear strengths as

npj Sustainable Mobility and Transport| (2026)3:3


www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00075-z

Perspective

a policy and communication framework: it aligns naturally with policy
packages (e.g., demand management + modal alternatives + efficiency
standards), helps highlight co-benefits (health, equity, safety), and is widely
used by practitioners.

For the purposes of behavioral modeling, however, AST’s categories are
not strictly separable in decision processes. In discrete-choice terms,
avoiding a trip (not traveling, teleworking, combining trips) often emerges
from the same utility maximization problem as shifting mode, destination,
or timing; both are shaped by the same constraints (time, budget, accessi-
bility) and by expectations, perceptions, norms, and emotions. Treating
Avoid and Shift as independent levers can therefore obscure substitution
patterns. A behaviorally coherent operational distinction is between short-
term responses (e.g., trip-level mode, route, timing) and long-term com-
mitments (e.g., vehicle ownership, dwelling location, fuel/technology
choice). Our Kaya-based framing accommodates this by tying short- and
long-term decisions to the three multiplicative components of emissions
and estimating them with microdata, while ASI remains valuable for
structuring policy packages and stakeholder dialog.

Other related approaches — such as Low Energy Demand (LED)
pathways"” or sufficiency strategies for climate mitigation—frame mitiga-
tion in terms of reducing energy demand through interdisciplinary per-
spectives on social change. While valuable for long-term visioning, the
quantitative LED studies we are aware of typically abstract from explicit
modeling of human behavior'. Similarly, sufficiency-oriented frameworks
emphasize behavioral change but remain largely qualitative.

In contrast, our framework is explicitly methodological and model-
based, designed to integrate behavioral realism — that is, the extent to which
a model or framework faithfully represents the way people actually make
decisions, adapt, and behave, rather than relying on oversimplified, stylized,
or purely rational assumptions — into quantitative assessments. It therefore
provides a concrete operationalization that complements these higher-level
conceptual approaches, enabling a more detailed analysis of how behavioral
dynamics influence mitigation outcomes.

Variations of the Kaya identity are widely applied in the climate
mitigation literature. For example, Mc Collum and Yang" employ it to
analyze emissions pathways and associated mitigation options, Girod et al.®
use it to estimate the consumption level reductions required to meet climate
targets, and Sharmina et al.” apply it to track and assess mitigation progress
across key sectors.

In this paper, we use the Kaya identity as a framing device to quanti-
tatively represent the behavioral factors that influence its three right-hand-
side components: carbon intensity of fuels, energy intensity of transport, and
total transport activity. Our approach is explicitly data-driven and oper-
ationalized through econometric models and simulation tools. In this
context, “behavior” encompasses the measurable decisions and actions of
key actors in the transport system:

* Individuals, whose travel choices vary with trip purpose, distance,
party size and composition, household characteristics, socio-economic
status, and social influence.

 Transport providers, whose business models, network designs, fleet
compositions, and operational strategies shape technology and fuel
choices, and whose adoption of innovations is influenced by costs,
performance, and market or policy uncertainty.

* Governments and regulators, whose policies—such as infrastructure
investment, regulation, information campaigns, education, pricing
signals, and compensation or redistribution mechanisms—affect both
individual and firm-level decisions.

These behaviors are modeled across different decision scales and
time horizons, from day-to-day mode choice to long-term investment
in low-carbon technologies. While our scope does not extend to all
societal behaviors (e.g., political activism outside the transport sector),
it captures the key behavioral mechanisms that can be quantified and
modeled to explain changes in the Kaya identity’s components and,
ultimately, CO, emissions.

In the “Considerations in modeling human behavior” section, we
discuss key considerations in modeling human behavior, including beha-
vioral heterogeneity, social influences, and the introduction of new tech-
nologies. The “Government actions” section focuses on various government
actions that can influence each factor in the Kaya identity. And in the
“Methodological framework” section, we describe a comprehensive mod-
eling and simulation framework that can be used by policymakers to design,
test, and refine decarbonization strategies.

Considerations in modeling human behavior

Behavioral heterogeneity

The extent to which people engage in pro-environmental behavior varies,
depending on individuals’ capacities and motivation to engage in the
behavior'*’. Behavioral heterogeneity thus depends on contextual factors,
differences in personal ability to act, and the motivation to act. Contextual
factors include available infrastructure, technology, market design, price
regimes, and regulations (we elaborate on these below). For example,
individuals are more likely to drive an electric car if they have access to a fast
and reliable charging infrastructure and when electric cars are affordable
(e.g., via subsidies), and people can only use public transport when con-
venient public transport is available.

Differences in personal ability to act are another factor leading to
behavioral heterogeneity. Perceived ability depends on personal character-
istics such as education level, knowledge, income, and family situation. For
example, perceived ability to act pro-environmentally will be higher when
people have better knowledge of the causes and consequences of environ-
mental problems, and understand how to mitigate these problems'. Income
is also a key variable explaining behavioral heterogeneity. There is empirical
evidence” that lower-income groups in the USA consistently prioritize
environmental protection over economic growth. Higher-income groups
may also feel more able to act pro-environmentally”, particularly when such
actions are financially costly. Indeed, many options, such as investments in
home insulation or PV", or adoption of electric vehicles”, are more
accessible to higher-income individuals. Further, the family context can
restrain some behaviors (e.g., people may need a car to pick up children
after work).

The third motivation to act affects behavioral heterogeneity. People
consider various costs and benefits of actions, and weigh these consequences
differently depending on the values they endorse”. Values reflect general
goals that people strive for in their lives, which affect how they weigh
different costs and benefits of actions, and which choices they make***. Four
types of values are particularly important to understand environmental
choices: hedonic values (i.e,, striving for pleasure, reducing effort), egoistic
values (i.e., striving to enhance and secure one’s resources such as money
and status), altruistic values (i.e., striving to enhance the well-being of
others) and biospheric values (i.e., striving to protect nature and the
environment™). In general, people with strong hedonic and egoistic values
are less likely to act pro-environmentally, as doing so is oftentimes some-
what costly (e.g., buying an electric vehicle) or less comfortable (e.g, traveling
by bus rather than by car). In contrast, stronger altruistic and particularly
stronger biospheric values generally promote pro-environmental actions, as
such actions benefit nature, the environment, and the well-being of others,
including future generations.

People consider a range of individual, collective, social, and emotional
costs and benefits when making decisions'*”". First, they are more likely to
act pro-environmentally when such actions offer individual benefits at low
cost™. Picard et al.”’ show that the perceived costs and benefits of driving
vary depending on whether individuals commute with their spouse or travel
alone. Second, people are more likely to engage in pro-environmental
behavior when they are concerned about environmental problems, feel a
sense of responsibility to reduce them, and view themselves as supportive of
the environment”. Fehr and Gichter’’ demonstrate experimentally that
many individuals are willing to punish free-riders in public goods games,
even when doing so is personally costly and offers no material benefit. Third,
social norms, i.e., the expectations and behaviors of others, can significantly
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Table 1| Exemplary consumer and producer choices of the Kaya identity factors for each of the three components representing

behavioral heterogeneity

Fuel Choice Technology Choice

Travel Behavior

Contextual factors Availability of electrical
infrastructure allows replacing

electric for diesel buses. intensity.

Availability of the HOT lane leads to less
stop-and-go traffic and reduced energy

Reduction in vehicle use, driven by favorable weather and
safe cycling infrastructure encouraging greater bicycle use,
along with a well-developed public transport system.

Differences in
personal ability to act

Ability to afford EV.

Better knowledge of environmental
problems leading to enhanced use of more

Physical fitness to enable more cycling.

energy-efficient vehicles.

Motivation to act Dominance of biospheric values
leading to the purchase of EV.

vehicles.

People w. dominant hedonic or egoistic
values, choosing more energy-intensive

People with stronger biospheric values are more likely to
choose public transport.

Table 2 | Exemplary infrastructure requirements to enable choices related to the Kaya identity factors

Fuel Choice

Technology Choice

Travel Behavior

Infrastructure
requirements

Rapid adoption of EVs may require an
electrical infrastructure upgrade

Requirement for skilled technicians to maintain
advanced, more fuel-efficient engines

Availability of bicycle lanes when
promoting a shift to bicycle use

influence individual choices. People tend to follow such norms to gain social
approval, avoid disapproval, or because they believe it is the right thing to
do". For example, people are more likely to install solar panels when many
neighbors already did so’'. Fourth, people are more likely to act pro-
environmentally when they anticipate that such actions will generate
positive emotions, such as a sense of pleasure or moral satisfaction, and may
avoid certain behaviors if they expect these to result in negative feelings™*>".

Our discussion indicates that many factors affect individual choices
and the likelihood that people act pro-environmentally. These factors vary
across individuals, explaining the heterogeneity in choice behavior. It is
important to understand these different factors and their impacts on indi-
vidual choices and behaviors, so that policies can be appropriately designed
to mitigate climate change. Table 1 summarizes exemplary choices with
respect to each of the Kaya identity-based factors that relate to the three
components representing behavioral heterogeneity. Integrating these fac-
tors and choices into transport models would increase the representation of
consumer and producer heterogeneity.

Technology adoption and infrastructure requirements

The introduction of new technologies can bring about challenges, such as
increased demand for energy or travel (known as induced demand) and
hidden economic, environmental, or social costs that may not be immedi-
ately apparent. These factors necessitate careful consideration to prevent
unintended consequences.

For instance, while the rapid uptake of EVs is expected to reduce
tailpipe emissions and, in most regions, is increasingly supported by
growing shares of renewable electricity, the transition still raises
important infrastructure and resource concerns. The additional elec-
tricity demand from EVs is unlikely to negate their emissions benefits
unless it is met with carbon-intensive sources such as coal, which is
increasingly rare in many countries’’. However, a full transition to
electrified transport could place significant strain on grid capacity and
requires substantial investments in charging infrastructure’. Further-
more, it entails environmental and geopolitical risks linked to the
extraction and processing of critical raw materials (e.g., lithium, cobalt,
and rare-earth elements), as well as challenges associated with battery
manufacturing and end-of-life management. Broader infrastructure
considerations are thus essential when implementing decarbonization
strategies, as they provide the physical and systemic foundation for
supporting sustainable technologies and practices. Table 2 provides an
example of propagating infrastructure requirements for each of the three
Kaya identity factors.

