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Abstract

Pharmaceutical 3D printing is an emerging digital manufacturing technology capable
of autonomously producing personalised medicines. However, the same reliance on
digital workflows that enables this innovation also introduces new vulnerabilities, most
notably is the risk of cyberattacks. In such scenarios, malicious actors could corrupt
formulation data, either by deleting critical information or introducing subtle noise that
is difficult to detect, potentially compromising patient safety. To address this challenge,
we investigate the application of machine learning, specifically denoising
autoencoders (DAEs), for the reconstruction of corrupted pharmaceutical formulation
data. Our dataset comprises 1,623 formulations across 336 ingredients, totalling over
545,000 individual data points. To simulate potential cyberattack scenarios, we
deliberately corrupted the dataset in two ways: (1) randomly removing 1%, 5%, or 10%
of the data points, mimicking targeted data deletion, and (2) introducing noise across
all data points, simulating tampering or injection attacks. We evaluate multiple DAE
configurations and demonstrate their ability to recover corrupted data, achieving R?
scores of 0.989 £ 0.0017, 0.983 + 0.0031, and 0.976 + 0.0007 for 1%, 5%, and 10%
data loss, respectively. Among the parameters tested, the learning rate was found to
have a significant effect on DAE performance. In contrast, a traditional machine
learning approach (kNN) failed to produce positive R? values across all missingness
levels, further demonstrating the superior performance of the DAE. Therefore, we

demonstrate the potential of DAEs to safeguard formulation data against data
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corruption, underline the broader role of machine learning in enhancing digital

resilience and maintaining data quality across the pharmaceutical sector.

Keywords: Artificial Intelligence; Quality Control; Fused Deposition Modelling; Digital

Resilience; Drug Development.
Introduction

Three-dimensional (3D) printing is poised to revolutionise pharmaceutical
manufacturing [1-6]. It enables the precise digital fabrication of drug products and
opens the door to on-demand, personalised medicines that can be tailored to
individual patients’ needs in terms of dose, release profile, and even physical form.
This capability has wide implications for clinical settings, especially hospitals, where
personalised treatment regimens can be manufactured directly on-site, reducing the
need for large-scale centralised production and allowing for rapid therapeutic

intervention [7-9].

3D printing is a digitalised manufacturing technology, which makes it amenable to
automation and provides an opportunity to integrate artificial intelligence (Al) into the
design, control, and quality assurance of pharmaceutical products. Recent work in the
use of machine learning (ML), a subset of Al, has demonstrated that it has the potential
to determine the formulation, optimise processing parameters and inspect the quality
of the 3D printed product [10-12], thereby obviating the need for trial-and-error
experiments in time sensitive applications and the dependence on continuous
supervision by a user [13, 14]. However, this requires much trust in the Al-3D printing
framework to operate unsupervised. Unfortunately, like all digital systems,
pharmaceutical 3D printing is susceptible to cyberattacks, software bugs, and data
corruption. Such cyberattacks against 3D printers are well documented in other
sectors and hence there is potential for them to be applied in pharmaceutical 3D
printers [15-17]. A malicious actor altering formulation files or printing parameters, for
example, could unintentionally (or intentionally) affect the safety and efficacy of the
final product, leading to serious clinical consequences. Even in the absence of
intentional interference, poor data management, missing values, or noisy sensor
inputs can compromise product quality. Given the life-critical nature of medicines,
ensuring the integrity and reliability of digital manufacturing data is not just a technical

challenge but. it is a public health imperative. However, few studies have explored the
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use of Al for detecting corrupted pharmaceutical data [18] and, to the best of authors’
knowledge, none have investigated the use of Al for tackling corrupted formulation

data.

Al can be used to detect and repair data quality issues. In particular, techniques such
as anomaly detection, noise filtering, and imputation can help mitigate the effects of
corrupted or missing data. These capabilities are crucial in contexts like
pharmaceutical formulation, where even small data errors can propagate through

models and yield misleading outputs.

