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Abstract—Integrated sensing and communication (ISAC) net-
works strive to deliver both high-precision target localization and
high-throughput data services across the entire coverage area.
In this work, we examine the fundamental trade-off between
sensing and communication from the perspective of base sta-
tion (BS) deployment. Furthermore, we conceive a design that
simultaneously maximizes the target localization coverage, while
guaranteeing the desired communication performance. In contrast
to existing schemes optimized for a single target, an effective
network-level approach has to ensure consistent localization ac-
curacy throughout the entire service area. While employing time-
of-flight (ToF) based localization, we first analyze the deployment
problem from a localization-performance coverage perspective,
aiming for minimizing the area Cramér-Rao Lower Bound (A-
CRLB) to ensure uniformly high positioning accuracy across the
service area. We prove that for a fixed number of BSs, uniformly
scaling the service area by a factor κ increases the optimal A-
CRLB in proportion to κ2β , where β is the BS-to-target pathloss
exponent. Based on this, we derive an approximate scaling law
that links the achievable A-CRLB across the area of interest
to the dimensionality of the sensing area. We also show that
cooperative BSs extend the coverage but yield marginal A-CRLB
improvement as the dimensionality of the sensing area grows.
By exploiting the invariance properties discovered with respect to
the displacement, rotation, and symmetric projection deformation,
we derive a deployment-invariant structure for conceiving a low-
complexity framework for ISAC network deployment. We then
formulate the joint sensing-communication optimization problem
and present a Majorization-Minimization algorithm for designing
high-quality deployment solutions. Extensive simulations demon-
strate that our framework significantly enhances sensing coverage,
while maintaining the desired communication throughput.

Index Terms—Integrated sensing and communication, multi-
cell networks, network performance analysis, stochastic geometry,
antenna allocation, cooperative sensing and communication.

I. INTRODUCTION

High-quality localization and data transmission are funda-
mental for supporting sophisticated applications, including au-
tonomous driving and advanced augmented reality [1], [2].

Kaitao Meng is with the Department of Electrical and Electronic
Engineering, University of Manchester, Manchester, UK (email:
kaitao.meng@manchester.ac.uk). Kawon Han is with the Department of
Electrical Engineering, Ulsan National Institute of Science and Technology
(UNIST), Ulsan, South Korea (email: kawon.han@unist.ac.kr). Christos
Masouros is with the Department of Electronic and Electrical Engineering,
University College London, London, UK (email: c.masouros@ucl.ac.uk). Lajos
Hanzo is with School of Electronics and Computer Science, University of
Southampton, SO17 1BJ Southampton, UK (email: lh@ecs.soton.ac.uk)

The financial support of the following Engineering and Physical Sciences
Research Council (EPSRC) projects is gratefully acknowledged: Platform
for Driving Ultimate Connectivity (TITAN) (EP/X04047X/1; EP/Y037243/1);
Robust and Reliable Quantum Computing (RoaRQ, EP/W032635/1); PerCom
(EP/X012301/1); India-UK Intelligent Spectrum Innovation ICON UKRI-1859.

However, using separate wireless localization networks and
wireless communication networks can lead to increased inter-
ference between the sensing and communication (S&C) subsys-
tems. Additionally, the rapid growth of wireless data traffic and
the increasing scarcity of spectrum have inspired substantial re-
search interests in integrated sensing and communication (ISAC)
technologies [3]–[7], to leverage a shared infrastructure and
common waveforms, enabling simultaneous data transmission
and echo collection for localization. Based on this unified
framework, ISAC can significantly improve spectrum utilization
and enhance both cost-effectiveness and energy efficiency [8].
Notably, the International Telecommunication Union (ITU) has
identified ISAC as one of the six key usage scenarios for the
forthcoming sixth-generation (6G) networks. To date, research
efforts have primarily focused on enhancing both the sens-
ing and communication performance within single-cell ISAC
scenarios through flexible design strategies at individual base
stations (BSs) [9]–[14]. Nevertheless, substantial improvements
may be attained in overall ISAC system performance at the
cellular level by exploring network-level frameworks [15]. In
particular, multi-cell cooperative strategies designed for joint
S&C [16], [17] emerge as a promising hitherto under-explored
research direction.

Recent studies have begun exploring the new degrees of free-
dom (DoF) in managing the trade-offs between communication
and sensing at the network level [17]–[21]. In particular, the
authors of [15] and [22] present a systematic study of the
emerging network-level performance metrics and DoF, laying
the foundation for understanding and optimizing cooperative
ISAC systems. As an example, [18] investigates how to optimize
the number of cooperating BSs to maximize the attainable
networked sensing and networked communication performance
under specific backhaul constraints. Coordinated precoding can
repurpose inter-cell interference as useful spatial degrees of
freedom, substantially improving sensing performance. In ad-
dition, [20] proposed a system-level beam alignment scheme
that leverages synchronization signal block and time-frequency
pattern design for dramatically reducing the beam misalignment
probability in THz/mmWave networks. Most recently, [21] in-
vestigated antenna topology optimization in ISAC networks with
randomly distributed targets, users, and BSs, introducing a new
DoF in the S&C tradeoff and showing that the optimal topology
may lie between centralized massive MIMO and distributed
cell free topologies, depending on the localization method and
path loss exponent. Overall, the above works mainly focus on
waveform design and resource allocation, while the problem
of optimizing the network deployment to enhance cooperation

ar
X

iv
:2

50
6.

18
00

9v
2 

 [
ee

ss
.S

P]
  2

3 
D

ec
 2

02
5

https://arxiv.org/abs/2506.18009v2


2

efficiency remains largely unexplored.
Traditional cellular communication networks have historically

been deployed to maximize communication performance, opti-
mizing coverage probability and data throughput [23]. However,
as future networks shift toward integrated functionalities, the
dual demands of reliable data transmission and high-accuracy
environmental or target sensing become increasingly critical
[24]. While communication systems are typically interference-
limited, the opportunities for multi-static sensing mean that
sensing systems are not interference limited, which creates a
fundamental paradigm shift for the ISAC network deployment.
On the other hand, inadequate BS placement can induce se-
vere sensing blind spots, undermining seamless localization in
mission-critical applications, such as autonomous driving and
dynamic target tracking in smart cities. To date, no system-
atic study has addressed how to (i) reconfigure existing BS
layouts or (ii) augment them with additional sites for jointly
optimizing sensing fidelity and communication quality. Filling
this knowledge gap is essential to fully exploit the network-
level DoF identified in prior research [17]–[20], ensuring that
future deployments meet the dual imperatives of robust data
transmission and precise environmental awareness.

Cooperative localization using multiple BSs has recently
gained attention due to its ability to achieve high localization
precision at low power dissipation. In such systems, the deploy-
ment of anchor nodes, e.g., BSs, plays a critical role: an optimal
deployment improves localization accuracy and also enhances
the coverage probability [25], which is essential in dynamic
environments. By contrast, classical sensor placement strategies
typically focus on single-target scenarios. For example, in [26],
the authors analyze the localization accuracy of a single-point
target and introduce metrics such as equivalent single-radar
gain, coherence gain, and geometry gain to guide the placement
of transmit and receive antennas in widely separated MIMO
radar systems. Moreover, the authors of [27], [28] proposed a
new approach using dual-functional unmanned aerial vehicles
for enhancing both the communication and localization perfor-
mance in emergency scenarios by deploying them optimally to
meet the ground users’ needs. This allows addressing challenges
such as cardinality minimization and encountering non-convex
localization metrics. While these approaches optimize perfor-
mance for a single target, the deployment of ISAC services
in the cellular domain introduces the broader requirement of
achieving robust network-wide sensing coverage. The influence
of anchor placement on achieving uniform coverage and the
corresponding scaling laws for coverage quality have not yet
been rigorously established. This knowledge gap highlights the
need for further investigations into deployment optimization for
attaining enhanced network-wide S&C performance.

Extending deployment strategies from isolated, single-target
sensor placements to full area-wide S&C coverage requires
incorporating spatially varying path loss and geometric gain
for every target location, which directly extends and reshapes
the design space. Moreover, evaluating sensing performance
via metrics such as the CRLB introduces intricate couplings
among BS positions and network parameters, rendering analyt-
ical tractability elusive and necessitating a complete redesign
of optimization algorithms [29]. The resultant interdependence

of BS locations not only amplifies the computational burden
of determining an optimal configuration but also invalidates
conventional distance-based cooperation criteria. In cooperative
multi-BS localization, the nuanced interactions among BSs di-
rectly influence both communication reliability and localization
precision. Importantly, the scaling law that links the number
of BSs to localization accuracy across an entire area of interest
remains unexplored, because existing studies have been confined
to the single-target scenario. Consequently, achieving robust
and network-wide ISAC performance requires novel deployment
and cooperation frameworks that explicitly account for spatial
diversity, parameter coupling, and the cooperative dynamics of
modern localization techniques.

