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Abstract

When populations suffer reduced fitness in novel environments, genotypes that better adjust their phenotype
to cope with environmental change can aid persistence by reducing the severity of fitness declines. However,
we know little about how plastic changes in phenotype allow different genotypes to track environmental
variation across ecological gradients, particularly as environments become novel. We transplanted numerous
clones of 19 genotypes of a Sicilian daisy, Senecio chrysanthemifolius, at four elevations on Mt Etna. We
assessed fitness at native and novel elevations and quantified leaf plasticity among and within elevations.
Genotypes with higher fitness at novel elevations showed lower variance in fitness, lower plasticity across
elevations, but higher plasticity within elevations compared to those with higher fitness in the native range.
Our results suggest that there are genotypes hidden in a population whose plasticity better tracks novel
environmental variation at multiple scales, which will be crucial for population persistence under rapid

environmental change.

Introduction

There is an urgent need to understand the capacity for natural populations to produce adaptive responses to
ongoing global change (Martin ef al. 2023; Urban et al. 2024). Adaptive phenotypic plasticity — the ability of
genotypes to express different beneficial phenotypes as the environment changes — allows populations to
maintain fitness as environments vary (de Jong 1995; Via et al. 1995; Sultan 2000; Charmantier et al. 2008).
However, maintaining fitness via adaptive plasticity becomes difficult in novel environments, such as when
new habitats are colonised, or when environmental change is rapid and unpredictable. Because adaptive
plasticity evolves to buffer familiar variation in the environment, plastic responses shaped by current or
historical environments should become maladaptive under novel conditions, leading to fitness and population
declines (Bradshaw 1991; Ghalambor et al. 2007; Matesanz et al. 2010; Reed et al. 2010; Fierst 2011; Snell-
Rood et al. 2018; Acasuso-Rivero et al. 2019). Fitness in novel environments may instead rely on phenotypic
(or developmental) robustness, the ability to maintain consistent phenotypes that buffer against fitness loss
when environmental change is rapid or unpredictable (Waddington 1942; Debat & David 2001; de Visser et
al. 2003). Ultimately, population persistence in novel environments should depend on the extent of genetic
variation in plasticity (or robustness), and whether some genotypes can sustain high enough fitness to avoid

extinction (Yeh & Price 2004; Morris 2014; Chevin & Bridle 2025).
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Genotypes within populations can differ in their responses to environmental change, producing genotype-by-
environment interactions that capture genetic differences in plasticity (Bradshaw 1965; Schlichting 1986;
Scheiner 1993; Saltz et al. 2018). While reciprocal transplant experiments often detect genotype-by-
environment interactions (e.g., Anderson & Gezon 2015; Anderson ef al. 2021), most compare relatively few
populations or genotypes, offering limited insight into how much additive genetic variation in plasticity
segregates within natural populations or how this variation contributes to fitness. Quantifying additive
genetic variation in plasticity is logistically demanding, requiring hundreds of genotypes, and so field studies
are rare and typically focus on a single model species and a few select environments (Matesanz et al. 2010;
Gianoli & Valladares 2012; Merild & Hendry 2014; Peschel et al. 2020). Consequently, we lack a clear
understanding of how segregating genetic variation in plasticity (or robustness) influences fitness along
natural environmental gradients (Anderson ef al. 2014). This gap in knowledge remains a significant barrier
to understanding the adaptive potential of populations facing global change (Chevin et al. 2010; Hendry
2016; Snell-Rood et al. 2018; Fox et al. 2019).

Genetic variation in plasticity should aid population persistence in novel environments when genotypes with
plasticity that is at least partially adaptive help prevent more severe fitness declines (Lande 1988; Lande &
Shannon 1996; Bell 2013). These genotypes that are better at maintaining fitness in novel environments can
have lower relative fitness in native environments and remain hidden within the native range (Hermisson &
Wagner 2004; Angert et al. 2008; Brennan et al. 2019; Walter et al. 2023). Such hidden genetic variation is a
critical yet poorly understood source of adaptive potential. By selecting genotypes that differ in their ability
to cope with novel environments, and then replicating these genotypes across native and novel environments,
it is possible to test how genetic differences in fitness are associated with plasticity (Chevin et al. 2013).
Comparing genotypes with higher relative fitness within the native range (HR, ‘Home Range’ genotypes) to
genotypes with higher relative fitness in novel environments (AP, ‘Adaptive Potential’ genotypes) provides a
powerful framework that harnesses the hidden genetic potential present in populations (Fig. 1a; Hermisson &

Wagner 2004; Angert et al. 2008; Brennan et al. 2019; Walter ef al. 2023).

