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free resolution over the group ring R[®] where R is commutative and

® is finite. The n'" syzygy Qf[q)] is the stable class of Im(9,,) and has a
tree structure with roots which do not extend infinitely downwards. We

show that Qg{[QS”] has infinitely many isomorphically distinct modules
at the minimal level when R = Z[C] is the integral group ring of the
infinite cyclic group and Qg is the quaternion group of order 8p where
p > 3 is prime. This poses severe difficulties in attempting to solve the
D(2) problem of CTC Wall for the groups Coo X Qsp
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In [32] CTC Wall formulated the following fundamental problem in low
dimensional topology:

D(2) : Let X be a finite connected complex of dimension three such that
H3(X,B) = H3(X;Z) = 0 for all local coefficient systems B.

Is it true that X is homotopy equivalent to complex of dimension two 7

This is the D(2) problem. It is parametrized by the fundamental group
in the sense that every finitely presented group has its own quite distinct
D(2) problem. As will perhaps become clear, despite its topological origins
it is essentially algebraic and combinatorial and its difficulty varies widely
from case to case. In consequence there is no reasonable expectation that
the problem can be solved simultaneously for all groups in uniform fashion.

In this paper we point out the apparent intractability of the D(2) problem
for groups of the form Cy x Q where C'y is the infinite cyclic group and Q
is finite of quaternionic type. There is a related question; thus suppose

(*) C =(0—J—Z[G)— Z[G]* - Z — 0)
is an exact sequence of modules over the group ring Z[G]. In [10], subject
to a mild homological finiteness condition, later shown to be unnecessary by

Mannan [22], the present author showed that, for a given finitely presented
group G, the D(2) problem is equivalent to the following realization problem:



R(2) : Is every such sequence C chain homotopy equivalent to the Cayley
complex of a finite presentation of G ?

The nature of the module J is central; it plays the role of an ‘algebraic
mo’. In cases where C is realised by a finite presentation G of G then
J = my(Kg), the second homotopy group of the geometric Cayley complex
Kg. Consequently to solve the D(2) problem affirmatively for G one must
first describe all Z][G]-modules J which can possibly occur in the sequences
(*). In this paper we quantify the complexity of such descriptions for groups
with a quaternionic factor.

We begin by considering groups G = Co, X ® where ® is an arbitrary
finite group; A = Z[G] will denote the integral group ring. We make the
identification A = R[P] where R = Z[Cs] which we represent as the
ring Z[t,t~1] of integral Laurent polynomials in ¢. Observe that the trivial
A-module R has a free A-resolution of finite type

F) = (.0 Em B O % Fo— % — 0)

which decomposes canonically into short exact sequences:
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where 7, = Ker(9,—1) = Im(9,,). Given another such free A-resolution
/ o’ /
(F) = (.. O 1O Tt if()—mﬁ—ﬂ))

the module J! = Ker(9],_,) is stably equivalent to Jy,; that is
Tn ® A =2 J) @ AP

for some positive integers a,b . The stability class [J,] is the n'* syzygy
of R, written Qm[cp] = [Jn], and is independent of the particular choice
of free resolution. Following Dyer and Sieradski [5] the stable class [J] of
a finitely generated A-module has the structure of a directed tree obtained
by writing J' — J” when J” = J' @ A; then [J] has a minimal level
corresponding to the roots of the tree. Taking ® to be the quaternionic
group Qsp = (z,y|2?? = y? zyz = y) of order 8p we shall prove :

Theorem I: For each prime p > 3 the minimal level of Q?[Qsp] contains
infinitely many isomorphically distinct modules.

As might be expected from analogous situations (cf [16]), Theorem I relies on
an analysis of stably free modules over A. In [31] Swan considers the problem
of classifying stably free modules over the integral group rings Z[Q4p].



We adapt Swan’s method to construct nontrivial stably free modules over
group rings Z[Cu X Qgp] for primes p > 3. Theorem I then follows from:

Theorem II : For any odd prime p there is an infinite collection {&(y)},>1
of pairwise non-isomorphic modules over A = Z[Cs X Qgp] which satisfy

Sp) A=A A

We also consider free resolutions of Z over the group ring A = Z[Cy X ®J;
&) = (.08 e, e N e Bz 0.

The stable class of Im(d,) is the n'’-syzygy Q%[G] of Z over A. Choosing
modules J; in Qfm

Theorem III : Exth (Jn-1,Tn) = R/|®| for n > 1.

we show:

We denote by K, (Jn—1, In, (t)) the extension module

0= T = Kn(Tn—1, In, (t)) = Tn-1 — 0
classified by «a(t) € R/|®| = Exti(Jn_1,Tn). The syzygies QZel, Qfg]
and Qf[q)] are then related by:

Theorem IV : K, (Jn-1,Jn,t — 1) is a representative of Q%[G] .

The first part of the paper is taken up with those aspects of module
extension theory required to prove Theorem III; the second part with the
construction of stably free modules necessary for Theorem II. Theorem I is
proved in section 12 and Theorem IV in section 13.

Finally, in §14 we give a brief survey of the current state of the D(2)
problem. Suffice to say here that, whilst there are no known examples of
groups where the answer is negative, the class of groups for which the prob-
lem has been solved affirmatively is somewhat meagre and for the most part
such groups are finite. We conclude by pointing out the significant difficul-
ties that Theorems I and IV present in attempting to solve the D(2) problem
for the groups Cs X Qgp-

8§1: Complete congruences :

Throughout A will denote an algebra, free of finite rank over a commu-
tative Noetherian ring R; in particular, A is also Noetherian. Mody will
denote the category of right A-modules. If A,C € Mody, Ext} (A, C) will
denote the class of exact sequences of A-homomorphisms of the form

E=(0—» C— B— A— 0)

If £, € Ext'(A,C), then & and &' are congruent, written ‘€ = £, when
there is commutative diagram of A-homomorphisms of the form



b5 0 C &% B2 45 0
ly = Id | lypo 1Id
& 0—- C 5% BL 45 0

We denote by T the trivial extension T = (0 - C S C®A™ A - 0)
where ic(c) = (5) and m4 (¢) = a. The extension & splits when it is
congruent to the trivial extension ; £ splits on the right when there exists
a A-homomorphism s : A — B such that pos = Ida and splits on the left
when there is a A-homomorphism r : B — C such that r o j = Idp; it is a
standard exercise to show that:

(1.1) & splits < & splits on the right <= & splits on the left.

By the Five Lemma, congruence is an equivalence relation on xt!(A4,C).
We denote by Ext} (A, C) the set of equivalence classes under ‘=’. Baer’s
Theorem ([1], [20], Chap III) is then:

(1.2) Ext}(A,C) is an abelian group with respect to Baer sum.

In particular the zero element in Ext} (A4, C) is given by the trivial extension
and the additive inverse of the extension £ = (0 = C = X 5 4 — 0) is
—£=(0—C 3 X2 A4-0). Eilenberg and Maclane reinterpreted Baer’s
Theorem thus ([20], p.89):

(1.3) Ext}(A,C) is isomorphic to the module cohomology H'(A,C).

We denote by Proj'(4,C) the subset of Ext}(A,C), possibly empty,
defined by extensions P = (0 - C — P — A — 0) where P is projective.
In what follows A, C, £ will denote short exact sequences of modules over A

A = (054 2% F 2% 450
C = (00 2% E2% 00
£ = 050-5B-2 40

in which E, F are projective. We shall refer to (A,C,E) as an admissible
triple. By a completion € of (A,C, &) we shall mean a commutative diagram
of A modules, as below, in which all rows and columns are exact:
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If F and F are projective then the exactness of the middle row guarantees

,L'/

that G is projective. We regard & = (0 = ¢/ — B’ X5 A’ = 0) as
a first derivative of £, in furtherance of which viewpoint we note that & is
essentially unique. Thus suppose € below is also a completion of (A,C,¢&):

0 0 0
b T e
ljc i N le
(©) 0—~FE ‘E.q PF.p .
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0 0 0

We say € and ¢ are completely congruent, written € = &, when there is an
isomorphism of diagrams h : € — € which restricts to the identity on the
initial triple. It is straightforward to see that:

(1.4) Any admissible triple (A,C,€&) admits a completion; moreover, any
two completions of (A,C,E) are completely congruent.

A complete congruence € = ¢ induces a congruence &' = E. We
write 74,¢(€) for the congruence class [£'] of the top row of any completion
of (A,C,E). Tt is now straightforward to see that:

) be admissible triples such that A = A c=cC

(1.5) Let (A4,C,E), (A,C,
c(€) = 7z6(8) .

and & =&; then 74,

It follows that the above mapping 7 gives rise to a mapping of sets



7: Projt (4, A") x Proj'(C,C") x Exti(4,0) — Exti(4’,C")
(1A ; [C] ; [€]) = 71aclé)

With fixed A € Proj!(A, A’) and C € Proj*(C, C’) then :
(1.6) 7ac:Exti(A,C) — Exti(A,C") is an additive homomorphism.
In what follows, we shall fix A € Proj!(A, A") and C € Proj!(C, C") to obtain

a mapping, the ‘derivative mapping for extensions’
7:Exti(4,C) — BExti(4,C)
7([€]) = 71ac(é)

§2 : Stable modules :
As A is Noetherian the following surjective rank property holds :

(2.1) If7:A™ — A™ is a surjective A homomorphism then m < n.
We denote by ‘a2’ the stability relation on A modules; that is
My ~ My <= M; & A™ = My d A™

for some integers ni,no > 0; then ¢ &~ ’ is an equivalence on isomorphism
classes of A-modules. We denote by [M] the stable module of M; that is, the
set of isomorphism classes of modules N such that N ~ M; evidently M is
finitely generated if and only if each N € [M] is finitely generated.

