

# The impact of boat activities associated with an acoustic fish telemetry study on waterbird populations in a Special Protection Area

Michael J. Williamson<sup>1,2,3</sup>  | Joseph Williamson<sup>2</sup>  | Darren Frost<sup>4</sup> |  
Kim Wallis<sup>5</sup> | Rosalind M. Wright<sup>6</sup> | Adam T. Piper<sup>1,2,7</sup> 

<sup>1</sup>Institute of Zoology, Zoological Society of London, London, UK

<sup>2</sup>Department of Genetics, Evolution and Environment, University College London, London, UK

<sup>3</sup>Environment and Sustainability Institute, University of Exeter, Cornwall, UK

<sup>4</sup>Cambridge Ecology Limited, Cambridge, UK

<sup>5</sup>Northumbrian Water Group, Essex, UK

<sup>6</sup>Environment Agency, Essex, UK

<sup>7</sup>Scottish Centre for Ecology and the Natural Environment, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK

## Correspondence

Michael J. Williamson, Institute of Zoology, Zoological Society of London, Nuffield Building, Outer Circle, Regent's Park, London NW1 4RY, UK.

Email: [michael.williamson@ioz.ac.uk](mailto:michael.williamson@ioz.ac.uk)

## Funding information

Research England; Department for Environment, Food and Rural Affairs, UK Government; Environment Agency

## Abstract

It is widely recognized that the research techniques used to monitor and study wildlife have the potential to disturb and alter the behavior of the study species. However, other impacts on sensitive, non-target, species are rarely investigated. Here, we assessed the disturbance of waterbirds in relation to the boating activities associated with an acoustic telemetry study on European eel (*Anguilla anguilla*) in a UK water storage reservoir designated a Special Protection Area (SPA) for waterbirds. Counts of 11 species of waterbirds were surveyed pre-, during-, and post-activity. Boating activities had no impact on waterbird counts, but counts were correlated with cloud cover, air temperature, and wind speed; results may also reflect seasonal differences in bird numbers at this site. Our results indicate that the deployment of acoustic telemetry receivers and netting for studying fish, when applied with appropriate well-informed mitigation measures, can be undertaken without causing significant disturbance to waterbird species, including those that are threatened or sensitive to disturbance.

## KEY WORDS

boat, conservation, disturbance, lake, management, migration, reservoir, Special Protection Area, telemetry, waterbird

## 1 | INTRODUCTION

Increasingly it is recognized that research techniques used to monitor and study wildlife, to aid their conservation and management, may also disturb and alter their behavior (Brogi et al., 2019; Bullock et al., 2015; Hedger et al., 2017; Mayer et al., 2021; Vandenabeele et al., 2011; Williamson

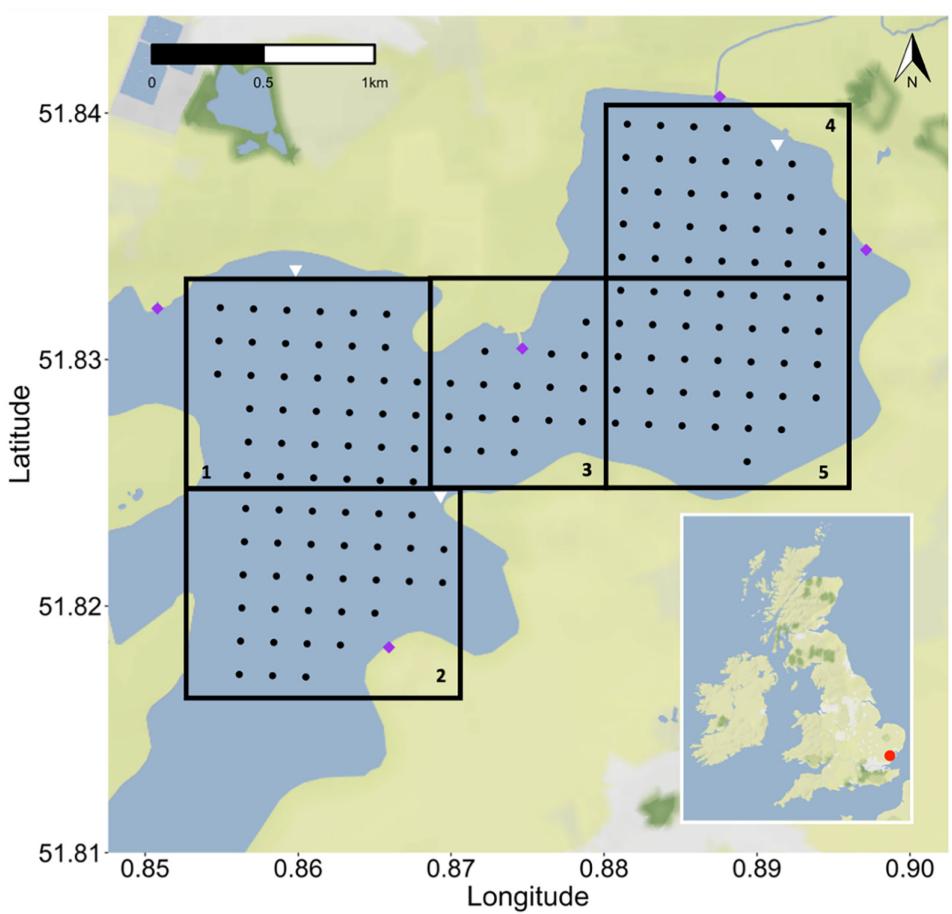
et al., 2016). The impact of such activities, including live capture, boat use, tagging, and drone use, on the behavior, physiology, and welfare of study animals is consequently a burgeoning area of research. As well as direct impacts on the study animals or populations, research techniques may have indirect effects on other non-target species that co-inhabit ecosystems where research or management is

This is an open access article under the terms of the [Creative Commons Attribution License](#), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). *Conservation Science and Practice* published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

**TABLE 1** Latin and common names of 18 waterbird species surveyed, including their IUCN Regional Red List assessment of extinction risk for Great Britain (GB IUCN Red List) status (Stanbury et al., 2021) and their designation as cited species within the SPA, Ramsar, or Site of Special Scientific Interest (SSSI) at Abberton Reservoir.

| Latin name                  | Common name         | GB IUCN Red List status | Cited in SPA, Ramsar, or SSSI |
|-----------------------------|---------------------|-------------------------|-------------------------------|
| <i>Alopochen aegyptiaca</i> | Egyptian goose      | Least Concern           | NA                            |
| <i>Anas acuta</i>           | Pintail             | Critically Endangered   | NA                            |
| <i>Anas clypeata</i>        | Northern shoveler   | Least Concern           | SPA, Ramsar, SSI              |
| <i>Anas crecca</i>          | Eurasian teal       | Least Concern           | SPA, Ramsar                   |
| <i>Anas platyrhynchos</i>   | Mallard             | Vulnerable              | NA                            |
| <i>Ardea cinerea</i>        | Grey heron          | Vulnerable              | NA                            |
| <i>Aythya ferina</i>        | Common pochard      | Endangered              | SPA, Ramsar, SSSI             |
| <i>Aythya fuligula</i>      | Tufted duck         | Vulnerable              | SPA, Ramsar, SSSI             |
| <i>Bucephala clangula</i>   | Common goldeneye    | Vulnerable              | SPA, Ramsar, SSSI             |
| <i>Cygnus olor</i>          | Mute swan           | Least Concern           | SPA, Ramsar, SSI              |
| <i>Fulica atra</i>          | Common coot         | Vulnerable              | SPA, Ramsar, SSSI             |
| <i>Limosa limosa</i>        | Black-tailed godwit | Endangered              | Ramsar                        |
| <i>Mareca penelope</i>      | Eurasian wigeon     | Vulnerable              | SPA, Ramsar, SSSI             |
| <i>Mareca strepera</i>      | Gadwall             | Least Concern           | SPA, Ramsar, SSSI             |
| <i>Mergus merganser</i>     | Goosander           | Least Concern           | SSSI                          |
| <i>Phalacrocorax carbo</i>  | Great cormorant     | Near Threatened         | SPA, Ramsar, SSSI             |
| <i>Podiceps cristatus</i>   | Great crested grebe | Least Concern           | SPA                           |
| <i>Vanellus vanellus</i>    | Lapwing             | Vulnerable              | SSI                           |


undertaken (Norvell et al., 2014; Reed & Bonter, 2018). Hence, research and management techniques should be evaluated not only for their impact on target or study species, but also for any potential effects on the behavior and welfare of other non-target species, particularly if these species are sensitive or threatened.