The spatial scale at which genetic differences in plasticity determine fitness across ecological gradients is not
well understood (De Kort ef al. 2020; Denney et al. 2020). While coarse changes across environments are
likely to induce large plastic responses, if robustness helps maintain fitness across large environmental
changes, genotypes with lower plasticity should have higher fitness. Similarly, phenotypic variation in
response to microenvironmental (fine-scale) heterogeneity within environments could favour greater
plasticity in native environments, but phenotypic robustness in response to unpredictable microenvironmental
variation within novel environments (Baythavong 2011; Hamann ef al. 2016). High replication of HR and

AP genotypes across an environmental gradient can be used to test how genetic differences in fitness arise
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due to differences in environmental sensitivity both across environments, and in response to
microenvironmental variation within environments. This approach identifies the fitness consequences of
plasticity at different ecological scales to reveal how populations could track environmental variation (e.g.,
during environmental change or range shifts) or support population persistence as environments become
novel (Valladares et al. 2007; Valladares et al. 2014; Donelson et al. 2019; Zettlemoyer 2023; Lewin et al.
2024).

We focus on three hypotheses that test how genetic differences fitness are associated with plasticity across
native and novel environments. Hypothesis I — variance in fitness across environments: Compared to HR
genotypes, AP genotypes should consistently show higher mean fitness and lower variance in fitness in novel
environments if they possess more beneficial plasticity (Fig. 1b). Conversely, HR genotypes should show
higher variance in fitness in novel environments if they produce a wider variety of maladaptive phenotypes.
Hypotheses II-111 connect plasticity with fitness in native and novel environments. Hypothesis II — plasticity
and mean fitness within and across environments: Plasticity should influence fitness both across
environments (coarse-scale environmental variation) and within environments (fine-scale
microenvironmental variation) (Fig. 1¢). In native environments, higher plasticity should be favoured at both
scales because all phenotypic adjustments should generally maintain high mean fitness. In novel
environments, however, large phenotypic changes should become maladaptive, favouring reduced plasticity
(robustness) at both scales (Fig. 1d). Hypothesis III — plasticity and variance in fitness within
environments: Within native environments, all plastic responses to microenvironmental variation should
maintain high fitness, producing weak associations between plasticity and variance in fitness. If the same
plasticity becomes maladaptive in response to microenvironmental variation in novel environments, then any

variation in phenotype will affect fitness, and higher plasticity should increase variance in fitness (Fig. 1e).

Senecio (Asteraceae) wildflower species that inhabit Mt Etna (Sicily) are a powerful system to test how
plasticity is linked to fitness under semi-natural field conditions (Walter ef al. 2020). We focus on S.
chrysanthemifolius that is native to ¢.400-1500m elevation and is a self-incompatible, short-lived perennial
that relies on generalist insect pollinators (e.g., hoverflies). A closely related species, S. aethnensis, occurs on
old lava flows at high elevations. In previous transplant experiments, the two Senecio species showed
adaptation to their contrasting habitats associated with differences in plasticity and genetic variance in leaf

traits (Walter et al. 2022a; Walter et al. 2024).

Here we present a large field experiment, which significantly extends our 2018 field experiment that
transplanted cuttings of 314 genotypes of S. chrysanthemifolius on Mt Etna (Box 1). We showed that greater

adaptive potential at a novel 2000m elevation was associated with genetic variance in plasticity (Walter et al.
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2023). From the 2018 study, we selected 19 genotypes that showed contrasting fitness responses across
elevations (Box 1). In 2020, we transplanted numerous clones (n=40 per elevation) of each genotype at four
elevations and quantified fitness and phenotype to test the three hypotheses outlined above. Transplanting
clones at high replication across the entire elevational gradient provided two benefits. First, it allowed us to
test whether different forms of plasticity (magnitude and direction) are favoured within native vs novel
elevations, which builds on the original study that focused on the novel elevation. Second, we could test how
plasticity determines fitness at different ecological scales, both across elevations (coarse-scale) and within

elevations (fine-scale).

Methods

From the 2018 experiment, we selected genotypes with the most contrasting fitness responses between 500-
2000m: 10 ‘Adaptive Potential’ (AP) genotypes that showed the largest increase in relative fitness from the
native 500m to the novel 2000m elevation, and 9 ‘Home Range’ (HR) genotypes that showed the largest
decrease in relative fitness from their native site to the novel elevation (Box 1; Fig. 2a). In 2020, we
propagated 160 cuttings of each genotype and transplanted them at four elevations representing two sites
within their native range (500m, 1000m), their range edge (1500m) and a novel elevation (2000m). We

measured leaf traits and fitness on mature plants.

Field transplant

In a greenhouse (Giarre) in Spring (2020), we propagated 10 clones of each genotype in 14cm diameter pots,
randomised their location and let them grow into large plants (c.40cm high). We removed 6-7 branches from
each plant, which we cut into 4cm segments (2-3 leaf nodes). We dipped the cuttings in rooting hormone
(Germon Bew., Der.NAA 0.5%, L.Gobbi, Italy) and placed them in an 84-cell tray containing an equal mix
of coconut coir and perlite. We covered trays with plastic for three weeks to maintain high humidity and

promote root formation.