Henceforth M will denote a nonzero finitely generated A-module; then
M is also finitely generated over SR from which it follows that:

(2.2) If N € [M] then for each integer a >0, N @& A®* ¥ N.

Following Dyer and Sieradski [5], when M is a finitely generated A-module
we impose on [M] the structure of a graph on in which the vertices are
the isomorphism classes of modules N € [M] and where we draw an edge
N; — Ny when Ny 2 N; @ A. By (2.2) the graph of [M] does not contain a
nontrivial loop; consequently:

(2.3) If M is finitely generated over A then [M] is an infinite directed tree.

If N1, Ny € [M] we write g(N1,No) = g < Ny &A™ = Ny@ A®
where both a and a+ g are positive integers. It follows from (2.2) that there
is a ‘gap function’ ¢ : [M] x [M] — Z with the following properties: :

g(NNaAY) = b;
g(No,Ny) = —g(N1, N2 );
g(Nl’N3) = g(Nl’N2)+g(N2’N3)’

When M is nonzero we write rka (M) = a where a is the smallest positive
integer for which there is a surjective homomorphism ¢ : A® — M; then



(2.4) If K € [M] is such that 0 < g(K, M) then g(K, M) < rky(M).

We say that My € [M] is a root module for [M] when 0 < g(My, K) for all
K € [M]. Defining p: [M] - Z by p(K) = g(M,K) then as g(M,K) =
—g(K, M) it follows from (2.4) that p is bounded below by —rky(M). If
w(Mp) is the minimum value of p then My is a root module; that is:

(2.5) If M is finitely generated then [M] has a root module.

We define the height function h : [M] — N by h(L) = g(Mp, L) when M
is a root module. As g(My, My @& A™) = n then h is surjective and so [M]
extends infinitely upwards. However, the existence of a root module shows
that [M] does not extend infinitely downwards.

§3: Syzygies :
Let M be finitely generated over A; by a projective 0-complex over M we
mean an exact sequence of A-homomorphisms of the form

(3.1) 0—=J—>P—-M=0

where P is finitely generated and projective; we note the following ([19],
p.145, [21], p. 97):

(3.2) (Schanuel’s Lemma) If (0 — D, P, EL Y V. 0) are projective
0-complexes for r = 1,2 then D1 ® Py = Dy @ P;.

If M is finitely generated then for some positive integer a there exists an
exact sequence 0 — J — A®* — M — 0; this special case is called a free
0-complex. Given another such free O-complex 0 — J' — A®> - M — 0
Schanuel’s Lemma shows that J @ A = J’ @ A% thus the stable class
[J] is independent of the free O-complex chosen and depends only on M.
The stable class [J] is the first syzygy of M and is denoted by Q4 (M)
(abbreviated to Q1 (M) when A is clear from context) . As A is Noetherian
and M is finitely generated then J is also finitely generated. Consequently
every module in Q4 (M) is finitely generated. Suppose given a projective 0-

complex 0 — J 5 S & M — 0 in which S is stably free. If SGA™ 2 AT+7
where n is a positive integer we modify the exact sequence as follows:

1 0
0 Joan il g an @9y g

As S & A" =2 A™*" then J € Oy (M); hence:

(3.3) Let 0 -+ J — S — M — 0 be an exact sequence of A-homomorphisms
in which S is finitely generated and stably free; then J € Q;(M).

The above argument generalises to give:



j On—
Proposition 3.4 : Let 0 > J 58 % F, 0% . B B R0 50 be
an exact sequence of finitely generated A-modules where n > 3; if each F;. is
free and S is stably free then J € Q,(M).

Let Modf‘\n denote full subcategory of Mody consisting of finitely
generated right A-modules. If f,g : M — N are morphisms in Modi® we
write ‘f ~ ¢’ when f—g = £on for some A -homomorphisms n: M — P
and £ : P — N where P is projective. The derived module category Der(A)
is then the category whose objects are finitely generated right A-modules
and where Hompe,(7)(M, V) is the quotient

HomDer(A) (M7 N) - HOH]A(M, N)/ ~
Then Homper(p)(M,N) has the natural structure of an abelian group.
Moreover, if My, My are finite generated A-modules then (cf [15], p.72)
(3.5) My = per(py Mo <= My @ P =)\ My @ Pa.
where P; , P» are finitely generated projectives. Evidently if M; ~ My then
My = per(a)y Mz from which it follows that:

(3.6) The syzygy Q1 (M) represents a single isomorphism class in Der(A).

Let (0— A 5 A% A 50and(0— B L A & B —0)
be exact sequences so that A’ represents Q(A) and B’ represents Q1 (B)
and let f : A — B be a A-homomorphism. By the universal property of
projective modules there exists a commutative diagram of the form

0—» A & Ac PyA4 0
ol 7 f
0 B L A L B 0

Proposition 3.7 : If f ~ 0 then f' ~ 0.

Proof : Let f = £ on be a factorization of f through n: A — P and
¢ : P — B where P is projective. As ¢ is surjective then by the universal
property of projective modules there exists a homomorphism § : P — Ab
such that go & = €. Define F:A* - Aby F = f — £onop. As
pot = 0 then:

(*) Foi = foi.
Moreover, go ' = qof— qogonop = qof— Eonop = qof— fop = 0.

Hence Im(F') C Ker(q) = Im(j). As j is injective we have a well defined
homomorphism j~'o F:A* — B’ and



(**) jo(f’—jfloFoi):jof’—Foi:jof’—foi:(].
As j is injective then f’ = j~loFoi andsoi: A’ — A®and j~'oF : A®* — B’
is a factorization of f’ through the free module A°. O

In the above construction the class in Der(A) of f': A’ — B’ depends only
on the class in Der(A) of the homomorphism f : A — B and [f’] is a well
defined morphism [f’] : A” — B’ in Der(A). Choosing for each A -module

A a specific free 0-complex (0 — A’ oA Bog o 0) and writing
Q1(A) = A’ then on defining Q1([f]) = [f'] we obtain a functor

() Qy : Der(A) — Der(A).
We iterate the construction by defining 2, = Q7 0Q,_;.

§4 : Coprojective modules :
It follows from (1.3) and the additivity of H'(M, —) that:

(4.1) If M is finitely generated the following conditions are equivalent:

(i) Ext'(M,A) =0;

(ii) HY(M, Q) = 0 for any projective module @Q ;

(iii) HY(M,A) = 0.

Modules satisfying the equivalent conditions of (4.1) are said to be 1-coprojective.

Let F = (OHJQA‘I&MAO) be a free O-complex. If a: J — N is a
A-homomorphism we denote by . (F) the pushout extension:

F 0— J A® 2y M— 0
L = la la 11d
@ (F) 0+ N L lmlay) & M— 0

where lim(a,j) = N & A%/Im(a x —5) and j , @ and P are the canonical
mappings so obtained. We showed in [13] (Proposition 5.28, p.104) that when
M is 1-coprojective then for any A-module IV there is an exact sequence

Homper (A%, N) - Hompe (J, N) -2 Ext' (M, N) 25 Ext!(A?, N)

where §(a) = . (F). As Hompe (A%, N) = Ext} (A%, N) = 0 it follows
that & : Homper(J, N) — Ext!(M, N) is an isomorphism. As .J represents
Q1 (A) we obtain the following corepresentation theorem for Ext! (M, —):



(4.2) If M is 1-coprojective. then ¢ : Hompe (21 (M), —) — Ext!(M, —)
is an isomorphism.
Theorem 4.3 : If A is 1-coprojective there is an isomorphism
Q1 : Hom'Der(A) (A7 B) i> HomDer(A) (Ql(A)7 QI(B))

Proof : To show 2; is injective, suppose given a commutative diagram

0—» A 5 A B4 S50
il Fi Fl

0o—» B L A L B S0
where f’ has a factorisation f’ = fon; £: T — B'; n: A’ — T; with T pro-
jective. In the exact sequence Homp (A%, T) N Homy (A',T) LN Ext} (A, T)
as Extjlxg\A, T) = 0 then ¢* : Homy (A, T) 2 Homy (A’ T) is surjective.
Choose ¢ : A* — T such that i*(§) = £ Putting r =no& : A — B’ then

the following diagram commutes
i

A’ A%
i 7
a

It follows (cf [15], p.5b4) that the sequence f[(A) splits on the left. Con-
sequently fI(A) splits on the right and so there exists a homomorphism
s: A — A’ making the following diagram commute

A? b A
7 f
i

As f factors through A’ then f ~ 0 and f — Q;(f) is injective as claimed.
To establish surjectivity, given a A-homomorphism g : A — B’ we must
construct homomorphisms § : A® — Ab, g_ : A — B making the following
diagram commute:

0 A 4 A By A ~0
g4 g g- 1
0~ B L A 4 B —0

10



In the exact sequence Homy (A%, Ab) N Homp (A, AY) LN Ext}(A4,A%), as

Ext}(A,A%) = 0 then i* : Homy (A%, A) P Hompy (21 (A), Ab) is surjective.
Choose g : A®> — Ab such that i*(g) = j og; then the following commutes:

A - AC
g g
B/ J _ Ab

Hence gogoi = gojog = 0 so that g(Im(i)) C Ker(q). Consequently
g(Ker(p)) C Ker(q) thereby inducing g : A%/Ker(p) — A’/Ker(q) to
make the following diagram commute:

A Nk
g 9-
AY - AY/Ker(g)
The result follows as A = A*/Ker(p), B = A/Ker(q). O

More generally, we say that M is n-coprojective when Ext® (M,Q) =0 for
1 < k <n and all projective modules Q). Iterating (4.3) we obtain:

(4.4) If A is n-coprojective then there is an isomorphism

Qy : Hompe(a) (A, B) — Hompe,(a) (2 (4), 2 (B)).
Taking B = A we obtain the following as a special case of (4.4).
(4.5) If A is n-coprojective then €, gives an isomorphism
Q¢ Endper(a)(A) — Endpey(a) (2n(A)).
In particular, taking (0 — J ENY RN YN 0) to be a free 0-complex:

(4.6) If M is 1-coprojective then € : Endpe, (M) = Endpe(J) is
an isomorphism.

