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Abstract 

Pharmaceutical 3D printing is an emerging digital manufacturing technology capable 

of autonomously producing personalised medicines. However, the same reliance on 

digital workflows that enables this innovation also introduces new vulnerabilities, most 

notably is the risk of cyberattacks. In such scenarios, malicious actors could corrupt 

formulation data, either by deleting critical information or introducing subtle noise that 

is difficult to detect, potentially compromising patient safety. To address this challenge, 

we investigate the application of machine learning, specifically denoising 

autoencoders (DAEs), for the reconstruction of corrupted pharmaceutical formulation 

data. Our dataset comprises 1,623 formulations across 336 ingredients, totalling over 

545,000 individual data points. To simulate potential cyberattack scenarios, we 

deliberately corrupted the dataset in two ways: (1) randomly removing 1%, 5%, or 10% 

of the data points, mimicking targeted data deletion, and (2) introducing noise across 

all data points, simulating tampering or injection attacks. We evaluate multiple DAE 

configurations and demonstrate their ability to recover corrupted data, achieving R2 

scores of 0.989 ± 0.0017, 0.983 ± 0.0031, and 0.976 ± 0.0007 for 1%, 5%, and 10% 

data loss, respectively. Among the parameters tested, the learning rate was found to 

have a significant effect on DAE performance. In contrast, a traditional machine 

learning approach (kNN) failed to produce positive R2 values across all missingness 

levels, further demonstrating the superior performance of the DAE. Therefore, we 

demonstrate the potential of DAEs to safeguard formulation data against data 
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corruption, underline the broader role of machine learning in enhancing digital 

resilience and maintaining data quality across the pharmaceutical sector.  

Keywords: Artificial Intelligence; Quality Control; Fused Deposition Modelling; Digital 

Resilience; Drug Development. 

Introduction 

Three-dimensional (3D) printing is poised to revolutionise pharmaceutical 

manufacturing [1-6]. It enables the precise digital fabrication of drug products and 

opens the door to on-demand, personalised medicines that can be tailored to 

individual patients’ needs in terms of dose, release profile, and even physical form. 

This capability has wide implications for clinical settings, especially hospitals, where 

personalised treatment regimens can be manufactured directly on-site, reducing the 

need for large-scale centralised production and allowing for rapid therapeutic 

intervention [7-9]. 

3D printing is a digitalised manufacturing technology, which makes it amenable to 

automation and provides an opportunity to integrate artificial intelligence (AI) into the 

design, control, and quality assurance of pharmaceutical products. Recent work in the 

use of machine learning (ML), a subset of AI, has demonstrated that it has the potential 

to determine the formulation, optimise processing parameters and inspect the quality 

of the 3D printed product [10-12], thereby obviating the need for trial-and-error 

experiments in time sensitive applications and the dependence on continuous 

supervision by a user [13, 14]. However, this requires much trust in the AI-3D printing 

framework to operate unsupervised. Unfortunately, like all digital systems, 

pharmaceutical 3D printing is susceptible to cyberattacks, software bugs, and data 

corruption. Such cyberattacks against 3D printers are well documented in other 

sectors and hence there is potential for them to be applied in pharmaceutical 3D 

printers [15-17]. A malicious actor altering formulation files or printing parameters, for 

example, could unintentionally (or intentionally) affect the safety and efficacy of the 

final product, leading to serious clinical consequences. Even in the absence of 

intentional interference, poor data management, missing values, or noisy sensor 

inputs can compromise product quality. Given the life-critical nature of medicines, 

ensuring the integrity and reliability of digital manufacturing data is not just a technical 

challenge but. it is a public health imperative. However, few studies have explored the 
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use of AI for detecting corrupted pharmaceutical data [18] and, to the best of authors’ 

knowledge, none have investigated the use of AI for tackling corrupted formulation 

data.  

AI can be used to detect and repair data quality issues. In particular, techniques such 

as anomaly detection, noise filtering, and imputation can help mitigate the effects of 

corrupted or missing data. These capabilities are crucial in contexts like 

pharmaceutical formulation, where even small data errors can propagate through 

models and yield misleading outputs. 

