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Abstract: Ferroptosis is a recently discovered type of programmed cell death that is mechanistically
different from other types of programmed cell death such as apoptosis, necroptosis, and autophagy. It
is characterized by the accumulation of intracellular iron, overproduction of reactive oxygen species,
depletion of glutathione, and extensive lipid peroxidation of lipids in the cell membrane. It was
discovered that ferroptosis is interconnected with many diseases, such as neurodegenerative diseases,
ischemia/reperfusion injury, cancer, and chronic kidney disease. Polyphenols, plant secondary
metabolites known for many bioactivities, are being extensively researched in the context of their
influence on ferroptosis which resulted in a great number of publications showing the need for a
systematic review. In this review, an extensive literature search was performed. Databases (Scopus,
Web of Science, PubMed, ScienceDirect, Springer) were searched in the time span from 2017 to
November 2023, using the keyword “ferroptosis” alone and in combination with “flavonoid”, “phe-

a7

nolic acid”, “stilbene”,

”ou

coumarin”, “anthraquinone”, and “chalcone”; after the selection of studies,
we had 311 papers and 143 phenolic compounds. In total, 53 compounds showed the ability to
induce ferroptosis, and 110 compounds were able to inhibit ferroptosis, and out of those compounds,
20 showed both abilities depending on the model system. The most researched compounds are
shikonin, curcumin, quercetin, resveratrol, and baicalin. The most common modes of action are in

the modulation of the Nrf2/GPX4 and Nrf2/HO-1 axis and the modulation of iron metabolism.

Keywords: ferroptosis; polyphenols; ferroptosis initiation; ferroptosis inhibition

1. Introduction

Cell death is a fundamental process present in all living organisms, executed
through various mechanisms. For a long time, cells were thought to be removed in
two ways—regulated cell death, called apoptosis, and unregulated cell death, called necro-
sis [1]. Recently, many processes of controlled cell death have been discovered, such
as intrinsic apoptosis, extrinsic apoptosis, anoikis, autophagy-dependent cell death, pro-
grammed cell death (physiological cell death), entotic cell death, necrosis, necroptosis,
oxytosis/ferroptosis, pyroptosis, paraptosis, parthanatos, oxeiptosis, and NETosis. These
processes of cell death are characterized by different methods of induction and the involve-
ment of specific signaling pathways [2].

Apoptosis, often referred to as controlled or programmed cell death, is a highly regu-
lated process that plays a crucial role in various physiological and pathological situations.
It can be triggered by different factors, including significant cellular damage or the ac-
tivation of specific receptors on the cell membrane, all characterized by the activation
of caspases [3]. Ferroptosis, on the other hand, is a mechanism of cell death that occurs
due to significant oxidative damage to cells. It is characterized by the depletion of glu-
tathione, increased levels of free intracellular iron, and elevated lipid peroxidation in the
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cell membrane [4,5]. Ferroptosis is believed to play a role in various pathological conditions,
including neurodegenerative diseases, chronic kidney disease, cardiovascular diseases,
as well as ischemia/reperfusion injury [6-8]. Conversely, inducing ferroptosis is consid-
ered a potential therapeutic approach for addressing liver fibrosis and cancer—conditions
characterized by disrupted normal cell activity leading to pathology [9,10].

Plants generate a countless number of compounds through secondary metabolism,
exhibiting protective and hormonal functions within the plant itself. Interestingly, these
compounds also possess high bioactivity in animals and humans. These characteristics
have made plants integral to traditional medicinal practices spanning centuries. In contem-
porary times, the advancement of scientific knowledge has given rise to new disciplines like
rational phytotherapy. The primary objective of such fields is to formulate safe and scientif-
ically substantiated medicines derived from plants. Consequently, there is a substantial and
growing interest in the research of medicinal plants and their bioactive compounds [11].

1.1. Apoptosis

The term apoptosis was proposed in 1972, in a paper written by Kerr, Wyllie, and
Currie. They described apoptosis as programmed cell death that is complementary to
mitosis. Apoptosis is defined by two phases: the first phase is characterized by the
formation of spheroid apoptotic bodies and the second by their phagocytosis and finally
degradation by other cells [12]. There are two distinct apoptotic pathways—intrinsic and
extrinsic. Both pathways culminate with the activation of caspases, which are proteases
responsible for cleaving numerous vital proteins within the cell. This process leads to the
manifestation of apoptotic cell morphology and eventual cell death, typically occurring
within a time span of minutes to hours.

The intrinsic pathway is activated when there is significant damage caused by different
types of stress inside the cell, such as DNA damage, endoplasmic stress, and lack of growth
factors. Signaling pathways activated under stress can disturb the equilibrium between
the BCL2 family of proteins with anti-apoptotic functions and proapoptotic proteins from
family BH3-only. Equilibrium can be pushed towards the proapoptotic side by overex-
pression of BH3-only proteins, while simultaneously posttranslational modifications and
proteolytic processing of BCL2 proteins occurs, and excess of BH3-only proteins leads to
the initiation of apoptosis. BH3-only proteins bind to BCL2 proteins, as well as to BAK
and BAX proteins which are necessary for apoptosis. Following the activation of BAX
and BAK, pores in the outer mitochondrial membrane are formed. That process is termed
mitochondrial outer membrane permeabilization, and it results in the outflow of many
molecules from the mitochondrial intermembrane space, among which is cytochrome ¢
(Cyt-c). Cyt-c is necessary for the activation of the apoptotic protease-activating factor 1
(APAF1). APAF1 contains the CARD (caspase recruitment domain) which interacts with the
CARD of pro-caspase 9 (pro-CASP9) forming apoptosome. Inside this complex, apoptosis
initiator caspase 9 (CASP9) is formed from pro-caspase 9, and subsequently, it leads to the
activation of caspases 3 and 7 (CASP3 and CASP?) (Figure 1) [1,13].

The initiation of the extrinsic pathway occurs external to the cell, triggered by environ-
mental conditions that signify the necessity for the cell to undergo apoptosis. The extrinsic
pathway is activated by the binding of particular ligands to cell surface death receptors and
consists of three signaling pathways: tumor necrosis factor receptor (TNFR), TNF-related
apoptosis-inducing ligand (TRAIL), and factor-associated suicide (Fas)/Fas ligand (FasL)
pathways [14]. When FasL binds to the Fas receptor, it leads to activation of the signaling
pathway. The Fas-associated death domain (FADD) activates pro-caspase 8 (pro-CASPS),
after which, active caspase 8 (CASP8) activates CASP3 and CASP7 (Figure 1) [15].
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Figure 1. Mechanism of apoptosis initiation. The activation of the intrinsic pathway triggers the
release of Cyt-c from the mitochondrial lumen into the cytosol, facilitated by a pore formed by the
proteins BAK and BAX. This event induces the formation of a protein complex involving APAF1
and pro-CASP9, ultimately leading to the release of active CASP9. Subsequently, CASP9 activates
CASP3. On the other hand, the extrinsic pathway is initiated by the binding of a ligand to its receptor,
as illustrated in the scheme depicting the binding of Fasl to Fas. This binding activates a cascade
that culminates in the activation of CASPS8, which in turn activates CASP3. The activation of CASP3
serves as a pivotal point of no return, leading to the exposure of PS on the outer layer of the cell
membrane, membrane blebbing, and the fragmentation of DNA in the nucleus.

Activation of CASP3 and CASP7, by both intrinsic and/or extrinsic pathways, marks
a point of no return and the cell has no choice but to undergo suicide (Figure 1). These
caspases are involved in processes that define apoptosis, such as the fragmentation of
DNA, exposure of phosphatidylserine (PS) on the outer lipid bilayer, blebbing of the cell
membrane, and formation of apoptotic bodies. CASP3 promotes DNA fragmentation
through the proteolytic inactivation of DNA fragmentation factor subunit alpha (DFFA
or ICAD), which results in the release of active DFFB (also known as CAD). CASP3 is
also involved in the externalization of PS through the activation of enzymes called phos-
pholipid scramblases. Additionally, CASP3 inhibits enzymes—flippases—involved in PS
internalization [3]. The mechanism of apoptosis initiation is shown in Figure 1.

1.2. Ferroptosis

Ferroptosis, initially proposed by Dr. Brent R. Stockwell and collaborators in 2012, rep-
resents a pivotal advancement in cell biology. Its discovery emerged from a comprehensive
investigation spanning several years. Between 2001 and 2003, Dr. Stockwell’s laboratory
delved into the exploration of small molecules exhibiting HRASV!2-selective lethality. This
intensive research culminated in the identification of a compound named erastin, charac-
terized by its capacity to induce cell death via a non-apoptotic mechanism. Subsequent
investigations further elucidated the properties of erastin and led to the discovery of RAS-
selective lethal-3 (RSL3). Both compounds demonstrated the ability to trigger cell death,
not through apoptosis, but rather via an iron-oxidative stress-dependent pathway.

These groundbreaking findings, along with complementary discoveries by other
research groups, collectively defined ferroptosis as a novel form of regulated cell death.
Ferroptosis is distinguished by its dependence on intracellular iron accumulation and
the production of reactive oxygen species (ROS). Moreover, they identified it as a cell
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death mechanism that is morphologically, biochemically, and genetically distinct from
previously known cell death mechanisms [4,5]. This paradigm shift in our understanding
of cellular demise underscores the intricate interplay between iron metabolism, oxidative
stress, and cell fate regulation. The elucidation of ferroptosis mechanisms holds profound
implications for various fields, including cancer biology, neurodegenerative diseases, and
therapeutic development.

1.2.1. Lipid Metabolism and Ferroptosis

Ferroptosis is characterized by the accumulation of free iron in cells which leads
to high production of ROS and the subsequent lipid peroxidation of plasma membrane
lipids. In the following text, mechanisms of ferroptosis induction are explained in detail.
In ferroptosis, oxidized polyunsaturated fatty acids (PUFAs), from membrane phospho-
lipids, play an important role. ACSL4 (acyl-CoA synthetase long-chain family member
4) is an enzyme that catalyzes the biosynthesis of PUFA-CoA, among others also from
arachidonic acid (AA) and adrenic acid (AdA). PUFA-CoA are then used for the synthesis
of phosphatidylethanolamines (PE) containing AA (PE-AA) and AdA (PE-AdA), catalyzed
by LPCAT3 (lysophosphatidylcholine acyltransferase 3). These PEs are substrates for
ALOKX (arachidonic acid lipoxygenases) enzymes (ALOX15 and ALOX12), which catalyze
peroxidation reactions in which PE-peroxides are formed (PE-OOH, Figure 2). PE-OOH
are very unstable and can initiate lipid peroxidation which can damage the lipid bilayer
(Figure 3) [16].

Figure 2. Structure of PE-peroxide containing AA—it is a product of ALOX12/15 enzymes, is very
unstable, and can initiate a lipid peroxidation chain reaction leading to damage of cell membrane.

1.2.2. Iron Metabolism and Ferroptosis

Iron uptake by cells (apart from intestinal cells) occurs via transferrin receptors (TfR)
which are positioned on the cell membrane. These receptors bind transferrin (Tf), the iron
transporter in plasma, after which they are internalized as endosomes. In endosomes,
under acidic conditions, Fe>* is released from the Tf-TfR complex. After release, Fe3t is
reduced to Fe?* by the STEAP3 (six-transmembrane epithelial antigen of prostate 3), and
exported in the cytosol by DMT1 (divalent metal transporter 1). In the cytosol, free Fe?* can
initiate the Fenton reaction, which is prevented by binding to ferritin. Ferritin is a protein
that stores excess iron in the form of Fe>*. PCBP1 and PCBP2 (poly rC-binding protein)
are cytoplasmic proteins that are involved in the transportation of iron to ferritin. NCOA4
(nuclear receptor coactivator 4) mediates ferritinophagy, the autophagy degradation of
ferritin in lysosomes, resulting in the release of iron into the cytosol (Figure 3) [17]. It has
been shown that, in the first phases of ferroptosis, ferritinophagy plays a crucial role and
that inhibitors of ferritinophagy can slow down the ferroptosis. However, in later stages,
this inhibition does not exhibit a significant effect [18].
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Figure 3. Mechanism of initiation of ferroptosis. The Xct- system is vital for preventing ferroptosis

by supplying cystine for GSH synthesis, used by GPX4 to neutralize lipid radicals, as marled
with red line. Under intense oxidative stress, depleted GSH and blocked Xct- system hinders
sufficient GSH production, leaving the cell vulnerable to oxidative damage. ACSL4 synthesizes
phospholipids with unsaturated fatty acids, like AA, prone to oxidation by ALOX12/15 enzymes,
inducing lipid peroxidation in the cell membrane. Accumulated free iron in the cytosol generates
reactive hydroxyl radicals through the Fenton reaction, triggering highly reactive lipid peroxides
and initiating lipid peroxidation in the cell membrane. Iron levels are tightly regulated; in the
blood, Fe3* is transported bound to Tf. Cells with TfR receptors internalize the Tf-iron complex,
releasing iron through DMT1. Ferritin stores iron inside cells, shielding them from pro-oxidant free
iron. Ferritinophagy releases iron into the cytosol. Excess iron exits cells through FPN1, oxidizes
to Fe3*, and binds to Tf. Processes inhibiting Xct-, GPX4, or causing free iron accumulation, along
with increased synthesis of unsaturated fatty acid phospholipids and activation of ALOX12/15, can
promote ferroptosis.

Iron can be exported from the cell, such as in enterocytes, hepatocytes, and macrophages,
into the bloodstream by ferroportin-1 (FPN1). FPN1 exports iron as Fe?*, which is immedi-
ately oxidized to Fe** by hephaestin (HEPH) or ceruloplasmin. Hephaestin is expressed in
enterocytes, while ceruloplasmin is expressed in macrophages and hepatocytes [19]. Once
oxidized to Fe®*, iron can be bound to Tf (Figure 3). Hepcidin is a peptide hormone secreted
by the liver that plays a key role in the systemic regulation of iron metabolism. Hepcidin
binds to FPN1, and the complex is internalized in the cell and degraded. Higher levels of
hepcidin will lead to the inhibition of iron export and subsequent iron accumulation [20].