Now suppose that A is 2-coprojective and consider the following diagram
where 7 = 743 is the homomorphism of (1.6):

11



Hom’Der(A) (Ql (A)7 B)

Homoper()(£22(4), 21(B))

(4.7) 5 5

Extl (4, B) - Exth(Q(4), Q1(B)).

As A is 2-coprojective then both A and Q;(A) are 1-coprojective so that both
vertical arrows are isomorphisms. Furthermore, €27 is also an isomorphism.
We obtain the following translation theorem for extension classes:

(4.8) 7:Exth(A4, B) — Ext} (Q1(A), Q1(B)) is an isomorphism if
A is 2-coprojective.

Iteration of the above argument gives;

(4.9) 7" : Extl (A4, B) — BExt} (Q,(A), Q,(B)) is an isomorphism if
Ais (n+1)-coprojective.

Finally, taking B = ;(A) we obtain the following:
(4.10) 7771 Ext} (A, Q1(A)) — Exth (Q_1(A4), Q.(A)) is an
isomorphism if A is n-coprojective.

We note the following de-stabilization result (cf [13], p.97):

Proposition 4.11 : Let 0 — J & Qg EN Q1 — M — 0 be a projective
0-complex where Q) is also projective; if M is 1-coprojective then @Q1/7(Qo)
is projective.

Proof : Let i : J — J & Qo be the inclusion, i(z) = (z,0), and let 7 be the
projection J ® Qo — J ; 7(xz,q) = x. When L = hgn(z om,j) we have a
commutative diagram

& 0— J@Qoi; Q11— M— 0
lv(a) = liom lv lId
(iom)«(E) 0> JoQy— L— M= 0

where v : Q1 — L = hﬂ(z o, j) is the natural map. As H'(M,Qo) = 0
it follows easily that i, o m, = Id : HY(M,J ® Qo) — H'(M,J ® Qo). Let
c=ce € H(M,J @ Qo) be the element classifying €. Then (i o 7)«(€)
is classified by ix o m(c) = ¢. Thus (i o 7)4(€) is congruent to &, so that
L = @, and in particular, L is projective. Now put S = lig(ﬁ,j). It is

12



straightforward to check that S = Q1/7(Qo), thus it suffices to show that S
is projective. We have a commutative diagram

7« (E) 0— J — S— M- 0
Lv(@) = Vi lpo i
(tom)(E) 0—- J®Qy— L— M— 0

where y : S — L is the induced map on pushouts. We obtain a commutative
diagram for any coefficient module B ;

HY(M,B) —» HYL,B)— H J®Q,B)— H*M,B)
L1d Lpt L 11d

HYM,B) - HYS,B)—  HYJ,B)—  H2(M,B)

Id : H*(M,B) — H*(M, B) is an isomorphism for k = 1,2. As Qq is pro-
jective, i* is an isomorphism. Thus p* : HY(L, B) — H'(S, B) is surjective.
As L is projective then H'(L, B) = 0. Hence H'(S, B) = 0 for all coefficient
modules B and so S = Q1/7(Qo) is projective. O

Now suppose given an exact sequence of A-modules
0 J@AY L AC 5 AP 5 AT M -0
in which M is 2-coprojective and split the sequence as follows :
0 JoA B A S A S M 50 ;. 0= M — A — M — 0.

As M is 2-coprojective then M’ is 1-coprojective so that, by (4.11), A¢/j(A9)
is projective. Consequently the sequence 0 — A% — A€ — A°/j(A%) — 0
splits to give an isomorphism A°/j(A?) @ A¢ = A% Hence we have:

(4.12) Let 0— Jd AL L A 5 AP — A% — M — 0 be exact; if M is
2-coprojective then A¢/j(A?) is stably free.

Suppose given a pair of projective 0-complexes:
E=(0>K5PBM 0 ; F=0-K5Q%5N-0)

and form the pushout square

13



where hg(z,j) = (P® Q) /Im(i x —j). Taking the canonical projections
mp:P®Q — P ; ng:PoQ — Q

then pomp : P®Q — M vanishes on Im(i x —j) giving an exact sequence
(4.13) 0— Q"% lim(i,§) <% M — 0

where £p : hg(z,j) £8 M is induced from pormp. Likewise gomg : P&Q — N
vanishes on Im(i X —j) and induces an exact sequence

(4.14) 0 P lim(i, j) “% N — 0.

If Ext'(M,Q) = 0 then (4.13) splits and lim(é, ) = M & Q. Similarly, if
Ext'(N,P) =0 then (4.14) splits so that lim(i, j) = N @ P. We obtain the
following dual form of Schanuel’s Lemma:

(4.15) Let (0 > K 5P 5 M —0)and (0 K 5 Q%5 N —0) be
projective O0-complexes in Mody. If M and N are 1-coprojective
then M Q=N P.

§5 : Lattices and duality:

Throughout G will denote the direct product G = Cy X & where ¢
is a finite group. We write A = Z[G| for the integral group ring of G
and make the identification A = R[®]| where R is the integral group ring
R = Z[Cwx]. We further identify 8 with the ring Z[t,t7!] of integral
Laurent polynomials in ¢ Then R is a commutative Noetherian integral
domain. Moreover, by the theorem of Sheshadri [19], [30]:

(5.1) Every finitely generated projective Si-module is free.

If i : B — A denotes the canonical inclusion we have the ‘extension of
scalars’ functor iy, : Modyzy — Mody and the ‘restriction of scalars’
functor ¢* : Mody — Modg. The following is clear:

(5.2) M is finitely generated over A < ¢*(M) is finitely generated over fR.

A module M € Mod, is said to be a A-lattice when ¢*(M) is a finitely gen-
erated free module over $R. Such lattices are significant as they are precisely
the A-modules defined by representations p : ® — GL,(R). The proofs of
(5.3) to (5.6) below are straightforward

(5.3) Any finitely generated projective module over A is a A-lattice.

(5.4) Let M;, M; be finitely generated A-modules which are stably equiva-
lent; then M is a A-lattice <= M, is a A-lattice.
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(5.5): Let £ = (0 K —- L — M — 0) be an exact sequence of
R[P|-modules. If K and M are 9R[®P]-lattices then so also is L.

(5.6)Let Q = 0T =>Qp— - — Q1 — Qy— M —0) be an exact
sequence of JR[®]-modules in which M is an PR[P]-lattice and each @, is a
finitely generated projective R[®]-module. Then J is an R[P]-lattice.

Taking M = fR then:

(5.7) The syzygy modules in a free 9R[®]-resolution of R over are lattices
over R[P].

If M is a module over A we define the dual M* by M* = Homy (M, A). If
M is a right A-module then M* becomes a left A-module by writing

(A-a)(m) = A-a(m).

A homomorphism f: M — N of right A-modules induces a homomorphism
f* i N* — M* of left A-modules by f*(a) = ao f. To convert the left
module M* back to a right module we resort to a standard procedure from
surgery theory (cf [33]) and assume that A is a ring with anti-involution
by which we mean a self-inverse ring isomorphism 6 : A — A°PP to the
opposite ring A°PP of A. When A has such an anti-involution 6 we convert
a left module N = (N, o) to a right module N = (N, o) as follows:

O NxA — N

no = 0O(N)on
N is the conjugate of N. We define the conjugate dual M® of M by
M* = (M~). Repeating the duality functor has the same effect as re-

peating conjugate duality; that is:
(5.8) M = M* for any module M € Modj.

There is a homomorphism f : M — M** defined by f(m)(a) = a(m)
so that the correspondence M +> M?®® defines a natural transformation
h:Id — *°. We say that M is reflexive when f: M — M?®® is an
isomorphism.

The group algebra A = R[P®] admits a canonical anti-involution “— ’
D %9 = ) ey
ged ged

Now suppose that M is a A-lattice such that, with respect to an R basis
{ei}1<i<n, M is described by the representation p: G — GLy,(R). Then
M?* has the dual basis {e} }1<i<pn, defined by ef(ej) = 0;;. with respect to
which the representation p® is given by conjugate transpose ; that is:

(5.9) p*(9) = plg™")".
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In general modules are far from being reflexive; however p**(g) = p(g) so
that fj: M — M?®*® is an isomorphism and hence:

(5.10)  Any R[P]-lattice is reflexive.

If M, N are R[®]-modules then Homgg)(M, N) is naturally an R-module.
If, in addition, M, N are R[®P]-lattices we have canonical JR-isomorphisms:
(5.11) HOHIm[@](N',M.) = HOHIm[q;}(M, N)

The homomorphism f : M — N factors through the projective P if and
only if f*: N®* — M* factors through the projective P*®; thus we have:

(5.12) Homgg (N®, M*) = Homgg (M, N).

