

1 **Tracing Carbon Flow to Unravel Carbon Lock-In in China through a Supernetwor-**
2 **Based Perspective for Targeted Decarbonization**

3

4 **Abstract**

5 The pathway to carbon neutrality requires not only reducing emissions but also addressing the
6 structural complexity of how emissions are generated, transmitted, and embedded across regions
7 and sectors. Conventional mitigation strategies target high-emission locations, yet they overlook
8 who emits, who enables, and who intermediates in the carbon system. This study develops a carbon
9 flow supernetwor by integrating multi-regional input-output analysis with supernetwor theory,
10 enabling tracing where emissions occur, how they move, and who sustains them from 2007 to 2017.
11 Results reveal a three-layered structure of carbon lock-in in China. Upstream emitters like Inner
12 Mongolia, Shanxi, and Hebei concentrate emissions through coal-based electricity and heavy
13 industries. Downstream distributors, notably coastal regions such as Guangdong and Jiangsu,
14 account for over 60% of carbon inflows via embedded trade and final demand. Structural
15 intermediaries, including Shandong and Henan via logistics and information services, exhibit high
16 network centrality and govern carbon circulation despite moderate emission levels. Furthermore,
17 the Jing-Jin-Ji and Yangtze River Delta function as systemic carbon anchors, where dense industrial
18 networks and embedded supply chains lock China's economy into high-emission trajectories. As the
19 system matured from 2007 to 2015, connectivity and internal carbon cycling increased, but signs of
20 topological reconfiguration emerged post-2015, coinciding with China's green transition efforts.
21 Carbon governance should shift from targeting emission volume to incorporating network-sensitive,
22 system-level interventions. Prioritizing central intermediaries and redesigning flow pathways offers
23 a more effective and equitable route toward carbon neutrality in structurally complex economies
24 like China.

25

26 **Keywords:** Carbon lock-in; Supernetwor; Multi-regional input-output; Carbon flow

27

28

29 **1 Introduction**

30 Climate change, driven largely by anthropogenic carbon emissions, has become one of the most
31 pressing global challenges ¹. International frameworks such as the Kyoto Protocol and the Paris
32 Agreement aim to mitigate this crisis ². As the world's largest carbon emitter, China plays a pivotal
33 role in global climate governance ³. At the 2020 UN General Assembly and Climate Ambition
34 Summit, China announced ambitious dual carbon goals: peaking emissions before 2030 and
35 achieving carbon neutrality by 2060 ⁴⁻⁶. To fulfill these objectives, China faces the critical task of
36 balancing economic growth, regional equity, and environmental sustainability, which requires
37 exploring differentiated low-carbon development pathways tailored to regional resource
38 endowments and industrial structures ^{7,8}.

39

40 However, after decades of rapid industrialization, China's economic system faces significant
41 challenges due to entrenched path dependencies and carbon lock-in, characterized by continued
42 investment in carbon-intensive industries and technologies ⁹. The concept of carbon lock-in,
43 foundationally developed by Unruh ^{10,11}, highlights how technological, institutional, and
44 infrastructural inertia reinforce high-carbon pathways. This perspective can capture structural
45 persistence in carbon flows, noting that unlike carbon or energy dependency, lock-in stresses
46 systemic entrenchment rather than reliance on specific inputs ^{12,13}. Regional disparities in resource
47 distribution and development stages intensify conflicts between emission reduction responsibilities
48 and regional equity ¹⁴. Yet these disparities are not isolated: economically developed coastal regions,
49 driven by advanced manufacturing and trade, are tightly linked with resource-rich inland provinces
50 through embodied carbon flows, outsourcing high-carbon production while relying on upstream
51 energy and materials ¹⁵. Such interregional linkages exacerbate regional inequalities and amplify
52 the difficulty of allocating emission responsibilities in an equitable manner ^{16,17}. From an industrial
53 perspective, entrenched high-carbon technologies and traditional industrial structures form another
54 barrier to low-carbon transformation ^{18,19}. Resource-dependent industries, such as power generation
55 and construction, have historically dominated China's economic growth model ²⁰, embedding
56 regions in dual lock-in scenarios of high-carbon and low-value production pathways ²¹. These
57 sectoral lock-ins are further reinforced through cross-sectoral couplings—for example, electricity
58 and coal supplying carbon-intensive inputs to downstream construction — making industrial

59 adjustment a systemic rather than sector-specific challenge. Transitioning away from these pathways
60 therefore requires not only balancing emission mitigation and regional development priorities, but
61 also designing coordinated governance mechanisms that explicitly target the cross-regional and
62 cross-sectoral interactions underpinning China’s carbon flow system.^{22,23}. Nevertheless, mitigation
63 policy designs have often emphasized short-term localized targets, lacking the coordination needed
64 for coherent long-term carbon governance across regions and sectors ^{24,25}.

65

66 To effectively understand and address these complex challenges, comprehensive approaches are
67 necessary. Scholars have increasingly turned to Multi-Regional Input-Output (MRIO) analysis as a
68 powerful tool to map the flow of embodied emissions across regions and sectors ²⁶⁻²⁹. MRIO models
69 capture how consumption in one region induces emissions elsewhere through interlinked supply
70 chains ^{30,31}, thus enabling the identification of environmental responsibilities across regions and
71 sectors ³²⁻³⁴. In China’s context, MRIO-based studies have revealed the extensive transfer of carbon
72 emissions from economically advanced eastern provinces to less-developed central and western
73 regions ^{35,36}. Internationally, extensions of MRIO methods such as structural decomposition analysis
74 and environmental input-output network models have provided insights into how trade, industrial
75 structure, and final consumption shape global and bilateral carbon emissions ³⁷⁻⁴⁰. While MRIO
76 models quantify carbon flows, they are often limited in explaining the structural mechanics of these
77 flows ⁴¹. Specifically, MRIO analyses focus on volume-based attribution but lack tools to investigate
78 the network logic—i.e., who emits, who enables, and who intermediates—within complex carbon
79 systems. Addressing this limitation requires methodological integration with advanced network
80 science. Supernet theory, which models interdependent, multi-layered networks, offers a
81 promising framework to capture the structural intricacies of regional-sectoral carbon interactions ⁴².
82 Emerging applications of supernet methodologies, such as variational inequalities ⁴³,
83 hypergraphs ⁴⁴, and network-based models ⁴⁵, have proven effective in fields including supply chain
84 management, transportation systems, and information diffusion ⁴⁶⁻⁵¹. However, their application to
85 carbon emissions, especially regarding detailed structural characteristics such as node interactions
86 and network topology at the regional-sectoral scale, remains scarce ^{52,53}.

87

88 To fill this gap, we extend the analytical focus from emission magnitudes to the structural

89 mechanisms that sustain high-carbon trajectories. Here, carbon lock-in is operationally defined as a
90 systemic form of high-carbon path dependence embedded in regional-sectoral interaction structures,
91 rather than mere technological or resource dependence. It emphasizes how interlinked regions and
92 sectors collectively reinforce carbon-intensive development pathways. Building on this
93 conceptualization, this study proposes a carbon flow supernetwork framework that integrates MRIO
94 modeling with supernetwork theory to analyze how carbon emissions are transmitted across
95 China's regions and sectors. In this framework, nodes represent regions and sectors via China's
96 economy, and superedges capture the carbon flows between region-sector combinations. This
97 approach departs from traditional flow quantification by uncovering the structural mechanisms and
98 systemic drivers of carbon lock-in across China's regional and sectoral coupled networks. Using
99 this framework, carbon flow networks are analyzed from 2007 to 2017 across 30 regions and 42
100 economic sectors, identifying key features from three perspectives. Node-level insights identify
101 functionally differentiated actors such as upstream carbon suppliers, downstream consumption hubs,
102 and structural intermediaries, each playing distinct roles in national carbon flows. Superedge-level
103 investigations detect critical region-sector linkages with broad systemic influence or deep structural
104 embeddedness, revealing heterogeneities in decarbonization leverage. Topological structure
105 analysis traces the evolution of carbon-intensive agglomerations, regional clusters, and core-
106 periphery patterns, offering dynamic views of structural carbon lock-in and reconfiguration trends.
107

108 The main contributions of this study are as follows. First, we introduce a structurally explicit method
109 to characterize the mechanics of embodied carbon flows at high resolution, enhancing the analytical
110 power of MRIO-based models. Second, we generate actionable insights for network-sensitive
111 carbon governance that target systemic leverage points rather than merely high-emission
112 magnitudes. Third, by integrating spatial, sectoral, and temporal dimensions, we provide a robust
113 analytical foundation for China's differentiated low-carbon transition and clarify the scope of
114 transferability. Although the empirical analysis centers on China, the conclusions are mechanism-
115 level and thus transferable to other large developing economies where extensive interregional trade,
116 heterogeneous energy mixes, and sectoral specialization give rise to similar structures, namely,
117 upstream emitters in resource-rich provinces, downstream sinks in demand-intensive sectors (e.g.,
118 construction), and bridge regions connecting inland supply with coastal demand. This transferability

119 is context-dependent; in systems with already low-carbon electricity or limited interregional
120 exchanges, such asymmetries and redundancies may be less pronounced.

121

122 **2 Methodology**

123 **2.1 Carbon flow calculation**

124 Carbon intensity between regions and sectors are calculated based on MRIO tables^{27,54}, which
125 represents the amount of carbon dioxide emitted per unit of economic output.

$$126 E_x = CE_x / T_x, \quad x \in \{r, s, (r, s)\} \quad (1)$$

127 Where E_x represents the carbon intensity, CE_x represents the total carbon emissions, , which is
128 sourced from the CEADs database^{55,56}, and T_x represents the total output. r denotes region, s
129 sector, and (r, s) a region-sector pair. When an aggregated sector requires subdivision, it assumes
130 that sub-sector emissions scale proportionally with their economic output, ensuring that total
131 emissions are conserved within each region.

132

133 The direct carbon flows are then obtained by mapping intensities from the origin to monetary
134 transactions in the MRIO use matrix U .

$$135 F_{i \rightarrow j} = E_i U_{i,j} \quad (2)$$

136 Where $F_{i \rightarrow j}$ represents the direct carbon flows from i to j , i and j can be regions, sectors,
137 or region-sector combinations. This general expression covers the four flow types used in later
138 analysis: region→region, sector→sector, region→sector, and sector→region.

139

140 **2.2 Carbon flow supernetwork construction**

141 Based on carbon flow calculations, we construct a supernetwork model to capture the multi-layered
142 and heterogeneous interactions of carbon emissions across China's regional-sectoral system. Two
143 intra-layer subnetworks are first established. Using MRIO tables from 2007, 2010, 2012, 2015, and
144 2017, we quantify carbon emissions across 30 regions and 42 sectors. This enables the construction
145 of a regional subnetwork that reflects spatial carbon flow patterns and a sectoral subnetwork that
146 reveals inter-sectoral emission transfers. Subsequently, two inter-layer subnetworks are developed

147 to characterize cross-dimensional interactions. By computing carbon flows between regions and
 148 sectors based on direct emission intensities and monetary transactions, we establish region-sector
 149 coupling networks that map how regional/sector activities in one sector/region contribute to carbon
 150 flows in another. These inter-layer subnetworks capture the heterogeneous dependencies linking
 151 spatial and industrial systems within China's carbon economy. Four subnetworks form a carbon
 152 flow supernetwork that represents horizontal (within-layer) and vertical (cross-layer) connections.
 153 This integrated framework enables the identification of structural lock-in patterns that govern the
 154 transmission of carbon across China's economy. Table 1 summarizes the mathematical specifications
 155 of the three core subnetworks that comprise the supernetwork framework.