1.2.3. Role of Xct-/GPX4 Axis

The Xct- transportation system is responsible for the supply of cystine inside the
cell, which is necessary for the synthesis of glutathione (GSH). This system consists of a
regulatory unit (SLC3A2) and a transportation unit (SLC7A11). The availability of cystine
determines the rate of GSH synthesis. GSH is a substrate for glutathione peroxidase 4
(GPX4), the enzyme that is responsible for the reduction of lipid peroxides, such as PE-OOH,
to lipid alcohol, PE-OH. Xct-/GSH/GPX4 is the axis that is responsible for the inhibition of
ferroptosis. Inhibition of the Xct- system and /or GPX4 results in the initiation of ferroptosis,
and vice versa (Figure 3) [21]. Blocking the Xct- system also results in elevated intracellular
free iron levels, heightening the cell’s vulnerability to ferroptosis. Specifically, labile iron
forms a complex with GSH and binds to PCBP1. Depletion of GSH inhibits iron binding
to PCBP1, leading to the accumulation of free iron, which can generate ROS through the
Fenton reaction [4,22].
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1.2.4. GCH1/DHFR/BH4 Axis

Likewise, GCH1 (GTP cyclohydrolase-1) is the rate-limiting enzyme for the synthesis
of tetrahydrobiopterin (BH4). Lower levels of BH4 indicate higher sensitivity to ferroptosis
(Figure 4). BH4 is not only a reducing agent in cells but also serves as a cofactor of many
enzymes. BH4 is necessary for the conversion of phenylalanine into tyrosine, which is
necessary for the production of 4-OH-benzoate—a precursor of CoQ;g [23]. DHER (dihy-
drofolate reductase) is the enzyme responsible for the regeneration of BH4. Inhibition of
this enzyme, along with inhibitors of GPX4 can cause ferroptosis. The GCH1/DHFR/BH4
axis can neutralize lipid peroxides and lipid radicals, protecting cells from ferroptosis
(Figure 4) [20].

LIPID PEROXIDATION
ROS FERROPTOSIS
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Figure 4. DHFR/BH4, FSP1/NAD(P)H/CoQ10, and Nrf2 pathways. CoQ10 and BH4 antioxidants
help to neutralize harmful lipid radicals and prevent lipid peroxidation. The red line indicates the
neutralization of reactive species, which consequently inhibits lipid peroxidation. FSP1 is an enzyme
that turns inactive CoQ10 into its active form, ubiquinol. DHER is another enzyme that converts
dihydrobiopterine (BH2) to BH4, acting as an antioxidant and aiding in CoQ10 synthesis. Keap1
inhibits the release of Nrf2. During oxidative stress, Nrf2 is freed from Keap1, moves to the nucleus,
and boosts the expression of proteins that inhibit ferroptosis, as marked with red line.

1.2.5. FSP1/NAD(P)H/CoQ10 Axis

FSP1/NAD(P)H/CoQ10 is a GPX4-independent system for cell protection against fer-
roptosis (Figure 4). Namely, FSP1 (ferroptosis suppressor protein 1) belongs to the quinone
oxidoreductase NDH-2 family and is associated with the plasma membrane. It reduces
ubiquinone to ubiquinol via NAD(P)H and is included in the synthesis of CoQ10-ubiquinol.
Namely, CoQ10 is located in membranes where it serves as an antioxidant. It can neutral-
ize lipid radicals and protect cells from ferroptosis. Moreover, FSP1 can also regenerate
a-tocopherol (vitamin E), another potent antioxidant in the plasma membrane [20].

1.2.6. Keapl/Nrf2 Axis

Nuclear factor erythroid 2-related factor 2 (Nrf2, Figure 4) is a transcriptional factor
that under normal conditions is bound to Kelch-like ECH-associated protein 1 (Keap1)
and degraded through the ubiquitin-proteasomal pathway. Inhibition of Keap1 leads to
the release and activation of Nrf2 [24]. Nrf2 translocates to the nucleus, interacts with
antioxidant-responsive elements (AREs) and promotes the expression of many proteins.
Some targets of Nrf2 are responsible for the prevention of ferroptosis, such as GPX4, ferritin
light and heavy chains (FTL, FTH1), and FPN1. On the other hand, Nrf2 promotes the
expression of proteins that can enhance ferroptosis such as heme-oxygenase 1 (HO-1), which
is responsible for the degradation of heme from hemoglobin, products of this reaction are
biliverdin, CO, and Fe?* [25].
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1.2.7. Role of p53 in Ferroptosis

Tumor suppressor protein p53 plays an important role in the suppression of tumor
formation and growth by regulating the cell division and response of the cell to different
types of stress. p53 can inhibit the expression of SLC7A11, making cells more susceptible to
ferroptosis. p53 P47S polymorphism leads to increased levels of GSH and the inhibition
of ferroptosis, probably due to the inability to suppress the expression of SLC7A11. p53
can activate the expression of SAT1 (Spermidine/spermine N1-acetyltransferase 1), which
leads to the induction of the expression of ALOX15 which can lead to ferroptosis and tumor
suppression. The exact mechanism of activation of this p53/SAT1/ALOX15 metabolic path-
way, and the induction of ferroptosis through it, is still not fully elucidated. Additionally,
P53 can translocate in mitochondria in hepatic stellate cells and cause the accumulation
of redox-active iron and induction of ferroptosis. On the other hand, p53 can also act
as a ferroptosis suppressor. Namely, p53 regulates the localization of DPP4 (dipeptidyl
peptidase 4). The proposed mechanism is that depletion of p53 leads to decreased levels of
DPP4 in the nucleus, which in turn leads to membrane-associated DPP4- binding to NOX1
(NADPH oxidase 1), lipid peroxidation, and ferroptosis. Another pro-survival effect of p53
is through p21 also known as CDKN1A (cyclin-dependent kinase inhibitor 1A). It has been
shown that the p53-dependent expression of p21 and the production of GSH can delay
ferroptosis, but this mechanism is not fully elucidated. All this highlights the importance
of p53 in tumor progression and shows that p53 can be an important ferroptosis modulator
in cancer cells and the loss of function of p53 can make cancer cells more resistant to
ferroptosis, thus promoting cancer growth [26,27].

1.3. Plant Secondary Metabolites

Numerous plants have been historically employed in traditional medicinal practices
over the centuries. Presently, there exists a substantial interest in the utilization of medicinal
plants and harnessing plant secondary metabolites for medicinal purposes. This has led to
the development of fields such as rational phytotherapy and pharmacognosy, as well as the
design and approval of several methods of phytotherapeutics by national health regulatory
bodies [11].

Plants produce a wide range of secondary metabolites. Their concentration is higher
when plants are under stress, suggesting that they have a protective role. They are divided
into three big groups, alkaloids, phenolics (PC), and terpenoids, and show many bioactivi-
ties that can be beneficial for humans and animals, such as antioxidant, anti-inflammatory,
antihypertensive, anti-aging, and insulin-sensitizing properties [28,29].

Phenolics or polyphenols represent a class of numerous compounds that possess one
or more phenolic group in their structure. They can be divided into subclasses such as
phenolic acids, flavonoids, tannins, coumarins, stilbenes, and lignans. Phenolic acids are
polyphenols that are derived from hydroxybenzoic and hydroxycinnamic acids, and they
differ by the number and position of hydroxy and methoxy groups. The most common
benzoic acids are p-hydroxybenzoic, vanillic, and protocatechuic, while the most common
hydroxycinnamic acids are caffeic, ferulic, and p-coumaric (Figure 5). Hydroxycinnamic
acids are often found in esters with quinic acid called chlorogenic acids, while the most
common are esters with caffeic acid. They possess antioxidant, anti-inflammatory, and
antitumor activities [30].

o} O

HO
OH x OH

HO HO
p- Hydroxybenzoic acid Caffeicacid

Figure 5. Structures of most common phenolic acids.
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Flavonoids are one of the biggest classes of plant polyphenols. They have a C6-C3-C6
skeleton made of the three rings denoted as A, B, and C (Figure 6). They are divided into
seven subclasses: flavanones, flavanols, anthocyanidins, flavones, flavonols, and chalcones.
Flavonols have a 2-phenyl-chromen-4-one backbone and hydroxyl group bound at position
C3, and representatives of this subclass are quercetin, rutin, and kaempferol. Flavones differ
from flavonols due to their lack of hydroxyl group at position C3; apigenin and luteolin are
the most common members of this subclass. Flavanones are also termed dihydroflavones
because they do not have double bonds between C2 and C3. They are present in citrus
fruits, with hesperidin, naringin, and eriodyctiol as representatives. Flavanols, known
as flavan-3-ols, do not have double bond between C2 and C3 and a keto group at C4
but possess a hydroxyl group at C3. They are present as monomers or as polymers
making proanthocyanidins. They are present in different fruits with (+)-catechin and (—)-
epicatechin as the most common ones. Isoflavones are characterized by a 3-phenyl-chromen-
4-on backbone, and thanks to this structural characteristic they are similar to animal
estrogens and show affinity for estrogen receptors. They are known as phytoestrogens,
and daidzein and genistein are members of this flavonoid subclass. Anthocyanidins are
characterized by having flavylium cation as their backbone which makes them unstable and
present as anthocyanins. In plants, they are pigmented with red, purple, and blue colors in
flowers and fruits. The most common anthocyanidins are cyanidin, malvidin, delfinidin,
and pelargonidin. Chalcones are a specific subclass of flavonoids because they have an
open C-ring. They are precursors for the biosynthesis of flavonoids and isoflavonoids.
Flavonoids have strong antioxidant activity and other beneficial properties for human
health such as anti-hypertensive, cardioprotective, anti-inflammatory, anti-cancer, and
neuroprotective properties [31].

HO I OH I OH
HO
OH O Naringenin chalcone O

(Chalcone)

OH 4 ¢y Cyanidin
{Anthocyanidin)

Quercetin
Flavonol
( ) -

Genistein
(Isoflavone)

Lutealin
(Flavone)

H (-)-Epicatechin
(Flavanol)

Naringenin
(Flavanone)

Figure 6. Structures of seven flavonoid subclasses’ skeletons and some of their representatives.

Coumarins are a class of polyphenols that, at the core of their structure, have a
2H-chromene-2-on structure. They are divided into several classes: simple coumarins (in-
cluding hydroxycoumarins—scopoletin, esculetin), furanocoumarins (methoxsalen), pyra-
nocoumarins (samidin, braylin), benzocoumarins (urolithin A and B), phenylcoumarins,
and biscoumarins (Figure 7). They possess numerous biological properties such as antico-
agulant, antioxidant, antiangiogenic, anticancer, and antibacterial properties [32].
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Figure 7. Structures of simple coumarin representatives.

Stilbenes are polyphenols with a diphenylethylene (C6-C2-C6) structure. In plants,
they are produced as a defense mechanism against infections and UV radiation [33]. A
representative of stilbenes is resveratrol (Figure 8). It is a polyphenolic stilbene with a
double bond connecting two phenolic rings. Under UV radiation, it can undergo geo-
metric isomerization. The trans-isomer is more abundant than the cis-isomer, and also
more bioactive. Resveratrol possesses many activities that can be beneficial for humans
such as cardioprotective, antioxidant, anti-inflammatory, anti-fungal, anti-viral, and other

activities [34].
OH
" 9
Sh
OH

Resveratrol

Figure 8. Structure of stilbene representative—resveratrol.

Tannins are polymers, and they are divided into hydrolyzable and non-hydrolyzable
condensed tannins. Hydrolysable tannins are composed of ellagic and gallic acids with a
sugar core. On the other hand, condensed tannins are composed of flavonoids (flavan-3-ol
and flavan-3,4-diol). Tannins have anticancerogenic, antiviral, anticancer, and antioxidant
activities [35].

As can be seen from the above text, plants produce a plethora of polyphenolic com-
pounds with many positive impacts on human health. In recent years, many papers have
been published with evidence that plant secondary metabolites can modulate ferroptosis.
In this paper, we will try to give some overview of those results and insights for future
research in this field.

2. Methodology

This review work was undertaken under the guidance of the Preferred Reporting
Items for Systematic Review and Meta-analysis (PRISMA) [36].

2.1. Search Strategy

A comprehensive search of multiple databases was performed. The searched databases
were Web of Science, PubMed, ScienceDirect, Scopus, and Springer in the time span from
2017 to November 2023. The search was limited to research articles written in English
and the keyword used was “ferroptosis”, in combination with “polyphenol”, “flavonoid”,

v VAT v

“phenolic acid”, “coumarin”, “stilbene”, “chalcone”, “anthraquinone”.

2.2. Inclusion Criteria

Studies investigating the influence of pure, naturally occurring plant polyphenols on
ferroptosis in any type of cells, tissue, or organism were considered. From each paper,
the following information was extracted: investigated compound, study design, proposed
mechanism of action, first author, and year of publication.
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2.3. Exclusion Criteria

Studies investigating the influence of semi-synthetic or synthetic compounds not
naturally occurring in plants; studies investigating extracts; and studies with in silico inves-
tigation without experimental confirmation of activity toward ferroptosis were excluded.

3. Results and Discussion

The selection process according to PRISMA guidelines is shown in Figure 9 and
the PRISMA checklists are given in the Supplementary Materials (Tables S1 and S2) The
research protocol for this study has been registered at INPLASY (registration number
INPLASY202410104, https://doi.org/10.37766/inplasy2024.1.0104, accessed on 7 March
2024). A comprehensive search of databases resulted in the identification of 508 papers.
After removing 134 duplicates and 58 studies that did not meet the inclusion criteria or
that were not relevant, 4 papers were not retrieved and 312 studies were fully read. In total,
one paper, previously included, was removed because of a retraction notice. In the end,
311 papers were included in this review. From the included papers, data were extracted
and summarized in tables. Data extraction was performed by two independent researchers
(N.Z. and M.L.).

Identification of studies via databases and registers

)

Records removed before
screening:
Duplicate records removed
(n=134)
Records marked as ineligible
by automation tools (n = 0)
Records removed for other
reasons (n =0)

Records identified from:
Databases (n =508)
Registers (n =0)

'
Records screened Records excluded
—
(n=2374) (n =58)

)

Reports sought for retrieval

v

Identification

Reports not retrieved

g (n =316) (n=4)
=
: '
17}
Reports assessed for eligibility
= —_—
(n=312)
Reports excluded:
Retracted article (n=1)
)
v
pr—
3 Studies included in review
= (n=311)
° Reports of included studies
£ (n=0)
e

Figure 9. Prisma flow diagram. Illustrates search strategy and selection process. Selected databases
were searched using keywords which resulted in a collection of 508 papers. After the removal of
duplicates, papers outside of scope and not retrieved papers, 311 papers were included in this review.

3.1. Studying Influence on Ferroptosis

Research on the ferroptosis influence on cells can be carried out in vitro and in vivo.
In vitro research is carried out on many different cell lines, mostly cancer cells [37-40].
In vivo studies are carried out on animals, most commonly mice and rats, but other species
can also be used like gerbils and zebrafish, as shown in Tables 1 and 2 [41-45].
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3.1.1. Studies on Ferroptosis Inhibition

According to this review, research into the inhibition of ferroptosis is conducted
both at the cellular and animal levels. In cell studies, ferroptosis is initiated, followed by
the analysis of the inhibitory potential of the tested compounds. Ferroptosis initiation is
induced by incubating cells with substances like erastin (Xct- system inhibitor), RSL3 (GPX4
inhibitor), hemin, or others [46,47]. Standard ferroptosis inhibitors, such as liproxstatin-1
(Lip-1) and ferrostatin-1 (Fer-1), are employed for comparison with the treatments under
examination [47]. In animal studies, chemicals or surgical procedures are employed to
induce ferroptosis, followed by the administration of phytochemicals to assess their anti-
ferroptosis activity. Parameters examined include GSH, oxidized GSH, malondialdehyde
(MDA), free cellular iron levels, and the expression of genes and proteins involved in the
regulation of ferroptosis, such as GPX4, HO-1, Nrf2, FTH1 [7,48-50].

