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Nomenclature 

Nomenclature  

Abbreviation  

ANN Artificial Neural Network LCC Life Cycle Cost 

BEC Building Energy Consumption MAPE Mean Absolute Percentage Error 

CNY Chinese Yuan MOO Multi-Objective Optimization 

COP Coefficient of Performance MOPSO 
Multi-Objective Particle Swarm 

Optimization 

EUI Energy Use Intensity MSE Mean Squared Error 

EPS Expanded Polystyrene NSGA 
Non-dominated Sorting Genetic 

Algorithm  

GBDT 
Gradient Boosting Decision 

Tree  
PMV Predicted Mean Vote 

HSCW Hot Summer and Cold Winter PPD 
Predicted Percentage of 

Dissatisfaction 

HSWW Hot Summer and Warm Winter SHGC Solar Heat Gain Coefficient 

HV Hypervolume ULEBs Ultra-Low Energy Buildings  

IGD Inverted Generational Distance WWR Window-to-Wall Ratio 

ITC Indoor Thermal Comfort XPS Extruded Polystyrene 
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Abstract 

To address the lack of effective multi-objective optimization approaches that balance 

building energy consumption, indoor thermal comfort, and life-cycle cost in ultra-low 

energy residential buildings, this study proposes a hybrid algorithm that integrates the 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with Multi-Objective Particle 

Swarm Optimization (MOPSO) for the multi-objective optimization design of such 

buildings, validated through case studies in two climate zones. Orthogonal experiments 

were conducted on eight variables, including the heat transfer coefficients of external 

walls, roofs, and windows; directional window-to-wall ratios; and solar heat gain 

coefficients. An artificial neural network model for the three objectives was developed 

to serve as fitness functions for the hybrid algorithm. The hybrid approach 

outperformed the standalone NSGA-II and MOPSO in terms of the hypervolume, 

inverted generational distance, and spacing metrics, demonstrating superior 

convergence and solution diversity. Optimized design parameter ranges were derived, 

and best solutions were identified for both climates, providing practical guidance for 

similar regions. The innovations of this study include: (1) a multi-objective 

optimization framework balancing energy, comfort, and cost to enhance solution 

practicality in ultra-low energy residential buildings; (2) integration of NSGA-II-

MOPSO with metamodeling for the three objectives, verified to improve optimization 

efficiency over individual algorithms.  

 

Keywords: Building performance, multi-objective optimization, ultra-low energy 

residential buildings, NSGA-Ⅱ-MOPSO, Climate-responsive design  
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1. Introduction 

Building operations account for approximately 30% of the global final energy 

consumption, with residential buildings contributing 70% [1,2]. Urbanization and 

climate change have further increased energy demand in urban residential sectors, 

which now represent a quarter of the global final energy use (excluding non-energy use) 

[3,4]. To advance building energy efficiency, concepts such as Ultra-Low Energy 

Buildings (ULEBs) have emerged as key strategies for achieving energy savings and 

decarbonization [5,6]. ULEBs, however, aim for not only low operational energy 

consumption, but also improved quality-of-life demands and reduced cost from other 

construction-related activities [7]. Building Energy Consumption (BEC), Indoor 

Thermal Comfort (ITC), and Life Cycle Cost (LCC) are commonly used as metrics for 

evaluating the overall performance of buildings [8,9]. These metrics, however, often 

conflict. For example, enhancing ITC usually requires higher energy consumption, 

resulting in higher LCC. Influenced by envelope components and climate, balancing 

these metrics in ULEBs remains challenging [10].  

To address these conflicting metrics, scholars have proposed Multi-Objective 

Optimization (MOO) for residential building design [11–13]. For example, Wang et al. 

[14] optimized the BEC and ITC in cold-region passive buildings using a Non-

dominated Sorting Genetic Algorithm-II (NSGA-II), coupled with a redundancy 

analysis and Gradient Boosted Decision Tree (GBDT). In Greece, Kilis et al. [15] 

explored MOO approaches for optimizing building envelope thermal design and 

demonstrated that contradictions between optimization criteria in single-objective 

optimization underscored the necessity of balancing these criteria using MOO. Xue et 

al. [16] constructed a building energy model with hybrid ventilation and light-dimming 

control in EnergyPlus, and developed an NSGA-II algorithm to find optimal design 

solutions that minimize the LCC and emissions. Gou et al. [17] conducted MOO using 

NSGA-II coupled with an Artificial Neural Network (ANN). Their work showed 

significant potential for enhancing ITC with a lower BEC for residential buildings in 

Shanghai. Existing studies have employed diverse methods: MOO models based on the 
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harmony search algorithm [18], simulation modeling with sensitivity analysis [19], 

integration of NSGA-II with EnergyPlus [20], and performance-responsive generative 

frameworks combining multi-agent systems, genetic algorithms, and ANN [21].  

Current MOO relies on two approaches: coupling simulation tools with optimization 

algorithms (often time-consuming, limiting practical use) or using metamodels 

(surrogate models) to reduce computational time [22–24]. While metamodels are 

widely adopted, balancing efficiency and robustness remains a focus [10,25]. To 

improve predictive accuracy, Chen et al. [26] improved the accuracy of a 

backpropagation neural network for predicting carbon emissions, discomfort hours, and 

costs via a random grid search. However, this method is computationally intensive, 

which hinders its efficiency. Against the need to optimize public education buildings 

for daylighting and thermal comfort, Xu et al. [27] proposed a two-stage meta-model 

MOO method, where an ANN was coupled separately with NSGA-II and MOPSO to 

optimize building envelopes. Validated via a typical teaching building case, the method 

compared the performances of NSGA-II and MOPSO and derived optimal envelope 

designs. Moreover, complex real-world MOO problems exceed the capacity of a single 

algorithm, which suffers from inherent limitations [28]. For example, NSGA-II, a 

widely used algorithm based on genetic algorithms, demonstrates a strong global search 

capability [29]. However, it suffers from relatively a slow convergence [30]. In contrast, 

the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, which is 

derived from the particle swarm optimization approach, offers a simple structure and 

fast convergence speed [31]. Nevertheless, it is more prone to being trapped in local 

optima [32]. Existing studies have developed hybrid algorithms to overcome single-

algorithm limitations, such as in optimizing building envelopes integrated with power 

generation systems [33] and enhancing public building performance [34,35]. However, 

relevant studies on residential building performance MOO remain unreported.   
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Table 1: Summary of recent literature on residential building performance optimization.  

Ref. Year 
Climate 

zone 
Objectives 

Optimization 

algorithms 
Fitness function 

Performance indicators 

of MOO algorithms 
Statistical analysis 

[36] 2020 Cold zone LCC, GWP, CTR NSGA-II GBDT - LHS, PRCC 

[14] 2020 Cold zone EUI, CTR NSGA-II GBDT - LHS, PRCC 

[37] 2020 Cold zone EUI, PPD, SDA SPEA-2 
Coupling simulation 

with MOO algorithms 
Hypervolume - 

[13] 2021 

Cold and 

temperate 

zones 

Overall Energy 

Need, IIC 
NSGA-II 

Coupling simulation 

with MOO algorithms 
- - 

[19] 2021 South Korea LCC, GWP, AED NSGA– II ANN - LHS, Sobol’s method 

[8] 2021 HSCW zone EUI, DTR, LCC NSGA– II 
Coupling simulation 

with MOO algorithms 
- Influence coefficient 

[29] 2021 Cfa climate 
Energy for heating 

and cooling, DTR 
NSGA– II 

Coupling simulation 

with MOO algorithms 
Hypervolume 

LHS, standardized regression 

coefficient, p-value 

[38] 2022 
Cold, semi-arid 

zone 
HLE, UDI, PTC NSGA-III PCA-ANN Hypervolume LHS 

[16] 2022 
Severe cold 

zone 
LCC, LCCE NSGA-II ANN - SRRC, PRCC 

[39] 2023 Cold zone AED, SUH NSGA-II GA-RBF - NCA 

[40] 2023 HSCW zone 
Embodied and 

operational GWP 
NSGA-II LSSVM - - 
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[41] 2024 HSCW zone EUI, PPD, UDI NSGA-II BO-XGBoost - “. get_score” method 