Missing data, in particular, is a pervasive issue. For example, when compiling datasets 

from literature or electronic lab notebooks, formulation components may be unreported 

due to inconsistent experimental reporting, varied naming conventions, or simply 

because they were deemed unimportant by the original authors [19-22]. In multi-

ingredient dosage forms, this results in sparse datasets where one or more excipients 

or process parameters are missing, making it difficult to use the data for AI model 

training, formulation prediction, or regulatory analysis [23, 24]. Without intervention, 

these gaps undermine the reliability of data-driven pharmaceutical development [25] 

[26-29]. 

To address this, we explore the use of denoising autoencoders (DAEs), a class of 

artificial neural networks trained to reconstruct original data from intentionally 

corrupted inputs [30-33]. By learning internal data representations that are resilient to 

noise, DAEs are capable of recovering missing or distorted values, even in complex, 

high-dimensional datasets [34, 35]. Unlike traditional imputation methods, DAEs do 

not rely on simplistic assumptions like mean substitution or linear interpolation, and 

instead, they infer missing values based on nonlinear relationships across the dataset 

[35, 36]. 

In this study, we investigate whether DAEs can be used to "uncorrupt" incomplete 

pharmaceutical formulation data. Using a large-scale dataset of 1,623 formulations 

involving 336 unique ingredients and over half a million data points, we simulate 

missingness levels of up to 10% and evaluate how well various DAE architectures can 

recover the original data. We provide examples of how missingness typically arises in 

formulation data, detail the model architectures used, and assess reconstruction 

performance under different levels of data corruption. This work not only demonstrates 
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the utility of DAEs in pharmaceutical data recovery but also contributes toward the 

development of resilient, AI-driven frameworks for future digital drug manufacturing. 

Method 

Data collection, Software version and Hardware 

The formulation dataset was a combination of in-house and literature-extracted data. 

A detailed description of the data collection, structure and labelling is provided in Refs 

[12, 24]. The dataset consisted of the composition of formulations and whether they 

were printable or not. The dataset was cleaned to remove any incomplete formulation 

data. In total, 1623 formulations from 336 different combinations of ingredients were 

used for training. The ingredients were a combination of active pharmaceutical 

ingredients and excipients. The values used represented the composition of ingredient 

used. Python (v3.12.2) was used for all programming, analysis and data plotting. The 

specific packages used were torch (v.2.0.0), numpy (1.24.0) and scikit-learn (v.1.3.0). 

An Apple M3 Max with a total of 16 CPUs, an integrated 40-core GPU and supports 

up to 128 GB of LPDDR5-6400 memory with up to 409.6 GB/s bandwidth.  

Data Pre-processing 

All composition values were scaled to between 0 and 1 using MinMaxScaler. To 

evaluate imputation performance under controlled conditions, we introduced 

missingness at random at three levels: 1%, 5%, and 10%. For each level of 

missingness, a binary mask was generated using torch.rand_like, thresholded to 

match the target missingness percentage, and repeated across three random seeds 

(42, 50, and 100) to ensure reproducibility. During training, the values at masked 

positions were set to zero to simulate missing data. To encourage robustness through 

denoising, Gaussian noise with a standard deviation of 0.1 was added to the masked 

inputs at each epoch. No explicit training-validation split was used, as the task is self-

supervised; model performance was evaluated solely on the masked (i.e., held-out) 

entries. 

DAE Architecture Development 

The DAE was designed to reconstruct clean input data from corrupted versions by 

learning internal representations through layered transformations. A DAE differs from 

a standard AE in that the data is deliberately corrupted before being fed into the neural 
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network architecture [37]. We implemented two corruption mechanisms. The first 

involved the removal of data at fixed proportions (i.e., 1%, 5%, and 10%), with the 

missing values subsequently set to zero, as described in the previous section. 

Thereafter, the entire dataset was further corrupted by applying additive Gaussian 

noise with a mean of 0 and a standard deviation of 0.1. This noise was added to all 

input values, meaning the entire dataset was uniformly perturbed with random 

deviations. The noise was applied during both training and evaluation, allowing us to 

test the model’s ability to handle not only missing values but also random noise. 

Hence, the DAE not only had to infer the missing values at 1%, 5%, and 10%, but also 

had to reconstruct clean data from inputs corrupted by additive noise. If the DAE 

performs well, we can infer that it has learned to generalise despite input corruption 

from both masking and noise. 