3.1.2. Studies on Ferroptosis Induction

For ferroptosis initiation/promotion studies, similarly to inhibition studies, cells are
grown under the usual conditions until treatment with examined compounds. Parameters
that are being examined are the same as for inhibition studies, levels of GSH, MDA, free iron,
ROS, expression of GPX4, HO-1, FTH-1, Nrf2, among others. The inclusion of standard
ferroptosis inhibitors in the treatment serves as an additional validation of ferroptosis
initiation. Ferroptosis initiators (erastin and RSL3) can be used as a standard for evaluating
the potency of the examined compound as a ferroptosis initiator. In ferroptosis initiation
studies, animals are often inoculated with cancer cells in order to induce tumor formation,
in which ferroptosis induction can be a potential treatment. Animals are usually divided
into groups that receive treatment with the examined compound and control which receives
saline or buffer solution. In addition to the standard parameters examined in tissues, these
studies also track changes in tumor size [41,51-54].

3.2. Polyphenols as Potential Therapeutic Agents in Diverse Diseases via Ferroptosis Modulation

The involvement of ferroptosis in diverse diseases positions it as a promising target
for therapeutic intervention. Plant secondary metabolites, particularly polyphenols, exhibit
significant promise in the potential development of novel treatments centered on the
modulation of ferroptosis.

3.2.1. Ferroptosis as Potential Target for Cancer Treatment

Cancer stands out as a major concern in contemporary society and medicine research.
Existing therapies lack the desired selectivity, causing significant harm to healthy tissues
and organs, thereby posing substantial challenges for patients. The emerging concept of
ferroptosis presents a novel and promising path in cancer treatment. Considerable research
has been dedicated to exploring plant secondary metabolites, especially polyphenols, as
inducers of ferroptosis, thereby serving as potential anticancer drugs. Numerous cancer
cell lines undergo scrutiny in this research, complemented by a substantial body of in vivo
studies utilizing tumor xenograft models [54-57].

Specifically, a variety of polyphenols have been verified as potential anti-cancer agents,
and notably, curcumin, whose potency to promote ferroptosis consequently demonstrated
significant anti-cancer effects across various cancer cell types. It has the ability to reduce the
expression of GPX4, SLC7A11, and FPN1, while simultaneously increasing the expression
of ACSL4. This modulation resulted in the accumulation of iron, overproduction of ROS,
and cell death through ferroptosis [10,51,58-61]. Furthermore, amentoflavone [62-64],
baicalin [54,55,65], erianin [37,41,57,66,67], gambogenic acid [68], auriculasin [69], wogo-
nin [70], quercetin [71,72], shikonin [73,74], scoparone [75], osthole [76], also have shown
to be able to inhibit cancer growth though the induction of ferroptosis. All of this suggests
the potential for developing novel cancer treatments grounded in natural products acting
as ferroptosis inducers.
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3.2.2. Ferroptosis as Potential Target for Diabetes Treatment

Diabetes is a significant burden of contemporary society as another prevalent disease.
It is defined by the body’s incapacity to regulate normal blood sugar levels, stemming
from either insulin resistance or insufficient insulin production. Additionally, diabetes
can contribute to the development of other conditions, such as diabetic nephropathy,
cardiomyopathy, and neuropathies [77-79]. Interestingly, polyphenols quercetin, rhein,
and glabridin have been shown to attenuate diabetic nephropathy through inhibition of
ferroptosis. Quercetin acted through the activation of the Nrf2/HO-1 pathway, rhein
acted via the Rac1/NOX1/ 3-catenin pathway, while glabridin acted on the VEGF/Act/Erk
pathway [78,80,81]. Furthermore, curcumin showed the ability to ameliorate diabetic
cardiomyopathy by inhibiting ferroptosis. It was able to activate the Nrf2 pathway, raising
levels of GPX4 and HO-1 and finally inhibiting ferroptosis caused by high glucose levels [82].
It is crucial to underscore that certain polyphenols exhibit a dual effect on ferroptosis, acting
as both inhibitors and enhancers of this process. For instance, curcumin exemplifies this
phenomenon. In cancer research, curcumin has demonstrated the ability to promote
ferroptosis in cancer cells, thereby inducing cell death. Conversely, in diabetes, curcumin
has been shown to inhibit ferroptosis, leading to cell revival. It is conceivable that curcumin
operates through cell-specific mechanisms concerning ferroptosis. While these findings
may be confusing, ongoing research endeavors aim to elucidate these phenomena further.
Dihydromyricetin, ferulic acid, and naringin protected neurons from death and prevented
cognitive impairment associated with diabetes and a high-fat diet. Dihydromyricetin acted
as an inhibitor of the JNK-inflammatory pathway, oxidative stress, and lipid peroxidation,
and caused downregulation of ACSL4 and upregulation of GPX4 expression [83]. On the
other side, ferulic acid and naringin are proven to activate the Nrf2/GPX4 axis which leads
to the inhibition of ferroptosis and neuroprotection [77,84].

3.2.3. Ferroptosis as Potential Target in Treatment of Neurodegenerative Diseases

Neurodegenerative diseases such as Parkinson’s and Alzheimer’s are caused by neu-
ronal degeneration, accompanied by synaptic dysfunction, inflammation, oxidative stress,
and the accumulation of proteins such as synuclein, Af3, and tau proteins. Studies have
shown that neuron death in these diseases is at least partially caused by iron metabolism
imbalance and ferroptosis. Polyphenols have shown potential to at least partially im-
prove and alleviate these conditions [85-87]. Specifically, it was shown that chrysophanol
protected neurons from ferroptosis in Alzheimer’s disease by decreasing ROS levels, in-
hibiting lipid peroxidation, and increasing GPX4 expression [86]. Eriodictyol showed
potential in the prevention and treatment of neurodegenerative disease thanks to its
ability to guard neurons from oxidative stress and ferroptosis through activation of the
Nrf2 pathway [88,89]. Echinatin [90], gastrodin [47,91,92] icariin [93], isoforthiaside [85],
quercetin [94,95], salidroside [96,97], sennoside A [87], and tetrahydroxy stilbene glyco-
side [98] have been shown to prevent neurodegeneration and ameliorate neurodegenerative
diseases, such as Alzheimer’s, through activation of the Nrf2 signalling pathway, which
protects against oxidative stress and ferroptosis. Unlike them, silibinin protects against
Alzheimer’s disease and neurodegeneration by inhibiting ferroptosis and inflammation
through modulation of the STING pathway [99].

3.2.4. Ferroptosis as Potential Target in Traumatic Brain Injury Treatment

A traumatic brain injury can cause damage to blood vessels and brain tissues leading
to haemorrhage and neuron death. Similar to an intracranial haemorrhage after a traumatic
brain injury, a subarachnoid haemorrhage, which can be caused by a ruptured aneurism,
leads to damage of surrounding brain tissues. The neuronal damage is at least partially
caused by the degradation of released haemoglobin by HO-1, which leads to the accumu-
lation of free iron, oxidative stress, lipid peroxidation, and neuronal death by different
mechanisms, including ferroptosis [46,100-102]. There is no treatment for these conditions,
but some polyphenols show promising results in this regard. Baicalein and baicalin have
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been shown to also alleviate brain injury through the inhibition of ferroptosis. They were
able to increase the expression of GPX4 and SLC7A11 which led to protection against
oxidative damage [46,103,104]. Puerarin is another compound that showed potential in
the treatment of a brain injury caused by an intracerebral haemorrhage. It activated the
AMPK/PGC1o/Nrf2 pathway, which was followed by the alleviation of iron accumulation,
lipid peroxidation inhibition, an increase in the expression of GPX4, and a decrease in the
expression of ACSL4 [101].

3.2.5. Ischemia/Reperfusion Injury Treatment by Targeting Ferroptosis

Ischemia/reperfusion injury arises when blood flow is interrupted, leading to hypoxia,
followed by the restoration of blood flow and reoxygenation. This phenomenon can be
manifested in the myocardium, brain, and various other organs. It is common for this
to occur during major surgeries, myocardial infarction, stroke, and organ transplanta-
tions [105]. It is marked by elevated production of ROS, diminished levels of antioxidants,
inflammation, and cell death. New discoveries suggest that ferroptosis plays a role in
ischemia/reperfusion injury, offering a fresh approach to treating this condition. Plant
secondary metabolites, especially polyphenols, have exhibited encouraging outcomes as
potential therapeutic agents in this context. In vivo studies revealed that isorhamnetin
and apigenin-7-O-(6"-p-coumaroyl)-glucoside can attenuate ischemia/reperfusion injury
by inhibiting ferroptosis [106,107]. Galangin was able to attenuate ischemia/reperfusion
injury through inhibition of ferroptosis by activating Nrf2/GPX4, SLC7A11/GPX4, and
PI3K/AKT/CREB signaling pathways [44,108,109]. Resveratrol also showed potential to
attenuate ischemia/reperfusion injury through anti-ferroptotic activity [110-112]. Some
other compounds that displayed promising results for treatment of ischemia/reperfusion
injuries were rhein [113], vitexin [114], naringenin [115], loureirin C [116], caffeic acid [117],
baicalein [118,119], luteolin [119], kaempferol [120], and others. The predominant mech-
anism underlying this phenomenon involves the upregulation of GPX4 and SLC7A11
expression, along with the modulation of iron metabolism.

3.2.6. Ferroptosis as Potential Target in Treatment of Liver Diseases

The liver serves as a central hub in the body’s defense system, playing a crucial
role in metabolizing and detoxifying various chemicals and drugs. Some substances,
such as acrylamide and acetaminophen, have been identified as potential contributors to
liver injury [121-124]. Nevertheless, certain polyphenols have demonstrated significant
potential in mitigating liver injury. For instance, salidroside has been shown to alleviate
acetaminophen-induced acute liver injury. Its mechanism involves inhibiting endoplasmic
reticulum stress-dependent ferroptosis through the activation of AMPK/SIRT1 and the
inhibition of the ATF4/CHACI1 axis [124]. Similarly, kaempferol was proven effective
in ameliorating acetaminophen-induced liver injury. It achieved this by activating the
Nrf2 pathway, leading to the upregulation of GPX4 and SOD2 expression, the reduction
of ACSL4 expression, alleviation of intracellular iron accumulation, and ultimately the
inhibition of ferroptosis [125]. Additionally, epigallocatechin-gallate has demonstrated its
ability to alleviate liver injury induced by a high-fat diet. The accumulation of triglycerides
in the liver due to a high-fat diet renders the organ susceptible to damage from oxidative
stress, inflammation-induced lipid peroxidation, and ferroptosis. Epigallocatechin-gallate
protects the liver by mitigating iron accumulation, increasing the expression of GPX4,
decreasing the expression of ACSL4 and COX2, and ultimately inhibiting ferroptosis [126].

Liver fibrosis is a prevalent condition associated with numerous chronic liver diseases,
marked by the excessive production and build up of extracellular matrix proteins, including
a-smooth muscle actin and collagens. Hepatic stellate cells play a pivotal role in this
process, as they undergo activation and contribute to the synthesis of matrix proteins.
Research has indicated that specifically targeting and inducing the death of these cells
can mitigate fibrosis, with ferroptosis emerging as a potential targeted mechanism for this
purpose [127,128]. Chrysophanol has expressed some potential to attenuate liver fibrosis
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by removing activated hepatic stellate cells through the induction of ferroptosis through
the downregulation of GPX4 and SLC7A11 expression [128]. Danshensu, isoliquiritigenin,
and wogonoside are phenolic compounds with the proven potential to alleviate liver
fibrosis through induction of ferroptosis in hepatic stellate cells. They downregulated the
expression of GPX4 and SLC7A11, and promoted ROS production and lipid peroxidation
which leads to cell death through ferroptosis [9,127,129].

3.2.7. Acute Lung Injury Treatment through Ferroptosis Modulation

Acute lung injury can be caused by different mechanisms such as infections, non-chest
traumas, massive blood transfusions, acute pancreatitis, and prolonged oxygen supple-
mentation during hospitalization. It is characterized by the production of inflammatory
mediators, increased permeability of the barrier between the capillary endothelium and
alveolar epithelial cells and pulmonary oedema. It has been shown that non-apoptotic
cell death mechanisms, such as ferroptosis, are implicated in acute lung injury. The most
common treatments for acute lung injury are glucocorticoids, which come with serious side
effects. Ferroptosis inhibition is seen as a new potential target for the development of new
therapeutics [130-132]. Chicoric acid was able to alleviate LPS-induced lung injury in mice
thanks to its anti-inflammatory and anti-oxidative activities. It reduced the production of
inflammatory cytokines and ROS, inhibited lipid peroxidation, increased levels of GSH and
activated the Nrf2/HO-1 pathway [133]. Ferulic acid and Naringenin are other polypheno-
lics with a proven ability to alleviate acute lung injury through activation of the Nrf2/HO-1
signaling pathway and subsequent inhibition of ferroptosis [134,135]. Also, quercetin
alleviated lung injury through ferroptosis inhibition by activating the Sirt1/Nrf2 /GPX4
pathway [130].

Significantly, as described before, both the induction and inhibition of ferroptosis
by polyphenols have demonstrated therapeutic benefits in different pathological states.
As this review aims to provide the latest data on the potential use of polyphenols in the
context of ferroptosis, it endeavors to contribute to the exploration of these compounds
as potential therapeutics for the future. By presenting up-to-date information, this review
seeks to elucidate the nuanced role of polyphenols in modulating ferroptosis and their
potential applications in addressing various pathological conditions. The multifaceted
effects of polyphenols on ferroptosis pave the way for a comprehensive understanding
of their therapeutic potential, marking them as promising candidates for future medical
interventions. Specifically, Table 1 presents a compilation of polyphenols capable of induc-
ing ferroptosis, accompanied by their verified mechanisms of action, the model systems in
which these effects were examined, and corresponding references. Additionally, Table 2
provides parallel information on polyphenols identified as inhibitors of ferroptosis. These
tables serve as comprehensive up-to-date references, offering valuable insights into the
diverse actions of polyphenols in modulating ferroptosis.

Table 1. List of polyphenols as inducers and enhancers of ferroptosis, verified mechanisms of their
action, the model systems in which these effects were examined, and corresponding references.

