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Abstract

To address the lack of effective multi-objective optimization approaches that balance
building energy consumption, indoor thermal comfort, and life-cycle cost in ultra-low
energy residential buildings, this study proposes a hybrid algorithm that integrates the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with Multi-Objective Particle
Swarm Optimization (MOPSO) for the multi-objective optimization design of such
buildings, validated through case studies in two climate zones. Orthogonal experiments
were conducted on eight variables, including the heat transfer coefficients of external
walls, roofs, and windows; directional window-to-wall ratios; and solar heat gain
coefficients. An artificial neural network model for the three objectives was developed
to serve as fitness functions for the hybrid algorithm. The hybrid approach
outperformed the standalone NSGA-II and MOPSO in terms of the hypervolume,
inverted generational distance, and spacing metrics, demonstrating superior
convergence and solution diversity. Optimized design parameter ranges were derived,
and best solutions were identified for both climates, providing practical guidance for
similar regions. The innovations of this study include: (1) a multi-objective
optimization framework balancing energy, comfort, and cost to enhance solution
practicality in ultra-low energy residential buildings; (2) integration of NSGA-II-
MOPSO with metamodeling for the three objectives, verified to improve optimization

efficiency over individual algorithms.

Keywords: Building performance, multi-objective optimization, ultra-low energy
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1. Introduction

Building operations account for approximately 30% of the global final energy
consumption, with residential buildings contributing 70% [1,2]. Urbanization and
climate change have further increased energy demand in urban residential sectors,
which now represent a quarter of the global final energy use (excluding non-energy use)
[3,4]. To advance building energy efficiency, concepts such as Ultra-Low Energy
Buildings (ULEBs) have emerged as key strategies for achieving energy savings and
decarbonization [5,6]. ULEBs, however, aim for not only low operational energy
consumption, but also improved quality-of-life demands and reduced cost from other
construction-related activities [7]. Building Energy Consumption (BEC), Indoor
Thermal Comfort (ITC), and Life Cycle Cost (LCC) are commonly used as metrics for
evaluating the overall performance of buildings [8,9]. These metrics, however, often
conflict. For example, enhancing ITC usually requires higher energy consumption,
resulting in higher LCC. Influenced by envelope components and climate, balancing

these metrics in ULEBs remains challenging [10].

To address these conflicting metrics, scholars have proposed Multi-Objective
Optimization (MOOQ) for residential building design [11-13]. For example, Wang et al.
[14] optimized the BEC and ITC in cold-region passive buildings using a Non-
dominated Sorting Genetic Algorithm-I1I (NSGA-II), coupled with a redundancy
analysis and Gradient Boosted Decision Tree (GBDT). In Greece, Kilis et al. [15]
explored MOO approaches for optimizing building envelope thermal design and
demonstrated that contradictions between optimization criteria in single-objective
optimization underscored the necessity of balancing these criteria using MOO. Xue et
al. [16] constructed a building energy model with hybrid ventilation and light-dimming
control in EnergyPlus, and developed an NSGA-II algorithm to find optimal design
solutions that minimize the LCC and emissions. Gou et al. [17] conducted MOO using
NSGA-II coupled with an Artificial Neural Network (ANN). Their work showed
significant potential for enhancing ITC with a lower BEC for residential buildings in

Shanghai. Existing studies have employed diverse methods: MOO models based on the
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harmony search algorithm [18], simulation modeling with sensitivity analysis [19],
integration of NSGA-II with EnergyPlus [20], and performance-responsive generative

frameworks combining multi-agent systems, genetic algorithms, and ANN [21].

Current MOO relies on two approaches: coupling simulation tools with optimization
algorithms (often time-consuming, limiting practical use) or using metamodels
(surrogate models) to reduce computational time [22-24]. While metamodels are
widely adopted, balancing efficiency and robustness remains a focus [10,25]. To
improve predictive accuracy, Chen et al. [26] improved the accuracy of a
backpropagation neural network for predicting carbon emissions, discomfort hours, and
costs via a random grid search. However, this method is computationally intensive,
which hinders its efficiency. Against the need to optimize public education buildings
for daylighting and thermal comfort, Xu et al. [27] proposed a two-stage meta-model
MOO method, where an ANN was coupled separately with NSGA-II and MOPSO to
optimize building envelopes. Validated via a typical teaching building case, the method
compared the performances of NSGA-II and MOPSO and derived optimal envelope
designs. Moreover, complex real-world MOO problems exceed the capacity of a single
algorithm, which suffers from inherent limitations [28]. For example, NSGA-II, a
widely used algorithm based on genetic algorithms, demonstrates a strong global search
capability [29]. However, it suffers from relatively a slow convergence [30]. In contrast,
the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, which is
derived from the particle swarm optimization approach, offers a simple structure and
fast convergence speed [31]. Nevertheless, it is more prone to being trapped in local
optima [32]. Existing studies have developed hybrid algorithms to overcome single-
algorithm limitations, such as in optimizing building envelopes integrated with power
generation systems [33] and enhancing public building performance [34,35]. However,

relevant studies on residential building performance MOO remain unreported.



Table 1: Summary of recent literature on residential building performance optimization.

Climate o Optimization ) ) Performance indicators o )
Ref. Year Objectives ) Fitness function ) Statistical analysis
zone algorithms of MOO algorithms
[36] 2020 Cold zone LCC, GWP, CTR NSGA-II GBDT - LHS, PRCC
[14] 2020 Cold zone EUI CTR NSGA-II GBDT - LHS, PRCC
Coupling simulation
[37] 2020 Cold zone EUI, PPD, SDA SPEA-2 Hypervolume -
with MOO algorithms
Cold and o
Overall Energy Coupling simulation
[13] 2021 temperate NSGA-II ) ) - -
Need, I1IC with MOO algorithms
zones
[19] 2021 SouthKorea  LCC,GWP,AED  NSGA-II ANN - LHS, Sobol’'s method
Coupling simulation .
[8] 2021  HSCW zone EUI, DTR, LCC NSGA-1I ) ) - Influence coefficient
with MOO algorithms
] Energy for heating Coupling simulation LHS, standardized regression
[29] 2021 Cfa climate NSGA-1I Hypervolume
and cooling, DTR with MOO algorithms coefficient, p-value
Cold, semi-arid
[38] 2022 HLE, UDI, PTC NSGA-III PCA-ANN Hypervolume LHS
zone
Severe cold
[16] 2022 LCC, LCCE NSGA-II ANN - SRRC, PRCC
zone
[39] 2023 Cold zone AED, SUH NSGA-II GA-RBF - NCA
Embodied and
[40] 2023  HSCW zone NSGA-II LSSVM - -

operational GWP




[41]
[21]

[42]
[43]
[44]
This
study

2024

2025

2025
2025
2025

HSCW zone

Cold zone

Cold zone
HSCW zone

Cold zone

HSCW and
HSWW zones

EUL PPD, UDI
UDI, PPD, indoor
CO; concentration
AED, DTR, LCCE

EUI, PMYV, cost

EUL DTR, IIC

BEC, ITC, LCC

NSGA-II

NSGA-II

NSGA-III
NSGA-II
NSGA-II

NSGA-II-
MOPSO

BO-XGBoost
backpropagation neural
network
ANN
LSTM
GA-BPNN

ANN

- “. get_score” method

LHS, extended fourier amplitude

Hypervolume o
sensitivity test
- The Morris method
Hypervolume Pearson correlation
- LHS
Hypervolume, IGD Mean squared error, mean absolute
and Spacing percentage error, PRCC

Notes: AED = annual energy demand; BO-XGBoost = Bayesian optimization with extreme gradient boosting trees; CTR= comfort time ratio; DTR = discomfort

time ratio; EUI = energy use intensity; GWP = global warming potential; HLE = heating and lighting energy; HSWW = Hot Summer and Warm Winter; IIC = initial

investment cost; IGD = inverted generational distance; LCCE = Life-cycle carbon emissions; LHS = Latin hypercube sampling; LSTM = long short-term

memory; LSSVM = least squares support vector machine; NCA = neighborhood components analysis; PRCC = partial rank correlation coefficient; PRCC = partial

rank correlation coefficient; PTC = percentage of thermal comfort; RBF = radial basis function; UDI=useful daylight illuminance; SDA = spatial daylight autonomy;

SPEA = strength pareto evolutionary algorithm; SRRC = standard rank regression coefficient; SUH = summer discomfort hours.