Another challenge of innovative and sustainable infrastructure projects
can be the time to impact, as these projects are influenced by a complex

chain involving regulatory approvals, funding allocations, stakeholder
consultations, and end-user behavior. For instance, the scalability of EV
charging infrastructure hinges on industry partnerships and governmental
support to expand access and adoption across diverse geographical
regions”’.

The uptake of any new technology, and the infrastructure accom-
panying it, typically begins with early adopters. Compared to early
adopters, later adopters attach greater importance to perceived useful-
ness, affordability, accessibility, and policy incentives™. However, early
adopters on their own are seldom enough to make something financially
viable. To scale up, funding mechanisms are required, with initiatives
ranging from private-public partnerships to support from charities and
foundations such as the Solar Impulse Foundation, which advocates for
sustainable solutions.

Finally, public willingness to pay for both the additional costs of using
infrastructure (marginal costs) and the larger upfront investments (capital
expenditures) is essential to ensure that innovative infrastructure projects
are financially secure and can sustain themselves over time.

The time it takes for traditional infrastructure to have an impact (“time
to impact”) can be shortened if it is designed to address an existing demand
for public transportation or to encourage people to shift from using pol-
luting cars to cleaner public transport. This is the case, for example, of the
Crossrail project in London, or the Grand Paris Express intended to
improve Paris accessibility and attractiveness, and to make the Paris region a
polycentric city’*. However, funding such large infrastructures also raises
challenges.

Finally, uncertainties regarding the environmental and societal
impacts of infrastructure projects necessitate careful consideration.
Issues such as their effects on biodiversity and human communities,
alongside local and global perceptions of these impacts, can spark social
protests and influence decision-making (see Heathrow’s 3rd runway'"*,
or the UK national grid upgrade®, or the local opposition to the Grand
Paris Express project in the most productive agricultural lands around
Paris™).

Government actions

Policies, programs, rules, and regulations enacted at all levels of government
are obviously designed to influence the behavior of individuals, households,
and business establishments as described in the following subsections.

Market-based policies

Market-based environmental policies encourage behavior change (in firms
and/or individuals) through market signals by leaving economic agents a
choice, as opposed to explicit regulatory directives or ‘command’ and
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Table 3 | Exemplary consequences of two market-based policy measures for the Kaya identity factors

Fuel Choice Technology Choice Travel Behavior

Carbon tax Depending on the size of the tax, Uptake of more energy-efficient vehicles Decline in petroleum-fueled automobile
diversion from petroleum-fueled travel demand due to higher fuel prices and a
vehicles to EVs shift to public transport

Subsidy Enhanced adoption of EVs Electric technologies, such as electric drivetrains, can be much Reduced marginal cost of EVs may cause an

for EVs more efficient than internal combustion engines, because they increase in EV driving (rebound effect)

aren’t restricted by the same physical limits.

‘control’ regulation (technology-based or performance-based standards).
Broadly, market-based policies include pollution charges and deposit-
refund systems (e.g., carbon taxes enacted in European countries in the
1990s), tradable permits and cap-and-trade schemes (e.g.,, the U.S EPA’s
1986 Clean Air Act, which mandated an emission trading policy for ‘criteria’
pollutants; the EU ETS), subsidies to reduce pollution, and market barrier
reductions (removing explicit or implicit barriers to market activity). As
such, they can affect all factors forming the Kaya identity.

Although governments at all levels are starting to implement market-
based instruments*>*, they have, in general, been slow to do so. A key
challenge has been resistance from interest groups and the public for a
variety of reasons. There is a legitimate concern that market-based instru-
ments may lead to adverse distributional impacts, exacerbate existing
inequalities, and give rise to environmental injustice. This is particularly
problematic when the financial burden of such policies—such as carbon
pricing or energy taxes—falls disproportionately on vulnerable groups, who
often have fewer resources to absorb additional costs or adapt their behavior.
These same groups are also frequently the most exposed to environmental
risks, making them doubly disadvantaged by both economic and environ-
mental harms. For example, a carbon tax often places a heavier burden on
lower-income households, as they spend a larger share of their income on
energy and everyday goods affected by the tax, especially before any com-
pensation or revenue redistribution is applied*’™.

Market-based tools like carbon pricing and emissions trading have
often been introduced too weakly to be effective. In many cases, carbon
prices have been too low or pollution limits too loose to drive meaningful
change™. Participation has sometimes been limited, and the expected cost
savings have not materialized*’. These outcomes are partly due to unrealistic
assumptions about how people and companies behave, flaws in policy
design, and the fact that many companies lack the internal capacity to take
full advantage of these systems™.

The effectiveness of market-based policies strongly depends on how
individuals and firms respond to price signals, making it especially impor-
tant to understand and anticipate behavioral reactions, which are often
uncertain and context-dependent. At the same time, generating accurate
predictions about the likely impacts of the policy is critical in garnering
public acceptance and underscores the role of behavioral models. For
instance, the Stockholm congestion charging scheme is instructive; initial
public skepticism changed after the scheme was introduced, largely due to
the evident reduction in congestion’*, and in environmental problems™.

Suitable approaches to address the dual challenge of anticipating
behavioral responses and fostering public support (in the context of both
environmental and congestion externalities) include recycling/dividend
schemes to address welfare and distributional impacts, the use of behavioral
modeling and optimization to design policies that account for likely public
reactions, careful framing of policy instruments (for example, users in
Stockholm were more receptive when the term “environmental charges”
was used instead of “congestion charges”), and information campaigns.
More broadly, no single policy instrument is likely to offer a complete
panacea toward decarbonization, as no single instrument can address all
barriers to change.

Table 3 provides two examples of market-based policy measures and
their potential impact on each of the Kaya identity factors. As is visible, the
impact of the two policies on travel behavior can lead to opposite directions.

Regulations

Regulations serve as policy tools that force behavioral change to address
environmental challenges. They can be categorized into supply-oriented
and demand-oriented approaches. Supply-oriented regulations, such as
mandates for minimum sustainable aviation fuel mixes (affecting CO,/E in
the Kaya identity), directly influence the composition and availability of
products in the market by placing rules on the supplier. Demand-oriented
regulations are placed on the end-user/consumer. Measures like establishing
low-emission zones in urban areas, setting speed limits, or banning the use
(rather than the production) of internal combustion engines are examples of
policies designed to reduce emissions and improve air quality by prohibiting
some types of targeted user behavior.

As with market-based policies, regulations can affect each factor of the
Kaya identity. Regulations aiming at fuel specifications affect CO,/E,
whereas those aiming at vehicle fuel economy impact E/PTK and PKT.
However, in contrast to market-based measures, the lower marginal costs of
driving associated with a more fuel-efficient vehicle can result in an increase
in vehicle travel and thus traffic congestion, air pollution, and other
externalities. For the industrialized world, this rebound effect was estimated
to be around 12% in the short run, increasing to 32% in the long run™.

While regulations can be enacted quickly and have immediate legal
effect, their environmental impact often unfolds gradually. First, consider-
able time is needed to build support among stakeholders and reduce public
and political resistance. Once passed, the regulation must be aligned with
existing legal frameworks and implemented in a way that meets all legislative
requirements. Industries may also require a substantial lead-in time to
adjust and comply with new standards. For example, if a regulation affects
vehicle design, long fleet turnover times must be taken into account,
meaning that the full environmental impact of such measures may not be
realized for decades (e.g., ref. 56). Furthermore, behavioral adaptation must
occur in response to the regulation, which also takes time. While these
challenges are often associated with regulatory instruments, they also apply
to other policy tools that aim to influence long-term technology choices,
such as vehicle adoption, and should be considered when evaluating short-
term versus long-term effectiveness. Skipping any of these steps risks
undermining a regulation’s durability, early uptake, or overall impact.

Table 4 presents two examples of regulatory policy measures along
with their impact on each of the Kaya identity’s factors. As with regulatory
measures, depending on the implemented policy, the outcome on travel
behavior can be fundamentally different.

Information and education

Providing information and education on the causes and consequences of
environmental problems or on ways to reduce these problems generally
increases people’s knowledge. However, it often does not encourage pro-
environmental actions', as people typically face other barriers to act as well.
Indeed, informational strategies are especially effective when the targeted
behavior is not very inconvenient or costly (in terms of money, time, effort,
and/or social disapproval), and when individuals do not face important
external constraints on behavior'*.

Social influence approaches that communicate what other people do or
think can encourage mitigation actions, as can social models of desired
actions. For example, information on what others do or expect one to do,
providing role models, and community approaches that promote behavior
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Table 4 | Exemplary consequences of two regulatory policy measures for the Kaya identity factors

Fuel Choice Technology Choice Travel Behavior
Fuel economy regulations No direct impact on fuel Adoption of more fuel-efficient vehicles Rebound effect leads to more driving
choice
Sustainable Aviation Fuel Mandatory uptake of SAF More expensive fuel can lead to accelerated At least part of the fuel cost increase will be passed on

(SAF) mandate

adoption of more fuel-efficient aircraft

to consumers, depressing travel demand

Table 5 | Exemplary consequences of an information and education policy measure for the Kaya identity factors

Fuel Choice

Technology Choice

Travel Behavior

Automobile fuel consumption and CO,
emissions labeling

Mandatory CO, car
labeling 2

Greater awareness of CO, emissions when
comparing vehicle models for purchase

Potentially more environmentally conscious
mode choice in daily travel

change from the bottom up can encourage pro-environmental actions".
Other interventions that utilize the social context are spreading awareness of
environmental impacts through social media”, leveraging “social market-
places” where people encourage each other in myriad ways™, or mobile app-
based games to connect with communities™".