Model System in Which Effect Was Examined

Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Aerimonolide Increases ROS and Fe?* levels and A2780 and SKOV-3 cells xenograft [136]
& downregulates GPX4 and SLC7A11 SKOV-3 cells model in BALB/c mice
Accumulation of Fe, ROS, and MDA,
Alloimperatorin ~ decreased expression of SLC7A11 and GPX4 Breast cancer cells / [137]

with increased expression of Keap1
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Table 1. Cont.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Induces ferroptosis through GSE-1, AGS and AHC:(‘)S dCeellilrsl %e;lﬁ%r/acft [62]
miR-496/ ATF2 axis HGC-27 cells .
nude mice
Promotes ferroptosis by activation of ESC and KLE
Amentoflavone ROS/AMPK/mTOR pathway cell lines / [63]
. .. U251 cells xenograft
Increased levels of iron, lipid ROS, and MDA, 5551 .14 U373 cells  model in BALB/c nude [64]
depletion of GSH .
mice
Causes iron accumulation, lipid peroxidation, .
. . Ishikawa cells
GSH depletion, downregulates expression of Human .
. . xenograft model in [52]
SLC7A11 and GPX4, upregulates expression Ishikawa cells BALB/c nude mice
of p62, HO-1, and ferritin
Apigenin Nanocomposites Fe; O3 /Fe304@mSiO,
loaded with apigenin induce ferroptosis by
increasing ROS production and
downregulation of expression of GPX4, FTH1 A549 and HUVECs / [138]
and upregulation of expression of COX2
and p53
2+
. . ' Increases levels of Fe“t and MDA,. and HCT116 and
Auriculasin induces generation of ROS, promotion of SW480 cells / [69]
expression of Keapl and AIFM
Promotes Fe?* accumulation, ROS
production, lipid peroxidation, depletes GSH, MG63 xenograft model
decreases expression of GPX4 and Xct- MG63, 1438, hBMSC in BALB/c nude mice [54]
through upregulated degradation of Nrf2
Promotes ROS production, enhances mRNA
Baicalin expression of TfR1, NOX1 and COX2, AGS and / [55]
suppresses mRNA expression of GPX4, FTH1, SGC-7901 cells )
and FTL
Induces ferroptosis through downregulation Bladder cancer cells KU-19-19 cells
of FTH1 5637 and xenograft model [65]
KU-19-19 cells in mice
Increases Fe?* through increased DMT1 and
TfR and decreased FTH and FTL expression,
Bavachin depletes GSH and enhances ROS production MGS;lalrilrclleIS-IOS / [139]
and MDA, modulates
STAT3/p53/SLC7A11 axis
Bilobetin Promotes iron accumulation, ROS production = HCT116, HT29, RKO HCT116 xenograft [140]
and upregulates p53 expression and LOVO cells model in BALB/c mice
PANC-1, Capan-2, PANC-1 xenograft
Chrysin Induces ferritinophagy-dependent ferroptosis ~ BxPC-3, AsPC-1 and model in BALB/c [141]
HPDE6-C7 cells nude mice
Chrysophanol Accumulation of ROS, downregulation of HSC-T6 cell line / [128]

GPX4 and SLC7A11
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Table 1. Cont.

Model System in Which Effect Was Examined

Reference

Phenolics Proposed Mechanism
In Vitro In Vivo
Induces ferroptosis through GSH/GPX4 and A549 cells xen ograft
FSP1/CoQ10-NADH pathways Ab549 cells model in [10]
NOD/SCID mice
Promotes iron accumulation and lipid Nthy-ori-3-1,
peroxidation, upregulates expression of HO-1, FTC-133 and / [58]
and downregulates expression of GPX4 FTC-238 cells
Induces ROS production and downregulates SW480 and / [56]
expression of GPX4 and FSP1 HCT116 cells
Induces ferroptosis through upregulation MDA-MB-453 Miigeieigslgﬁrﬁ%%zaﬂ [61]
of SLC1A5 and MCF-7 .
Curcumin nude mice
Promotes iron accumulation and lipid
peroxidation, downregulates GSH, GPX4, and .
SLC7A11, activates HCT8 cells / [59]
PI3K/Akt/mTOR pathway
Depletion of GSH, accumulation of iron and A549 and Lewis lung carcinoma 51]
ROS, lipid peroxidation H1299 cells model in C57BL/6 mice
. Sunitinib-resistant
Induces ferroptosis through ADAMTS18 A498 and 786-O cells / [60]
Accumulation of intracellular iron, ROS,
LOOH, MDA, and upregulation of HO-1 MCE-7 cells / [142]
Promotes ROS production and downregulates
Danshensu expression of GPX4 and SLC7A11 LX-2and T6 cells / [129]
. 3,5- o Induces ferropt051.s and mitochondrial HCT116 and
dicaffeoylquinic dysfunction through SW480 cells / [143]
acid ROS/AMPK/mTOR pathway
44 Promotes. 1r01.1 accumulat}on, lipid A549 cells and
dimethoxychalcone peroxidation, and activates 786-0 cells / [144]
Keap1/Nrf2/HO-1 pathway
. .. L . A549, NK-92 and
Diplacone Promotes lipid peroxidation ATF3 expression K562 cells / [145]
Emodin high-dose
Emodin Downregulates Notch1/Nrf2/GPX4 pathway NRK-52E cells induced nephrotoxicity [146]
in mice
Ferrostatin-1 inhibits cytotoxicity of erianin A549 and A549 cells xenograft [66]
suggesting activation of ferroptosis H1299 cells model in nude mice
Promotes accumulation of iron and ROS ngngﬁg}f?’ HCT116-luc cells
production, induces lipid peroxidation and ’ ’ subcutaneous and liver
. SW480, SW620, . . [37]
downregulates expression of GPX4, FTH1, metastasis models in
and ferritin HT29, Caco2, BALB/c nude mice
MC38 cells
Erianin : : A
Promotes iron accumulation and lipid
peroxidation and downregulates expression CD44+/CD105+ Xenograft model in 57]
of GPX4, upregulates expression of ALOX12, HuRCSCs BALB/C™/™ mice
p53, and METTL3
ROS accumulation, GSH depletion, lipid RT4 and KU-19-19 cells

peroxidation, and downregulation of FTH1,
GPX4, HO-1, Xct-/SLC7A11, and Nrf2

KU-19-19 cells

xenograft model in
BALB/c nude mice

[41]
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Table 1. Cont.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Erianin Induces ferroptosis through activation of H460 and Hri?)?itceilri )];eArfgiﬂ [67]
Ca?* /CaM signaling pathway H1299 cells .
nude mice
s . A549 and
Eriocitrin Downregulates Nrf2/SLC7A11/GPX4 axis H1299 cells / [147]
o Downregulates expression of SLC7A11 and A2780 and CaoV3 cell xenograft
Eriodictyol GPX4, downregulates CaoV3 cell model in BALB/c mice [148]
Nrf2/HO-1/NQO1 pathway OVo cells ¢ e
Promotes iron accumulation and lipid
. - HUHY and HUHY cells xenograft
Esculetin perox@atlon thr(?l.lgh NCOA4 HCCLMS3 cells model in BALB/c mice [149]
mediated ferritinophagy
S Upregulates ACSL4 and HO-1 and
Ferulic acid downregulates SLC7A11 and GPX4 TE-4 and EC-1 cells / [150]
Downregulates expression of GPX4 and
SLC7A11 by inhibiting HepG2 cells / [151]
Wnt/ 3-catenin pathway
Gallic acid Potential ferroptosis inducer, and increased MDA-MB-231,
aticacy ROS and MDA production, reduced activity MCF10A, and / [152]
of GPX. A375 cells
Cell death triggered by gallic acid can be HeLa, SH-SY5Y, and / [153]
prevented by ferroptosis inhibitor DFO H446 cells
143B cells xenograft
Activates p53/SLC7A11/GPX4 axis HOS and 143B cells model in athymic [154]
nude mice
FHC, HCT116, HT29,
Activates AMPK&/SLC7A11/GPX4 pathway ~ DLD-1, HCT115 and HC§111§ CgisL’l‘;r‘Ogr.aft [40]
Gambogenic acid COLO320DM cells 0% /¢ mice
Downregulates NEAT1 and induces A375, B16, B16F10 B16F10 xenograft [68]
ferroptosis through SLC7A11/GPX4 axis and A2058 cells model in C57BL/6 mice
Induces ferroptosis through A375 and / [155]
p53/SLC7A11/GPX4 axis A2058 cells
Enhanced production of ROS, Flepletlon of LNCaP, DU145, and
GSH, downregulated expression of Nrf2 PC3 cells / [156]
and GPX4
6-gingerol
Upregulates expression of NCOA4 and TfR1,
. A549 cells xenograft
and downregulates expression of GPX4 A549 cells . . [157]
model in BALB/c mice
and FTH1
Promotes iron accumulation, ROS production, HCT116, HT29, RKO HCT116 xenograft [140]
and upregulates p53 expression and LOVO cells model in BALB/c mice
Enhances cytotoxicity of DDP through
Ginkgetin induction of ferroptosis, increases levels of
free iron, production of ROS, and lipid A549, NCI-H460, NSCLC xenograft [158]

peroxidation, lowers GSH/GSSG ratio,
reduces protein levels of SLC7A11 and GPX4,
inhibits Nrf2 /HO-1 axis

SPC-A-1 cells

model in nude mouse
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Table 1. Cont.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Promotes lipid peroxidation and upregulates ~ THP-1, U-937, and / [159]
expression of HO-1 SMK-1 cells
Honokiol SW48, HT29, LS174T,
Increases levels of iron and ROS, and HCT116, HCTS, RKO cells xenograft [160]
downregulates expression of GPX4 RKO, and model in BALB/c mice
SW480 cells
) Induces autophagy anq ferroptosis through RWPE-1, DU145,
Icariin modulation of and PC-3 cells / [161]
miR-7/mTOR/SREBP1 pathway
.. Upregulates miR-324-3p which ACHN, .A498’ 786-0, Caki-1 cells xenograft
Icariside II Caki-1, and . . [162]
downregulates GPX4 model in BALB/c mice
293T cells
. . Promotes iron accumulation, ROS production, HCT116, HT29, HCT116 xenograft
Isoginkgetin and upregulates p53 expression RKO, and model in BALB/c mice [140]
preguiates poo exp LOVO cells
Upregulates expression of HO-1, and SGC996, NOZ, and NOZ cells xenograft [163]
downregulates expression of GPX4 L-2F7 cells model in BALB/c mice
CCly-induced
Isoliquiritigenin liver-fibrosis model in
Downregulates GPX4, and upregulates TfR HSC-T6 cells C57BL/6 mice and [9]
and DMT1 expression 0.06% TA-induced liver
fibrosis model
in zebrafish
Promotes iron accumulation and
Isoliquiritin downregulates expression of GPX4 MDI\?_CI\I/JIE_iZ’lllsand BALB/c mice [164]
and SLC7A11
.. Inhibits SIRT6/Nrf2 /GPX4 A549 cells xenograft
Isoorientin signaling pathway A549 cells model in BALB/c mice [163]
I reitrin Downregulates expression of GPX4, HO-1 CNE1 and CNETL cells xenograft [166]
soquere and SLC7A11 HNEI cells model in BALB/c mice
Promotes expression of ACSL4, and RWPE-1, DU145, PC-3 cells xenoeraft
downregulates expression of GPX4, SLC7A11, PC-3, and model in BALB /fmice [167]
FTH1, and FTL1 LNcaP cells
Luteolin tioally with - 4
Acts synergistically with erastin, an HCT116,SW480,  HCT116 cells xenograft
upregulates expression of HIC1 which results ) . [168]
. . and NCM460 cells ~ model in BALB/c mice
in downregulated expression of GPX4
HCT116, SW480, HCT116 cells xenograft
Lysionotin Promotes degradation of Nrf2 HIEC, and model in athymic [169]
NCM460 cells nude mice
Increases levels of iron, MDA, and ROS,
o decreases levels of GSH and GPX4, enhances
Nobiletin the expression of Keap1, and inhibits the SK-MEL-28 / [170]
expression of Nrf2 and HO-1
Downregulates expression of GPX{L and HCT116, SW480, HCT116 cells >'<enograft
Osthole SLC7A11, and upregulates expression of and MC38 cells model in [76]
HO-1 and NCOA4 C57BL/6] mice
. Promotes autophagy-dependent ferroptosis ]
Puerarin through upregulation of NCOA4 HT-29 cells / (1711
. Promotes ROS production and HepG2 and
Plumbagin GPX4 degradation Hep3B cells / [172]
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Table 1. Cont.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Downregulates expression of GPX4, and
upregulates expression of SLC7A11 and TfR1 HEC-1-A cells / [173]
. Triggers the release of iron through
Quercetin degradation of ferritin, enhances the HepG2, Hep3B,
production of ROS and lipid peroxidation, MDA-MB-231, / [71]
increases expression of SLC27A4 and HCT116 cell lines
decreases expression of GPX1
Promotes ferroptosis through AML-193 and / [174]
Hsa-miR-335-5p/NFS1/GPX4 pathway OCI-AML-3 cells
Resveratrol Upregulates expression of ACSL4, and Human plasma and
downregulates expression of GPX4 lung tissues, PBMCs / [175]
and SLC7A11 and H520 cells
. . HCC Huh7 and
Rhamnazin Downregulates expression of GPX4 SMMC-7721 cell / [176]
Robustaflavone Accumulation of ROS, downregulation of
A Nedd4, and upregulation of VDAC2 MCE-7 cells / (1771
Promotes iron accumulation, promotes Primary neuron Intracerebral
expression of ACSL4, COX2, GPX4 c 1}; ro hemorrhage model in [178]
and SLC7A11 e ICR mice
Rotenone Upregulates expression of Keapl, p53, and
COX2, and downregulates expression of NE-4C cells / [179]
GPX4, SLC7A11, and FTH1
Inhibits Keap1/Nrf2/SLC7A11/GPX4 axis BV-2 cells / [180]
SGC-7901, A549,
S-3'-hydroxy-7/, H460, SW480,
2,4l Inhibits Nrf2/HO-1 signaling pathway BEL-7402, HeLa, A549 cells xenograft [181]
. . model in nude mice
trimethoxyisoxane HBE, and
MCEF-7 cells
.. . NHBE, A549, H1299,
Scoparone Activaties the ROS/JNK/SP1/ACSL4 axis and PC-9 cells / [75]
HTR-8/SVneo cells
and villous tissue of
_ . . women suffering
Inhibits Nrf2 signaling pathway from TP and from / [182]
women with normal
pregnancies
A2780, SKOV3,
Downregulates expression of GPX4, and OVCAR4, A2780/DPP cells
upregulates expression of TfR1, NCOA4, A2780/DDP, xenograft model in [73]
HO-1, and shows synergism with cisplatin SKOV3/DDP, and BALB/c nude mice
Shikonin OVCAR4/DDP cells
Downregulates expression of GPX4 and SBC-2 and H69 cells SBC-2 C.ells xenongaft [74]
promotes expression of ATF3 model in nude mice
RPMI 8226 cells
Induces GOT1-dependent ferritinophagy RPMI 8226 and xenograft model in [183]
U266 cells )
Nod-SCID mice
Shikonin-Fe(IIl) nanoparticles induce iron
accumulation, GSH depletion, production of 4T1 and 1.929 cells 4T1 xenograft model in [184]