To overcome these challenges, we formulate the joint de-
ployment problem as the twinned optimization of localization
and communication coverage, aiming for minimizing the target
localization error across the entire target area, while simultane-
ously ensuring the required communication quality. By examin-
ing the structure of the CRLB, we unveil that the optimal place-
ment exhibits displacement, rotation, and symmetric projection
invariance that we detail in Section III. These properties allow
us to collapse the high-dimensional search space into a much
smaller, representative subset. Such invariance-driven reduction
not only yields rigorous performance bounds, characterizing,
e.g., the minimum achievable average CRLB as a function of
network size and area geometry, but also admits low-complexity
algorithms for practical ISAC network deployments. This frame-
work directly addresses the trade-off between communication
and sensing by decoupling the interdependencies among BSs,
paving the way for scalable multi-cell ISAC deployments. Then,
based on the Majorization-Minimization (MM) optimization
framework, we transform the problem formulated to sequential
sub-problems and effectively decouple the complex interrela-
tions among BS positions. This decoupling not only simplifies
the underlying optimization problem but also allows us to have
more efficient algorithmic solutions. The main contributions of
this paper are summarized as follows:

• We propose a cooperative ISAC network architecture that
tightly integrates multi-static radar sensing with coordinated
multi-point (CoMP) data transmission, by optimizing BS
deployment to reveal the fundamental trade-offs between
sensing and communication performance. Beyond traditional
distributed MIMO radar deployments for individual target, our
design simultaneously guarantees area-wide high-throughput
communications and high-precision sensing.

• Employing time-of-flight (ToF) localization, we first establish
that the optimal BS deployment strategy for sensing per-
formance enhancement over an area admits three provable
invariances, displacement, rotation, and reflection symmetry,
thereby showing that any Euclidean transformation of a candi-
date layout preserves its sensing-communication performance.
Moreover, we prove that for a fixed number of BSs, uniformly
scaling the service area by a factor κ increases the optimal
area CRLB (A-CRLB) in proportion to κ2β , where β denotes
the pathloss exponent between BSs and targets. Leveraging
the conclusions derived, we can find an optimal solution for
a new area based on the foundational optimal BS deployment
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Fig. 1. Illustration of cooperative ISAC networks.

strategy through displacement, rotations, symmetric projec-
tion, and area scaling.

• We derive an asymptotic scaling law for the minimum A-
CRLB 1

N 2β/d , where N denotes the number of cooperat-
ing ISAC nodes and d ∈ {1, 2, 3} represents the spatial
dimensionality of the sensing area. This law implies that,
for a given increase in N , the reduction in sensing error
decays more slowly as d grows. Consequently, the incremental
gain in coverage afforded by each additional node diminishes
in higher-dimensional monitoring scenarios, underscoring an
inherent trade-off between achievable sensing accuracy and
the spatial extent of the surveillance area in the design of
practical ISAC networks.

• We reformulate the general BS deployment optimization for
joint sensing-communication design within the MM frame-
work, converting it into a sequence of tractable subproblems.
By embedding a trust-region solver in each MM iteration,
the resultant algorithm reliably converges to high-quality sta-
tionary solutions, while maintaining only modest per-iteration
computational complexity. Extensive simulations demonstrate
that the proposed deployment strategy is capable of enhanc-
ing the sensing-coverage probability by at least 50%, while
maintaining the desired communication throughput.

Notation: Lower-case letters in bold font will denote de-
terministic vectors. For instance, X and X denote a one-
dimensional (scalar) random variable and a random vector (con-
taining more than one element), respectively. Similarly, x and
x denote scalar and deterministic vectorial values, respectively.
Ex[·] represents statistical expectation over the distribution of x,
and [·] represents a variable set. Let 1T ≜ [1, 1, . . . , 1] ∈ R1×N

and eTn ≜ [ 0, . . . , 0, 1︸︷︷︸
nth

, 0, . . . , 0 ] ∈ R1×N .

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, BSs within a given area form a
cooperative cluster for both communication and sensing. For
communication, these BSs can adopt non-coherent joint CoMP
transmission, transmitting identical data streams without requir-
ing strict phase synchronization, thereby enhancing received
power, while maintaining low coordination overhead [18]. For
sensing, the BSs collaborate as a distributed multi-static MIMO
radar system, using code-division multiplexing (CDM) to en-
sure orthogonality among transmitted waveforms and achieve

TABLE I
SCALING LAWS FOR DIFFERENT LOCALIZATION SCENARIOS

Target Type Scenario Asymptotic
Scaling Law Ref.

Individual
target CRLB

Random deployment
1

ln2 N
[18]

Optimal deployment
1

N2
[26]

d-dimensional
area CRLB Optimal deployment

1

N2β/d
⋆ Proposed

⋆ The scaling law characterizes how the CRLB decays as the number of nodes
N grows, serving as an upper bound for the average decreasing trends
of CRLB with increasing N derived in this work, where d denotes the
dimension of the sensing area (typically d = 1, 2, 3).

accurate localization under non-coherent signal processing [30],
[31].1

In this study, we explore the optimal BS deployment strategy
for cooperative ISAC networks, to reveal that the deployment
of BSs brings a new DoF to balance the sensing and com-
munication performance. In this cooperative service area, each
BS designs the transmit precoding for sending the information
signal sc to the single-antenna communication user served,
together with a dedicated radar signal ssn for the detected target.
Then, the communication user and the sensing target can be
collaboratively served by N BSs, indexed by n, and each BS
has Mt transmit antennas and Mr receive antennas. Let us
assume that the transmitted radar signals {ssn}Nn=1 of the BSs
in the cooperative sensing cluster are approximately orthogonal
for any time delay of interest by applying CDM only to the
sensing signal ssn. Accordingly, we spread it as s̃sn = cn s

s
n,

where cHn cm = δnm, ∥cn∥2 = 1.
For notational simplicity, we continue to use ssn to represent

the spread signal cns
s
n in the remainder of the discussion. It

is assumed that E[ssn(s
c
n)

H ] = 0, which is consistent with
the assumptions in [32]–[34]. Upon letting sn = [ssn, s

c
n]

T , we
have E

[
sns

H
n

]
= I2. To facilitate our analysis, when a BS

is connected to multiple users and targets, we assign them to
orthogonal time or frequency resource blocks so that, within
a certain resource block, each BS serves only one user and
one target. For the block designated to a specific target or
region of interest, all BSs are scheduled to serve that target
simultaneously, enabling cooperative multistatic sensing.2 Then,
the signal transmitted by the nth BS is given by

xn = Wnsn = wc
ns

c
n +ws

ns
s
n, (1)

where wc
n and ws

n ∈ CMt×1 are beamforming vectors, with
∥wc

n∥2 = pc and ∥ws
n∥2 = ps. Here, ps and pc respectively

represent the transmit power of the sensing and communication

1By avoiding phase-level synchronization, our cooperative ISAC strategy
strikes a practical balance between system complexity and the performance
of ISAC networks.

2Nevertheless, our analytical framework based on this assumption may
be readily extended to multi-users and multi-targets association to each
time/frequency resource blocks unless they are closely located within serving
area.
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signals, and Wn = [wc
n,w

s
n] ∈ CMt×2 is the transmit precod-

ing matrix of BS n. The location of BS n can be represented by
bn = [xb

n, y
b
n, z

b
n]

T ∈ R3, n = 1, 2, . . . , N . To eliminate intra-
BS interference from sensing to communications and simplify
our analysis, zero-forcing (ZF) beamforming is employed. The
beamforming matrix is constructed as

Wn = W̃n

(√
diag

(
W̃H

n W̃n

))−1

diag
(√

pc,
√
ps
)
. (2)

where W̃n = HH
n

(
HnH

H
n

)−1
and Hn =

 hH
n,c

aHMt
(Ωn)

 ∈

C2×Mt . Here, hH
n,c ∈ C1×Mt represents the communication

channel spanning from BS n to the served user, and aH(Ωn)
corresponds to the sensing channel impinging from BS n to
the target. Here, Ωn denotes the spatial frequency associated
with angles of arrival from BS n to the target point t =
[xt, yt, zt]T ∈ R3 along the antenna array, for an uniform
linear array aligned with the x-axis with spacing λ/2. With
azimuth-elevation angles (φn, θn) from BS n to the target,
we have Ωn = π sin θn cosφn. The spatial frequency Ωn

is the per-element phase increment induced by the direc-
tion (φn, θn) projected onto the array axis, i.e., aMt

(Ωn) =[
1, ejΩn , . . . , ej(Mt−1)Ωn

]⊤
. With the aid of ZF beamforming,

intra-cell communication interference is minimized since all
cooperating BSs serve the same communication user, while their
sensing beams avoid that user.