We transplanted cuttings in early summer (29-30" June) on the south-eastern slope of Mt Etna: a 500m site
among fruit trees, 1000m site in an abandoned vineyard, 1500m site in an abandoned apple orchard, and
2000m site on a lava flow from 1983 (Walter et al. 2022a). Higher elevations experience consistently colder
temperatures (Fig. S2), and soil changes from silty sand (500-1500m) to volcanic soil at 2000m (Walter et al.
2022a). At each elevation, we randomised the 40 cuttings/genotype into four experimental blocks (#=190

plants/block; n=760 plants/elevation; N=3040 plants) adjacent to each other but separated by 1-5m, and
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contained within an area of ¢.5000m?. At each block, we cleared vegetation and debris, turned the soil 30cm
deep, and then planted the cuttings 30cm apart in a grid of 7x29 plants (Fig. S3). We irrigated the cuttings
daily for three weeks so they could establish, and then reduced irrigation to the hottest days to prevent high
mortality.

Data collection

We took data for each plant c.4 months after the initial transplant (13-23" October). As our proxy for fitness,
we collected all flowerheads produced by each plant in paper bags, which we counted in the laboratory. This
trait is routinely used to estimate fitness in short-lived perennials (e.g., Gross et al. 2004; Pujol et al. 2014),
including in our previous experiment that showed a close association with seed production (Walter et al.
2023). To measure five ecologically important leaf traits, we sampled 3-4 fully expanded leaves from each
plant, which we weighed and scanned to quantify morphology using Lamina (Bylesjo et al. 2008). We used
three leaf traits to represent leaf size, shape and investment: leaf area (mm?), perimeter (mm) and the number

of indentations (count). To calculate the density of leaf indents, we standardized the number of indentations

leaf area

by the perimeter. Using leaf weight, we estimated Specific Leaf Area (SLA = ), where greater

teaf weight
values represent larger leaves per unit mass. With a Dualex instrument (Force-A, France), we measured
chlorophyll and flavonol pigment content (light absorbance units). Flavonols are secondary metabolites
produced under stressful abiotic (e.g. temperature) and biotic (e.g. herbivore) conditions (Mierziak et al.

2014).

We chose leaf morphology and investment traits because they are associated with reproductive fitness and
plasticity in Senecio (Brennan et al. 2009; Walter et al. 2023; Walter et al. 2024), and other plants (Dudley
1996; Ackerly et al. 2000; Van Kleunen & Fischer 2005; Gianoli & Saldafia 2013; Damian et al. 2020).
Thicker, less dissected leaves enhance water conservation and buffer lower temperatures at high elevations,
whereas thinner, more dissected leaves improve photosynthetic efficiency and heat dissipation at low
elevations (Walter et al. 2022a; Love & Ferris 2024). Microclimatic variation within elevations should then

favour plasticity in the same traits.

Hypothesis I: Statistical analyses of fitness
All analyses were conducted in R (v.4.3.2; R Core Team 2024). To quantify mean fitness across elevation,

we used MCMCglmm (Hadfield 2010) to apply
Yijkim = Ei X Rj + gi + by + emijiry » (1)

where the interaction between fixed effects of genotype class (R;; AP vs HR) and elevation (E;) quantifies

whether AP and HR genotypes show different fitness responses to elevation. Genotype (g;) and
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experimental block (b;) are random effects, and ey, ;i) is the residual. For each random effect, we specified
unstructured matrices to estimate variances at each elevation. The number of flowers was the poisson-
distributed fitness response variable (y;jxim ). Equation 1 yielded the posterior distribution of mean fitness at
each elevation. We then applied equation 1 on AP and HR genotypes separately to test whether among-
genotype and among-clone (within genotypes, i.e., residual) variance differed between AP and HR genotypes

across elevations.

Statistical analyses of phenotype and calculation of plasticity

To test whether AP and HR genotypes showed differences in phenotype across elevations, we used
glmmTMB (Brooks et al. 2017) to apply equation 1, but included the five leaf traits as univariate response
variables. We used type-IIl ANOVA (Fox & Weisberg 2019) to test for significant E; X R; interactions,
which indicate genotypic differences in plasticity to elevation. We then used emmeans (Lenth 2019) to obtain

marginal means for each genotype and calculate plasticity using

Pi — Xi—Xhome site , (2)

Xhome site

where plasticity (P;) for each genotype is the difference in mean between the home site and the ith elevation,
standardised by the home (500m) site mean (Valladares ef al. 2006). This captures plasticity as the
elevational change in magnitude and direction (negative values reflect a trait decrease) of the phenotype

relative to the home site (Anderson et al. 2021).