156

157 **Table 1|** Subnetwork specifications of the carbon flow supernetwork

	Regional subnetwork	Region-sector subnetworks	Sectoral subnetwork
Node set	$V^{RR} = \{R_1, R_2, \dots, R_m\}$	$V^{RS} = \{RS_{kl} \mid 1 \leq k \leq m, 1 \leq l \leq n\}$	$V^{SS} = \{S_1, S_2, \dots, S_n\}$
Edge set	$E^{RR} = \{e_{r_1r_2} \mid 1 \leq r_1, r_2 \leq m\}$	$E^{RS} = \{e_{rs} \mid 1 \leq r \leq m, 1 \leq s \leq n\}$	$E^{SS} = \{e_{s_1s_2} \mid 1 \leq s_1, s_2 \leq n\}$
Weights	$w_{r_1r_2}^{RR} = F_{r_1, r_2}$	$w_{r_1s_1}^{RS} = F_{r_1, s_1}, \quad w_{s_1r_1}^{RS} = F_{s_1, r_1}$	$w_{s_1s_2}^{SS} = F_{s_1, s_2}$

158 Notes: The regional subnetwork captures interprovincial carbon exchanges, the region-sector
 159 subnetworks describe cross-layer couplings between producing regions and consuming sectors, and
 160 the sectoral subnetwork represents inter-sectoral carbon flows within the national economy. Weight
 161 terms denote embodied carbon flows.

162

163 According to supernetwork theory⁵⁷⁻⁶¹, a supernetwork can be described as $SN = (V, SE)$, where
 164 V represents the node set and SE denotes the superedge set. Accordingly, The carbon flow
 165 supernetwork in this study can be expressed as $CFSN = \{V(CF), SE(CF)\}$. Here, $V(CF)$ denotes
 166 the node set, consisting of two heterogeneous node types—regions and sectors. $SE(CF)$
 167 represents the superedge set, where each superedge connects nodes from different domains,
 168 capturing carbon flows between regions and sectors. In this framework, a superedge corresponds to
 169 a carbon flow relationship that links regional and sectoral nodes from heterogeneous networks. Two
 170 types of carbon flows are modeled: region-to-sector flows and sector-to-region flows. This design

171 extends conventional MRIO-based networks by embedding bidirectional, cross-layer interactions
172 as structural units of analysis. Since MRIO tables are monetary transaction matrices, the carbon
173 flows inherently embed economic flows together with physical emissions, meaning that the
174 constructed carbon flow supernetwork simultaneously reflects both economic and environmental
175 interactions. Such formulation allows the model to trace the directional movement of carbon
176 between production and consumption nodes, revealing key transmission paths and structural
177 dependencies.

178

179 The supernetwork enables the identification of sectoral usage patterns, regional emission
180 responsibilities, and the complex interdependencies across multi-layered economic systems. In total,
181 the carbon flow supernetwork comprises 30×42 region-sector pairs. To manage computational
182 complexity and highlight significant transmission pathways, a magnitude-based pruning technique
183 is employed. This method sparsifies the network by removing low-weight connections while
184 preserving critical carbon flows, thereby improving computational efficiency without compromising
185 structural accuracy⁶²⁻⁶⁴. Although constructed from static MRIO tables, the multi-year design of the
186 supernetwork allows us to trace observed improvements in production efficiency and structural
187 adjustments across time.

188

189 **2.3 Carbon flow supernetwork evaluation**

190 To systematically characterize the properties of the carbon flow supernetwork, this study employs a
191 set of network metrics categorized into node-level, superedge-level, and structural-level analyses.
192 Each set of metrics captures different aspects of the carbon flow system, from local connectivity to
193 system-wide structural influence.

194 Degree measures the number of direct connections of a node, reflecting its role as a source (out-
195 degree) or sink (in-degree) of carbon flows⁶⁵.

$$196 \quad ISD_i = \sum_{i=1} a_{ji} \quad (3)$$

$$197 \quad OSD_i = \sum_{j=1} a_{ij} \quad (4)$$

198 Where $A = \{a_{ij}\}$ is the adjacency matrix, $a_{ij} = 1$ or 0.

199

200 Betweenness centrality ⁶⁶ captures the extent to which a node lies on the shortest paths between
201 other nodes, indicating its function as an intermediary.

202
$$VB_i = \sum_{x \neq i \neq y} g_{xy}^i / ga_{xy} \quad (5)$$

203 where ga_{xy} represents the total number of shortest paths from node x to y , g_{xy}^i denotes the
204 number of these shortest paths passing the node i .

205

206 Eigenvector centrality ⁶⁷ accounts for both the number and importance of connected neighbors,
207 assigning higher scores to nodes linked to other central nodes.

208
$$EC_i = \frac{1}{\lambda} \sum_{j=1} a_{ij} \cdot EC_j \quad (6)$$

209 Where λ is the eigenvalue of the adjacency matrix, which is a constant. EC_j represents the
210 eigenvector centrality of node j which is adjacent to node i .

211

212 Superedge connectivity (SUC)⁶⁸ quantifies the breadth of influence by measuring how extensively
213 a given superedge (a directed carbon flow from one region-sector pair to another) connects to other
214 parts of the network.

215
$$SUC_{SE1} = \sum_{SE1 (SE1 \neq SE2)}^{sn} \sum_{i=1}^{m \times n} (e_{i,SE1} \times e_{i,SE2}) \quad (7)$$

216 Where sn is the total number of superedges in the carbon flow supernetwork, and $m \times n$ ($m = 30$,
217 $n = 42$) is the total number of superedges in the carbon flow supernetwork. $EE = (e_{i,SE1})$ is the
218 superedge association matrix of the carbon flow supernetwork, which is described as

219
$$EE = (e_{i,SE1}) = \begin{bmatrix} e_{1,1} & e_{1,2} & \cdots & e_{1,sn} \\ e_{2,1} & e_{2,2} & \cdots & e_{2,sn} \\ \vdots & \vdots & \ddots & \vdots \\ e_{30,1} & e_{30,2} & \cdots & e_{30,sn} \end{bmatrix}$$
. If node i both belongs to superedges $SE1$ and $SE2$,

220 then $e_{i,SE1} \times e_{i,SE2} = 1$.

221

222 Superedge similarity (SUS)⁶⁰ evaluates the depth of influence, assessing the degree to which one
 223 superedge shares common interaction patterns with others.

$$224 \quad SUS_{SE1,SE2} = \frac{\sum_{i=1}^{m \times n} (e_{i,SE1} \times e_{i,SE2})}{\sum_{i=1}^{m \times n} (e_{i,SE1} + e_{i,SE2})} \quad (8)$$

$$225 \quad SUS_{SE1} = \sum_{SE1(SE1 \neq SE2)}^{sn} SUS_{SE1,SE2} / sn - 1 \quad (9)$$

226 Where $SUS_{SE1,SE2}$ denotes the SUS between superedges $SE1$ and $SE2$. SUS_{SE1} denotes the
 227 SUS of superedge $SE1$.

228
 229 The k-core decomposition^{69,70} identifies densely connected subgraphs within the carbon flow
 230 supernetwork, which represent core regional-sectoral clusters that drive carbon flow aggregation.

$$231 \quad \forall (d_{n-|H|}) \geq k \quad (10)$$

232 Where $d_{n-|H|}$ is the degree of node i in the network $N^* = (N - E, E - L)$, k is a constant,
 233 $H = \{i | SD_i < k\}$, $L = \{(i, j) | SD_i, SD_j < k\}$, $SD_i = ISD_i + OSD_i$.

234
 235 The cycle degree of node i refers to the number of directed cycles passing through it, while the
 236 cycle length of a directed cycle is defined as the number of edges in that cycle⁷¹.

$$237 \quad \alpha(i) = \sum_{s=1}^c \alpha^{l_s}(i) \quad (11)$$

$$238 \quad l(i) = \frac{\sum_{s=1}^c l_s(i) \times \alpha^{l_s}(i)}{\alpha(i)} \quad (12)$$

239 Where $\alpha(i)$ denotes the number of directed circle passing the node i , $\alpha^{l_s}(i)$ is the circle length
 240 of node i , whose cyclomatic number is $l_s(i)$, and $l(i)$ is the average circle length.

241
 242 Network density⁷² reflects the degree of connectivity between region-sector nodes by measuring
 243 how closely the actual structure approximates a fully connected graph.

$$244 \quad \rho = sn / v(v-1) \quad (13)$$

245

246 **2.4 Data sources and consolidation**

247 Time-series MRIO tables are used to calculate carbon flows of the Chinese economy. The MRIO
248 data for the years 2007, 2010, 2012, 2015, and 2017 are obtained from the China Emission Accounts
249 and Datasets (CEADs), as compiled by Zheng et al³⁶. The MRIO tables cover 30 administrative
250 regions, including 22 provinces, 4 municipalities, and 4 autonomous regions (Table A.1), and are
251 disaggregated into 42 economic sectors per region (Table A.2). Although CEADs MRIO tables are
252 already standardized to 42 sectors, minor inconsistencies exist in 2017 vintage because of
253 adjustments in industrial codes by the National Bureau of Statistics. To ensure temporal
254 comparability, the 2017 sectors were harmonized to the earlier scheme (Table A.2) by merging the
255 two R&D-related categories and reinstating waste sector through proportional reallocation based on
256 2015 shares. This choice of MRIO tables for above years is determined by the current availability
257 of China's input-output databases. The most recent official multi-regional input-output data for
258 China is updated only through 2017. Although model-based estimates for subsequent years are
259 available, they lack calibration by authoritative institutions and broad industry consensus. To ensure
260 data quality and the robustness of this study, such estimates are not adopted.

261

262 All MRIO tables were converted to 2007 constant prices using province-level GDP deflators
263 obtained from the National Bureau of Statistics. For each province r , the deflation coefficient was
264 defined as $D_{r,t} = GDP_r^{2007} / GDP_r^t$, where GDP_r^t is nominal GDP in year t . Each monetary
265 element of the MRIO matrix was multiplied by $D_{r,t}$ to remove inflationary effects, ensuring
266 comparability of economic flows and emissions across years.

267

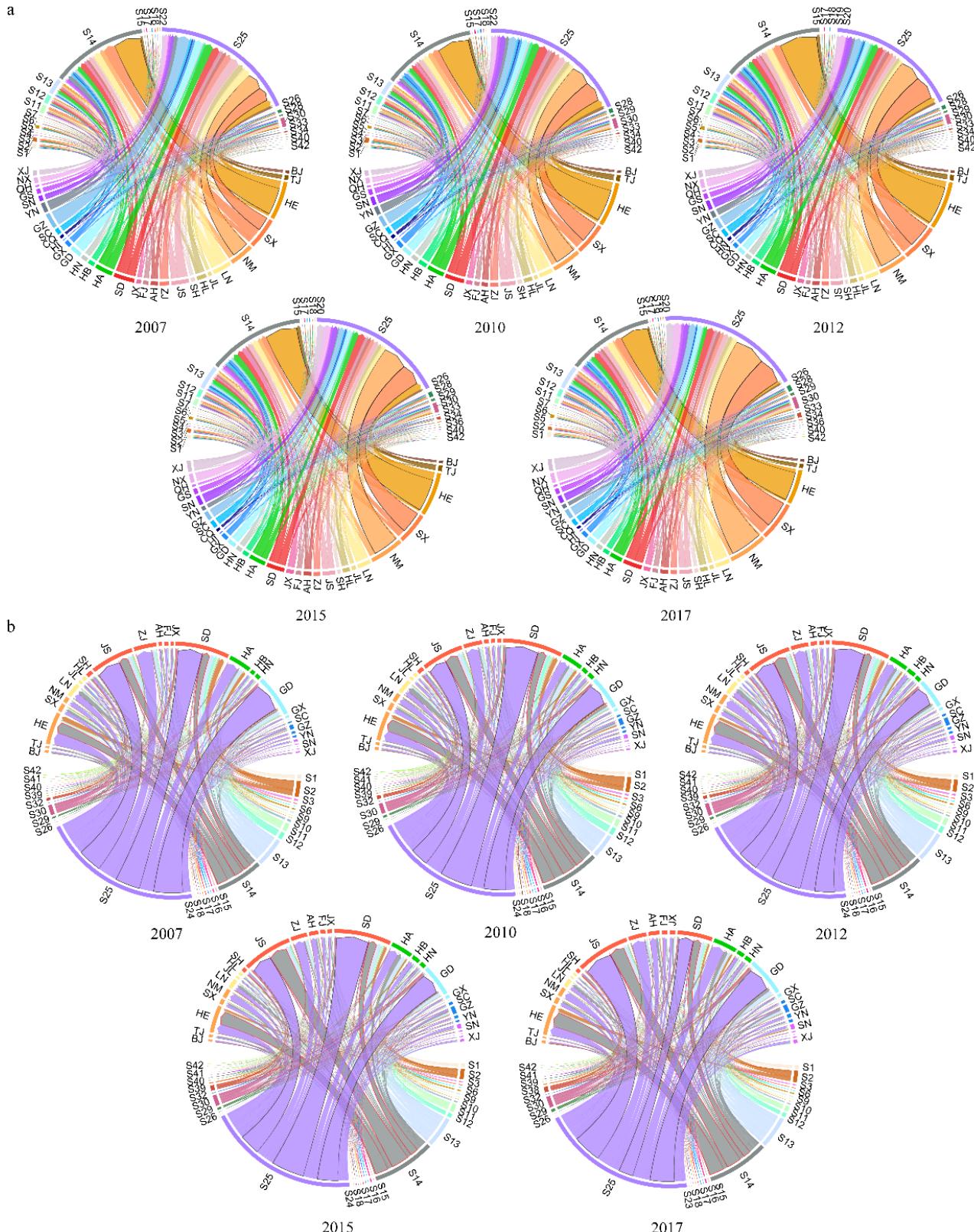
268 To ensure that the consolidation of multiple MRIO vintages does not bias the network structure, two
269 sensitivity tests were performed. The first test used alternative base-year deflation with 2010 RMB
270 prices, while the second adjusted energy-intensive sector emissions by $\pm 10\%$ to test non-
271 proportional emission allocation. Detailed information are provided in Supplementary Text S1.