Table 1 summarizes recent research on the MOO of residential building performance.
As shown in the table, most studies employed NSGA-II as the optimization method;
however, there is limited discussion regarding the performance and improvement of the
optimization algorithms. To enhance the overall optimization performance, this study
proposed a hybrid algorithm, NSGA-II-MOPSO, which combines the strengths of both
algorithms. This hybrid approach retains the global search ability of NSGA-II and
incorporates the fast convergence characteristics of MOPSO. First, eight design
variables were selected, and an orthogonal experiment was conducted. Based on
simulation data from the DesignBuilder software, an ANN model was established to
predict the BEC, ITC, and LCC. The NSGA-II-MOPSO algorithm was developed for
MOO and best solutions for the ultra-low energy building in selected case-study cities.
The innovation of this study lies in (1) proposing an MOO framework for ultra-low
energy buildings to balance BEC, ITC and LCC. This will make the optimization
solutions more practical and provide a reference for future studies. (2) NSGA-II-
MOPSO was integrated into metamodel development for BEC, ITC, and LCC, with
verified efficiency against NSGA-II and MOPSO.

2. Methodology

2.1 Research design

This study proposed a three-objective optimization method for ultra-low energy
residential buildings in the HSCW zone using the NSGA-II-MOPSO algorithm, aiming
to improve the ITC, reduce the BEC, and lower the LCC by adjusting building design
parameters during the design phase. First, eight key building design parameters were
identified. An orthogonal experimental design was applied to generate 49 sample sets
based on the defined parameter ranges. Subsequently, the ITC, BEC, and LCC of the
residential building were simulated using DesignBuilder v6.1.0.6 to generate the
datasets. Second, the datasets underwent preprocessing and were divided into a training
set (80%) and a test set (20%) for ANN model development. The prediction accuracy
of the model was evaluated using the coefficient of determination (R?). Third, the

trained ANN model was integrated as a fitness function into the MOO framework. The
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NSGA-II-MOPSO model was constructed by incorporating the constraint ranges of the
design parameters, resulting in the generation of a Pareto optimal solution set. To ensure
fairness in algorithm comparisons, all calculations were performed under consistent
computational conditions: the same computer, identical MATLAB version, and a

runtime environment with only MATLAB active.

2.2 Case study

As the world’s largest energy consumer, China prioritizes residential energy savings
[45]. China’s building operational energy use reached 1.06 billion tons of standard coal
equivalent (tce), with residential buildings accounting for 61% of the total [41,46].
Notably, China’s Hot Summer and Cold Winter (HSCW) zone, home to 600 million
people and contributing nearly half of the national economy, has substantial residential
energy-saving potential [47,48]. In China, ULEBs are viewed as a foundational step
toward zero-energy buildings; however, their promotion is limited in southern regions
compared to that in northern China. This disparity likely stems from the origins of the
relevant standards and designs in high-latitude Western European regions, leaving a

shortage of optimized design methods for ULEB in southern regions [7,8].

This study applied the proposed MOO methodology to a case building in Nanchang,
with a comparative analysis conducted for Guangzhou. The case building is a slab-type
apartment, a typical residential type in southern China. Outdoor meteorological
parameters for both locations were obtained from typical meteorological year data, as
illustrated in Figure 1. Nanchang, situated in the HSCW zone, experiences sweltering
and humid summers alongside cold and damp winters. In contrast, Guangzhou is
located in the HSWW zone, characterized by long, hot summers and mild winters with
no significant cold period. According to JGJ/T 346-2014 Standard for weather data of
building energy efficiency, the heating degree days (HDD:s) and cooling degree days
(CDD26) (units: °C-d) in Nanchang are 1326 and 250, respectively, while those in
Guangzhou are 373 and 313. These distinct climatic conditions lead to different energy

demands: a balanced requirement for both heating and cooling in Nanchang versus a



predominant cooling load in Guangzhou.
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Figure 1. Outdoor air temperatures of two cities. (Data source:

https://energyplus.net/weather)

The building was modeled using DesignBuilder, and a three-dimensional model is
presented in Figure 2. It has a total floor area of 3145.65 m?, five floors with a height
of 3 m, and a north-south orientation. The envelope structure, including the external
walls, roofs, interior walls, external windows, and floor slabs, is detailed in Table 2,
with the key thermal parameters of the building materials listed in Table 3. Tables 2 and
3 present detailed thermal performance data of the case building envelope. These data
are derived from the architectural drawings of the case building and serve as the initial
parameter set for simulation calculations in the software, as well as a baseline for
comparison following subsequent optimization. The external windows are aluminum
alloy with a Solar Heat Gain Coefficient (SHGC) of 0.75, and the Window-to-Wall
Ratios (WWRs) are east (0.02), south (0.40), west (0.02), and north (0.25).
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Figure 2. Case-building model.
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Table 2: Building envelope structure parameters.

Building U-value
Structure (from the outside to the inside)
envelope W/(m?K)
External ~ Cement mortar (20mm) + EPS (30mm) + Shale sintered
wall porous bricks (240mm) + cement mortar (20mm) 002
Cement mortar (20mm) + EPS (100mm) + waterproof
Roof roll (4mm) + cement mortar (20mm) + reinforced 0.62
concrete (100mm)
Internal ~ Cement mortar (20mm) + Shale sintered porous bricks
wall (240mm) + cement mortar (20mm) 128
Floor Cement mortar (20mm) + reinforced concrete (100mm) 2.55
Door Steel door (60mm) 2.55
External ~ Aluminum alloy profile window frame + single-glass
window  (6mm) >0
Table 3: Thermal parameters of building materials.
Thermal conductivity Density Specific heat
Materials
W/(m-K) (kg/m?) capacity J/(kg'K)
Cement mortar 0.93 1800 1050
EPS 0.046 19 2035
Porous bricks 0.73 780 1150
Waterproof roll 0.23 900 1620
Reinforced concrete 1.74 2500 935.2

The indoor environment, occupant activities, equipment lighting, etc., of the residential
buildings all meet the relevant regulations in GB 55015-2021 General code for energy
efficiency and renewable energy application in buildings [49] and GB/T 51350-2019
Technical standard for nearly zero-energy buildings [50]. According to the standards,
the summer cooling set temperature of air-conditioned rooms was set to 26 °C, the
winter heating set temperature was set to 20 °C, and the indoor per capita fresh air

volume was 30 m*/(h-person). In addition, the Coefficient of Performance (COP) of the
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air conditioning system was set to 3.5, according to GB 55015-2021.