Movement data are increasingly recognized as being vital to the conservation and management strategies for threatened species (Allen & Singh, 2016; Fraser et al., 2018; Martin et al., 2007). Acoustic telemetry is one of the primary research methodologies used to collect such data in aquatic environments (Donaldson et al., 2014; Hussey et al., 2015; Matley et al., 2022), and typically requires the use of boats to deploy arrays of listening receivers (Hellström et al., 2022; Kessel et al., 2014; Matley et al., 2022). However, boat traffic can cause behavioral disturbance to a range of aquatic species including marine mammals (Pellegrini et al., 2021; Sprogis et al., 2020; Tripovich et al., 2012), elasmobranchs (Berthe & Leccolini, 2016; Pierce et al., 2010), teleost fish (Graham & Cooke, 2008; Holles et al., 2013), crocodilians (Choudhary et al., 2017; Webb & Messel, 1979), and bird species (Bellefleur et al., 2009; Chatwin et al., 2013; Dehnhard et al., 2019; Peters & Otis, 2006; Ronconi & Clair, 2002). In order to limit disturbance on non-target species, assessments on the impact of boat use during acoustic telemetry

deployments should be undertaken, especially if non-target populations are threatened or in vulnerable life stages.

The European eel (*Anguilla anguilla*) is a critically endangered species of teleost fish (Drouineau et al., 2018; Jacoby et al., 2015), threatened by a variety of factors including habitat destruction and fragmentation, mortality in hydropower turbines, fisheries impacts, and climate change (Castonguay & Durif, 2015; Jacoby et al., 2015). Information on movement ecology is considered vital to inform conservation and management plans for this species (Piper et al., 2017; Walker et al., 2014; Williamson et al., 2023). Beginning in October 2022, an extensive acoustic telemetry array (151 receivers) for monitoring the fine-scale movements of eel was deployed at Abberton Reservoir, Essex, UK. As part of the network of protected Natura 2000 sites, Abberton Reservoir is a Ramsar wetland,<sup>1</sup> Site of Special Scientific Interest (SSSI),<sup>2</sup> and Special Protection Area (SPA)<sup>3</sup> for wintering and molting waterbirds, with some of the species inhabiting the site designated in threat categories by the IUCN Regional Red List assessment of extinction risk for Great Britain (Stanbury et al., 2021) (Table 1). These waterbird species are a primary conservation focus of the Natura 2000 designation, which can create potential conflicts when management actions to support the conservation of European eels, such as survey netting and boat activities, trade off

**FIGURE 1** Location of Abberton Reservoir, Essex, UK. Acoustic telemetry array highlighted by filled black circles. Netting locations by white triangles. Waterbird survey locations by purple diamonds. Boating activity areas (1–5) denoted by black rectangles. Abberton reservoir position in the UK (red circle) included as insert in bottom right corner.



against the protections afforded to waterbird species. During molting, many species of waterbirds lose all their flight feathers (Jenni & Winkler, 2020; Kjellén, 1994) and are therefore particularly vulnerable to disturbance impacts because with their flying abilities limited, escape behaviors are restricted (Dehnhard et al., 2019). Currently, the impact of deploying acoustic telemetry receiver systems on surrounding wildlife is unknown. Assessing changes in numbers of bird populations is a common method to assess disturbance (Hill et al., 1997; Johnson, 2008; Palacios et al., 2022; Wallis et al., 2019). In this study, we investigated the effect of deploying an array of acoustic receivers on the counts of threatened waterbirds during sensitive stop over periods at Abberton Reservoir, a UK SPA and SSSI.

## 2 | METHODS

### 2.1 | Study site

Abberton Reservoir is a large artificial raw water storage reservoir (4.75 km<sup>2</sup>) managed by Northumbrian Water Group located in Essex, UK (Figure 1). It supports

wintering populations of more than 20,000 internationally and nationally important waterbirds and as such, is categorized as a SPA under UK legislation (previously under the European Union Directive on the Conservation of Wild Birds) (Engelen et al., 2008; Kirby et al., 1996).

### 2.2 | Boating activities

The deployment of the acoustic telemetry array and netting for European eel to capture and tagging occurred within three distinct activity phases. Given that establishing the detection range of acoustic receivers is critical for interpreting acoustic telemetry data (Kessel et al., 2014), range testing experiments were first undertaken in the northeastern section of the reservoir between 18th and 27th October 2022. Second, between February 28, 2023 and March 6, 2023 the full array of 151 receivers (Model HR2, Innovasea, Nova Scotia, Canada) was deployed across the entire reservoir (Figure 1). Third, between September 3, 2023 and September 14, 2023 all the receivers were retrieved, batteries replaced, and redeployed. Netting for eel, using double-ended fyke nets, was conducted throughout these three periods. All these

activities required the use of a small boat (rigid open workboat, 5 m in length with 60 hp. 4-stroke outboard). Given that boating activities can disturb waterbirds (Blight et al., 2023; Mayer et al., 2019; McFadden et al., 2017; Mori et al., 2001; Rodgers Jr. & Schwikert, 2002; Scarton, 2018), the consents for site access required that boating activities be limited to specific regions (Figure 1). Further, following guidelines from the literature, boat speed was kept below 5 knots and a buffer zone of 250 m (conservative mean flight distance plus standard deviation of most sensitive species) was maintained around waterbird rafts to help mitigate impacts (Mayer et al., 2019; McFadden et al., 2017; Mori et al., 2001; Wallis et al., 2019).

## 2.3 | Waterbird surveys

Visual bird surveys were conducted on a total of 10 days coinciding with research boating activities, spread across the three activity phases (Table S1, Supporting Information). Each day, surveys were undertaken approximately hourly, covering periods pre-, during-, and post-boating activities (minimum 6 and maximum 11 surveys per day), yielding a total of 84 surveys. During each survey, individuals of all waterbird species, aside from members of the subfamily Larinae (gulls), occurring within the survey area were identified and counted using 10× magnification binoculars (Swarovski EL 10×40) and x30-x60 magnification telescope (Kowa TSN883 Prominar 20-60x). Numbers of all species were recorded. Numbers and species of Larinae were not recorded, as they are not a focus, or cited, in the SPA, SSSI or Ramsar designations at Abberton. The survey area extended to a 1 km buffer around the predetermined areas where boat work was to be undertaken during the day (Figure 1), including any areas the boat passed through to get to the working areas. As such, the approximate survey area was 5 km<sup>2</sup>. Bird counts were plotted directly onto an Ordnance Survey (OS) base map of the reservoir, overlain with a 50 m × 50 m grid to aid accurate spatial positioning, on a handheld computer (Microsoft Surface) with ArcGIS software. In addition, environmental data including mean wind speed (mph), wind direction, maximum wind gust (mph), mean air temperature (°C), cloud cover (%), presence of rain (presence or absence), relative humidity (%), and visibility (very good, good, moderate, poor) were taken at reservoir-scale resolution for each survey. Wind, temperature, and relative humidity data were extracted from the Met Office website (<https://www.metoffice.gov.uk/>). Cloud cover, rain presence, and visibility were taken from visual assessment.