To estimate plasticity within elevations, we calculated the coefficient of variation (CV) for each genotype

(and each leaf trait separately) using

Vi =32, 3)
where g;; and X;; represent the standard deviation and mean, respectively, for the ith genotype transplanted at
the jth elevation. Equation 3 therefore captures plasticity as the among-clone (within-genotype) variance
including differences among blocks at each elevation (Hill & Mulder 2010). This is an appropriate use of CV
as we are comparing differences between AP and HR genotypes randomised into the same experimental
blocks, and because we do not estimate CV across elevations (Pélabon ef al. 2020). We removed one AP

genotype with <15 clones/elevation to avoid an imprecise estimate of variance relative to the other

genotypes.

Hypotheses II-111: Connecting plasticity with fitness

In the following analyses, we pooled HR and AP genotypes to use their combined variation in plasticity and

8
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phenotype to test how associations with fitness change across elevations. First, to test phenotype-fitness
associations, we estimated phenotypic and genotypic selection. We divided each trait by its mean and tested

for elevational changes in selection using glmmTMB to apply
Vij = Ei XT + ey, 4)

where E; represents the ith elevation and T a leaf trait. We included fitness as the response variable (y;;) and
eji) are the residuals. Significant E; X T interactions provide evidence that associations between the trait and

fitness changed across elevations. We used the same approach to estimate genotypic selection using genotype

means at each elevation (Rausher 1992).

To test whether plasticity changed its association with fitness across elevation, we used equation 4 with
plasticity as: (1) the change in trait mean across elevation, and (2) the amount of variation (CV) within
elevations. A significant E; X T would provide evidence that the association between plasticity and fitness

changed across elevation for that leaf trait.

Results

Hypothesis I: Variance in fitness changes across elevations differently for AP and HR genotypes

From low to high elevations, HR genotypes showed a significant 2-3-fold increase in among-genotype
variance in fitness. By contrast, AP genotypes showed a significant 3-fold decrease in among-genotype
variance in fitness as environments became novel (Fig. 3a). In addition, at 1500m and 2000m, HR genotypes
showed c.5 times greater among-genotype variation in fitness than AP genotypes (Fig. 3a). We found the
same patterns for the among-clone (within genotype) variance in fitness: HR genotypes showed an increase
and AP genotypes a decrease, in among-clone variance at higher elevations (Fig. 3b). Therefore, consistent
with Hypothesis I, HR genotypes showed (1) greater variance in fitness (within and among genotypes) than
AP genotypes at novel elevations, and (2) an increase in genetic variance in fitness at higher elevations.
Contrary to predictions, AP genotypes showed a reduction (rather than a slight increase) in variance in fitness

at higher elevations.

Genotypic differences in plasticity
For both genotypes, all five leaf traits showed reductions in mean values at higher elevations, except for leaf
indentation, which increased (Fig. 4a). Flavonol content increased at the edge of the range, but then at 2000m

returned to similar values as 500m. AP and HR genotypes showed significant differences in plasticity across
9
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elevations (i.e. significant genotype classxelevation interactions) for leaf area and chlorophyll content, and
differences in mean phenotype across all elevations for specific leaf area and flavonol content (Fig. 4a;

Table S1).

At each elevation, we found significant differences among the four experimental blocks for most traits and
elevations (Table S2). However, there was little evidence that AP and HR genotypes responded differently to
blocks within elevations (Table S2), suggesting that differences between AP and HR were consistent within
elevations. Quantifying within-elevation plasticity as among-clone variance (within genotypes), AP and HR
genotypes showed differences in plasticity for all traits. For leaf indents and flavonol content, AP genotypes
tended to show greater variation among clones (i.e., higher plasticity) than HR genotypes at several
elevations (Fig. 4b). For leaf area, SLA and chlorophyll content, we found significant differences in the
change in CV across elevation (genotype classxelevation interaction; Fig.4b; Table S1), suggesting that

plasticity as among-clone variation changed across elevation differently for AP and HR genotypes.

Hypothesis Il — Different forms of plasticity were favoured across versus within elevations

All five traits showed significant phenotypic associations between traits and fitness, and, except for the
number of leaf indents, higher values of each trait were favoured at all elevations (Fig. S4; Table S3a).
Genotypic associations between traits and fitness changed significantly across elevation for leaf area, SLA
and flavonol content. Higher elevations favoured lower flavonol content, higher SLA, but no association for
leaf area. By contrast, lower elevations favoured larger leaves, lower SLA and higher flavonol content (Fig.
Sa; Table S3b). Genotypes with different trait values were therefore favoured in the native range compared

to the novel elevation.

We found support for Hypothesis 11, that greater plasticity would increase fitness within the native range, but
reduce fitness at the novel elevation (Fig. 1d). Associations between plasticity and fitness changed
significantly across elevation for leaf area and leaf indentation. Only leaf indentation showed a significant
elevationxplasticity interaction (F2,51=3.6, P=0.035), which meant that larger plastic increases in leaf
indentation were favoured within the native range, whereas smaller increases in indentation were favoured at
2000m (Fig. 5b). For leaf area, associations between plasticity and fitness were weakly positive at 1000
(slope=0.18+0.4 [1 SE]) and 1500m (slope=0.55+0.3), but strong and significantly positive at 2000m
(slope=1.67+0.6, T=2.7, P=0.009; Fig. 5b). Because plasticity increased leaf area at low elevations, but
decreased leaf area at high elevations, this meant that larger increases (i.e., higher plasticity) in leaf area were
associated with slightly higher fitness at 1000-1500m, but smaller decreases (i.e., lower plasticity) in leaf
area were strongly favoured at 2000m. Therefore, as predicted, higher fitness at 2000m was associated with

lower plasticity in leaf area and indentation.