272

273

274 **3 Results**

275 **3.1 Carbon flow patterns between regions and sectors**


276 Figure 1 illustrates the two-way carbon flows between regions and sectors in China from 2007 to
277 2017, depicting how carbon emissions are transmitted from emitting regions to specific sectors
278 (Figure 1a), and how key sectors contribute to regional carbon inflows (Figure 1b). These
279 visualizations highlight regional and sectoral asymmetries of China's carbon economy and the
280 changing dominance of emission-intensive flows across time. Figure 1a shows that carbon flows
281 are primarily sourced from coal-abundant northern regions, especially Hebei (HE), Shanxi (SX),
282 and Inner Mongolia (NM), toward high-emission sectors such as nonmetal (S13), metal (S14), and
283 electricity (S25). These regions act as upstream suppliers within the national production network, a
284 role shaped by their resource endowments and industrial specializations. In other words, these
285 upstream roles are closely related to the regions' abundant coal reserves and their policy-driven
286 positions as national energy bases, which are indirectly captured in the MRIO structures.
287 Accordingly, the identified "lock-in" should be understood as a structural dependence shaped by
288 resource-policy contexts, rather than as a denial of potential transition opportunities. The persistence
289 of upstream emitter provinces such as Inner Mongolia and Shanxi also raises issues of carbon equity,
290 as these regions disproportionately bear the burden of carbon-intensive production that serves
291 national demand. From 2007 to 2015, the largest carbon flow was from Hebei to S14, rising from
292 9.24% to 10.98% of total regional emissions, highlighting Hebei's strong industrial base and high
293 emission intensity. By 2017, however, the largest flow shifted to Inner Mongolia to S25, suggesting
294 a structural transition linked to increasing energy production capacity and investment in that region.
295 Shanxi to S25 remained the third-largest flow throughout the period; although absolute emissions
296 declined from 26.35 Mt CO₂ (2012) to 23.67 Mt CO₂ (2017), its share of total outflows increased
297 from 8.03% to 8.88%, due to the broader national decline in regional-to-sector carbon transfers post-
298 2012. This result, on the one hand, highlights how structural decline in national emissions can
299 amplify the proportional contribution of key regional emitters. On the other hand, regional
300 prominence in carbon networks is not solely dependent on emission volume, but also on broader
301 systemic changes in interregional trade and energy demand. Additional shifts include the decline of
302 Shanxi to S14, which peaked at 9.63 Mt CO₂ in 2007 and dropped continuously after 2010, and the
303 resurgence of Liaoning (LN) to S25, which decreased from 6.32 Mt CO₂ in 2007 to 2.99 Mt in 2012,

304 but rose again after 2015 by 4.15 Mt CO₂, reflecting localized sectoral reactivation.

305

306 Figure 1b illustrates how carbon-intensive sectors redistribute emissions toward regions via
307 interregional trade, capturing consumption-driven carbon demand. S25 remained the dominant
308 exporter of carbon flows throughout the decade, particularly toward coastal economic regions.
309 Between 2010 and 2015, S25 to Shandong (SD) was the largest carbon flow, peaking at 37.55 Mt
310 CO₂ in 2010 due to strong industrial demand. By 2017, however, the flow had significantly
311 decreased, and Jiangsu (JS) surpassed Shandong as the top importer, reflecting the shifting
312 geography of energy-driven emissions toward economically dynamic eastern regions. S14 ranked
313 second in carbon exports. Hebei led as the primary recipient in 2007 and 2012, with an annual
314 growth rate of 16.63%, but was later overtaken by Jiangsu, whose import growth from S14
315 accelerated to 25.81% per year from 2010 onward, suggesting an intensifying concentration of
316 heavy industrial activity in the eastern coastal belt. S13 consistently ranked third. Its exports to
317 Shandong led in 2007 (5.12 Mt CO₂), dropped sharply in 2010 (2.15 Mt), rebounded thereafter, but
318 were overtaken by Guangdong (GD) in 2017, reflecting evolving construction and infrastructure
319 demand patterns. Persistent spatial decouplings between carbon emissions and final consumption
320 are traced from these patterns. Northern interior regions like Shanxi, Inner Mongolia, and Hebei,
321 accounted for 34.81% of total regional outflows, acting as primary carbon suppliers due to their
322 dependence on energy and heavy industries. In contrast, eastern coastal regions such as Jiangsu,
323 Guangdong, and Shandong, functioned as carbon importers, driven by high demand for electricity,
324 processed materials, and construction inputs. Notably, just five regions received nearly 64% of
325 carbon outflows from S25, highlighting their centrality in downstream consumption and
326 redistribution. This spatial asymmetry between production and consumption underscores the
327 urgency of rethinking carbon responsibility frameworks.

328

330

Figure 1 | Carbon flows between regions and sectors in China from 2007 to 2017.

331

Notes: Regions and sectors are detailed in Table A.1 and Table A.2. The width of each chord

332

represents the magnitude of embodied carbon flows (Mt CO₂) between region-sector pairs.

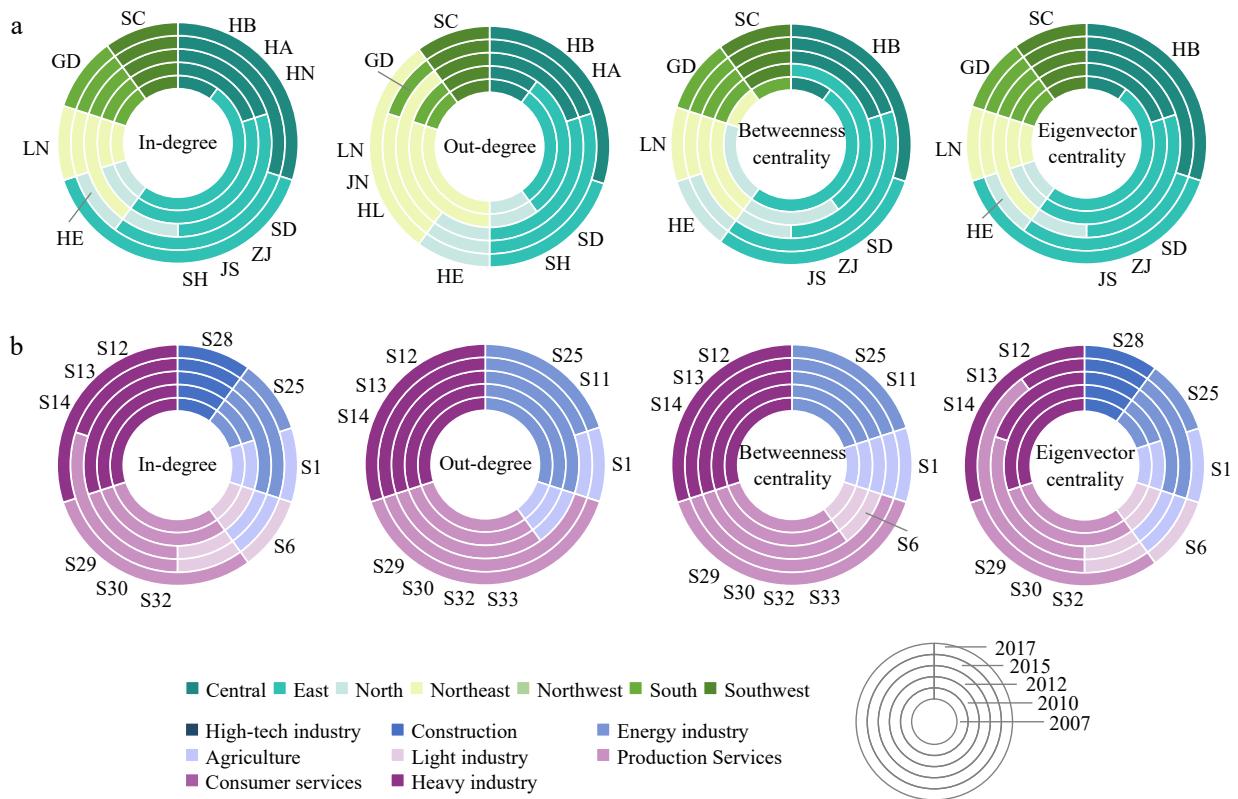
333

334 **3.2 Node characteristics and regional-sectoral functional roles**

335 Figure 2 presents the top ten regions and sectors across node-level metrics including in- and out-
336 degrees, betweenness and eigenvector centralities from 2007 to 2017, which offers insights into the
337 hierarchical positioning and functional roles of different nodes in carbon flow via China's economy.
338 At the regional level (Figure 2a), southeast coastal regions such as Shandong (SD), Jiangsu (JS),
339 Zhejiang (ZJ), and Guangdong (GD) account for approximately 50% of Top 10 nodes across most
340 metrics and years, indicating their stable roles as major hubs for carbon inflow and redistribution.
341 This pattern reflects the long-standing economic leadership of coastal regions, where industrial
342 clusters, advanced infrastructure, and international trade have created strong pull effects for
343 embodied carbon flows. These regions serve as terminal nodes for carbon-intensive products,
344 suggesting strong embeddedness within the national carbon flow system. Central regions like Henan
345 (HN) and Hubei (HB) contribute roughly 30% of Top 10 appearances, and show a gradual
346 strengthening of network positions over time. This shift can be attributed to national policies
347 promoting the development of central regions (e.g., the Rise of Central China Plan), coupled with
348 industrial relocation from coastal areas, leading to greater integration of central provinces into
349 national production and trade networks. Northeast regions, represented by Liaoning (LN), appear
350 prominently in out-degree metrics but are largely absent from in-degree and centrality-based
351 rankings. This indicates a structurally defined role as upstream carbon exporters, rooted in the
352 region's concentration of heavy industries, resource extraction, and basic material processing. The
353 absence of centrality metrics suggests limited integration into broader redistribution networks,
354 reinforcing Northeast China's profile as a specialized supplier rather than an intermediary hub. Other
355 regions, including Hebei (HE) and Sichuan (SC) are observed in Top 10 rankings across all metrics
356 and years. These two regions exemplify how strategically located inland regions contribute to the
357 national carbon network, both as production bases and as critical connectors bridging eastern and
358 western flows. The regional rankings exhibit high temporal stability over 2007–2017, as evidenced
359 by the persistent dominance of key coastal regions across multiple metrics. This implies persistent
360 spatial carbon lock-ins despite broader economic transitions and policy-driven efforts toward
361 structural transformation, highlighting the entrenched nature of carbon-intensive pathways at the
362 regional level. This temporal persistence of dominant regions indicates not only static stability but

363 also a dynamic lock-in process, whereby historical industrial configurations and policy incentives
364 reinforce the continuity of carbon-intensive pathways over time.