ROS, increase lipid peroxidation and
downregulate GPX4 expression

BALB/c mice
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Table 1. Cont.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Theaflavin-3,3'- peri)r:(?cllle:teii:ogoigfl?(rerslg?llli?eosneigfelslgii of HOS, MG63, and HOS cells xenograft [185]
Digallate GPX4 and FTH1 hFOB1.19 cells model in BALB/c mice
HT-29 xenograft model
2,354 -tetrahy- Upregulates expression of ACSL4 and DLD-1, HT-29, in severe combined 53]
droxystilbene downregulates expression of GPX4 HCT-116 immunodeficient
(SCID) mice
BT-549,
Downregulates expression of GPX4 and MDA-MB-468, BT-549 cells xenograft [186]
SLC7A11 and upregulates expression of HO-1 SK-BR-3, MCF-7, model in BALB/c mice
Tiliroside and MCF-10A cells
Promotes ubiquitination of Nrf2, and sﬁiﬁg&g?:ﬁ q HepG2 xenograft [187]
downregulates expression of GPX4 and FTH1 L02 cells’ model in BALB/c mice
Increases ROS production, and lipid
Tvphaneoside peroxidation and reduces GSH and GPX. Kas-1, HL60, NB4, HL60 cells xenograft [38]
M Promotes autophagy and autophagic K562 cells model in BALB/c mice
degradation of ferritin
. o AsPC-1, PANC-1,  PANC-1 cells xenograft
Wogonin Inhibits Nrf2/GPX4 pathway and HPDE6-C7 cells  model in BALB/c mice [70]
CCly-induced liver
. Modulates SOCS1/p53/SLC7A11 pathway to  HSC-t6, AML12, and ) . )
Wogonoside induce ferroptosis RAW 264.7 cells fibrosis model in [127]
P : C57BL/6 mice
Table 2. List of polyphenols with inhibitory activity on ferroptosis, verified mechanisms of their
action, the model systems in which these effects were examined, and corresponding references.
. Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Upregulates expression of GPX4 High-fat-diet-induced lipid
Acacetin and downregulates expression HepG2 cells accumulation in liver in [188]
of ACSL4 C57BL/6 mice
. Activates Nrf2 /HO-1 . Knee osteoarthritis model
Acetyl zingerone signaling pathway Primary chondrocytes in C57BL/6] mice [189]
Complexes FeZ*, modulates
Aloe-emodin intracellular iron metabolism, H92 cells / [190]
increases expression of Nrf2,
GPX4, and SLC7A11
Downregulates expression of Freeney free-fall impact
Anacardic acid TfR1, and upregulates / model-induced traumatic [102]
expression of GPX4 brain injury in ICR mice
Reduces ROS, 4-HNE, and MDA
production, reduces Fe2* levels,
Anh}}l}iﬁ(ggs‘?fﬂor increases GSH /GSSG ratio, and PC12 cells / [191]

upregulates expression of GPX4
and SLC7A11
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Decreases production of ROS
and MDA, upregulates activity
Apigenin of SOD, and improves AMLI12 cells / [192]
GSH/GSSG ratio, lowers level
of Fe2*
Apigenin-7-O-(-6"-p- Reduces the level of ROS and Human un.nblhcal vem . Mode.l of mtestmfﬂ
coumaroyl)-glucoside  Fe2*, inhibits HO-1 and MAO-B endothelial cell line ischemia/reperfusion [107]
! (HUVECs) injury in CL57BL/6] mice
Astringin Antioxidant activity bmMSCs / [193]
Avicularin Activates RAW 246.7 and ac&iﬁ{iféﬂﬁ;“i‘é;eg in [194]
Nrf2/HO-1/GPX4 pathway HepG2 cells C57BL /6 mice
Decreases iron accumulation and
lipid peroxidation, upregulates CPT-11-induced
expression of GPX4 and IEC-6 cells gastrointestinal [195]
SLC7A11, downregulates dysfunction in Wistar rats
expression of ALOX15
Decreases levels of ROS / Cardiac arrest model in [196]
and ALOX15 SD rats
Inhibits ferroptosis through a Polymyxin B-induced
decrease in p53 acetylation level HK2 cells acute kidney injury model [197]
by elevating SIRT1 in C57BL/6 mice
Alleviates ferroptosis through Primary human and Surgery—%nduced .
AMPK/Nrf2/HO-1 axis mouse chondrocyte osteoarthritis model in [198]
C57BL/6] mice
Langerdorff perfusion
Decreases levels of ROS, MDA,  H9c2 cells and primary system for
and iron, and restores protein cardiomyocytes from ischemia/reperfusion [119]
levels of GPX4 neonatal SD rats model on isolated hearts
from SD rats
Baicalein
tMCAO-induced cerebral
Modulates ischemia/reperfusion
GPX4/ACSL4/ACSL3 axis HT22 cells injury model in [118]
C57BL/6 mice
Decreases iron and MDA levels, THP1 cells and human
and suppresses expression of macrophages isolated
HMOX1 and FPN1, and phages 150 / [199]
. . from endometrium
increases expression of GPX4 eritoneal fluid
and SLC7A11 p
Inhibits NF-kB pathway, and CCly-induced acute liver
activates Nrf2/HO-1 pathway HepG2 cells injury in C57BL/6 mice [121]
Upregulates GPX4, and
downregulates TFR1. HEM-1 cells / [200]
Suppression of lipid
peroxidation, lover levels of FeCl3-induced
4-HNE, upregulation of GPX4, HT22 cells post-traumatic epilepsy [103]

and downregulation
of LOX12/15

disorder in C57/BL6 mice
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Enhanced expression of GPX4 PC12 cells and primar, colla errr?zii—li\r/lduced
and SLC7A11, decreased . p yo & [46]
expression of DMT1 cortical neurons intracerebral hemorrhage
P model in C57BL/6 mice
Reduces ROS production, and
promotes SOD activity and Myocardial
Baicalin expression of GPX4, lowgrs iron HIC?2 cells 1§chem1a/ repe.rfusmn [201]
levels through modulation of injury model in male
iron uptake, storage, Sprague-Dawley rats
and ferritinophagy
Decreased levels of Fe>*, MDA Subarachnoid hemorrhage
and ROS, increased level of GSH Primary rat neurons model in [104]
and upregulation of GPX4 Sprague-Dawley rats
Iron-dextran-induced iron
Downregulates TfR1, Primary chondrocytes overload and
Biochanin A upregulates FPN1, and activates isolated from surgery-induced knee [202]
Nrf2/system xc-/GPX4 pathway C57BL/6 mice osteoarthritis in
C57BL/6 mice
Downregulates expression of pMCAO-induced cerebral
Caffeic acid ACSL4 and TfR1 and activates SK-N-SH cells ischemia/reperfusion in- [117]
Nrf2 pathway jury
Inhibits ROS production and
. lipid peroxidation, increases HT22, SH-SY5Y,
Cannabinol expression of Nrf2, HO-1, BV2 cells / [203]
SOD2, GPX4
Downregulates expression of
ACSL4 and TfR1, and tMCAO/R model in
upregulates expression of FTH1 PC12 cells SD rats [204]
Calycosin and GPX4
Upregulates expression of GPX4, Db/ db mice and
and downregulates expression HK-2 cells db/ . [205]
of NCOA4 m fice
. Increases expression of SLC7A1L, Primary chondrocytes Osteoarthritis model in
Cardamonin GPX4, p53, and decreases isolated from SD rats SD rats [48]
expression of iNOS and COX2
Downregulates expression of MCAO-induced cerebral
. ACSL4 and TfR1, and . . .
Carthamin yellow . / ischemia/reperfusion [206]
upregulates expression of GPX4 model in SD rats
and FTH1
Bone marrow-derived
.. Inhibits ferroptosis through ROS mesenchymal stem
Chebulagic acid scavenging and iron chelation cells isolated from / [207]
SD rats
Bone marrow-derived
Chebulinic acid Inhibits ferroptosis through ROS mesenchymal stem / [207]

scavenging and iron chelation

cells isolated from
SD rats
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Activates Nrf2/HO-1 LPS-induced
signaling pathway / endometriosis in [208]
& C57BL/6 mice
Possible ferroptosis inhibitor
Chicoric acid thanks to ability to protect
against oxidative damage, Acute lung injury model in
reduces ROS and MDA / male BALB/c mice [133]
production, increases levels of induced by LPS
GSH and SOD, and promotes
expression of Nrf2 and HO-1
Upregulates expression of GPX4, Primary .cortlcal .H'ypox1c-15ch.em1c brain
SLC7A11. and SLC3A2 neurons isolated injury model in neonatal [209]
’ from mice C57BL/6] mice
Decreases Fe ¥ and MDA Triptolide-induced
accumulation and increased / multi-organ injury in [210]
GSH, GPX, GST, and CAT Kunming mice
Chlorogenic acid Upregulates GPX4, GSH, and
NADPH; the proposed
mechanism is the activation of Chronic stress-induced
the IL6/JAK2/STAT3 pathway .
. / duodenal ferroptosis [211]
which leads to reduced . .
. 1. model in Wistar rats
production of hepcidin and
enhanced expression of FPN1 in
the duodenum
Upregulates expression of .
. SLC7A11 and GPX4, and tMCAO-induced cerebral
Chrysin . / ischemia/reperfusion [212]
downregulates expression of model in SD rats
ACSL4, TfR1 and COX2
Inhibits ferroptosis through Alzheimer’s disease model
Chrysophanol upregulated expression of GPX4 PCI2 cells in SD rats [84]
Downregulates expression .Of Intestinal
ACSLA4, upregulates expression ischemia/reperfusion
Corilagin of GPX4, and inhibits / I mclf ol [213]
NCOA4-mediated Jury .
.\ C57BL/6] mice
ferritinophagy
Ferroptosis was characterized by
iron accumulation, depletion of
GSH, ROS, and MDA Model of ulcerative colitis
Curculigoside production with decreased IEC-6 cells u [214]

expression of SOD and GPX4,
which were attenuated
by curculigoside

in C57BL/6] mice
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Curcumin-OM-MSCs
upregulates expression of GPX4, Primary cortical Collagenase IV-induced
SLC7A11 and FTH1, and neurons isolated from intracerebral hemorrhage [50]
downregulates SD rats model in SD rats
expression ACSL4
Downregulates ACSL4 and / Ischemia/reperfusion [215]
upregulates GPX4 injury model in Wistar rats
Inhibits ferritinophagy through AFBl-induced kidney
the NCOA4 pathway and / nephrotoxicity in ducks [45]
activates the Nrf2 pathway P ty
. Hepatocellular
Promotes expression of Nrf2, . .
GPX4, and HO-1 BRL-3A cells degeneratlon. model in [216]
TX mice
Increases expression of SLC7A11 Ligature wire-induced
and GPX4 and reduces / periodontitis model in [217]
expression of ACSL4 and TfR1 C57/BL mice
Upregulates expression of Nrf2,
GPX4,SLC7A11, HO-1, NQO-1,
CAT, SOD, FPN1, FTH1, NH,4Cl-inuced ammonia
. / .. [218]
downregulates expression of stress in Gibel carp
Keapl, NCOA4, ACSL4, PTG2,
TfR1, p53
Curcumin Increases expression of SLC7A11,  Primary chondrocytes Erastin-induced knee
GPX4 and FTH1 through isolated from ferroptosis in [219]
activation of Nrf2 pathway BALB/C mice BALB/C mice
Can inhibit multiple cell death
mechanisms induced by . . ..
. . . Swiss-strain mice infected
antimalarial drug mefloquine, / . . . [220]
. . . with Plasmodium berghei
including ferroptosis by
inhibition of lipid peroxidation
Enhances nuclear translocation Streptozotocin-induced
of Nrf2 and enhances expression HO9c2 cells diabetes model in New [82]
of GPX4 and HO-1 Zealand rabbits
Mitigated production of ROS,
depletion o‘f GSH, increased Lung injury model induced
levels of iron and MDA, . .
. BEAS-2B cells by cigarette smoke in [221]
downregulation of SLC7A11, Sorasue-Dawlev rats
GPX, FTH1, and upregulation of prag y
TfR induced by cigarette smoke
Inhibition of generation of ROS
. Intracerebral hemorrhage
and upregulation of HT?22 cells model in C57BL /6 mice [222]
Nrf2/HO-1 pathway
. . Proximal murine ..
Upregulation of expression o Rhabdomyolysis in
of HO-1 tubular epithelial cells C57BL,/6 mice [223]

(MCTs)




Antioxidants 2024, 13, 334

25 of 56
Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Iron chelation, prevention of
GSH depletion, lipid MING cells / [224]
peroxidation, and
GPX4 inactivation
Curcumin
Potential ferroptosis inhibitor, Primary S
.. Sy . Doxorubicin-induced
reduces lipid peroxidation and cardiomyocytes from . e
.. cardiotoxicity in [225]
preserves the activity of CAT, neonatal Kun-Mine mice
SOD, and GPX Sprague-Dawley rats &
Decreases levels of Fe?t, 4-HNE,
MDA, decreases expression of Renal
ACSL4, and increases expression HK-2 and ischemia/reperfusion [226]
of GPX4. AMPK pathway is NRK-52E cells injury model in
Cyanidine-3-glucoside essential for C57BL/6 mice
anti-ferroptosis activity
Downregulation of NCOA4 and Ischemia/reperfusion
TfR, and upregulation of GPX4 HO9c2 cells injury model in [71
and FTH1 Sprague-Dawley rats
Alleviates iron accumulation
. and 1r.1h'1b1ts RO.S pr(}ductlon and Primary rat nucleus Caudal intervertebral disc
Cynarin lipid peroxidation, and ulpous cells uncture model in SD rats [227]
upregulates expression of GPX4 PP P
and Nrf2
Activates APAP-induced
Daidzein Primary hepatocytes hepatotoxicity in [228]
Nrf2/SLC7A11/GPX4 pathway C57BL/6 mice
Inhibits ferroptosis through . Collagenase-induced
LCN2/Xct- axi / intracerebral hemorrhage [229]
¢ S model in C57BL/6 mice
Alleviates iron accumulation,
inhibits ROS p.roductlon, High-fat-diet- and
decreases expression of ACSL4, ..
. . / streptozotocin-induced [83]
increases expression of GPX4, diabetes in SD rats
and inhibits p-JNK inflammatory
cytokine pathway
Dihydromyricetin Activates Nrf2 patk.lway, and Cispliatin-in.d}lced.acute
upregulates expression of SOD, HK-2 cells kidney injury in [230]
CAT, GCLC, GCLM, GPX4 C57BL/6 mice
Inhibits lipid peroxidation, MCAO-induced cerebral
upregulates expression of GPX4, HT22 cells ischemia/reperfusion [231]
and downregulates ACSL4 injury model in SD rats
Possible ferroptosis inhibitor,
reduces the production of MDA,
increases levels of GSH and HT-22 cells / [232]

