

1 **Integrating environmental archives into conservation: Using**
2 **historical data to evaluate species suitability for reintroduction**

3

4 Samuel T. Turvey^{1,*}, Jennifer J. Crees², Alexis M. Mychajliw^{3,4}, Rosalind J. Kennerley⁵,
5 Michael A. Hudson⁵, Richard P. Young⁵

6

7 ¹*Institute of Zoology, Zoological Society of London, Regent's Park, London, UK*

8 ²*Department of Science, The Natural History Museum, London, UK*

9 ³*Department of Biology, Middlebury College, Middlebury, VT, USA*

10 ⁴*Environmental Studies Program, Middlebury College, Middlebury, VT, USA*

11 ⁵*Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey, Channel Islands*

12

13 *Corresponding author: samuel.turvey@ioz.ac.uk

14 **Abstract.** Evidence-based conservation planning is typically informed by recent data,
15 but anthropogenic activities have shaped biodiversity throughout history and recent
16 prehistory, and long-term environmental archives can provide unique information on
17 past ecological states and change. Environmental archives can be particularly important
18 for informing conservation actions that address disrupted or lost biodiversity, such as
19 species reintroductions, where species selection often fails to consider the full
20 information-content or quality of past data. Here, we explore the potential to
21 incorporate past evidence into reintroduction planning in a more systematic and
22 comparative manner, by developing a framework of biological and ecological criteria for
23 evaluating different aspects of the former status of lost species. These criteria help to
24 define whether a species can be interpreted as native under modern environmental
25 conditions, and whether its former population status, ecology or extinction are
26 adequately understood. This framework clarifies evidence, assumptions and
27 uncertainty around past species status, providing insights unavailable from a modern
28 ecological perspective, and should be considered at the outset of planning to assess
29 whether some species represent better contenders for reintroduction than others.

30

31 **Keywords:** conservation palaeobiology, data quality, environmental archives, historical
32 baselines, historical ecology, Holocene, long-term data, translocation

33 **1. Conservation evidence from environmental archives**

34 Limited resources are available to combat the global biodiversity crisis, meaning that
35 difficult conservation decisions need to be made. Different candidate conservation
36 strategies must therefore be compared and evaluated [1,2]. To enable identification of
37 appropriate activities for protecting and restoring biodiversity, an evidence-based
38 approach is required, where robust data are used to guide management and policy
39 decisions [3,4]. Evidence-based conservation is informed by a range of data types,
40 including data on both the ecological and human dimensions of biocultural systems
41 [5,6]. However, if available data are incomplete or biased, then conservation
42 interventions may be based upon erroneous assumptions and have inappropriate
43 targets [7].

44 Conservation planning is almost exclusively informed by modern data. Natural
45 biodiversity states and human-caused depletion are primarily defined by recent
46 historical baselines (e.g. [8]), and even 'long-term' ecological datasets typically
47 represent only multi-decadal durations [9-11]. Even within this timeframe, loss of
48 knowledge of older biodiversity states and persistent downgrading of perceived
49 'normal' environmental conditions, known as 'shifting baseline syndrome', is recognised
50 as a pervasive problem in conservation associated with widespread conservatism in
51 setting management and recovery targets [12]. However, environmental archives reveal
52 that anthropogenic activities have shaped biodiversity for much longer than the recent
53 past, with evidence of substantial worldwide human impacts at multi-century and
54 multi-millennial scales [13-15]. Failure to incorporate evidence of past impacts can have
55 negative real-world consequences for conservation planning [16-18]. For example,
56 current-day systems have typically experienced 'extinction filters' (species losses, shifts
57 in ecosystem structure and function) caused by ancient human activities, meaning that

58 ecological, biogeographic and conservation inferences based upon modern baselines
59 can be biased and misleading [19].

60 Information on past biodiversity states and change can be obtained from specimen-
61 or object-based archives (e.g. zooarchaeological and fossil records, sediment cores) and
62 document-based archives and other past human-produced media (e.g. written historical
63 records). These records can provide unique information on past biodiversity patterns
64 and processes, biotic responses to past change and ecological tipping points, extinction
65 dynamics and selectivity, system recovery after extreme events, and the effects of
66 different past human activities [20,21]. Several academic disciplines, including
67 conservation palaeobiology, historical ecology, landscape ecology, applied
68 zooarchaeology and restoration ecology, have developed to incorporate information
69 from environmental archives into conservation [22-24].