Information and education programs can complement and enhance
the impact of regulatory and market-based measures by communicating the
need for and the goals of these policies, and fostering understanding of their
positive impacts'®. For instance, explaining the rationale behind and positive
impacts of carbon pricing can enhance public support and compliance with
these measures. Hence, by integrating information campaigns with reg-
ulatory frameworks and market incentives, policymakers can reinforce the
effectiveness of these policies, encouraging broader societal participation
and support. Such integrative policies are likely to address multiple barriers
to change, thereby catalyzing sustainable behavioral change.

Information and education campaigns can also support the intro-
duction of cleaner technologies. For example, electric vehicles (EVs) illus-
trate how factors like drivetrain options, costs, and driving range can
significantly influence consumer choices”. Awareness campaigns and
educational efforts can play an essential role in disseminating information
about these parameters, ensuring consumers can make informed
decisions”. Additionally, marketing initiatives that highlight options like
battery leasing for EVs can help inform consumers about ways to reduce
upfront costs, thereby encouraging broader adoption®.

Table 5 presents the example of automobile CO, emissions labeling
and the potential consequences for each of the three Kaya identity factors.

Compensation and redistribution

A Sjust transition’ entails that climate change policies address the inequitable
distribution of both the impacts of climate change and the costs and benefits
of mitigation efforts. Marginalized and low-income populations — who are
least responsible for past greenhouse gas emissions and have benefited the
least from carbon-intensive economic development or decarbonization
policies (such as subsidies or incentives mostly used by higher-income
groups) — are often the most vulnerable to climate impacts and possess the
fewest resources to adapt. It is also essential to consider the potential
regressive effects of climate policies, particularly market-based instruments
like carbon pricing, which can disproportionately burden low-income
households and exacerbate existing social and economic inequalities, pos-
sibly leading to social protest such as the Yellow Vests crisis studied by
Chamorel®. The political economy of a ‘ust transition’ is complex. It
involves questions of recognition — ensuring that the concerns and iden-
tities of all social groups are acknowledged and respected — alongside
procedural justice, which relates to fair and inclusive decision-making
processes, and distributive justice, which concerns the fair allocation of
resources and responsibilities. It also requires attention to distributional
outcomes, meaning the actual, measurable impacts of climate policies on
income, ethnicity, gender, and other forms of inequality, both within and

across countries®®”. For instance, transition-related job losses (for example,
from the closure of coal mines, fuel and gas plants) are likely to be con-
centrated in areas and social groups that already have been affected by
deindustrialization and globalization®. Ethnic inequalities arise when large-
scale renewable energy infrastructure projects (e.g., hydroelectricity) or
forest protection initiatives lead to forcible relocation and the loss of tra-
ditional livelihoods”.

Addressing distributional justice toward a just transition requires
appropriate measures of compensation and redistribution. For instance, in
the case of market-based policies such as a carbon tax or a congestion toll,
this would involve dedicating or earmarking revenues in ways that benefit
‘losers’ (for example, lump-sum transfers have been adopted for the federal
carbon tax in Canada®). Other compensation schemes for climate policies
include environmental tax reforms that reduce labor taxation, green deal
plans (investments in areas of the green economy that could stimulate job
creation), place-based policies (a local targeted version of green deal plans
that focuses on spatial inequalities induced by the green transition), and
progressive green subsidies (i.e., to remove financial constraints for the poor
and accelerate the adoption of green technologies)’’. Public support for
these policies tends to increase when revenues are used in ways perceived as
fair and beneficial—for example, through direct rebates to households,
investments in public services, or targeted support for vulnerable groups,
rather than across-the-board tax cuts or general budget spending”’.

However, there are several challenges associated with direct refunds
and compensations. First, it is challenging to determine adequate com-
pensation since it requires quantifying exactly the benefits and losses at the
individual level. For this reason, achieving a Pareto improvement (where no
individual is worse off) is often considered a near impossibility by
economists’’. Another challenge is that refunding schemes may create
undesirable incentive effects (e.g., users trying to overstate losses) and open
the door for strategic behavior that undermines efficiency gains from the
policy®. Finally, administrative and transaction costs could be prohibitive,
but these can conceivably be minimized through technology.

Empirical evidence further supports the need to target high-income
behavioral patterns. For example, private jet emissions from wealthy indi-
viduals increased by 46% from 2019 to 2023, totaling 15.6 MtCO,
annually””. More broadly, the wealthiest 10% globally are responsible for
36-45% of total greenhouse gas emissions, with transport-related affluence
being a key driver”.

Note that fully addressing the questions of justice and power in the
context of transport decarbonization requires a level of theoretical and
empirical elaboration that goes beyond the scope of this paper. As noted in
the introduction, our focus is on providing a methodological framework to
support the design and evaluation of decarbonization policies, particularly
by anticipating behavioral responses and assessing distributional outcomes.
While we discuss compensation and redistribution mechanisms, a com-
prehensive integration of structural inequalities, power asymmetries, and
procedural justice into the modeling framework would require additional
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components — such as participatory processes, institutional analysis, and
governance modeling — which are not developed here.

Joint effect of policies

When policies are designed in isolation, without considering the presence of
other instruments, they may create distortions or even undermine their own
objectives. For example, implementing congestion pricing without investing
in adequate public transport alternatives may disproportionately penalize
certain groups and reduce overall policy effectiveness.

Synergies and trade-offs often arise across sectors. Consider the
interaction between transportation and energy systems: road pricing poli-
cies designed to manage congestion can influence the adoption of electric
vehicles (EVs), thereby affecting electricity demand and grid operations.
Conversely, dynamic energy pricing alters the relative cost of EV use
compared to conventional vehicles, with direct implications for travel
demand and mode choice. Designing an optimal joint pricing framework
that accounts for both transport and energy sectors can unlock co-benefits
such as reduced congestion, smoother demand on the grid, and improved
environmental outcomes.

Managing joint effects also requires avoiding contradictions and
overlaps. Uncoordinated regulations can create uncertainty, discourage
compliance, or impose excessive burdens on stakeholders. Effective coor-
dination across government levels and sectors, combined with early stake-
holder engagement, is critical to ensure coherent and credible policy
packages.

Revenue recycling is another lever to strengthen complementarities.
Using proceeds from carbon pricing or environmental fines to support low-
income households, invest in renewable energy, or expand public transport
can enhance both fairness and political acceptance™. Similarly, targeted
investment in charging infrastructure for underserved peri-urban and rural
areas, or in multifamily residences where private charging is limited, can
mitigate inequities. Without such targeting, EV subsidies combined with
energy demand management policies may disproportionately benefit high-
income households who can afford residential battery storage systems, thus
widening gaps in energy costs and access.

In summary, addressing the joint effects of policies calls for a holistic
approach that explicitly considers cross-sectoral dynamics, distributional
impacts, and institutional coordination. Policy mixes are not the exception
but the rule: effective decarbonization depends on packages of com-
plementary instruments that balance efficiency, equity, and feasibility. The
methodological framework developed in this paper is designed to capture
such interactions by quantifying behavioral responses to multiple instru-
ments applied jointly rather than in isolation. By fostering synergies and
minimizing conflicts, integrated policy packages can deliver more effective,
equitable, and durable pathways toward transport decarbonization.

Public acceptability

The extent to which options are evaluated (un)favorably by the public plays
an essential role in the implementability of proposed policy measures.
Hence, it is critical to understand which factors affect the acceptability of
policies, as this provides important insights into which strategies could be
implemented to address public concerns. Four factors appear to affect public
acceptability of options: perceived costs and benefits of options, distributive
fairness, procedural fairness, and trust in responsible actors.

First, acceptability is higher when people believe options have more
positive and fewer negative effects for self, others, or the environment'’.
Because of this, policies ‘rewarding’ pro-environmental actions are more
acceptable than policy ‘punishing’ actions that increase environmental pro-
blems. Pro-environmental options and policies are evaluated as more
acceptable when people strongly value the well-being of other people and the
environment, when they are more concerned about environmental problems,
and when they feel more responsible and capable of helping reduce these
problems, probably because this increases the likelihood that people recog-
nize and value the environmental benefits of options and policies”. Further,
the more people are aware of environmental problems, the more strongly

they prefer governmental regulation and behavior change rather than free-
market and technological solutions”. Acceptability can increase when people
experience that an option or a policy has more positive effects than they
expected, which suggests that effective policy trials or being able to try out an
option can build public support for sustainable options and policy".

Second, public acceptability depends on how the costs and benefits of
options and policies are distributed across groups (i.e., distributive fairness):
sustainable options and policies are more acceptable when their costs and
benefits are distributed equally across groups, and when vulnerable groups,
future generations, and nature and the environment are protected”. Dis-
tributive fairness can be enhanced by compensation schemes, for example,
by offering additional benefits to people who would be negatively affected by
the proposed changes. For example, public acceptability of pricing policies is
higher when redistributing revenues toward those affected’’, and when
earmarking revenues for environmental purposes™*’°.

Third, public acceptability of sustainable options and policy depends
on which decision procedures were followed, as reflected in perceptions of
procedural fairness. The implementation of sustainable options and policies
is perceived as more fair and acceptable when transparent procedures have
been followed, when the public or public society organizations could par-
ticipate in the decision-making, and when people feel that their interests and
concerns have been taken seriously™.

Fourth, public support is higher when individuals trust responsible
parties”. Trust in responsible parties is important as the general public
typically does not have sufficient expertise or the capacity to understand all
aspects of options, and thus needs to rely on the expertise and good
intentions of agents who are responsible for designing and implementing
the options. Public acceptability appears to more strongly depend on trust in
the integrity of responsible actors (i.e., whether they are believed to be
transparent and honest) than on the perceived competence of responsible
actors”’.