10
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For each genotype, CV within an elevation represents plasticity as variation in phenotype in response to
microenvironmental variation. For SLA, higher plasticity within elevations was associated with lower mean
fitness, particularly at 1000m and 2000m (slopes: 1000m=-6.1+2.7, T=-2.6, P=0.027; 2000m=-6.1%2.7, T=-
2.6, P=0.010; Fig. 6a). The association between plasticity (CV) and fitness changed across elevation for leaf
indents (plasticityxelevation F3 g4=3.2, P=0.028) and chlorophyll (plasticityxelevation F34=7.0, P<0.001).
However, our results contradicted Hypothesis I1: greater variance in phenotype (i.e., greater plasticity) was
often associated with lower fitness within the native range, but greater fitness outside the native range (Fig.
6a). At the novel elevation, leaf indentation and chlorophyll content showed significant positive associations

between plasticity and mean fitness, and only SLA showed the predicted negative trend (Fig. 6a).

Hypothesis 11l — Greater plasticity was associated with lower variance in fitness at the novel elevation
Supporting Hypothesis 111, four (of five) traits showed significant associations between CV in phenotype and
variance in fitness (Fig. 6b). As predicted, we found a weak positive association between CV in phenotype
and variance in fitness at elevations within the native range, suggesting that plasticity maintained similarly
high fitness for all clones and genotypes. Also as predicted, three traits showed significant changes in the
association between CV in phenotype and variance in fitness across elevations (plasticityxelevation for leaf
indentation F364=7.6, P<0.001; chlorophyll F364=10.8, P<0.001; and flavonols F34=4.0, P=0.011; Fig. 6b).
However, contrary to our predictions, these traits showed a strong negative association with variance in
fitness at the novel elevation, suggesting that greater plasticity reduced variance in fitness. Only SLA showed

the predicted significant positive association at the novel elevation (slope=2.1+0.6, T=3.5, P=0.001; Fig. 6b).

Discussion

While plasticity can help populations maintain fitness in response to familiar environmental variation, plastic
responses shaped by historical selection may become maladaptive in novel conditions. Moreover, plasticity
in response to coarse environmental change versus microenvironmental variation within environments may
have different effects on fitness. From our previous study, we selected 19 genotypes of Senecio
chrysanthemifolius that showed contrasting fitness responses across elevations (Walter et al. 2023): Home
Range (HR) genotypes showed higher relative fitness at native elevations, but lower relative fitness than
Adaptive Potential (AP) genotypes at the novel 2000m elevation (Box 1). By transplanting numerous clones
of each genotype across four elevations on Mt Etna, we tested whether: (1) genotypes differ in fitness

stability in native vs novel environments, and (2) plasticity-fitness relationships differ between native and

11
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novel environments and depend on environmental scale. Our results reveal critical scale-dependent patterns

in how plasticity determines fitness.

Supporting Hypothesis I, HR genotypes showed increased variation in fitness at higher elevations, whereas
AP genotypes showed a decrease (Fig. 3). At the novel environment, AP genotypes therefore coped better
and showed more consistent responses, whereas HR genotypes produced a variety of responses that resulted
in lower mean fitness. Supporting Hypothesis II, genotypic differences in plasticity were associated with
fitness. For plasticity across elevations, slightly higher plasticity in leaf area and indentation was favoured
within the native range, whereas lower plasticity was favoured at the novel elevation (Fig. 5b). However,
plasticity as variation within elevations showed a contrasting result: lower plasticity was often favoured
within native elevations, whereas higher plasticity was favoured within the novel elevation (Fig. 6a).
Consistent with Hypothesis I11, plasticity within native elevations was weakly associated with variance in
fitness, suggesting that phenotypic changes in native environments maintained high mean fitness. However,
contrary to predictions, higher plasticity was associated with lower variance in fitness at the novel elevation

(Fig. 6b).

Our results provide two important insights for understanding how genetic variation in plasticity determines
fitness across environments. First, we provide strong evidence that genotypes with different forms
(magnitude and direction) of plasticity are favoured within their native range compared to novel
environments. Second, the association between plasticity and fitness changed in response to fine- vs coarse-
scale environmental variation, and was trait-dependent. Higher fitness at novel elevations was generally

associated with smaller phenotypic adjustments across elevations, but larger adjustments within elevations.