Figure 3 shows the operating schedule of the ultra-low energy residential building.
Figure 3(a) shows the occupancy rates of the personnel in each room. The schedules of
each room were consistent with human daily life patterns, and the per capita floor area
was 32 m?. The number of personnel in the stairwell can be ignored. Figure 3(b) shows
the schedule for the lighting usage rate in each room. According to GB 55015-2021, the
lighting power densities of the bedroom, living room, kitchen, and bathroom were 4, 6,
6, and 4 W/m?, respectively. Figure 3(c) shows the schedule of the equipment utilization
rate for different room types. The equipment power densities of the bedroom, living
room, kitchen, and bathroom were 6, 6, 24 W/m?, and the equipment power respectively.
Figure 3(d) shows the schedule of air conditioning operation in different rooms. For
residential buildings, bedrooms and living rooms require heating and cooling, whereas
other rooms adopt natural ventilation only. In addition, a 100% occupancy rate in the
living room indicated that the air conditioner was in an open state and a 0% occupancy

rate indicated that it was closed.
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Figure 3. Building a runtime schedule.

Furthermore, to ensure the accuracy of the ITC simulation, this study set the clothing
thermal resistance and human metabolic rate according to the different room types and
seasons. The clothing thermal resistance for the bedroom was set at 2.8 clo in winter,
1.3 clo in summer, and 2.2 clo in transitional seasons; the human metabolic rate was set
at 0.7 met [51]. For rooms other than the bedroom, the clothing thermal resistance was
set at 1.5 clo in winter, 0.3 clo in summer, and 0.8 clo in transitional seasons; the human

metabolic rate was 1 met [52].

2.3 Building performance simulation

2.3.1 Selection of design variables

To optimize ultra-low energy residential buildings considering the BEC, ITC, and LCC,
design variables were selected based on their impact on the objectives and engineering
practicality. The external wall and roof heat transfer coefticients (U-values) are key
envelope parameters that reduce unwanted heat transfer, stabilize indoor temperatures,
and balance LCC through insulation costs [53,54]. The WWR was considered
separately for the north, south, east, and west orientations to adapt to directional solar
radiation and daylight, balancing solar heat gain/loss and daylight availability, while
affecting the LCC. The external window U-value addresses the thermal weakness of
windows by reducing heat loss, improving thermal stability, and influencing the LCC
via manufacturing costs. The SHGC controls solar heat entry, reducing cooling loads
and improving ITC, with glazing costs impacting LCC. Orientation, shading, and
natural ventilation were excluded: orientation is site-specific and indirectly captured by
directional WWR; shading can be achieved through WWR and SHGC, avoiding added
complexity; natural ventilation depends on variable weather and design factors, making
it impractical for airtight envelopes and beyond this study’s scope [29]. Thus, eight
variables were included: the external wall and roof U-values, WWR per orientation,

window U-value, and SHGC.

According to GB 55015-2021 [49] and GB/T 51350-2019 [50], ultra-low energy
14



residential buildings in the HSCW zone must have external wall and roof U-values not
exceeding 0.40 W/(m?K) and 0.35 W/(m?-K), respectively. The maximum WWR limits
for the east, south, west, and north orientations were 0.35, 0.45, 0.35, and 0.40,
respectively. Lower WWR limits for each orientation were calculated based on the
requirement that the main rooms' window-to-floor area ratio should not be less than 1/7.
The external window U-values and SHGC values must also comply with the design
standards. To facilitate cost analysis and result application, both the thickness and U-
value were employed for building envelope analysis. The optimized U-values were
accordingly derived via conversion, based on the analysis of the variation range of
insulation layer thickness within the Pareto optimal solution set. The same method for
defining the design variable ranges in the HSCW zone was applied to the HSWW zone.
Table 4 lists the optimization variables and their ranges for both zones.

Table 4: Design variables and range values of ultra-low energy residential buildings in
the HSCW and HSWW zones.

Range of values

Categories Parameters Unit
HSCW HSWW

Wall U-value W/(m*K) [0.15, 0.40] [0.30, 0.80]
Roof U-value W/(m*K) [0.15, 0.35] [0.25, 0.40]
East - [0.10, 0.35] [0.10, 0.30]
South - [0.20, 0.45] [0.20, 0.40]

WWR
West - [0.10, 0.35] [0.10, 0.30]
North - [0.15, 0.40] [0.15, 0.40]
U-value W/(m*K) [1.00, 2.50] [1.00, 2.50]

Window

SHGC - [0.10, 0.40] [0.10, 0.30]

2.3.2 Calculation of the optimization objectives

In the optimization design of ultra-low energy residential buildings, besides reducing
the BEC, it is also important to consider the balance between occupant comfort and
economic performance. Therefore, this study used Energy Use Intensity (EUI), ITC,

and LCC as optimization objectives.
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(1) Annual EUI: The annual EUI refers to the energy consumption generated during a
building's operational period, which includes energy consumption for cooling, heating,
equipment, lighting, and domestic hot water. The EUI of residential buildings is

calculated as follows:

E.+E,+E,+E +E
EUI = c h Ae l d (1)

where EUI is the annual building EUI (kWh/(m?a)), E. is the cooling energy
consumption (kWh), Ej, is the heating energy consumption (kWh), E. is the equipment
energy consumption (kWh), Ej is the lighting energy consumption (kWh), Eq is the
domestic hot water energy consumption (kWh), and 4 is the internal usable area (m?).

Qn
E, =
"~ cop,

(2)

where QO is the total annual heating consumption of the building (kWh), and COP;, is

the coefficient of performance of the heating system (-).

Qc
E. =
¢ COoP,

(3)

where Q. is the total annual cooling consumption (kWh), and COP. is the coefficient

of performance of the cooling system (-).

(2) ITC: The ITC is an important indicator for evaluating the performance of residential
buildings. ITC can be evaluated using various methods, with Fanger’s Predicted Mean
Vote (PMV) and Predicted Percentage of Dissatisfaction (PPD) approaches being the
most widely adopted. The PMV and PPD were hourly simulated values for the entire
year, and using the PMV would result in excessive cooling or heating; however, the
average value of PMV would still show comfort, thereby causing optimization errors.
Because the optimization target value is always expressed as a single value in the
optimization objectives, this study selected the average PPD over the entire year of the

room with the poorest thermal comfort as an optimization objective.
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(3) Increment in the total LCC: The economic evaluation of the life cycle of buildings
can be divided into static and dynamic evaluation methods based on the consideration
of time factors [55]. The static evaluation method does not consider the time factor of
funds in economic evaluation, and its calculation is simple and suitable for the rough
calculation of solutions, such as the investment payback period, investment return rate,
and difference investment payback period methods. Dynamic methods, which account
for the time value of funds, yield more accurate results, typically using metrics such as
net present value, annual value, investment payback period, and internal rate of return.
This study employed a dynamic net present value approach, discounting future cash

flows to their present values.

Because the optimized designs of the ULEBs and reference buildings have no
significant difference in construction costs, differences exist only in energy-saving
materials. This study used the reference building as the benchmark level to calculate
the incremental LCC generated by the optimized design and converted it into a present
value through net present value as one of the optimization objectives. The LCC was

calculated as follows:
LCC =C, +C, 4)

where LCC is the total life-cycle cost (CNY), C; is the initial investment cost for the

building (CNY), and C, is the cost during the building operation period (CNY).

Because this study focuses on optimizing the design of energy-saving materials, such
as the insulation layer of the building envelope and windows, only the cost of the
optimized components was considered when calculating the initial investment cost of

the building. The calculation formula is as follows:
Cr=0Cw Vo + G Vi +Cpg - Apa (5)

where C,, is the unit price of the external wall insulation material (CNY/m?), ¥, is

the volume of the external wall insulation material (m*), C, is the unit price of the roof
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insulation material (CNY/m?), V. is the volume of the roof insulation material (m?),
Cyq is the unit price of the energy-saving external window (CNY/m?), and A,,4 is the

area of the window (m?).