[21] 2025 Cold zone 
UDI, PPD, indoor 

CO2 concentration 
NSGA-II 

backpropagation neural 

network 
Hypervolume 

LHS, extended fourier amplitude 

sensitivity test 

[42] 2025 Cold zone AED, DTR, LCCE NSGA-III ANN - The Morris method 

[43] 2025 HSCW zone EUI, PMV, cost NSGA-II LSTM Hypervolume Pearson correlation 

[44] 2025 Cold zone EUI, DTR, IIC NSGA-II GA-BPNN - LHS 

This 

study 
 

HSCW and 

HSWW zones 
BEC, ITC, LCC 

NSGA-II-

MOPSO 
ANN 

Hypervolume, IGD 

and Spacing 

Mean squared error, mean absolute 

percentage error, PRCC 

Notes: AED = annual energy demand; BO-XGBoost = Bayesian optimization with extreme gradient boosting trees; CTR= comfort time ratio; DTR = discomfort 

time ratio; EUI = energy use intensity; GWP = global warming potential; HLE = heating and lighting energy; HSWW = Hot Summer and Warm Winter; IIC = initial 

investment cost; IGD = inverted generational distance; LCCE = Life-cycle carbon emissions; LHS = Latin hypercube sampling; LSTM = long short-term 

memory; LSSVM = least squares support vector machine; NCA = neighborhood components analysis; PRCC = partial rank correlation coefficient; PRCC = partial 

rank correlation coefficient; PTC = percentage of thermal comfort; RBF = radial basis function; UDI= useful daylight illuminance; SDA = spatial daylight autonomy; 

SPEA = strength pareto evolutionary algorithm; SRRC = standard rank regression coefficient; SUH = summer discomfort hours. 
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Table 1 summarizes recent research on the MOO of residential building performance. 

As shown in the table, most studies employed NSGA-II as the optimization method; 

however, there is limited discussion regarding the performance and improvement of the 

optimization algorithms. To enhance the overall optimization performance, this study 

proposed a hybrid algorithm, NSGA-II-MOPSO, which combines the strengths of both 

algorithms. This hybrid approach retains the global search ability of NSGA-II and 

incorporates the fast convergence characteristics of MOPSO. First, eight design 

variables were selected, and an orthogonal experiment was conducted. Based on 

simulation data from the DesignBuilder software, an ANN model was established to 

predict the BEC, ITC, and LCC. The NSGA-Ⅱ-MOPSO algorithm was developed for 

MOO and best solutions for the ultra-low energy building in selected case-study cities. 

The innovation of this study lies in (1) proposing an MOO framework for ultra-low 

energy buildings to balance BEC, ITC and LCC. This will make the optimization 

solutions more practical and provide a reference for future studies. (2) NSGA-II-

MOPSO was integrated into metamodel development for BEC, ITC, and LCC, with 

verified efficiency against NSGA-II and MOPSO.  

2. Methodology 

2.1 Research design 

This study proposed a three-objective optimization method for ultra-low energy 

residential buildings in the HSCW zone using the NSGA-II-MOPSO algorithm, aiming 

to improve the ITC, reduce the BEC, and lower the LCC by adjusting building design 

parameters during the design phase. First, eight key building design parameters were 

identified. An orthogonal experimental design was applied to generate 49 sample sets 

based on the defined parameter ranges. Subsequently, the ITC, BEC, and LCC of the 

residential building were simulated using DesignBuilder v6.1.0.6 to generate the 

datasets. Second, the datasets underwent preprocessing and were divided into a training 

set (80%) and a test set (20%) for ANN model development. The prediction accuracy 

of the model was evaluated using the coefficient of determination (R²). Third, the 

trained ANN model was integrated as a fitness function into the MOO framework. The 
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NSGA-II-MOPSO model was constructed by incorporating the constraint ranges of the 

design parameters, resulting in the generation of a Pareto optimal solution set. To ensure 

fairness in algorithm comparisons, all calculations were performed under consistent 

computational conditions: the same computer, identical MATLAB version, and a 

runtime environment with only MATLAB active.  

2.2 Case study 

As the world’s largest energy consumer, China prioritizes residential energy savings 

[45]. China’s building operational energy use reached 1.06 billion tons of standard coal 

equivalent (tce), with residential buildings accounting for 61% of the total [41,46]. 

Notably, China’s Hot Summer and Cold Winter (HSCW) zone, home to 600 million 

people and contributing nearly half of the national economy, has substantial residential 

energy-saving potential [47,48]. In China, ULEBs are viewed as a foundational step 

toward zero-energy buildings; however, their promotion is limited in southern regions 

compared to that in northern China. This disparity likely stems from the origins of the 

relevant standards and designs in high-latitude Western European regions, leaving a 

shortage of optimized design methods for ULEB in southern regions [7,8].  

This study applied the proposed MOO methodology to a case building in Nanchang, 

with a comparative analysis conducted for Guangzhou. The case building is a slab-type 

apartment, a typical residential type in southern China. Outdoor meteorological 

parameters for both locations were obtained from typical meteorological year data, as 

illustrated in Figure 1. Nanchang, situated in the HSCW zone, experiences sweltering 

and humid summers alongside cold and damp winters. In contrast, Guangzhou is 

located in the HSWW zone, characterized by long, hot summers and mild winters with 

no significant cold period. According to JGJ/T 346-2014 Standard for weather data of 

building energy efficiency, the heating degree days (HDD₁₈) and cooling degree days 

(CDD₂₆) (units: °C·d) in Nanchang are 1326 and 250, respectively, while those in 

Guangzhou are 373 and 313. These distinct climatic conditions lead to different energy 

demands: a balanced requirement for both heating and cooling in Nanchang versus a 
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predominant cooling load in Guangzhou.  

 

Figure 1. Outdoor air temperatures of two cities. (Data source: 

https://energyplus.net/weather) 

The building was modeled using DesignBuilder, and a three-dimensional model is 

presented in Figure 2. It has a total floor area of 3145.65 m², five floors with a height 

of 3 m, and a north-south orientation. The envelope structure, including the external 

walls, roofs, interior walls, external windows, and floor slabs, is detailed in Table 2, 

with the key thermal parameters of the building materials listed in Table 3. Tables 2 and 

3 present detailed thermal performance data of the case building envelope. These data 

are derived from the architectural drawings of the case building and serve as the initial 

parameter set for simulation calculations in the software, as well as a baseline for 

comparison following subsequent optimization. The external windows are aluminum 

alloy with a Solar Heat Gain Coefficient (SHGC) of 0.75, and the Window-to-Wall 

Ratios (WWRs) are east (0.02), south (0.40), west (0.02), and north (0.25).  

 

Figure 2. Case-building model.  
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Table 2: Building envelope structure parameters. 

Building 

envelope 
Structure (from the outside to the inside) 

U-value 

W/(m²∙K) 

External 

wall 

Cement mortar (20mm) + EPS (30mm) + Shale sintered 

porous bricks (240mm) + cement mortar (20mm)  
0.65 

Roof 

Cement mortar (20mm) + EPS (100mm) + waterproof 

roll (4mm) + cement mortar (20mm) + reinforced 

concrete (100mm) 

0.62 

Internal 

wall 

Cement mortar (20mm) + Shale sintered porous bricks 

(240mm) + cement mortar (20mm) 
1.58 

Floor Cement mortar (20mm) + reinforced concrete (100mm) 2.55 

Door Steel door (60mm) 2.55 

External 

window 

Aluminum alloy profile window frame + single-glass 

(6mm) 
5.80 

Table 3: Thermal parameters of building materials. 

Materials 
Thermal conductivity 

W/(m∙K) 

Density 

(kg/m3) 

Specific heat 

capacity J/(kg∙K) 

Cement mortar 0.93 1800 1050 

EPS 0.046 19 2035 

Porous bricks 0.73 780 1150 

Waterproof roll 0.23 900 1620 

Reinforced concrete 1.74 2500 935.2 

The indoor environment, occupant activities, equipment lighting, etc., of the residential 

buildings all meet the relevant regulations in GB 55015-2021 General code for energy 

efficiency and renewable energy application in buildings [49] and GB/T 51350-2019 

Technical standard for nearly zero-energy buildings [50]. According to the standards, 

the summer cooling set temperature of air-conditioned rooms was set to 26 ℃, the 

winter heating set temperature was set to 20 ℃, and the indoor per capita fresh air 

volume was 30 m³/(h∙person). In addition, the Coefficient of Performance (COP) of the 
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air conditioning system was set to 3.5, according to GB 55015-2021.  

