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Abstract 
Materials science is a domain characterised by ‘small’ 
datasets (i.e., < 10,000 datapoints) of critical properties that 
govern performance of various applications and devices. For 
instance, there are no large, reliable datasets available for 
several key ‘performance determining’ metrics in energy 
applications, such as diffusivities in battery electrodes, 
carrier recombination rates in photovoltaics, and molecular 
adsorption energies for catalysis. On the other hand, there are 
reasonably ‘large' datasets (> 100,000 datapoints) available 
on some properties, such as, bulk formation enthalpies, 
computed band structures, and crystal structures across wide 
chemical spaces. Thus, if key chemical, compositional, and 
structural trends can be captured in available large datasets 
and subsequently transferred (or re-learnt), it will enable the 
use of deep learning and graph based neural network models 
in smaller datasets as well. Hence, my talk will explore the 
utility of current transfer learning (TL) approaches that are 
available for computational materials science and identify 
optimal ways to employ TL-based strategies. Specifically, TL 
involves training a neural network model on a larger dataset 
and subsequently retraining a fraction of the model on a 
smaller dataset. I will quantify the accuracy, transferability, 
and efficiency of TL models compared to models that have 
been trained from scratch. Finally, I will focus on TL models 
that can generalise over multi-properties during pre-training 
and can efficiently be re-trained on small datasets, which 
pave the way towards creating more general, foundational 
models, in the near future. 
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Description of work 

In the realm of materials design and optimization, machine 
learning (ML) architectures have played a pivotal role given 
their ability to predict material properties at low 
computational costs. However, there are several materials 
properties that critically govern the efficiencies of devices 
which are notoriously hard to predict (and train) ML models. 
For example, ionic conductivity in electrolytes employed in 
batteries, defect formation energies of semiconductors, and 
surface properties of key materials used in catalytic 
applications. The primary limitation in training of reliable 
ML models on such critical material properties is the lack of 
availability of ‘large’ datasets (i.e., > 100,000 datapoints), 

with currently available experimental and/or computational 
datasets often being ‘small’ (< 10,000 datapoints). Given that 
training of reliable deep learning (DL) models require large 
datasets, an alternative strategy is required to predict such 
material properties quickly. 

Importantly, transfer learning (TL) is a promising strategy to 
train DL models with sparse datasets, which has been 
demonstrated in computer vision and in biological 
applications. Briefly, TL involves a DL model that is pre-
trained (PT) on a larger, easily-available dataset (e.g., 
formation energies of materials) and subsequently fine-tuned 
(FT) on the target datasets that are often small (e.g., 
piezoelectric modulus). Thus, we identify the optimal 
strategies [1] to perform TL among various materials datasets 
using the atomistic line graph neural network (ALIGNN) 
architecture. Specifically, we optimize the model architecture, 
tune the hyperparameters, identify optimal ways to sample 
sparse datasets, and observe the amount of retraining required 
during FT for good performance. Additionally, we 
demonstrate the utility of the TL approach in swiftly 
predicting materials properties, especially against models 
trained from scratch. Also, we show that TL models generally 
learn properties (upon FT) much faster (i.e., at fewer 
datapoints) compared to scratch models. 

In addition to identifying optimal TL strategies, we also 
demonstrate a pathway to create models that are 
generalizable over a wide range of materials properties. 
Specifically, we train ALIGNN models simultaneously over 
multiple material property datasets, by modifying the 
prediction head, resulting in models that are PT on multiple 
properties (or MPT models). Subsequently, we demonstrate 
that the MPT models perform better than both scratch and PT-
FT models on 4/6 occasions. Moreover, we show that the 
MPT models generalize significantly better on an out-of-
domain dataset consisting of properties of two dimensional 
materials, which is fully different from the three dimensional 
bulk properties used during PT. Thus, we demonstrate an 
architecture that can be used to generalize across multiple 
properties efficiently and can be systematically made better 
by including more properties during PT in the near future. 

We hope that our work enables the creation of reliable TL and 
generalizable models, further accelerating property 
predictions among materials, resulting in materials discovery 
for novel applications. 
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