## 2.4 | Data analysis

All analyses were conducted in R version 4.4.2 (R Core Team, 2024). First, data were filtered to retain only those species cited in the SPA designation (Table 1,  $n = 11$ ). To assess if boating activities impacted bird numbers, count data for the 11 species were predicted in a single Generalized Linear Mixed Model (Harrison et al., 2018) with a negative binomial distribution to account for overdispersion (family = *nbinom1*, link = *logit*) with the “*glmmTMB*” function from the *glmmTMB* package (Brooks et al., 2017). Survey period (pre-, during-, post-) was included as an explanatory variable, with the “pre” period considered unaffected data and used as the intercept group. A group of a priori selected explanatory environmental variables was also included: mean wind speed (mph), wind direction, maximum wind gust (mph), mean air temperature (°C), cloud cover (%), presence of rain (presence or absence), relative humidity (%), and visibility. In addition, to assess the impact of the varying environmental conditions that can occur between different months, activity phase was also included as a fixed effect. Explanatory variables with continuous distributions were rescaled using the “*scale*” function from the *base* package (R Core Team, 2024) to aid model fitting and interpretation. To prevent pseudoreplication, both unique survey ID and species were included as independent random factors. Analysis was undertaken using multimodel inference (Burnham & Anderson, 2002; Grueber et al., 2011). Full details of this methodology can be found in Appendix S1. Following the All Species modeling, the process above was used to separately model the counts of three species (teal, tufted duck, and wigeon) previously identified as particularly sensitive to disturbance at this site (Wallis et al., 2019), but excluding species as a random effect in the models.

## 3 | RESULTS

A total of 18 species were surveyed through the activities (Table 1). A total of 1620 counts were obtained for the 18 species. Total bird numbers for pre-, during-, and post-boating activities were 27,884 (median = 1545, range = 393–8368), 50,294 (median = 4004, range = 345–12,195), 17,933 (median = 1089, range = 204–5590), respectively. Summary statistics of count data can be found in Table 2. Significant collinearity was found between the fixed effects. The resulting global model contained the fixed effects of mean wind speed, mean temperature, rain presence, and cloud percentage, all with VIF values under the critical threshold of 5 (McGowan et al., 2012; Welzel & Deutsch, 2011) along with unique survey ID as a random

TABLE 2 Summary table of counts per species at Abberton reservoir during three activity phases.

| Activity phase | Species name        | Period | n  | Median count | Range  |
|----------------|---------------------|--------|----|--------------|--------|
| October 2022   | Black-tailed godwit | Pre    | 10 | 0            | 0–12   |
|                |                     | During | 25 | 0            | 0–0    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Common coot         | Pre    | 10 | 0.5          | 0–131  |
|                |                     | During | 25 | 25           | 0–60   |
|                |                     | Post   | 5  | 0            | 0–26   |
|                | Great cormorant     | Pre    | 10 | 0.5          | 0–11   |
|                |                     | During | 25 | 0            | 0–1    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Egyptian goose      | Pre    | 10 | 0            | 0–2    |
|                |                     | During | 25 | 0            | 0–2    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Gadwall             | Pre    | 10 | 0            | 0–8    |
|                |                     | During | 25 | 0            | 0–0    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Common goldeneye    | Pre    | 10 | 0            | 0–2    |
|                |                     | During | 25 | 0            | 0–2    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Goosander           | Pre    | 10 | 0            | 0–6    |
|                |                     | During | 25 | 0            | 0–5    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Great crested grebe | Pre    | 10 | 5            | 0–11   |
|                |                     | During | 25 | 5            | 0–12   |
|                |                     | Post   | 5  | 0            | 0–10   |
|                | Grey heron          | Pre    | 10 | 0            | 0–2    |
|                |                     | During | 25 | 0            | 0–0    |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Lapwing             | Pre    | 10 | 17.5         | 0–26   |
|                |                     | During | 25 | 0            | 0–28   |
|                |                     | Post   | 5  | 0            | 0–0    |
|                | Mallard             | Pre    | 10 | 108          | 45–217 |
|                |                     | During | 25 | 64           | 14–124 |
|                |                     | Post   | 5  | 51           | 18–96  |
|                | Mute swan           | Pre    | 10 | 11.5         | 8–16   |
|                |                     | During | 25 | 8            | 6–15   |
|                |                     | Post   | 5  | 8            | 8–15   |
|                | Pintail             | Pre    | 10 | 6            | 0–96   |
|                |                     | During | 25 | 12           | 0–78   |
|                |                     | Post   | 5  | 0            | 0–36   |
|                | Common pochard      | Pre    | 10 | 2            | 0–26   |
|                |                     | During | 25 | 4            | 0–12   |
|                |                     | Post   | 5  | 0            | 0–4    |

(Continues)

TABLE 2 (Continued)

| Activity phase | Species name        | Period | n  | Median count | Range    |
|----------------|---------------------|--------|----|--------------|----------|
| March 2023     | Northern shoveler   | Pre    | 10 | 0            | 0–2      |
|                |                     | During | 25 | 0            | 0–2      |
|                |                     | Post   | 5  | 0            | 0–2      |
|                | Eurasian teal       | Pre    | 10 | 81.5         | 28–383   |
|                |                     | During | 25 | 64           | 6–113    |
|                |                     | Post   | 5  | 41           | 8–109    |
|                | Tufted duck         | Pre    | 10 | 4            | 0–163    |
|                |                     | During | 25 | 28           | 0–64     |
|                |                     | Post   | 5  | 6            | 0–40     |
|                | Wigeon              | Pre    | 10 | 7.5          | 0–38     |
|                |                     | During | 25 | 4            | 0–12     |
|                |                     | Post   | 5  | 0            | 0–9      |
| March 2023     | Black-tailed godwit | Pre    | 5  | 0            | 0–0      |
|                |                     | During | 11 | 0            | 0–0      |
|                |                     | Post   | 3  | 0            | 0–0      |
|                | Common coot         | Pre    | 5  | 344          | 325–996  |
|                |                     | During | 11 | 458          | 359–1400 |
|                |                     | Post   | 3  | 420          | 420–1053 |
|                | Great cormorant     | Pre    | 5  | 0            | 0–11     |
|                |                     | During | 11 | 0            | 0–6      |
|                |                     | Post   | 3  | 0            | 0–0      |
|                | Egyptian goose      | Pre    | 5  | 0            | 0–0      |
|                |                     | During | 11 | 0            | 0–0      |
|                |                     | Post   | 3  | 0            | 0–0      |
|                | Gadwall             | Pre    | 5  | 180          | 158–247  |
|                |                     | During | 11 | 140          | 66–181   |
|                |                     | Post   | 3  | 113          | 86–134   |
|                | Common goldeneye    | Pre    | 5  | 34           | 29–115   |
|                |                     | During | 11 | 40           | 12–119   |
|                |                     | Post   | 3  | 42           | 40–85    |
|                | Goosander           | Pre    | 5  | 0            | 0–0      |
|                |                     | During | 11 | 0            | 0–0      |
|                |                     | Post   | 3  | 0            | 0–0      |
|                | Great crested grebe | Pre    | 5  | 14           | 6–18     |
|                |                     | During | 11 | 17           | 0–23     |
|                |                     | Post   | 3  | 17           | 0–19     |
|                | Grey heron          | Pre    | 5  | 0            | 0–0      |
|                |                     | During | 11 | 0            | 0–0      |
|                |                     | Post   | 3  | 0            | 0–0      |
|                | Lapwing             | Pre    | 5  | 0            | 0–0      |
|                |                     | During | 11 | 0            | 0–0      |
|                |                     | Post   | 3  | 0            | 0–0      |