B. Cooperative Sensing Model

We aim to explore the optimal BS deployment method
by examining time-of-flight based ranging measurements. The
location of a certain target point is denoted as t ∈ R3, where
t ∈ A, and A represents the entire area of interest. The base-
band equivalent of the signal reflected from target point t at
receiver m is represented as

ym(τ)=
∑N

n=1
σ ∥t− bm∥−

β
2 aMr(Ωm)∥t− bn∥−

β
2 aHMt

(Ωn)︸ ︷︷ ︸
target channel

Wnsn(τ −τn,m)+
∑

n∈ΦI

Hn,mWnsn(τ−τ̃n,m)︸ ︷︷ ︸
inter-cluster interference

+n(τ),

(3)
where β ≥ 2 is the pathloss exponent between the serving
BS and the target.3 Furthermore, σ denotes the radar cross
section (RCS), τn,m is the propagation delay of the bistatic link
spanning from BS n to the target and then to BS m, while
τ̃n,m denotes the propagation delay of the direct link impinging
from BS n to BS m. Recognizing that a link-invariant RCS is an
idealization in multistatic settings, we adopt an average effective
σ for tractable deployment optimization, consistent with [35].
In (3), Hn,m denotes the channel from BS n to BS m. Finally,

3For sensing performance analysis, we consider an open area of interest
for target sensing where no blockage exists. This is because the radar sensing
normally focuses on the light-of-sight (LoS) targets parameters and Non-LoS
(NLoS) reflections may be neglected due to additional high pathloss of double-
bouncing nature of radar.

the term n(τ) is the additive complex Gaussian noise having
zero mean and covariance matrix σ2

sIMr .
Assuming unbiased estimations, the CRLB serves as a bench-

mark for theoretical localization accuracy in terms of the mean
squared error (MSE), which can be expressed as

E
[
∥t̂− t∥2

]
≥ Tr

(
F(t)−1

)
≜ CRLB(t), (4)

where t̂ = [x̂t, ŷt, ẑt]
T represents the estimated location of the

target. By applying matched filtering and reciprocal filtering,
one can estimate the ToF of the signal between targets and BSs,
and hence determine the propagation distance. Specifically, from
transmitter n to the target and then to receiver m, the term d̂nm
denotes the bistatic range corresponding to the path BS-n →
target → BS-m, which is given by

d̂nm = dnm + nt
nm, (5)

where dnm = ∥bn − t∥ + ∥bm − t∥ denotes the true dis-
tance, the measurement noise is nt

nm ∼ N
(
0, η2nm

)
, η2nm =

3c2σ2
s

8π2GtMrB2γnm
, and γnm = σ̄∥bn − t∥−β ∥bm − t∥−β , the

constant σ̄ > 0 absorbs distance-invariant factors such as the
average RCS. Here, c denotes the speed of light, B2 represents
the effective squared bandwidth, Gt is the transmit beamforming
gain in the direction of the target, and γnm represents the bistatic
channel power.

Then, we transform N2 time-of-flight measurement links
into the target location. The Jacobian of the N2 bistatic range
measurements, evaluated at the true target position t,4 can be
expressed as

J(t) =



(
(t−b1)

T

∥t−b1∥ + (t−b1)
T

∥t−b1∥

)
(

(t−b1)
T

∥t−b1∥ + (t−b2)
T

∥t−b2∥

)
...(

(t−bn)
T

∥t−bn∥ + (t−bm)T

∥t−bm∥

)
...(

(t−bN )T

∥t−bN∥ + (t−bN )T

∥t−bN∥

)



∈ RN2×3.

Then, the Fisher information matrix (FIM) of sensing perfor-
mance related to the target point is given by

F (t) = JTR−1J, (6)

where R−1 = diag
(
η−2
nm

)
(n,m)

. Since the transmit beamform-
ing gain Gt in the direction of the target is influenced by the
randomness of the communication user channels in the joint
waveform design (c.f. (2)), we perform an expected CRLB
analysis based on the channel statistics. Given the locations of
the ISAC BSs, the expected CRLB at a specific target point t
can be given by

CRLB(t) = EGt

[
Tr
(
F (t)

−1
)]

. (7)

4In our system, while we may not have the exact target location, the estimated
or predicted location of the target gleaned from previous sensing results can be
utilized for performance analysis, such as in target tracking.
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To evaluate the overall positioning performance across the entire
area of interest, denoted by A, we define the expected area
CRLB (A-CRLB) as the average of CRLB(t) over A, given by

CRLB =
1

|A|

∫
t∈A

CRLB (t) dt, (8)

where |A| denotes the size (or volume) of the sensing area
A in a d-dimensional space. As summarized in Table I, the
individual-target CRLB is the pointwise CRLB on localization
error for a single target. By contrast, the d-dimensional area
CRLB averages CRLB(t) over a region A ⊂ Rd to assess
localization performance across the entire area.

C. Cooperative Communication Model

We assume that the transmitters use non-coherent joint trans-
mission, where the useful signals are combined by accumu-
lating the transmit signal powers of cooperative BSs, i.e., all
cooperating BSs transmit the same communication signal, with
sn = [ssn, s

c]
T . Here, u = [xu, yu, zu]T ∈ R3 denotes the user

location. The signal received at the typical user is then given
by

yc =
∑N

n=1
∥bn − u∥−α

2 hH
n Wnsn︸ ︷︷ ︸

collaborative intended signal

+
∑

n∈ΦI

∥bn − u∥−α
2 hH

n Wnsn︸ ︷︷ ︸
inter-cluster interference

+nc, (9)

where α ≥ 2 is the pathloss exponent, hH
n ∼ CN (0, IMt

) is the
channel vector of the link between the BS at bn and the commu-
nication user, ΦI is the interfering BS set, and nc ∈ CN (0, σ2

c )
denotes the noise. Since our goal is to optimize BS placement
within a fixed local area, and external interference cannot be
readily controlled, we simplify performance assessment to the
signal-to-noise ratio (SNR) of the cooperative cluster, treating
the inter-cluster interference term as noise [36]. The SNR of the
received signal at the user u can be expressed as

SNRc =

∑N
n=1 gn∥bn − u∥−α

σ̃2
c

, (10)

where
∣∣hH

n wc
n

∣∣2 denotes the effective desired signals’ channel
gain, and σ̃2

c denotes the effective noise variance, including
interference. The average data rate of users is given by

Rc(u) = Egn [log2(1 + SNRc)]. (11)

We then define the area communication rate over the communi-
cation user area B by 1

|B|
∫
u∈B Rc (u) du. Similarly, |B| denotes

the size (or volume) of the communication user area B.

D. Problem Formulation

We aim for minimizing the expected localization error over
the area of interest while satisfying the communication rate
requirement. In practice, although the exact user and target
locations are unknown a priori, this assumption enables us to
characterize the worst-case service performance across the entire

area, reflecting practical deployment requirements. Therefore,
the problem can be formulated as

(P1) : min
{bn}N

n=1

1
|A|
∫
t∈A CRLB (t) dt (12)

s.t.
1

|B|

∫
u∈B

Rc (u) du ≥ Rth, (12a)

where bn denotes the position of the nth BS.5

Remark 1: In contrast to communication sum rate maximiza-
tion, where the sum rate can theoretically grow unbounded as
the SNR increases, fairness is difficult to ensure. The system
tends to allocate more resources to users having better channel
conditions, potentially leaving users with poor channels under-
served or even entirely ignored. However, since the CRLB is
strictly positive, minimizing the area CRLB can be heavily
influenced by sub-regions having high CRLB values, even if
the CRLB is near zero across most of the sensing area. This
characteristic makes the optimization highly sensitive to regions
with poor performance, compelling BS deployment to prioritize
these regions for improvement. Consequently, minimizing the
area CRLB is inherently sensitive to worst-case locations.
Explicitly, if a sub-region’s CRLB tends to infinity, so does the
objective, forcing BS deployment to eliminate worse sensing
points and thus yielding a naturally balanced performance over
the area of interest without an explicit upper-bound constraint
of maxtk CRLB(tk) ≤ CRLBth.

III. OPTIMAL SENSING DEPLOYMENT ANALYSIS

While the communication-only deployment has been well
studied in the past decades, we have to understand the effects
of BS deployment on the area sensing performance before
designing the joint ISAC deployment. In this section, we first
prove several important characteristics of an optimal deployment
strategy, to reveal the unique scaling law of sensing coverage
quality and facilitate solving the problem.