Figure 3 shows the operating schedule of the ultra-low energy residential building. 

Figure 3(a) shows the occupancy rates of the personnel in each room. The schedules of 

each room were consistent with human daily life patterns, and the per capita floor area 

was 32 m². The number of personnel in the stairwell can be ignored. Figure 3(b) shows 

the schedule for the lighting usage rate in each room. According to GB 55015-2021, the 

lighting power densities of the bedroom, living room, kitchen, and bathroom were 4, 6, 

6, and 4 W/m², respectively. Figure 3(c) shows the schedule of the equipment utilization 

rate for different room types. The equipment power densities of the bedroom, living 

room, kitchen, and bathroom were 6, 6, 24 W/m², and the equipment power respectively. 

Figure 3(d) shows the schedule of air conditioning operation in different rooms. For 

residential buildings, bedrooms and living rooms require heating and cooling, whereas 

other rooms adopt natural ventilation only. In addition, a 100% occupancy rate in the 

living room indicated that the air conditioner was in an open state and a 0% occupancy 

rate indicated that it was closed.  

 

(a) Personnel occupancy rate 
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(b) Lighting occupancy rate 

 

(c) Equipment occupancy rate 

 

(d) HVAC system runtime 
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Figure 3. Building a runtime schedule. 

Furthermore, to ensure the accuracy of the ITC simulation, this study set the clothing 

thermal resistance and human metabolic rate according to the different room types and 

seasons. The clothing thermal resistance for the bedroom was set at 2.8 clo in winter, 

1.3 clo in summer, and 2.2 clo in transitional seasons; the human metabolic rate was set 

at 0.7 met [51]. For rooms other than the bedroom, the clothing thermal resistance was 

set at 1.5 clo in winter, 0.3 clo in summer, and 0.8 clo in transitional seasons; the human 

metabolic rate was 1 met [52].  

2.3 Building performance simulation 

2.3.1 Selection of design variables 

To optimize ultra-low energy residential buildings considering the BEC, ITC, and LCC, 

design variables were selected based on their impact on the objectives and engineering 

practicality. The external wall and roof heat transfer coefficients (U-values) are key 

envelope parameters that reduce unwanted heat transfer, stabilize indoor temperatures, 

and balance LCC through insulation costs [53,54]. The WWR was considered 

separately for the north, south, east, and west orientations to adapt to directional solar 

radiation and daylight, balancing solar heat gain/loss and daylight availability, while 

affecting the LCC. The external window U-value addresses the thermal weakness of 

windows by reducing heat loss, improving thermal stability, and influencing the LCC 

via manufacturing costs. The SHGC controls solar heat entry, reducing cooling loads 

and improving ITC, with glazing costs impacting LCC. Orientation, shading, and 

natural ventilation were excluded: orientation is site-specific and indirectly captured by 

directional WWR; shading can be achieved through WWR and SHGC, avoiding added 

complexity; natural ventilation depends on variable weather and design factors, making 

it impractical for airtight envelopes and beyond this study’s scope [29]. Thus, eight 

variables were included: the external wall and roof U-values, WWR per orientation, 

window U-value, and SHGC.  

According to GB 55015-2021 [49] and GB/T 51350-2019 [50], ultra-low energy 
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residential buildings in the HSCW zone must have external wall and roof U-values not 

exceeding 0.40 W/(m²∙K) and 0.35 W/(m²∙K), respectively. The maximum WWR limits 

for the east, south, west, and north orientations were 0.35, 0.45, 0.35, and 0.40, 

respectively. Lower WWR limits for each orientation were calculated based on the 

requirement that the main rooms' window-to-floor area ratio should not be less than 1/7. 

The external window U-values and SHGC values must also comply with the design 

standards. To facilitate cost analysis and result application, both the thickness and U-

value were employed for building envelope analysis. The optimized U-values were 

accordingly derived via conversion, based on the analysis of the variation range of 

insulation layer thickness within the Pareto optimal solution set. The same method for 

defining the design variable ranges in the HSCW zone was applied to the HSWW zone. 

Table 4 lists the optimization variables and their ranges for both zones.  

Table 4: Design variables and range values of ultra-low energy residential buildings in 

the HSCW and HSWW zones. 

2.3.2 Calculation of the optimization objectives  

In the optimization design of ultra-low energy residential buildings, besides reducing 

the BEC, it is also important to consider the balance between occupant comfort and 

economic performance. Therefore, this study used Energy Use Intensity (EUI), ITC, 

and LCC as optimization objectives.  

Categories Parameters Unit 
Range of values 

HSCW HSWW 

Wall U-value W/(m²∙K) [0.15, 0.40] [0.30, 0.80] 

Roof U-value W/(m²∙K) [0.15, 0.35] [0.25, 0.40] 

WWR 

East - [0.10, 0.35] [0.10, 0.30] 

South - [0.20, 0.45] [0.20, 0.40] 

West - [0.10, 0.35] [0.10, 0.30] 

North - [0.15, 0.40] [0.15, 0.40] 

Window 
U-value W/(m²∙K) [1.00, 2.50] [1.00, 2.50] 

SHGC - [0.10, 0.40] [0.10, 0.30] 
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(1) Annual EUI: The annual EUI refers to the energy consumption generated during a 

building's operational period, which includes energy consumption for cooling, heating, 

equipment, lighting, and domestic hot water. The EUI of residential buildings is 

calculated as follows:  

𝐸𝑈𝐼 =
𝐸𝑐 + 𝐸ℎ + 𝐸𝑒 + 𝐸𝑙 + 𝐸𝑑

𝐴
(1) 

where EUI is the annual building EUI (kWh/(m2∙a)), Ec is the cooling energy 

consumption (kWh), Eh is the heating energy consumption (kWh), Ee is the equipment 

energy consumption (kWh), El is the lighting energy consumption (kWh), Ed is the 

domestic hot water energy consumption (kWh), and A is the internal usable area (m2).  

𝐸ℎ =
𝑄ℎ

𝐶𝑂𝑃ℎ

(2) 

where Qh is the total annual heating consumption of the building (kWh), and COPh is 

the coefficient of performance of the heating system (-). 

𝐸𝑐 =
𝑄𝑐

𝐶𝑂𝑃𝑐

(3) 

where Qc is the total annual cooling consumption (kWh), and COPc is the coefficient 

of performance of the cooling system (-). 

(2) ITC: The ITC is an important indicator for evaluating the performance of residential 

buildings. ITC can be evaluated using various methods, with Fanger’s Predicted Mean 

Vote (PMV) and Predicted Percentage of Dissatisfaction (PPD) approaches being the 

most widely adopted. The PMV and PPD were hourly simulated values for the entire 

year, and using the PMV would result in excessive cooling or heating; however, the 

average value of PMV would still show comfort, thereby causing optimization errors. 

Because the optimization target value is always expressed as a single value in the 

optimization objectives, this study selected the average PPD over the entire year of the 

room with the poorest thermal comfort as an optimization objective.  
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(3) Increment in the total LCC: The economic evaluation of the life cycle of buildings 

can be divided into static and dynamic evaluation methods based on the consideration 

of time factors [55]. The static evaluation method does not consider the time factor of 

funds in economic evaluation, and its calculation is simple and suitable for the rough 

calculation of solutions, such as the investment payback period, investment return rate, 

and difference investment payback period methods. Dynamic methods, which account 

for the time value of funds, yield more accurate results, typically using metrics such as 

net present value, annual value, investment payback period, and internal rate of return. 

This study employed a dynamic net present value approach, discounting future cash 

flows to their present values.  