Missing data, in particular, is a pervasive issue. For example, when compiling datasets
from literature or electronic lab notebooks, formulation components may be unreported
due to inconsistent experimental reporting, varied naming conventions, or simply
because they were deemed unimportant by the original authors [19-22]. In multi-
ingredient dosage forms, this results in sparse datasets where one or more excipients
or process parameters are missing, making it difficult to use the data for Al model
training, formulation prediction, or regulatory analysis [23, 24]. Without intervention,
these gaps undermine the reliability of data-driven pharmaceutical development [25]
[26-29].

To address this, we explore the use of denoising autoencoders (DAEs), a class of
artificial neural networks trained to reconstruct original data from intentionally
corrupted inputs [30-33]. By learning internal data representations that are resilient to
noise, DAEs are capable of recovering missing or distorted values, even in complex,
high-dimensional datasets [34, 35]. Unlike traditional imputation methods, DAEs do
not rely on simplistic assumptions like mean substitution or linear interpolation, and
instead, they infer missing values based on nonlinear relationships across the dataset
[35, 36].

In this study, we investigate whether DAEs can be used to "uncorrupt" incomplete
pharmaceutical formulation data. Using a large-scale dataset of 1,623 formulations
involving 336 unique ingredients and over half a million data points, we simulate
missingness levels of up to 10% and evaluate how well various DAE architectures can
recover the original data. We provide examples of how missingness typically arises in
formulation data, detail the model architectures used, and assess reconstruction

performance under different levels of data corruption. This work not only demonstrates
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the utility of DAEs in pharmaceutical data recovery but also contributes toward the

development of resilient, Al-driven frameworks for future digital drug manufacturing.
Method

Data collection, Software version and Hardware

The formulation dataset was a combination of in-house and literature-extracted data.
A detailed description of the data collection, structure and labelling is provided in Refs
[12, 24]. The dataset consisted of the composition of formulations and whether they
were printable or not. The dataset was cleaned to remove any incomplete formulation
data. In total, 1623 formulations from 336 different combinations of ingredients were
used for training. The ingredients were a combination of active pharmaceutical
ingredients and excipients. The values used represented the composition of ingredient
used. Python (v3.12.2) was used for all programming, analysis and data plotting. The
specific packages used were torch (v.2.0.0), numpy (1.24.0) and scikit-learn (v.1.3.0).
An Apple M3 Max with a total of 16 CPUs, an integrated 40-core GPU and supports
up to 128 GB of LPDDR5-6400 memory with up to 409.6 GB/s bandwidth.

Data Pre-processing

All composition values were scaled to between 0 and 1 using MinMaxScaler. To
evaluate imputation performance under controlled conditions, we introduced
missingness at random at three levels: 1%, 5%, and 10%. For each level of
missingness, a binary mask was generated using torch.rand_like, thresholded to
match the target missingness percentage, and repeated across three random seeds
(42, 50, and 100) to ensure reproducibility. During training, the values at masked
positions were set to zero to simulate missing data. To encourage robustness through
denoising, Gaussian noise with a standard deviation of 0.1 was added to the masked
inputs at each epoch. No explicit training-validation split was used, as the task is self-
supervised; model performance was evaluated solely on the masked (i.e., held-out)

entries.
DAE Architecture Development

The DAE was designed to reconstruct clean input data from corrupted versions by
learning internal representations through layered transformations. A DAE differs from

a standard AE in that the data is deliberately corrupted before being fed into the neural
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network architecture [37]. We implemented two corruption mechanisms. The first
involved the removal of data at fixed proportions (i.e., 1%, 5%, and 10%), with the
missing values subsequently set to zero, as described in the previous section.
Thereafter, the entire dataset was further corrupted by applying additive Gaussian
noise with a mean of 0 and a standard deviation of 0.1. This noise was added to all
input values, meaning the entire dataset was uniformly perturbed with random
deviations. The noise was applied during both training and evaluation, allowing us to
test the model’s ability to handle not only missing values but also random noise.
Hence, the DAE not only had to infer the missing values at 1%, 5%, and 10%, but also
had to reconstruct clean data from inputs corrupted by additive noise. If the DAE
performs well, we can infer that it has learned to generalise despite input corruption

from both masking and noise.