A. Invariance Characteristics of Optimal Deployment

In this section, we first characterize the optimal BS deploy-
ment from a sensing performance perspective by first ignor-
ing any communication constraints. Specifically, the sensing-
optimal deployment problem can be formulated as follows:

(P1.1) : min
{bn}N

n=1

1
|A|
∫
t∈A CRLB (t) dt. (13)

Building on this optimality formulation, we demonstrate that the
area CRLB is independent of any displacement, rotation, and
symmetric projection under optimal BS deployment, as shown
in Fig. 2, based on which, we present a streamlined design
procedure for sensing networks.

Proposition 1: Invariance to displacement. Let A ⊂ Rd

be the sensing area in problem (P1.1), and let {b∗
n}Nn=1 be an

optimal BS deployment attaining the minimum CRLB = E∗.
For any displacement vector ∆ ∈ Rd, define the shifted area

5While our study treats static BS placement, the framework naturally extends
to mobile BSs (e.g., drones) by re-optimizing time-varying locations on a
receding horizon using online user and target trajectory estimates, subject to
mobility and energy constraints, to minimize a time-averaged area-CRLB.
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(a) Displacement (b) Rotation

(c) Symmetric projection (d) Area scaling

Fig. 2. Illustration of invariance and similarity.

A∆ = A +∆. Then, {b∗
n +∆}Nn=1 is an optimal solution of

(P1.1) posed over A∆, achieving the same objective value E∗.
Proof: The performance metric CRLB in (6) depends only

on the relative positions between BSs and target points, i.e.,
{bn−t}. As shown in Fig. 2(a), after displacing all BSs by ∆,
the new positions are b′

n = bn +∆ and t′ = t +∆. For any
BS n and target point t, we have

b′
n − t′ = (bn +∆)− (t+∆) = bn − t. (14)

Thus, relative positions remain unchanged, and the performance
metric is displacement-invariant, i.e., CRLB(t + ∆) =
CRLB(t). If b∗

n is optimal for area A, then b∗
n + ∆ also

achieves the same optimal metric E∗. By the method of contra-
diction, suppose {b∗

n+∆}Nn=1 were not optimal on A∆, i.e., a
certain deployment achieves E′ < E∗ there; then displacing it
back by −∆ yields E′ < E∗ on A, contradicting the optimality
of {b∗

n}Nn=1. ■
Proposition 2: Invariance to Rotation. Let A ⊂ Rd be the

sensing area in problem (P1.1). Suppose {b∗
n}Nn=1 is an optimal

BS deployment for (P1.1), attaining the minimum CRLB = E∗.
Let Rφ ∈ Rd×d be any arbitrary rotation matrix, i.e. RφR

T
φ =

I, det(Rφ) = 1, and define the rotated regions ARφ
= RφA.

Then {Rφ b∗
n}Nn=1 is an optimal solution of (P1.1) over ARφ ,

achieving the same objective value E∗.
Proof: For any b, t ∈ Rd, ∥Rφb − Rφt∥ = ∥b − t∥,

we have CRLB(Rφt) = CRLB(t). Therefore, it follows that
1

|ARφ |
∫
ARφ

CRLB(x)dx = 1
|A|
∫
A CRLB(t)dt = E∗. If a

deployment on ARφ achieved an objective less than E∗, rotating
it back by RT

φ would yield a deployment on A having an
objective below E∗, contradicting the optimality of {b∗

n}. Hence
{b′

n} is optimal on ARφ
. Similar to the proof in Proposition

1, it can be shown that {Rφ b∗
n}Nn=1 is an optimal solution of

(P1.1) over ARφ . ■
According to Proposition 2, let R be a region that is invariant

under a rotation by angle φ, i.e., R = RRφ, where Rφ is the
φ-rotation matrix. If b∗ is an optimal deployment in R, then
for each i = 1, . . . , k − 1 the rotated configuration Ri

φ b∗ is
also optimal. In particular, if R has k-fold rotational symmetry,
there exist k distinct yet equivalent optimal solutions.

Proposition 3: Invariance under Symmetric Projection.
Let A ⊂ Rd be the sensing region in problem (P1.1). Let
OH ∈ Rd×d, OHOT

H = I, det(OH) = −1, be the symmetric
projection matrix across some hyperplane H , and define its
symmetric projection region A′ = OH A. If {b∗

n}Nn=1 is an
optimal BS deployment on A achieving CRLB = E∗, then the
reflected deployment {OH b∗

n}Nn=1 is optimal on A′, achieving

the same CRLB = E∗.
Proof: Let t ∈ A be any target point and t′ = OH t

belong to its symmetric projection area. Feasibility holds, since
t ∈ A =⇒ OHt ∈ A′. Under symmetric projection, each
row of the Jacobian transforms as(

OH b∗
n −OH t

)T∥∥OH b∗
n −OH t

∥∥ =
(b∗

n − t)T OT
H

∥b∗
n − t∥

, (15)

so J(t′) = J(t)OT
H . Since ∥OHx − OHy∥ = ∥x − y∥, the

precision-noise matrix R−1 is unchanged. Hence the Fisher
information transforms as

F(t′) = (OH JT )R−1 (JOT
H) = OH F(t)OT

H , (16)

and therefore (F(t′))−1 = OH F(t)−1 OT
H . By the cyclic

property of the trace, we have Tr
(
(F(t′))−1

)
= Tr

(
F(t)−1

)
, so

the CRLB is invariant. Similar to the contradiction-based proof
in Proposition 1, it can be shown that the reflected deployment
attains the same minimum CRLB = E∗ and it is optimal. ■

The foregoing analysis has identified a set of invariance prop-
erties characterizing optimal BS deployments over a fixed-area
region, which can facilitate low-complexity algorithm design,
as detailed in Section III-C. In the next section, we extend this
framework to variable-area scenarios and demonstrate how those
invariances yield simple scaling laws that, in turn, lead to low-
complexity algorithms for designing deployments that achieve
optimal sensing coverage.

B. Scaling Law Analysis

In this section, we now rigorously examine how these optimal
configurations behave under geometric transformations, deriving
the scaling law vs. the number of BSs for a specific area CRLB
value.

Proposition 4: Uniform Area Scaling. Let A ⊂ Rd be a
region whose optimal BS deployment {b∗

n}Nn=1 attains CRLB =
E∗. If we scale the entire region by κ > 0, i.e. replace A with
κA = {κx : x ∈ A}, then the new optimal deployment is
{κb∗

n}Nn=1 and the optimal CRLB becomes κ2βE∗.
Proof: Denote any target position by t and its scaled

version by t′ = κ t, as shown in Fig. 2(d). Similarly b′
n = κbn.

For the scaled region, each row of the Jacobian matrix J(t)
becomes

(b′
n − t′)T

∥b′
n − t′∥

=
(κbn − κt)T

κ∥bn − t∥
=

(bn − t)T

∥bn − t∥
, (17)

so the scaled Jacobian is J(t′) = J(t). Ignoring fixed mul-
tiplicative constants, the original inverse-covariance R−1 is
diagonal with entries of the form 1/(∥bn − t∥β∥bm − t∥β)
for the bi-static link from BS n to a target and then to BS m.
After scaling, we have:

∥b′
n − t′∥ = κ ∥bn − t∥ =⇒ R′−1 = κ−2β R−1. (18)

Then, the FIM of a target point can be formulated as:

F(t′) = JT
(
κ−2βR−1

)
J = κ−2β F(t). (19)

The CRLB is Tr(F−1). Thus, we have:

CRLB
(
A′, {b∗

n}
)
= κ2βCRLB

(
A, {b∗

n}
)
. (20)
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Assume for the method of contradiction that {κb∗
n} is not

optimal on κA, so there exists another deployment achieving
CRLB

(
A′, {b∗

n}
)
< κ2βE∗. Rescaling that deployment by 1/κ

yields a deployment on A with CRLB < E∗, contradicting the
optimality of {b∗

n}. Therefore {κb∗
n} must be optimal and the

CRLB is exactly κ2βE∗. Hence scaling the region by κ maps
the optimal deployment b∗ → κb∗ and scales the CRLB by
κ2β . ■

By exploiting invariance to rigid motions (global transla-
tions, rotations, and reflections) together with the uniform-
area scaling in Proposition 4, an optimal BS deployment
computed for a canonical region can transfer directly to any
translated/rotated/reflected/scaled instance of that region. Based
on the conclusions of Propositions 1-4 above, we can further
characterize the optimal deployment features for large-scale
regions. In particular, for extensive areas the optimal deploy-
ment exhibits clear regularity (defined here as the presence of
repetitive, periodic, or structured spatial arrangements), thereby
significantly simplifying the design process.