Following corruption, the AE architecture was constructed, consisting of two main 

components – the encoder and the decoder. The original development of AE was to 

compress data for storage purposes, where the encoder compresses the input space 

into a lower dimensional space and when needed, using the decoder to reconstruct 

the latent space back to the original space. This is referred to as the undercomplete 

AE. Due to their prowess, the application of AE has since expanded, including for use 

to impute missing data. For such a task, studies have found that an overcomplete AE, 

whereby the latent space is larger than the input/original space, performs better. Since 

this is the first study of its kind in pharmaceutical formulation, we experimented with 

both under- and overcomplete AE architectures, as detailed below. Figure 1 depicts 

the difference between under- and overcomplete AE architectures, as well as a 

simplified schematic of the DAE process. 
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Figure 1. (A) a schematic depicting the architecture of an undercomplete AE architecture and (B) of an 
overcomplete architecture. (C) a schematic depicting a simplified representation of DAE. X is the original data, 

which is subsequently corrupted (X’) and inputted into the DAE. fθ represents the encoder and g’θ represents the 
decoder; while z and y represent the encoding process and the output, respectively.  

 

The AE architecture consisted of both an encoder and decoder. The encoder has two 

fully connected hidden layers, each followed by BatchNorm1d and LeakyReLU. The 

second layer defined the size of the latent space. The decoder consists of a single 

linear output layer with a Sigmoid activation to map values back to [0,1]. The decoder's 

role was to take the internal representation from the encoder and reconstruct the full 

input vector, including the masked values. The model was trained at set epochs using 

the Adam Optimizer. The loss function used was the mean squared error (MSE), which 

was computed only on the masked values (i.e., the deliberately removed values). As 

with most neural network structures, there are a myriad of designs that can be 

pursued. Herein, we focused and experimented on the number of neurones per hidden 

layer (256, 512, and 1024 neurone sizes), the Adam optimizer learning rate (10-1, 10-

3 and 10-5) and the number of epochs (100, 500, 1000 and 1200). As mentioned, since 

the encoder’s second hidden layer defined the latent space, the latent space was set 

to 256, 512, or 1024 dimensions in different experiments.   

kNN Technique 

k-nearest neighbour (kNN) is a common ML technique used for imputting missing data 

and was used herein to benchmark the performance of the DAE. kNN imputation filled 

each missing entry by locating the most similar samples using distances computed 

over the observed features only, then taking the mean of the corresponding neighbour 
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values. Prior to distance calculation, all features were scaled to the [0, 1] range. We 

evaluated neighbour counts and similarity settings to balance locality and smoothing, 

with the number of neighbours explored were 3, 5, 10, 20 and 50; weighting schemes 

at both uniform and distance; and distance metrics explored were euclidean, 

Manhattan and cosine. For each missingness level (1%, 5%, 10%), identical masking 

and random seeds were used as in the comparative DAE experiments. 

Model Evaluation 

Following training, the missing values were imputed by replacing the masked entries 

with the model’s predictions, and performance was evaluated only on these 

reconstructed values. The metric used to assess imputation quality was the coefficient 

of determination (R²), which was calculated over the masked positions. Each 

experiment was repeated across the three random seeds to account for variability 

introduced by different missingness patterns. The final results were reported as the 

mean and standard deviation across these runs.  

Results 

Exploratory Data Analysis (EDA) 

The dataset was originally developed for predicting formulation printability using 

machine learning techniques. It comprised over 545,000 individual data points, of 

which only approximately 1% were non-zero values, with the remaining 99% being 

zeros (Figure 2 (A)). This high level of sparsity reflects the way the data was structured: 

each formulation is represented across 336 possible ingredient slots, and if an 

ingredient is not used in a formulation, its value is recorded as zero. Since most 

formulations contain only 1 to 7 ingredients out of the 336, the vast majority of entries 

across the dataset are necessarily zero. As a result, the formulation composition data 

is inherently and significantly sparse. 

Among the non-zero values, there were 296 distinct composition entries, though their 

distribution was notably uneven. As shown in Figure 2 (B), ingredient concentrations 

at or below 20% w/w were far more commonly recorded than higher concentrations, 

such as those exceeding 60% w/w. Figure 2 (C) presents the distribution of non-zero 

values across the 336 ingredient slots. It can be seen that over 250 ingredients were 
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recorded in less than 1% of all formulations, while only a single ingredient appeared 

in more than 75% of cases, which was identified as a lubricant. 