Policies and Kaya identity

To conclude this section on policies, the following lists present a selection of
climate mitigation policies categorized according to the three components
of the Kaya identity applied to the transport sector. Each policy aims to
reduce total CO, emissions by targeting either the carbon intensity of energy
use (CO,/E), the energy efficiency of transport activity (E/PKT), or the
overall travel demand (PKT).

co, ;
(g%, — Fuel choice

* Carbon taxes to shift demand toward lower-carbon energy sources.

* Emissions trading systems (cap-and-trade) are used to limit total
emissions from fuels.

 Sustainable Aviation Fuel (SAF) mandates promote low-carbon
aviation fuels.

¢ Fuel specifications require cleaner energy carriers.

 Subsidies for electric vehicles (EVs) to support low-carbon fuel
adoption.

* Public investment in renewable energy is funded through climate
policy revenues.

¢ Information campaigns promoting the adoption of lower-carbon fuels.

(#7),, — Technology choice

* Fuel economy regulations require more efficient vehicles.

* Emissions labeling for vehicles to inform technology choices.

* Congestion pricing to improve traffic flow and reduce energy intensity.

* Green deal plans to invest in efficient mobility technologies.

* DPlace-based policies targeting energy-efficient infrastructure
investments.

* Progressive green subsidies to improve access to efficient technologies.

* Education campaigns highlighting the cost and performance of clean
technologies.
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Fig. 2 | Methodological framework. The framework integrates policy design, beha-
vioral modeling, performance measurement, and optimization in a continuous, iterative
process. It uses a diverse range of input data, including exogenous information such as
energy prices and economic conditions, behavioral data collected through experiments
and surveys, and a global typology of individuals, households, and business establish-
ments representing different demographic, socio-economic, and geographic segments.
Within this typology, synthetic populations of individuals, households, and establish-
ments can be generated that reproduce the statistical properties of the actual populations.

PKT,,, — Travel behavior

 Low-emission zones restrict high-pollution travel in cities.

* Speed limits and bans on internal combustion engine use.

+ Congestion tolls are used to discourage excessive car use in peak hours.

* Modal shift incentives encourage the use of public or active transport.

* Social influence campaigns promoting sustainable mobility norms.

* Gamification and mobile apps to engage communities in behavior
change.

» Compensation schemes for low-income travelers affected by pricing
policies.

* Revenue recycling to support users affected by behavioral regulations.

* Electric vehicle cost-sharing (e.g., battery leasing) to broaden adoption.

Methodological framework

The complexity of behavioral dimensions in response to climate change
actions necessitates the design and development of decision-aid tools. These
tools aim to assist policymakers in designing, optimizing, and anticipating
the impacts of various measures. This section introduces a methodological
framework for developing such tools that involves the collection of beha-
vioral data and the design of a modeling framework.

As illustrated in Fig. 2, the methodological framework integrates policy
design, behavioral modeling, performance measurement, and optimization
in a continuous, iterative process. This approach utilizes a diverse range of
input data, including exogenous data such as energy prices and economic
conditions’®; behavioral data (including factors influencing behavior) col-
lected through experiments and surveys (see “High-quality behavioral data”
section); and a global typology of individuals and households representing
different demographic, socio-economic, and geographic segments. This
typology also represents the population of business establishments. Within
such a typology, synthetic populations of individuals, households, and
establishments with the same statistical properties of the actual populations
can be created”™™.

Behavioral models and simulation
The role of behavioral models and simulations is to predict individual and
group responses at a disaggregate level. These models can simulate various
scenarios to understand potential outcomes of the policy measures. They
generate various numerical indicators that characterize the behavioral
responses for each of those scenarios.

Individuals make numerous choices that are relevant for analyzing
decarbonization policies. These choices pertain to their activities, travels,

and energy consumption, among others. Some decisions are long-term,
such as house location, the type of heating system, or vehicle ownership,
while others are short-term, like travel mode and destination for specific
activities. These decisions may be modeled simultaneously, as proposed by
Pougala et al.”, Pougala et al.*’, and Rezvany et al.”, or they may be modeled
sequentially (e.g., ref. 84). An example of a behavioral modeling and
simulation platform for urban transportation that adopts a sequential
approach is shown in Fig. 3 **.

In the same spirit, Knapen et al.*” use an activity-based micro-simu-
lation that generates travel schedules and uses them to estimate EV charging
demand profiles across time and space. Additional simulation models
incorporate Land Use and Transport Interactions (LUTI) to examine the
long-term impacts of policies™.

The behavioral dimensions explicitly represented include:

Individual characteristics: Measurable variables about each individual,
including age, income, gender, or health status.

Latent Characteristics: Individual characteristics—such as perceived
costs and benefits of options and policies, attitudes, social norms,
values, perceptions, and emotions—play an important role in
shaping behavior. These include factors like skepticism, denial, or
guilt, as well as perceptions of inequity, moral licensing (e.g., “I am
already doing enough”), or overconfidence (e.g., “technology will
solve everything”).

Implicit Choice Set: Various types of constraints, including resource
constraints (e.g, availability of vehicles in a household), regulatory
constraints (e.g., some destinations cannot be reached by carbonized
modes of transportation, or heating systems with strong GHG emissions
are forbidden), and contextual constraints (e.g., extreme weather, floods,
earthquakes).

Utility Functions: These combine all the above variables to characterize
the preferences of individuals.

The behavioral models are typically grounded in random utility
theory™, while the simulation environment captures and propagates
uncertainty by combining causal models and simulating their distribution
across agents and outcomes.

The raw output of the simulation is an empirical distribution of
detailed schedules, where all modeled choices made by each (syn-
thetic) individual/household and establishment are explicitly
represented.

The use of disaggregate simulation tools poses several challenges:

* Behavioral assumptions: The underlying assumptions of rational
decision-making and stable preferences may not always hold under
real-world conditions. The integration of latent variables enables the
explicit representation of bounded rationality, social influence, and
evolving social norms™.

* Model calibration: Calibrating behavioral models is complex, par-
ticularly due to the high dimensionality of parameters and limited
observability of preferences”. Bayesian methods offer increased
flexibility in fusing diverse data sources and managing
uncertainty*””.

* Model validation: Validating disaggregate models is equally
demanding, often requiring rich, high-resolution behavioral data’.
Modern sources such as mobile phone location data’ are proving
increasingly valuable in this regard.

» Computational complexity: Large-scale agent-based simulations and
the incorporation of deep uncertainty place significant demands on
computational resources. This has motivated the development of
efficient formulations and surrogate models to reduce simulation time
while preserving model fidelity”™**.

* Datarequirements: Developing detailed behavioral models—whether
using simultaneous or sequential structures—requires disaggregate
data on individual and household decision-making processes, as well as
establishment-level behaviors. These data needs are discussed further
in the next subsection.
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Fig. 3 | Simulation framework for urban transportation (SimMobility). An example of a behavioral modeling and simulation platform for urban transportation that

adopts a sequential approach.

High-quality behavioral data

Multiple sources of data, including surveys and big data, can and should be
used to develop and inform the behavioral models described in our meth-
odological framework. Naturally, each type of data has inherent advantages
and limitations. As such, these sources are best used in combination with
one another through data fusion approaches.

In the transport field, recall-based travel surveys, which for many years
have been the key source of travel and activity behavioral data, are being
replaced or supplemented with advanced approaches that combine mobile
sensing, the use of contextual data sources, such as transit network, POI and
land-use data, and machine learning computational/inference techniques to
obtain more accurate, complete, and richer human mobility and activity
information (see, for example, ref. 95). When combined with app- or web-
based user interfaces that enable participants to view, edit, and verify their
travel timelines as well as provide additional details about their trips and
activities, the data obtained provides a full storyline of how, when, and why
people travel. Such approaches are increasingly being applied in household
travel surveys (e.g., ref. 96) and other research programs to provide a rich,
contextual understanding of how people interact with their environment,
their mobility and activity patterns, and lifestyle choices. These methods can
also be used to obtain detailed behavioral data from business establishments

providing passenger and freight transport (see, for example, ref. 97 and
ref. 98). Without such detailed behavioral data, we could not develop the
kinds of models that were described in the previous section.

As with other types of surveys, these data collection methods require
recruitment of samples of individuals, households, or business establish-
ments to participate. Participants must be willing to have their personal data
(e.g., location data) collected. Data privacy regulations, designed to protect
personal data, can be complex and strict, posing challenges for data con-
trollers and processors administering the surveys. Due to cost and time
constraints, data collection typically involves relatively small samples (at
least as compared to big data) and, in the past, has only been done inter-
mittently, every few or several years. In today’s rapidly changing world,
longitudinal data collection, which tracks behavioral dynamics and the
factors influencing them over time, is also essential for understanding how
and why habits and preferences evolve, and some transportation agencies
are moving toward developing more continuous data collection programs.

Transportation agencies are also exploring how big data can be used to
model travel behavior. Big data comes from a range of sources, including
mobile devices and apps, connected vehicles, transit smart cards, smart road
sensors, and geo-tagged social media posts (e.g., ref. 99). With its volumi-
nous datasets and longitudinal nature, big data can be invaluable in revealing
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patterns of behavior across a wide range of domains, especially travel and
mobility. The ability to use big data to monitor what people do when
conditions change, e.g., during the COVID pandemic, can be extremely
informative in modeling behavior (e.g., ref. 100).

However, a deficiency of big data is that it lacks sufficient detail and is
missing variables with explanatory power. This lack of context (e.g., ref. 101)
canlead to erroneous assumptions when solely using these data for decision-
making and policy design. Another aspect of big data’s “thinness” is that, as
with all data distributions, it may have a tail with very few observations, e.g.,
people who use public transit in a car-dependent city. While sampling plans
for travel surveys are typically designed with stratification and oversampling
to ensure representation, it may not be possible to oversample certain types
of observations with big data, for which datasets are automatically
generated.