Because the optimized designs of the ULEBs and reference buildings have no 

significant difference in construction costs, differences exist only in energy-saving 

materials. This study used the reference building as the benchmark level to calculate 

the incremental LCC generated by the optimized design and converted it into a present 

value through net present value as one of the optimization objectives. The LCC was 

calculated as follows:  

𝐿𝐶𝐶 = 𝐶𝐼 + 𝐶𝑜 (4) 

where 𝐿𝐶𝐶 is the total life-cycle cost (CNY), 𝐶𝐼 is the initial investment cost for the 

building (CNY), and 𝐶𝑜 is the cost during the building operation period (CNY). 

Because this study focuses on optimizing the design of energy-saving materials, such 

as the insulation layer of the building envelope and windows, only the cost of the 

optimized components was considered when calculating the initial investment cost of 

the building. The calculation formula is as follows: 

𝐶𝐼 = 𝐶𝑤 ⋅ 𝑉𝑤 + 𝐶𝑟 ⋅ 𝑉𝑟 + 𝐶𝑤𝑑 ⋅ 𝐴𝑤𝑑 (5) 

where 𝐶𝑤 is the unit price of the external wall insulation material (CNY/m3), 𝑉𝑤 is 

the volume of the external wall insulation material (m3), 𝐶𝑟 is the unit price of the roof 
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insulation material (CNY/m3), 𝑉𝑟 is the volume of the roof insulation material (m3), 

𝐶𝑤𝑑 is the unit price of the energy-saving external window (CNY/m2), and 𝐴𝑤𝑑 is the 

area of the window (m2). 

The cost calculation formula for the operational stage of buildings is as follows:  

𝐶𝑜 = ∑ 𝐶𝑜(𝑡)
𝑁

𝑡=1
(6) 

𝐶𝑜(𝑡) =
𝐸𝑒 ⋅ 𝑒𝑒

(1 + 𝑟)𝑡
(7) 

where 𝐶𝑜(𝑡) is the discounted value of the cost in the t-th year (CNY), 𝐸𝑒 is the total 

annual energy consumption of the building (kWh), 𝑒𝑒 is the annual electricity price 

per kWh of the building (CNY/kWh), and the local electricity price in this study is 0.65 

CNY/kWh, r is the discount rate (%), and t is the building's life cycle, which is 50 years.  

𝐶 = 𝐶𝐿𝐶𝐶,𝑖 − 𝐶𝐿𝐶𝐶,𝑟𝑒𝑓 (8) 

where C is the incremental cost of building life cycle (CNY), 𝐶𝐿𝐶𝐶,𝑖 is the total life 

cycle cost of optimized solution i (CNY), and 𝐶𝐿𝐶𝐶,𝑟𝑒𝑓 is the total life cycle cost of the 

reference building (CNY).  

The investigation of residential electricity tariffs in Nanchang and Guangzhou revealed 

that both cities use tiered pricing systems. In Nanchang, the rate is 0.60 CNY/kWh for 

annual consumption up to 2160 kWh, 0.65 CNY/kWh for usage between 2161 and 4200 

kWh, and 0.90 CNY/kWh for consumption above 4200 kWh. In Guangzhou, the rate 

is 0.59 CNY/kWh up to 2760 kWh, 0.64 CNY/kWh for usage between 2761 and 6000 

kWh, and 0.89 CNY/kWh above 6000 kWh. Calculations showed that all users in the 

case building fell within the second-tier consumption range in both cities.  

In this study, the thickness of the insulation materials was varied to alter the U-value of 

the non-translucent building envelope structure. Currently, the commonly used building 

insulation materials are EPS and XPS panels. With the same thickness, the XPS panels 

have a lower U-value than the EPS panels [56]. However, as external wall insulation 
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materials, their thermal stability, fire resistance, and air permeability are inferior to 

those of the EPS panels [56]. Therefore, this study selected EPS panels as the insulation 

material for the non-translucent building envelope structure of buildings with a material 

lifespan of 25 years. Through market research on the price of EPS panels, it was 

determined that the unit price was 240 CNY/m3. According to the restrictions on the U-

value of windows in GB/T51350-2019, this study selected different window types 

based on their U-values. Aluminum alloy profiles were used for the window frames of 

the reference building, with a price of 240 CNY/m2 and a service life of 30 years. It 

should be noted that parameters such as the U-value of the reference building envelope 

were derived from actual construction drawings, and certain parameter values may not 

comply with the requirements specified in GB/T 51350-2019.  

2.3.3 Data set acquisition based on the orthogonal test 

As the subjects of this study have eight optimization variables and the value ranges of 

each variable are large, conducting a comprehensive simulation would result in an 

extremely large workload. Compared with a comprehensive simulation, an orthogonal 

experimental design can obtain reliable results with fewer tests, thereby significantly 

reducing the simulation complexity [57]. Therefore, in this study, an orthogonal 

experimental design was used to design a solution for optimize the variables to obtain 

data for the predictive model. First, the value range of each optimization variable was 

selected according to the specifications, and they were divided into five orthogonal-

level grades, as listed in Table 5. Then, the orthogonal experimental design table was 

obtained using SPSS software, and based on the L49(8
5)-49 standard test solutions 

provided by the orthogonal table, each test solution was subjected to a simulation case, 

and the simulation results were used as the training and test sets for machine learning, 

which was then used for subsequent prediction and optimization.  

Table 5: Horizontal values of the orthogonal design.  

Climate 

zone 
Optimization variables 

Levels 

1 2 3 4 5 
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HSCW 

Thickness of the external 

wall insulation layer (mm) 
X1 70 100 130 160 190 

Thickness of roof insulation 

layer (mm) 
X2 80 105 130 155 180 

East-facing WWR X3 0.1 0.1625 0.225 0.2875 0.35 

South-facing WWR X4 0.2 0.2625 0.325 0.3875 0.45 

West-facing WWR X5 0.1 0.1625 0.225 0.2875 0.35 

North-facing WWR X6 0.15 0.2125 0.275 0.3375 0.4 

Window U-value (W/(m²∙K)) X7 1 1.375 1.75 2.125 2.5 

SHGC X8 0.1 0.175 0.25 0.325 0.4 

HSWW 

Thickness of the external 

wall insulation layer (mm) 
X1 20 40 60 80 100 

Thickness of roof insulation 

layer (mm) 
X2 70 80 90 100 110 

East-facing WWR X3 0.10 0.15 0.20 0.25 0.30 

South-facing WWR X4 0.20 0.25 0.30 0.35 0.40 

West-facing WWR X5 0.10 0.15 0.20 0.25 0.30 

North-facing WWR X6 0.15 0.2125 0.275 0.3375 0.40 

Window U-value (W/(m²∙K)) X7 1 1.375 1.75 2.125 2.5 

SHGC X8 0.10 0.15 0.20 0.25 0.30 

2.3.4 Sensitivity analysis 

A sensitivity analysis was conducted to assess the effects of the design variables on 

building performance. Regression methods are widely used due to their simplicity and 

efficiency [58]. Many sensitivity indicators are based on regression analysis, including 

standardized regression coefficients, partial correlation coefficients, standardized rank 

regression coefficients, and Partial Rank Correlation Coefficients (PRCC) [36]. PRCC 

is typically applied to nonlinear and monotonic input-output relationships [59]. This 

reflects both the direction and magnitude of the impact of the optimization variables on 

the objectives. The direction of the influence is indicated by the sign, which is either 
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positive or negative. The absolute value of the PRCC indicates the strength of the 

influence, with larger values representing greater impact.  

2.4 ANN prediction model 

This study employed a metamodel to enhance the optimization efficiency. Metamodels 

for building performance optimization are constructed using algorithms that learn 

input-output variable relationships, using simulation data to build alternative models 

for performance prediction. Common machine learning algorithms for metamodels 

include ANN, GBDT, support vector machines, and multiple linear regression. Given 

ANN's high accuracy in building performance studies and its widespread use (Table 1), 

this study used MATLAB's ANN toolbox to generate the metamodel. Prior to machine 

learning on orthogonal data, the dataset was randomly split into an 80% training set and 

a 20% test set; the former trained the metamodel, and the latter validated its quality. 

The ANN structure includes input, hidden, and output layers, with the hidden layer node 

counts determined using Equation (9):  

ℎ = √𝑚 + 𝑛 + 𝑎 (9) 

where h is the number of nodes in the hidden layer, m is the number of nodes in the 

input layer, n is the number of nodes in the output layer, and a is the adjustment constant, 

which is between 1 and 10.  