Remark 2: Area Periodicity. Although a rigorous proof in
the general case is still open, it is intuitively reasonable that
the optimal deployment b∗ is Λ-periodic, whenever the sensing
region is sufficiently large, effectively a tiling of identical
subregions, and BSs are densely deployed. In other words, for
any translation vector v ∈ Λ, the optimal deployment follows the
invariance to displacement principle as described in Proposition
1. The key intuition is that the total cost decomposes into a
sum of identical local costs over each periodic sub-region, each
depending mainly on the pattern within that sub-region and
invariant under Λ-translations. If two sub-regions had different
deployment patterns, one with higher cost, one could copy
the lower-cost pattern into the other sub-regions to reduce the
overall CRLB, contradicting the assumed optimality of b∗.
Therefore, the optimal deployment must repeat the same pattern
across all sub-regions, yielding Λ-periodicity.

Moreover, upon leveraging Proposition 4 and the analysis in
Remark 2, we can derive an upper bound on the scaling law of
the area CRLB as follows, which can serve as a guideline for
ISAC network deployment.

Theorem 1: Let n0 be a fixed constant number of BSs
optimally deployed in a sufficiently large region A ⊂ Rd,
achieving optimal CRLB = E∗(n0,A). If the BS count is
increased by a factor of N , i.e., the total BS number becomes
N × n0, then the optimal CRLB satisfies a scaling law upper
bound:

lim
N→∞

E∗(N × n0,A)

E∗(n0,A)
≤ O

(
N−2β/d

)
. (21)

Proof: Starting from the optimal placement of n0 BSs
in A, we subdivide each of the n0 original regions into N
congruent hypercubes by dividing each axis into N1/d equal
segments (approximating N1/d as integer for large N , i.e., we
can always find an integer Z ≥ 0 with N = Zd). This yields
Nn0 subregions, each with a volume of |A|/(N), and linear
dimensions along each axis scaled by a factor κ = N−1/d.

Let E∗(n,A) denote the minimum achievable area-CRLB
for the sensing-only deployment problem (13) when n BSs
are deployed over region A. Based on Remark 2, we partition
A into N congruent subregions {Ai}Ni=1, and in each Ai we

place n0 BSs by taking the optimal deployment for A and
uniformly scaling it to fit Ai. This construction yields a feasible
deployment over the entire region A with a corresponding
achieved objective value, denoted by Econs(N×n0,A) for each
subregion. By Proposition 4, scaling the region by a factor κ
results in the CRLB scaling by κ2β . Hence each new subregion’s
optimal CRLB is

E∗(N × n0,A) ≤Econs(N × n0,A)

(a)

≤E∗(n0,Ai)

=κ2β E∗(n0,A) = N−2β/d E∗(n0,A).

(22)

The inequality (a) holds due to the fact that in practice all
N×n0 BSs can cooperate fully. Hence this partition-based result
is indeed an upper bound, and the actual cooperative CRLB can
be further reduced. According to (22), the mean CRLB over
(N ×n0) BSs satisfies E∗(Nn0,A) ≤ N−2β/d E∗(n0,A), i.e.,

lim
N→∞

E∗(Nn0,A)

E∗(n0,A)
≤ O

(
N−2β/d

)
. (23)

This thus completes the proof. ■
According to Theorem 1, when β = 2, the exponent d =

1, 2, 3, yields the following explicit scaling law:

lim
N→∞

E∗(Nn0,A)

E∗(n0,A)
≤


O(N−4), d = 1,

O(N−2), d = 2,

O(N−4/3), d = 3.

(24)

With BS count/density fixed, increasing the sensing-region
dimension d spreads nodes across more axes, shrinking the
average solid-angle separation between BS look orientation
and lengthening typical BS-target ranges; this dilutes bearing
diversity, weakens the Fisher information, and reduces the
marginal A-CRLB improvement per added BS.

Remark 3: The above O(N−2β/d) bound in Theorem 1 is
relatively tight under dense BS environments: As N grows,
subregions more distant from a given target contribute vanish-
ingly small error due to the increased distance aggravating the
path-loss. In particular, when n0 is large so that each original
BS region is already small, further subdividing introduces only
marginal gains from distant cells, implying that the actual coop-
erative CRLB closely approaches this upper bound. Therefore,
it follows that

lim
n0→∞

lim
N→∞

E∗(N × n0,A)

E∗(n0,A)
≈ O

(
N−2β/d

)
(25)

C. Low-complexity Sensing BS Deployment Optimization

Based on the Propositions and Theorem above, we can
determine the optimal deployment plan for a new region by
constructing a database of optimal configurations. By com-
paring the shape of the new region to those stored in the
database, and using displacement, rotation, and scaling ad-
justments as necessary, one can readily construct deployment
solutions. Specifically, for any given deployment region A,
there exists a set of representative regions {Ai}i∈I for which
the optimal deployments have already been solved, along with
the corresponding solution set {b∗

n}i∈I . Then, there exists a



8

transformation consisting of displacement, rotation, and scaling
that maps Ai to A, where i denotes the index of the candidate
area set I. Then, the corresponding optimal deployment b∗

can be derived using the inverse of the transformations applied
above:

b∗ = κOHRφb
∗
i +∆. (26)

Consequently, the optimal deployment for A can be derived
from b∗

n using the invariance and variance properties stated in
Propositions 1, 2, 3, and 4. This ensures that our invariance
principles support an efficient and universal deployment strat-
egy.

IV. ISAC DEPLOYMENT OPTIMIZATION

In this section, we employ a MM framework, where each
iteration constructs a surrogate upper bound and minimizes
it, resulting in a robust, noise-agnostic procedure that can
accommodate any design criterion.

A. Problem Reformulation

Directly integrating localization performance over a continu-
ous region requires averaging over an uncountable set of target
positions and random channel realizations, and this thus yields
high-dimensional integrals that admit no closed-form solution.
To handle the continuous-region integration, we acquire K
sampled points {tk}Kk=1 uniformly distributed over the area
of interest. Similarly, as for the communication constraint, the
communication performance is evaluated at the sampled points
drawn, ensuring that the area communication capacity meets the
required threshold Rth.

Because the instantaneous channel gains gn in (10) fluctuate
randomly due to small-scale fading, it is impractical to adjust
the BS placement relying on these transient values. To address
the infeasibility of optimizing over random channel realiza-
tions, we first attain the average beamforming gain for both
communication and sensing by taking the expectation over the
small-scale fading, thereby ensuring a robust, long-term gain
in both communication and sensing. Then, we can derive the
distribution of gj based on the moment matching technique of
[37]. In (10), gn =

∣∣hH
n wc

n

∣∣2 represents the effective desired
signals’ channel gain, where gn ∼ Γ (Mt − 1, pc) [18], [37].
Similarly, the expected transmit beamforming gain for sensing
can be formulated as E[

∣∣aHMt
(Ωn)w

s
n

∣∣2] = ps (Mt − 1), i.e.,
E[Gt] = ps (Mt − 1).

Therefore, the ISAC deployment optimization problem can
be formulated as

(P2) : min
{bn}

1
K

∑K
k=1 CRLB (tk) (27)

s.t.
1

J

∑J

j=1
Rc (uj) ≥ Rth. (27a)

This sampling-based reformulation transforms the original con-
tinuous optimization problem into a tractable discrete form. The
invariances in the preceding propositions and theorem carry over
to the discretized formulation: co-transforming the sampling
set with the region preserves sample-BS geometry, leaving the
discrete objective and constraints unchanged. Hence the results
of Section III apply verbatim.

B. Proposed Problem Solution

Jointly optimizing multiple BS locations is challenging be-
cause the CRLB objective is highly non-convex. Plain gradient
descent algorithm, without a majorizing surrogate, is markedly
step-size-sensitive and often fails to achieve monotone descent.
To tackle this challenge, we adopt a block-coordinate (alter-
nating) MM scheme: at iteration t, with N − 1 BSs fixed,
we majorize f(x) by a tight surrogate function g(x | xt) and
minimize it using a short projected gradient-descent step. This
yields monotonic descent and convergence to a stationary point
under standard MM conditions.

1) MM Algorithm Framework: In the majorization step,
a surrogate function g(x | xt) is constructed for globally
upperbounding the objective function f(x) at point xt, satis-
fying g(x | xt) ≥ f(x) and g(xt | xt) = f(xt). In the
minimization step, the surrogate function is minimized to give
the next update: xt+1 = argminx g(x | xt). This iterative pro-
cess generates a non-increasing sequence {f(xt)}t∈N, ensuring:
f(xt+1) ≤ g(xt+1 | xt) ≤ g(xt | xt) = f(xt). Next, by
optimizing each BS’s location independently, while holding the
remaining BS positions fixed, we obtain an initial coordinate
set {x(0)

i }Ni=1.
2) Problem Transformation: Consider the optimization prob-

lem, where we aim for improving the localization performance,
starting with an initialization that ensures having no node lies in
the same plane as the target point. This initialization condition
is crucial for achieving enhanced localization accuracy. In
the following, we present a deployment optimization problem
transformation method based on the MM framework. At each
iteration, we optimize the position of one BS, while holding the
other (N−1) BSs fixed, thereby decomposing the original high-
dimensional problem into a sequence of simpler subproblems.