The cost calculation formula for the operational stage of buildings is as follows:

N

C, = C, (1) (6)
t=1

c _ E. e, .

o(t) = ATt (7)

where C,(t) is the discounted value of the cost in the #-th year (CNY), E, is the total
annual energy consumption of the building (kWh), e, is the annual electricity price
per kWh of the building (CNY/kWh), and the local electricity price in this study is 0.65
CNY/kWh, ris the discount rate (%), and ¢ is the building's life cycle, which is 50 years.

C = Crec,i — Creerer (8)

where C is the incremental cost of building life cycle (CNY), Cpcc; is the total life
cycle cost of optimized solution i (CNY), and Cpccrer is the total life cycle cost of the

reference building (CNY).

The investigation of residential electricity tariffs in Nanchang and Guangzhou revealed
that both cities use tiered pricing systems. In Nanchang, the rate is 0.60 CNY/kWh for
annual consumption up to 2160 kWh, 0.65 CNY/kWh for usage between 2161 and 4200
kWh, and 0.90 CNY/kWh for consumption above 4200 kWh. In Guangzhou, the rate
15 0.59 CNY/kWh up to 2760 kWh, 0.64 CNY/kWh for usage between 2761 and 6000
kWh, and 0.89 CNY/kWh above 6000 kWh. Calculations showed that all users in the

case building fell within the second-tier consumption range in both cities.

In this study, the thickness of the insulation materials was varied to alter the U-value of
the non-translucent building envelope structure. Currently, the commonly used building
insulation materials are EPS and XPS panels. With the same thickness, the XPS panels

have a lower U-value than the EPS panels [56]. However, as external wall insulation
18



materials, their thermal stability, fire resistance, and air permeability are inferior to
those of the EPS panels [56]. Therefore, this study selected EPS panels as the insulation
material for the non-translucent building envelope structure of buildings with a material
lifespan of 25 years. Through market research on the price of EPS panels, it was
determined that the unit price was 240 CNY/m?>. According to the restrictions on the U-
value of windows in GB/T51350-2019, this study selected different window types
based on their U-values. Aluminum alloy profiles were used for the window frames of
the reference building, with a price of 240 CNY/m? and a service life of 30 years. It
should be noted that parameters such as the U-value of the reference building envelope
were derived from actual construction drawings, and certain parameter values may not

comply with the requirements specified in GB/T 51350-2019.

2.3.3 Data set acquisition based on the orthogonal test

As the subjects of this study have eight optimization variables and the value ranges of
each variable are large, conducting a comprehensive simulation would result in an
extremely large workload. Compared with a comprehensive simulation, an orthogonal
experimental design can obtain reliable results with fewer tests, thereby significantly
reducing the simulation complexity [57]. Therefore, in this study, an orthogonal
experimental design was used to design a solution for optimize the variables to obtain
data for the predictive model. First, the value range of each optimization variable was
selected according to the specifications, and they were divided into five orthogonal-
level grades, as listed in Table 5. Then, the orthogonal experimental design table was
obtained using SPSS software, and based on the L49(8°)-49 standard test solutions
provided by the orthogonal table, each test solution was subjected to a simulation case,
and the simulation results were used as the training and test sets for machine learning,

which was then used for subsequent prediction and optimization.

Table 5: Horizontal values of the orthogonal design.

Climate Levels
Optimization variables
zone 1 2 3 4 5
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Thickness of the external
X1 70 100 130 160 190
wall insulation layer (mm)

Thickness of roof insulation
X 80 105 130 155 180

layer (mm)
East-facing WWR Xz 0.1 0.1625 0.225 0.2875 0.35
HSCW
South-facing WWR Xs 0.2 0.2625 0.325 0.3875 0.45
West-facing WWR Xs 0.1 0.1625 0.225 0.2875 0.35
North-facing WWR Xe 0.15 0.2125 0.275 03375 04
Window U-value (W/(m*K)) X7 1 1.375 175 2125 2.5
SHGC Xs 0.1 0.175 025 0325 04
Thickness of the external
X1 20 40 60 80 100
wall insulation layer (mm)
Thickness of roof insulation
Xo 70 80 90 100 110
layer (mm)
East-facing WWR X; 010 0.15 020 025 0.30
HSWW
South-facing WWR X4 020 025 030 035 040
West-facing WWR Xs 010 0.15 020 025 0.30
North-facing WWR Xe 0.15 0.2125 0.275 0.3375 0.40

Window U-value (W/(m*K)) X7 1 1.375  1.75 2125 25
SHGC Xz 0.10 0.15 020 025 0.30

2.3.4 Sensitivity analysis

A sensitivity analysis was conducted to assess the effects of the design variables on
building performance. Regression methods are widely used due to their simplicity and
efficiency [58]. Many sensitivity indicators are based on regression analysis, including
standardized regression coefficients, partial correlation coefficients, standardized rank
regression coefficients, and Partial Rank Correlation Coefficients (PRCC) [36]. PRCC
is typically applied to nonlinear and monotonic input-output relationships [59]. This
reflects both the direction and magnitude of the impact of the optimization variables on

the objectives. The direction of the influence is indicated by the sign, which is either
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positive or negative. The absolute value of the PRCC indicates the strength of the

influence, with larger values representing greater impact.

2.4 ANN prediction model

This study employed a metamodel to enhance the optimization efficiency. Metamodels
for building performance optimization are constructed using algorithms that learn
input-output variable relationships, using simulation data to build alternative models
for performance prediction. Common machine learning algorithms for metamodels
include ANN, GBDT, support vector machines, and multiple linear regression. Given
ANN's high accuracy in building performance studies and its widespread use (Table 1),
this study used MATLAB's ANN toolbox to generate the metamodel. Prior to machine
learning on orthogonal data, the dataset was randomly split into an 80% training set and
a 20% test set; the former trained the metamodel, and the latter validated its quality.
The ANN structure includes input, hidden, and output layers, with the hidden layer node

counts determined using Equation (9):

h=vmTnta 9)

where / 1s the number of nodes in the hidden layer, m is the number of nodes in the
input layer, n is the number of nodes in the output layer, and a is the adjustment constant,

which is between 1 and 10.

The ANN model's prediction performance was evaluated using the coefficient of
determination (R?), Mean Squared Error (MSE), and Mean Absolute Percentage Error
(MAPE). R?, which ranges from 0 to 1, assesses metamodel prediction accuracy, with
values closer to 1 indicating better accuracy. MSE calculates the average squared
difference between the actual and predicted values, making it sensitive to outliers
(larger errors disproportionately impact the MSE). MAPE serves as a prediction
accuracy indicator: <10% is highly accurate, 11-20% is good, 21-50% is reasonable,
and >51% is inaccurate. The mathematical formulas for these metrics are provided in

Equations (10) - (12) [60]:
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where y; is the true value, y is the average of all true values, y; is the predicted

value of the model, and 7 is the sample size of the training set.

The number of neurons in the hidden layer was determined using Equation (9), yielding
values within the range [5,13]. The number of nodes in the input and output layers was
set to eight and three, respectively, corresponding to the number of optimization
variables and target outputs. The input and output parameters from the simulation were
mapped to the ANN’s layers to ensure physically meaningful neuron behavior.
Subsequently, an error analysis was conducted for the ANN model with varying
numbers of hidden layer neurons, and the results are summarized in Table 6. The 8-10-
3 network architecture demonstrated the lowest prediction error and highest R* value in
both climate zones, as shown in Table 6. Therefore, a hidden layer with ten neurons
achieved a minimal model error. Furthermore, when the number of neurons in the neural
network varied by +£10%, the fluctuation of the model's R? value was only within 0.02,
indicating that the predictive model of the ANN had strong robustness. Additionally,
key hyperparameters were configured to reduce the risk of overfitting: a maximum of

500 training epochs and a learning rate of 0.01 were used.