The ANN model's prediction performance was evaluated using the coefficient of 

determination (R²), Mean Squared Error (MSE), and Mean Absolute Percentage Error 

(MAPE). R², which ranges from 0 to 1, assesses metamodel prediction accuracy, with 

values closer to 1 indicating better accuracy. MSE calculates the average squared 

difference between the actual and predicted values, making it sensitive to outliers 

(larger errors disproportionately impact the MSE). MAPE serves as a prediction 

accuracy indicator: <10% is highly accurate, 11–20% is good, 21–50% is reasonable, 

and >51% is inaccurate. The mathematical formulas for these metrics are provided in 

Equations (10) - (12) [60]:  
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

(10) 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
(11) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

(12) 

where 𝑦𝑖  is the true value, 𝑦  is the average of all true values, 𝑦̂𝑖  is the predicted 

value of the model, and n is the sample size of the training set. 

The number of neurons in the hidden layer was determined using Equation (9), yielding 

values within the range [5,13]. The number of nodes in the input and output layers was 

set to eight and three, respectively, corresponding to the number of optimization 

variables and target outputs. The input and output parameters from the simulation were 

mapped to the ANN’s layers to ensure physically meaningful neuron behavior. 

Subsequently, an error analysis was conducted for the ANN model with varying 

numbers of hidden layer neurons, and the results are summarized in Table 6. The 8-10-

3 network architecture demonstrated the lowest prediction error and highest R² value in 

both climate zones, as shown in Table 6. Therefore, a hidden layer with ten neurons 

achieved a minimal model error. Furthermore, when the number of neurons in the neural 

network varied by ±10%, the fluctuation of the model's R² value was only within 0.02, 

indicating that the predictive model of the ANN had strong robustness. Additionally, 

key hyperparameters were configured to reduce the risk of overfitting: a maximum of 

500 training epochs and a learning rate of 0.01 were used.  

Table 6: Comparison of network errors with different hidden layer neuron counts.  

Case Hidden Layer Count MSE R2  

Nanchang  

5 0.05289  0.94785 

6 0.05398  0.94968 

7 0.05015  0.95299 

8 0.04765  0.93251 

9 0.03451  0.93497 

10 0.03042  0.97422 
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11 0.06921  0.94186 

12 0.08701  0.94308 

13 0.09768  0.94129 

Guangzhou 

5 0.05771  0.92171 

6 0.06193  0.93905 

7 0.05566  0.94179 

8 0.04079  0.94821 

9 0.02831  0.94865 

10 0.02164  0.95253 

11 0.06218  0.93747 

12 0.07540  0.92502 

13 0.09463  0.93389 

Random perturbation tests were performed on the input parameters of the ANN model 

to evaluate its robustness. The perturbation ranges for each parameter were specified as 

follows: the insulation layer thickness was perturbed by ±5%, the WWR was perturbed 

by ±3%, the external window U-value was perturbed with uniform noise of ±0.3, and 

the solar heat gain coefficient was perturbed with uniform noise of ±0.05. Based on 

these perturbation ranges, MATLAB was used to randomly add perturbation values to 

the input parameters. The MAPE results before and after the perturbation were analyzed 

to evaluate the model's robustness. As shown in Table 7, the variation range of the 

MAPE values before and after perturbation was within 5%, which suggests that the 

model has strong robustness.  

Table 7: Test results of ANN model robustness.  

Case 
Optimization 

objective 

Initial MAPE 

value 

Final MAPE 

value 

Comparison 

results 

Nanchang 

EUI 3.0% 3.7% 0.7% 

PPD 2.8% 3.2% 0.4% 

LCC 9.7% 12.8% 3.1% 

Guangzhou 

EUI 2.9% 3.6% 0.7% 

PPD 1.6% 2.4% 0.8% 

LCC 7.6% 11.4% 3.8% 
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2.5 NSGA-Ⅱ-MOPSO multi-objective optimization 

2.5.1 NSGA-Ⅱ-MOPSO optimization procedure 

The hybrid NSGA-II-MOPSO algorithm integrated the elitist preservation mechanisms 

of NSGA-II, specifically non-dominated sorting and crowding distance estimation, 

with the adaptive velocity-position update mechanism of MOPSO to overcome the 

limitations inherent in single-algorithm approaches. While NSGA-II demonstrated 

slow convergence in complex optimization landscapes, MOPSO was prone to 

premature convergence owing to its excessive emphasis on local exploitation. By 

synergistically combining these complementary strengths, the hybrid framework 

achieved a balanced trade-off between global exploration and local exploitation [61]. 

The hybrid framework employed a parallel fusion strategy for NSGA-II and MOPSO. 

In each iteration, NSGA-II’s genetic operations (selection, crossover, mutation) and 

MOPSO’s particle velocity/position updates were performed simultaneously on the 

parent population. Through a shared information pool, this fusion enhanced NSGA-II’s 

local search capability while expanding the search directions of MOPSO particles. This 

dual subpopulation strategy effectively alleviated the stagnation in NSGA-II and 

prevented the premature convergence in MOPSO.  

To ensure compatibility between the two algorithms, a preprocessing step aligned their 

operational mechanisms by mapping MOPSO’s particle position updates of MOPSO 

onto the generational update framework of NSGA-II, treating updated particles as 

offspring and original individuals as parents. Because NSGA-II lacks a velocity 

component, new individuals were initialized with zero velocity. A template for storing 

individual optima was added to NSGA-II, whereas MOPSO's global best was selected 

from the parent population to maintain consistency. The algorithm began by initializing 

the key parameters with a population size of 50 and a maximum of 100 generations, 

followed by objective function evaluation, non-dominated sorting, and concurrent 

execution of both sub-algorithms until convergence. This parallel architecture enabled 

real-time information exchange, enhancing the convergence speed and solution 

diversity [62]. Table 8 lists the initial parameter settings of the three optimization 
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algorithms. As shown in Figure 4, the hybrid approach merged the parent population Pt 

with offspring populations Qt1 from NSGA-II and Qt2 from MOPSO to form a 

combined population Rt. After fast non-dominated sorting, the first N optimal solutions 

were selected to create the next parent population Pt+1, ultimately yielding the Pareto-

optimal front upon termination. 
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Table 8: Initial parameters for NSGA-II, MOPSO, and the hybrid algorithm. 

Algorithm 
Population 

size  

Maximum 

number of 

iterations  

Crossover 

proportion 

Mutation 

probability  

Mutation 

proportion 

Individual 

learning 

factor  

Global 

learning 

factor  

Maximum 

weight 

coefficient  

Minimum 

weight 

coefficient  

NSGA-II 

algorithm 
50 100 0.8 0.05 0.2 - - - - 

MOPSO 

algorithm 
50 100 - - - 1 2 0.8 0.1 

Hybrid 

algorithm 
50 100 0.8 0.05 0.2 1 2 0.8 0.1 
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Figure 4. NSGA-Ⅱ-MOPSO flow.  

2.5.2 Performance indicators of optimization algorithms 

(1) The hypervolume (HV) index was applied to compare the performance of the three 

algorithms, which was used to evaluate the efficiency of the optimization method 

[63,64]. The hypervolume metric was used to evaluate the extent to which the target 

space was covered by an approximate set. Its value represents the volume of the 

hypercube formed by the individuals in the solution set and the reference point in the 

target space. If the HV value of the non-dominated solution set is larger, it indicates that 
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this solution set is closer to the real Pareto frontier in terms of convergence and diversity. 

The calculation formula is as follows:  

𝐻𝑉(𝑋, 𝑃) = ⋃ 𝑣𝑖

|𝑋|

𝑖=1
(13) 

where X represents the non-dominated solution set obtained by the algorithm, P is the 

reference point, |X| is the cardinality of the non-dominated solution set, and vi is the 

volume of the hypercube formed by the diagonal of the space between solution xi in the 

non-dominated solution set and the reference point.  