Predicting population persistence under global change

We provide strong evidence that when adaptive plasticity becomes maladaptive in novel environments,
selection favours lower plasticity, and genetic variation in plasticity becomes critical for population
persistence. Moving beyond demonstrating genetic variance in plasticity, we reveal how hidden genetic
variation in plasticity could allow new forms of adaptive plasticity to evolve (Lande 2009; Usui et al. 2023),
help populations to maintain fitness and persist as environments change (Chevin & Hoffmann 2017), or help
them shift their geographical range in response to global change (Valladares et al. 2007; Valladares ef al.
2014; Donelson et al. 2019; Zettlemoyer 2023; Lewin ef al. 2024). The frequency and genetic basis of such
genotypes, as well as their absolute fitness in novel environments, will determine their potential to aid

population persistence under environmental change.

Predicting the resilience of ecological communities requires expanding our framework to multiple species

and assaying genotypes from across a metapopulation in conditions predicted under climate change. This
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would test whether AP genotypes are broadly common across populations and species, or whether they are
only present in species with large populations that experience greater environmental heterogeneity.
Encouragingly, a field experiment with both Etnean Senecio species showed increased genetic variance in
seedling survival at novel high and low elevations (Walter ef al. 2022b), suggesting that AP genotypes
emerge at early life history stages in species from contrasting environments that experienced different novel
environments. Testing for AP genotypes in species showing range stasis versus expansion or shifts (or
species with different sized distributions) would confirm whether AP genotypes emerge as a broader
phenomenon across populations from different ecological contexts. Although challenging, identifying AP

genotypes could benefit conservation efforts to increase resilience in species from vulnerable ecosystems.

Genetic variation for population persistence under environmental change

Interannual or seasonal variation could maintain AP genotypes in populations. Environmental variation that
creates fluctuating selection would then maintain genetic variation in plasticity that reduces vulnerability to
environmental change (Gillespie & Turelli 1989; Svardal ef al. 2011; Wittmann et al. 2017). AP genotypes
could then represent ‘generalist’ genotypes that have lower arithmetic fitness within their native range, but
high geometric fitness across a broader range of spatial or temporal environments. This would suggest that
AP genotypes are ‘bet-hedging’ genotypes that help to buffer large environmental variation by reducing the
fitness costs to the population as environments change rapidly and/or unpredictably (Gillespie 1974; Childs
et al. 2010; Simons 2011; Svardal ef al. 2011; Tufto 2015; Bond et al. 2021; Draghi 2023). Alternatively,
local adaptation could create and maintain AP genotypes if alleles associated with local adaptation to higher
elevations within their native range underlie beneficial AP responses to novel high elevations (Lind &
Johansson 2007). While we previously found little evidence of local adaptation among sampling sites, further
work is needed to determine whether local adaptation produces AP genotypes with benefits specific to high
elevations, or whether they confer broad fitness advantages across diverse novel environments, including

warmer low elevations.

Contrasting patterns of plasticity across ecological scales

Our results suggest plasticity of different magnitudes was favoured at different ecological scales. Higher
plasticity across elevations (coarse-scale) was favoured within the native range, and lower plasticity favoured
between native and novel elevations. This suggests that phenotypic robustness across elevations maintains
higher fitness in novel environments by minimising large irreversible and costly phenotypic changes (Velotta
& Cheviron 2018; Hoffmann & Bridle 2022; Walter et al. 2023). By contrast, plasticity within elevations
showed the opposite trend: lower plasticity was generally favoured within native environments, but higher
plasticity favoured under novel microenvironmental variation. Higher plasticity within the novel environment

was also associated with lower fitness variance, suggesting that plasticity reflects adaptive responses rather
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than developmental noise, which should increase fitness variance. While we cannot definitively partition
adaptive or maladaptive plasticity from developmental instability (Debat & David 2001; de Visser et al.
2003), our results support the idea that phenotypic responses to fine-scale environmental variation are

associated with fitness and are under genetic control (Baythavong 2011; Prentice et al. 2020).

Plasticity in different traits mediated fitness at different ecological scales as environments became novel.
Small plastic changes in leaf area — a trait with irreversible developmental commitments — increased fitness
between native and novel elevations. By contrast, larger plasticity in chlorophyll content — a more reversible
physiological trait — within the novel elevation increased fitness. In novel environments, morphological
robustness could therefore be favoured across coarse scales, and compensated by larger fine-scale
physiological plasticity that allows flexible adjustment to novel microenvironmental variation. Conversely,
large changes in morphology could be beneficial across native environments, while fine-scale physiological
adjustment are less critical (Valladares ef al. 2007; Nicotra et al. 2010; Gratani et al. 2014). Leaf indentation

shared both patterns, suggesting indentation may be important for plasticity at both ecological scales.