Table 6: Comparison of network errors with different hidden layer neuron counts.

Case Hidden Layer Count MSE R?
5 0.05289 0.94785
6 0.05398 0.94968
7 0.05015 0.95299
Nanchang 8 0.04765 0.93251
9 0.03451 0.93497
10 0.03042 0.97422
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11 0.06921 0.94186

12 0.08701 0.94308
13 0.09768 0.94129
5 0.05771 0.92171
6 0.06193 0.93905
7 0.05566 0.94179
8 0.04079 0.94821
Guangzhou 9 0.02831 0.94865
10 0.02164 0.95253
11 0.06218 0.93747
12 0.07540 0.92502
13 0.09463 0.93389

Random perturbation tests were performed on the input parameters of the ANN model
to evaluate its robustness. The perturbation ranges for each parameter were specified as
follows: the insulation layer thickness was perturbed by £5%, the WWR was perturbed
by £3%, the external window U-value was perturbed with uniform noise of £0.3, and
the solar heat gain coefficient was perturbed with uniform noise of +0.05. Based on
these perturbation ranges, MATLAB was used to randomly add perturbation values to
the input parameters. The MAPE results before and after the perturbation were analyzed
to evaluate the model's robustness. As shown in Table 7, the variation range of the
MAPE values before and after perturbation was within 5%, which suggests that the

model has strong robustness.

Table 7: Test results of ANN model robustness.

Optimization Initial MAPE  Final MAPE Comparison

Case

objective value value results

EUI 3.0% 3.7% 0.7%

Nanchang PPD 2.8% 3.2% 0.4%
LCC 9.7% 12.8% 3.1%

EUI 2.9% 3.6% 0.7%

Guangzhou PPD 1.6% 2.4% 0.8%
LCC 7.6% 11.4% 3.8%
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2.5 NSGA-II-MOPSO multi-objective optimization

2.5.1 NSGA-II-MOPSO optimization procedure

The hybrid NSGA-II-MOPSO algorithm integrated the elitist preservation mechanisms
of NSGA-II, specifically non-dominated sorting and crowding distance estimation,
with the adaptive velocity-position update mechanism of MOPSO to overcome the
limitations inherent in single-algorithm approaches. While NSGA-II demonstrated
slow convergence in complex optimization landscapes, MOPSO was prone to
premature convergence owing to its excessive emphasis on local exploitation. By
synergistically combining these complementary strengths, the hybrid framework
achieved a balanced trade-off between global exploration and local exploitation [61].
The hybrid framework employed a parallel fusion strategy for NSGA-II and MOPSO.
In each iteration, NSGA-II’s genetic operations (selection, crossover, mutation) and
MOPSQ’s particle velocity/position updates were performed simultaneously on the
parent population. Through a shared information pool, this fusion enhanced NSGA-II’s
local search capability while expanding the search directions of MOPSO particles. This
dual subpopulation strategy effectively alleviated the stagnation in NSGA-II and

prevented the premature convergence in MOPSO.

To ensure compatibility between the two algorithms, a preprocessing step aligned their
operational mechanisms by mapping MOPSO’s particle position updates of MOPSO
onto the generational update framework of NSGA-II, treating updated particles as
offspring and original individuals as parents. Because NSGA-II lacks a velocity
component, new individuals were initialized with zero velocity. A template for storing
individual optima was added to NSGA-II, whereas MOPSO's global best was selected
from the parent population to maintain consistency. The algorithm began by initializing
the key parameters with a population size of 50 and a maximum of 100 generations,
followed by objective function evaluation, non-dominated sorting, and concurrent
execution of both sub-algorithms until convergence. This parallel architecture enabled
real-time information exchange, enhancing the convergence speed and solution

diversity [62]. Table 8 lists the initial parameter settings of the three optimization
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algorithms. As shown in Figure 4, the hybrid approach merged the parent population Py
with offspring populations Qu from NSGA-II and Qp from MOPSO to form a
combined population R:. After fast non-dominated sorting, the first N optimal solutions
were selected to create the next parent population P, ultimately yielding the Pareto-

optimal front upon termination.
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Table 8: Initial parameters for NSGA-II, MOPSO, and the hybrid algorithm.

Maximum Individual Global Maximum Minimum
Population Crossover Mutation Mutation
Algorithm number of learning learning weight weight
size proportion  probability  proportion
iterations factor factor coefficient coefficient
NSGA-II
50 100 0.8 0.05 0.2 - - - -
algorithm
MOPSO
50 100 - - - 1 2 0.8 0.1
algorithm
Hybrid
50 100 0.8 0.05 0.2 1 2 0.8 0.1
algorithm
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Figure 4. NSGA-II-MOPSO flow.

2.5.2 Performance indicators of optimization algorithms

(1) The hypervolume (HV) index was applied to compare the performance of the three
algorithms, which was used to evaluate the efficiency of the optimization method
[63,64]. The hypervolume metric was used to evaluate the extent to which the target
space was covered by an approximate set. Its value represents the volume of the
hypercube formed by the individuals in the solution set and the reference point in the

target space. If the HV value of the non-dominated solution set is larger, it indicates that
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this solution set is closer to the real Pareto frontier in terms of convergence and diversity.

The calculation formula is as follows:

1X|

HV(X,P) = U v, (13)

=1

where X represents the non-dominated solution set obtained by the algorithm, P is the
reference point, |X| is the cardinality of the non-dominated solution set, and v; is the
volume of the hypercube formed by the diagonal of the space between solution x; in the

non-dominated solution set and the reference point.

(2) The Inverted Generational Distance (IGD) is an indicator that can simultaneously
evaluate the convergence and diversity of algorithms [65]. It is used to calculate the
average Euclidean distance between all solutions in the true Pareto front and the non-
dominated solutions obtained by the solving algorithm. The IGD metric quantifies the
proximity between the algorithm-generated and true Pareto fronts, where a lower value
indicates better convergence to the optimal front and a better solution distribution. The
calculation formula is as follows:

Lxrep d(x", X)
|P*|

IGD(X,P*) = (14)

where P* is a solution set on the Pareto front, d(x*,X) is the minimum Euclidean
distance from x* in the reference solution set P* to the solutions in X, |P*|is the

cardinality of the solution set P*.

(3) The Spacing (Sp) performance measure quantifies the distribution of solutions in
the obtained approximation of the Pareto front; a value of zero indicates perfectly

uniform spacing among solutions, and it can be computed as [66]:

1 P
S = |—3'(d-d)’ (15)
’ \/|P|§( )
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M
where d; and d are defined as: d, = miIl#_,- ZW -f/| and d = TIT\
k=1

2.5.3 Utopian point method

The Pareto optimal solution set obtained via optimization algorithms represents a
collection of non-dominated decision solutions rather than a single optimal outcome.
To facilitate decision-making, this study employed the utopian point method—a MOO
technique that identifies the optimal compromise solution by minimizing the distance
between candidate solutions and the utopian point. Defined as the theoretical
combination of each objective’s individual optimal values on the Pareto frontier, the
utopian point serves as a benchmark for evaluating solution optimality. Taking the
three-objective example of this study, the distance between each point in the Pareto set

and the utopian point was calculated using Equation (16):

@y = @ pest\° (B~ Boest\* . (Yo~ Vouest\]
( P p_best> +( D p_best) +< D p_best) (16)
Op_best Bp_best Yp_best

where @ pese 18 the optimal value of BEC, B pese is the optimal value of ITC,

U, =

Yp_pest is the optimal value of the LCC, (a,, By, ¥p) is the coordinates of the

corresponding Pareto front point.