(2) The Inverted Generational Distance (IGD) is an indicator that can simultaneously 

evaluate the convergence and diversity of algorithms [65]. It is used to calculate the 

average Euclidean distance between all solutions in the true Pareto front and the non-

dominated solutions obtained by the solving algorithm. The IGD metric quantifies the 

proximity between the algorithm-generated and true Pareto fronts, where a lower value 

indicates better convergence to the optimal front and a better solution distribution. The 

calculation formula is as follows:  

𝐼𝐺𝐷(𝑋, 𝑃∗) =
∑ 𝑑(𝑥∗, 𝑋)𝑥∗∈𝑃∗

|𝑃∗|
(14) 

where 𝑃∗  is a solution set on the Pareto front, 𝑑(𝑥∗, 𝑋)  is the minimum Euclidean 

distance from 𝑥∗  in the reference solution set 𝑃∗  to the solutions in 𝑋 , |𝑃∗| is the 

cardinality of the solution set 𝑃∗. 

(3) The Spacing (Sp) performance measure quantifies the distribution of solutions in 

the obtained approximation of the Pareto front; a value of zero indicates perfectly 

uniform spacing among solutions, and it can be computed as [66]:  

| |
2

1

1
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| |

P

p i
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where 𝑑𝑖 and 𝑑̅ are defined as: 
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2.5.3 Utopian point method 

The Pareto optimal solution set obtained via optimization algorithms represents a 

collection of non-dominated decision solutions rather than a single optimal outcome. 

To facilitate decision-making, this study employed the utopian point method—a MOO 

technique that identifies the optimal compromise solution by minimizing the distance 

between candidate solutions and the utopian point. Defined as the theoretical 

combination of each objective’s individual optimal values on the Pareto frontier, the 

utopian point serves as a benchmark for evaluating solution optimality. Taking the 

three-objective example of this study, the distance between each point in the Pareto set 

and the utopian point was calculated using Equation (16):  

𝑈𝑛 = [(
𝛼𝑝 − 𝛼𝑝_𝑏𝑒𝑠𝑡

𝛼𝑝_𝑏𝑒𝑠𝑡
)

2

+ (
𝛽𝑝 − 𝛽𝑝_𝑏𝑒𝑠𝑡

𝛽𝑝_𝑏𝑒𝑠𝑡
)

2

+ (
𝛾𝑝 − 𝛾𝑝_𝑏𝑒𝑠𝑡

𝛾𝑝_𝑏𝑒𝑠𝑡
)

2

]

1/2

(16) 

where 𝛼𝑝_𝑏𝑒𝑠𝑡  is the optimal value of BEC, 𝛽𝑝_𝑏𝑒𝑠𝑡  is the optimal value of ITC, 

𝛾𝑝_𝑏𝑒𝑠𝑡  is the optimal value of the LCC, ( 𝛼𝑝 , 𝛽𝑝 , 𝛾𝑝 ) is the coordinates of the 

corresponding Pareto front point.  

After calculating the distance between each point in the optimal solution set and the 

utopian point, the point with the minimum distance was selected as the optimal solution.  

Uopt=min(Un) (17) 

This study took the calculation results of the reference building design parameters as 

the reference point and normalized the reference point and the Pareto optimal solution 

set obtained in each iteration to prevent the influence of large-scale dimensional data 

on the calculation results. The normalized index of the reference point after 

normalization was (1, 1, 1).  
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3. Results and discussions 

3.1 Impact of optimization variables on optimization objectives 

Figure 5 presents the correlation analysis results between the optimization variables and 

objectives via PRCC. As shown in Figure 5(a), the external wall insulation thickness 

was strongly negatively correlated with EUI (PRCC = − 0.58) and PPD (PRCC = − 

0.41), but positively correlated with LCC (PRCC = 0.32). Its influence on objectives 

surpassed that of roof insulation thickness. Roof insulation thickness was weakly 

negatively correlated with EUI (PRCC = − 0.16) and slightly positively correlated with 

LCC (PRCC = 0.09), having a lower impact on ITC. For all directions, WWR positively 

correlated with objectives, with south-facing and north-facing WWR having greater 

impacts. S-WWR shows PRCCs of 0.38 (EUI), 0.43 (PPD), 0.61 (LCC); N-WWR has 

0.25 (EUI), 0.03 (PPD), 0.48 (LCC), due to large south and north facade areas. The 

external window U-value positively correlated with the BEC and ITC but negatively 

with the LCC. SHGC shows the opposite pattern, negatively correlating with BEC and 

ITC, and weakly positively with LCC.  
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Figure 5. Results of redundancy analysis: (a) Nanchang and (b) Guangzhou. 

In Figure 5(b), external wall insulation (wall-U) strongly negatively correlates with EUI 

(PRCC = −0.87) and moderately with PPD (PRCC = −0.38), and positively with LCC 

(PRCC = 0.20), showing greater influence than roof insulation (roof-U), which has 

weak negative correlations with EUI (PRCC = −0.09) and PPD (PRCC = −0.07), and a 

slight positive with LCC (PRCC = 0.04). Among WWRs, N-WWR and S-WWR have 

higher impacts: N-WWR (PRCC = 0.18 EUI, 0.09 PPD, 0.52 LCC); S-WWR (PRCC 

= 0.14 EUI, 0.20 PPD, 0.50 LCC). W-WWR weakly positively correlates with EUI 

(0.05), negatively with PPD (−0.12), and positively with LCC (0.23); E-WWR shows 

PRCCs of 0.05 (EUI), 0.22 (PPD), and 0.10 (LCC). Window-U positively correlates 

with EUI (0.15), negatively with PPD (−0.25), and strongly negatively with LCC 

(−0.58). SHGC exhibits the reverse: positive with EUI (0.27) and strongly positive with 

PPD (0.76), and weakly positive with LCC (0.06).  

3.2 ANN prediction and accuracy analysis 

Figure 6 illustrates the comparison between the predicted values from the ANN model 

and the actual values. The ANN model exhibited high accuracy in predicting EUI, PPD, 

and LCC. For the Nanchang case, the R2 values for these three optimization objectives 

were 0.959, 0.978, and 0.988, respectively. In the Guangzhou case, the corresponding 
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R2 values were 0.980, 0.942, and 0.972. These results indicated that the prediction 

models performed well and could be employed as the fitness function in the subsequent 

MOO algorithm.  

 

Figure 6. Prediction results of the objective function in the ANN model. 

3.3 Performance comparison of optimization algorithms 

Hypervolume results of the two cases were presented in Figure 7. In Figure 7(a), during 

the initial stage, as function evaluations increased, the hypervolume index of each 

algorithm also rose. The hybrid NSGA-II-MOPSO algorithm’s HV value tended to 

stabilize at 800 function evaluations, while the NSGA-II and MOPSO algorithms began 

to stabilize their HV values at 1700 and 1150 function evaluations, respectively. This 

indicated that the hybrid NSGA-II-MOPSO algorithm could quickly obtain the Pareto 

optimal solution set with fewer iterations. Additionally, the final hypervolume values 

of the three optimization algorithms were 0.648 (NSGA-II), 0.640 (MOPSO), and 0.676 

(NSGA-II-MOPSO), respectively. In Figure 7(b), the hybrid algorithm’s HV value 

tended to stabilize at 400 function evaluations, whereas the NSGA-II and MOPSO 

algorithms began to stabilize their HV values at 900 and 700 function evaluations, 
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respectively. This also indicated that the hybrid NSGA-II-MOPSO algorithm could 

quickly obtain the Pareto optimal solution set with fewer iterations. The final 

hypervolume values of the three optimization algorithms here were 0.665 (NSGA-II), 

0.659 (MOPSO), and 0.668 (NSGA-II-MOPSO), respectively. Therefore, the MOO 

performance of the hybrid NSGA-II-MOPSO algorithm proposed in this study was 

superior to that of the other two algorithms in terms of both diversity and convergence.  

 

Figure 7. Hypervolumes of each optimization algorithm: (a) Nanchang and (b) 

Guangzhou.  