(5.13) Hompe(N®, M®) = Hompe (M, N).

In the regular representation preg of ®, each preg(g) is a permutation matrix;
hence preg(g) = preg(97")%; thus the group ring R[®] is self-dual; that is;
(5.14) R[P]* = R[]

If M is an R[®] lattice and N is free over 2R then as @ is finite we have the
Eckmann-Shapiro relation Extgq (M, i.(N)) = Extg(i*(M), N). (cf [13]
Appendix B). Taking N = R then i,(N) = R[P] and so

(5.15) Extgy ) (M, R[Q]) = Exty(i*(M),R).

If M is an R[®]-lattice then i*(M) is free over R and Extgy(i*(M),R) = 0
for all n > 1. Thus Extgq (M, A) = 0 and we arrive at:

(5.16) If M is a lattice over R[®] then M is n-coprojective for all n > 1.
Evidently R is an SR[®]-lattice. Thus we have:

(5.17) R is n-coprojective for all n > 1.

We conclude this section by computing Endpe(a)(9R). As projective modules
are direct summands of free modules it is enough to consider homomorphisms
f : R — % which factor through A™. Let € : A — % be the augmentation
homomorphism, ¢(z") = 1. We note that Homp (A,9R) = PR generated
by the augmentation homomorphism e. If ¢ : A™ — %R is A linear then

(5.18) £ = (€16, ,&pe) for some (&q,---,&,) € RM.
Let € : R — A denote the A-dual of ¢; then €*(1) = Zg. Then
ged

Homp (93, A) = %R generated by €*; if 7 : 9% — A is A linear then

(5.19) n = (n, - 1)t for some (11, ,n,) € RM.
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If f: R — R admits a factorization f = & on through the free module
A then f(1) = (X1, &mnp)eoe®(1). However eoe®(1) = |®| so that

(5.20) Endpe(y) (%) = R/|3|.

For each k > 1 let J; € Qr(R). By (5.17), R is n-coprojective for all n > 1.
It follows from (4.10) that Ext}(Ju-1, Jn) = Extgg (R, J1); by (4.2)

Ext! (R, Q1(R)) = Hompe(J1,71) = Endper(J1)

whilst by (4.5) and (5.20), Endpe;(J1) = Endpe(R) = R/|P|. We arrive
at the following which is Theorem III of the Introduction.

(5.21)  Exth(Jn_1,TJn) = R/|®| for n > 1 where J; € Qi(R).

§6: An elementary matrix calculation:
Let R be an associative ring with unity. If «, 8 € GLy(R) we define

Ca,B) = a(g (1))/3.

If af+C(a,8) =0 then C(a,8) = —apf € GLa(R). This is a contradic-
tion as C(«, ) is not invertible. Likewise if C(a, ) =0 then

o1y _4/00 1 _ (00
(0 o) =(aa)=(00)
which is again a contradiction; thus it follows that:

(6.1) If «,p € GL2(R) then af+ C(a,B) #0 and C(a,B) # 0.

If © € My(R[t,t™!]) we may write © as finite sum © = Z@rtr where
each ©, € My(R). We define x(0) € Nby x(0) = |{r| O, # 0}|; then:

(6.2) X{t"-©-t°) = x(0) forallrselZ.
For each positive integer m define Py, (t) € Ma(R[t.t™']) by

1 Lpttootm
P - (! e,

< > then x(Pp(t)) = m+1 and
a-Pyut) -8 = (af+C(a,B)) + Z C(a, B)t". Tt follows from (6.1) that:

(6.3) If @, B € GLo(R), x(a-Pu(t)-B) = m+1
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We define T = {a-t"|ae€ GLy(R), reZ}. Asa-tt = "« for
o € GLy(R) and r € Z then T is a subgroup of GLy(R[t,t~!]). There is an
equivalence relation ‘~’ on GLa(R[t,t71]) given by
(6.4) XY < Y =7r-X-n forsomer;,m€T.
We denote by (X) the equivalence class of X € GLa(RJ[t,t

(X) € T\GLa(R[t,t7Y)T = GL2(R[t,t71])/ ~

Proposition 6.5: For any ring R the equivalence classes {(Ppn(t)) hi<m are
pairwise distinct elements of T\GLo(R[t,t71]/T .

Proof :  Suppose that P, (t) ~ P,(t) so that P,(t) = 71Py,(t)m» for

1,72 € T. Writing 71 = t" -« and 7o = [-t° where a, f € GLy(R) and
r,s € Z; then by (6.2) and (6.3) we see that:

~1]) under '~

X(Pa(t) = ( P(t) -7 )
= X(t"-a- Pp(t)- 5 -t7)
= x(a- (t) B)
= x(Pn(t)
Thus if P, (t) = P,(t) then x(P,(t)) = x(P.(t)) and hence m = n. In
the contrapositive, if m # n then P, (t) % P,(t). O

§7 : Fibre products and Milnor’s patching construction :
A commutative diagram of ring homomorphisms

A LN A

(7.1) A = iy Lo-
A, = Ap.
is said to be a fibre square when m X p maps A isomorphically onto the fibre
product Ay x A = {(A,\2)€ AL xA_ : oi(Ay) = p_(A)}
P+ P

Working in the category of ‘modules over change of rings’ we take a module
Py over Ag and, for o = +,—, a module P, over A, and assume there
are homomorphisms v, : P, — Py over ¢, inducing Agp-isomorphisms
Vo : Py ®y, Ag — Py. Given a Ap-automorphism o : Py — Py we define the
Milnor module (P, P_ vy, v_,«) by

(Py,P_,vi,v_,a) = P x P_

U4,V
and define an action of A on (Py, P_,vy,v_,a) by
o: (P ,P vy, v_,a)xA — (P, P_ vy, v_,a)
($+7x—).a = ($+‘7T(a)7x— p(a))
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In this notation the free module of rank n is described as
(7.2) A" = (AL, AT o, ", Id).

Assuming that either ¢ or ¢_ is surjective and that o € Aut(FP) then the
following statements (7.3)-(7.7) below are true (c.f. [21],][25]) :

(7'3) 7T*(<P+,P_,V+,V_,Oé>)gp+ ;
(74) p*(<P+,P,,l/+,I/,,OL>)gP, ;

(7'5) If <P+,P_,I/+,V_,O[> = <Q+7Q—7/’L+7,U'—75> then
Py =Q4 and P-=Q_ ;

(7.6) (Py,P_,vy,v_,«) is projective <= P, , P_ are projective.
Denoting by [a] the class of « in vy (Aut(Py))\Aut(Fy)/v—(Aut(P-)), then
if P., P_, are projective :

(7.7) (P, P_,vy,v_,a) 2 (P, P v v ) < [a] = [F]

As a special case we may take P, = A((,k) P, ®a, Ay = Aék) so that
P, ®4, Ay = A(()k) and a € GLg(Ap). In this case we write

L(a) = (Af),Agg),g0+,g0_7a).

L(«) is then said to be locally free W) of rank k with respect to 2 or simply
A-locally free of rank k.

We define GLr(2) = ¢4 (GLk(A4))\GLi(Ao) /- (GLk(A-)).

When 2 is a Milnor square, Milnor’s classification theorem ([25], pp 20-24;
see also Lemma A4 of [31], Appendix A) gives a bijection :

(7.8) { A-locally free modules of rank k }  +— GL(2).

The case k = 1 is of most interest to us. In this case GL1(A,) = U(A,),
the unit group of A, for o € {+,0,—} and hence

(7.9) {A-locally free modules of rank 1} «— ¢ (U(AL)\U(Ao)/o_(U(A_)).

(1) We stress that local freeness in the sense used here should not be confused with the
notion of local freeness at a prime p which occurs frequently elsewhere in the literature;

for example, in [31].
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§8 : Constructing stably free modules :

We shall represent a typical fibre square 2 of ring homomorphisms in the
form of (7.1) above. In this section and the next we shall impose conditions
upon 2. If R is a ring we denote by Ma(R) the ring of 2 X 2 matrices over
R and by i: R — Mjy(R) the injective ring homomorphism

. A0

i(\) = < 0\ >
)
n we represent the group ring A[Cég)} as A[tl,tl_l, ooy tn, t Y], the ring of

Laurent polynomials in ¢1,...,t, with coefficients in A. We say that 2 is
constrained when conditions C(1), C(2), C(3) below are satisfied:

If A is a commutative ring and C’ég is the free abelain group of rank

C(l): ¢4:Ap — Ay is surjective;

C(2): Ap has a subring R such that there is an isomorphism of rings
v: My(R) — Ap making the following diagram commute where 4
and j denote inclusion

M(R)

v

N

C(3): Ai, A_ are integral domains, possibly non-commutative, and every

Ag

stably free module over AO[C(()Q )] is free for all n > 1.