TABLE 2 (Continued)

| Activity phase    | Species name        | Period | n  | Median count | Range    |
|-------------------|---------------------|--------|----|--------------|----------|
| Mallard           |                     | Pre    | 5  | 0            | 0–0      |
|                   |                     | During | 11 | 0            | 0–0      |
|                   |                     | Post   | 3  | 0            | 0–0      |
| Mute swan         |                     | Pre    | 5  | 4            | 0–16     |
|                   |                     | During | 11 | 6            | 2–17     |
|                   |                     | Post   | 3  | 6            | 4–18     |
| Pintail           |                     | Pre    | 5  | 0            | 0–0      |
|                   |                     | During | 11 | 0            | 0–0      |
|                   |                     | Post   | 3  | 0            | 0–0      |
| Common pochard    |                     | Pre    | 5  | 4            | 0–109    |
|                   |                     | During | 11 | 26           | 0–96     |
|                   |                     | Post   | 3  | 15           | 0–52     |
| Northern shoveler |                     | Pre    | 5  | 0            | 0–0      |
|                   |                     | During | 11 | 0            | 0–0      |
|                   |                     | Post   | 3  | 0            | 0–0      |
| Eurasian teal     |                     | Pre    | 5  | 202          | 156–400  |
|                   |                     | During | 11 | 268          | 100–397  |
|                   |                     | Post   | 3  | 169          | 95–387   |
| Tufted duck       |                     | Pre    | 5  | 998          | 85–2116  |
|                   |                     | During | 11 | 617          | 109–1651 |
|                   |                     | Post   | 3  | 955          | 91–1057  |
| Wigeon            |                     | Pre    | 5  | 424          | 399–454  |
|                   |                     | During | 11 | 349          | 117–496  |
|                   |                     | Post   | 3  | 296          | 245–329  |
| September 2023    | Black-tailed godwit | Pre    | 7  | 0            | 0–0      |
|                   |                     | During | 16 | 0            | 0–0      |
|                   |                     | Post   | 8  | 0            | 0–0      |
|                   | Common coot         | Pre    | 7  | 26           | 0–1280   |
|                   |                     | During | 16 | 29.5         | 0–1274   |
|                   |                     | Post   | 8  | 38.5         | 0–1285   |
|                   | Great cormorant     | Pre    | 7  | 12           | 4–993    |
|                   |                     | During | 16 | 431.5        | 8–651    |
|                   |                     | Post   | 8  | 291.5        | 0–655    |
|                   | Egyptian goose      | Pre    | 7  | 0            | 0–0      |
|                   |                     | During | 16 | 0            | 0–0      |
|                   |                     | Post   | 8  | 0            | 0–0      |
|                   | Gadwall             | Pre    | 7  | 53           | 12–79    |
|                   |                     | During | 16 | 32           | 17–69    |
|                   |                     | Post   | 8  | 31.5         | 19–68    |
|                   | Common goldeneye    | Pre    | 7  | 0            | 0–0      |
|                   |                     | During | 16 | 0            | 0–0      |
|                   |                     | Post   | 8  | 0            | 0–0      |

(Continues)

TABLE 2 (Continued)

| Activity phase      | Species name | Period | n  | Median count | Range   |
|---------------------|--------------|--------|----|--------------|---------|
| Goosander           |              | Pre    | 7  | 0            | 0–0     |
|                     |              | During | 16 | 0            | 0–0     |
|                     |              | Post   | 8  | 0            | 0–0     |
| Great crested grebe |              | Pre    | 7  | 0            | 0–6     |
|                     |              | During | 16 | 0            | 0–0     |
|                     |              | Post   | 8  | 0            | 0–0     |
| Grey heron          |              | Pre    | 7  | 0            | 0–0     |
|                     |              | During | 16 | 0            | 0–0     |
|                     |              | Post   | 8  | 0            | 0–0     |
| Lapwing             |              | Pre    | 7  | 0            | 0–0     |
|                     |              | During | 16 | 0            | 0–0     |
|                     |              | Post   | 8  | 0            | 0–0     |
| Mallard             |              | Pre    | 7  | 154          | 40–204  |
|                     |              | During | 16 | 103.5        | 49–172  |
|                     |              | Post   | 8  | 120          | 99–150  |
| Mute swan           |              | Pre    | 7  | 75           | 54–296  |
|                     |              | During | 16 | 87           | 16–196  |
|                     |              | Post   | 8  | 106          | 62–281  |
| Pintail             |              | Pre    | 7  | 0            | 0–96    |
|                     |              | During | 16 | 0            | 0–70    |
|                     |              | Post   | 8  | 0            | 0–70    |
| Common pochard      |              | Pre    | 7  | 0            | 0–685   |
|                     |              | During | 16 | 0            | 0–665   |
|                     |              | Post   | 8  | 0            | 0–655   |
| Northern shoveler   |              | Pre    | 7  | 39           | 0–73    |
|                     |              | During | 16 | 25.5         | 19–50   |
|                     |              | Post   | 8  | 19           | 12–47   |
| Eurasia teal        |              | Pre    | 7  | 429          | 111–586 |
|                     |              | During | 16 | 286.5        | 127–429 |
|                     |              | Post   | 8  | 228.5        | 62–311  |
| Tufted duck         |              | Pre    | 7  | 0            | 0–25    |
|                     |              | During | 16 | 0            | 0–29    |
|                     |              | Post   | 8  | 0            | 0–24    |
| Wigeon              |              | Pre    | 7  | 22           | 10–57   |
|                     |              | During | 16 | 18.5         | 5–25    |
|                     |              | Post   | 8  | 18           | 0–37    |

Note: Number of surveys (n), median count, with count range per boat period, activity phase, and species are presented.

effect. Residuals of the global model were free from heteroscedasticity and temporal autocorrelation (Figure S1). Following the dredge and nesting of the global All Species model, one parsimonious model was found (results presented in Table 3).

Bird counts did not significantly differ in the during and post periods compared to the pre period, indicating minimal impact of boating activities for acoustic telemetry deployment on bird numbers at this site. Cloud percentage and mean wind speed were correlated with bird

**TABLE 3** Model results from the All Species model, following model selection and model averaging.

|                       | Estimate | SE   | z value | CI           | p value |
|-----------------------|----------|------|---------|--------------|---------|
| Intercept             | 3.33     | 0.37 | 9.03    | 2.61, 4.05   | <.001   |
| Period                |          |      |         |              |         |
| During                | -0.06    | 0.11 | -0.56   | -0.27, 0.15  | .58     |
| Post                  | -0.21    | 0.15 | -1.44   | -0.51, 0.08  | .15     |
| Cloud (%)             | 0.11     | 0.05 | 2.39    | 0.02, 0.21   | .02     |
| Mean wind speed (mph) | -0.13    | 0.05 | -2.81   | -0.22, -0.04 | <.001   |

Note: Estimates with unconditional standard error (SE), 95% confidence intervals (CI), associated p values are presented.

numbers. There was a positive relationship between cloud percentage and bird count, while mean wind speed exhibited a negative relationship. The marginal  $R^2$  (R2m) and conditional  $R^2$  (R2c) of the model were 0.01 and 0.39, respectively.