365


366 At the sectoral level (Figure 2b), heavy industries and production services dominate China's carbon
367 flow supernetwork, accounting for approximately 70% of Top 10 nodes. Heavy industries such as
368 chemistry (S12), nonmetal (S13), and metal (S14) supply essential materials for downstream
369 construction, manufacturing, and infrastructure. Their sustained dominance reflects the persistent
370 reliance of China's economy on carbon-intensive material production, a key challenge for national
371 decarbonization efforts. Production service sectors, including wholesale and retail (S29), transport
372 and logistics (S30), and information and technology (S32), play increasingly central roles,
373 particularly in recent years. This reflects the ongoing transition toward a more interconnected,
374 service-driven industrial structure, where logistics, digital infrastructure, and market systems
375 increasingly mediate embodied carbon dynamics. Energy industry, especially electricity (S25), is
376 highly prominent in out-degree metrics across all years, contributing about 30% of Top 10 rankings
377 in this dimension. As the primary carrier of energy in modern production and consumption, the
378 electricity sector naturally drives extensive embodied carbon outflows across the entire economy,
379 particularly given China's coal-based energy mix over this period. Agriculture (S1) consistently
380 appears in Top 10 rankings across multiple metrics and years. While not a dominant hub in the
381 carbon network, agriculture contributes significant baseline carbon flows through primary
382 production and food supply chains, highlighting the importance of integrating land-based sectors
383 into comprehensive mitigation strategies. Construction (S28) shows high in-degree and eigenvector
384 centrality, reflecting its dependence on upstream inputs and its centrality within the national carbon
385 flow supernetwork as a major end-use sector. However, its low betweenness centrality reflects its
386 role as a terminal demand sector, primarily absorbing carbon flows rather than mediating
387 interregional exchanges. The stability of top sectors over the decade, particularly infrastructure-
388 heavy sectors, indicates low degrees of sectoral decarbonization. This highlights difficulties of
389 shifting away from structurally embedded high-carbon activities, as these sectors remain central to
390 economic functionality and carbon network dynamics. The rising prominence of production services,
391 alongside the sustained dominance of heavy industries, reflects not only static structural reliance but
392 also the dynamic process of industrial upgrading and demand transformation, which gradually

393 reconfigures the carbon flow system. Their persistence underscores the need for targeted, sector-
394 specific interventions to achieve meaningful decarbonization within the embodied carbon system.

395

396 While the node analysis isolates regional and sectoral roles, it cannot reveal their integrated
397 positions. By linking the regional and sectoral attributes, we identify that Inner Mongolia-electricity
398 (S25) exemplifies a resource-dependent upstream anchor. Although Inner Mongolia does not rank
399 among the top network hubs (Figure 2), it remains one of the largest carbon emitters nationwide and
400 a dominant supplier of coal-based electricity. In 2017, this combination accounted for approximately
401 10% of total region-to-sector carbon flows, underscoring its pivotal role as a structural emission
402 source rather than a network intermediary. Its lock-in mechanism is resource-driven: abundant coal
403 endowments, long-term energy-base policies, and sunk investments in power infrastructure jointly
404 sustain a carbon-intensive production regime. Such peripheral lock-in reveals that even non-central
405 nodes can exert systemic influence by anchoring the carbon supply side of the network. By contrast,
406 Jiangsu-Metal (S14) represents a demand-driven downstream hub. It contributes about 8 % of total
407 sector-to-region carbon inflows, reflecting Jiangsu's industrial demand for metal materials in
408 manufacturing and construction. Its lock-in is consumption-driven: agglomerated heavy-industry
409 demand, supply-chain integration, and material-intensive urbanization reinforce embodied-carbon
410 inflows from upstream provinces. This combination shows high in-degree and eigenvector centrality
411 but limited out-degree, identifying Jiangsu as a terminal consumer node consolidating emissions
412 rather than mediating them. These cases reveal two complementary mechanisms of regional-sectoral
413 carbon lock-in: resource-based inertia in inland, energy-rich provinces that sustain upstream
414 emissions through infrastructural and policy entrenchment, and demand-aggregation inertia in
415 coastal manufacturing hubs that perpetuate downstream carbon inflows. Recognizing these
416 differentiated pathways can clarify how source- and sink-side structures jointly reproduce China's
417 high-carbon development trajectory.

418

419

420 **Figure 2|** Top 10 regions (a) and sectors (b) in node-level metrics during 2007-2017

421 Note: Each ring represents a year (2007-2017), moving outward chronologically.

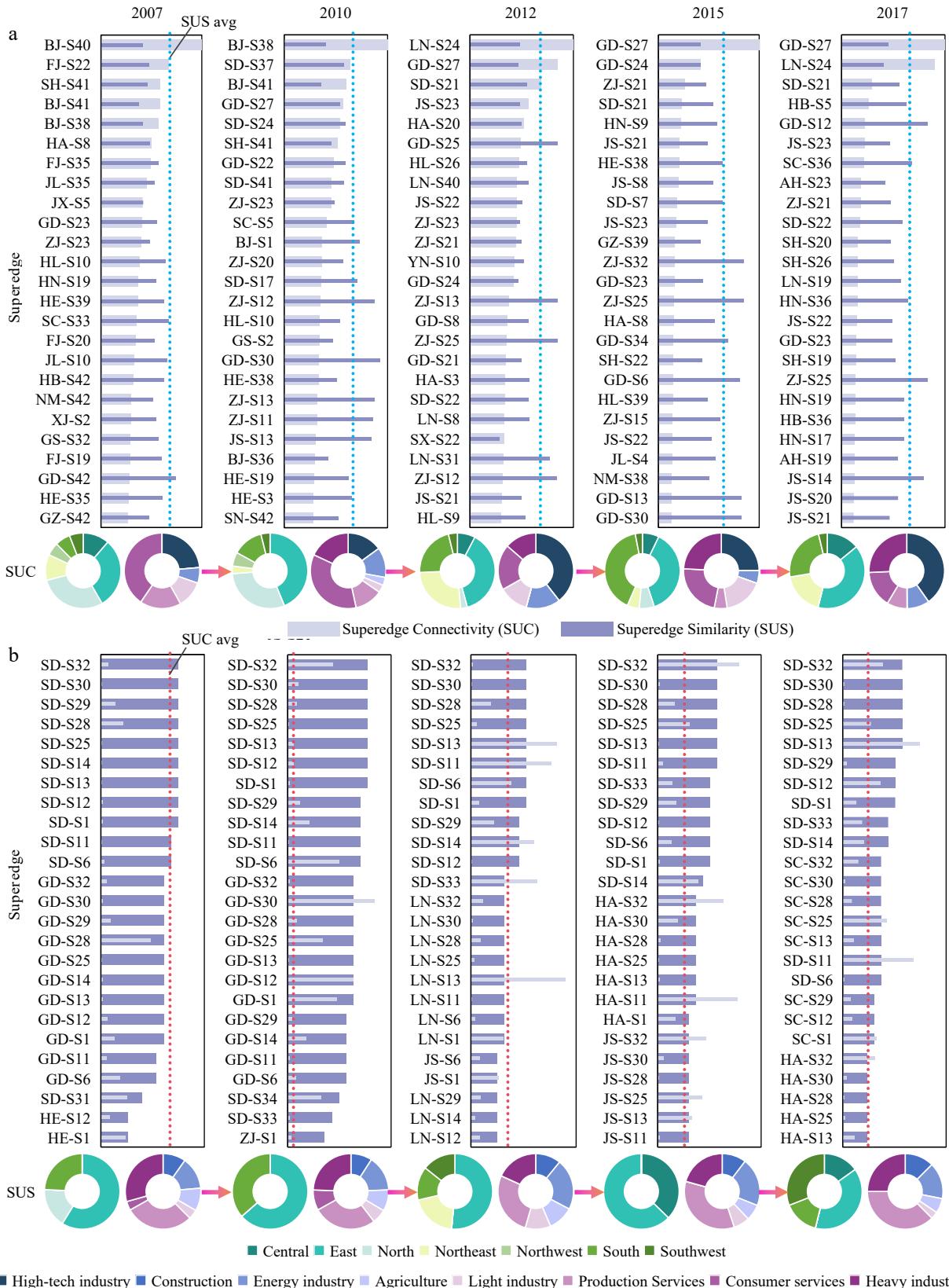
422

423 **3.3 Superedge influence and heterogeneous carbon flow interactions**

424 To assess how specific regional-sectoral connections (superedges) shape the structure and stability
 425 of China's carbon flow system, we evaluate two critical superedge-level metrics of superedge
 426 connectivity (SUC) and superedge similarity (SUS). SUC reflects the breadth of a superedge's
 427 systemic influence, i.e., the extent to which a region-sector connection radiates across the network.
 428 In contrast, SUS captures the depth of its interactions, indicating how strongly a superedge aligns
 429 with the behavioral patterns of others. Figure 3 presents the top 25 superedges ranked by SUC and
 430 SUS from 2007 to 2017.

431

432 The highest SUC-ranked superedges are predominantly composed of connections between coastal
 433 economic centers and high-technology or consumer service industries (Figure 3a). For example,
 434 superedges such as GD-S27 (Guangdong-water), JS-S23 (Jiangsu-waste recycling), and ZJ-S21
 435 (Zhejiang-instrumentation) dominate the top SUC rankings. These superedges represent critical


436 pathways through which carbon flows are orchestrated across multiple regional and industrial
437 domains. The dominance of these superedges reflects scale effects in coastal hubs, where provinces
438 such as Guangdong, Jiangsu, and Zhejiang concentrate industrial agglomeration and diversified
439 demand, anchoring large embodied flows that link upstream energy- and material-intensive sectors
440 with downstream technology and services. Their high connectivity reveals their systemic
441 importance in stabilizing carbon transmission under policy interventions, such as efficiency
442 upgrades and low-carbon transitions, and highlights their potential as leverage points for large-scale
443 carbon reduction efforts. Over time, a distinct evolution is observed in the composition of top-
444 ranking SUC superedges. In the early years (2007–2010), superedges dominated by consumer
445 services and traditional production industries were more prominent. However, by 2012 and beyond,
446 there is a clear transition towards high-technology industries and advanced service sectors,
447 paralleling China's broader economic shift towards services and innovation-driven development.
448 Spatially, the leadership of SUC superedges also becomes increasingly concentrated within eastern
449 coastal regions, reflecting their growing dominance in coordinating nationwide carbon flows. High-
450 SUC superedges serve as broad leverage points: cutting coastal demand intensity, raising efficiency,
451 and expanding low-carbon services can diffuse mitigation benefits across the supernetwork without
452 intervening in every peripheral link.