Following corruption, the AE architecture was constructed, consisting of two main
components — the encoder and the decoder. The original development of AE was to
compress data for storage purposes, where the encoder compresses the input space
into a lower dimensional space and when needed, using the decoder to reconstruct
the latent space back to the original space. This is referred to as the undercomplete
AE. Due to their prowess, the application of AE has since expanded, including for use
to impute missing data. For such a task, studies have found that an overcomplete AE,
whereby the latent space is larger than the input/original space, performs better. Since
this is the first study of its kind in pharmaceutical formulation, we experimented with
both under- and overcomplete AE architectures, as detailed below. Figure 1 depicts
the difference between under- and overcomplete AE architectures, as well as a

simplified schematic of the DAE process.
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Figure 1. (A) a schematic depicting the architecture of an undercomplete AE architecture and (B) of an
overcomplete architecture. (C) a schematic depicting a simplified representation of DAE. X is the original data,
which is subsequently corrupted (X’) and inputted into the DAE. fO represents the encoder and g’6 represents the
decoder; while z and y represent the encoding process and the output, respectively.

The AE architecture consisted of both an encoder and decoder. The encoder has two
fully connected hidden layers, each followed by BatchNorm1d and LeakyReLU. The
second layer defined the size of the latent space. The decoder consists of a single
linear output layer with a Sigmoid activation to map values back to [0,1]. The decoder's
role was to take the internal representation from the encoder and reconstruct the full
input vector, including the masked values. The model was trained at set epochs using
the Adam Optimizer. The loss function used was the mean squared error (MSE), which
was computed only on the masked values (i.e., the deliberately removed values). As
with most neural network structures, there are a myriad of designs that can be
pursued. Herein, we focused and experimented on the number of neurones per hidden
layer (256, 512, and 1024 neurone sizes), the Adam optimizer learning rate (10!, 10-
3 and 10%) and the number of epochs (100, 500, 1000 and 1200). As mentioned, since
the encoder’s second hidden layer defined the latent space, the latent space was set

to 256, 512, or 1024 dimensions in different experiments.
kNN Technique

k-nearest neighbour (kNN) is a common ML technique used for imputting missing data
and was used herein to benchmark the performance of the DAE. kNN imputation filled
each missing entry by locating the most similar samples using distances computed
over the observed features only, then taking the mean of the corresponding neighbour
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values. Prior to distance calculation, all features were scaled to the [0, 1] range. We
evaluated neighbour counts and similarity settings to balance locality and smoothing,
with the number of neighbours explored were 3, 5, 10, 20 and 50; weighting schemes
at both uniform and distance; and distance metrics explored were euclidean,
Manhattan and cosine. For each missingness level (1%, 5%, 10%), identical masking

and random seeds were used as in the comparative DAE experiments.
Model Evaluation

Following training, the missing values were imputed by replacing the masked entries
with the model's predictions, and performance was evaluated only on these
reconstructed values. The metric used to assess imputation quality was the coefficient
of determination (R?), which was calculated over the masked positions. Each
experiment was repeated across the three random seeds to account for variability
introduced by different missingness patterns. The final results were reported as the

mean and standard deviation across these runs.
Results

Exploratory Data Analysis (EDA)

The dataset was originally developed for predicting formulation printability using
machine learning techniques. It comprised over 545,000 individual data points, of
which only approximately 1% were non-zero values, with the remaining 99% being
zeros (Figure 2 (A)). This high level of sparsity reflects the way the data was structured:
each formulation is represented across 336 possible ingredient slots, and if an
ingredient is not used in a formulation, its value is recorded as zero. Since most
formulations contain only 1 to 7 ingredients out of the 336, the vast maijority of entries
across the dataset are necessarily zero. As a result, the formulation composition data

is inherently and significantly sparse.