The contrasting fitness consequences of plasticity at fine versus coarse scales may reflect responses to
different environmental components. Large temperature and UV radiation gradients could induce plasticity
across elevations, while microenvironmental heterogeneity in moisture, nutrients or biotic factors (e.g., soil
biota or competition) could generate plasticity within elevations (Paquette & Hargreaves 2021). Genotypic
correlations between within-elevation and across-elevation plasticity were moderate and positive at native
elevations (r=0.24-0.37, three traits), moderate and negative at the range edge (r=-0.18—0.51, four traits) and
weakened to zero at the novel elevation (r=-0.01—0.09, four traits; Fig. S5). Plasticity at the two ecological
scales could therefore be correlated to some extent within native environments, negatively correlated in
marginal environments, and independent in novel environments. This decoupling could explain why
robustness is favoured across elevations while allowing relatively large, beneficial fine-scale adjustments

within the novel elevation.

Idiosyncrasies that could determine the generality of AP genotypes

In contrast with our result (plasticity of different magnitudes favoured at coarse vs fine scales), plasticity in
tree growth was positively correlated across micro- and macro-environmental variation (de la Mata & Zas
2023). We used flower output as our fitness metric, which may not reflect variation in growth or survival,
and so future experiments should test whether AP genotypes emerge using other performance measures, such
as biomass, which could be valuable for increasing resilience in long-lived species. Furthermore, the
correlated changes in edaphic (and other environmental variables) along with temperature across elevation

meant we could not isolate thermal plasticity relevant to predicting responses to global change. Finally, an
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important caveat is that plasticity and trait means may be genetically correlated, which we could not
disentangle with our data, and makes it difficult to distinguish direct selection on plasticity from indirect

selection via correlated trait means.

Conclusions

We show how hidden genetic variation in plasticity could aid population persistence in novel environments
by tracking coarse and fine variation in the environment to reduce the severity of fitness declines. We
demonstrate that different forms of plasticity are favoured across a natural gradient from native to novel
environments. To predict the potential for AP genotypes to aid population persistence under global change,
future experiments should focus on their frequency within and across species, and the generality of their

fitness benefits across novel environments.
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Fig. 1 Conceptual framework for testing how genetic variation in plasticity determines fitness across
environmental scales as environments become novel. (a) Selection of genotypes that include HR (‘Home
Range’; closed circles and solid lines) genotypes that show greater relative fitness in native environments,
compared to AP (‘Adaptive Potential’, open circles and dashed lines) genotypes that show greater relative
fitness in novel environments. (b) Hypothesis I — variance in fitness across environments: If AP genotypes
have more beneficial plasticity in the novel environment, they would show consistently higher fitness at the
novel environment, which would result in lower variance in fitness compared to HR genotypes. (¢) To
connect fitness with plasticity across ecological scales, we first estimated plasticity as: (1) the change in
mean phenotype across environments (coarse-scale), and (2) the variation among clones in response to
microenvironmental variation within environments (fine-scale). One AP genotype (open circles) and one HR
genotype (closed circles) is depicted, with small grey circles representing clones within each environment,

and large black circles representing the mean of that genotype. Reflecting the original study, we expected AP
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genotypes to show lower plasticity than HR genotypes. We then tested two hypotheses relating plasticity to
fitness: (d) Hypothesis Il — plasticity and mean fitness within and across environments: We predicted that
the association between plasticity and fitness would change across environments. Specifically, if greater
plasticity only helps to track changes within native environments, greater plasticity would be favoured within
the native range, whereas lower plasticity (i.e., robustness) would be favoured in novel environments. (e)
Hypothesis III — plasticity and variance in fitness within environments: If plasticity is associated with
variance in fitness in response to microenvironmental variation, then plasticity within native environments
would only be weakly associated with variance in fitness because all genotypes would have similarly high
mean fitness. By contrast, at the novel environment, greater plasticity would incur fitness costs and so will be

associated with greater variance in fitness.

26



765 -Box1 -

766  In the 2018 study, we connected genetic variance in plasticity with fitness at a novel 2000m elevation by

767  transplanting cuttings (clones) of 314 genotypes on Mt Etna (Walter et al. 2023). Genotypes were generated
768 by mating randomly among 72 individuals that we sampled from five sites located <Skm apart at 526-790m
769  elevation on Mt Etna (Fig. S1; Walter et al. 2023). The 314 genotypes therefore represent genotypes that

770  could be easily generated in the natural population given this species has wind-dispersed seeds and is insect-
771 pollinated. We found no evidence of local adaptation among the sites, and variation in fitness was distributed
772 relatively evenly among parents from different sites (Walter ef al. 2023). While mean fitness declined in the
773 novel environment, additive genetic variance in fitness increased threefold, reflecting greater adaptive

774  potential at the novel elevation compared to a native elevation. This increased adaptive potential was

775  associated with genetic differences in plasticity.