Until further mention we assume that 2 is constrained. By Morita equiva-
lence, if Ag = M(R) then every stably free Ag[t, t~']-module is free precisely
when every stably free R[t,t!]-module is free. Given a matrix ring Ma(R)
for each A € R we define

_ 0 A _ 10
v,\<00> and put w(OO)

We note the identities Uy vy = 0; Uy-w = 0; wW-U)y = Uyx. We
define vy = v(v) and w = v(w) and note that vy = v, <= A= pu..
It follows that:

(8.1) vyrvy = 0; vyew =0; w-vuy, = vy

Aswvy-vy = 0 then (14+wvy)(1—wvy) =1; hence 1+wvy € U(Ap) for each
A € R. It follows easily from (8.1) that
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1+ vy 0 _ 1 w 1 0 1 —w 1 0
0 1 N 0 1 (Y 1 0 1 —Uy 1
- E(1,2:w) E(2,1;0y) E(1,2; —w) E(2,1: —vy).
As . is surjective then E2(Ao) C Im(¢4+ : GL2(Ay) — GLa2(Ap)) Conse-

quently for each A € R we have :

(8.2) (HOUA ‘1)) € Tm(pys : GLa(AL) — GLa(Ag)) -

It follows that in GLa(A4)\GL2(Ap)/GL2(A_) we have equality

®9 DG D))

As 1+ vy € U(Ap) there is a projective A module &(\) defined by:
(8.4) SO = (A A psrp 140y,

It follows from (7.8) and (8.3) that S(\)® A = A® A; to summarise:
Theorem 8.5 : If 2 is constrained then for each A € R:

(i) 6N)@A = A® A; in particular, §()\) is stably free of rank 1;

(i) S(\) = &(u) <= 1+uvr=@4(up)1+vu)p-(u-)
for some u, € U(As);

(i) 6(\) =2 A <= 1+4+wvy = pi(uy)p_(u_) for some u, € U(Ay).

If G is a group and 2 is a fibre square we denote by 2[G] the diagram
AlG) L, A[G]

AG] b Lo
ALG] 55 AGl.

where the symbols p, 7, ¢4 and ¢_ are retained to represent the induced
homomorphisms from the diagram 2l; then 2A[G] is also a fibre square. Sup-
pose that 2 is constrained; as ¢ : Ay — Ap is surjective then so is
o+ AL[G] — Ao[G]. Also, as Ma(R) = Ap then My (R[G]) = Ao[G].
Thus A[G] satisfies conditions C(1) and C(2). In the special case where
G = Cx then A [Cx] and A_[Cy] are integral domains. Moreover, as

(Ao [C’oo])[Cc()g’)] =~ A [C’égﬂ)] then A[C] also satisfies C(3); that is:
(8.6) If A is constrained then A[C] is also constrained.
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Now suppose that 2 is a constrained fibre square; then A[C] is also con-
strained. We define an equivalence relation * ~” on G Ly(R[t,t!]) by

X~Y <= Y = o (up)Xp_(u_) for some u, € U(Ay[t,t71])
As Ay, A_ are integral domains then by Higman’s Theorem ([9]) both
Ayft,t7 '] and A_[t,t7'] have only trivial units, thus:
(8.7) U(As[t,t71]) = {us-t" | u- € U(4,)}.
We define T, = p_o(U(As[t,t7Y]) = {p_0(us) - t" | u, € U(Ay), r € Z}.
Hence T, is a subgroup of T; thus if X, Y € GLo(R[t,t"!]) then:
There is a surjective mapping Ty \GLa(R[t,t~!]/T- — T\GLo(R[t,t71]/T;

[X] +— (X) where [X] is the equivalence classes of X in Ty \GLo(R[t,t1]/T_.
It follows from (6.5) that:

Corollary 8.8: Given a constrained fibre square 2 as above then the equiv-
alence classes {[P,(t)]}1<m are pairwise distinct.

The induced isomorphism Ag[t,t7!] = My(R[t,t7!]) gives a bijection
L+vy,. 1) ¢ Pm(t). In the notation of (8.4) put &(m) = &(vp,, @)
We arrive at the following:

Theorem 8.9

Let A = I Lo

be a constrained fibre square. Then there exists an infinite collection {&(m)},,>1
of pairwise isomorphically distinct stably free modules of rank 1 over A[t, ¢~ 1];
furthermore for each m, &(m) @ A[t,t7 1] = Alt,t Y @ A[t,t71].

§9 : Lifting stably free modules :
We continue to describe fibre squares in the form (7.1).

Theorem 9.1 : Let 2 be a fibre square in which ¢ : Ay — Ag is
surjective; if S is a stably free module over A_ then

(i) there exists a projective module S over A such that p,(S) = S ; moreover
(ii) S may be chosen to be stably free if S ®qp_ Ag is free.

Proof : As S is stably free over A_ then, for some k, S @ A* = A™F and
we may present S by means of a exact sequence
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£=(0—AF L AnTF T g, ()
which admits a splitting as S is projective. Let v : § — S ®,_ Ag be
the mapping v(z) r ® 1. Applying ®,_Ag we obtain a commutative
diagram in which the downward arrows are homomorphisms over the ring

homomorphism ¢_

0= AF & gtk T g -0
(9.2) beb Lttt Lv
0— A & AP T Se, Ay =0

As & admits a splitting, the bottom row is exact. By hypothesis S ®,_ Ag
is free. Let h: S ®,_ Ao — Ay be an isomorphism and re-write (9.2) as

0 Ak Iy pntk S -0
i Ltk Lhov
0— Ak & oAtk PToam

where both rows remain exact and all downward arrows are isomorphisms.
Let A., A_ denote the standard exact sequences

Ap = (00— AR oAm+R Bogn 0y Ay = (0 — AF 5 AZTF Boan 5 0)

Then there is a morphism of exact sequences over ¢

0— Ak L oaptk B oam
T o * A Ttk T o
0— A 5 oantE Boan 0,
Moreover, there is a congruence
0— Ak Ioaptk MToam
T1d T T1d
0— Ak Lo oantk oA
By composition, we obtain a commutative diagram
0> A L At LN S 50
bk Lot L by
0— A 5 Atk 5oar 0
Tk Tyt Toy”
0— A 5 AR R A -0

We thus obtain an exact sequence

0 — (A%, AR oh oF Td) — (AR AR
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Put S = (A%, S, ¢ hi,1d); as in (7.2) Ak = (Aﬁ,Ali,golfr,cp’i, Id) so the
exact sequence becomes 0 — AF — (A’}r+k,A’i+k, cp’}fk, <p’1+k,fy> - S = 0.
Then S is projective by (7.6) and so S @ AF = <A¢+k, AT gpﬁlfk, O™tk ).

However the congruence v can be represented by an upper triangular matrix

1d; Qg

0 Id,,

where g is a k X n matrix with values in Ag. Since p, : Ay — Ap is
surjective we may choose a k x n matrix a4 with values in A4 such that
¢4(aq) = ap. Then putting

?:

we see that ¥ € GL,,1x(B) and that ¢ (¥) = ~. Thus by (7.7)

(AYFR, AR, IR, oiHE F) o At

hence S @ AF =2 A" and S is stably free. Finally, p.(S) = S by (7.3). O

For any ring A we denote by SF,,(A) the isomorphism classes of stably
free A-modules of rank n; we say that the homomorphism v : A — B has
the lifting property for stably free modules when 1, : SF, (A) — SF,(B) is
surjective for all n > 1. It follows from (9.1) that:

Corollary 9.3 : Let 2 be a fibre square as in (7.1); if 2( is constrained then
p has the lifting property for stably free modules.

§10: Stably free modules over quaternionic group rings:
The quaternionic group @4, of order 4n is given by the presentation

Qun = (z,y|a" =y? yz =2"'y)
A subsidiary role is played by the cyclic and dihedral groups
Co = (zyla"=1) ; Do = (zyla"=1Ly*=1 yz=2""y).

When p is an odd prime we shall construct infinitely many stably free mod-
ules of rank 1 over the group algebras R[Qs,] where R = Z[t,t!]. Essen-
tial to the construction are cyclic algebras which we now describe; a general
reference for this construction is [29], Chapter 15.

By a pointed involution we mean a triple (A, 6,a) where A is a commu-
tative ring, 6 : A — A is ring automorphism satisfying #> = —Id and a € A
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satisfies f(a) = a. The cyclic algebra C(A,60,a) is then defined as the free
A-module of rank 2 with basis {1, y} and with multiplication

yA = 0Ny

y o= a

By a morphism of pointed involutions f : (A1,01,a1) — (Aa,02,a2) we will
mean a ring homomorphism f : A; — As such that 6, 0 f = f o6 and
f(a1) = ag. The cyclic algebra construction is functorial in the sense that a
morphism of pointed involutions f : (Aj,61,a1) — (Asg, 09, a2) gives rise to
a ring homomorphism

f* : C(A17917a1) — C(AQ,HQ,&Q)

on taking f(y]A) = y5f(A). On applying the cyclic algebra construction to
a fibre square of pointed involutions

(A, 0,a) 2, (Az, 02, 20)
i1 L

(A1,01,a1) A, (Ao, 6o, a0)

we obtain a fibre square of ring homomorphisms:
C(A,0.a) s C(Az, 02, a2)

i (11)* i (QQ)*

C(A1,01,a1) C(Ao, 6o, a9).

The group ring Z[I'] of an abelian group I' admits the canonical involution

G(Z agg) = Z agg_l.

Evidently (Z[I'],0,1) is a pointed involution as #(1) = 1. The group ring
Z[D3y) is obtained by applying the cyclic algebra construction to Z[C,,] thus:
(10.1) Z|Dqy] = C(Z[Cy],0,1).

For clarity we write Cy, = (v |2?" =1) and C,, = (s]|s" = 1).

As 2% — 1 = (2™ — 1)(z" + 1), the identifications Z[C),] = Z[s]/(s" — 1) and
Z[Coy,) = Z]x]/(z*" —1) give the following fibre square of pointed involutions
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(Z|Cay), 0, x™) — (Z[z]/(z™ +1),60',—1)

(10.2) Tl Lo
(Z[Cy],0,1) R (Fo[Ch], 0, 1).
where 04 (x) = s and o (g ars®) = Yilolarlst = o (p2) ara®)

In each case 6 denotes the canonical involution on the appropriate group
ring and ¢’ : Z[a;]/(a:" +1) = Zlz]/(z" + 1) is the involution #'(z") = z"~".