Among the non-zero values, there were 296 distinct composition entries, though their
distribution was notably uneven. As shown in Figure 2 (B), ingredient concentrations
at or below 20% w/w were far more commonly recorded than higher concentrations,
such as those exceeding 60% w/w. Figure 2 (C) presents the distribution of non-zero

values across the 336 ingredient slots. It can be seen that over 250 ingredients were



recorded in less than 1% of all formulations, while only a single ingredient appeared

in more than 75% of cases, which was identified as a lubricant.

These observations highlight three key characteristics of pharmaceutical formulation
data. These are (i) a significant imbalance between non-zero and zero entries, (ii) a
skewed distribution of non-zero values used, and (iii) a high proportion of ingredients
that are rarely used. Together, these traits present challenges for ML techniques, which
typically perform best with balanced datasets. Without such balance, models tend to
overfit to the most frequent patterns, which in this case, predicting zeros or common
concentration values (i.e., < 20 w/w%). As a result, the model has the challenge of not
only detecting relatively rare non-zero value entries but also predict the correct value

from among 296 possibilities, many of which occur infrequently.
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Figure 2. Exploratory data analysis depicting the characteristics of the pharmaceutical formulation dataset. (A) ratio

of non-zeros to zeros. (B) the frequency of composition values in w/w% used. (c) the frequence of non-zero values
per ingredient.

ML Analysis

In this study, we explored the use of kNN and DAE, a traditional ML method and deep
learning method respectively, in imputing 1%, 5% and 10% of the data. These
correspond to over 5,450, 27,250 and 54,500 missing values, respectively. The
missing data points were randomly removed from the raw dataset and hidden from
both the kNN and DAE before model training. In this first study on imputing
pharmaceutical 3D printing data, we evaluated multiple configurations of kNN and
DAE.

kNN Analysis

The kNN analysis was investigated at different neighbour settings, which is the most
common parameter for the ML techniques. Furthermore, we explored different
distance settings and weightings thereof. The analysis revealed that kNN was



unsuccessful in imputing the missing values, across all missing amounts. For when
1% of the data was removed, the kNN resulted in negative R? values, which indicate
that the technique performed worse than random guessing. As portrayed in Figure 3,
increasing the neighbours from 3 to 50 resulted in the R? converging to -0.3. For both
5% and 10% missingness, kNN resulted in negative R? values that increased with the
number of neighbours indicating slight improvements in fit, though performance
remained below that of a naive mean imputation (Figure S1). To further probe this
behaviour, we extended the number of neighbours up to 400 and confirmed that R?

did not improve beyond the previously observed plateau (Figure S2).
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Figure 3. The imputation results for kNN at 1% missing data, using (A) Euclidean, (B) Manhattan and (C) Cosine
distances.

Further examination of the predictions revealed that the machine learning technique
tended to overpredict zero values and underpredict non-zero values (Figure 4).
Notably, accurate predictions were more common at lower target values, which aligns

with the higher frequency of these values observed in Figure 2 (B).
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Figure 4. The kNN ground truth vs predicted plots for 1% missing data using (A) Euclidean, (B) Manhattan and
(C) Cosine distances. The results for 5% and 10% can be found in the supplementary (Figure S3). The scale
ranges from 0.00 to 1.00, as the composition dataset was normalised from 0-100 w/w% to [0, 1] prior to model
training (e.g., 20 w/w% is represented as 0.2).

DAE Analysis

DAEs are neural networks and learn by going through the dataset iteratively during
training, with each complete pass through the dataset is referred to as an epoch.
During each epoch, the model updates its internal weights to reduce the difference
between its predictions and the actual data — in other words the neural network tries
to minimise the error after each epoch cycle. This is measured by the loss function,
which herein was the MSE. In tracking the loss value over successive epochs, we can
analyse how well the model is learning. These loss curves provide insight into model
convergence, overfitting, and overall performance stability, key indicators when

evaluating the effectiveness of different training configurations.