Table 9 presents the IGD results, showing that the hybrid NSGA-II-MOPSO algorithm 

outperformed NSGA-II and MOPSO in both cases. The hybrid algorithm achieved IGD 

values of 0.02133 in Nanchang and 0.00959 in Guangzhou, compared to 0.02413 and 

0.01172 for NSGA-II, and 0.02638 and 0.01394 for MOPSO, demonstrating its superior 

convergence. Table 10 illustrates the spacing metric results, further confirming the 

hybrid algorithm’s advantage with values of 0.03671 in Nanchang and 0.02104 in 

Guangzhou, as opposed to 0.04052 and 0.02605 for NSGA-II, and 0.03849 and 0.02370 

for MOPSO, indicating better solution uniformity. Overall, the hybrid NSGA-II-

MOPSO algorithm exhibited enhanced performance in terms of both convergence and 

solution diversity across the two climate zones when compared to NSGA-II and 

MOPSO.  
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Table 9: Results of IGD metric for NSGA-Ⅱ, MOPSO, and proposed hybrid NSGA-Ⅱ-

MOPSO algorithms. 

Case 
IGD metric 

NSGA-Ⅱ MOPSO NSGA-Ⅱ-MOPSO 

Nanchang 0.02413 0.02638 0.02133 

Guangzhou 0.01172 0.01394 0.00959 

Table 10: Results of spacing metric for NSGAII, MOPSO, and proposed hybrid NSGA-

Ⅱ-MOPSO algorithms. 

Case 
Spacing metric for the optimal solution 

NSGA-Ⅱ MOPSO  NSGA-Ⅱ-MOPSO 

Nanchang 0.04052 0.03849 0.03671 

Guangzhou 0.02605 0.02370 0.02104 

3.4 MOO results of the hybrid algorithm 

The distribution of Pareto optimal solutions for the MOO of ultra-low energy residential 

buildings using three optimization algorithms is shown in Figure 8. In Nanchang, the 

hybrid algorithm yielded the broadest EUI interval [61.53, 63.56 kWh/(m²·a)] 

compared to NSGA-II [61.73, 63.42] and MOPSO [61.75, 63.16], while narrowing the 

PPD range to [23.27, 24.18%] and achieving the largest LCC saving interval 

[−479,138.24, −49,230.42 CNY]. In Guangzhou, the hybrid algorithm maintained 

similar EUI ranges but remarkably concentrated PPD values at [23.72, 23.72%] and 

expanded the LCC saving interval to [−673,341.35, −243,555.87 CNY], outperforming 

other algorithms. This performance originated from the hybrid algorithm’s integration 

of NSGA-II’s global exploration and MOPSO’s fast local convergence, balancing 

solution diversity and precision: it expanded the energy-optimized solution space in 

Nanchang, achieved precise thermal comfort optimization in Guangzhou, and showed 

consistent economic advantages across climates, verifying its superiority in building 

MOO design. Thus, the hybrid algorithm’s calculation results were used to analyze 

optimized design solutions in the following section.  
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Figure 8. Pareto optimal solutions distribution for MOO of ultra-low energy residential buildings.
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In Nanchang, the buildings achieved an EUI between 61.25 and 63.75 kWh/(m²·a), with 

the average PPD value for rooms with the poorest thermal comfort throughout the year 

ranging from 23.2% to 24.2% and LCC savings between 50,000 and 500,000 CNY. In 

Guangzhou, the EUI of buildings fell between 62.38 and 64.20 kWh/(m²·a), the 

corresponding average PPD value for the least thermally comfortable rooms ranged 

from 23.7% to 24.4%, and LCC savings varied from 240,000 to 670,000 CNY. All 

solutions obtained in this study showed an EUI below 65 kWh/(m²·a), meeting the 

design requirements for ultra-low energy residential buildings. Compared with the 

reference model, the PPD value for indoor thermal comfort across all solutions was 

lower. The LCC, which combined initial investment cost and operating cost, was ≤ 0, 

indicating that the buildings achieved economic savings over their life cycle. 

Additionally, the cost increment of all design solutions was less than 0. To further 

illustrate the trade-offs among the three objectives, a parallel coordinate radar chart of 

the non-dominated solutions is presented in Figure 9.  

 

Figure 9. Normalized radar charts illustrating MOO performance trade-offs (EUI, 

LCC, PPD) for the case building: (a) Nanchang and (b) Guangzhou.  

Based on the Pareto optimal solution set, the optimal insulation layer thickness for 

building external walls in ultra-low energy residential buildings in Nanchang ranged 

from 150 to 190 mm, with corresponding U-values between 0.15 and 0.18 W/(m²∙K); 

the optimal value of the insulation layer thickness of the roof mainly fallen within the 
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range of 150 to 180 mm, and the corresponding U-value was between 0.15 and 0.19 

W/(m²∙K). The optimal values of the WWR for each orientation of the building were 

all around the lower limit of the WWR requirement. The external window U-value was 

mainly at around 1 or 2.5 W/(m²∙K), and the SHGC value was mainly between 0.3 and 

0.4. Due to the conflicting relationship among the three optimization objectives, the 

values of the optimization variables were relatively scattered. For the Guangzhou case, 

the external wall insulation thickness concentrated at 20 and 100 mm, with 

corresponding U-values of 0.8 and 0.3 W/(m²·K). The roof thickness ranged from 90 

to 110 mm, corresponding to U-values between 0.25 and 0.3 W/(m²·K). The optimal 

WWRs were similar to those in Nanchang, all approaching the lower limit of the 

required WWR. The external window U-values ranged from 1 to 1.5 W/(m²·K), and the 

SHGCs were between 0.2 and 0.3. Due to differences in climate zones, the optimization 

of building U-values varies significantly. In HSCW regions, exterior wall U-values 

must be lower to balance summer heat insulation and winter heat retention. Meanwhile, 

Nanchang, a typical HSCW city, optimizes exterior window U-values by first meeting 

local energy requirements to cut costs. By contrast, Guangzhou (HSWW region) has 

much lower exterior wall insulation/heat retention needs—focusing only on summer 

heat insulation with minimal winter needs. Thus, to meet energy standards and control 

costs, a higher U-value works for Guangzhou’s exterior walls, avoiding unnecessary 

high-performance insulation investment.  

3.5 Optimal solutions for ultra-low energy residential buildings in case cities 

The simulation results for the reference model in Nanchang showed that the total annual 

energy consumption of the building's equipment and lighting was 66,621.18 kWh, the 

cooling energy consumption was 57,842.31 kWh, the heating energy consumption was 

41,200.57 kWh, and the EUI of the building was 73.11 kWh/(m2∙a). The thermal 

comfort of the reference model showed that the average PPD value of the room with 

the poorest thermal comfort in the building throughout the year was 25.2%. The total 

annual energy consumption of the building and the unit price of the building's materials 

mentioned above were used to calculate the LCC of the reference model, which was 
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3047,213.03 CNY. In Guangzhou, the reference building exhibited an annual total 

energy consumption of 66,621.18 kWh for equipment and lighting, with cooling energy 

consumption at 85,519.73 kWh, heating energy consumption at 10,644.79 kWh, and an 

EUI of 71.84 kWh/(m²·a). The average PPD value for the room with the poorest annual 

thermal comfort was 28.59%, and the LCC calculated from the annual energy 

consumption and material unit prices was 2,970,201.28 CNY. Neither reference model 

met the energy requirements of ULEBs, necessitating further design optimization of the 

building envelope to derive optimal solutions.  

Through the screening of the Pareto optimal solution set, the best EUI, PPD and LCC 

solutions are obtained, as shown in Table 11. The results were compared with those of 

the reference model. In Nanchang, compared with the reference model solution, the 

best EUI solution reduced energy consumption by 15.8%, the best PPD solution 

reduced indoor dissatisfaction by 7.6%, and the best LCC solution saved 479,138 CNY. 

In Guangzhou, the best EUI solution reduced energy consumption by 13.2%, the best 

PPD solution reduced indoor dissatisfaction by 17.0%, and the best LCC solution saved 

673,341 CNY. While all optimization solutions met the ultra-low energy building codes, 

one of the optimal design solutions, though achieving good results in a specific building 

performance indicator, might fail to meet the desired outcomes for its other 

performance indicators.  
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Table 11: Comparison of the optimization solutions.  