After calculating the distance between each point in the optimal solution set and the

utopian point, the point with the minimum distance was selected as the optimal solution.
Uoptzmin( U,) (17)

This study took the calculation results of the reference building design parameters as
the reference point and normalized the reference point and the Pareto optimal solution
set obtained in each iteration to prevent the influence of large-scale dimensional data
on the calculation results. The normalized index of the reference point after

normalization was (1, 1, 1).
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3. Results and discussions

3.1 Impact of optimization variables on optimization objectives

Figure 5 presents the correlation analysis results between the optimization variables and
objectives via PRCC. As shown in Figure 5(a), the external wall insulation thickness
was strongly negatively correlated with EUI (PRCC = — 0.58) and PPD (PRCC = —
0.41), but positively correlated with LCC (PRCC = 0.32). Its influence on objectives
surpassed that of roof insulation thickness. Roof insulation thickness was weakly
negatively correlated with EUI (PRCC = — 0.16) and slightly positively correlated with
LCC (PRCC =0.09), having a lower impact on ITC. For all directions, WWR positively
correlated with objectives, with south-facing and north-facing WWR having greater
impacts. S-WWR shows PRCCs of 0.38 (EUI), 0.43 (PPD), 0.61 (LCC); N-WWR has
0.25 (EUI), 0.03 (PPD), 0.48 (LCC), due to large south and north facade areas. The
external window U-value positively correlated with the BEC and ITC but negatively
with the LCC. SHGC shows the opposite pattern, negatively correlating with BEC and
ITC, and weakly positively with LCC.

SHGC

window-U

N-WWR

W-WWR

S-WWR

E-WWR

roof-U

wall-U |-0.5
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Figure 5. Results of redundancy analysis: (a) Nanchang and (b) Guangzhou.

In Figure 5(b), external wall insulation (wall-U) strongly negatively correlates with EUI
(PRCC = —0.87) and moderately with PPD (PRCC = —0.38), and positively with LCC
(PRCC = 0.20), showing greater influence than roof insulation (roof-U), which has
weak negative correlations with EUI (PRCC =—0.09) and PPD (PRCC =-0.07), and a
slight positive with LCC (PRCC = 0.04). Among WWRs, N-WWR and S-WWR have
higher impacts: N-WWR (PRCC = 0.18 EUI, 0.09 PPD, 0.52 LCC); S-WWR (PRCC
= 0.14 EUI, 0.20 PPD, 0.50 LCC). W-WWR weakly positively correlates with EUI
(0.05), negatively with PPD (—0.12), and positively with LCC (0.23); E-WWR shows
PRCCs of 0.05 (EUI), 0.22 (PPD), and 0.10 (LCC). Window-U positively correlates
with EUI (0.15), negatively with PPD (—0.25), and strongly negatively with LCC
(—0.58). SHGC exhibits the reverse: positive with EUI (0.27) and strongly positive with
PPD (0.76), and weakly positive with LCC (0.06).

3.2 ANN prediction and accuracy analysis

Figure 6 illustrates the comparison between the predicted values from the ANN model
and the actual values. The ANN model exhibited high accuracy in predicting EUI, PPD,
and LCC. For the Nanchang case, the R? values for these three optimization objectives

were 0.959, 0.978, and 0.988, respectively. In the Guangzhou case, the corresponding
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R? values were 0.980, 0.942, and 0.972. These results indicated that the prediction

models performed well and could be employed as the fitness function in the subsequent

MOQO algorithm.

=
=65 ©
~ -~ -
£ / 246 z
= 645 = = 3]
E 4 o 24.4 o
= 64 o & 5
o .O/ ? -
2 / g 242 s
S 63.5 o® = E]
@ - “ -
Z o of° T 24 -
> 63 o) CE o B 3
= £ 1 [ X
2 df’ 2 3 E
2 <] ={)., £ 238 2 [
2 625 8 R"=0.959 = R°=0.978 S
S ‘9‘}0 2 2
y =
E‘ 62 I = 23.6 =
& 62 63 64 65 236 238 24 242 244 246 4 3 2 4 0 1
The simulated value of EUI (k\\"hl(mz'ﬂ)) The simulated value of PPD (%) The simulated value of LCC (CNY)x10°
(a) (b) ()
— 5
= o %10
o645 T T T 1
g & 45 2
= = 3]
£ o & Y 5
= o 2 =] “
=] °8 o 3 235 2
= ] 0 ] 5
s S s z
o - =
= = >
= 63.5 B
B °@°§ 2 ns ]
T Vel b 2 é
g 2
g e R*=0.980 X 22 R*=0.942 g
£ af & ~ gas ]
U o o = -
=
2 63 63.5 64 64.5 22 23 24 4 3 -2 -1 0 1
The simulated value of EUI (K\\'Il/(n|2~a)) The simulated value of PPD (%) The simulated value of LCC (CNY)x 10°

(d) (e) H

Figure 6. Prediction results of the objective function in the ANN model.

3.3 Performance comparison of optimization algorithms

Hypervolume results of the two cases were presented in Figure 7. In Figure 7(a), during
the initial stage, as function evaluations increased, the hypervolume index of each
algorithm also rose. The hybrid NSGA-II-MOPSO algorithm’s HV value tended to
stabilize at 800 function evaluations, while the NSGA-II and MOPSO algorithms began
to stabilize their HV values at 1700 and 1150 function evaluations, respectively. This
indicated that the hybrid NSGA-II-MOPSO algorithm could quickly obtain the Pareto
optimal solution set with fewer iterations. Additionally, the final hypervolume values
of the three optimization algorithms were 0.648 (NSGA-II), 0.640 (MOPSO), and 0.676
(NSGA-II-MOPSO), respectively. In Figure 7(b), the hybrid algorithm’s HV value
tended to stabilize at 400 function evaluations, whereas the NSGA-II and MOPSO

algorithms began to stabilize their HV values at 900 and 700 function evaluations,
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respectively. This also indicated that the hybrid NSGA-II-MOPSO algorithm could
quickly obtain the Pareto optimal solution set with fewer iterations. The final
hypervolume values of the three optimization algorithms here were 0.665 (NSGA-II),
0.659 (MOPSO), and 0.668 (NSGA-II-MOPSO), respectively. Therefore, the MOO
performance of the hybrid NSGA-II-MOPSO algorithm proposed in this study was

superior to that of the other two algorithms in terms of both diversity and convergence.
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Figure 7. Hypervolumes of each optimization algorithm: (a) Nanchang and (b)

Guangzhou.

Table 9 presents the IGD results, showing that the hybrid NSGA-II-MOPSO algorithm
outperformed NSGA-II and MOPSO in both cases. The hybrid algorithm achieved IGD
values of 0.02133 in Nanchang and 0.00959 in Guangzhou, compared to 0.02413 and
0.01172 for NSGA-II, and 0.02638 and 0.01394 for MOPSO, demonstrating its superior
convergence. Table 10 illustrates the spacing metric results, further confirming the
hybrid algorithm’s advantage with values of 0.03671 in Nanchang and 0.02104 in
Guangzhou, as opposed to 0.04052 and 0.02605 for NSGA-II, and 0.03849 and 0.02370
for MOPSO, indicating better solution uniformity. Overall, the hybrid NSGA-II-
MOPSO algorithm exhibited enhanced performance in terms of both convergence and
solution diversity across the two climate zones when compared to NSGA-II and

MOPSO.
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Table 9: Results of IGD metric for NSGA-II, MOPSO, and proposed hybrid NSGA-II-

MOPSO algorithms.
IGD metric
Case
NSGA-II MOPSO NSGA-II-MOPSO
Nanchang 0.02413 0.02638 0.02133
Guangzhou 0.01172 0.01394 0.00959

Table 10: Results of spacing metric for NSGAII, MOPSO, and proposed hybrid NSGA-
II-MOPSO algorithms.