776  The contrasting fitness responses of these genotypes provide an exceptional opportunity to test how plasticity
777  mediates fitness at different environmental scales along an ecological gradient. From the 2018 experiment,
778  we chose genotypes based on their change in relative fitness (independent of mean absolute fitness) from the
779  home site (500m) to the novel elevation (2000m). Adaptive Potential (AP) genotypes showed greater relative
780 fitness at the novel elevation, whereas Home Range (HR) genotypes showed greater relative fitness at the
781  native elevation (Fig. 2a). In the original study, we found a negative genetic correlation of -0.11 between

782  fitness at 500m and 2000m, indicating a population-level fitness trade-off between the native and novel

783  elevations. Our selected genotypes therefore represent the genotypes underlying the trade-off, which allows
784  us to test how genetic differences in fitness responses to elevation are associated with plasticity. The 19

785  selected genotypes came from largely independent pedigrees: the 10 AP genotypes represent 9 unique full-
786  sibling families (7 sires, 9 dams), and the 9 HR genotypes 8 unique families (7 sires, 8 dams). Minimal

787  shared parentage means genotypes can be treated as independent in our analyses.

788  In the current study, for each of the chosen 2018 genotypes, we transplanted ¢.40 cuttings at each of four
789  elevations. We recovered the same patterns of mean fitness as the original study: HR genotypes performed
790  better than AP genotypes at native elevations, and AP genotypes performed better at the novel environment
791 (Fig. 2b). Our findings were therefore consistent across years, and including an additional 1000m elevation

792  showed that AP genotypes had consistently lower fitness in the native range.
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Fig. 2 (a) Genotypes were chosen from the 2018 experiment based on their change in relative fitness from
their home site to the novel 2000m elevation. (b) Changes in mean fitness across elevation for the chosen
genotypes in the original 2018 study and the current study (2020). Credible intervals represent the 90%
Highest Posterior Density interval (HPD) of the mean. Asterisks denote significant differences in mean
number of flowers between AP (Adaptive Potential: open circles and dashed lines) and HR (Home Range:
closed circles and solid lines) genotypes at each elevation whereby their posterior distributions do not overlap

at >90%. Small circles represent the mean for each genotype at each elevation.
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Fig. 3 Hypothesis I: Fitness variance among genotypes and among clones (within genotypes) changed across
elevation differently for AP and HR genotypes, with the greatest difference in variation between the
genotypes emerging at the novel elevation. Boxplots represent the posterior distribution of variance in fitness
among: (a) genotypes, and (b) clones within genotype. Unfilled boxplots represent AP genotypes and filled
boxplots HR genotypes. Asterisks denote significant differences where the posterior distributions do not

overlap at >90%.
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Fig. 4 Quantifying plasticity in leaf traits as (a) changes in trait means across elevation, and (b) and variance
(CV) in phenotype within genotypes. AP genotypes are represented by open circles and dashed lines, and HR
genotypes by closed circles and solid lines. Larger circles with credible intervals (=1 SE) represent the mean
at each elevation, and small circles represent each genotype. Asterisks denote significant elevationxgenotype
(AP vs. HR) interaction, while plus (+) signs represent no significant interaction but significant differences
between AP and HR genotypes. (a) For most traits, AP genotypes show smaller changes in phenotype across
elevation compared to HR genotypes. (b) Most traits show an increase in variation among clones at higher
elevations, with AP genotypes often showing greater variance compared to HR genotypes. Summary

ANOVA tables are located in Table S1.
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Fig. 5 Associations between (a) phenotype and (b) plasticity with fitness across elevation. AP and HR
genotypes are represented by open and closed circles, respectively. Asterisks represent a significant
interaction between the predictor variable (trait value or plasticity) and elevation, while addition (+) symbols
represent significant regression slopes, but no significant interaction with elevation. Summary ANOVA
tables are in Tables S3-4. Lines and shaded area (95% confidence intervals) represent the regression, which
are omitted for non-significant comparisons. Letters represent significant differences in regression slopes,
and panels with a single letter represents a significant slope but no significant differences with other
elevations. Regression summary tables are in Tables S5-6. (a) Genotypic values of each trait on fitness
(phenotypic associations with fitness are located in Fig. S4). Three traits (leaf area, specific leaf area and
flavonols) showed significant changes in selection on genotypes across elevation. (b) Hypothesis 11
genotypic values of plasticity versus fitness. Plasticity is represented as the change in mean phenotype from
the home site (red vertical line) to each other elevation. Positive values represent plasticity as an increase in

trait value, and negative values a decrease in trait value, from the home site.
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Fig. 6 Regression of plasticity as variance (CV) within each genotype at a given elevation against (a) mean
absolute fitness (Hypothesis II), and (b) variance (CV) in fitness (Hypothesis III). Open circles represent AP
genotypes, and closed circles HR genotypes. Asterisks denote significant interaction between plasticity and
elevation, and plus (+) signs represent significant slopes but no significant interaction with elevation.
Summary ANOVA tables are in Table S4. Lines and shaded area (95% confidence intervals) represent the
regression, which are omitted for non-significant comparisons. Letters represent significant differences in
regression slopes, and panels with a single letter represents a significant slope but no significant differences

with other elevations. Regression summary tables are in Tables S5-6.
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