The resulting loss curves for DAE applied to 1% missing data, grouped by learning
rate, are shown in Figure 5. In all cases, the loss decreased as training progressed,

indicating that model performance improved with additional epochs. For higher
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learning rates (10-' and 10-3), the loss dropped rapidly, with the 10! rate exhibiting a
sharp decline, suggesting unstable or potentially catastrophic learning during the initial
epochs. In contrast, the lower learning rate (10-°) produced a more gradual decrease
in loss over the course of 1200 epochs. Notably, increasing the number of neurons in
the hidden layer led to a more pronounced reduction in loss, particularly in the slower
learning rate. These observations collectively suggest that training over 1200 epochs
was sufficient for the DAEs to converge, allowing the models to effectively learn the
underlying structure of the data. The same loss curve behaviours were also observed

for when 5% and 10% of the data was removed (Figure S4).
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Figure 5. Loss curves for the 1% missingness analysis at learning rates of (A) 10-, (B) 10° and (C) and 10°°.

Following training, the DAEs were evaluated on their ability to predict missing values
(Figure 6 - Figure 8). When the learning rate was set to either 10-! or 10-°, the models
performed poorly, with the majority of R? scores below zero. However, with a learning
rate of 103, the models displayed a clear improvement, producing positive R? scores.

This suggests that the network was able to learn a meaningful relationship from the
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data at this learning rate. Further observations revealed that both the number of

neurones in the hidden layer and the number of training epochs influenced the results.
When 1% of the data was removed, the best performance had an R? of 0.989 + 0.0017,

which was achieved using 1024 neurones and 1200 epochs (Figure 6 (B)).

Interestingly, increasing the number of neurones beyond a certain point did not lead

to significantly better results, as comparable performance was observed at the same

number of epochs with fewer neurons. Overall, the learning rate had the greatest

impact on performance when 1% of the data was removed. While increasing the

number of epochs and adjusting the network size provided some benefit, these factors

were second to choosing an appropriate learning rate.
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Similar patterns were observed when the proportion of missing data was increased to
5% and 10%, particularly for the learning rates of 10 and 10-'. In both cases, the R?
scores remained negative, again indicating poor performance. However, when the
learning rate was set to 103, the results were predominantly positive (Figure 7 (B) and
Figure 8 (B)). At 5% and 10% missing data, the highest R? achieved was 0.983 +
0.0031 and 0.976 + 0.0007, respectively. Hence, across all levels of missing data, it

was evident that the learning rate had the strongest effect on DAE performance.
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13



(A) LR=10"1 (B) LR=10"3

)

1.0
0.8
0.6

o~
x 04
0.2
0.0
256

0.00

o

-0.001

-0.002

-0.003

o~
@ -0.004
-0.005
-0.006
-0.007
-0.2
512 1024 256 512 1024
Neurone size Neurone size
(C)LR=10">
0 . -
-10
-20
-30 B 100 epochs
~ s 500 epochs
x -40 = 1000 epochs
_50 w1200 epochs

256 512 1024
Neurone size

Figure 8. Performance of DAE architectures under 10% missing data at learning rates of (A) 10°", (B) 10 and (C)
and 10%. Each bar represents the mean R? across three repeats for a given neurone size, with error bars indicating
standard deviation. Note that the y-axis scales differ across subplots to accommodate the wide range of model
performances.

To better understand how the model was performing, we compared the predicted
values to the actual (ground truth) values in the case where 1% of the data was
removed (Figure 9). At the high learning rate of 10", the DAE consistently predicted
all outputs as zero. This explains the consistent and poor R? values at this learning
rate, since the model was not learning anything useful, just defaulting to zero. This
was expected since 99% of the data contained zeros and ML techniques have a
tendency to overfit to the dominant value. With the slower learning rate of 10, a
different issue appeared. The model made more of an attempt to predict non-zero
values, but the predictions were often far off from the actual values. Instead of
converging on useful patterns, the model seemed to struggle. This explains why
architectures at this learning rate had the lowest R? scores across all three learning
rates. At the intermediate and optimal learning rate of 10-3, it could correctly predict

both zero and non-zero values. Unlike the kNN results (Figure 4), no bias was seen
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towards the more dominant values observed in Figure 2 (B). This behaviour
demonstrates that DAEs, when properly tuned, are capable of learning meaningful
imputations, representing a promising foundation for applying DAEs to the problem of