Survey and big data, as described above, are revealed preferences
(RP), meaning data derived from observed or reported actual behaviors
and only pertaining to existing situations or conditions. To develop and
optimize solutions that do not currently exist or to study attributes that
are not captured in big data, stated preferences (SP) data are also
required. RP data can be leveraged to develop context-specific SP surveys
to allow researchers to test consumer reactions to new solutions, sce-
narios, and policies in a more realistic, informed manner. This combi-
nation of revealed and stated preferences ensures that new initiatives are
grounded in actual behavior patterns, increasing their likelihood of
success. These enriched datasets enable the development of personalized
solutions tailored to individual needs and behaviors (e.g., ref. 102). For
example, individuals with high price sensitivity to a carbon tax are more
likely to adopt public transportation or active mobility solutions. Such
personalized treatments are essential to motivating individuals to switch
to sustainable solutions (e.g., ref. 103).

Given the strengths and limitations inherent in each type of data, the
greatest potential for improving our ability to understand and predict
behavior lies in the integration of different types of data in modeling and
simulation systems'*". For example, big data has the potential to be enriched
with context through fusion with mobile sensing-based survey data, and
small samples of survey data can be expanded by its integration with big
data. It is incumbent upon researchers to develop effective data fusion
approaches to take maximum advantage of the wealth of data available to
ensure the optimal design of policies and initiatives related to transport
decarbonization.

Indicators

The generated schedules can then be used to measure a wide variety of key
indicators. By predicting the decisions of each (synthetic) individual in the
population, it becomes straightforward to aggregate individual indicators to
obtain their population-level counterparts. For instance, emissions can be
derived from travel choices and participation in certain activities. Individual
well-being is measured by the utility function within the framework,
alongside variables such as health status. Costs are directly derived from the
expenses associated with each decision related to activity participation and
travel.

Optimization
These indicators then feed into the optimization phase, where sophisticated
optimization techniques are employed to adjust policies and better achieve
desired outcomes. The goal is to reconfigure the policies based on the
performance of the indicators to enhance their overall effectiveness. This
process often involves multi-objective optimization, where improving one
indicator may inadvertently deteriorate another (as illustrated by Fig. 1).
For instance, increasing subsidy levels for electric vehicles could sig-
nificantly boost their adoption, reducing emissions and contributing to
environmental goals. However, this might also lead to increased govern-
ment expenditure, affecting budget constraints and potentially limiting
funds available for other crucial sectors like healthcare or education. Simi-
larly, policies aimed at enhancing individual well-being through increased

access to recreational activities might lead to higher emissions due to
increased travel.

Balancing these competing objectives requires a careful and strategic
approach. The concept of “Pareto optimality” can be employed to identify
solutions that offer the best possible trade-offs between conflicting objec-
tives. This concept is grounded in the principle of dominance. A policy P; is
said to dominate a policy P, if no indicator associated with P, is worse than
the corresponding indicator for P,, and at least one indicator of P is strictly
better than the corresponding indicator for P,. A policy is considered Pareto
optimal if it is not dominated by any feasible solution.

Once policymakers are presented with the set of Pareto optimal solu-
tions, they can evaluate the relative importance of each indicator and make
informed decisions that align with broader societal goals. This approach
contrasts with single-objective optimization, where the relative importance
of each indicator must be established before any analysis, often in an arbi-
trary and non-transparent manner. Thanks to the multi-objective approach
and the a posteriori weighting, the trade-offs are more transparent, allowing
for a clearer understanding of the implications of each decision.

Policy measures
Policy measures aimed at reducing carbon emissions encompass strategies
such as carbon pricing, subsidies for renewable energy, emission regulations,
and infrastructure investments.
For example, implementing a carbon tax to mitigate greenhouse gas
emissions is a prevalent policy approach.
In our methodological framework, each measure can affect various
factors:
¢ The value of variables in the utility function: For instance, a carbon tax
increases the monetary cost of several options, altering the utility
associated with different choices.
¢ The set of constraints individuals face: For example, a policy restricting
access to city centers for carbon-emitting transportation modes would
influence the selection of destinations for certain activities.
¢ Subjective aspects influencing decisions: For instance, a policy that
includes transparent communication about the redistribution of car-
bon tax revenue might alter the public perception of the tax’s equity.

The whole process is iterative and dynamic, continuously refining
policies based on real-time data and feedback. By leveraging these techni-
ques, it is possible to create a balanced policy framework that maximizes
overall benefits while minimizing negative impacts, ensuring a sustainable
and equitable approach to societal development.

To illustrate, consider the implementation of a congestion charge in a
city. The policy is first modeled to simulate commuter responses using travel
survey data. The indicators monitored might include traffic volumes,
emissions levels, public transport usage, and economic impacts on com-
muters. Optimization could involve adjusting the congestion charge rates
and timings based on these indicators to balance traffic reduction with
economic fairness. Throughout this process, inputs such as fuel prices,
public transport availability, and travel patterns from GPS data are utilized,
along with synthetic populations representing different commuter types.

By using this comprehensive framework, policymakers can design, test,
implement, and refine decarbonization strategies effectively, ensuring they
are both efficient and equitable.

Scientific challenges

The design, implementation, and application of such a framework are

particularly challenging. We briefly discuss some of those challenges.
Deep Uncertainty: One of the primary methodological challenges in
developing decarbonization policies is dealing with deep uncertainty.
This refers to situations where the probabilities of future events are
unknown, and the possible outcomes are numerous and varied. Tradi-
tional scenario planning, which involves creating a limited set of detailed
scenarios, may not be sufficient to capture the full range of uncertainties.
Scenario discovery, on the other hand, uses data-driven techniques to
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identify and explore a broader array of possible futures. For example,
rather than just planning for best-case and worst-case scenarios, scenario
discovery might reveal a spectrum of outcomes based on different
combinations of policy measures, technological advancements, and
societal behaviors'*'®.

Disaggregate Policy-Sensitive Models: Another critical issue is the
development of disaggregate policy-sensitive models that can accurately
capture the causality of human activities. These models focus on
individual or household-level behaviors and decisions, providing a
granular understanding of how people respond to specific policies. There
is a long tradition of such models in travel demand analysis'”’, where
disaggregate choice models'” are used in micro-simulation tools'”*'"’.
Multi-Scale Models: The integration of models across multiple scales is
critical for a comprehensive understanding of the broader impacts of
various policies. Multi-scale models synthesize data and insights from
microscopic (individual or household level), mesoscopic (community or
regional level), and macroscopic (national or global level) scales'"'"*. By
leveraging these different scales, researchers can perform an in-depth
analysis of how local actions accumulate to influence broader trends. For
instance, a multi-scale model might combine local traffic data'” with
regional air quality models"* and detailed time use data'".

Scalability: Scalability poses a significant methodological challenge: how
to effectively apply microscopic models on a global scale''. Although
microscopic models offer detailed insights, they are often computa-
tionally intensive and require vast amounts of data. Scaling these models
globally necessitates innovative approaches, such as employing repre-
sentative samples, leveraging parallel computing, and utilizing machine
learning techniques. For instance, scaling an urban transportation model
globally might involve selecting representative cities from various regions
and extrapolating the results while considering regional differences in
behavior and infrastructure.

Propagation of uncertainty: The primary role of simulation is to
represent the propagation of uncertainty through complex systems. This
involves generating empirical realizations of complex random variables,
which are often defined on combinatorially intricate state spaces.
Advanced techniques, such as variance reduction methods'” and Mar-
kov chain Monte Carlo methods''*'"”, can be particularly effective in this
context.

The proposed framework is merely a high-level preliminary concept,
and the list of challenges it presents is certainly much longer and more
complex than outlined above.

In particular, future work should explore how such behavioral models
can be embedded within broader governance frameworks. Rather than
treating policies as isolated instruments, there is a need to model coordi-
nated policy packages that align fiscal tools, regulatory mechanisms, and
spatial accessibility measures into a cohesive system'”’. Embedding the
agent-based simulation framework within participatory or adaptive gov-
ernance is an important research avenue.

This research direction requires an interdisciplinary approach, invol-
ving collaboration among engineers, economists, computer scientists, psy-
chologists, political scientists, climate experts, and other specialists. The
richness of this field ensures it will fill the research agendas of numerous
research teams.

Discussion

Addressing the global challenge of climate change demands an approach
that integrates technological advancements, policy frameworks, and an in-
depth understanding of human behavior. This paper emphasizes that
decarbonization cannot be achieved solely through technological innova-
tions but requires behavioral insights to design effective, equitable, and
socially acceptable policies. The interplay of individual choices, societal
norms, and systemic constraints is crucial in shaping responses to climate
actions.

Through interdisciplinary collaboration and the contributions of
experts across engineering, economics, psychology, and data science, we
have outlined a methodological framework to guide policymakers in
designing and implementing decarbonization strategies. This framework
incorporates high-quality behavioral data, choice modeling, agent-based
simulations, and optimization techniques to predict and evaluate the
impacts of various climate actions. By addressing challenges such as deep
uncertainty, behavioral heterogeneity, and multi-scale modeling, the fra-
mework provides a robust foundation for creating adaptive and effective
climate policies.

Ultimately, the path to decarbonization requires integrating technical
feasibility with behavioral realism and societal values. By fostering colla-
boration across disciplines and leveraging innovative methodologies, pol-
icymakers can craft strategies that not only achieve carbon neutrality but
also enhance societal well-being, equity, and resilience in the face of a
changing climate. This integrated approach ensures that the transition to a
sustainable future is both effective and inclusive, addressing the diverse
needs and challenges of global populations.

Behavioral change does not occur in a vacuum, however. Structural
conditions — such as infrastructure design, market incentives, urban
planning, and institutional norms — shape both the feasibility and desir-
ability of low-carbon choices. System-level transformations are therefore
necessary to remove barriers and create enabling conditions for sustainable
mobility. Policies such as investments in public transport, regulations,
subsidies, and infrastructure development play a key role, requiring coor-
dinated efforts from governments, industry, and other influential actors.