453

454 In contrast, the highest SUS-ranked superedges exhibit greater temporal stability and are largely
455 concentrated in heavy industries and production services within southeastern coastal regions (Figure
456 3b). Superedges such as SD-S13 (Shandong–nonmetal) and SD-S25 (Shandong–electricity)
457 consistently top SUS rankings, indicating deeply embedded, structurally aligned carbon exchanges
458 rooted in Shandong's industrial complex. Other high-SUS superedges like SD-S28 (construction),
459 SD-S30 (transport and logistics), and SD-S32 (information and technology) further illustrate
460 Shandong's multi-sectoral entrenchment within the carbon flow supernetwork, highlighting its
461 centrality in both material production and service intermediation. This persistence reflects the
462 convergence of several forces: industrial agglomeration in heavy-industry and producer-service
463 complexes, supply-chain complementarity between upstream energy/material inputs and
464 downstream construction/services, and policy-driven roles of coastal provinces as national hubs.
465 Together, these mechanisms reinforce overlapping carbon exchanges, which SUS detects as

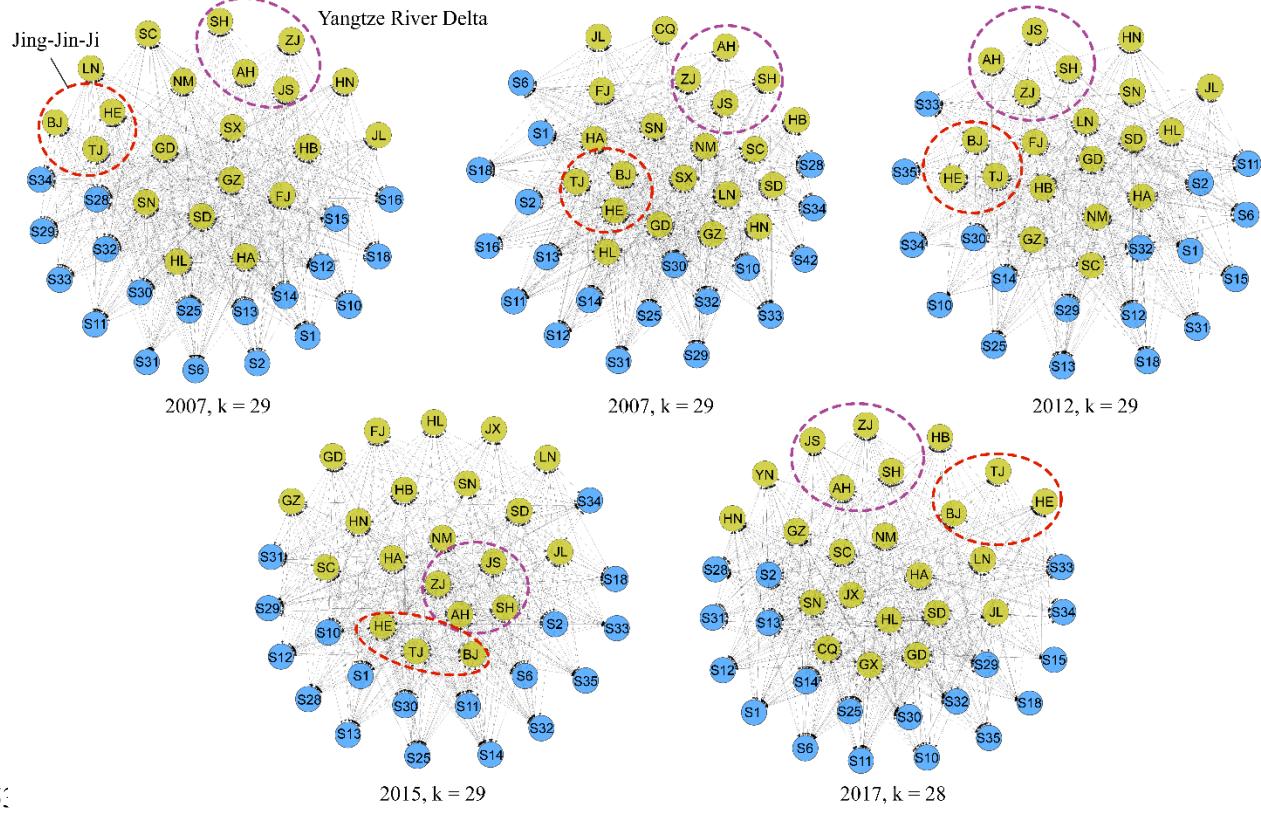
466 structurally aligned and persistent couplings. Temporal analysis shows that while the sectoral
467 structure of high-SUS superedges remains stable, spatial diffusion becomes more evident in later
468 years, with central and southwestern provinces such as Henan (HA) and Sichuan (SC) increasingly
469 entering the SUS top ranks. This suggests a slow but steady embedding of inland industrial centers
470 into national carbon flow patterns, mirroring broader trends of industrial relocation and inland
471 development policies. High-SUS superedges linking inland energy bases to coastal demand centers
472 further reflect equity concerns, where production-side provinces incur concentrated emissions while
473 consumption-side provinces externalize their embodied carbon. From a governance perspective,
474 such high-SUS couplings imply both risks and opportunities: they magnify policy transmission if
475 interventions target key flows, but also raise lock-in risks if left carbon intensive. Addressing these
476 superedges therefore requires upstream decarbonization, demand-side standards in construction, and
477 selective re-routing of critical couplings, while monitoring inland diffusion to avoid reproducing
478 coastal lock-in patterns.

479

481 **Figure 3|** Top 25 superedges and corresponding regional and sectoral categories ranked by
482 superedge connectivity (SUC) (a) and superedge similarity (SUS) (b) during 2007-2017
483 Note: Circular diagrams summarize the compositional evolution of superedges across seven regions
484 (left) and eight sectoral categories (right).

485 Further examination reveals substantial functional heterogeneity between SUC and SUS superedges.
486 Approximately 87% of superedges display an inverse relationship between SUC and SUS values.
487 Superedges like SD-S28, ZJ-S30, and HE-S12 feature high SUS but relatively low SUC, reflecting
488 deep but localized influence, often tied to strong industrial agglomeration and concentrated demand
489 within specific regions. In contrast, superedges such as ZJ-S21, SH-S20, and BJ-S31 exhibit high
490 SUC but lower SUS, indicating broad yet shallow carbon interactions associated with standardized
491 services and technology-driven sectors. These insights emphasize two strategic paths for optimizing
492 carbon flows within heterogeneous networks. Enhancing technological upgrading and carbon
493 efficiency in deeply embedded, high-SUS superedges to maximize decarbonization leverage within
494 regional cores, and promoting structural transitions toward high-value, low-carbon service and
495 technology sectors in high-SUC but low-SUS superedges to expand the breadth of carbon reductions
496 across the system. Such differentiated strategies, informed by superedge roles, are critical for
497 overcoming carbon lock-in challenges and achieving national carbon neutrality objectives.

498


499 **3.4 Structural agglomeration and core regional-sectoral clusters**

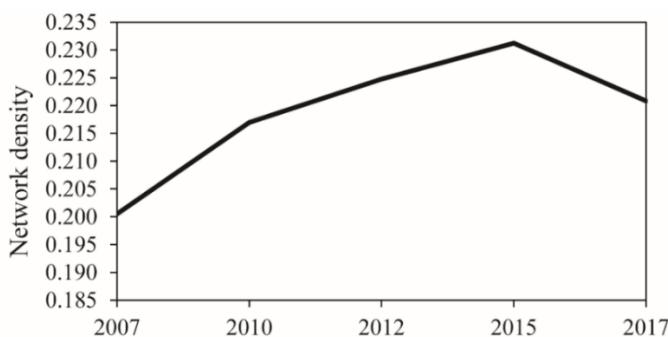
500 To examine the structural agglomeration and identify core nodes within China's carbon economy,
501 we apply k-core decomposition to reveal cohesive substructures that form the backbone of
502 interregional carbon flows. As shown in Figure 4, the k-core subgraphs from 2007 to 2017 remain
503 largely stable, despite slight annual variation in the maximum k-values (ranging from 28 to 30),
504 indicating a robust structural hierarchy. We found two distinct regional groupings embedded in high-
505 order cores. First, economically advanced regions, including Tianjin (TJ), Hebei (HE), Shanghai
506 (SH), Jiangsu (JS), Zhejiang (ZJ), Anhui (AH), and Guangdong (GD), persistently remain in the
507 innermost cores across all years. These regions constitute the economic centers of China's dominant
508 urban clusters: Jing-Jin-Ji and the Yangtze River Delta. Their centrality in the k-core reflects high
509 industrial density, strong cross-regional trade integration, and embedded infrastructure demand,
510 positioning them as structural stabilizers in the carbon flow network. Strategically enhancing
511 integration and decarbonization within these hubs may yield broad system-level efficiency gains
512 and emission reduction spillovers. Second, a group of resource-dependent yet economically less-
513 developed regions, notably Inner Mongolia (NM), Liaoning (LN), Jilin (JN), Heilongjiang (HL),
514 and Henan (HA), also maintain stable inclusion in the k-core. Despite lower degrees of economic

515 agglomeration, their roles as upstream suppliers of energy and heavy industrial inputs ensure their
516 structural significance. These regions exhibit persistent high carbon emissions due to reliance on
517 coal-intensive sectors and limited diversification. Their inclusion in the core highlights the challenge
518 of economic-environmental decoupling, where emission growth outpaces productivity gains.
519 Addressing this imbalance requires local policy shifts and coordinated governance efforts to support
520 structural transformation and green capacity building in these high-emission hinterlands.

521

522 The sectoral composition of stable k-cores consists of a combination of high-carbon, foundational
523 industries, including agriculture (S1), energy industries (coal mining (S2), petroleum and nuclear
524 fuel processing (S11), electricity (S25)), heavy industries (chemistry (S12), nonmetal (S13), metal
525 (S14)), construction (S28), and production services (wholesale and retail (S29), transport and
526 logistics (S30), information and technology (S32), Finance (S33)). The persistence of these sectors
527 in the k-core over a decade highlights a structural path dependency on resource- and emission-
528 intensive activities. While these sectors underpin economic output and supply chain continuity, their
529 centrality also signals vulnerability to carbon lock-in. Transitioning toward sustainable growth thus
530 requires not only end-of-pipe mitigation, but systemic restructuring, such as industrial upgrading,
531 energy substitution, and cross-regional green technology diffusion, to break structural inertia.

Figure 4 | k-core structures of China's carbon flow supernetwork


Notes: Yellow nodes represent regions and blue nodes represent sectors. Red and purple dashed circles highlight two persistent core clusters: the Jing-Jin-Ji (Beijing-Tianjin-Hebei) and Yangtze River Delta (Shanghai-Jiangsu-Zhejiang-Anhui).

3.5 System stability and internal carbon cycling

Figure 5 illustrates the temporal evolution of network density, capturing changes in the overall interconnectivity of regions and sectors. The network density increased from 0.200 in 2007 to a peak of 0.231 in 2015, indicating enhanced interconnectivity among regions and sectors. This growth reflects more intensive carbon exchange and stronger economic linkages, suggesting a more integrated and efficient carbon flow system during this period. The rise in density also corresponds with the emergence of more connected subgraphs, pointing to improved systemic cohesion within the network, likely driven by accelerated industrialization and infrastructure expansion. However, by 2017, network density declined to 0.218, marking a structural turning point. This reduction aligns with China's strategic pivot from high-speed growth toward green transformation. As low-carbon policies began constraining high-emission sectors, interregional carbon transfers became less

549 diffuse, reducing the breadth of certain carbon linkages. The evolution of network density thus
550 reflects a trade-off between economic integration and climate-oriented restructuring, where
551 structural decarbonization reshapes the topology of carbon connectivity.

552

553

554 **Figure 5|** The network density of China's carbon flow supernetwork

555

556 Complementing the density trend, Table 2 presents annual node-level cycle participation to reveal
557 the capability to sustain and facilitate the internal circulation of carbon emissions within economic
558 agglomerations. Regionally, most regions maintained high levels of cycle involvement (exceeding
559 35,000 cycles annually), highlighting their foundational role in sustaining local carbon flow
560 feedback loops. Shandong dominated in cycle frequency from 2007 to 2015, underscoring its
561 centrality in production and redistribution activities. However, by 2017, its ranking dropped to sixth,
562 suggesting a potential shift in regional carbon exchange dynamics. In contrast, Zhejiang and
563 Guangdong consistently ranked among the top regions, reflecting their enduring integration within
564 coastal agglomerations. Henan saw a marked rise in cycle participation in 2015 and 2017, indicating
565 strengthened interregional linkages and an increasingly supportive role in the national carbon system.
566 These regional shifts point to growing structural differentiation and adaptive capacity within the
567 RSCFN. Sectoral node analysis similarly indicates robust cycle participation (over 30,000 cycles
568 annually), reflecting strong sectoral interconnections across regions. From 2007 to 2017, the
569 information technology services (S32) exhibited the most notable increase in cycle involvement,
570 highlighting its rising influence in facilitating technological diffusion, service-driven linkages, and
571 industrial upgrading. Conversely, traditional heavy industries such as chemistry (S12) experienced
572 a steady decline in cyclicity, signaling a reduced ability to support interregional carbon recirculation.
573 This pattern aligns with China's broader structural transition—from carbon-intensive manufacturing

574 to innovation- and knowledge-driven sectors—as a foundation for future sustainable growth. The
575 dual trends of evolving connectivity and shifting cycle participation reveal a carbon flow system
576 undergoing strategic transformation. While structural cohesion initially intensified with economic
577 growth, recent signals suggest a reorientation toward a more selective, low-carbon network
578 architecture. This transition reflects both the pressures and opportunities of systemic
579 decarbonization, where improving internal cycling efficiency and optimizing node connectivity are
580 essential for long-term resilience.