For the individual species models for teal, tufted duck, and wigeon, following model selection, all models were free from heteroscedasticity and temporal autocorrelation (Figures S2–S4). In common with the All Species model, there was no impact of boat activity on bird counts during and post periods compared to pre among all three species. Further, cloud percentage similarly had positive relationships with counts for all three species (teal, estimate = 0.33, CI = 0.19, 0.47,  $p < .001$ ; tufted duck, estimate = 0.5, CI = 0.17, 0.82,  $p = .003$ ; wigeon, estimate = 0.26, CI = 0.04, 0.48,  $p = .02$ ). When it rained significantly fewer teal (estimate = -0.59, CI = -0.94, -0.23,  $p < .001$ ) and wigeon (estimate = -0.92, CI = -1.38, -0.46,  $p < .001$ ) were observed. Mean temperature had a significantly negative relationship with tufted duck (estimate = -1.53, CI = -1.78, -1.27,  $p < .001$ ) and wigeon (estimate = -1.61, CI = -1.86, -1.37,  $p < .001$ ) counts. Mean wind had a significantly negative relationship with teal (estimate = -0.38, CI = -0.53, -0.23,  $p < .001$ ) and wigeon (estimate = -0.61, CI = -0.86, -0.37,  $p < .001$ ) counts. Marginal  $R^2$  (R2m) and conditional  $R^2$  (R2c) were 0.30 and 0.30, 0.90 and 0.95, and 0.85 and 0.93 for teal, tufted duck, and wigeon, respectively. Full model results can be found in Tables S2–S4.

## 4 | DISCUSSION

To our knowledge, this is the first study to investigate the impact of boating activities associated with acoustic telemetry studies on waterbird numbers. Although there has been an increasing focus on the impacts of research methodologies on target species, disturbance to non-target species is rarely assessed. At the reservoir level, no disturbance impacts were seen on waterbird numbers.

Numbers of survey species were, however, correlated with cloud cover, rain, wind speed, and temperature changes. Further, we found no apparent impact on the counts of three species that are known to be particularly sensitive to disturbance at this site (Wallis et al., 2019).

The key finding that waterbird counts at Abberton were not significantly altered by acoustic telemetry activities is unlikely due to habituation because there is minimal boat disturbance at this site; it is most likely that the boating activities tested were minimally intrusive. Disturbance to birds from boat traffic has been seen extensively (Bellefleur et al., 2009; Carney & Sydeman, 1999; Dehnhard et al., 2019; McFadden et al., 2017) but is often determined by several factors. Previous studies have shown that the speed (Bellefleur et al., 2009; Burger, 1998; Ronconi & Clair, 2002) and frequency of boat encounters (Carney & Sydeman, 1999; McFadden et al., 2017; Schwemmer et al., 2011) are important drivers of disturbance. The minimal impact seen in this study is, therefore, most likely due to the mitigation measures in place during boating activities. These included the application of low boating speeds and conservative buffer zones, as well as the relatively low level of boat activity required for netting and deployment of acoustic telemetry gear, resulting in waterbirds rarely experiencing multiple encounters from boats. However, habitat type may also play a factor as waterbird disturbance to anthropogenic activities in Europe was lowest in lentic waterbodies, such as reservoirs, compared to riverine and coastal areas (Mayer et al., 2019; Robinson & Pollitt, 2002).

Environmental variables, including cloud cover, mean temperature, presence of rain, and mean wind speed were correlated with bird counts. Although environmental conditions can be correlated with numbers and abundance in waterbirds (Brandolin & Blendinger, 2016; Li et al., 2021; McConkey & Bell, 2005; Tavares et al., 2015), the relationships found between bird numbers and the environmental parameters seen here may reflect changes in bird numbers associated with seasonal change in weather. As with other large, lentic

waterbodies across the UK (Ellis & Cameron, 2022; Pavón-Jordán et al., 2019; Woodward et al., 2021) waterbirds are typically more common in winter months at this site (Wallis et al., 2019). However, negative relationships between air temperature, rainfall, and high wind speeds and bird counts have previously been observed at this site with long-term, monthly datasets (Wallis et al., 2019) and were previously attributed to high wind speeds and rainfall disrupting zooplankton distribution. Due to survey design, surveys pre-, during-, and post-boating activities were conducted on the same day. Therefore, time of day could be confounded with period in the study. However, several studies have shown no or minimal link between survey time and wetland bird numbers (Christopher et al., 2008; Harms & Dinsmore, 2014; Huang et al., 2024; Kissling, 2004; Naugle et al., 2000; Rawal et al., 2021; Tozer et al., 2016), suggesting that it is unlikely that this is a dominant factor in our study.

The lack of change in bird numbers at the site due to research-related boating activities is a good indication that birds show little evidence of leaving localized areas, or the SPA, during this work. However, birds may remain at this site, despite disturbance, because it is the only appropriate habitat in the area. Monitoring behavior of waterbirds may provide additional information on the impacts of disturbance. For example, alterations in resting, feeding, and fleeing behaviors of individuals following disturbance could alter the energy budgets of species, and greatly impact their migratory success, and lead to negative impacts on population sizes (Donaldson et al., 2007; Marasinghe et al., 2022; Platteeuw & Henkens, 1997). Therefore, future studies combining count data with behavioral data may offer further insights into more nuanced impacts potentially arising from research-related boating activities.

Research methodologies have the potential to cause disturbance to both target and non-target species. Our results indicate that the deployment of acoustic telemetry receivers and netting for study fish, when applied with appropriate well-informed mitigation measures, can be undertaken both during sensitive time periods and in sensitive locations, without causing significant disturbance to waterbird species, including those that are threatened or particularly sensitive to disturbance. Research on movement ecology is vital for informing conservation and management of threatened species. However, such knowledge should not be acquired at the expense of increased stress and disturbance of other species. Hence, in areas where target species share important habitat with other species, particularly those that are threatened or when research is being carried out during sensitive life stages, the potential impacts of research techniques should be evaluated.

## AUTHOR CONTRIBUTIONS

**Michael J. Williamson:** Conceptualization (equal); investigation (equal); formal analysis (supporting); data curation (supporting); visualization (equal); writing – original draft (lead); writing – review and editing (lead); project administration (support). **Joseph Williamson:** Methodology (equal); formal analysis (leading); data curation (supporting); visualization (equal); writing – review and editing (supporting). **Darren Frost:** Investigation (equal); data curation (lead); writing – review and editing (supporting). **Kim Wallis:** Conceptualization (equal); methodology (supporting); writing – review and editing (supporting). **Rosalind M. Wright:** Funding acquisition (equal); project administration (support); writing – review and editing (supporting). **Adam T. Piper:** Conceptualization (equal); investigation (equal); methodology (supporting); writing – review and editing (supporting); supervision (equal); project administration (lead); funding acquisition (equal).

## ACKNOWLEDGMENTS

This research was principally funded by the Department for Environment, Food and Rural Affairs and the Environment Agency. ATP was part-funded by Research England. A special thanks to Charlotte Bradley, Helen Jacobs, and the Northumbrian Water Group for their assistance as well as providing valuable reservoir data.

## CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

## DATA AVAILABILITY STATEMENT

Raw data supporting the results, and the final code for analysis, are available from the Zenodo Digital Repository: <https://zenodo.org/records/17091825>.

## ETHICS STATEMENT

This study did not involve human or animal subjects and needed no institutional approval.