Writing = Yo bak = S, 8"

then the factorization ZQ” !

Zk o 2¥(1+2") shows that
(10.3) T (Eg) = 28y 5 wm_(X;) =0

We define  ©(n) = C(Z[z]/(2™ + 1),6,—1). Applying the cyclic alge-
bra construction to (10.2) gives a fibre square where, by a slight abuse of
notation, we use the same labels for the homomorphisms:

T

ZQu] — ©(n)
(10.4) T | Lo
Z[Dan]  £5H Fy[Dal.

Writing g = Z g then g = X, + X,y where y denotes the variable
gEQ4n
from the cyclic algebra construction. Likewise writing Xp = Z ~ then

’YEDQn
Yp = Y+ Xsy. It now follows from (10.3) that

(10.5) T+(8q) = 2Xp ; m-(Zq) =0

However, Z[Qun]/(2q) = I*(Qan), the dual to the augmentation ideal. It
follows that we have a fibre square

I*(Qun) — O(n)
(10.6) T Ly

Z[Dy)/(28p) 5 Fa[Dayl.

We proceed to decompose ©(2p) = C(Z[z]/(2* + 1),6',—1) as a fibre
product. For each integer d > 1 we denote by cq(z) the d*-cyclotomic
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polynomial. If d > 3 each archimedean place of Q[x]/cq(z) is complex. We
denote by ~ both the ring involution Z[z|/cq(x) — Z[x]/cq(x) induced by
complex conjugation and also the involution Fy[z]/(z*+1) — F,[z]/(2*+1),
a+ bx — a — bxr where F, is the field with p elements. We note that
2 +1 = (2% + D)egp(x) where cqp(x) = Zf;é(—l)’"x”. Let ¢ be a
primitive 4p-th root of unity; then c4,(z) factorises as

ewl) =[] -0
(r, 4p)=1

As @' is induced from the involution z — 2~ then ¢'(¢") = ¢ = (". In
particular, under any imbedding Q[x]/cap(z) — C, ¢ corresponds to complex
conjugation, so it will cause no confusion to replace 6’ by ~. In addition

2 +1= (22 +1)? (mod p)

so that cgp(z) = (#24+1)P~1 (mod p). This gives the following fibre square
of pointed involutions:

(Z[)/(@* +1),0',-1)  — (Z[z]/ cap(), v, =1)
3 lv
(Z[ZC]/(:CQ + 1)a77 _1) - (Fp[x]/(xz + 1)77a _1)'

where v : Z[z]/cap(x) — Fplz]/(z? + 1)P71 — Fplz]/(2% + 1) is the obvious
composition. The cyclic algebra construction now gives the fibre square

O(2p) — C(Z[x]/cap(x),v,—1)
(10.7) ! Lv

C(Z[x)/(2* +1),7,-1)  —  C(Fp[]/(2* +1),7,-1).

It remains to describe the constituent rings in more familiar terms. Let A
be a commutative ring ; if a,b € A we recall that the quaternion algebra

a,b
A
is obtained by imposing on the free A-module of rank 4, with basis elements
{1,4,7,k} the (associative) multiplication determined by

i?=a-1;, 2=0-1:k=1ij = —ji.

There are excellent general references to quaternion algebras in, for example,
[27] and [29]. However we are primarily interested in quaternion algebras of
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the form -1, _1> . Over the field R of real numbers _1]&;1) is the

A
original ring of Hamiltonian quaternions. If F is a subfield of R and a,b € F

satisfy a < 0 and b < 0 the quadratic form Q(x) = 3 — az? — bz} — aba?

is anisotropic over F. A nonzero element

. . a,b
X =x9-14x1-t+a20-j+a3-kE < o >

has multiplicative inverse x~! = (wo-1—1 .ZQEXQ);Q ) T3¢ k); hence:

b
(10.8) (aI,F ) is a division ring if F is a subfield of R and a < 0, b < 0.

Over more general rings the conclusion of (10.8) fails; for example:

Proposition 10.9 : Let A be a commutative ring in which 2 is invertible;
if there exist £, € A such that £ + n? = —1 then

—-1,-1
: = Ms(A).
(F57) = wn
) -1,-1
Proof : The A-linear map 0:( 7 > — M>3(A) defined by
B S U SN RV S RN R S R N RN G S
o= (g V) o= 5 )rom=(§ ) om=( 0
is a ring homomorphism and is bijective when 2 is invertible in A. a

p_1> > My(F,).

Proof : By (10.9) it suffices to satisfy £2 + n? = —1 for some &,n € F,.
There are two cases, according to whether or not —1 is a square in F,. If
—1 is a square then put n = 0 to solve £2 4+ 7n? = —1. In the case where —1
is not a square the mapping ¢ :F, = F,; () = x+1 has the property
that F, = {4(1),¢%(1),...,¢P(1)}. Now take the restriction of ¢ to (F})?
and suppose that ¢ ((F5)?) C (F3)? ; then for all r > 1, ¢"((F})?) C (F;)*.
However 1 € (F%)? so that F, = {¢(1),¢*(1),...,¢?(1)} C (F;)?. This is a
contradiction as 0 ¢ (IF;‘,)2. Thus there exists £ € ), such that £41¢ (IF;)Q.
However, —1 ¢ (F%)?. As the set (F})? of nonzero squares is a subgroup of

-1
Proposition 10.10 If p is an odd prime then < IF?'

, — - s _ (€41 2
index two in ) then there exists 7 € ), such that n° = 3 =& -1
Either way, there exist £, n € [F,, such that €2 +1n? = —1 and the conclusion
follows from (10.9). O
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As C(Fplz]/ (2% +1),7,—1) = <_1Ié_1) it follows from (10.10) that:
P

(10.11) For any odd prime p, C(Fp[z]/(z? +1),7,—1) = My(F,).

Similarly Quat(4) = C(Z[z]/(z? + 1),7,—1) is more naturally described
as the ring of integral quaternions; that is :

~1,-1

quty = (771),

As it is a subring of the division ring of Hamiltonian quaternions then:

(10.12) Quat(4) is a noncommutative integral domain.

In general, Quat(4p) = C(Z[x]/cap(z),7v,—1) is not a quaternion algebra.
However, the corresponding rational algebra C(Q[z]/cap(x),v,—1) is a
quaternion algebra. In fact, writing u = 2cos(n/2p) and o = 2sin(7w/2p) it
is straightforward to see that :
(&)
Q) /)

—g2 1
As Q(u) is a totally real field and —o? < 0 then by (10.8) (&(ju)) is a

1

(10'13) C(Q[$]/C4p(w)777_1)

division algebra and contains Quat(4p) as a subring; thus:
(10.14) Quat(4p) is a noncommutative integral domain.
We note that by Corollary 3.5 of [14] :

(n)]

(10.15) If A is a finite ring every stably free module over A[Cs’] is free.

Thus it follows that:
(10.16) Every stably free module over Mo (Fp)[CCEZ) | is free.

The fibre square (10.7) is now written as :
O(2p)  —  Quat(4p)
(10.17) 1 Lv
Quat(4) — Ms(F)).

By (10.12), (10.14) and (10.16) the fibre square (10.17) is constrained. As
before we put R = Z[t,t!] and write:
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O2p)[t, t7}] —  Quat(4p))[t, ¢t
(10.18) ! Lo

Quat(4))[t,t7!] — My(Fplt, t71]).

As (10.17) is constrained then (10.18) is also constrained. Hence by (8.9):
(10.19) There are infinitely many stably free modules of rank 1 over ©(2p)[t, t~1].
Applying — ®z R to (10.4) gives a fibre square labelled as follows:

RQspy] — Ot
(10.20) Tl lo_

R(Dy] 5 (R/2)[Dyy)

in which ¢4 : R[Dy) SN (93/2)[Day) is surjective. As Fa[Dyp] is finite then
by(10.15), every stably free module over (:R/2)[Dyy] = Fa[Duyy)[t, t 7] is free.
Hence from (9.1) we see that :

(10.21) 7_ : R[Qsp] — O(2p)[t,t~1] has the lifting property for stably free
modules.

Now by (10.19) let {§(m)}m>1 be an infinite collection of pairwise non-
isomorphic modules over ©(2p)[t,t~!] which satisfy

s(m) @ 02)[t,t~1 1= e2p)[t,t @012t t1].

As 7_ has the lifting property for stably free modules then for each m we
may choose a module &(m) over R[Qg,] which satisfies p.(&(m)) = §(m)
and S(m) @ R[Qsp] = R[Qsp] ® R[Qsp], We have proved the following
which is Theorem II of the Introduction:

(10.22) For any odd prime p there is an infinite collection {&(m)},,>1 of
pairwise non-isomorphic stably free modules of rank 1 over R[Qsp).

§11 : The stable class of I*[t,t7!]:
Let ® be a finite group and let € : Z[®] — Z denote the augmentation
homomorphism. Recall there is a fibre square of ring homomorphisms

(11.1) Ly v



where I* = Homge)([,Z[®]) is the Z[®]-dual of the augmentation ideal
I = Ker(e). Tensoring (11.1) with 28 gives the following fibre square

R[D] = I*[t,t Y
(11.2) Ly v
® L @ep e

As Z/|®| is finite then by (10.15):

(11.3) Every stably free module over (Z/|®|)[t,t~!] is free.