SOD, and activates
Nrf2/HO-1 pathway
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Lowers levels of MDA and ROS’ Cigarette smoke-induced
increases RNA and protein “hronic obstructive
levels of SLC7A11 and GPX4, HBE cells . . [233]
. . pulmonary disease in
and increases levels of Nrf2 in a .
BALB/c mice
Dihydroquercetin dose-dependent manner
Upregulates expression of GPX4,
FTH1 and NCOA4, Silica-induced lung fibrosis
downregulates LC3, and HBE and MRC-5 cells in C57BL/6 mice [234]
inhibits ferritinophagy
Decreases levels of ROS and
MDA, increases the level of GSH,
3,4- restores the activity of CAT and APAP-induced acute liver
dihydroxyphenyletyl SOD, promotes expression of AMLI12 cells failure model in [235]
alcohol glycoside GPX4, and inhibits expression of C57BL/6 mice
HO-1, ERK, NLRP3, Caspasel,
and Gasdermine-D
Di tin Activates SIRT1/Nrf2 path / S. aureus-induced mastitis [236]
iosmeti ctivates rf2 pathway in BALB,/c mice .
Increases expression of GPX4, Primaryv human Vascular stiffening, 5/6
SLC7A11,SLC3A2, FTH1, FTL, umbilicyal arter nephrectomy, and [237]
o GCLC ang GCMC, activates smooth muscle chls atherosclerotic mouse )
Echinatin Nrf2 pathway models in C57BL/6 mice
. Primary rat Sevoflurane-induced
Activates Nrf2 pathway hippocampal neurons neurotoxicity in SD rats 501
Upregulates expression of GPX4,
SLC7A11, FTH1, HO-1, and SD rats exposed to
Eleutheroside B downregulates expression of / h obariclil oxia [238]
TfR1 and COX2, activates yp yp
Nrf2 pathway
. Activates Streptozotocin-induced
Emodin Nrf2/SLC7A11/GPX4 axis HE-2 cells diabetes in SD rats [239]
Engeletin Activates Keap1/Nrf2 pathway Primary BMSCs from / [240]
SD rats
Upregulates expression of GPX4, High-fat-diet-induced
and downregulates expression of L-02 cells hepatic lipotoxicity in [126]
ACSL4 and COX2 C57BL/6 mice
Acts on A549 and RAW Urethane-induced lung [241]
STAT1/SLC7A11 pathway 264.7 cells cancer in C57BL/6 mice
Primary mouse High-iron-diet-induced
Upregulates Nrf2/GPX4 axis hepa t}; cytes iron overload in C57BL/6 [242]
(-)-epigalocatechin-3- mice
gallate Acute myocardial
Acts on HL-1 cells infarction model in [243]
miR-450b-5p / ACSL4 axis C57BL /6 mice
. NRK-52E, HK-2, mTEC Gentamicin-induced
Activates Nrf2/HO-1 pathway and AML-12 cells nephrotoxicity in SD rats (3]
Reduces iron accumulation, H9e2 cells and neonatal Doxorubicin-induced
oxidative stress, and abnormal cardiotoxicity in [244]

lipid metabolism

rat cardiomyocytes

C57BL/6 mice
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Table 2. Cont.
Model System in Which Effect Was Examined
. y
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Upregulates expression of GPX4 . . .
and FTH1, downregulates cerebI;llga?;nule Spinal Cori;dl ;?tlsuy model [245]
expression of ACSL4 and COX2 &
Reduces production of ROS, and
increases expression of GPX4
and SLC7A11, these effects are Radiation-induced
(-)-epigalocatechin-3- Nrf2 dependent, and Nrf2 HIEC line intestinal injury model in [246]
gallate inhibitors abolish EGCG C57BL/6] mice
protective effect against
ferroptosis
Iron chelation, prevention of
GSH depletion, lipid
peroxigation anr():l MING cells / [224]
GPX4 inactivation
Inhibits ferroptosis through HT-22 Alzheimer’s disease model
VDR-mediated activation of the hiopocampal cells in APPswe/PS;Eg [89]
Nrf2/HO-1 pathway pp p transgenic mice
Possible ferroptosis inhibitor,
reduces the production of ROS
Eriodictvol and MDA, restores activity of g LPS triggered oxidative
Y SOD and CAT, increases levels of BV-2 cells stress in C57BL/6 mice [85]
GSH, activates
Nrf2/HO-1 pathway
Possible inhibitor of ferroptosis,
upregulates SOD, CAT, and GPX, RGC-5 cells / [247]
and activates Nrf2 /HO-1 axis
Upregulates expression of Nrf2, / Hypoxic-ischemic [248]
GPX4, SLC7A11 and HO-1 encephalopathy in SD rats
Farrerol Balances iron metabolism and . .
. Primary tenocytes Collagenase-induced
promotes expression of GPX4 isolated from rats tendinopathy in SD rats [249]
and SLC7A11
High-fat-diet-induced
Activates Nrf2/GPX4 pathway HT-22 cells cognitive impairment in [84]
C57BL/6 mice
Activates Nrf2/HO-1 pathway MLE-12 cells Acute lgzig}]ggif:ﬁel m [134]
Ferulic acid
Activates Nrf2
signaling pathway MING cells / [250]
. Myocardial
Upregulates expression of GPX4 / ischemia,/reperfusion [251]
and AMPK«x2 .. .
injury model in SD rats
Downregulates expression of L .
ACSL4 and COX2, and TCMK-1 cells Chronic kidney disease [252]
. model in mice
upregulates expression of GPX4
Fisetin Reduces levels of ROS and MDA, e
and increases the level of GSH Doxorubicin-induced
/ HO9¢2 cells cardiomyopathy in [253]

upregulates SIRT1, Nrf2, GPX4,
HO-1, and FTH1

Waster rats
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Enhances expression of SLC7A11
. and GP>.(4’ promotes nuclear Primary mouse renal Chronic kidney disease
Formononetin translocation of Nrf2, and blocks . . . . [254]
. tubular epithelial cells model in C57BL/6 mice
nuclear translocation of Smad3
and ATF3
Promotes expression of GPX4 Bleomycin-induced
and SLC7A11, and inhibits MLE-12 cells pulmonary fibrosis in [255]
Fraxetin expression of NCOA4 C57BL/6 mice
Activates Myocardial infarction
AKT/Nrf2/HO-1 pathway H9e2 cells model in Wistar rats [256]
Upregulates expression of GPX4, Primary rat ischerl\rfi}:;crzntsflusion
FTH1, and SLC7A11 through mary e pert [108]
activation of Nrf2 pathway cardio-myocytes injury model in
C57BL/6 mice
. . Ischemia/reperfusion
Galangin Activates . -
HT1080 cells injury model in [109]
PI3K/AKT/CREB pathway C57BL /6 mice
: Cerebral
Upregulates expression of Hippocampal . - .
SLC7A11 and GPX4 neurons culture .1sichemla repg rfusm.n [44]
injury model in gerbils
Inhibits ferroptosis through Primary microglial aizrcoﬁlsglfiiﬂiﬂ?:dlizglge
Gallic acid modulation of the P2X7-ROS culture isolated from mild stimula tioFr)l model in [257]
signaling pathway neonatal SD rats
Sprague-Dawley rats
Acts on Cisplatin-induced
HK-2 cells nephrotoxicity in [258]
SIRT1/FOXO3A /GPX4 pathway C57BL /6 mice
Activates Nrf2 /GPX4 BCCAO-induced vascular
signaling pathway HT22 cells dementia model in SD rats 1]
Upregulation of oxidative
defense system through HT22 cells / [92]
Nrf2/HO-1 axis
Gastrodin Decreases levels of MDA and
ROS, raises the level of GSH, and
increases GPX activity, C6 cell line / [47]
upregulates expression of Nrf2,
GPX, HO-1, and FPN1
. s Liver sinusoidal
Potential ferroptosis inhibitor, .
. endothelial cells
upregulates expression of Nrf2 isolated f / [259]
and HO-1 isolated from
C57BL/6 mouses
Geraniin Iron chelator and ROS scavenger bmMSC 1solated‘fr.om / [260]
rat femur and tibia
Dextran sodium
Gingerenone A Ac.t 1vat?s Nrf2/GPX4 HepG2 cells sulphate.-md.u C.ed . [261]
signaling pathway secondary liver injury in

C57 mice
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Decreases iron and MDA levels, Streptozotocin and
increases the activity of SOD, hi h—}fjat— diet-induced
6-Gingerol inhibits expression of FACL4, HOc2 cells 8 . . [262]
- diabetes mellitus model in
promotes expression of GPX4, C57BL /6 mice
and activates Nrf2/HO-1 axis
Upregulates expression of GPX4 . . .
8-Gingerol and downregulates expression HT22 cells Spinal Corglsnilal:sy model in [263]
of LOX15
Upregulates expression of GPX4, . .
. SLC7A11, SLC3A2 and High-fat-diet- and
Glabridin . NRK-52E cells streptozotocin-induced [81]
downregulates expression : )
of TFR1 diabetes in SD rats
Decreases levels of Fe?* and ischemi%}rila(frfusion
Gossypol acetic acid ROS, inhibits lipid peroxidation, H9c2 cells injury m(}: delin [264]
upregulates GPX4 Sprague-Dawley rats
o Activates Nrf2 Primary human Disc degeneration model
Hesperidin signaling pathway nucleus pulposus cells in mice [265]
Upregulates expression of GPX4 .
Honokiol and SLC7A11 by activating RSC96 cells Strep tOZOtO.C in-induced [266]
Nrf2 pathway diabetes in SD rats
Activates . My ocardial .
HIF-10/SLC7A11/GPX4 HIC2 cells ‘Sdi‘fgzg/ ;efgg‘i‘:o“ [267]
Signaling pathway C57BL/6 mice
Upregulates expression of
SLC7A11 and GPX4, . .
downregulates expression of S tr??;;iiggﬁ;?iie d
Hydroxysafflor ACSL4, downregulates HUVECs di al:l))e tes in ApoE—/— [268]
yellow A expression of miR-429 which C57BL /6 Eﬁce
additionally upregulates
expression of SLC7A11
Reduces ROS, 4-HNE, and MDA
production, reduces Fe?* levels,
increases GSH/GSSG ratio, and PC12 cells / [191]
upregulates expression of GPX4
and SLC7A1
. Suppresses
Hyperjaponol J RSL-3-induced ferroptosis HT22 cells / [269]
. Suppresses
Hyperjaponol K RSL-3-induced ferroptosis HT22 cells / [269]
Methionine choline-
Activates Nrf2/SLC7A11/GPX4 deficient-diet-induced
athway / nonalcoholic [270]
P steatohepatitis in
lcariin C57BL/6] mice
Activates SIRT1/Nrf2/HO-1 Excessive-ethanol-treated
signaling pathway HL-1 cells C57BL/6 mice [271]
Upregulates expression of GPX4 HUVECs Atherosclerosis model in [272]

and FTH1

ApoE~/~ C57BL/6 mice
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Table 2. Cont.

Model System in Which Effect Was Examined

Reference

Phenolics Proposed Mechanism
In Vitro In Vivo
Alleviates iron accumulation / Alzheimer’s disease model [93]
and lipid peroxidation in C57BL/6] mice
Activates Nrf2/HO-1 Primary endplate Interver.t ebral dISC.
. line pathwa chondrocytes degeneration model in [273]
sighating p y Y C57BL/6 mice
Decreases level of Fe?*,
Icariin upregulates Nrf2, GPX4, HO-1, H9c2 cells / [274]
and downregulates ACSL4
Lowers levels of MDA and iron
by increasing expression of
GPX4,SLC7A11,SLC3A12L, and HUM-CELL-0060 cells / [275]
Nrf2 and decreasing expression
of TfR1 and NCOA4
.. Activates Nrf2 . MCAO—l.nduced cere.zbral
Icariside II . . primary astrocytes ischemia/reperfusion [276]
signaling pathway S
injury in mice
Isoforsythiaside . ACtl.V ates Nrf2 HT22 and BV2 cells Athelmelj S dl.sease model [85]
signaling pathway in mice
2+,
IIZ scelll; C?Iiclvlre]::sAe/s Feipr:srsoﬁgf LPS-induced acute kidney
Isoliquiritigenin GPX4 and Xct- system, and HK2 cells 12};1;};1{1/12(;1&1 Clén [277]
reduces expression of NCOA4
Intestinal
Isoliquiritin apioside 'Inhl‘t.nts HIF-1o MLE-2 cells . 1schem1a/reperfu§19n- [278]
signaling pathway induced acute lung injury
in C57BL/6 mice
Decreases the production of ROS Cerebral
and MDA, increases the activity Primary rat ischemia/reperfusion
Isoquercetin of SOD and CAT, and inhibits hippocam ;’1 neuron injury model in [279]
! the NOX4/ROS/NEF-«B pathway PP cell CII:J)I ture Sprague-Dawley rats
by induction of Nrf2 induced by
nuclear translocation MCAO/R surgery
Possible ferroptosis inhibitor,
activates Akt/SIRT1/Nrf2/HO-1 HT22 cells / [280]
signaling pathway
Isorhamnetin
Upregulates SIRT1, Nrf2, and Hypoxia/reoxygenation-
HO-1, and downregulates HO9c2 cells in dyp dm i/i Liniur [106]
NOX2,/4 uced myocardial injury
.. Inhibits PRDX2/MFN2/ACSL4 Diabetes model in
Isorhapontigenin signaling pathway CMECS db/db mice [281]
Activates Nrf2 Acetarpmo.pl'}en-mduced
ionaline pathwa L02 cells liver injury in [125]
Stghaiing p y BALB/c mice
Kaempferol
. Primary mouse cortical
Activates culture prepared from / [120]
Nrf2/SLC7A11/GPX4 axis prep
E16 mouse embryos
Prevents iron accumulation . ..
Kumatakenin through Eno3/IRP1 and inhibits MODE-K cells DSS-induced acute colitis [282]