## ORCID

Michael J. Williamson  <https://orcid.org/0000-0001-9681-8920>

Joseph Williamson  <https://orcid.org/0000-0003-4916-5386>

Adam T. Piper  <https://orcid.org/0000-0002-9027-3066>

## ENDNOTES

<sup>1</sup> <https://jncc.gov.uk/jncc-assets/RIS/uk11001.pdf>.

<sup>2</sup> <https://designatedsites.naturalengland.org.uk/SiteDetail.aspx?SiteCode=s1001904>.

<sup>3</sup> <https://jncc.gov.uk/jncc-assets/SPA-N2K/UK9009141.pdf>.

## REFERENCES

Allen, A. M., & Singh, N. J. (2016). Linking movement ecology with wildlife management and conservation. *Frontiers in Ecology and Evolution*, 3, 155. <https://doi.org/10.3389/fevo.2015.00155>

Bellefleur, D., Lee, P., & Ronconi, R. A. (2009). The impact of recreational boat traffic on marbled Murrelets (*Brachyramphus marinus*). *Journal of Environmental Management*, 90, 531–538. <https://doi.org/10.1016/j.jenvman.2007.12.002>

Berthe, C., & Lecchini, D. (2016). Influence of boat noises on escape behaviour of white-spotted eagle ray *Aetobatus ocellatus* at Moorea Island (French Polynesia). *Comptes Rendus Biologies*, 339, 99–103. <https://doi.org/10.1016/j.crvi.2016.01.001>

Blight, L. K., Bertram, D. F., & O'Hara, P. D. (2023). Visual surveys provide baseline data on small vessel traffic and waterbirds in a coastal protected area. *PLoS One*, 18, e0283791. <https://doi.org/10.1371/journal.pone.0283791>

Brandolin, P. G., & Blendinger, P. G. (2016). Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. *Wetlands Ecology and Management*, 24, 93–105. <https://doi.org/10.1007/s11273-015-9454-y>

Brogi, R., Brivio, F., Bertolucci, C., Benazzi, M., Luccarini, S., Cappai, N., Bottero, E., Pedrazzoli, C., Columbano, N., Apollonio, M., & Grignolio, S. (2019). Capture effects in wild boar: A multifaceted behavioural investigation. *Wildlife Biology*, 2019, wlb.00497. <https://doi.org/10.2981/wlb.00497>

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. *R Journal*, 9, 378–400. <https://doi.org/10.3929/ethz-b-000240890>

Bullock, R. W., Guttridge, T. L., Cowx, I. G., Elliott, M., & Gruber, S. H. (2015). The behaviour and recovery of juvenile lemon sharks *Negaprion brevirostris* in response to external accelerometer tag attachment. *Journal of Fish Biology*, 87, 1342–1354. <https://doi.org/10.1111/jfb.12808>

Burger, J. (1998). Effects of motorboats and personal watercraft on flight behavior over a colony of common terns. *Condor*, 100, 528–534. <https://doi.org/10.2307/1369719>

Burnham, K. P., & Anderson, D. R. (2002). *Model selection and multimodel inference: A practical information-theoretic approach* (2nd ed.). Springer.

Carney, K. M., & Sydeman, W. J. (1999). A review of human disturbance effects on nesting colonial waterbirds. *Waterbirds*, 22, 68–79. <https://doi.org/10.2307/1521995>

Castonguay, M., & Durif, C. M. F. (2015). Understanding the decline in anguillid eels. *ICES Journal of Marine Science*, 73, 1–4. <https://doi.org/10.1093/icesjms/fsv256>

Chatwin, T. A., Joy, R., & Burger, A. E. (2013). Set-back distances to protect nesting and roosting seabirds off Vancouver Island from boat disturbance. *Waterbirds*, 36(1), 43–52. <https://doi.org/10.1675/063.036.0108>

Choudhary, S., Choudhury, B. C., & Gopi, G. V. (2017). Differential response to disturbance factors for the population of sympatric crocodilians (*Gavialis gangeticus* and *Crocodylus palustris*) in Katarniaghata Wildlife Sanctuary, India. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 27, 946–952. <https://doi.org/10.1002/aqc.2815>

Christopher, P. N., Courtney, J. C., Bradley, S. S., & Thomas, E. L. (2008). Maximizing detection probability of wetland-dependent birds during point-count surveys in northwestern Florida. *Wilson Journal of Ornithology*, 120, 513–518. <https://doi.org/10.1676/07-041.1>

Dehnhardt, N., Skei, J., Christensen-Dalsgaard, S., May, R., Halley, D., Ringsby, T. H., & Lorentsen, S.-H. (2019). Boat disturbance effects on moulting common eiders *Somateria mollissima*. *Marine Biology*, 167, 12. <https://doi.org/10.1007/s00227-019-3624-z>

Donaldson, M. R., Henein, K. M., & Runtz, M. W. (2007). Assessing the effect of developed habitat on waterbird behaviour in an urban riparian system in Ottawa, Canada. *Urban Ecosystems*, 10, 139–151. <https://doi.org/10.1007/s11252-006-0015-2>

Donaldson, M. R., Hinch, S. G., Suski, C. D., Fisk, A. T., Heupel, M. R., & Cooke, S. J. (2014). Making connections in aquatic ecosystems with acoustic telemetry monitoring. *Frontiers in Ecology and the Environment*, 12, 565–573. <https://doi.org/10.1890/130283>

Drouineau, H., Durif, C., Castonguay, M., Mateo, M., Rochard, E., Verreault, G., Yokouchi, K., & Lambert, P. (2018). Freshwater eels: A symbol of the effects of global change. *Fish and Fisheries*, 19, 903–930. <https://doi.org/10.1111/faf.12300>

Ellis, M. B., & Cameron, T. C. (2022). An initial assessment of the sustainability of waterbird harvest in the United Kingdom. *Journal of Applied Ecology*, 59, 2839–2848. <https://doi.org/10.1111/1365-2664.14281>

Engelen, E., Keulartz, J., & Leistra, G. (2008). European nature conservation policy making. In J. Keulartz & G. Leistra (Eds.), *Legitimacy in European nature conservation policy: Case studies in multilevel governance* (pp. 3–21). Springer.

Fraser, K. C., Davies, K. T. A., Davy, C. M., Ford, A. T., Flockhart, D. T. T., & Martins, E. G. (2018). Tracking the conservation promise of movement ecology. *Frontiers in Ecology and Evolution*, 6, 150. <https://doi.org/10.3389/fevo.2018.00150>

Graham, A. L., & Cooke, S. J. (2008). The effects of noise disturbance from various recreational boating activities common to inland waters on the cardiac physiology of a freshwater fish, the largemouth bass (*Micropterus salmoides*). *Aquatic Conservation: Marine and Freshwater Ecosystems*, 18, 1315–1324. <https://doi.org/10.1002/aqc.941>

Grueber, C. E., Nakagawa, S., Laws, R. J., & Jamieson, I. G. (2011). Multimodel inference in ecology and evolution: Challenges and solutions. *Journal of Evolutionary Biology*, 24, 699–711. <https://doi.org/10.1111/j.1420-9101.2010.02210.x>

Harms, T. M., & Dinsmore, S. J. (2014). Influence of season and time of day on marsh bird detections. *Wilson Journal of Ornithology*, 126, 30–38. <https://doi.org/10.1676/13-150.1>

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. *PeerJ*, 6, e4794. <https://doi.org/10.7717/peerj.4794>

Hedger, R. D., Rikardsen, A. H., & Thorstad, E. B. (2017). Pop-up satellite archival tag effects on the diving behaviour, growth and survival of adult Atlantic salmon *Salmo salar* at sea. *Journal of Fish Biology*, 90, 294–310. <https://doi.org/10.1111/jfb.13174>