Case 
Design 

variables  
Unit Reference solution Best EUI solution Best PPD solution Best LCC solution Best solution 

Nanchang 

X1 
mm 30 190 154 70 87 

W/(m²∙K) 0.649 0.150 0.176 0.348 0.291 

X2 
mm 40 180 180 126 128 

W/(m²∙K) 0.620 0.150 0.150 0.223 0.220 

X3 – 0.02 0.35 0.35 0.10 0.10 

X4 – 0.40 0.20 0.20 0.20 0.20 

X5 – 0.02 0.25 0.10 0.10 0.10 

X6 – 0.25 0.15 0.23 0.15 0.15 

X7 W/(m²∙K) 5.8 1.0 1.0 2.5 2.5 

X8 – 0.75 0.32 0.4 0.1 0.1 

Y1 kWh/(m2∙a) 73.11 61.53 (−15.8%) 61.81 (−15.5%) 63.55 (−13.1%) 63.43 (−13.2%) 

Y2 % 25.19 23.37 (−7.2%) 23.27 (−7.6%) 24.18 (−4.0%) 24.17 (−4.1%) 

Y3 CNY 0 −49230.4 −81226.8 −479138 −475087 

Guangzhou X1 
mm 30 100 100 20 20 

W/(m²∙K) 0.649 0.3 0.3 0.8 0.8 
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X2 
mm 40 110 110 87 84 

W/(m²∙K) 0.620 0.25 0.25 0.315 0.325 

X3 – 0.02 0.10 0.30 0.10 0.10 

X4 – 0.40 0.20 0.20 0.20 0.20 

X5 – 0.02 0.10 0.11 0.10 0.10 

X6 – 0.25 0.15 0.15 0.15 0.15 

X7 W/(m²∙K) 5.8 1.0 1.0 2.5 2.39 

X8 – 0.75 0.19 0.30 0.27 0.26 

Y1 kWh/(m2∙a) 71.84 62.38 (−13.2%) 62.41 (−13.1%) 64.21 (−10.6%) 64.16 (−10.7%) 

Y2 % 28.59 23.90 (−16.4%) 23.72 (−17.0%) 24.41 (−14.6%) 24.39 (−14.7%) 

Y3 CNY 0 −294482 −243556 −673341 −665024 
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The best solution derived via the utopian point method comprehensively considers three 

building performance indicators, as shown in Table 11. The best solution for Nanchang 

cut EUI by 13.2%, lowered average PPD dissatisfaction by 4.1%, and saved 475,087 

CNY in LCC. Comparing envelope design parameters across four solutions with the 

reference model showed several findings. First, thicker external wall and roof insulation 

reduced EUI. Second, reducing WWR in all orientations was beneficial because the 

external window U-value exceeded that of external walls. Third, the external window 

U-value greatly impacted LCC. Larger U-values led to lower PPD. Finally, a larger 

window SHGC lowered EUI. For Guangzhou, the best solution reduced EUI by 10.7%, 

PPD by 14.7%, and saved 665,024 CNY in LCC. Examining design parameters across 

five scenarios revealed: the best EUI solution, via thicker insulation and lower U-values, 

cut EUI by 13.2%; the best PPD solution, through adjusting window U-values, reduced 

PPD by 17.0%; the best LCC and best solutions traded off variables for cost savings, 

with the best solution’s LCC (−665,024 CNY) balancing better with EUI and PPD than 

the best LCC solution’s (−673,341 CNY). The best solutions in Nanchang and 

Guangzhou showed climate-specific trade-offs: thicker insulation and lower WWR 

reduced EUI by 13.2% in Nanchang, while balancing window U-value and SHGC 

minimized PPD and LCC. In Guangzhou, prioritizing low U-values and SHGC cut EUI 

by 10.7% and PPD by 14.7%, with the best solution balancing LCC savings against 

energy and comfort better than the pure cost-optimized case. These results highlight the 

importance of tailoring envelope parameters to regional thermal demands for holistic 

performance optimization.  

4. Conclusions 

In light of the promotion of ultra-low energy residential buildings in the southern region 

of China, this study proposed an MOO method for building design based on the hybrid 

NSGA-Ⅱ-MOPSO algorithm. By taking BEC, ITC, and LCC as the optimization 

objectives, an orthogonal experimental design was conducted on eight variables, 

including the external wall U-value, roof U-value, WWR in each direction (east, south, 

west, and north), external window U-value, and SHGC. The orthogonal experimental 
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data were used to construct an ANN prediction model for the optimization objectives. 

Based on this prediction model, an efficient hybrid machine learning algorithm that 

combines NSGA-II and MOPSO was developed for the case building optimization 

design. The corresponding optimized design solutions were obtained. The main 

conclusions are as follows:  

(1) The ANN model exhibited high accuracy in predicting EUI, PPD, and LCC. For the 

Nanchang case, the R² values for the three objectives were 0.959, 0.978, and 0.988; in 

the Guangzhou case, they were 0.980, 0.942, and 0.972. The ANN model could be used 

as the fitness function in multi-objective optimization. Performance indicators of the 

hybrid NSGA-II-MOPSO, NSGA-II, and MOPSO algorithms were calculated. In the 

Nanchang case, HV values were 0.648 (NSGA-II), 0.640 (MOPSO), and 0.676 (hybrid); 

in the Guangzhou case, they were 0.665 (NSGA-II), 0.659 (MOPSO), and 0.668 

(hybrid). The hybrid algorithm achieved IGD values of 0.02133 (Nanchang) and 

0.00959 (Guangzhou), outperforming NSGA-II (0.02413, 0.01172) and MOPSO 

(0.02638, 0.01394) in convergence. Spacing metrics further confirmed its advantage: 

0.03671 (Nanchang) and 0.02104 (Guangzhou) versus NSGA-II (0.04052, 0.02605) 

and MOPSO (0.03849, 0.02370), indicating better solution uniformity. Overall, the 

hybrid NSGA-II-MOPSO algorithm showed superior convergence and solution 

diversity in both climate zones compared to the single algorithms.  

(2) Based on the hybrid algorithm, the optimized design parameter ranges for ultra-low 

energy residential buildings in Nanchang were as follows: external wall and roof U-

values were controlled at 0.15–0.18 and 0.15–0.19 W/(m²∙K), respectively; WWR in 

all orientations ranged from 0.1 to 0.25; external window U-values were set at 

approximately 1 or 2.5 W/(m²∙K); and SHGC values were controlled between 0.3 and 

0.4. For Guangzhou, the optimized parameters include external wall U-values (0.3 and 

0.8 W/(m²∙K)), roof U-values (0.25–0.30 W/(m²∙K)), and WWRs similar to Nanchang’s, 

approaching the lower limit of requirements. External window U-values ranged from 1 

to 1.5 W/(m²·K), with SHGC values between 0.2 and 0.3.  
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(3) The best solution derived via the utopian point considered three building 

performance indicators. For Nanchang, key parameters were: external wall U-value 

0.29 W/(m²∙K), roof U-value 0.22 W/(m²∙K), east/west/north WWR 0.1/0.1/0.15, south 

WWR 0.2, external window U-value 2.5 W/(m²∙K), and SHGC 0.1. Compared to the 

reference model, this reduced EUI by 13.2% to 63.43 kWh/(m²∙a), average PPD by 4.1% 

to 24.17%, and saved LCC by 475,087 CNY. For Guangzhou, the solution featured 

external wall U-value 0.8 W/(m²∙K), roof U-value 0.325 W/(m²∙K), the same WWR 

values (east/west/north 0.1/0.1/0.15, south 0.2), window U-value 2.39 W/(m²∙K), and 

SHGC 0.26. This achieved a 10.7% EUI reduction to 64.16 kWh/(m²∙a), 14.7% PPD 

reduction to 24.39%, and LCC savings of 665,024 CNY.  

This study focused on southern China’s ultra-low energy residential buildings with 

relatively simple spatial forms. Before generalizing this approach to more complex 

building types like ultra-low energy public buildings, further investigation is needed, 

including adaptive adjustments to design parameters and optimization goals based on 

specific building characteristics. Additionally, implementing research findings in 

practice requires significant financial investment, which currently limits the validation 

and refinement of theoretical results through practical application. Future research 

could explore additional strategic possibilities, such as applying other deep learning 

algorithms to classify complex real-world problems, to further advance these research 

directions.  
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