lipid peroxidation

in C57BL/6 mice
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Upregulates expression of GPX4, . .
. . Ischemia/reperfusion
Licochalcone A downregulates expression of H9c2 cells model in SD rats [283]
ACSL4, inhibits Nrf2 /HO-1 axis
Langerdorff perfusion
Decreases levels of ROS, MDA,  HO9c2 cells and primary system for
Luteolin and iron, and restores protein cardiomyocytes from ischemia/reperfusion [119]
levels of GPX4 neonatal SD rats model on isolated hearts
from SD rats
. . MCAO/R-induced
Activates Nrf2 Primary cortical cerebral
Loureirin C . . neurons and 5H-SY5Y . . . [116]
signaling pathway cells ischemia/reperfusion
injury in C57BL/6 mice
Downregulates expression of
L ACSL4 and upregulates SNI-induced neuropathic
Methyl ferulic acid expression of GPX4 in a NOX4 / pain model in SD rats [284]
dependent manner
Upregulates expression of GPX4,
SLC7A11, CAT, SOD2, NFE21.2,
Moracin N HMOX1, GCLC, and GCLM, HT22 cells / [285]
and downregulates expression of
ACSL4, PTGS2, and FTH1
Ac.tlvat.es Nrf2/HO-1 BEAS-2B cells A.gI.\TPs—l.nduced llung [135]
signaling pathway injury in ICR mice
Naringenin Decreases expression of NOX1, ischei\n/[i}z; O/Craercl:ljflusmn
increases expression of GPX4, HIC2 cells .. P del i [115]
SLC7A11, FTH, and FPN1 tyury modet mn
Sprague-Dawley rats
Targeting of P2Y14 receptors, .Strep tozoto.cm-mduced.
L . diabetic cardiac autonomic
Naringin upregulation of / neuropathy model in [77]
Nrf2/GPX4 pathway Sprague-Dawley rats
Heatstroke-induced acute
Modulates p53/SLC7A11 axis MLE-12 cells lung injury model in [286]
C57BL/6 mice
Downregulates expression of High-fat-diet- and
& b H9¢2 cells streptozotocin-induced [287]
ACSL4 and NCOA4 . .
o diabetes model in SD rats
Nobiletin
Activates Nrf2/HO-1 SePSI?-aSS.O c.:latec'l acute
ionali th / liver injury in [122]
sighaling pathway C57BL/6 mice
Ameliorates oxidative stress and Renal infurv model in
ferroptosis through modulation / C57B]L /}é] mice [288]
of GPX4 and FTH1
Alleviates iron overload and
lipid peroxidation, promotes Primary mouse colonic Dextran sulphate
Phlorizin expression of GPX4, and lamin}; ropria cells sodium-induced colitis in [289]
decreases expression of FTH1 prop C57BL/6] mice
and FTL1
Piceatannol Antioxidant activity bmMSCs / [193]
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
. Surgery-induced
o . Primary chondrocytes . .
Pinocembrin Inh}blts' ferroptosis through isolated from C57BL /6 mterver'tebral dlSC. [290]
activation of Nrf2 pathway mice degeneration model in
C57BL/6 mice
Reduces levels of iron, ROS, and Cisplatin-induced acute
MDA, increases the level of GSH, HK-2 cells kidney injury model in [291]
Polydatin and GPX4 activity C57BL/6 mice
Increase in GPX4 activity and Traumatic brain injury in
decreased level of MDA Neuro2A cells male C57BL/6 mice [100]
Activates Nrf2/HO-1 MCAO-induced cerebral
signaling pathway / ischemia/reperfusion [292]
& injury in ICR mice
Downregulates expression of
ACSL4, and upregulates Virus infection model
. / . . [293]
Proanthocvanidins expression of GPX4 and in mice
y SLC7A11
Decreased levels of iron, TBARS,
downregulation of ACSL4 and Spinal cord injury in
ALOX15B, upregulation of / P Ca7BL/6 n]1 icg’ [294]
GPX4, Nrf2, and HO-1, and
increased level of GSH
Possible inhibitor of ferroptosis
thanks to the ability to decrease . .
the production of ROS, 4-HNE Focal cerebral ischemia
Protocatechualdehyde p . ’ SH-SY5Y cells model in Sprague-Dawley [295]
and 8-OHdG, and activate the rats induced by MCAO
PKCe/Nrf2/HO-1 y
signaling pathway
Alleviates iron accumulation Ulcerative colitis model in
Protocatechuic acid and lipid peroxidation and Caco-2 cells . [296]
. C57BL/6 mice
promotes expression of GPX4
Activates Nrf2 Diquat-induced intestinal
signaling pathway / damage in broiler chicks (2971
Pterostilbene
Promotes expression of Nrf2,
GPX4, and HO-1 COV434 and KGN cells / [298]
Inhibits lipid peroxidation and Ischemia/reperfusion
upregulates expression of GPX4 H9¢2 cells injury model in [49]
and FTH1 C57BL/6 mice
Downregulates expression of Ischemia/reperfusion
ACSL4, and upregulates HK-2 cells iniury mo del};n SD rats [299]
expression of GPX4 and FSP1 jury
Puerarin Upregulates expression of Nrf2,
GPX4, SOD, HO-, pAMPK, and / Subarachnoid hemorrhage [101]
PGCl«, and downregulates model in SD rats
expression of ACSL4
Upregulates expression of GPX4 . .
and FTH1, and downregulates / LPS-induced myocardial [300]

ACSL4 and TfR1

injury in SD rats
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Reduces levels of ROS, MDA,
and iron, increases level of GSH,
increases expression of A549 cells / [132]
Puerarin ACSL7A11, GPX4, FTH1, and
decreases expression of NOX1
Decreases levels of free iron and Heart failure model in
inhibits lipid peroxidation H9e2 cells Sprague-Dawley rats [301]
Potential ferroptosis inhibitor; Bone defect model in
Punicalagin activates Nrf2 /HO-1 Primary BMSCs SD rats [302]
signaling pathway
Activates LPS-induced lung injury in
SIRT1/Nrf2/GPX4 pathway AT2 cells C57BL/6 mice [130]
Activates Nrf2/HO-1 Diabetes model in db/db
signaling pathway HEK-2 cells C57BL/Ks] mice (78]
Prevents FTH1 degradation by Acrylamide-induced liver
direct interaction with NCOA4 HepG2 cells injury in C57BL/6] mice [123]
Activates Sepsis-induced
SIRT1/p53/SLC7ALL pathway HO9c2 cells cardiomyopathy model in [303]
SD rats
Inhibits lipid peroxidation, and LPS/ovalbumin-induced
upregulates expression of GPX4 RAW 246.7 cells neutrophilic asthma in [304]
and SLC7A11 C57BL/6 mice
Upregulates expression of GPX4 . Primary Spinal cord injury model in
and PGS2, and downregulates oligodendrocyte C57BL /6 mice [305]
expression of Tf and 1d2 progenitor cells
Decreases Fe>* and MDA Triptolide-induced
accumulation, and increases / multi-organ injury in [210]
GSH, GPX, GST, and CAT Kunming mice
Upregulates expression of GPX4, . .
Quercetin EL C;OT7 ALl FTII-)H FPN1. FSP1 Deoxynivalenol-induced
! ! T / intestinal damage in [306]
and downregulates expression of BALB/ .
ACSLA and TfR1 ¢ mice
Activates Nrf2/HO-1 pathway HT22 cells / [307]
Activates Nrf2 M17, PC12 and Ilrggzgiﬂ;ei [95]
signaling pathway SH-SY5Y cells C57BL /6 mice
Activates Kainic acid-induced
SIRT1/Nrf2/GPX4/SLC7A11 HT22 cells . . . [94]
signaling pathway seizures in C57BL/6] mice
Promotes TFEB-dependent MCEF-7 and / [72]
degradation of ferritin MDA-MB-231 cells
Activates Nrf2 Primary BMSCs / [308]
signaling pathway
Decreases levels of MDA, and Acute kidney injury model
increases the level of GSH and in C57BL/6] mice induced
GPX4, inhibits ferroptosis NRK-52E and
. . by renal [309]
through repression of activation HK-2 cells ischemia, reperfusion or
transcription factor 3 (ATF3) and folicgci d

repression of HO-1
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Lovaers levels of ROS and MDA, Type 2 diabetes mellitus
increases the level of GSH, model in C57BL,/6] mice
Quercetin restores the activity of SOD, and INS-1 cells . . . [310]
. . induced by high-fat diet
normalizes protein levels of Xct-, and streptozotocin
GPX4, and VDAC2 P
Upregulates expression of Nrf2, .
GPX4, FTH1, and NQO1, and 5-FU-induced
. H9c2 cells cardiotoxicity in [311]
downregulates expression of C57BL/6] mice
TfR1 and p53
Activates SLC7A11/GPX4 axis MLOY4 cells n]?;gzleti’ffgg;gf/o;‘:::e [79]
. High-intensity-exercise-
Upregulates expression of Nrf2, S : .
GPX4, SLC7A11, and FTH1 / training 1.nduced 1.ntest1.nal [312]
damage in Kunming mice
Activates SIRT1/p53 . Heart failure model in
signaling pathway HiPSCs C57BL/6] mice [313]
Activates SIRT3/FoxO3a Intestinal
pathway, promotes expression of ! ischemia/reperfusion
GPX4 and FTH1, downregulates Caco-2 cells injury model in [112]
expression of ACSL4 C57BL/6 mice
Activates Nrf2 /Keap1
signaling pathway BEAS-2B cells / [314]
Activates Nrf2/HO-1 pathway HT22 cells / [307]
Activates
SLC7A11/GPX4 pathway HepG2 cells / [315]
Upregulates expression of GPX4 Myocardial
R trol and FTH1, and downregulates H9c2 cells ischemia/reperfusion [111]
esveratro expression of TfR1 injury model in SD rats
Upregulates expression of GPX4 Myocardial infarction
and SLC7A11 H9e2 cells model in SD rats [316]
.Al.leylat.e S trom aceu m1.11at10n, Primary LPS-induced endotoxemia
inhibits lipid peroxidation, and . . : [317]
raises GSH levels cardiomyocytes model in C57BL/6 mice
Upregulates SIRT1/Nrf2 Sepsis-induced cardiom-
signaling pathway HOe2 cells yopathy model in SD rats [318]
Decreased levels of iron and Focal ischemic brain
ROS, and increased levels of Primary cortical damage model in SD rats
GSH, decreased expression of Y induced by middle cerebral [110]
ACSL4, increased expression of neurons artery
GPX4 and Ferritin occlusion/reperfusion
Decreases level of MDA,
increases level of GSH,
downregulates expression of MING cells / [319]
ACSL4 and COX2, and
upregulates expression of GPX4
Decreases levels of iron, ROS and
MDA, increases GSH, increases
expression of GPX4, FPN1, Nrf2 BV2 cells / [180]

and SLC7A11, and
downregulates STAT1 and Keap1
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Table 2. Cont.
) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Activates MCAO-induced cerebral
Nrf2/SLC7A11/GPX4 pathway HT22 cells 1sch§m1a / reperfusion [113]
injury in SD rats
) Downregulates expression of
Rhein ACSL4 and TfR1, and
upregulates expression of GPX4 Diabetic nephropathy in
and SLC7A11 through MPCS5 cells C57BL/6] mice (801
modulation of
Racl/NOX1/p-Catenin Axis
Decreases Fe ¥ and MDA Triptolide-induced
accumulation and increased / multi-organ injury in [210]
Rutin GSH, GPX, GST, and CAT Kunming mice
Activates Nrf2/HO-1 Hen ovary follicle
. . . / [320]
signaling pathway tissue culture
Promotes expression of GPX4,
SOD1 and SOD2, and Renal
downregulates expression of NRK cells ischemia/reperfusion [321]
ACSL4 by modulating injury model in SD rats
PI3K/AKT signaling pathway
Inhibits endoplasmic reticulum
oxidative stress-related APAP-induced acute liver
ferroptosis through activation of AMLI2 cells injury in C57BL/6] mice [124]
AMPK/SIRT1 pathway
. Alzheimer’s disease model
Activates Nrf2/GPX4 pathway / in SAMPS mice [96]
Inhibits lipid peroxidation and C2C12 cells, HUVECs  Diabetic hindlimb ischemia [322]
promotes expression of GPX4 and MOVAS cells model in C57BL/6 mice
Activates MLE-12 and RAW ischemia}/li'z;%erfusion [323]
Salidrosid -
alidroside Nrf2/SLC7A11/GPX4 pathway 264.7 cells injury in C57BL/6 mice
Decreased iron concentration, L
g .. Cq Doxorubicin-induced
inhibition of lipid peroxidation . .
. H9c2 cells cardiomyopathy in [324]
and production of 4-HNE, and C57BL/6 mice
increased expression of GPX4
Inhibits IL-17A mediated
ferroptosis through modulation / Hyperoxia-induced acute [131]
of Actl/TRAF6/p38 lung injury in KM mice
MAPK pathway
Promotes expression of GPX4,
SLC7A11, FPN1 and FTHI1, / Aging-related renal fibrosis [325]
downregulates expression of in SAMPS8 mice
ACSL4 and TfR1
Agtlvatfes Nrf2/HO-1 HT22 cells Alzhelme? S dl'sease model [97]
signaling pathway in mice
Possible ferroptosis inhibitor, Primary renal tubular Renal
Salvianolate activates Keap1/Nrf2/HO-1 o i’zlhelial cells ischemia/reperfusion [326]
signaling pathway P injury in C57BL/6] mice
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) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Modulates NaAsO,-induced kidney
HIF-2&/DUOX1/GPX4 pathway HEK-2 cells injury in C57BL/6] mice [327]
. o Downregulates expression of
salvianolic acid A ACSLA and upregulates Iron overload model in
expression of GPX4 and 661W cells Kunmine mice [328]
SLC7A11 and modulates 8
iron metabolism
Upregulates expression of GPX4 Myocardial
and FTH1, downregulates H9¢2 cells ischemia/reperfusion [329]
expression of TfR1 injury model in SD rats
Activates Nrf2 / Myocardial infarction [330]
signaling pathway model in SD rats )
Salvianolic acid B Potential ferroptosis inhibitor,
reduces MDA and H202
production, increases the level of Primary cortical Subarachnoid hemorrhage
GSH, increases the activity of neti]rons model in Sprague-Dawley [331]
GPX and SOD, and increases rats and C57BL/6 mice
expression of Nrf2, HO-1,
and NQO-1
LPS/cigarette
Promotes expression of GPX4, smoke-induced chronic
Scutellarein and prevents overexpression BEAS-2B cells obstructive pulmonary [332]
of HO-1 disease model in
C57BL/6 mice
Alleviates iron accumulation, Alzheimer’s disease model
Sennoside A inhibits lipid peroxidation, and BV2 cells in mice [87]
raises GSH levels
Reduces production of MDA
and iron concentration, increases .
. the level of GSH, and activity of .PMZ'S 1nd1{ce;d .
Sesamin . . / cardiovascular injury in [333]
SOD, GPX4, increases expression Soracue-Dawlev rats
of FPN1 and TfR1, and inhibits prag y
expression of FTH1 and FTL
Downregulates expression of o
p53 and upregulates expression HT22 cells Isltersg ,?OZX?E?CI?:E%uE:i [99]
of SLC7A11 and GPX4 ty
Silibinin Upregulates expression of GPX4
and FSP1, downregulates
expression COX2, activates INS-1 cells / [354]
PINK1-dependent mitophagy
Downregulates expression of .
Suberosin ACSL4, LOX, LPCAT3, and / Streptozotocin-induced [335]
i diabetes in SD rats
upregulates expression of GPX4
Activates Femoral artery
Syringic acid C2C12 cells ischemia/reperfusion [336]
Nrf2/HO-1/SLC7A11 pathway injury in C57BL/6 mice
Upregulates expression of GPX4,
SLC7A11 and ferritin, T2-toxin treated
Tannic acid downregulates expression of / [337]