In the following, we introduce an optimization algorithm
designed for updating the location of BS n as a representative
example. For notational simplicity, we first reformulate the
problem for a single target point. The extension to the general
case having K target points can be achieved by summing
the resultant objective function over all targets. To separate
the term related to BS n in the objective function, we define
vn,k = tk−bn

∥tk−bn∥ . Then the CRLB of target point tk, under
centralized fusion-based localization, can be formulated as

CRLB(tk) = Tr
(
F (tk)

−1
)

Tr

(( 4vn,kv
T
n,k

∥bn − tk∥2β︸ ︷︷ ︸
monostatic link

+2

N∑
i=1,
i̸=n

(vi,k + vn,k)(v
T
i,k + vT

n,k)

∥bi − tk∥β∥bn − tk∥β︸ ︷︷ ︸
bi-static links︸ ︷︷ ︸

Sensing links related to BS n

+M
)−1
)
,

(28)
where M =

∑N
j=1,j ̸=n

∑N
i=1,i̸=n

(vi,k+vj,k)(v
T
i,k+vT

j,k)

∥bi−tk∥β∥bj−tk∥β , includ-
ing the term unrelated to the location of BS n. Assume that
the initialization yields a non-degenerate BS-target geometry,
so that the resulting matrix M is positive definite and hence
invertible.

To facilitate problem transformation, let Dn,k =

diag
(

2
∥b1−tk∥β∥bn−tk∥β , . . . ,

1
∥bn−tk∥2β , . . . ,

2
∥bN−tk∥β∥bn−tk∥β

)
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∈ RN×N and Un,k = [v1,k + vn,k, . . . ,vN,k + vn,k] ∈ R3×N .
Then we can reformulate the sensing link terms
in (28) related to BS n into Un,kDn,kU

T
n,k =

4vn,kv
T
n,k

∥bn−tk∥2β + 2
∑N

i=1,i̸=n

(vi,k+vn,k)(v
T
i,k+vT

n,k)

∥bi−tk∥β∥bn−tk∥β . According
to the Woodbury identity [38], it follows that

CRLB(tk) = Tr
((

Un,kDn,kU
T
n,k +M

)−1
)

=Tr

(
M−1−M−1Un,k

(
D−1

n,k +UT
n,kM

−1Un,k

)−1

UT
n,kM

−1

)
=Tr

(
M−1 −M−1Un,kZ

−1
n,kU

T
n,kM

−1
)
,

(29)
where Zn,k = D−1

n,k + UT
n,kM

−1Un,k. Then, the
problem can be equivalently reformulated as maximizing
Tr
(
M−1Un,kZ

−1
n,kU

T
n,kM

−1
)

. To further facilitate the
problem solution, the following inequality is introduced:

− Tr
(
M−1Un,kZ

−1
n,kU

T
n,kM

−1
)

≤− Tr

[
2
(
M−2U

(r)
n,k(Z

(r)
n,k)

−1
)T (

Un,k −U
(r)
n,k

)]
+Tr

[(
(Z

(r)
n,k)

−1(U
(r)
n,k)

TM−2U
(r)
n,k(Z

(r)
n,k)

−1
)T

(Zn,k −Z
(r)
n,k)

]
− Tr

(
M−1U

(r)
n,k(Z

(r)
n,k)

−1(U
(r)
n,k)

TM−1
)
,

(30)
where U

(r)
n,k and Z

(r)
n,k represent the variable value at the rth

iteration. According to (30), removing the constant part, the
objective function can be approximated as

min
bn

Tr
(
Gn,kZn,k −PT

n,kUn,k

)
, (31)

where Gn,k =
(
(Z

(r)
n,k)

−1(U
(r)
n,k)

TM−2U
(r)
n,k(Z

(r)
n,k)

−1
)T

and

Pn,k = 2M−2U
(r)
n,k(Z

(r)
n,k)

−1. Then, by substituting Zn,k

into (31), the objective function in (31) can be expressed as
Tr
(
Gn,kD

−1
n,k

)
+Tr

(
Gn,kU

T
n,kM

−1Un,k

)
−Tr

(
PT

n,kUn,k

)
,

where Tr
(
Gn,kD

−1
n,k

)
comprises quadratic and quartic func-

tions of the BS location vectors. By introducing an ap-
propriate change of variables δn,k satisfying ∥tk − bn∥β ≤
δn,k, ∀n, k, it can be rendered convex. Then, we can first
handle the term Tr

(
Gn,kU

T
n,kM

−1Un,k

)
as follows. De-

fine Uc
n,k = [v1,k, . . . ,vn−1,k, 0,vn+1,k, . . . ,vN,k], we have

Un,k = Uc
n,k + vn,k1

T + vn,ke
T
n . Then, by substituting Zn,k

into the above equation and separating the linear and quadratic
contributions in vn,k, the objective function can be transformed
into

Tr
(
Gn,kU

T
n,kM

−1Un,k

)
=a1v

T
n,kM

−1vn,k+Tr
(
qT
1 vn,k

)
+Tr

(
Gn,k(U

c
n,k)

TM−1Uc
n,k

)
,

(32)
where a1 = 1TGn,k1 + eTnGn,k1 + 1TGn,ken + eTnGn,ken,

and qT
1 =

(
M−1Uc

n,kGn,k1
)T

+ 1TGn,k(U
c
n,k)

TM−1 +

eTnGn,k(U
c
n,k)

TM−1 +
(
M−1Uc

n,kGn,ken

)T
.

However, a1vT
n,kM

−1vn,k is non-convex, because vn,k intro-
duces a nonlinearity involving the reciprocal of the Euclidean
distance between the BS and the target. Thereby, we have to

further transform it based on the following inequality:

Tr
(
a1v

T
n,kM

−1vn,k

)
≤ 2a1

(
M̃v

(r)
n,k

)T (
vn,k − v

(r)
n,k

)
+ a1λmax

(
M−1

)
+ a1

(
v
(r)
n,k

)T
M̃v

(r)
n,k,

(33)

where M̃ = M−1 − λmax

(
M−1

)
I, and λmax(M

−1) denotes
the maximum eigenvalue of matrix M−1. In addition, in (31),
the term PT

n,kUn,k can be reduced by discarding any com-
ponents independent of the optimization variable bn, leaving
only the contributions (1TPT

n,k + eTnP
T
n,k)vn,k. By omitting

the constant terms, the objective function can be approximated
as

min
bn

1

K

∑K

k=1

(
a2δ

2
n,k + a3δn,k + qT

2

tk − bn

∥tk − bn∥

)
, (34)

where qT
2 = 2a1

(
M̃v

(r)
n,k

)T
+ qT

1 + 1TPT
n,k + eTnP

T
n,k, and

a2 = Gn,k[n, n], a3 = 1
2

∑N
m=1,m̸=n Gn,k[m,m] ∥tk − bm∥β .

Here, (34) is still non-convex due to tk−bn

∥tk−bn∥ . By utilizing
the trust region algorithm of [39], we introduce a constraint
∥bn − b

(r)
n ∥ ≤ ϵ to limit the update region. In the trust region

method, a first-order approximation is used at each iteration for
constructing a local linear model of the objective function based
on its gradient. In practice, this leads to computing the so-called
Cauchy point [39], which is obtained by taking a step in the
negative gradient’s direction scaled to the boundary of the trust
region. Specifically, we adopt Taylor expansion to approximate
the objective function as follow.

tk − bn

∥tk − bn∥
≈ tk − b

(r)
n

∥tk − b
(r)
n ∥

+ g′(b(r)
n )(bn − b(r)

n ), (35)

where g′(b
(r)
n ) = − 1

∥tk−b
(r)
n ∥

(
I − (tk−b(r)

n )(tk−b(r)
n )T

∥tk−b
(r)
n ∥2

)
. Fol-

lowing the transformation above, every term in the objective
function involving the decision variables is either a convex
quadratic or a linear function. Then, for the communication
constraint, we introduce auxiliary variables:

zn,j ≥ ∥bn − uj∥α, ∀j. (36)

We define Cj = 1+ 1
σ̃2
c

∑
m̸=n gm∥bm−uj∥−α, and apply the

first-order Taylor expansion to approximate the communication

rate of the user located at uj as Rj ≥ log2

(
Cj +

gn

σ̃2
cz

(r)
n,j

)
−

gn

σ̃2
c(z

(r)
n,j)

2

(
Cj+

gn

σ̃2
cz

(r)
n,j

)
ln 2

(
zn,j − z

(r)
n,j

)
= R̃j . Thus, the origi-

nal non-convex communication constraint can be approximately
replaced by the following convex constraint:

1

J

∑J

j=1
R̃j ≥ Rth. (37)

Together with the convex constraint (36), this yields a convex
approximation with respect to the variables {bn, zn,j}. By
iteratively updating the expansion point z(r)n,j = ∥b(r)

n −uj∥α, the
algorithm converges to a local optimum of the original problem.

