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Abstract

Materials science is a domain characterised by ‘small’
datasets (i.e., < 10,000 datapoints) of critical properties that
govern performance of various applications and devices. For
instance, there are no large, reliable datasets available for
several key ‘performance determining’ metrics in energy
applications, such as diffusivities in battery electrodes,
carrier recombination rates in photovoltaics, and molecular
adsorption energies for catalysis. On the other hand, there are
reasonably ‘large' datasets (> 100,000 datapoints) available
on some properties, such as, bulk formation enthalpies,
computed band structures, and crystal structures across wide
chemical spaces. Thus, if key chemical, compositional, and
structural trends can be captured in available large datasets
and subsequently transferred (or re-learnt), it will enable the
use of deep learning and graph based neural network models
in smaller datasets as well. Hence, my talk will explore the
utility of current transfer learning (TL) approaches that are
available for computational materials science and identify
optimal ways to employ TL-based strategies. Specifically, TL
involves training a neural network model on a larger dataset
and subsequently retraining a fraction of the model on a
smaller dataset. I will quantify the accuracy, transferability,
and efficiency of TL models compared to models that have
been trained from scratch. Finally, I will focus on TL models
that can generalise over multi-properties during pre-training
and can efficiently be re-trained on small datasets, which
pave the way towards creating more general, foundational
models, in the near future.
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Description of work
In the realm of materials design and optimization, machine
learning (ML) architectures have played a pivotal role given

their ability
computational costs. However, there are several materials

to predict material properties at low
properties that critically govern the efficiencies of devices
which are notoriously hard to predict (and train) ML models.
For example, ionic conductivity in electrolytes employed in
batteries, defect formation energies of semiconductors, and
surface properties of key materials used in catalytic
applications. The primary limitation in training of reliable
ML models on such critical material properties is the lack of
availability of ‘large’ datasets (i.e., > 100,000 datapoints),

with currently available experimental and/or computational
datasets often being ‘small’ (< 10,000 datapoints). Given that
training of reliable deep learning (DL) models require large
datasets, an alternative strategy is required to predict such
material properties quickly.

Importantly, transfer learning (TL) is a promising strategy to
train DL models with sparse datasets, which has been
demonstrated in computer vision and in biological
applications. Briefly, TL involves a DL model that is pre-
trained (PT) on a larger, easily-available dataset (e.g.,
formation energies of materials) and subsequently fine-tuned
(FT) on the target datasets that are often small (e.g.,
piezoelectric modulus). Thus, we identify the optimal
strategies [1] to perform TL among various materials datasets
using the atomistic line graph neural network (ALIGNN)
architecture. Specifically, we optimize the model architecture,
tune the hyperparameters, identify optimal ways to sample
sparse datasets, and observe the amount of retraining required
during FT for good performance. Additionally, we
demonstrate the utility of the TL approach in swiftly
predicting materials properties, especially against models
trained from scratch. Also, we show that TL models generally
learn properties (upon FT) much faster (i.e., at fewer
datapoints) compared to scratch models.

In addition to identifying optimal TL strategies, we also
demonstrate a pathway to create models that are
generalizable over a wide range of materials properties.
Specifically, we train ALIGNN models simultaneously over
multiple material property datasets, by modifying the
prediction head, resulting in models that are PT on multiple
properties (or MPT models). Subsequently, we demonstrate
that the MPT models perform better than both scratch and PT-
FT models on 4/6 occasions. Moreover, we show that the
MPT models generalize significantly better on an out-of-
domain dataset consisting of properties of two dimensional
materials, which is fully different from the three dimensional
bulk properties used during PT. Thus, we demonstrate an
architecture that can be used to generalize across multiple
properties efficiently and can be systematically made better
by including more properties during PT in the near future.

We hope that our work enables the creation of reliable TL and
further
predictions among materials, resulting in materials discovery

generalizable models, accelerating  property

for novel applications.
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