581

582 **Table 2** | Top 5 regional and sectoral nodes in cycle degree

Year	Cycle degree of regions					Cycle degree of sectors				
	2007	2010	2012	2015	2017	2007	2010	2012	2015	2017
Average	39985	40383	39869	40056	35276	32747	33142	33618	32882	30736
	SD	SD	SD	SD	ZJ	S12	S12	S11	S25	S32
	GD	GD	ZJ	ZJ	SC	S30	S13	S1	S32	S25
Top 5	ZJ	ZJ	LN	HA	HA	S13	S25	S25	S11	S13
	SH	SH	HE	GD	HN	S1	S1	S32	S13	S30
	JS	JS	HB	HN	GD	S14	S30	S30	S30	S29

583 Note: Cycle degree measures the number of closed carbon flow loops in which a node (region or
584 sector) participates, indicating its contribution to feedback structures within the supernetworck.
585 Higher values represent stronger involvement in carbon circulation rather than one-way
586 transmission.

587

588 **4 Discussion**

589 This study constructs the carbon flow supernetworck to analyze how carbon emissions are spatially
590 and sectorally redistributed across China. The network-based perspective reveals that carbon flow
591 is not uniformly distributed but instead reflects deep structural heterogeneity shaped by regional
592 resource endowments, industrial specialization, and economic agglomeration. Recognizing these
593 structural differences is essential for designing differentiated and targeted carbon reduction
594 strategies that align with the carbon peaking and neutrality goals.

595

596 Network metrics underscore that carbon governance must differentiate between embedded hubs and
597 peripheral suppliers. Provinces with central positions sustain demand-driven linkages, while

598 resource-based regions remain upstream providers; effective strategies should therefore go beyond
599 emission volumes and address the structural embeddedness of each node. Superedge metrics reveal
600 complementary pathways for intervention. High connectivity (SUC) identifies links with broad
601 diffusion potential, while high similarity (SUS) signals entrenched dependencies; together they
602 show where to prioritize efficiency standards, fuel switching, and re-sourcing. Hybrid cases are
603 especially instructive: deep but localized superedges require cross-regional cooperation and finance
604 to scale their impact, while broad but shallow ones can steer consumption and innovation toward
605 low-carbon trajectories. The structural backbone of China's carbon economy lies in persistent
606 regional cores that act simultaneously as growth engines and carbon anchors. These clusters demand
607 integrated policies that link technological leadership in core cities with upstream decarbonization
608 and sectoral upgrading across surrounding regions, ensuring coordinated rather than piecemeal
609 transitions. From a carbon equity perspective, the supernetwork analysis also reveals imbalances:
610 upstream provinces disproportionately bear emission burdens while downstream absorbers benefit
611 from embodied inflows. This pattern is consistent with MRIO-based evidence on embodied transfers
612 in China^{56,73}. To substantiate this pattern, we quantified interprovincial carbon transfers. Upstream
613 energy- and resource-intensive provinces such as Shanxi, Inner Mongolia, and Ningxia remain
614 consistent carbon exporters, whereas economically advanced coastal provinces such as Beijing,
615 Shanghai, and Guangdong exhibit persistent carbon import dependence (Figure S1; Table S8). In
616 parallel, a carbon equity evaluation matrix (Figure S2) was constructed by combining per-capita
617 GDP and production-based carbon intensity (t CO₂ per 10⁴ CNY), using China's annual mean as
618 reference. The matrix identifies four regional archetypes: green leaders (high income, low intensity),
619 transition-intensive (high income, high intensity), inclusive growth (low income, low intensity), and
620 support priority (low income, high intensity). Coastal and metropolitan economies (e.g., Beijing,
621 Shanghai, Jiangsu, Zhejiang) fall in the green leader quadrant, while upstream energy bases (e.g.,
622 Shanxi, Inner Mongolia, Ningxia, Guizhou) occupy the support priority quadrant. The convergence
623 of carbon transfers and equity-matrix results reveal persistent structural inequities between
624 economic benefits and emission responsibilities, echoing findings in the broader literature on
625 interregional carbon inequality⁷⁴. Addressing these inequities requires differentiated policy tools—
626 such as transfer payments, green investment incentives, and region-specific transition pathways—
627 that balance responsibilities and capacities across provinces.

628

629 The dynamic evolution of China's carbon system underscores the persistence of path-dependent
630 mechanisms alongside gradual reconfiguration. Changes in network density and cycle participation
631 reflect the evolving cohesion of the carbon system: rising participation of inland provinces and
632 emerging service sectors indicates that new actors are becoming embedded in systemic loops, while
633 traditional heavy industries gradually lose circulation roles. Multi-period analysis (2007-2017)
634 shows enduring coastal hubs, the growing importance of services, and the diffusion of high-SUS
635 superedges from coastal to inland provinces. These dynamics are explained by industrial
636 agglomeration, supply-chain complementarity, and policy-driven specialization, which not only
637 sustain existing lock-ins but also provide leverage points for intervention. High-SUS superedges,
638 such as Shandong's multi-sector couplings in electricity, construction, and logistics, are rooted in
639 these complementarities and policy-driven specialization, and their diffusion into provinces like
640 Henan and Sichuan demonstrates that lock-in motifs can spread geographically. The shifting roles
641 of inland provinces and emerging services suggest a window of opportunity to steer transition from
642 quantity-driven growth toward innovation-led green development, consistent with lock-in theory
643 that stresses reinforcing mechanisms behind carbon-intensive structures^{10,75}.

644

645 The supernetwork evaluation therefore reframes carbon governance as a structural intervention
646 problem, identifies three categories of actors whose interactions sustain China's carbon lock-in, and
647 provides a systematic roadmap for breaking carbon lock-in. (1) Upstream supply anchors such as
648 Inner Mongolia-Electricity and Shanxi-Coal, possess high out-degree centrality, exporting over 70%
649 of embodied carbon flows. Structural leverage lies in reducing the emission factor per unit output
650 and weakening the centrality of carbon-intensive superedges. Key measures include tightening
651 efficiency standards for coal- and gas-fired power to $\leq 300 \text{ gCO}_2/\text{kWh}$ by 2030 (-15% from 2020
652 baseline), and expanding renewable integration in regional grids to $\geq 45\%$ electricity share by 2035.
653 These measures directly reduce outflow intensity and shift centrality from energy to cleaner
654 generation nodes, thus dismantling resource-based inertia. (2) Intermediary processors such as
655 Henan-Chemical and Shandong-Transport, balance inflows and outflows (~ 1.0 ratio) and mediate
656 30 – 40% of total national carbon transmission. Structural mitigation should focus on clean-process
657 transitions and green supply-chain procurement, mandate low-carbon materials procurement in

658 construction and manufacturing with a minimum 50% clean procurement share by 2030, and
659 promote industrial symbiosis in chemical and transport sectors to reuse by-products and recover
660 waste heat. These actions lower the SUS between energy- and material-intensive sectors by 8-12%,
661 reducing redundant carbon linkages and improving network efficiency. (3) Downstream demand
662 hubs such as Jiangsu-Metal and Guangdong-Machinery, show high in-degree centrality (>0.65) as
663 carbon sinks through final demand. Their leverage stems from demand substitution and
664 electrification of logistics, implement green procurement standards for public and corporate
665 consumers ($\geq 30\%$ low-carbon products by 2030), and accelerate logistics electrification to achieve
666 60% zero-emission freight vehicles by 2035. These strategies weaken the inflow dominance of
667 heavy industrial sectors and gradually shift demand toward service-based and renewable-intensive
668 nodes, mitigating demand-driven lock-in (see Table S9 for a summary of structural categories and
669 corresponding interventions). Integrating the network metrics and carbon-flow magnitudes, a
670 leverage-based sequencing can be proposed. Phase I (2025-2030): Upstream mitigation first to
671 decarbonize electricity and metallurgy supply nodes that account for $\sim 40\%$ of total embodied
672 outflows. Phase II (2030-2040): Midstream optimization to strengthen circular manufacturing and
673 green procurement to reconfigure conversion pathways, reducing SUS overlap density by 10%.
674 Phase III (2040-2050): Downstream transformation to reshape consumption and logistics demand,
675 lowering final embodied inflows by 20-25%. This sequenced strategy corresponds to progressive
676 centrality rebalancing. Phase I reduces out-degree dominance of energy sectors, Phase II lowers
677 superedge overlap across heavy industries, and Phase III decreases in-degree aggregation in coastal
678 demand hubs. These shifts produce a systemic contraction of carbon interdependencies,
679 transforming the national economy from a lock-in-prone to a resilient low-carbon configuration (for
680 policy-relevant evidence on interregional reconfiguration, see Wang, et al. ⁷⁶).

681
682 Besides empirical findings, the study also contributes methodologically. By integrating MRIO with
683 supernetwork analysis, we advance from simply mapping how much carbon flows where to
684 revealing how cross-layer structures sustain flows and where to intervene. Superedges expose
685 bidirectional region-sector dependencies and reveal integrated upstream-downstream roles that are
686 invisible when regions and sectors are analyzed separately. Connectivity and similarity metrics
687 diagnose whether carbon pathways are redundant and concentrated—signatures of structural lock-

688 in—or diversified, which cannot be inferred from MRIO magnitudes or single-layer degrees.
689 Recurrent cross-layer cycles and motifs explain why high-carbon structures persist across years even
690 when technical coefficients improve. These observed lock-in and reconfiguration patterns should be
691 interpreted as topological manifestations of systemic dependence, not as direct policy-induced
692 outcomes. To partially validate the inferred mechanisms, a pre- and post-policy contrast was
693 implemented around the 12th Five-Year Plan (2011-2015), which marked China's first nationwide
694 carbon-intensity control and energy-efficiency campaign. Between 2007-2010 and 2015-2017,
695 network density decreased from 0.214 to 0.193 (-9.8%), while core–periphery disparity reduced by
696 6.3%, suggesting that structural coupling between upstream energy and downstream manufacturing
697 nodes weakened modestly during the policy period. These changes are consistent with, though not
698 exclusively caused by, policy-driven decarbonization and industrial upgrading. The findings also
699 contribute to theoretical dialogue by distinguishing carbon lock-in from carbon dependency ^{10,75}.
700 Dependency emphasizes reliance on carbon-intensive resources, whereas lock-in highlights the
701 reinforcing mechanisms that perpetuate such reliance even when alternatives exist. Recognizing
702 both is essential for designing policies that target not only resource reliance but also structural inertia.

703

704

705 Critical region-sector couplings reflect technological heterogeneity within sectors. For example,
706 Inner Mongolia's electricity mix is dominated by coal, whereas Sichuan's relies primarily on
707 hydropower. These fundamental differences in resource endowments and technology mixes shape
708 the carbon intensity of otherwise identical sectors and explain why some region-sector pairs
709 consistently rank as critical superedges. Recognizing such heterogeneity sharpens the interpretation
710 of lock-in: similarities captured by SUS represent not only structural demand-supply couplings but
711 also entrenched technology portfolios. Addressing them requires differentiated measures—fuel
712 switching and efficiency retrofits in fossil-based provinces versus demand substitution and grid
713 integration in renewable-rich provinces. This aligns with updated carbon-lock-in perspectives that
714 integrate technological and institutional dimensions ⁷⁷.