imputing large-scale missing formulation data.
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Figure 9. Example of the predicted vs ground truth results for the 1% missing data analysis at learning rates of (A)
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from 0-100 w/w% to between 0-1 prior to model training. The scale ranges from 0.00 to 1.00, as the composition
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The analysis clearly shows that DAE substantially outperformed kNN imputation in
terms of R2. Interestingly, despite yielding better predictive performance, DAE was
also significantly faster than kNN across all levels of missingness (Figure 10). For
datasets with 1% and 5% missing values, DAE was approximately two orders of
magnitude faster, and at 10% missingness, it was three orders of magnitude faster. A
common imputation approach used in data science, albeit far from realistic and

potentially damaging in pharmaceutics, is to impute a value with zero. As depicted in
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Figure 10, simply imputing a missing value with a zero is marginally faster than DAE.
Nevertheless, DAEs can impute missing values at 103 seconds, which is fast and

should not delay the 3D printing process of medicines.
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Figure 10. The computational time (in seconds) vs R? plot for (A) 1%, (B) 5% and (C) 10% missing data. While
considerably outperforming kNN, DAEs with a learning rate of 10- also required less time for imputing missing
values. “Zero” refers to a baseline method where missing values were imputed with zero.

Discussion

For the first time, we have demonstrated that an ML approach like DAE has the
capacity to accurately reconstruct corrupt pharmaceutical formulation data, despite the
challenging characteristics of the data. Given the optimal learning rate, which was 10"
3, DAE can effectively impute missing data up to 10%, which herein was over 54,500
datapoints. Detecting this level of missing data is nearly impossible by a trained expert,
and the fact that DAE can correct it in under 1 second demonstrates its necessity for

such applications. Previous work has demonstrated that a derivative of DAEs can be
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effective at larger percentage of corrupted data [38, 39], suggesting that the technique
holds strong potential for handling more substantial errors or cyber-attacks in
pharmaceutical formulation data. Although root mean squared error and mean
absolute error were recommended for DAE training in data imputation [36], they were
not well-suited to the characteristics of this dataset. In future studies, we will consider
metrics such as the R? or mean absolute percentage error, which may offer more

meaningful insights into model performance for formulation dataset.

Future work could also explore the use of DAEs beyond correcting corrupt data. The
ability of DAEs to accurately reconstruct missing values also suggests that these
models are capturing the underlying structure of pharmaceutical formulations. In
generative ML it has already been shown that models such as conditional generative
adversarial networks [40]. We propose that imputation performance could serve as a
useful early indication for generative capability. Specifically, if a model can reliably infer
missing data, it implies that it has learned a meaningful representation of formulation
space. This, in turn, could be leveraged to generate new formulations by sampling or
modifying latent representations. However, in generative applications, a high R? is not
necessarily desirable. A model that perfectly reconstructs its training data may simply
reproduce known formulations rather than create new ones. Therefore, future work
should aim to define an optimal R? range, whereby the score is high enough to suggest
the model understands the structure of valid formulations, but not too high that it
merely memorises the input. This trade-off will be essential for developing models

capable of true innovation in pharmaceutical design.
Conclusion

Corrupted data, including missing data, is a concern in the field of pharmaceutics. This
study investigated the use of DAE for imputing missing formulation data pertaining to
pharmaceutical 3D printing. The state-of-the-art ML technique is DAE, which was used
to assess its capability of imputing 1%, 5% and 10% missing data. As this was the first
study to investigate the use of DAEs for missing data, a range of neural network
architectures were explored, with parameters experimented with include size of
neurones, the learning rate and number of epochs. The analysis revealed that DAE
has the capacity to impute missing formulation data, achieving a maximum R? above

0.9 irrespective of the amount of data removed, considerably outperforming the
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traditional KNN imputation method. Furthermore, the effect of learning rate was found
to impact DAE performance, with the optimal rate being 103. Therefore, it was
concluded that DAE have a potential to address corrupted data in the pharmaceutical
formulation development. It is envisaged that autoencoders could be extended beyond
missing data imputation to address a broader range of data quality issues, thereby

supporting the development and maintenance of high-quality datasets.
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