Finally, the problem can be approximated by the following
convex program:
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Algorithm 1 Proposed MM-based Algorithm

1: Initialize BS positions {b(0)
n }, sensing target positions {tk}, communica-

tion user positions {uj}, and trust region radius ϵ0.
2: repeat
3: for each BS n = 1, . . . , N do
4: Solve problem (P3) to obtain optimal movement ∆b

(r)
n for BS n.

5: Compute predicted and actual reduction ratio ρr based on (39).
6: if ρr ≥ ηs then
7: Accept update: b(r+1)

n = b
(r)
n +∆b

(r)
n

8: else
9: Reject update: b(r+1)

n = b
(r)
n

10: end if
11: Update trust-region parameters according to (40)
12: end for
13: until convergence of the optimal {b∗

n}

(P3) : min
bn,δn,k,zn,j

1

K

K∑
k=1

(
a2δ

2
n,k + a3δn,k + qT

2 g
′(b(r)

n )bn

)
(38)

s.t. (36), (37), (38a)

∥bn − b(r)
n ∥ ≤ ϵ, (38b)

∥tk − bn∥β ≤ δn,k, ∀k. (38c)

As a result, the approximated problem can be updated and
solved in an iterative manner by existing convex optimization
solvers. After solving the subproblem constructed for moving a
step ∆br, we quantify how well the approximate objective func-
tion fr(bn) = 1

K

∑K
k=1

(
a2δ

2
n,k + a3δn,k + qT

2 g
′(b

(r)
n )bn

)
predicted the actual reduction in f :

ρr =
CRLB

(
b
(r)
n

)
− CRLB

(
b
(r+1)
n

)
CRLB

(
b
(r)
n

)
− fr(b

(r+1)
n )

, (39)

where CRLB is the true objective (from problem (P3)) eval-
uated at the current BS position, and fr(b

(r+1)
n ) is its local

approximation in (P3). Then, we have to accept or reject the
step. If ρr ≥ ηs, the step is deemed sufficiently accurate and
we set b

(r+1)
n = b

(r)
n + ∆br. Otherwise, we reject the step

and keep b
(r+1)
n = b

(r)
n . In addition, we also have to adjust the

trust-region radius. Based on ρr, we expand, keep, or shrink the
region in which our quadratic model is trusted:

ϵr+1 =


γn ϵr, ρr ≥ ηv,

ϵr, ηs ≤ ρr < ηv,

γd ϵr, ρr < ηs.

(40)

Here ηs < ηv are acceptance thresholds, where γn > 1 expands
the region when the model is reliable, while γd ∈ (0, 1)
contracts it when the model poorly predicts f .

V. SYSTEM PERFORMANCE

Using numerical results in this section, we have studied the
fundamental characteristics of ISAC networks and verified the
tightness of the expression derived by Monte Carlo simulation
results. The system parameters are given based on empirical
and modeling studies [40]. Specifically, the number of transmit
antennas is Mt = 5; the number of receive antennas is Mr = 5;
the transmit power is Pt = 0.01W at each BS; |ξ|2 = 10; the
frequency f c = 5 GHz; the bandwidth B ∈ [10, 100] MHz; the

BS number = 4

BS number = 5

BS number = 6

Convergence

Fig. 3. Convergence evaluation of the proposed MM-based algorithm.

4

1
O

N

 
  
 

2

1
O

N

 
  
 

2-D Scaling Law

1-D Scaling Law

Fig. 4. Evaluation of scaling law derived in Theorem 1 with 1D and 2D sensing
area.

noise power −120dB; pathloss coefficients α = 4 and β = 2.
In the following experiments, we consider both one-dimensional
and two-dimensional target and user regions. It is important to
note that in all scenarios, the BS locations are optimized within
a three-dimensional deployment space. In the simulations, we
assume that the target and users are located within the same
region and are sampled at the same rate.

A. Convergence and Scaling Law Evaluation

Fig. 3 illustrates the convergence behavior of our proposed
algorithm. When the number of BSs is four, the algorithm
converges in approximately 30 iterations. When the number of
BSs increases, the number of iterations required grow corre-
spondingly due to the enlarged solution space. Moreover, by
comparing the values of our surrogate function against those of
the original objective function, we observe that the surrogate
function closely tracks the true objective function and they
ultimately converge to the same value, thereby confirming the
efficiency and accuracy of the proposed algorithm.
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(a) BS deployment for optimal communication achieving R∗.

(b) BS deployment for optimal sensing.

(c) BS deployment for maximizing sensing performance with
Rth = 0.8R∗.

Fig. 5. BS deployment under varying sensing-communication weights.

Increasing trend 

follows Proposition 3

Fig. 6. Sensing performance versus BS height.

Fig. 4 presents the scaling law of the area CRLB as a function
of the number of BSs, clearly showing a reduction in CRLB
upon increasing the BS number. To ensure a relatively accurate
scaling curve, we employ iterative optimization, where at each
step we perform a global search to reposition one BS, while
holding all others fixed, and repeat this process for each BS until
convergence. Moreover, the scaling gain erodes as the sensing-
area dimension increases. More explicitly, under the same multi-
plicative increase in BS number, a 2D region must spread nodes
over two orthogonal axes, whereas a 1D region aligns them
along a single axis. To validate the periodic-pattern deployment

discussed in Remark 2, we took the optimized four-BS layout
and replicated it across the entire enlarged region, namely ’sim-
plified constructed solution’ in Fig. 4. The resultant performance
closely matches that of the fully optimized scheme, especially
in the 1D scenario, demonstrating the practical effectiveness
of regular deployments in large-scale networks. Furthermore,
in 1D scenarios the theoretical CRLB-scaling bound closely
aligns with the simulation results, since the BSs deployed across
the n0 fundamental unit regions already realize the majority of
the localization gain achievable under full BS cooperation. By
contrast, in 2D scenarios a persistent gap arises between the
theoretical bound and simulation results. The simplified upper
bound does not capture the sensing-performance degradation
that occurs at the peripheries of individual subregions. By
introducing additional BSs that jointly cover the entire 2D
area, especially along edges and corners, these boundary effects
are substantially alleviated, yielding localization gains beyond
those predicted by the bound. Consequently, as the BS density
increases, the empirical CRLB scaling in 2D surpasses the
theoretical prediction.

B. Sensing Performance of 1D Area

To contrast BS deployments optimized for area-sensing per-
formance to those tailored for communication coverage, we
first consider an elementary one-dimensional user region along
the line y = 0, x ∈ [0, 1000]. Users (green rectangle) are
placed uniformly along this line, and a fixed number of BSs
(red triangles) are placed according to two distinct strategies.
Targets (blue dots) are likewise interspersed along the same
line to evaluate sensing performance. See Figs. 5, 7, 9, and
10 for illustration. In Fig. 5(a)), all BSs lie as close as possible
to the communication user line, i.e., above y = 0 with their
x-coordinates evenly spaced over [0, 1000]. This arrangement
minimizes the path-loss for each BS-user link, yielding maximal
end-to-end SNR for purely communication-centric operation.
By contrast, in Fig. 5(b)), to balance the associated sensing
signal power and geometry gain requirements, two BSs remain
near the target line (at y ≈ 0) to preserve low-attenuation
links, while the remaining BSs are shifted in y to form near-
perpendicular baselines relative to the target line. This bi-static
geometry, yielding approximately 90◦ incidence angles at most
targets enhances geometric gain, thereby improving area-wide
sensing accuracy without unduly sacrificing communication
performance. As shown in Fig. 5(c), under the communication
constraint the optimal deployment places several BSs near the
user region to boost link SNR, while positioning one BS at
higher altitude to enhance sensing geometry over the target area,
i.e., to increase angular diversity.

Fig. 6 shows the minimal CRLB as a function of the one-
dimensional region length L and various BS heights. In each
curve, the region length is increased from 250m to 1000m,
and the optimal BS height is selected to minimize the averaged
CRLB over all target positions in the interval [0, L]. Moreover,
when L is multiplied by an integer factor, the optimal BS height
h∗ also increases by roughly the same factor. This one-to-one
proportionality between region size and BS height is a direct
consequence of the geometric invariance properties. Explicitly,
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(a) Deployment for maximizing Rc. (b) Deployment for minimizing CRLB, Rc ≥ 5
bps/Hz.