715

716 Despite its contributions, this study is subject to limitations common to MRIO-based analyses. The
717 framework assumes fixed technical coefficients within each year, so although multi-year data reflect

718 observed changes in efficiency and structure, they do so only in a stepwise manner, and the
719 comparative design across discrete time points does not fully capture continuous dynamics of
720 technological change, substitution, or policy feedbacks. External drivers such as energy prices,
721 environmental regulations, and international trade are only implicitly embedded in MRIO data, and
722 while import-export accounts partly reflect international exchanges, our framework does not
723 explicitly model global linkages. Sectoral aggregation may mask important technological
724 heterogeneity, as illustrated by differences between coal-based electricity and hydropower-
725 dominated electricity. Future research could therefore incorporate dynamic MRIO variants or hybrid
726 MRIO-CGE approaches, link the supernet framework with explicit policy and trade layers,
727 couple domestic networks with global MRIO databases, and incorporate sub-sectoral and
728 technology-specific data into a region-sector-technology tri-layer design, thereby yielding a more
729 comprehensive picture of carbon lock-in and transition pathways. In addition, extensive uncertainty,
730 sensitivity, and robustness analyses (Supplementary Text, Sections S1-S3) confirm that the network
731 rankings, superedge metrics, and policy-relevant findings remain stable under alternative
732 assumptions, parameter settings, and aggregation levels, supporting the reliability of the findings.

733

734 **5 Conclusion**

735 This study develops a supernet framework to systematically uncover the structural logic and
736 dynamic evolution of carbon flows across China's economy. By integrating MRIO data with
737 network science, we shift from conventional emission accounting to reveal how carbon is embedded,
738 circulated, and locked in through regional-sectoral interdependencies. Our analysis indicates that
739 China's carbon emissions are governed not only by high-emitting regions or sectors but more
740 profoundly by structurally embedded nodes and linkages. We identify three key mechanisms
741 underpinning carbon lock-in. First, upstream emission is concentrated in coal-rich regions that
742 continue to supply carbon-intensive outputs through power and heavy manufacturing. Second,
743 downstream demand is consolidated in industrialized coastal regions, which are carbon consumers
744 and redistribution centers. Third and most critically, a small group of intermediary regions and
745 sectors, including Shandong, Henan, logistics, construction, and information services, exhibit high
746 structural centrality and effectively mediate carbon transfers throughout the national economy.
747 These actors constitute functional bottlenecks and strategic leverage points within the carbon system.

748 Moreover, structural features such as persistent high-order k-cores in the Jing-Jin-Ji and Yangtze
749 River Delta agglomerations serve as spatial anchors of carbon path dependence, while post-2015
750 shifts in network density and carbon cycle participation suggest the early emergence of low-carbon
751 transformation pathways centered on service and innovation sectors. These findings carry several
752 implications for carbon governance. Decarbonization strategies should prioritize structurally central
753 nodes, not just the largest emitters, to achieve systemic leverage. Cross-sectoral coordination and
754 regional cooperation must be embedded in national mitigation planning, particularly within
755 entrenched industrial clusters. Policy design should shift from static targets to flow-oriented
756 interventions, addressing how carbon is transmitted, intermediated, and institutionally reinforced.

757

758

759

760 **Supplementary data**

761 **Table A.1|** Regions selected in this study

Abbr	Province	Region	Abbr	Province	Region
BJ	Beijing	North China	HA	Henan	Central China
TJ	Tianjin	North China	HB	Hubei	Central China
HE	Hebei	North China	HN	Hunan	Central China
SX	Shanxi	North China	GD	Guangdong	South China
NM	Inner Mongolia	North China	GX	Guangxi	South China
LN	Liaoning	Northeast China	HI	Hainan	South China
JL	Jilin	Northeast China	CQ	Chongqing	Southwest China
HL	Heilongjiang	Northeast China	SC	Sichuan	Southwest China
SH	Shanghai	East China	GZ	Guizhou	Southwest China
JS	Jiangsu	East China	YN	Yunnan	Southwest China
ZJ	Zhejiang	East China	SN	Shaanxi	Northwest China
AH	Anhui	East China	GS	Gansu	Northwest China
FJ	Fujian	East China	QH	Qinghai	Northwest China
JX	Jiangxi	East China	NX	Ningxia	Northwest China
SD	Shandong	East China	XJ	Xinjiang	Northwest China

762

763

764 **Table A.2|** Sectoral classification from input-output table of China

No	Sector	Industry classification
S1	Farming, Forestry, Animal Husbandry and Fishery	Agriculture
S2	Mining and washing of coal	Energy industry
S3	Extraction of petroleum and natural gas	Energy industry
S4	Mining and processing of metal ores	Energy industry
S5	Mining and processing of nonmetal ores	Energy industry
S6	Manufacture of foods and tobacco	Light industry
S7	Manufacture of textile	Light industry
S8	Manufacture of textile wearing apparel, footwear, caps, leather, furs, feather (down), and related products	Light industry
S9	Processing of timber, manufacture of furniture	Light industry
S10	Manufacture of paper, printing, Manufacture of articles for culture, education, and sports activities	Light industry
S11	Processing of petroleum, coking, and processing of nuclear fuel	Energy industry
S12	Chemical industry	Heavy industry
S13	Manufacture of non-metallic mineral products	Heavy industry
S14	Smelting and processing of metals	Heavy industry
S15	Manufacture of metal products	Heavy industry
S16	Manufacture of general purpose machinery	Heavy industry
S17	Manufacture of special purpose machinery	Heavy industry
S18	Manufacture of transport equipment	Heavy industry
S19	Manufacture of electrical machinery and equipment	High-tech industry

No	Sector	Industry classification
S20	Manufacture of communication equipment, computers and other electronic equipment	High-tech industry
S21	Manufacture of measuring instruments	High-tech industry
S22	Other manufacturing	High-tech industry
S23	Comprehensive use of waste resources	High-tech industry
S24	Repair of metal products, machinery and equipment	Light industry
S25	Production and distribution of electric power and heat power	Energy industry
S26	Production and distribution of gas	Energy industry
S27	Production and distribution of tap water	Light industry
S28	Construction	Construction
S29	Wholesale and retail trades	Production services
S30	Transport, storage, and postal services	Production services
S31	Hotel and restaurant	Consumer services
S32	Information transfer, software and information technology services	Production services
S33	Finance	Production services
S34	Real estate	Consumer services
S35	Tenancy and commercial services	Production services
S36	Research and experimental development	Production services
S37	Administration of water, environment, and public facilities	Production services
S38	Resident, repair and other services	Consumer services
S39	Education	Consumer services
S40	Health care and social work	Consumer services
S41	Culture, sports, and entertainment	Consumer services
S42	Public administration, social insurance, and social organizations	Consumer services

765

766

767 **References**

- 768 1 Nema, P., Nema, S. & Roy, P. An overview of global climate changing in current scenario and
769 mitigation action. *Renewable and Sustainable Energy Reviews* **16**, 2329-2336 (2012).
- 770 2 Tambo, E., Duo-Quan, W. & Zhou, X.-N. Tackling air pollution and extreme climate changes
771 in China: Implementing the Paris climate change agreement. *Environment International* **95**,
772 152-156 (2016).
- 773 3 Teng, F. & Wang, P. The evolution of climate governance in China: drivers, features, and
774 effectiveness. *Environmental Politics* **30**, 141-161 (2021).
- 775 4 Xu, G., Dong, H., Xu, Z. & Bhattacharai, N. China can reach carbon neutrality before 2050 by
776 improving economic development quality. *Energy* **243**, 123087 (2022).
- 777 5 Zhao, X., Ma, X., Chen, B., Shang, Y. & Song, M. Challenges toward carbon neutrality in China:
778 Strategies and countermeasures. *Resources, Conservation and Recycling* **176**, 105959 (2022).
- 779 6 Wang, F., Wu, M. & Zheng, W. What are the impacts of the carbon peaking and carbon neutrality
780 target constraints on China's economy? *Environmental Impact Assessment Review* **101** (2023).
781 <https://doi.org/10.1016/j.eiar.2023.107107>

782 7 Chen, H., Qi, S. & Tan, X. Decomposition and prediction of China's carbon emission intensity
783 towards carbon neutrality: from perspectives of national, regional and sectoral level. *Science of
784 The Total Environment* **825**, 153839 (2022).

785 8 Lin, Z. & Liao, X. Synergistic effect of energy and industrial structures on carbon emissions in
786 China. *Journal of Environmental Management* **345**, 118831 (2023).

787 9 Lin, B. & Zhao, H. Asymmetric trade barriers and CO₂ emissions in carbon-intensive industry.
788 *Journal of Environmental Management* **349**, 119547 (2024).

789 10 Unruh, G. C. Understanding carbon lock-in. *Energy Policy* **28**, 817-830 (2000).
790 [https://doi.org/https://doi.org/10.1016/S0301-4215\(00\)00070-7](https://doi.org/https://doi.org/10.1016/S0301-4215(00)00070-7)

791 11 Unruh, G. C. Escaping carbon lock-in. *Energy Policy* **30**, 317-325 (2002).
792 [https://doi.org/https://doi.org/10.1016/S0301-4215\(01\)00098-2](https://doi.org/https://doi.org/10.1016/S0301-4215(01)00098-2)

793 12 Tabash, M. I., Farooq, U., El Refae, G. A. & Qasim, A. Exploring the carbon footprints
794 of economic growth, foreign investment, energy dependency and financial development:
795 does EKC work in GCC region? *Management of Environmental Quality: An International
796 Journal* **34**, 273-289 (2022). <https://doi.org/10.1108/meq-05-2022-0137>

797 13 Yu, Y., Jian, X., Won, D. & Jahanger, A. Breaking the carbon bind: How digitalization and
798 energy transformation reshape carbon dependency based on wavelet and machine learning
799 approaches. *Environmental Development* **55**, 101226 (2025).
800 <https://doi.org/https://doi.org/10.1016/j.envdev.2025.101226>

801 14 Guo, C. *et al.* The unintended dilemma of China's target-based carbon neutrality policy and
802 provincial economic inequality. *Energy Economics* **126**, 107002 (2023).

803 15 Liu, Z. *et al.* Challenges and opportunities for carbon neutrality in China. *Nature Reviews Earth
804 & Environment* **3**, 141-155 (2022).

805 16 Jia, L. *et al.* Spatial correlation investigation of carbon emission efficiency in the Yangtze River
806 Delta of China: The role of low-carbon pilot cities. *Ecological Indicators* **172**, 113282 (2025).

807 17 Mehmood, K., Hassan, S. T., Qiu, X. & Ali, S. Comparative analysis of CO₂ emissions and
808 economic performance in the United States and China: Navigating sustainable development in
809 the climate change era. *Geoscience Frontiers* **15**, 101843 (2024).

810 18 Bandara, P., Ray, R., Lu, J. & Gallagher, K. P. Developing countries locked out of low-carbon
811 technology trade. *Science* **388**, 248-250 (2025).

812 19 Pan, X., Wang, M. & Li, M. Low-carbon policy and industrial structure upgrading: Based on
813 the perspective of strategic interaction among local governments. *Energy Policy* **183**, 113794
814 (2023).

815 20 Zhang, H., Sun, X., Bi, C., Ahmad, M. & Wang, J. Can sustainable development policy reduce
816 carbon emissions? Empirical evidence from resource-based cities in China. *Science of the Total
817 Environment* **838**, 156341 (2022).

818 21 Liu, J., Wang, K., Zou, J. & Kong, Y. The implications of coal consumption in the power sector
819 for China's CO₂ peaking target. *Applied Energy* **253**, 113518 (2019).