ACSL4, TfR1, COX2, LOX,
and p53

C57BL/6] mice
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) Model System in Which Effect Was Examined
Phenolics Proposed Mechanism Reference
In Vitro In Vivo
Downregulates expression of
ACSL4 and upregulates / LPS-treated C57BL/6 mice [338]
expression of GPX4
Tectorigenin i
g Upregulates expression of . Unilateral ureteral
SLC7A11, GPX4, and Mouse primary renal . .
. e T obstruction model in [339]
downregulates expression of tubular epithelia cells C57BL /6 mice
NOX4 and activation of Smad3
Tetrahydroxy stilbene ~ Activates GSH/GPX4/ROS and / Alzheimer’s disease model 98]
glycoside Keap1/Nrf2/ARE pathways in APP/PS1 mice
Theaflavin-3,3'- Upregulates expression of Nrf2, Primary culture of Osteoarthritis model in [340]
Digallate GPX4, FTH1 and HO-1 human chondrocytes SD rats g
s Activates Nrf2/HO-1 6-hydroxydopamine
Thonningianin A signaling pathway SH-SY5Y cells treated zebrafish [43]
Activates Exhaustive
Trilobatin / exercise-induced fatigue in [341]
Nrf2/HO-1/GPX4 pathway C57BL /6 mice
Downregulation of ACLS4 and %233?;?;?;?&?5’[%]
Umbelliferone upregulation of GPX4., Nrf2 and HK-2 cells db/db and C57BLKS/] [342]
HO-1 expression .
db/m mice
Downregulates expression of . . MCAO-induced cerebral
Keap1l and TfR1 and upregulates Primary cortical ischemia /reperfusion [114]
expression of GPX4, SLC7A11, neuron cells .. . P
and HO-1 injury in SD rats
Vitexi Activates HK2 and Chronic kidney disease [343]
texan Keap1/Nrf2/HO-1 pathway NRK-49 F cells model in C57BL/6] mice :
High-fat-diet- and
Upregulates : streptozotocin-induced
GPX4/SLC7A11 axis HEK-2 cells diabetic nephropathy in [344]
SD rats
Pancreatic acinar cell Tauro-cholate induced
Wedelolactone Upregulation of GPX4 . acute pancreatitis in [345]
line AR42]
Sprague-Dawley rats
Decreased lipid peroxidation,
ROS neutralization, iron
Xanthohumol chelation, reduced levels of H9c2 cells Langendorff hearth [42]

ACSL4 and Nrf2, and
modulation of GPX4

perfusion system in rats

4. Summary

Ferroptosis is a new mechanism of regulated cell death which is characterized by the
accumulation of ferrous iron, depletion of GSH, and overproduction of ROS through the
Fenton reaction. This leads to lipid peroxidation in the cell membrane and eventually to
cell death. Ferroptosis has been connected with many diseases and pathologies such as
neurodegenerative diseases, ischemia/reperfusion injury, and liver fibrosis. In some of
these conditions, the selective initiation of ferroptosis can be beneficial, for example in
tumors and liver fibrosis. On the other side, the inhibition of ferroptosis can be beneficial in
cases of neurodegenerative diseases for the prevention of loss of neurons and in case of
ischemia/reperfusion injury.
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Plants have been used in traditional medicine for centuries, and with the development
of science, new disciplines have emerged such as rational phytotherapy. Plants produce an
abundance of secondary metabolites, such as polyphenols, which have numerous bioactivi-
ties such as antioxidant, anti-inflammatory, anti-cancer, neuroprotective, cardioprotective,
immunomodulatory, and other properties. The multitude of bioactivities exhibited by
polyphenols presents significant potential for the exploration and development of novel
medications and therapeutic approaches.

According to the systematic review carried out within this study;, it is evident that
the exploration of the connection between ferroptosis and polyphenols, both in vitro and
in vivo, is a vibrant ongoing direction for research. It has been confirmed that many
polyphenols can modulate ferroptosis, whether through initiation and promotion, or inhi-
bition, which both could have practical implications for health and disease. Yet, as per the
review, there is 2.5 times more research on the inhibitory effects of polyphenols on ferropto-
sis compared to their potential to induce it. This study encompasses the results of research
on 143 phenolic compounds. In total, 53 compounds showed an ability to induce ferrop-
tosis, and 110 compounds were able to inhibit ferroptosis, and out of those compounds,
20 showed both abilities depending on the model system. In terms of the inhibition and
activation of ferroptosis, the greatest number of papers are on the influence of flavonoids
(quercetin, baicalein, baicalin, erianin, puerarin), followed by diarylheptanoids (curcumin)
and stilbens (resveratrol). Out of 53 compounds with the ability to induce or promote
ferroptosis that were included in this review, 63% belong to flavonoids (the most abundant
subclasses are flavones—17%, flavonols—13%, bioflavonoids—9%, and flavanones—8%),
followed by coumarins (9%). The frequency of compounds with pro-ferroptotic activity
across polyphenol subclasses is shown in Figure 10. A similar trend can be seen for phenolic
compounds with anti-ferroptotic activity (Figure 10). Out of the 110 examined compounds
that were included in this review, 55% were accounted for by flavonoids (chalcones—12%,
flavones—10%, flavonols—10%, flavanones—5%, and isoflavones—5%), followed by stil-
benes and hydroxycinnamic acids with 7% each, and tannins (6%). From this, it can be
seen that flavonoids were the most studied class of polyphenols especially in subclasses
that are not so common in plants such as isoflavones and chalcones. Biflavonoids are
present among pro-ferroptotic compounds but are absent from anti-ferroptotic compounds
which can be of interest for further research of their mechanisms, especially for diseases
where ferroptosis induction would be favorable. Additionally, quercetin and rutin are one
of the most studied compounds in this review. When it comes to ferroptosis inhibitions,
many stilbenes, cinnamic acids and their derivatives, and tannins have shown promising
results. This highlights the importance of research on other classes not just flavonoids
(probably highly researched due to their wide-ranging activities and long-lasting use in
traditional medicines).

Stilbenes (B) = Simple phenolsl
. = Phenylpropanoid alchohols

= Gingerols Hydroxycinnamic acids

Xanthonoids = Hydroxybenzoic acids

Hydroxycinnamic acids \ [ = Diarylheptanoids

I \ [ = Benzofuranes

= Hydroxyphenyllactic acids \ Gingerols
= Lignans = Hydroxyphenylbutanons

= Diarylheptanoids Coumarins

6 = Hydroxybenzoic acids

= Anthraquinons
Phenolic lipids

= Tannins

= Stilbenes
Lignans

= Bibenzyls
= Naphtoquinones
= Antraquinones

X Phloroglucinols
Coumarins

Anthraquinons

——
Cannabinoids
Chalcones
= Flavanones
' = Flavones

= Flavanols

Biflavonoids
= Flavones
\ u |soflavanes

Isoflavones

Flavonols
= Isoflavones
A = Isoflavanes
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The most extensively studied compounds as inducers of ferroptosis include curcumin,
erianin, and shikonin. On the flip side, the most extensively studied inhibitors of ferrop-
tosis include baicalein, curcumin, quercetin, and resveratrol. All the compounds listed
are already recognized in natural product research for their beneficial pharmacological
properties, and the plants that naturally produce them have been extensively documented
in traditional medicine for centuries [37,46,50,60,78,184,316].

Curcumin is a polyphenolic compound derived from the rhizomes of the turmeric
plant (Curcuma longa L.). It is a natural phenolic pigment that imparts the characteristic
yellow color to turmeric. In scientific terms, curcumin is a diarylheptanoid, belonging to the
curcuminoid class. It is not surprising that curcumin is so widely investigated regarding
its potential to modulate ferroptosis, since it has significant attention in scientific research
due to its diverse pharmacological properties, including antioxidant, anti-inflammatory,
anti-cancer, and neuroprotective effects. Its versatile biological activities make it a subject
of interest in various fields, including pharmacology, medicine, and nutrition. Researchers
frequently investigate curcumin’s bioavailability, metabolism, and safety profile to enhance
its therapeutic potential. It is essential to note that despite its promising attributes, chal-
lenges related to curcumin’s low bioavailability have prompted ongoing efforts to develop
formulations that improve its absorption and effectiveness in biological systems, what
would also be an issue for ferroptosis modulation in rational therapy [45,50,56,222,225].

Eranin, is a biphenyl compound, which has a historical application as an antipyretic
and analgesic agent. It is a constituent of plants from the Dendrobium genus, recognized
among the 50 foundational herbs in traditional Chinese medicine. Researchers are partic-
ularly interested in eranin due to its demonstrated potential for treating conditions such
as inflammation, diabetic nephropathy, retinopathy, psoriasis, and various cancers. Given
that ferroptosis is implicated in the development of listed conditions, it come as no surprise
that eranin demonstrated potential as a modulator of ferroptosis [37,41,57,66,67].

Furthermore, shikonin is a naphthoquinone derivative obtained from the roots of
plants, particularly Lithospermum erythrorhizon Siebold & Zucc. 1846. The compound’s
distinctive red color makes it easily identifiable. Shikonin and its enantiomeric analogue,
alkannin, are prevailing natural lead compounds in the drug discovery and development of
anticancer agents. Despite having numerous biological effects, the most important activity
reported for shikonin derivatives is their antitumor effect which is exerted through various
mechanisms such as the induction of apoptosis and autophagy. The listed body of evidence
in this review supports adding ferroptosis to this list [73,74,182,184].

Moreover, both baicalein and quercetin are classified within the flavonoid group
of polyphenols, and they are abundantly present in a variety of fruits and vegetables.
Numerous studies have substantiated their positive impact on human health, underscoring
their potent antioxidant, anti-inflammatory, and anticancer properties. Consequently, it is
unsurprising that researchers have shown considerable interest in these compounds, as
they demonstrate substantial potential in inhibiting ferroptosis [95,118,197,306].

Wine and grape juice, particularly leaves and skins, are rich sources of resveratrol,
a stilbenoid polyphenolic compound. Additionally, resveratrol can be derived from var-
ious foods, including peanuts, pistachios, blueberries, strawberries, etc. Research has
demonstrated that resveratrol possesses antitumor, antioxidant, anti-inflammatory, and
anti-apoptotic effects. This anti-apoptotic effect can be partially explained by its great
potential to inhibit ferroptosis [111,175,180,307,319].

Even though polyphenols show promising results for the development of drugs and
therapeutics for many diseases, their application can be difficult. Namely, many polyphe-
nols have low bioavailability which can make drug delivery difficult. Curcumin and
flavonoid aglycones have high hydrophobicity and are poorly absorbed in the intestine,
this can be enhanced through newly developed drug delivery strategies such as the formu-
lation of liposomes or nanoparticles. The next problem with the application is the extensive
metabolic transformation that polyphenols can go through in an organism. Hydrophobic
compounds such as flavonoid aglycons can be glucuronidated and sulfated which enhances
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their solubility in body fluids, but at the same time results in their fast excretion through
the kidneys. This not only makes it difficult to predict in which state the compounds would
be delivered to the target and in which concentration but also poses a question of whether
the metabolites will have the same activity as pure compounds. Sometimes metabolites
are completely inactive while in other cases metabolites can show greater or different
activities. This is a big flaw of in vitro assays on cells, because absorption, bioavailability,
and metabolic changes that happen in the body are not encompassed by these experiments.
Animal studies, being performed on living organisms, give a better idea about the efficacy
of examined compounds and their pharmacokinetics and can be a great stepping stone for
the design of new compounds with more desirable properties [6,346-348]. Another thing
that needs to be taken into consideration when considering the application of polyphenolics
as medicines is their potential interaction with other drugs. Polyphenols can bind iron
in complexes from which it is not bioavailable or influence the systemic metabolism of
iron which needs to be taken into consideration when iron supplementation is being used
for the treatment of iron-deficiency anaemia [349]. Another thing that needs to be taken
into consideration is the ability to influence the P450 enzyme. P450 is a group of liver
enzymes that play a crucial role in the detoxication, metabolism, and removal of different
molecules, including drugs. The rate of their activity is crucial for the metabolism and
pharmacokinetics of drugs. Polyphenols can lower the activity or inhibit the activity of
P450 enzymes, which can result in the accumulation and prolonged activity of drugs, as
well as increase the risk of side effects or toxic effects due to higher doses of drugs in
the body. On the other hand, some polyphenols can induce P450 activity, which leads to
faster metabolism and removal of drugs and can result in low drug efficacy [350]. All this
highlights the importance of studying not just bioavailability but also the metabolism and
metabolic effects of polyphenolics before their clinical application.

The use of artificial intelligence (AI) and machine learning in different areas has
become a hot topic, and interest is still growing. This is due to the various possibilities
of applications such as searching for potential targets for therapeutics or design and
the development of new drugs. If trained well through machine learning, Al can make
this process much easier, faster, and economically affordable because then only the most
promising compounds would be synthesized and tested. Recently, there have been some
promising results for the use of machine learning to train Al to discern whether the
mechanism of cell death was through apoptosis or ferroptosis. This was completed through
the synthesis of a database of results obtained in the lab and the use of certain biomarkers
for each cell death mechanism [351,352]. Deep learning was also applied to identify new
potential targets for treatment of lung cancer through the modulation of ferroptosis [353].
These studies are just stepping stones for future research and showcase the potential and
power that Al and machine learning have to offer.

5. Conclusions

From the data gathered within this review, it can be summed up that the parameters
examined during the evaluation of the potential of polyphenols to promote or inhibit
ferroptosis in most cases include the evaluation of levels of GSH, oxidized GSH, MDA,
free cellular iron levels, ROS, and the expression of genes and proteins involved in the
regulation of ferroptosis, such as GPX4, HO-1, Nrf2, FTH1, and others.

Although there’s been a lot of research on the potential of polyphenols to modulate
ferroptosis, very little is known about the influence of plant extracts that contain numerous
polyphenols, with some of them possibly possessing antagonistic activities. Additionally,
the effects of polyphenols on ferroptosis can vary depending on factors such as concen-
tration and bioavailability. It would be of interest to construct structure-activity relation
studies to gain insight into what structural elements of polyphenols are responsible for
their desired activities toward ferroptosis, which can open the door to the development of
new drugs based on naturally occurring phytochemicals. Also, there is a need for further
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study of the role that ferroptosis plays in some diseases which would provide additional
targets for potential treatments.

According to the author’s opinion, the emerging field of ferroptosis and its modula-
tion by natural compounds like polyphenols presents a fascinating and promising area
of research with profound implications for human health and disease, notably for cancer,
cardiology, neurology, and transplantation. The intricate interplay between ferroptosis
and various physiological processes underscores the complexity of cellular regulation and
underscores the potential for innovative therapeutic interventions. Furthermore, the duality
of polyphenols in either promoting or inhibiting ferroptosis, as exemplified by compounds
like curcumin, highlights the complicated nature and wide range of natural product phar-
macology. This complexity underscores the importance of comprehensive research efforts
to unravel the precise mechanisms underlying these effects and their potential applications
in different disease contexts. As we delve deeper into understanding ferroptosis and its
modulation, it becomes increasingly clear that exploring not only the molecular pathways
involved but also the practical aspects of delivering these compounds into specific cells is
essential for translating research findings into effective clinical interventions. Overall, the
study of ferroptosis and its interaction with natural compounds like polyphenols represents
an exciting frontier in biomedical research, offering new insights and opportunities for
improving human health and combating various diseases.
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