We also acknowledge that climate change policies cannot be reduced to
a binary choice between technological innovation and individual behavioral
change. They are embedded in political, economic, and institutional con-
texts that shape both the demand and supply sides of the transport sector.
Structural drivers—such as planning decisions, market incentives, and
vested interests—often influence mobility patterns and technology uptake
as much as, if not more than, consumer preferences. For example, London’s
congestion charging scheme, introduced in 2003, demonstrated how reg-
ulatory pricing can substantially reduce traffic volumes and improve air
quality while raising questions of public acceptability, distributional fairness,
and revenue use’>**. By contrast, the 2018 French gilets jaunes protests*™'*'
were triggered by a planned fuel tax increase, illustrating how climate
measures that overlook equity and rural mobility constraints can provoke
political backlash and undermine long-term decarbonization strategies”'*.
These cases highlight how the distributive consequences of climate action
raise fundamental questions of justice and legitimacy—namely, who pays,
who benefits, and who decides®. As emphasized in the broader sustain-
ability transitions literature, climate mitigation should thus be understood
not only in terms of efficiency and acceptability, but also as a governance
challenge: one that requires aligning actors, coordinating sectors, and
building durable political coalitions capable of sustaining long-term
investment under shifting economic and electoral conditions'**"**.

Another working group at the same symposium'”, likewise empha-
sized that climate responsibility should not be framed as individual blame,
but rather as a forward-looking collective obligation. They stressed that
behavioral responses cannot be examined in isolation; instead, they must be
situated within the political, institutional, and structural contexts that shape
people’s capacity to act. From this perspective, sustainable choices depend
less on individual willpower than on the social norms, infrastructures,
regulatory and legal frameworks, and power relations that together enable or
constrain them.

Our focus on the behavioral dimension is therefore not intended to
shift responsibility to individuals, but rather to highlight the importance of
aligning system-level change with human motivations. Understanding how
people respond to evolving opportunities, constraints, and incentives
remains crucial for ensuring that policy interventions are not only techni-
cally sound but also socially acceptable and politically feasible. The frame-
work described in this paper is designed precisely to support this goal by
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integrating behavioral data and models into the evaluation and design of
decarbonization strategies.

Data availability

No datasets were generated or analyzed during the current study.

Received: 27 April 2025; Accepted: 14 December 2025;
Published online: 20 January 2026

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Lempert, R. J., Popper, S. W., Hernandez, C. C. & RAND
Corporation. Transportation planning for uncertain times: a practical
guide to decision making under deep uncertainty for MPOs https://
rosap.ntl.bts.gov/view/dot/64646 (2022).

Lempert, R. et al. Meeting climate, mobility, and equity goals in
transportation planning under wide-ranging scenarios. J. Am. Plan.
Assoc. 86, 311-323 (2020).

Tang, M. et al. Urban land use optimization prediction considering
carbon neutral development goals: a case study of Taihu Bay Core
area in China. Carbon Balance Manag. 19, 39 (2024).

Woody, M., Keoleian, G. A. & Vaishnav, P. Decarbonization potential
of electrifying 50% of U.S. light-duty vehicle sales by 2030. Nat.
Commun. 14, 7077 (2023).

Deweerdt, T. & Fabre, A. The role of land use planning in urban
transport to mitigate climate change: a literature review. Adv.
Environ. Eng. Res. 03, 033 (2022).

Fosgerau, M., kukawska, M., Paulsen, M. & Rasmussen, T. K.
Bikeability and the induced demand for cycling. Proc. Natl. Acad.
Sci. USA https://doi.org/10.1073/pnas.2220515120 (2023).
Blackhurst, M. et al. Marginal abatement costs for greenhouse gas
emissions in the United States using an energy systems approach.
Environ. Res. Energy 2, 015012 (2025).

de Palma, A., Motamedi, K., Picard, N. & Waddell, P. Accessibility
and environmental quality: inequality in the Paris housing market
http://hdl.handle.net/10077/5950 (2007).

Kaya, Y. & Yokobori, K. Environment, Energy, and Economy:
Strategies for Sustainability (United Nations University Press, Tokyo,
Japan, 1997).

Klinich, K. D. et al. U.S. vehicle occupancy trends relevant to future
automated vehicles and mobility services. Traffic Inj. Prev. 22,
S116-S121 (2021).

Lowe, W. U. A. & Piantanakulchai, M. Investigation of behavioral
influences of carpool adoption for educational trips —a case study of
Thammasat University, Thailand. Case Stud. Transp. Policy 12,
100970 (2023).

Leroutier, M. & Quirion, P. Tackling car emissions in urban areas:
Shift, avoid, improve. Ecol. Econ. 213, 107951 (2023).

Grubler, A. et al. A low energy demand scenario for meeting the
1.5 °C target and sustainable development goals without negative
emission technologies. Nat. Energy 3, 515-527 (2018).

Creutzig, F. et al. Towards demand-side solutions for mitigating
climate change. Nat. Clim. Chang. 8, 260-263 (2018).

McCollum, D. & Yang, C. Achieving deep reductions in US transport
greenhouse gas emissions: scenario analysis and policy
implications. Energy Policy 37, 5580-5596 (2009).

Girod, B., van Vuuren, D. P. & Hertwich, E. G. Global climate targets
and future consumption level: an evaluation of the required GHG
intensity. Environ. Res. Lett. 8, 014016 (2013).

Sharmina, M. et al. Decarbonising the critical sectors of aviation,
shipping, road freight and industry to limit warming to 1.5-2 °C. Clim.
Policy 21, 455-474 (2021).

Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: An
integrative review and research agenda. J. Environ. Psychol. 29,
309-317 (2009).

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

de Coninck, H. et al. Strengthening and implementing the global
response. In Global Warming of 1.5°C. An IPCC Special Report on
the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels
and Related Global Greenhouse Gas Emission Pathways, in the
Context of Strengthening the Global Response to the Threat of
Climate Change, Sustainable Development, and Efforts to Eradicate
Poverty (eds Masson-Delmotte, V. et al.) 313-444 (Cambridge Univ.
Press, Cambridge, UK, 2018).

IPCC. Climate Change 2022: Mitigation of Climate Change
(Intergovernmental Panel on Climate Change, Geneva, Switzerland,
2022).

Requena-i-Mora, M., Brockington, D. & Fleischman, F. Eco-paradox
USA: The relationships between economic growth and
environmental concern generally, and by different income groups.
Ecol. Econ. 235, 108648 (2025).

Du, S., Cao, G. & Huang, Y. The effect of income satisfaction on the
relationship between income class and pro-environment behavior.
Appl. Econ. Lett. 31, 61-64 (2024).

Best, R. & Nazifi, F. Analyzing electric vehicle uptake based on actual
household distributions: A contribution to empirical policy
formulation. Transp. Policy 137, 100-108 (2023).

Dietz, T. Environmental value. In Handbook of Value: Perspectives
from Economics, Neuroscience, Philosophy, Psychology and
Sociology (eds Brosch, T. & Sander, D.) 329-350 (Oxford Univ.
Press, 2015).

Steg, L. Psychology of climate change. Annu. Rev. Psychol. 74,
391-421 (2023).

Steg, L. Values, norms, and intrinsic motivation to act
proenvironmentally. Annu. Rev. Environ. Resour. 41, 277-292
(2016).

Ben-Akiva, M. et al. Process and context in choice models. Mark.
Lett. 23, 439-456 (2012).

Wolske, K. S. & Stern, P. C. 6 - Contributions of psychology to
limiting climate change: Opportunities through consumer behavior.
In Psychology and Climate Change (eds Clayton, S. & Manning, C.)
127-160 (Academic Press, 2018).

Picard, N., Dantan, S. & de Palma, A. Mobility decisions within
couples. Theory Decis. 84, 149-180 (2018).

Fehr, E. & Géchter, S. Cooperation and punishment in public goods
experiments. Am. Econ. Rev. 90, 980-994 (2000).

Graziano, M. & Gillingham, K. Spatial patterns of solar photovoltaic
system adoption: the influence of neighbors and the built
environment. J. Econ. Geogr. 15, 815-839 (2014).

Creutzig, F. et al. Demand-side solutions to climate change
mitigation consistent with high levels of well-being. Nat. Clim.
Chang. 12, 36-46 (2022).

Zawadzki, S. J., Steg, L. & Bouman, T. Meta-analytic evidence for a
robust and positive association between individuals’pro-
environmental behaviors and their subjective wellbeing. Environ.
Res. Lett. 15, 123007 (2020).

Daina, N., Sivakumar, A. & Polak, J. W. Modelling electric vehicles
use: a survey on the methods. Renew. Sustain. Energy Rev. 68,
447-460 (2017).

Pawlak, J., Sivakumar, A., Ciputra, W. & Li, T. Feasibility of transition
to electric mobility for two-wheeler taxis in sub-Saharan Africa: a
case study of rural Kenya. Transp. Res. Rec. 2677, 359-370 (2023).
Hardman, S. et al. A review of consumer preferences of and
interactions with electric vehicle charging infrastructure. Transp.
Res. Part D Transp. Environ. 62, 508-523 (2018).

Li, S., Tong, L., Xing, J. & Zhou, Y. The market for electric vehicles:
indirect network effects and policy design. J. Assoc. Environ.
Resour. Econ. 4, 89-133 (2017).

Rogers, E. M. Diffusion of Innovations 5th edn (The Free Press,
2003).

npj Sustainable Mobility and Transport| (2026)3:3

12


https://rosap.ntl.bts.gov/view/dot/64646
https://rosap.ntl.bts.gov/view/dot/64646
https://rosap.ntl.bts.gov/view/dot/64646
https://doi.org/10.1073/pnas.2220515120
https://doi.org/10.1073/pnas.2220515120
http://hdl.handle.net/10077/5950
http://hdl.handle.net/10077/5950
www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00075-z

Perspective

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Enright, T. The Making of Grand Paris. Metropolitan Urbanism in the
Twenty-First Century (MIT Press, 2016).

de Palma, A., Picard, N. & Motamedi, K. Application of UrbanSim in
Paris (lle-de-France) case study. In Integrated Transport and Land
Use Modeling for Sustainable Cities (eds Bierlaire, M. et al.) Ch. 20
(EPFL Press, Lausanne, Switzerland, 2015).