Spacing metric for the optimal solution

Case
NSGA-II MOPSO NSGA-II-MOPSO
Nanchang 0.04052 0.03849 0.03671
Guangzhou 0.02605 0.02370 0.02104

3.4 MOO results of the hybrid algorithm

The distribution of Pareto optimal solutions for the MOO of ultra-low energy residential
buildings using three optimization algorithms is shown in Figure 8. In Nanchang, the
hybrid algorithm yielded the broadest EUI interval [61.53, 63.56 kWh/(m?-a)]
compared to NSGA-II [61.73, 63.42] and MOPSO [61.75, 63.16], while narrowing the
PPD range to [23.27, 24.18%] and achieving the largest LCC saving interval
[-479,138.24, —49,230.42 CNY]. In Guangzhou, the hybrid algorithm maintained
similar EUI ranges but remarkably concentrated PPD values at [23.72, 23.72%] and
expanded the LCC saving interval to [-673,341.35, —243,555.87 CNY |, outperforming
other algorithms. This performance originated from the hybrid algorithm’s integration
of NSGA-II’s global exploration and MOPSOQO’s fast local convergence, balancing
solution diversity and precision: it expanded the energy-optimized solution space in
Nanchang, achieved precise thermal comfort optimization in Guangzhou, and showed
consistent economic advantages across climates, verifying its superiority in building
MOO design. Thus, the hybrid algorithm’s calculation results were used to analyze

optimized design solutions in the following section.
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In Nanchang, the buildings achieved an EUI between 61.25 and 63.75 kWh/(m?-a), with
the average PPD value for rooms with the poorest thermal comfort throughout the year
ranging from 23.2% to 24.2% and LCC savings between 50,000 and 500,000 CNY. In
Guangzhou, the EUI of buildings fell between 62.38 and 64.20 kWh/(m?-a), the
corresponding average PPD value for the least thermally comfortable rooms ranged
from 23.7% to 24.4%, and LCC savings varied from 240,000 to 670,000 CNY. All
solutions obtained in this study showed an EUI below 65 kWh/(m?-a), meeting the
design requirements for ultra-low energy residential buildings. Compared with the
reference model, the PPD value for indoor thermal comfort across all solutions was
lower. The LCC, which combined initial investment cost and operating cost, was < 0,
indicating that the buildings achieved economic savings over their life cycle.
Additionally, the cost increment of all design solutions was less than 0. To further
illustrate the trade-offs among the three objectives, a parallel coordinate radar chart of

the non-dominated solutions is presented in Figure 9.

Performance Trade-offs (Normalized) Performance Trade-offs (Normalized)

Solution Type Solution Type
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Figure 9. Normalized radar charts illustrating MOO performance trade-offs (EUI,
LCC, PPD) for the case building: (a) Nanchang and (b) Guangzhou.

Based on the Pareto optimal solution set, the optimal insulation layer thickness for
building external walls in ultra-low energy residential buildings in Nanchang ranged
from 150 to 190 mm, with corresponding U-values between 0.15 and 0.18 W/(m*-K);
the optimal value of the insulation layer thickness of the roof mainly fallen within the
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range of 150 to 180 mm, and the corresponding U-value was between 0.15 and 0.19
W/(m*K). The optimal values of the WWR for each orientation of the building were
all around the lower limit of the WWR requirement. The external window U-value was
mainly at around 1 or 2.5 W/(m*K), and the SHGC value was mainly between 0.3 and
0.4. Due to the conflicting relationship among the three optimization objectives, the
values of the optimization variables were relatively scattered. For the Guangzhou case,
the external wall insulation thickness concentrated at 20 and 100 mm, with
corresponding U-values of 0.8 and 0.3 W/(m?-K). The roof thickness ranged from 90
to 110 mm, corresponding to U-values between 0.25 and 0.3 W/(m?-K). The optimal
WWRs were similar to those in Nanchang, all approaching the lower limit of the
required WWR. The external window U-values ranged from 1 to 1.5 W/(m?:K), and the
SHGCs were between 0.2 and 0.3. Due to differences in climate zones, the optimization
of building U-values varies significantly. In HSCW regions, exterior wall U-values
must be lower to balance summer heat insulation and winter heat retention. Meanwhile,
Nanchang, a typical HSCW city, optimizes exterior window U-values by first meeting
local energy requirements to cut costs. By contrast, Guangzhou (HSWW region) has
much lower exterior wall insulation/heat retention needs—focusing only on summer
heat insulation with minimal winter needs. Thus, to meet energy standards and control
costs, a higher U-value works for Guangzhou’s exterior walls, avoiding unnecessary

high-performance insulation investment.

3.5 Optimal solutions for ultra-low energy residential buildings in case cities

The simulation results for the reference model in Nanchang showed that the total annual
energy consumption of the building's equipment and lighting was 66,621.18 kWh, the
cooling energy consumption was 57,842.31 kWh, the heating energy consumption was
41,200.57 kWh, and the EUI of the building was 73.11 kWh/(m?-a). The thermal
comfort of the reference model showed that the average PPD value of the room with
the poorest thermal comfort in the building throughout the year was 25.2%. The total
annual energy consumption of the building and the unit price of the building's materials

mentioned above were used to calculate the LCC of the reference model, which was
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3047,213.03 CNY. In Guangzhou, the reference building exhibited an annual total
energy consumption of 66,621.18 kWh for equipment and lighting, with cooling energy
consumption at 85,519.73 kWh, heating energy consumption at 10,644.79 kWh, and an
EUI of 71.84 kWh/(m?-a). The average PPD value for the room with the poorest annual
thermal comfort was 28.59%, and the LCC calculated from the annual energy
consumption and material unit prices was 2,970,201.28 CNY. Neither reference model
met the energy requirements of ULEBs, necessitating further design optimization of the

building envelope to derive optimal solutions.

Through the screening of the Pareto optimal solution set, the best EUI, PPD and LCC
solutions are obtained, as shown in Table 11. The results were compared with those of
the reference model. In Nanchang, compared with the reference model solution, the
best EUI solution reduced energy consumption by 15.8%, the best PPD solution
reduced indoor dissatisfaction by 7.6%, and the best LCC solution saved 479,138 CNY.
In Guangzhou, the best EUI solution reduced energy consumption by 13.2%, the best
PPD solution reduced indoor dissatisfaction by 17.0%, and the best LCC solution saved
673,341 CNY. While all optimization solutions met the ultra-low energy building codes,
one of the optimal design solutions, though achieving good results in a specific building
performance indicator, might fail to meet the desired outcomes for its other

performance indicators.
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Table 11: Comparison of the optimization solutions.