Hellström, G., Lennox, R. J., Bertram, M. G., & Brodin, T. (2022). Acoustic telemetry. *Current Biology*, 32, R863–R865. <https://doi.org/10.1016/j.cub.2022.05.032>

Hill, D., Hockin, D., Price, D., Tucker, G., Morris, R., & Treweek, J. (1997). Bird disturbance: Improving the quality and utility of disturbance research. *Journal of Applied Ecology*, 34, 275–288. <https://doi.org/10.2307/2404876>

Holles, S., Simpson, S. D., Radford, A. N., Berten, L., & Lecchini, D. (2013). Boat noise disrupts orientation behaviour in a coral reef fish. *Marine Ecology Progress Series*, 485, 295–300. <https://doi.org/10.3354/meps10346>

Huang, S.-Y., Lin, R.-S., Chen, H.-L., & Tsai, J.-W. (2024). Time of day, water coverage, and pond type impact waterbird abundance in aquaculture ponds in Taiwan. *Avian Conservation and Ecology*, 19, art21. <https://doi.org/10.5751/ACE-02618-190121>

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., Harcourt, R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., Mills Flemming, J. E., & Whoriskey, F. G. (2015). Aquatic animal telemetry: A panoramic window into the underwater world. *Science*, 348, 1255642. <https://doi.org/10.1126/science.1255642>

Jacoby, D. M. P., Casselman, J. M., Crook, V., DeLucia, M.-B., Ahn, H., Kaifu, K., Kurwie, T., Sasal, P., Silfvergrip, A. M. C., Smith, K. G., Uchida, K., Walker, A. M., & Gollock, M. J. (2015). Synergistic patterns of threat and the challenges facing global anguillid eel conservation. *Global Ecology & Conservation*, 4, 321–333. <https://doi.org/10.1016/j.gecco.2015.07.009>

Jenni, L., & Winkler, R. (2020). *The biology of moult in birds*. Bloomsbury Publishing.

Johnson, D. H. (2008). In defense of indices: The case of bird surveys. *Journal of Wildlife Management*, 72, 857–868. <https://doi.org/10.2193/2007-294>

Kessel, S. T., Cooke, S. J., Heupel, M. R., Hussey, N. E., Simpfendorfer, C. A., Vagle, S., & Fisk, A. T. (2014). A review of detection range testing in aquatic passive acoustic telemetry studies. *Reviews in Fish Biology and Fisheries*, 24, 199–218. <https://doi.org/10.1007/s11160-013-9328-4>

Kirby, J. S., Holmes, J. S., & Sellers, R. M. (1996). Cormorants *Phalacrocorax carbo* as fish predators: An appraisal of their conservation and management in Great Britain. *Biological Conservation*, 75, 191–199. [https://doi.org/10.1016/0006-3207\(95\)00043-7](https://doi.org/10.1016/0006-3207(95)00043-7)

Kissling, W. D. (2004). Effects of time of day and observer position on waterbird counts. *Notornis*, 51, 41–46.

Kjellén, N. (1994). Moult in relation to migration in birds—A review. *Ornis Svecica*, 4, 1–24. <https://doi.org/10.34080/os.v4.23028>

Li, X., Anderson, C. J., Wang, Y., & Lei, G. (2021). Waterbird diversity and abundance in response to variations in climate in the Liaohe Estuary, China. *Ecological Indicators*, 132, 108286. <https://doi.org/10.1016/j.ecolind.2021.108286>

Marasinghe, S., Perera, P., Newsome, D., Kotagama, S., & Jayasinghe, C. (2022). Understanding the impact of recreational disturbance caused by motor vehicles on waterbirds: A case study from the Bundala Wetland, Sri Lanka. *Journal of Coastal Conservation*, 26, 6. <https://doi.org/10.1007/s11852-022-00853-8>

Martin, T. G., Chadès, I., Arcese, P., Marra, P. P., Possingham, H. P., & Norris, D. R. (2007). Optimal conservation of migratory species. *PLoS One*, 2, e751. <https://doi.org/10.1371/journal.pone.0000751>

Matley, J. K., Klinard, N. V., Barbosa Martins, A. P., Aarestrup, K., Aspíllaga, E., Cooke, S. J., Cowley, P. D., Heupel, M. R., Lowe, C. G., Lowerre-Barbieri, S. K., Mitamura, H., Moore, J.-S., Simpfendorfer, C. A., Stokesbury, M. J. W., Taylor, M. D., Thorstad, E. B., Vandergoot, C. S., & Fisk, A. T. (2022). Global trends in aquatic animal tracking with acoustic telemetry. *Trends in Ecology & Evolution*, 37, 79–94. <https://doi.org/10.1016/j.tree.2021.09.001>

Mayer, M., Haugaard, L., & Sunde, P. (2021). Scared as a hare: Effects of capture and experimental disturbance on survival and movement behavior of European hares. *Wildlife Biology*, 2021, wlb.00840. <https://doi.org/10.2981/wlb.00840>

Mayer, M., Natusch, D., & Frank, S. (2019). Water body type and group size affect the flight initiation distance of European waterbirds. *PLoS One*, 14, e0219845. <https://doi.org/10.1371/journal.pone.0219845>

McConkey, K. R., & Bell, B. D. (2005). Activity and habitat use of waders are influenced by tide, time and weather. *Emu Austral Ornithology*, 105, 331–340. <https://doi.org/10.1071/MU04054>

McFadden, T. N., Herrera, A. G., & Navedo, J. G. (2017). Waterbird responses to regular passage of a birdwatching tour boat: Implications for wetland management. *Journal for Nature Conservation*, 40, 42–48. <https://doi.org/10.1016/j.jnc.2017.09.004>

McGowan, B. S., Wasko, M., Vartabedian, B. S., Miller, R. S., Freiherr, D. D., & Abdolrasulnia, M. (2012). Understanding the factors that influence the adoption and meaningful use of social media by physicians to share medical information. *Journal of Medical Internet Research*, 14, e117. <https://doi.org/10.2196/jmir.2138>

Mori, Y., Sodhi, N. S., Kawanishi, S., & Yamagishi, S. (2001). The effect of human disturbance and flock composition on the flight distances of waterfowl species. *Journal of Ethology*, 19, 115–119. <https://doi.org/10.1007/s101640170007>

Naugle, D. E., Johnson, R. R., Cooper, T. R., Holland, M. M., & Higgins, K. F. (2000). Temporal distribution of waterfowl in eastern South Dakota: Implications for aerial surveys. *Wetlands*, 20, 177–183. [https://doi.org/10.1672/0277-5212\(2000\)020\[0177:TDOWIE\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2000)020[0177:TDOWIE]2.0.CO;2)

Norvell, R. E., Edwards, T. C., Jr., & Howe, F. P. (2014). Habitat management for surrogate species has mixed effects on non-target species in the sagebrush steppe. *Journal of Wildlife Management*, 78, 456–462. <https://doi.org/10.1002/jwmg.680>

Palacios, E., Vargas, J., Fernández, G., & Reiter, M. E. (2022). Impact of human disturbance on the abundance of non-breeding shorebirds in a subtropical wetland. *Biotropica*, 54, 1160–1169. <https://doi.org/10.1111/btp.13139>

Pavón-Jordán, D., Clausen, P., Dagys, M., Devos, K., Encarnaçao, V., Fox, A. D., Frost, T., Gaudard, C., Hornman, M., Keller, V., Langendoen, T., Ławicki, Ł., Lewis, L. J., Lorentsen, S.-H., Luigjoe, L., Meissner, W., Molina, B., Musil, P., Musilova, Z., ... Lehikoinen, A. (2019). Habitat- and species-mediated short- and long-term distributional changes in waterbird abundance linked to variation in European winter weather. *Diversity and Distributions*, 25, 225–239. <https://doi.org/10.1111/ddi.12855>

Pellegrini, A. Y., Romeu, B., Ingram, S. N., & Daura-Jorge, F. G. (2021). Boat disturbance affects the acoustic behaviour of dolphins engaged in a rare foraging cooperation with fishers. *Animal Conservation*, 24, 613–625. <https://doi.org/10.1111/acv.12667>

Peters, K. A., & Otis, D. L. (2006). Wading bird response to recreational boat traffic: Does flushing translate into avoidance?