These observations highlight three key characteristics of pharmaceutical formulation 

data. These are (i) a significant imbalance between non-zero and zero entries, (ii) a 

skewed distribution of non-zero values used, and (iii) a high proportion of ingredients 

that are rarely used. Together, these traits present challenges for ML techniques, which 

typically perform best with balanced datasets. Without such balance, models tend to 

overfit to the most frequent patterns, which in this case, predicting zeros or common 

concentration values (i.e., < 20 w/w%). As a result, the model has the challenge of not 

only detecting relatively rare non-zero value entries but also predict the correct value 

from among 296 possibilities, many of which occur infrequently. 

 

Figure 2. Exploratory data analysis depicting the characteristics of the pharmaceutical formulation dataset. (A) ratio 
of non-zeros to zeros. (B) the frequency of composition values in w/w% used. (c) the frequence of non-zero values 
per ingredient. 

ML Analysis 

In this study, we explored the use of kNN and DAE, a traditional ML method and deep 

learning method respectively, in imputing 1%, 5% and 10% of the data. These 

correspond to over 5,450, 27,250 and 54,500 missing values, respectively. The 

missing data points were randomly removed from the raw dataset and hidden from 

both the kNN and DAE before model training. In this first study on imputing 

pharmaceutical 3D printing data, we evaluated multiple configurations of kNN and 

DAE. 

kNN Analysis 

The kNN analysis was investigated at different neighbour settings, which is the most 

common parameter for the ML techniques. Furthermore, we explored different 

distance settings and weightings thereof. The analysis revealed that kNN was 



9 
 

unsuccessful in imputing the missing values, across all missing amounts. For when 

1% of the data was removed, the kNN resulted in negative R2 values, which indicate 

that the technique performed worse than random guessing. As portrayed in Figure 3, 

increasing the neighbours from 3 to 50 resulted in the R2 converging to -0.3. For both 

5% and 10% missingness, kNN resulted in negative R2 values that increased with the 

number of neighbours indicating slight improvements in fit, though performance 

remained below that of a naive mean imputation (Figure S1). To further probe this 

behaviour, we extended the number of neighbours up to 400 and confirmed that R2 

did not improve beyond the previously observed plateau (Figure S2). 

 

 

Figure 3. The imputation results for kNN at 1% missing data, using (A) Euclidean, (B) Manhattan and (C) Cosine 
distances.  

Further examination of the predictions revealed that the machine learning technique 

tended to overpredict zero values and underpredict non-zero values (Figure 4). 

Notably, accurate predictions were more common at lower target values, which aligns 

with the higher frequency of these values observed in Figure 2 (B).  
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Figure 4. The kNN ground truth vs predicted plots for 1% missing data using (A) Euclidean, (B) Manhattan and 
(C) Cosine distances. The results for 5% and 10% can be found in the supplementary (Figure S3). The scale 

ranges from 0.00 to 1.00, as the composition dataset was normalised from 0–100 w/w% to [0, 1] prior to model 
training (e.g., 20 w/w% is represented as 0.2). 

DAE Analysis 

DAEs are neural networks and learn by going through the dataset iteratively during 

training, with each complete pass through the dataset is referred to as an epoch. 

During each epoch, the model updates its internal weights to reduce the difference 

between its predictions and the actual data – in other words the neural network tries 

to minimise the error after each epoch cycle. This is measured by the loss function, 

which herein was the MSE. In tracking the loss value over successive epochs, we can 

analyse how well the model is learning. These loss curves provide insight into model 

convergence, overfitting, and overall performance stability, key indicators when 

evaluating the effectiveness of different training configurations. 

The resulting loss curves for DAE applied to 1% missing data, grouped by learning 

rate, are shown in Figure 5. In all cases, the loss decreased as training progressed, 

indicating that model performance improved with additional epochs. For higher 
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learning rates (10-1 and 10-3), the loss dropped rapidly, with the 10-1 rate exhibiting a 

sharp decline, suggesting unstable or potentially catastrophic learning during the initial 

epochs. In contrast, the lower learning rate (10-5) produced a more gradual decrease 

in loss over the course of 1200 epochs. Notably, increasing the number of neurons in 

the hidden layer led to a more pronounced reduction in loss, particularly in the slower 

learning rate. These observations collectively suggest that training over 1200 epochs 

was sufficient for the DAEs to converge, allowing the models to effectively learn the 

underlying structure of the data. The same loss curve behaviours were also observed 

for when 5% and 10% of the data was removed (Figure S4). 