(c) Deployment for minimizing CRLB.

BS

log10CRLB

(d) CRLB map for communication optimal. (e) CRLB map with Rc ≥ 5 bps/Hz. (f) CRLB map for sensing optimal.

Fig. 7. Comparisons between sensing and communication (The color bar shows the base-10 logarithm of the CRLB, and same for the following results).

Coverage quality 

improvement

6.5 bps/Hz

Fig. 8. CRLB coverage probability under various objectives and constraints.

scaling the coverage interval by κ only preserves the angular
geometry if the BS elevation is scaled by κ as well, as analyzed
in Proposition 4. The dominant effect driving the optimal BS
height is the geometric gain in target sensing. Increasing the
number of BSs in proportion to the region length maintains
consistent incidence angles and range spreads, thereby balancing
the multiple impact factors in the CRLB across the entire
coverage area. These numerical findings validate our theoretical
derivations and provide concrete guidelines for selecting the BS
heights in large-scale ISAC deployments.

C. Sensing Performance of 2D Area

As illustrated in Fig. 7, we assess the two-dimensional
coverage performance of communication and sensing services,

where the communication users are uniformly distributed on
the ground plane (green) and targets over a parallel plane at
an altitude of 400m (blue). Figs. 7(a) and 7(d), 7(b) and 7(e),
as well as 7(c) and 7(f) depict three deployment strategies
maximizing communication rate, minimizing the CRLB under a
5 bps/Hz communication constraint, and minimizing the CRLB
without any communication requirement, respectively. In the
communication-only scenario (c.f. Fig. 7(a) and Fig. 7(d)),
BSs are arranged symmetrically across the area, yielding a
symmetric CRLB map with values ranging from 10−1.2 to
100 = 1. When enforcing the 5 bps/Hz rate (c.f. 7(b) and
7(e)), the BSs shift slightly toward the sensing plane and
adjust their planar geometry to balance both objectives. Without
any communication constraint (c.f. 7(c) and 7(f)), the optimal
sensing configuration moves BSs closer to the target layer and
reconfigures their layout to minimize the CRLB, where even a
modest height adjustment of a single BS combined with a small
horizontal displacement yields significant sensing performance
gains. Compared to the communication-optimal deployment, the
overall positioning CRLB map is improved by a factor of 4.
In Fig. 7(c), it is observed that simply minimizing the distance
between BSs and the sensing region tends to place them as close
as possible to the targets. However, while a shorter distance
increases the scaling factor, it also reduces the angular diversity
among the BSs. This causes the row vectors of the Jacobian
matrix to become nearly linearly dependent, drastically increas-
ing the condition number of the Fisher information matrix.
To balance the angular spread and measurement accuracy, BSs
should be deployed at an appropriate distance from the sensing
region, which is similar to the results in Fig. 5(b).

As shown in Fig. 8, when BSs are placed to maximize the
communication rate, achieving 6.5 bps/Hz without any regard
to sensing, the probability Pr(CRLB ≤ Γ) remains low for all



13

log10CRLB

(a) CRLB map for optimal communication de-
ployment.

log10CRLB
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(b) CRLB map for optimal sensing deployment.
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(c) Coverage probability comparisons.

Fig. 9. Regular horizontal deployment with height optimization.

(a) Target distribution PDF. (b) Optimal deployment for sensing.

BS

log10CRLB

(c) Sensing-optimal CRLB map.

(d) Target distribution PDF. (e) Optimal deployment for sensing.

BS

log10CRLB

(f) Sensing-optimal CRLB map.

Fig. 10. Comparisons of 3-D BS deployment based on the proposed framework under different target distribution PDF in an area of interest.

Γ values up to 0.3. By introducing a moderate rate constraint,
i.e., reducing the peak rate to 5 bps/Hz (around 23% decrease),
we observe an approximately 20% improvement in the sensing
coverage overall. Moreover, if the objective is switched to
minimizing the CRLB without any communication requirement,
the sensing coverage can increase by up to threefold at Γ = 0.1,
demonstrating the significant trade-off between communication
throughput and sensing performance under the consideration of
BS deployment.

Fig. 9(a) considers a conventional cellular-style layout in
which each BS is placed on a regular grid (horizontal coor-
dinates fixed) at a uniform height of 10m. Despite proximity to
some BSs, severe sensing-coverage voids remain, particularly in
regions where the geometric intersection angles of the sensing
links are acute, a consequence of BSs being deployed relatively
close to the target plane. To isolate the impact of antenna
elevation, we then retain the same horizontal BS locations but
optimize only their heights. As shown in Fig. 9(b), this vertical
repositioning compresses the CRLB values from the original
span of [10−3, 102] down to [10−5, 100], reflecting a dramatic

gain in localization precision. Finally, by applying a CRLB
threshold of 10−1, Fig. 9(c) demonstrates that sensing coverage
jumps from roughly 10% to 60%, illustrating that even modest
BS-height adjustments can yield substantial improvements in
network-level ISAC performance.

In Fig. 10, we compare the BS layouts optimized for various
spatial probability density functions (PDF) of sensing targets
and communication users. Let the service area be denoted by
A, and assume that the user and target locations follow the
known density functions Pu(u) and Pt(t), respectively, which
can be estimated a priori from historical access logs, traffic
heatmaps, or mobility statistics. Under these distributions, the
optimal BSs naturally cluster around high-density regions to
enhance sensing performance. However, to avoid poor geomet-
ric intersection angles that degrade localization accuracy, the
deployment must also include at least one elevated pivot BS
positioned near the overall centroid of A. This hybrid strategy
both preserves fairness across the service area and significantly
improves geometric gain for multi-static sensing. Consequently,
areas having higher user or target concentration benefit from
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≤ 5.75 bits/s/Hz 

S&C tradeoff

Fig. 11. S&C performance trade-offs with optimized BS deployment under
different target altitude.

enhanced sensing coverage, while the pivot BS ensures robust
performance in sparsely populated regions.

As illustrated in Fig. 11, optimizing the BS deployment purely
for maximum communication throughput yields a peak rate of
5.75 bps/Hz, but results in uniformly low sensing coverage
Pr(CRLB ≤ Γ) across all CRLB thresholds. By imposing a
modest throughput constraint, reducing the peak rate to 5 bps/Hz
(a 23% decrease), we achieve roughly a 20% uplift in sensing
coverage across the board. Finally, if the optimization objective
is switched to minimizing the CRLB with no communication-
rate requirement, the sensing coverage at Γ = 0.1 increases
by nearly threefold. These findings vividly illustrate the inher-
ent trade-off between communication throughput and sensing
performance when designing BS deployments. Fig. 11 illus-
trates how base-station placement governs the trade-off between
communication and sensing performance. As the minimum
communication rate requirement is tightened, sensing coverage
deteriorates, underscoring the influence of BS geometry on this
dual-function trade-off. Remarkably, by perturbing the positions
of just a few BSs, at the cost of under a 10% reduction in
peak data rate, sensing performance can be boosted substan-
tially. Compared to the baseline layout optimized solely for
maximum throughput, these minor relocations yield a network
configuration that simultaneously satisfies both communication
and sensing criteria. Moreover, Fig. 11 reveals that this trade-
off exacerbates at higher target altitudes. Explicitly, as the mean
separation between the sensing target region and the com-
munication user region increases, maintaining both objectives
simultaneously becomes increasingly difficult.

VI. CONCLUSIONS

A novel deployment framework was proposed for ISAC
networks that addresses the fundamental tradeoff between S&C.
Our design ensures both localization coverage and commu-
nication performance, guaranteeing high-precision localization
and high-throughput data transmission across the entire service
region. We analyzed the complexity of cooperative sensing
among multiple BSs from a localization-performance coverage

perspective, ensuring that the CRLB requirements are met
uniformly across the region. By identifying key invariance
properties of the optimal deployment, such as shift, rotation, and
scaling invariance, we developed a low-complexity algorithmic
framework for ISAC network planning. We formulated the joint
sensing-communication optimization as a structured problem
amenable to the MM principle, resulting in an MM-based
algorithm that reliably converges to high-quality solutions at a
low computational cost per iteration. Simulation results demon-
strated that the proposed framework significantly enhances
sensing coverage, while maintaining communication throughput
with minimal performance degradation. This work provides
insights for designing practical large-scale ISAC networks. Ex-
ploring joint resource scheduling and BS placement in dynamic
scenarios offers valuable avenues for future research. Moreover,
extending the area CRLB to exploit informative priors, using
Bayesian CRLB formulations, merits further investigation.
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