*Wildlife Society Bulletin*, 34, 1383–1391. [https://doi.org/10.2193/0091-7648\(2006\)34\[1383:WBTRRB\]2.0.CO;2](https://doi.org/10.2193/0091-7648(2006)34[1383:WBTRRB]2.0.CO;2)

Pierce, S. J., Méndez-Jiménez, A., Collins, K., Rosero-Caicedo, M., & monadjem, A. (2010). Developing a code of conduct for whale shark interactions in Mozambique. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 20, 782–788. <https://doi.org/10.1002/aqc.1149>

Piper, A. T., Svendsen, J. C., Wright, R. M., & Kemp, P. S. (2017). Movement patterns of seaward migrating European eel (*Anguilla Anguilla*) at a complex of riverine barriers: Implications for conservation. *Ecology of Freshwater Fish*, 26, 87–98. <https://doi.org/10.1111/eff.12257>

Platteeuw, M., & Henkens, R. J. H. G. (1997). Possible impacts of disturbance to waterbirds: individuals, carrying capacity and populations. *Wild*, 48, 225–236.

R Core Team. (2024). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. Retrieved from <https://www.R-project.org/>

Rawal, P., Kittur, S., Chatakonda, M. K., & Sundar, K. S. G. (2021). Winter bird abundance, species richness and functional guild composition at Delhi's ponds: Does time of day and wetland extent matter? *Journal of Urban Ecology*, 7, juab001. <https://doi.org/10.1093/jue/juab001>

Reed, J. H., & Bonter, D. N. (2018). Supplementing non-target taxa: Bird feeding alters the local distribution of mammals. *Ecological Applications*, 28, 761–770. <https://doi.org/10.1002/eaap.1683>

Robinson, J. A., & Pollitt, M. S. (2002). Sources and extent of human disturbance to waterbirds in the UK: An analysis of wetland bird survey data, 1995/96 to 1998/99. *Bird Study*, 49, 205–211. <https://doi.org/10.1080/00063650209461267>

Rodgers, J. A., Jr., & Schwikert, S. T. (2002). Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. *Conservation Biology*, 16, 216–224. <https://doi.org/10.1046/j.1523-1739.2002.00316.x>

Ronconi, R. A., & Clair, C. C. S. (2002). Management options to reduce boat disturbance on foraging black guillemots (*Cephus grylle*) in the Bay of Fundy. *Biological Conservation*, 108, 265–271. [https://doi.org/10.1016/S0006-3207\(02\)00126-X](https://doi.org/10.1016/S0006-3207(02)00126-X)

Scarton, F. (2018). Disturbance of non-breeding waders by pedestrians and boats in a Mediterranean lagoon. *Ardeola*, 65(2), 209–220. <https://doi.org/10.13157/arpa.65.2.2018.ra1>

Schwemmer, P., Mendel, B., Sonntag, N., Dierschke, V., & Garthe, S. (2011). Effects of ship traffic on seabirds in offshore waters: Implications for marine conservation and spatial planning. *Ecological Applications*, 21, 1851–1860. <https://doi.org/10.1890/10-0615.1>

Sprogis, K. R., Videsen, S., & Madsen, P. T. (2020). Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. *eLife*, 9, e56760. <https://doi.org/10.7554/eLife.56760>

Stanbury, A., Eaton, M., Aebischer, N., Balmer, D., Brown, A., Douse, A., Lindley, P., McCulloch, N., Noble, D., & Win, I. (2021). The status of our bird populations: The fifth birds of conservation concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. *British Birds*, 114, 723–747.

Tavares, D. C., Guadagnin, D. L., de Moura, J. F., Siciliano, S., & Merico, A. (2015). Environmental and anthropogenic factors structuring waterbird habitats of tropical coastal lagoons: Implications for management. *Biological Conservation*, 186, 12–21. <https://doi.org/10.1016/j.biocon.2015.02.027>

Tozer, D. C., Drake, K. L., & Falconer, C. M. (2016). Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states. *Avian Conservation and Ecology*, 11, art3. <https://doi.org/10.5751/ACE-00875-110203>

Tripovich, J. S., Hall-Aspland, S., Charrier, I., & Arnould, J. P. Y. (2012). The behavioural response of Australian fur seals to motor boat noise. *PLoS One*, 7, e37228. <https://doi.org/10.1371/journal.pone.0037228>

Vandenabeele, S. P., Wilson, R. P., & Grogan, A. (2011). Tags on seabirds: how seriously are instrument-induced behaviours considered? *Animal Welfare*, 20, 559–571.

Walker, A. M., Godard, M. J., & Davison, P. (2014). The home range and behaviour of yellow-stage European eel *Anguilla Anguilla* in an estuarine environment. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 24, 155–165. <https://doi.org/10.1002/aqc.2380>

Wallis, K., Hill, D., Wade, M., Cooper, M., Frost, D., & Thompson, S. (2019). The effect of construction activity on internationally important waterfowl species. *Biological Conservation*, 232, 208–216. <https://doi.org/10.1016/j.biocon.2019.02.013>

Webb, G., & Messel, H. (1979). Wariness in *Crocodylus porosus* (Reptilia: Crocodylidae). *Wildlife Research*, 6, 227–234. <https://doi.org/10.1071/WR9790227>

Welzel, C., & Deutsch, F. (2011). Emancipative values and non-violent protest: The importance of “ecological” effects. *British Journal of Political Science*, 42, 465–479. <https://doi.org/10.1017/S0007123411000421>

Williamson, M. J., Jacoby, D. M. P., & Piper, A. T. (2023). The drivers of anguillid eel movement in lentic water bodies: A systematic map. *Reviews in Fish Biology and Fisheries*, 33, 147–174. <https://doi.org/10.1007/s11160-022-09751-6>

Williamson, M. J., Kavanagh, A. S., Noad, M. J., Kniest, E., & Dunlop, R. A. (2016). The effect of close approaches for tagging activities by small research vessels on the behavior of humpback whales (*Megaptera novaeangliae*). *Marine Mammal Science*, 32, 1234–1253. <https://doi.org/10.1111/mms.12324>

Woodward, I. D., Austin, G. E., Boersch-Supan, P. H., Thaxter, C. B., & Burton, N. H. K. (2021). Assessing drivers of winter abundance change in Eurasian curlews *Numenius arquata* in England and Wales. *Bird Study*, 68, 289–301. <https://doi.org/10.1080/00063657.2022.2049205>

## SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

**How to cite this article:** Williamson, M. J., Williamson, J., Frost, D., Wallis, K., Wright, R. M., & Piper, A. T. (2025). The impact of boat activities associated with an acoustic fish telemetry study on waterbird populations in a Special Protection Area. *Conservation Science and Practice*, 7(12), e70181. <https://doi.org/10.1111/csp2.70181>