 

Figure 5. Loss curves for the 1% missingness analysis at learning rates of (A) 10-1, (B) 10-3 and (C) and 10-5. 

 

Following training, the DAEs were evaluated on their ability to predict missing values 

(Figure 6 - Figure 8). When the learning rate was set to either 10-1 or 10-5, the models 

performed poorly, with the majority of R2 scores below zero. However, with a learning 

rate of 10-3, the models displayed a clear improvement, producing positive R2 scores. 

This suggests that the network was able to learn a meaningful relationship from the 
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data at this learning rate. Further observations revealed that both the number of 

neurones in the hidden layer and the number of training epochs influenced the results. 

When 1% of the data was removed, the best performance had an R2 of 0.989 ± 0.0017, 

which was achieved using 1024 neurones and 1200 epochs (Figure 6 (B)). 

Interestingly, increasing the number of neurones beyond a certain point did not lead 

to significantly better results, as comparable performance was observed at the same 

number of epochs with fewer neurons. Overall, the learning rate had the greatest 

impact on performance when 1% of the data was removed. While increasing the 

number of epochs and adjusting the network size provided some benefit, these factors 

were second to choosing an appropriate learning rate.  

 

 

Figure 6. Performance of DAE architectures under 1% missing data at learning rates of (A) 10-1, (B) 10-3 and (C) 
and 10-5. Each bar represents the mean R² across three repeats for a given neurone size, with error bars indicating 
standard deviation. Note that the y-axis scales differ across subplots to accommodate the wide range of model 
performances. 
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Similar patterns were observed when the proportion of missing data was increased to 

5% and 10%, particularly for the learning rates of 10-5 and 10-1. In both cases, the R² 

scores remained negative, again indicating poor performance. However, when the 

learning rate was set to 10-3, the results were predominantly positive (Figure 7 (B) and 

Figure 8 (B)). At 5% and 10% missing data, the highest R2 achieved was 0.983 ± 

0.0031 and 0.976 ± 0.0007, respectively. Hence, across all levels of missing data, it 

was evident that the learning rate had the strongest effect on DAE performance. 

 

 

Figure 7. Performance of DAE architectures under 5% missing data at learning rates of (A) 10-1, (B) 10-3 and (C) 
and 10-5. Each bar represents the mean R² across three repeats for a given neurone size, with error bars indicating 
standard deviation. Note that the y-axis scales differ across subplots to accommodate the wide range of model 
performances. 
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Figure 8. Performance of DAE architectures under 10% missing data at learning rates of (A) 10-1, (B) 10-3 and (C) 
and 10-5. Each bar represents the mean R² across three repeats for a given neurone size, with error bars indicating 
standard deviation. Note that the y-axis scales differ across subplots to accommodate the wide range of model 
performances. 

To better understand how the model was performing, we compared the predicted 

values to the actual (ground truth) values in the case where 1% of the data was 

removed (Figure 9). At the high learning rate of 10-1, the DAE consistently predicted 

all outputs as zero. This explains the consistent and poor R2 values at this learning 

rate, since the model was not learning anything useful, just defaulting to zero. This 

was expected since 99% of the data contained zeros and ML techniques have a 

tendency to overfit to the dominant value. With the slower learning rate of 10-5, a 

different issue appeared. The model made more of an attempt to predict non-zero 

values, but the predictions were often far off from the actual values. Instead of 

converging on useful patterns, the model seemed to struggle. This explains why 

architectures at this learning rate had the lowest R2 scores across all three learning 

rates. At the intermediate and optimal learning rate of 10-3, it could correctly predict 

both zero and non-zero values. Unlike the kNN results (Figure 4), no bias was seen 
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towards the more dominant values observed in Figure 2 (B). This behaviour 

demonstrates that DAEs, when properly tuned, are capable of learning meaningful 

imputations, representing a promising foundation for applying DAEs to the problem of 

imputing large-scale missing formulation data. 