820 22 Zhang, S. *et al.* Targeting net-zero emissions while advancing other sustainable development
821 goals in China. *Nature Sustainability* **7**, 1107-1119 (2024).

822 23 Xian, B., Xu, Y., Chen, W., Wang, Y. & Qiu, L. Co-benefits of policies to reduce air pollution
823 and carbon emissions in China. *Environmental Impact Assessment Review* **104**, 107301 (2024).

824 24 Shen, R. *et al.* Research on carbon compensation zoning guided by major function zones: A case
825 study of the Yangtze River Delta region. *Ecological Indicators* **173**, 113383 (2025).

826 25 Bai, L. *et al.* Effects of digital economy on carbon emission intensity in Chinese cities: A life-
827 cycle theory and the application of non-linear spatial panel smooth transition threshold model.
828 *Energy Policy* **183**, 113792 (2023).

829 26 Zhang, W. *et al.* The economy–employment–environmental health transfer and embedded
830 inequities of China's capital metropolitan area: a mixed-methods study. *The Lancet Planetary
831 Health* **7**, e912–e924 (2023).

832 27 Tian, P. *et al.* Water-energy-carbon nexus in China's intra and inter-regional trade. *Science of the
833 Total Environment* **806**, 150666 (2022).

834 28 Fu, W., Yang, S., Hu, S. & Zhang, P. The impact of embodied land flow in interregional trade
835 on carbon emissions in China. *Applied Geography* **159**, 103065 (2023).

836 29 Ju, H., Zeng, G. & Zhang, S. Inter-provincial flow and influencing factors of agricultural carbon
837 footprint in China and its policy implication. *Environmental Impact Assessment Review* **105**
838 (2024). <https://doi.org/10.1016/j.eiar.2024.107419>

839 30 Xu, C., Zhu, Q., Li, X., Wu, L. & Deng, P. Determinants of global carbon emission and
840 aggregate carbon intensity: A multi-region input–output approach. *Economic Analysis and
841 Policy* **81**, 418–435 (2024).

842 31 Shi, C. *et al.* Unveiling the unequal variation of regional carbon risk under inter-provincial trade
843 in China. *Environmental Impact Assessment Review* **105** (2024).
844 <https://doi.org/10.1016/j.eiar.2023.107391>

845 32 Guo, S., Zhao, Q., He, P., Wang, Y. & Zhang, X. Embodied black carbon emission transfer
846 within and across the Jing-Jin-Ji urban agglomeration. *Environmental Impact Assessment
847 Review* **110**, 107678 (2025).

848 33 Wang, Y. *et al.* Exploring the path of inter-provincial industrial transfer and carbon transfer in
849 China via combination of multi-regional input–output and geographically weighted regression
850 model. *Ecol. Indic* **125**, 10.1016 (2021).

851 34 Wang, Q., Yang, X. & Li, R. Are low-carbon emissions in the South at the cost of high-carbon
852 emissions in North China? A novel assessment. *Environmental Impact Assessment Review* **105**
853 (2024). <https://doi.org/10.1016/j.eiar.2024.107426>

854 35 Tao, T. & Wen, G. Research on accounting of provincial carbon transfer: based on the empirical
855 data of 30 provinces in China. *Environmental Science and Pollution Research* **29**, 40984–40996
856 (2022).

857 36 Zheng, H. *et al.* Regional determinants of China's consumption-based emissions in the
858 economic transition. *Environmental Research Letters* **15**, 074001 (2020).

859 37 Wang, Q. & Han, X. Is decoupling embodied carbon emissions from economic output in Sino-
860 US trade possible? *Technological Forecasting and Social Change* **169**, 120805 (2021).

861 38 Li, Y., Chen, B. & Chen, G. Carbon network embodied in international trade: global structural
862 evolution and its policy implications. *Energy Policy* **139**, 111316 (2020).

863 39 Wang, S., Wang, X. & Chen, S. Global value chains and carbon emission reduction in
864 developing countries: does industrial upgrading matter? *Environmental Impact Assessment
865 Review* **97**, 106895 (2022).

866 40 Chen, M. & Xu, Z. Assessing socio-ecological fit of international environmental agreements
867 and trade-embodied carbon flows. *Environmental Impact Assessment Review* **106** (2024).
868 <https://doi.org/10.1016/j.eiar.2024.107534>

869 41 Han, M., Yao, Q., Lao, J., Tang, Z. & Liu, W. China's intra-and inter-national carbon emission

870 transfers by province: A nested network perspective. *Science China Earth Sciences* **63**, 852-864
871 (2020).

872 42 Wang, G., Wang, Y., Liu, K. & Sun, S. A classification and recognition algorithm of key figures
873 in public opinion integrating multidimensional similarity and K-shell based on supernetwork.
874 *Humanities and Social Sciences Communications* **11**, 1-19 (2024).

875 43 Gidel, G., Berard, H., Vignoud, G., Vincent, P. & Lacoste-Julien, S. A variational inequality
876 perspective on generative adversarial networks. *arXiv preprint arXiv:1802.10551* (2018).

877 44 Shengjiu, L., Tianrui, L., Jia, L. & Peng, X. Research on multi-fractals of weighted
878 hypernetworks. *JUSTC* **50**, 369-381 (2020).

879 45 Liu, Z., Chen, W., Zhang, C., Yang, C. & Cheng, Q. Intelligent scheduling of a feature-process-
880 machine tool supernetwork based on digital twin workshop. *Journal of manufacturing systems*
881 **58**, 157-167 (2021).

882 46 Sun, Y., Wang, P., Wang, Y. & Wang, Z. Dynamic Information Propagation Model of Social
883 Hypernetwork Considering Positive and Negative Interference. (2023).

884 47 Fu, R., Qiang, Q. P., Ke, K. & Huang, Z. Closed-loop supply chain network with interaction of
885 forward and reverse logistics. *Sustainable Production and Consumption* **27**, 737-752 (2021).

886 48 Yinghua, S., Mingxuan, B., Yaping, M. & Feizhou, H. Super-network model of emergency
887 resource scheduling considering multi-agent psychological effect. *China Safety Science Journal*
888 **31**, 158 (2021).

889 49 Zhou, L., Li, F., Gong, Y. & Hu, F. Identification methods of vital nodes based on k-shell in
890 hypernetworks. *Complex Syst Complex Sci* **18**, 15-22 (2021).

891 50 Dong, X., Lian, Y., Chi, Y., Tang, X. & Liu, Y. A two-step rumor detection model based on the
892 supernetwork theory about Weibo. *The Journal of Supercomputing* **77**, 12050-12074 (2021).

893 51 Wenwei, G., Xianchun, L., Xuechun, Z. & Jingxian, C. Product quality control strategy based
894 on supply chain network equilibrium in the direct broadcasting economy. *Computer Integrated
895 Manufacturing System* **29**, 1684 (2023).

896 52 Duan, C. *et al.* Interregional carbon flows of China. *Applied Energy* **227**, 342-352 (2018).

897 53 Sun, L. *et al.* Analyzing carbon emission transfer network structure among provinces in China:
898 new evidence from social network analysis. *Environmental Science and Pollution Research* **27**,
899 23281-23300 (2020).

900 54 Sun, Y.-Y., Faturay, F., Lenzen, M., Gössling, S. & Higham, J. Drivers of global tourism carbon
901 emissions. *Nature Communications* **15**, 1-10 (2024).

902 55 Shan, Y. *et al.* China CO₂ emission accounts 1997–2015. *Scientific data* **5**, 1-14 (2018).

903 56 Shan, Y., Huang, Q., Guan, D. & Hubacek, K. China CO₂ emission accounts 2016–2017.
904 *Scientific data* **7**, 54 (2020).

905 57 Chi, Y., Tang, X., Lian, Y., Dong, X. & Liu, Y. A supernetwork-based online post informative
906 quality evaluation model. *Knowledge-Based Systems* **168**, 10-24 (2019).

907 58 Liao, F., Arentze, T. & Timmermans, H. Multi-state supernetwork framework for the two-person
908 joint travel problem. *Transportation* **40**, 813-826 (2013).

909 59 Yuxi, Z., Jingke, H., Wen, Q., Yang, C. & Danfei, N. Managing water-land-food nexus towards
910 resource efficiency improvement: A superedge-based analysis of China. *Journal of
911 Environmental Management* **325**, 116607 (2023).
912 <https://doi.org/https://doi.org/10.1016/j.jenvman.2022.116607>

913 60 Yuxi, Z., Jingke, H., Chenyang, S., Jiexu, Y. & Shihan, Z. Heterogeneous interactions in the

914 water-land-food nexus in shaping resource efficiency: A supernetwork simulation. *Sustainable*
 915 *Production and Consumption* **40**, 63-75 (2023).

916 61 Yuxi, Z., Jingke, H., Changlin, X. & Zhangmiao, L. Unfolding the synergy and interaction of
 917 water-land-food nexus for sustainable resource management: A supernetwork analysis. *Science*
 918 *of The Total Environment* **784**, 147085 (2021).
 919 <https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147085>

920 62 Han, S., Pool, J., Tran, J. & Dally, W. Learning both weights and connections for efficient neural
 921 network. *Advances in neural information processing systems* **28** (2015).

922 63 Liang, T., Glossner, J., Wang, L., Shi, S. & Zhang, X. Pruning and quantization for deep neural
 923 network acceleration: A survey. *Neurocomputing* **461**, 370-403 (2021).

924 64 Lei, W., Chen, H. & Wu, Y. in *Proceedings of the 2nd International Conference on Intelligent*
 925 *Information Processing*. 1-6.

926 65 Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex
 927 weighted networks. *Proceedings of the national academy of sciences* **101**, 3747-3752 (2004).

928 66 Freeman, L. C. A set of measures of centrality based on betweenness. *Sociometry*, 35-41 (1977).

929 67 Freeman, L. C. Centrality in social networks: Conceptual clarification. *Social network: critical*
 930 *concepts in sociology. Londres: Routledge* **1**, 238-263 (2002).

931 68 Hu, F., Zhao, H. & Ma, X. An evolving hypernetwork model and its properties. *Scientia Sinica*
 932 *Physica, Mechanica & Astronomica* **43**, 16 (2013).

933 69 Seidman, S. B. Network structure and minimum degree. *Social networks* **5**, 269-287 (1983).

934 70 Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. K-core organization of complex networks.
 935 *Physical review letters* **96**, 040601 (2006).

936 71 Zhao, B., Chen, X. & Zhang, J. Cycle degree of an industry and its algorithm. *Systems*
 937 *Engineering-Theory & Practice* **34**, 1388-1397 (2014).

938 72 Friedkin, N. E. The development of structure in random networks: an analysis of the effects of
 939 increasing network density on five measures of structure. *Social Networks* **3**, 41-52 (1981).

940 73 Shan, Y. *et al.* China CO₂ emission accounts 1997–2015. *Scientific Data* **5**, 170201 (2018).
 941 <https://doi.org/10.1038/sdata.2017.201>

942 74 Feng, C., Yang, L., Luo, M. & Liu, Q. A framework of payments for water-related ecosystem
 943 services (PWES) based on green water management. *Journal of Cleaner Production* **425**,
 944 138930 (2023). <https://doi.org/https://doi.org/10.1016/j.jclepro.2023.138930>

945 75 Frölicher, T. L. Strong warming at high emissions. *Nature Climate Change* **6**, 823-824 (2016).
 946 <https://doi.org/10.1038/nclimate3053>

947 76 Wang, T., Teng, F., Deng, X. & Xie, J. Climate module disparities explain inconsistent estimates
 948 of the social cost of carbon in integrated assessment models. *One Earth* **5**, 767-778 (2022).
 949 <https://doi.org/10.1016/j.oneear.2022.06.005>

950 77 Trencher, G., Rinscheid, A., Duygan, M., Truong, N. & Asuka, J. Revisiting carbon lock-in in
 951 energy systems: Explaining the perpetuation of coal power in Japan. *Energy Research & Social*
 952 *Science* **69**, 101770 (2020). <https://doi.org/https://doi.org/10.1016/j.erss.2020.101770>

953