With a mild confusion of notation we denote also by € : R[®] — R the
canonical augmentation homomorphism. It is straightforward to see that:
(11.4) Homgpg)(R[P],R) = R, generated by e.

More generally:

Proposition 11.5: If S is a stably free module of rank 1 over SR[®] then

(i) there exists a surjective SR[®]-homomorphism 7 : S — R;

(i) Homgpe)(S, ) = R and § generates Homgyg) (S, 9R) if and only if £ is
surjective;

(iii) if ' : S — MR is also surjective then Ker(n') = Ker(n).

Proof : Milnor’s classification theorem [25] describes S as a fibre square

s In s
(6) in 1 vy
[«
S+ — S()

where S, S_ are stably free of rank 1 over R and I*[t,t!] respectively
and where Sy = S_ ®, (Z/|®|)[t,t7]. Asv: I*[t,t71] — (Z/|®|)[t,t7}] is
surjective and S_ is projective then v, : S_ — Sy is surjective. As (&) is a
fibre square it follows that n : S — S, is also surjective. However by (5.1)
S+ =R thereby proving i).

ii) As S is stably free of rank 1 then S®R[®]™ = R[®]™ T for some m > 1.
Hence Homm[q)] (S, 9“&) D Homm[q)] (D‘i[@], 9‘{)”‘ = Homm[q)] (9“1[@], 9‘{)”‘“ .
As  Homgye)(R[P],R) = N then Homgpe)(S,R) & R™ = R+ hence
Homgyg] (S, R) is a stably free 93-module of rank 1. By Sheshadri’s Theorem
[30], Homgye)(S,R) = R and so is generated over R by a single element.
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Let £ € Homgpyjg)(S,R) be such a generator. If w € Homgpe(S,R) there
exists ¢(w) € R such that w(x) = c(w)é(x) forall z € S. Ifn: S —>NR
is the surjective homomorphism constructed in i) then for all = € S we
see that n(x) = c¢(n)(z). Choosing x so that n(x) = 1 it follows
that c(n)é(z) = 1 and c(n) € R*. Thus &(z) = c(n) " 'n(x) and € is
surjective. Moreover 7 is then a generator. The same argument then shows
that any surjective homomorphism S — fR is a generator of Homm[q)](S, R)
thereby proving ii).

iii) If n : S — R and ' : S — R are both surjective then by ii) they both
generate Hom%@](S, M) and there are units ¢, ¢ € R* such that for all
x e S, n(x) = en(x) and n(x) = n'(x). Thus Ker(n') =Ker(n). O

By iii) above a stably free R[®] -module S of rank 1 defines an R[®]-module
Js = Ker(n)

where 7 : .S — R is surjective. We have an exact sequence

(11.6) 0 Js 555 0%—0.

For any R[®]-module M we define M* = Homgye) (M, R); then:

Proposition 11.7 : When S is a stably free R[®]-module S of rank 1 the

sequence 0 — R 7, 5 =N J§ — 0 is exact and Jg is naturally a stably free
module of rank 1 over I*[t,t~1].

Proof : Applying Homgy g (—,R) to (11.6) gives an exact sequence
0= %% 5% L5 Tz — Exctyq) (%, R[D]).

By (5.15) Extyyq) (%, R[P]) = Exty(R, %) = 0 and so

(*) 0" L s L s 0

is exact as claimed. As S is stably free of rank 1 then S@R[®]™ = R[P|™H!
for some m > 1. Hence

Homgg) (S, R[®])© Homgyg) (R[P], R[P])™ = Homgyq) (R[], R[P])™H.

As Homgyjq)(R[®], R[P]) = R[] then S* & R[P]™ = R[®]™*! so that
S* is also stably free of rank 1. If E is the field of fractions of R then

S*@xE @ E[@™ = E[®™.

As @ is finite then E[®] is semisimple and so S* @y E = E[®]. Each of
R, S* and J§ is free of finite rank over ;3. Applying — ®x E to the exact
sequence (*) gives an exact sequence

(%) 0= ELE®] S J: 9nE — 0.
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Applying — ®@x E to the exact sequence 0 — R LN R[D] N t,t71 —0
defining I*[t,t~!] gives an exact sequence

(%) 0 ESE® D It t @ E — 0.
As E[®] is semisimple then Ji®xE = I*[t,t7 ' @x E. Put & = Zg.

ged
Then ¥ generates E C E[®]. Hence ¥ vanishes on J§ ®x E and so X
also vanishes on Jg C Jg ®x E. It follows that J§ is naturally a module
over I*[t,t71 = R[®]/(X). Let ¥ : S* @ R[®™ — R[®]™ be an
isomorphism and consider the diagram

77*@6* *@,L*

0— Ren" "5 SroR@em = Jro [ttt =0

Lo

0 om+l TEC gyt D eyt S0
As Homgjg) (R, I* [t,t71] =0 theni* oo (n* ®e*) = 0 and so ¢ induces
an R[P]-homomorphism ¥ JE @ ittt ™ — I*[t,t ™! making the
following commute:

S* @%[(I)]m j@;‘ Jg @I*[t,til]m

~

L9 L9

Ro s )

As i* and ¢ are surjective so is 12 However, both Jg @ I*[t,t= 1™ and
I*t, t:l]m‘H are free of rank (m + 1)(|®| — 1) over R. As R is Noetherian
then ¢ is an isomorphism over R and hence is bijective. Thus v is an
isomorphism over both R[®] and I*[t,t7!] and so, as claimed, J is stably
free of rank 1 over I*[t,t1]. O

Theorem 11.8 : For any odd prime p there are infinitely many isomorphi-
cally distinct stably free modules {J(m)};,>1 of rank 1 over I*[t,t1].

Proof : Applying — ®z R to (10.6) we obtain a fibre square
[t 7] L5 e@p)t,t !

(11.9) ni Ly

v

R[Dgp]/(2%X)  — (R/2)[Dyy]

in which v : R[Dyp]/(2X) — (R/2)[D4p] is surjective. As Fa[Dy,| is finite
then by(10.15) every stably free module over (R/2)[Dap] = Fo[Dyy)[t, t 1] is
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free. It follows from (9.3) that p : I*[t,t71] — ©(2p)[t,t] has the lifting
property for stably free modules. By(10.19) there is an infinite collection
{§(m)}m>1 of pairwise non-isomorphic modules over ©(2p)|t,t 1] such that

S(m) @ O2p)[t,t7'] = O2p)t,t7'] & 2p)[t,t7'].

As p has the lifting property for stably free modules then for each m we may
choose a module J(m) over I*[t,t~!] such that

Jm)@® I*[t,t7 ) = I*[t,t= Y @ I*[t,t
and such that p.(J(m)) = §(m). This completes the proof. O

Observe that the fibre squares (10.20) and (11.9) combine in the following
commutative diagram where [j denotes the obvious surjection:

R(Qsp] T O2p)[t, t]
T+ ¥
g Id
R(Dyy) S (R/2)[Dyy)
h Id
It ¢ P - 02p)[t,t ]
i v
R[Dapl/(2%) (9R/2)[Day]

Re-tracing the steps in the proofs of (10.22) and (11.8) we see also that:
(11.10) The stably free modules &(m) and J(m) satisty 1.(&(m)) = J(m).
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§12: Infinite splitting at the minimal level of Q?Sp (R): :
In this section ® will denote a finite group and € : Z[®] — Z will denote
the canonical augmentation where ® acts trivially on Z; we denote by

I :  the augmentation ideal Ker(e)
It :  the Z[®] dual of I

QF(Z) :  the k' syzygy of Z over Z[®]
QM)+ the k' syzygy of R over R[]

The augmentation € gives an exact sequence

(12.1) 0—-I1—Z® —-Z—0

The Z[®] dual of the augmentation exact sequence has the form
(12.2) 0—-Z—Z[®]—I*—=0

Let d be an integer d > 2; recall that ® has free period 2d when there is an
exact sequence of finitely generated Z[®]-modules

0—=>7Z— Foy1 — Foqo — ........ —IN—>F—=7Z—0
where each F;. is free.

Proposition 12.3: Let ® be a finite group of free cohomological period
four; then there exists an exact sequence of Z[®]-modules of the form

0— I* = Z[®]" — Z]®|" - Z[®] - Z — 0
for some positive integers n1, ng. In particular, I* € QF(Z).
Proof : By hypothesis there is an exact sequence of Z[®] modules

0 — Z — Z[®]° — Z[®)’ — Z[®]* — Z[®] — Z — 0.

We split this into two exact sequences
(I 0—Z— Z[®]° - L — 0;
(I1) 0— L — Z[®]® — Z[®]* — Z[®] - Z — 0.
We modify (IT) to an exact sequence
(I11) 0— L®Z[®) — Z[®]P+! — Z[®]* — Z[®] — Z — 0.
Comparing (I) and (12.2) by (4.15) we see that L & Z[®] = I* ¢ Z[D]°.

Substitution in (IIT) gives an exact sequence

0 — I* @ Z[®]° L Z[®]F! — Z[D]* — Z[] — Z — 0.
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and hence an exact sequence
(IV) 0= I* 5 S — Z[d)* — Z[d] — Z — 0.

where S = Z[®]"t/§(Z[®]°). As Z is n-coprojective for all n it follows
from (4.12) that S is stably free. Hence SGZ[®]¢ = Z[®]/ for some positive
integers e, f. Now modify (IV) to an exact sequence of the required form

0— I* — Z[®]"2 — Z[P|" — Z[®] - Z — 0.
where ny = a+e and no = f. a
Theorem 12.4: Let ® be a finite group, let .S be a stably free module of
rank 1 over R[] and let J§ be the corresponding stably free module of rank

1 over I*[t,t™!] constructed in (11.8); if ® has free period 4 then there exist
positive integers m1,ms and an exact sequence of R[®]-modules of the form

0= J§ — R[P]™ — R[P|"™ — R[P] =R =0
In particular, JZ lies at the minimum level of QF (R).