The Guardian. Heathrow third runway ruled illegal over climate
change https://www.theguardian.com/environment/2020/feb/27/
heathrow-third-runway-ruled-illegal-over-climate-change (2020).
Accessed 17 Oct 2024.

The Guardian. Top UK court overturns block on Heathrow’s third
runway https://www.theguardian.com/environment/2020/dec/16/
top-uk-court-overturns-block-on-heathrows-third-runway (2020).
Accessed 17 Oct 2024.

BBC News. Council leader heads up group opposing pylon plan
https://www.bbc.co.uk/news/articles/cy4dwrpnd42o (2024).
Accessed 17 Oct 2024.

Mouterde, P. Grand Paris: a Saclay, des élus appellent a réduire les
impacts sur I'agriculture et la biodiversité de la future ligne 18 https://
www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-
des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-
biodiversite-de-la-future-ligne-18_6182528_3244.html (2023).
Stavins, R. N. The future of US carbon-pricing policy. Environ.
Energy Policy Econ. 1, 8-64 (2020).

Lindsey, R. & Santos, G. Addressing transportation and
environmental externalities with economics: are policy makers
listening?Res. Transp. Econ. 82, 100872 (2020).

Goulder, L. H., Hafstead, M. A., Kim, G. & Long, X. Impacts of a
carbon tax across US household income groups: what are the
equity-efficiency trade-offs?J. Public Econ. 175, 44-64 (2019).
Stavins, R. N. Therelative merits of carbon pricing instruments: taxes
versus trading. Rev. Environ. Econ. Policy 16, 62-82 (2022).
Mathur, A. & Morris, A. C. Distributional effects of a carbon tax in
broader US fiscal reform. Energy Policy 66, 326-334 (2014).
Johnson, S. M. Economics v. equity: do market-based
environmental reforms exacerbate environmental injustice. Wash.
Lee L. Rev. 56, 111 (1999).

Stavins, R. N. Market-based environmental policies. In Public
Policies for Environmental Protection 31-76 (Routledge, 2010).
Eliasson, J. Lessons from the Stockholm congestion charging trial.
Transp. Policy 15, 395-404 (2008).

Eliasson, J. &Jonsson, L. The unexpected “yes”: explanatory factors
behind the positive attitudes to congestion charges in Stockholm.
Transp. Policy 18, 636-647 (2011).

Schuitema, G., Steg, L. & Forward, S. Explaining differences in
acceptability before and acceptance after the implementation of a
congestion charge in Stockholm. Transp. Res. Part A Policy Pract.
44, 99-109 (2010).

Dimitropoulos, A., Oueslati, W. & Sintek, C. The rebound effect in
road transport: a meta-analysis of empirical studies. Energy Econ.
75, 163-179 (2018).

Schafer, A., Heywood, J. B., Jacoby, H. D. & Waitz, I.
A.Transportation in a Climate-Constrained World (MIT Press, 2009).
Manca, F., Sivakumar, A. & Polak, J. W. Capturing the effect of
multiple social influence sources on the adoption of new transport
technologies and services. J. Choice Model. 42, 100344 (2022).
Manca, F. et al. Using digital social market applications to incentivise
active travel: empirical analysis of a smart city initiative. Sustain.
Cities Soc. 77, 103595 (2022).

Celling, F., Castri, R., Simao, J. & Granato, P. Co-creating app-based
policy measures for mobility behavior change: a trigger for novel
governance practices at the urban level. Sustain. Cities Soc. 53,
101911 (2020).

Di Dio, S., La Gennusa, M., Peri, G., Rizzo, G. & Vinci, |. Involving
people in the building up of smart and sustainable cities: how to

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

influence commuters’behaviors through a mobile app game.
Sustain. Cities Soc. 42, 325-336 (2018).

Sottile, E. et al. An innovative GPS smartphone based strategy for
university mobility management: a case study at the University of
Roma Tre, Italy. Res. Transp. Econ. 85, 100926 (2021).

Daina, N., Polak, J. W. & Sivakumar, A. Patent and latent predictors
of electric vehicle charging behavior. Transp. Res. Rec. 2502,
116-123 (2015).

Haghani, M., Ghaderi, H. & Hensher, D. Hidden effects and
externalities of electric vehicles. Energy Policy 194, 114335 (2024).
Budde Christensen, T., Wells, P. & Cipcigan, L. Can innovative
business models overcome resistance to electric vehicles? Better
place and battery electric cars in Denmark. Energy Policy 48,
498-505 (2012).

Chamorel, P. Macron versus the yellow vests. J. Democr. 30, 48-62
(2019).

Newell, P. & Mulvaney, D. The political economy of the ‘just
transition’. Geogr. J. 179, 132-140 (2013).

Markkanen, S. & Anger-Kraavi, A. Social impacts of climate change
mitigation policies and their implications for inequality. Clim. Policy
19, 827-844 (2019).

Vona, F. Job losses and political acceptability of climate policies:
why the ‘job-killing’ argument is so persistent and how to overturn it.
Clim. Policy 19, 524-532 (2019).

Hess, C. E. E. & Fenrich, E. Socio-environmental conflicts on
hydropower: the S&o Luiz do Tapajos project in Brazil. Environ. Sci.
policy 73, 20-28 (2017).

Vona, F. Managing the distributional effects of climate policies: a
narrow path to a just transition. Ecol. Econ. 205, 107689 (2023).
Klenert, D. et al. Making carbon pricing work for citizens. Nat. Clim.
Chang. 8, 669-677 (2018).

Gossling, S., Humpe, A. & Leitdo, J. C. Private aviation is making a
growing contribution to climate change. Commun. Earth Environ. 5,
666 (2024).

Wiedmann, T., Lenzen, M., KeyBer, L. T. & Steinberger, J. K.
Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).
Schuitema, G. & Steg, L. The role of revenue use in the acceptability
of transport pricing policies. Transp. Res. Part F Traffic Psychol.
Behav. 11, 221-231 (2008).

Poortinga, W., Steg, L. & Vlek, C. Environmental risk concern and
preferences for energy-saving measures. Environ. Behav. 34,
455-478 (2002).

Salen, H. & Kallbekken, S. A choice experiment on fuel taxation and
earmarking in Norway. Ecol. Econ. 70, 2181-2190 (2011).

Liu, L., Bouman, T., Perlaviciute, G. & Steg, L. Effects of
competence- and integrity-based trust on public acceptability of
renewable energy projects in China and the Netherlands. J. Environ.
Psychol. 67, 101390 (2020).

Berk, |. & Yetkiner, H. Energy prices and economic growth in the long
run: theory and evidence. Renew. Sustain. Energy Rev. 36, 228-235
(2014).

Chapuis, K., Taillandier, P. & Drogoul, A. Generation of synthetic
populations in social simulations: a review of methods and practices.
J. Artif. Soc. Soc. Simul. 25, 6 (2022).

Kukic, M., Li, X. & Bierlaire, M. One-step Gibbs sampling for the
generation of synthetic households. Transp. Res. Part C Emerg.
Technol. 166, 104770 (2024).

Pougala, J., Hillel, T. & Bierlaire, M. Capturing trade-offs between
daily scheduling choices. J. Choice Model. 43, 100354 (2022).
Pougala, J., Hillel, T. & Bierlaire, M. OASIS: optimisation-based
activity scheduling with integrated simultaneous choice dimensions.
Transp. Res. Part C Emerg. Technol. 155, 104291 (2023).

Rezvany, N., Bierlaire, M. & Hillel, T. Simulating intra-household
interactions for in- and out-of-home activity scheduling. Transp.
Res. Part C Emerg. Technol 157, 104362 (2023).

npj Sustainable Mobility and Transport| (2026)3:3

13


https://www.theguardian.com/environment/2020/feb/27/heathrow-third-runway-ruled-illegal-over-climate-change
https://www.theguardian.com/environment/2020/feb/27/heathrow-third-runway-ruled-illegal-over-climate-change
https://www.theguardian.com/environment/2020/feb/27/heathrow-third-runway-ruled-illegal-over-climate-change
https://www.theguardian.com/environment/2020/dec/16/top-uk-court-overturns-block-on-heathrows-third-runway
https://www.theguardian.com/environment/2020/dec/16/top-uk-court-overturns-block-on-heathrows-third-runway
https://www.theguardian.com/environment/2020/dec/16/top-uk-court-overturns-block-on-heathrows-third-runway
https://www.bbc.co.uk/news/articles/cy4dwrpnd42o
https://www.bbc.co.uk/news/articles/cy4dwrpnd42o
https://www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-biodiversite-de-la-future-ligne-18_6182528_3244.html
https://www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-biodiversite-de-la-future-ligne-18_6182528_3244.html
https://www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-biodiversite-de-la-future-ligne-18_6182528_3244.html
https://www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-biodiversite-de-la-future-ligne-18_6182528_3244.html
https://www.lemonde.fr/planete/article/2023/07/18/grand-paris-a-saclay-des-elus-appellent-a-reduire-les-impacts-sur-l-agriculture-et-la-biodiversite-de-la-future-ligne-18_6182528_3244.html
www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00075-z

Perspective

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94,

95.

96.

97.

98.

99.

100.

101.

102.

103.

Jing, P. et al. Evaluating congestion pricing schemes using agent-
based passenger and freight microsimulation. Transportation Res.
Part A: Policy Pract. 186, 104118 (2024).

Knapen, L., Kochan, B., Bellemans, T., Janssens, D. & Wets, G.
Activity based models for countrywide electric vehicle power
demand calculation. In Proceedings of the 2011 IEEE First
International Workshop on Smart Grid Modeling and Simulation
(SGMS), 13-18. (IEEE, Brussels, Belgium, 2011).