 

Figure 9. Example of the predicted vs ground truth results for the 1% missing data analysis at learning rates of (A) 
10-1, (B) 10-3 and (C) and 10-5. Note the scale is from 0.00 to 1.00 because the composition dataset was normalised 
from 0-100 w/w% to between 0-1 prior to model training. The scale ranges from 0.00 to 1.00, as the composition 
dataset was normalised from 0–100 w/w% to [0, 1] prior to model training (e.g., 20 w/w% is represented as 0.2). 

The analysis clearly shows that DAE substantially outperformed kNN imputation in 

terms of R2. Interestingly, despite yielding better predictive performance, DAE was 

also significantly faster than kNN across all levels of missingness (Figure 10). For 

datasets with 1% and 5% missing values, DAE was approximately two orders of 

magnitude faster, and at 10% missingness, it was three orders of magnitude faster. A 

common imputation approach used in data science, albeit far from realistic and 

potentially damaging in pharmaceutics, is to impute a value with zero. As depicted in 
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Figure 10, simply imputing a missing value with a zero is marginally faster than DAE. 

Nevertheless, DAEs can impute missing values at 10-3 seconds, which is fast and 

should not delay the 3D printing process of medicines. 

 

Figure 10. The computational time (in seconds) vs R2 plot for (A) 1%, (B) 5% and (C) 10% missing data. While 
considerably outperforming kNN, DAEs with a learning rate of 10-3 also required less time for imputing missing 

values. “Zero” refers to a baseline method where missing values were imputed with zero.  

 

Discussion 

For the first time, we have demonstrated that an ML approach like DAE has the 

capacity to accurately reconstruct corrupt pharmaceutical formulation data, despite the 

challenging characteristics of the data. Given the optimal learning rate, which was 10-

3, DAE can effectively impute missing data up to 10%, which herein was over 54,500 

datapoints. Detecting this level of missing data is nearly impossible by a trained expert, 

and the fact that DAE can correct it in under 1 second demonstrates its necessity for 

such applications. Previous work has demonstrated that a derivative of DAEs can be 
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effective at larger percentage of corrupted data [38, 39], suggesting that the technique 

holds strong potential for handling more substantial errors or cyber-attacks in 

pharmaceutical formulation data. Although root mean squared error and mean 

absolute error were recommended for DAE training in data imputation [36], they were 

not well-suited to the characteristics of this dataset. In future studies, we will consider 

metrics such as the R2 or mean absolute percentage error, which may offer more 

meaningful insights into model performance for formulation dataset.  

Future work could also explore the use of DAEs beyond correcting corrupt data. The 

ability of DAEs to accurately reconstruct missing values also suggests that these 

models are capturing the underlying structure of pharmaceutical formulations. In 

generative ML it has already been shown that models such as conditional generative 

adversarial networks [40]. We propose that imputation performance could serve as a 

useful early indication for generative capability. Specifically, if a model can reliably infer 

missing data, it implies that it has learned a meaningful representation of formulation 

space. This, in turn, could be leveraged to generate new formulations by sampling or 

modifying latent representations. However, in generative applications, a high R2 is not 

necessarily desirable. A model that perfectly reconstructs its training data may simply 

reproduce known formulations rather than create new ones. Therefore, future work 

should aim to define an optimal R2 range, whereby the score is high enough to suggest 

the model understands the structure of valid formulations, but not too high that it 

merely memorises the input. This trade-off will be essential for developing models 

capable of true innovation in pharmaceutical design. 

Conclusion 

Corrupted data, including missing data, is a concern in the field of pharmaceutics. This 

study investigated the use of DAE for imputing missing formulation data pertaining to 

pharmaceutical 3D printing. The state-of-the-art ML technique is DAE, which was used 

to assess its capability of imputing 1%, 5% and 10% missing data. As this was the first 

study to investigate the use of DAEs for missing data, a range of neural network 

architectures were explored, with parameters experimented with include size of 

neurones, the learning rate and number of epochs. The analysis revealed that DAE 

has the capacity to impute missing formulation data, achieving a maximum R2 above 

0.9 irrespective of the amount of data removed, considerably outperforming the 
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traditional kNN imputation method. Furthermore, the effect of learning rate was found 

to impact DAE performance, with the optimal rate being 10-3. Therefore, it was 

concluded that DAE have a potential to address corrupted data in the pharmaceutical 

formulation development. It is envisaged that autoencoders could be extended beyond 

missing data imputation to address a broader range of data quality issues, thereby 

supporting the development and maintenance of high-quality datasets. 
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