Proof : If S is a stably free module of rank 1 over R[®] then by (11.8) we
have an exact sequence 0 — R s §* 5 J& — 0. Applying —®@zR to (12.2)

gives an exact sequence 0 — R LN R[D] 5 [t,t7!] — 0 and comparison of
the two via the dual Schanuel Lemma (4.15) gives an isomorphism

(*) It oS = Ji o R[]

As @ has period 4 then by (12.3) there exists an exact sequence of Z[®]-
modules 0 — I — Z[®]"* — Z[®|™ — Z[®P] — Z — 0. Applying — ®z R
gives an exact sequence

0 — I*[t,t71] — R[P]"2 — R[®]™ — R[®] — R — 0.
which we modify to
0— I*[t,t7 & S* — R[@]" & §* — R[P]™ — R[P] - R — 0.
Substitution via (*) now gives an exact sequence
0 — J& @ R[P] > R[®]"2 @ S* — R[P|™ — R[®] - R — 0
and hence an exact sequence
(%) 0— J5 =T — RO™ — R[P] >R —0

where T = (R[P]|" @ S*)/(R[P]). It follows from (4.12) that T is stably
free. Hence T@R[P]* = R[P]*H? for some positive integers a, b. As in (12.3)
we may modify (**) to an exact sequence

(k) 0 — J§ 5 R[®]™2 — R[P]™ — R[P] - R — 0
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where m; =mnj +a, mo = a+b. Evidently J € QF(R). As S* is stably
free of rank 1 it follows from (*) that J% and I*[t,t7!] lie at the same height
within QF (R). As I*[t,t7!] lies at the minimal level, so also does J§. O

We now specialise to the case ® = Qg,. It is known (cf [3], Chap. 12, p.253)
that Qg has free period 4 for any prime p > 3. From (11.8) and (12.4) we
see the following which is Theorem I of the Introduction:

Theorem 12.5: For each prime p > 3 the minimal level of Q?[QSP] contains
infinitely many isomorphically distinct modules.

§13 : Q%[G} as a class of extension modules:

We retain the previous notation namely that A = Z[G] = R[®] where ®
is finite. In particular, it follows from (5.17) that :

(13.1) %R is k-coprojective for each k > 1.

As R is 1-coprojective and In(®P) € Q1(R) then it follows from (4.2) that:
(13.2) Ext) (R, In(®)) = Endpe(a)(In(P)).

However, by (4.5) and (5.20) we have:

(13.3)  Endpe(a)(In(®)) = Endpe(n)(R) =R/[D].

The nature of the isomorphism Endpey(a) () = Endpe(a)(In(®)) is clear;
given a € R, the diagram below commutes

0— In(®) — A 2 R — 0
1oy 1 ay 1y

0— In(® — A 5 ® S0

where in each case ax(z) = «-x. The correspondences o« — a, thereby
induce surjective ring homomorphisms
R = Endpe;(a)(R) 5 R — Endpera) (In(P))

which each have kernel equal to |®|R when @ is finite. By (13.2) and
(13.3) we may describe Ext} (R, I (®)) either in terms of Endpey(a)JR) or
Endper(a)(In(®)). In the present context it is more convenient to do the
former. The isomorphism ¢ : Endpex)(?R)) — Ext} (R, In(®)) takes the
form d(ax) = af(S) where of(S) is the ‘pullback’ extension (cf [13], p.74)

@#(S8) = (0= In(®) = lim(p, @) > R — 0).
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Thus given a module extension
(&) 0— In(®) > X R -0
the above considerations show that there is a congruence £ = o#(S). The
class [a] of a in Endpera)(R) is the k-invariant of € (cf. [10], Chapter 6);
when no confusion arises we shall simply refer to « as the k-invariant of £.
Under the identification A = R[®] there are three augmentation homo-
morphisms to be considered. Firstly, we have the augmentation homomor-
phism €: A — Z of the group ring of G over Z; secondly, the augmentation
homomorphism ey : R[P] — R of the group ring of & with coefficients in R;
lastly, the augmentation homomorphism 7 : SR — Z of the group ring of C'
with coefficients in Z. They are related by:

(13.4) € = 10 en.

We obtain a commutative diagram with exact rows and columns as follows;

0 0

! !
00— In(PySr I (GyF-2E v R— 0
(13.5) || N t—1
0— Iq(®ySe A— R, R+ 0

"

O+ NH
™M
S N

Hence :

(13.6) The k-invariant of the extension 0 — Iy (®) — Iz(G) - R — 0
is the class of t — 1 € R/|D|.

In the above Ix(®) is a representative of Q%[G]. In view of this, both the

procedure and the convention are amenable to iteration. Thus suppose that
R is n-coprojective over A = R[P]; then

(13.7)  Ext}(Q 1(R),2(R) = Endpen)(Qu1(R) = R/|3|.

The surjection R — Endper(a)(2,-1(R)) is induced by the correspondence
a +— «a, where a,, denotes multiplication by a on any representing module;
otherwise expressed, a € QR is mapped via the surjection B — R/|P| to
the k-invariant of the extension in Ext} (Q,_1(R), 2, (R)) = R/|®| which it
classifies.

Let @ be a finite group; then taking M = Z we may construct a free
Z[®]-resolution of Z thus:
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Jnt1 Jn-1 J3 J1

N Ty A

F, — Fh_1 oo > Ih >~ F > Fy —>72Z — 0.
NS N
In J2
As R is free over Z then — ®z R is exact and gives a free A-resolution of R
Tn+1 Tn—1 NE Ji
N /N /N /N
Fn Fn-1 oo > Fa >~ F Fo —R — 0
NS NS
jn j2

where F, = F, ®zR and J, = J, ®zR. From (13.3) and (13.5) we have
Extyg)(Jn—1,Jn) @20 S Extyg (Tn-1,Tn) = R/[P].

By (5.5) it follows from the exact sequence 0 — In(®) — Iz(G) - R — 0
that Iz(G) is a lattice over A = R[P]. We now make specific choices
Tn-1 € Qfg], TIn € Q?j[q)]. It follows from (5.6) and (5.16) that [J,—1 and
Jn are k-coprojective for all k > 1. Now define K,,(J—1, Jn,t— 1) to be the

extension module classified by ¢t — 1 in R/|P| = Extglmq)] (Jn—-1, Ty) thus:
0— TIn — Kn(JTn-1,TIn,t —1) = Tn—1 — 0.

Ix(®) is a representative of Q?[G]; by (4.10) and the description of Iz(QG)
in (13.5), we obtain the following which is Theorem IV of the Introduction:

(13.11) Ky (Jn-1,In,t — 1) is a representative of Qe

§14 : The intractability of the D(2)-problem:

As mentioned previously, in Appendix B of [10], subject to a mild ho-
mological finiteness condition the present author showed that for a given
finitely presented group G, the D(2) problem is equivalent to the realization
problem R(2). In fact for finite cyclic groups the R(2) problem was solved
by Cockroft and Swan [4] some years before the publication of [32]. Subse-
quently the R(2) problem was solved for finite abelian groups by Browning
[2]. However, neither solution made any explicit connection with the D(2)
problem.

Since the publication of [10] and [11] there has been sporadic progress
yielding a patchwork of results which the interested reader may find in [7],
[8], [10], [12], [15], [23], [24],[26] and [28]. However, as yet there are no known
examples of groups where the answer is negative and the rather meagre class
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of groups for which the problem has been solved affirmatively consists for
the most part of finite groups.

For infinite groups very little is known. The affirmative solution for free
groups is given in Appendix A of [10]. In his thesis, T.M. Edwards solved the
problem affirmatively for the groups Coo X Cy, ([6], [7]). The present paper
will perhaps convince the reader of the difficulties involved in attempting
to generalise Edwards’ Theorem to the groups Cy X ® where ® is finite
quaternionic.

In fact, as is implicit in the calculations of Chapter 12 of [13], both
Theorem I and Theorem II remain true if Qg, is replaced by the general
quaternionic group (Q4, where n > 2. An explicit account will appear in
[17]. However the calculation for Qg, employed here, which is adapted from
the thesis of Kamali [18], is simpler than for the general case.

In conclusion we specify the difficulties posed by Theorems I and IV.
Thus let {J3(u)}uen be a faithful indexing of the minimal level of Q?[QSP },

let J5 be a minimal element of Q?[QS”} and let K3(u) be the Z][G] module
defined by the extension

Ka(p) = (0= Ts(n) = K3(p) = Jo = 0)
with extension class (t — 1) € R/8p. It follows from Theorem IV that
Ks(p) € Q?G}. The construction raises two questions:

Q1: Do the modules {K3(u)} en lie at the minimal level of Q?G] ?

As the collection {J3(1t) } uen is infinite then {K3(p)}uen represents infinitely
many congruence classes of extensions; what is less clear is the answer to :

Q2 : Do {K3(u)}men represent infinitely many isomorphism types 7

Whilst an affirmative solution to Q1 seems more than likely, Q2 seems a
long way from present technique. We note only that if both were to be
answered affirmatively a positive solution to the D(2) problem for C x Qsp
would require infinitely many minimal presentations of Cs, X QQgp, to realise
the modules {K3(p)} en.
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