McFadden, D. Econometric models of probabilistic choice. In
Structural Analysis of Discrete Data With Econometric Applications
(eds Manski, C. & McFadden, D.) (MIT Press, 1981).

Ben-Akiva, M. et al. Hybrid choice models: progress and challenges.
Mark. Lett. 13, 163-175 (2002).

Cools, M., Moons, E. & Wets, G. Calibrating activity-based models
with external origin-destination information: overview of
possibilities. Transp. Res. Rec. 2175, 98-110 (2010).

Schultz, L., Auld, J. & Sokolov, V. Bayesian calibration for activity
based models. Preprint at https://arxiv.org/abs/2203.04414 (2022).
Agriesti, S., Kuzmanovski, V., Hollmén, J., Roncoli, C. & Nahmias-
Biran, B. H. A Bayesian optimization approach for calibrating large-
scale activity-based transport models. IEEE Open J. Intell. Transp.
Syst. 4, 740-754 (2023).

Drchal, J., Certicky, M. & Jakob, M. VALFRAM: validation framework
for activity-based models. J. Artif. Soc. Soc. Simul. 19, 5 (2016).
Liu, F. et al. Building a validation measure for activity-based
transportation models based on mobile phone data. Expert Syst.
Appl. 41, 6174-6189 (2014).

Martinez, I. & Jin, W.-L. Priority queue formulation of agent-based
bathtub model for network trip flows in the relative space. Transp.
Res. Part C Emerg. Technol. 168, 104765 (2024).

Zhuge, C., Bithell, M., Shao, C., Li, X. & Gao, J. An improvement in
MATSiIm computing time for large-scale travel behaviour
microsimulation. Transportation 48, 193-214 (2021).
Nahmias-Biran, B. -h et al. Enriching activity-based models using
smartphone-based travel surveys. Transp. Res. Rec. 2672, 280-291
(2018).

Hong, S. et al. Insights on data quality from a large-scale application
of smartphone-based travel survey technology in the Phoenix
metropolitan area, Arizona, USA. Transp. Res. Part A Policy Pract.
154, 413-429 (2021).

Alho, A. R. et al. Next-generation freight vehicle surveys:
Supplementing truck GPS tracking with a driver activity survey. In
Proceedings of the 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 2974-2979. (IEEE, Maui, HI,
USA, 2018).

Ben-Akiva, M. E. et al. Freight data collection using GPS and web-
based surveys: Insights from US truck drivers’ survey and
perspectives for urban freight. Case Stud. Transp. Policy 4, 38-44
(2016).

Wang, C. & Hess, D. B. Role of urban big data in travel behavior
research. Transp. Res. Rec. 2675, 222-233 (2020).

Willumsen, L. G. Use of big data in transport modelling. International
Transport Forum Discussion Paper 2021/05, Paris https://hdl.
handle.net/10419/245859 (2021).

Liu, J., Kuang, X. & Schweighofer, S. Big data in human behavior
research: a contextual turn. J. Big Data https://doi.org/10.1186/
s40537-025-01162-1 (2025).

Azevedo, C. L. et al. Tripod: sustainable travel incentives with
prediction, optimization, and personalization. In Proceedings of the
Transportation Research Record 97th Annual Meeting,
(Transportation Research Board, National Academies of Sciences,
Engineering and Medicine, Washington, D.C. 2018).

Xie, Y., Seshadri, R., Zhang, Y., Akinepally, A. & Ben-Akiva, M. E.
Real-time personalized tolling for managed lanes. Transp. Res. Part
C Emerg. Technol. 163, 104629 (2024).

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.
118.

119.

120.

121.

122.

123.

124.

Hong, A. et al. Reconciling big data and thick data to advance the
new urban science and smart city governance. J. Urban Aff. 45,
1737-1761 (2022).

Bryant, B. P. & Lempert, R. J. Thinking inside the box: a participatory,
computer-assisted approach to scenario discovery. Technol.
Forecast. Soc. Change 77, 34-49 (2010).

Steinmann, P., Auping, W. L. & Kwakkel, J. H. Behavior-based
scenario discovery using time series clustering. Technol. Forecast.
Soc. Chang. 156, 120052 (2020).

Castiglione, J., Bradley, M. & Gliebe, J. Activity-Based Travel
Demand Models: A Primer (Transportation Research Board,
Washington, DC, 2014).

Ben-Akiva, M. E. & Lerman, S. R. Discrete Choice Analysis: Theory
and Application to Travel Demand (MIT Press, Cambridge, MA,
1985).

Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H. N. & Mishalani, R.
Real time simulation of traffic demand-supply interactions within
dynamit. In Transportation and Network Analysis: Current Trends:
Miscellanea in Honor of Michael Florian 19-36 (Springer, 2002).
Azevedo, C. L. et al. Simmobility short-term: an integrated
microscopic mobility simulator. Transp. Res. Rec. 2622, 13-23
(2017).

Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H. N. &
Mishalani, R. Network state estimation and prediction for real-time
traffic management. Netw. Spat. Econ. 1,293-318 (2001).
Bierlaire, M., dePalma, A., Hurtubia, R. & Waddell, P. Integrated
Transport and Land Use Modeling for Sustainable Cities (EPFL
Press, Lausanne, Switzerland, 2015).

Pinto, J. A. et al. Traffic data in air quality modeling: a review of key
variables, improvements in results, open problems and challengesin
current research. Atmos. Pollut. Res. 11, 454-468 (2020).

Appel, K. W. et al. The community multiscale air quality (CMAQ)
model versions 5.3 and 5.3.1: system updates and evaluation.
Geosci. Model Dev. 14, 2867-2897 (2021).

Winkler, C., Meister, A., Schmid, B. & Axhausen, K. W. Timeuse+.
testing a novel survey for understanding travel, time use, and
expenditure behavior. In 7102nd Annual Meeting of the
Transportation Research Board (TRB 2023), Washington, DC, USA,
January 8-12, 2023 (National Academy of Sciences, 2023).

Lorig, F., Dammenhayn, N., Mdller, D.-J. & Timm, |. J. Measuring and
comparing scalability of agent-based simulation frameworks. In
Multiagent System Technologies (eds Mdiller, J. P. et al.) 42-60
(Springer International Publishing, Cham, 2015).

Ross, S. Simulation 5th edn (Academic Press, 2012).

Hitchcock, D. B. A history of the Metropolis-Hastings algorithm. Am.
Stat. 57, 254-257 (2003).

Flétterdd, G. & Bierlaire, M. Metropolis-Hastings sampling of paths.
Transp. Res. Part B Methodol. 48, 53-66 (2013).

Lah, O. Breaking the silos: integrated approaches to foster
sustainable development and climate action. Sustain. Earth Rev. 8, 1
(2025).

Bordenet, C. Five years after Yellow Vests protests, few have read
their thousands of grievances. Le Monde (English edition) https://
www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-
yellow-vests-protests-few-have-read-their-thousands-of-
grievances_6454341_7.html (2024).

Douenne, T. & Fabre, A. French attitudes on climate change, carbon
taxation and other climate policies. Ecol. Econ. 169, 106496 (2020).
Meadowcroft, J. What about the politics? Sustainable development,
transition management, and long term energy transitions. Policy Sci.
42, 323-340 (2009).

Sovacool, B. K., Hook, A., Martiskainen, M., Brock, A. & Turnheim, B.
The decarbonisation divide: contextualizing landscapes of low-
carbon exploitation and toxicity in Africa. Glob. Environ. Chang. 60,
102028 (2020).

npj Sustainable Mobility and Transport| (2026)3:3

14


https://arxiv.org/abs/2203.04414
https://arxiv.org/abs/2203.04414
https://hdl.handle.net/10419/245859
https://hdl.handle.net/10419/245859
https://hdl.handle.net/10419/245859
https://doi.org/10.1186/s40537-025-01162-1
https://doi.org/10.1186/s40537-025-01162-1
https://doi.org/10.1186/s40537-025-01162-1
https://www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-yellow-vests-protests-few-have-read-their-thousands-of-grievances_6454341_7.html
https://www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-yellow-vests-protests-few-have-read-their-thousands-of-grievances_6454341_7.html
https://www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-yellow-vests-protests-few-have-read-their-thousands-of-grievances_6454341_7.html
https://www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-yellow-vests-protests-few-have-read-their-thousands-of-grievances_6454341_7.html
https://www.lemonde.fr/en/france/article/2024/01/22/five-years-after-the-yellow-vests-protests-few-have-read-their-thousands-of-grievances_6454341_7.html
www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00075-z

Perspective

125. de Palma, A, Lindsey, R. S., Proost, S. Y., Riou, Y. A. & Trannoy, R.
Why combating climate change is so challenging? Ambio (2025).
126. Hagq, G. & Weiss, M. CO2 labelling of passenger cars in Europe: status,

challenges, and future prospects. Energy Policy 95, 324-335 (2016).

Acknowledgements
The authors thank the association "Action versus Inaction Facing Climate
Change" for initiating the workshop.

Author contributions

M.B.A,, MB.,K.D., S.G.,,N.P.,,AW.S,,R.S., A.S,, and L.S. contributed
equally to the workshop conception and manuscript preparation. They are
listed in alphabetical order. All authors read and approved the final
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Michel Bierlaire.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2026

npj Sustainable Mobility and Transport| (2026)3:3

15


http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjsustainmobiltransport

	The behavioral dimension of transport decarbonization
	Kaya identity for transport sector decarbonization
	Considerations in modeling human behavior
	Behavioral heterogeneity
	Technology adoption and infrastructure requirements

	Government actions
	Market-based policies
	Regulations
	Information and education
	Compensation and redistribution
	Joint effect of policies
	Public acceptability
	Policies and Kaya identity
	(CO2E)m — Fuel choice
	(EPKT)m — Technology choice
	PKTm — Travel behavior

	Methodological framework
	Behavioral models and simulation
	High-quality behavioral data
	Indicators
	Optimization
	Policy measures
	Scientific challenges

	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