Case Design Unit Reference solution Best EUI solution Best PPD solution Best LCC solution ~ Best solution
variables
mm 30 190 154 70 87
o W/(m*K) 0.649 0.150 0.176 0.348 0.291
mm 40 180 180 126 128
= W/(m*K) 0.620 0.150 0.150 0.223 0.220
X3 - 0.02 0.35 0.35 0.10 0.10
X4 - 0.40 0.20 0.20 0.20 0.20
Nanchang Xs — 0.02 0.25 0.10 0.10 0.10
X — 0.25 0.15 0.23 0.15 0.15
X7 W/(m*K) 5.8 1.0 1.0 2.5 2.5
X3 - 0.75 0.32 0.4 0.1 0.1
Y kWh/(m?-a) 73.11 61.53 (—15.8%) 61.81 (—15.5%) 63.55 (—13.1%)  63.43 (—13.2%)
Y> % 25.19 23.37 (=7.2%) 23.27 (=7.6%) 24.18 (—4.0%) 24.17 (—4.1%)
Y3 CNY 0 —49230.4 —81226.8 —479138 —475087
mm 30 100 100 20 20
Guangzhou Xi
W/(m*K) 0.649 0.3 0.3 0.8 0.8
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X

X3
Xa
Xs
Xe
X7
X3
M|
Y;
Y;

mm
W/(m2K)

W/(m>K)
kWh/(m?-a)
%
CNY

40
0.620
0.02
0.40
0.02
0.25
5.8
0.75
71.84
28.59

110

0.25

0.10

0.20

0.10

0.15

1.0

0.19
62.38 (—13.2%)
23.90 (~16.4%)

~294482

110

0.25

0.30

0.20

0.11

0.15

1.0

0.30
62.41 (—13.1%)
23.72 (-17.0%)

~243556

87
0.315
0.10
0.20
0.10
0.15
2.5
0.27
64.21 (—10.6%)
24.41 (—14.6%)
—673341

84
0.325
0.10
0.20
0.10
0.15
2.39
0.26
64.16 (—10.7%)
24.39 (-14.7%)
~665024
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The best solution derived via the utopian point method comprehensively considers three
building performance indicators, as shown in Table 11. The best solution for Nanchang
cut EUI by 13.2%, lowered average PPD dissatisfaction by 4.1%, and saved 475,087
CNY in LCC. Comparing envelope design parameters across four solutions with the
reference model showed several findings. First, thicker external wall and roof insulation
reduced EUI. Second, reducing WWR in all orientations was beneficial because the
external window U-value exceeded that of external walls. Third, the external window
U-value greatly impacted LCC. Larger U-values led to lower PPD. Finally, a larger
window SHGC lowered EUI. For Guangzhou, the best solution reduced EUI by 10.7%,
PPD by 14.7%, and saved 665,024 CNY in LCC. Examining design parameters across
five scenarios revealed: the best EUI solution, via thicker insulation and lower U-values,
cut EUI by 13.2%; the best PPD solution, through adjusting window U-values, reduced
PPD by 17.0%; the best LCC and best solutions traded off variables for cost savings,
with the best solution’s LCC (—665,024 CNY) balancing better with EUI and PPD than
the best LCC solution’s (—673,341 CNY). The best solutions in Nanchang and
Guangzhou showed climate-specific trade-offs: thicker insulation and lower WWR
reduced EUI by 13.2% in Nanchang, while balancing window U-value and SHGC
minimized PPD and LCC. In Guangzhou, prioritizing low U-values and SHGC cut EUI
by 10.7% and PPD by 14.7%, with the best solution balancing LCC savings against
energy and comfort better than the pure cost-optimized case. These results highlight the
importance of tailoring envelope parameters to regional thermal demands for holistic

performance optimization.

4. Conclusions

In light of the promotion of ultra-low energy residential buildings in the southern region
of China, this study proposed an MOO method for building design based on the hybrid
NSGA-II-MOPSO algorithm. By taking BEC, ITC, and LCC as the optimization
objectives, an orthogonal experimental design was conducted on eight variables,
including the external wall U-value, roof U-value, WWR in each direction (east, south,

west, and north), external window U-value, and SHGC. The orthogonal experimental
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data were used to construct an ANN prediction model for the optimization objectives.
Based on this prediction model, an efficient hybrid machine learning algorithm that
combines NSGA-II and MOPSO was developed for the case building optimization
design. The corresponding optimized design solutions were obtained. The main

conclusions are as follows:

(1) The ANN model exhibited high accuracy in predicting EUIL, PPD, and LCC. For the
Nanchang case, the R? values for the three objectives were 0.959, 0.978, and 0.988; in
the Guangzhou case, they were 0.980, 0.942, and 0.972. The ANN model could be used
as the fitness function in multi-objective optimization. Performance indicators of the
hybrid NSGA-II-MOPSO, NSGA-II, and MOPSO algorithms were calculated. In the
Nanchang case, HV values were 0.648 (NSGA-II), 0.640 (MOPSO), and 0.676 (hybrid);
in the Guangzhou case, they were 0.665 (NSGA-II), 0.659 (MOPSO), and 0.668
(hybrid). The hybrid algorithm achieved IGD values of 0.02133 (Nanchang) and
0.00959 (Guangzhou), outperforming NSGA-II (0.02413, 0.01172) and MOPSO
(0.02638, 0.01394) in convergence. Spacing metrics further confirmed its advantage:
0.03671 (Nanchang) and 0.02104 (Guangzhou) versus NSGA-II (0.04052, 0.02605)
and MOPSO (0.03849, 0.02370), indicating better solution uniformity. Overall, the
hybrid NSGA-II-MOPSO algorithm showed superior convergence and solution

diversity in both climate zones compared to the single algorithms.

(2) Based on the hybrid algorithm, the optimized design parameter ranges for ultra-low
energy residential buildings in Nanchang were as follows: external wall and roof U-
values were controlled at 0.15-0.18 and 0.15-0.19 W/(m?-K), respectively; WWR in
all orientations ranged from 0.1 to 0.25; external window U-values were set at
approximately 1 or 2.5 W/(m*K); and SHGC values were controlled between 0.3 and
0.4. For Guangzhou, the optimized parameters include external wall U-values (0.3 and
0.8 W/(m?-K)), roof U-values (0.25-0.30 W/(m*K)), and WWRs similar to Nanchang’s,
approaching the lower limit of requirements. External window U-values ranged from 1

to 1.5 W/(m?>:K), with SHGC values between 0.2 and 0.3.
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(3) The best solution derived via the utopian point considered three building
performance indicators. For Nanchang, key parameters were: external wall U-value
0.29 W/(m?-K), roof U-value 0.22 W/(m*K), east/west/north WWR 0.1/0.1/0.15, south
WWR 0.2, external window U-value 2.5 W/(m?*K), and SHGC 0.1. Compared to the
reference model, this reduced EUI by 13.2% to 63.43 kWh/(m?-a), average PPD by 4.1%
to 24.17%, and saved LCC by 475,087 CNY. For Guangzhou, the solution featured
external wall U-value 0.8 W/(m?K), roof U-value 0.325 W/(m*K), the same WWR
values (east/west/north 0.1/0.1/0.15, south 0.2), window U-value 2.39 W/(m?*K), and
SHGC 0.26. This achieved a 10.7% EUI reduction to 64.16 kWh/(m?*-a), 14.7% PPD
reduction to 24.39%, and LCC savings of 665,024 CNY.

This study focused on southern China’s ultra-low energy residential buildings with
relatively simple spatial forms. Before generalizing this approach to more complex
building types like ultra-low energy public buildings, further investigation is needed,
including adaptive adjustments to design parameters and optimization goals based on
specific building characteristics. Additionally, implementing research findings in
practice requires significant financial investment, which currently limits the validation
and refinement of theoretical results through practical application. Future research
could explore additional strategic possibilities, such as applying other deep learning
algorithms to classify complex real-world problems, to further advance these research

directions.
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