70 However, this goal is hindered by both conceptual and logistical barriers. Long-term
71 records reveal a complex picture of constant biodiversity change in response to both
72 natural and human-caused changes [25], challenging identification of specific static
73 baselines that can be used to set wildlife management and ecosystem restoration goals
74 [26], and the magnitude and temporal scale of past change can be hard for
75 conservationists to appreciate [27]. Reconstructing this dynamic biodiversity history is
76 hindered by the varying quantity, quality, completeness and bias shown by different
77 archives, and locating, extracting and interpreting archival information requires
78 specialist investigative and analytical frameworks associated with multiple academic
79 disciplines [28,29]. These archives also differ from modern ecological datasets in
80 fundamental parameters such as taxonomic, geographic and temporal representation
81 and resolution, meaning that past and present data are not directly comparable (the
82 'epistemological gap'), and available archives may be insufficient to reconstruct many

83 aspects of past biodiversity ('epistemological pessimism') [30]. Practical incorporation
84 of environmental archives in conservation is also hindered by inadequate
85 communication and collaboration between palaeontologists, archaeologists, historians
86 and conservationists, with a widespread lack of recognition of archival information-
87 content, value and utility by many conservationists perpetuating a research-
88 implementation (or 'knowing-doing') gap [29,31]. It is therefore essential to develop
89 new approaches that integrate environmental archives into conservation thinking,
90 planning and strategy, and explore how these data can inform decision-making between
91 candidate management actions.

92

93 **2. Evaluating historical data to guide species reintroductions**

94 Evidence from environmental archives is particularly important for conservation
95 actions that address disrupted or lost biodiversity, including species reintroductions,
96 habitat or landscape restoration, and restoration of ecosystem functionality and
97 services through rewilding initiatives. These activities have diverse goals that can differ
98 from a desire to simply return ecosystems to past states, such as strengthening system
99 resilience to future change, or providing human benefits such as improving connectivity
100 with nature [32]. However, they are all underpinned by the need to understand past
101 environmental conditions, as they are inherently motivated by the fact that biodiversity
102 and ecological processes have been altered in some way since some past timepoint
103 (typically through past human activities) and need rectifying through some type of
104 intervention. It is thus crucial to evaluate what past environmental data are available to
105 guide planning in these fields.

106 Established guidelines and modelling approaches are available to inform species
107 reintroductions once candidate species are identified, including selection of source

108 populations, reintroduction sites, optimal demographic parameters for founder
109 populations, and translocation methods [33]. However, whereas comparative species
110 prioritization frameworks are available to guide many other areas of conservation
111 planning [34-36], species selection for reintroductions can be potentially arbitrary or
112 subjective, and is influenced by contingent non-ecological factors (e.g. human and
113 organizational factors) such as species charisma and subjective local interest or
114 preference [37-39]. Species' eligibility for reintroduction is typically supported by basic
115 evidence that it was formerly native to the target region, or that the reintroduction site
116 constitutes suitable habitat within ecologically appropriate proximity to its known past
117 range, but often with little consideration of other information available in
118 environmental archives [33]. However, the quality and quantity of available information
119 about past species status varies hugely across species and systems, with complex
120 natural and human-mediated changes in biotic distributions across recent millennia,
121 making it challenging to define what 'native' even means in a modern biodiversity
122 context [40,41]. Failing to acknowledge this knowledge about past biodiversity risks
123 excluding key insights, nuance and context around the feasibility and suitability of
124 potential reintroductions.

125 Here, we consider whether information from environmental archives can be used in
126 a more rigorous, systematic and comparative manner, to develop strategic guidelines on
127 species suitability for reintroduction and biodiversity restoration efforts. We present a
128 framework for evaluating available historical data across a series of biological and
129 ecological criteria that are relevant to reintroduction decision-making, acknowledging
130 both the information-content and complexity of these data, and the incompleteness,
131 gaps and barriers in our knowledge of past biodiversity. This critical assessment aims to
132 define and weight our current knowledge about the regional history of different species,

133 to establish an objective set of criteria that can help to assess whether these species
134 should be viewed as appropriate contenders for reintroduction.

135 To explore how environmental archives can provide new perspectives for
136 conservation decision-making, we use examples from the vertebrate faunal record of
137 Britain, a region with rich environmental archives, a long legacy of human and non-
138 human impacts on biodiversity, and a depleted current-day biota containing numerous
139 potential reintroduction candidates (figure 1). We define a series of criteria
140 representing information on different aspects of the former status of lost species, which
141 are uniquely informed by environmental archives, and are integral to interpreting
142 whether a species can be considered native and could constitute an appropriate
143 contender for reintroduction. These criteria highlight the unique and nuanced insights
144 on species status provided by past archives, and the varying information quality that
145 might make past baselines challenging or impossible to establish. Some criteria are
146 illustrated with examples of both novel data insights and data quality issues, whereas
147 others are framed around whether data uncertainty exists for a particular ecological
148 parameter. We group these criteria into two broader themes: (1) Was the species native
149 under modern environmental conditions; (2) Do we have a good understanding of its
150 former population status, ecology and extinction? It is important to note that the criteria
151 are not strictly ordered or ranked, especially within the second theme. They can be
152 interpreted additively or cumulatively to assess overall strength, direction, and
153 confidence of evidence for reintroduction suitability of different species (figure 2), to
154 evaluate whether some species represent better overall contenders for reintroduction
155 than others. They can also be used to downlist or exclude species if they do not meet
156 defined thresholds or if existing information is insufficient to evaluate key parameters.

157

158 **3. Reintroduction criteria informed by past archives**

159

160 **Theme A: Did a native population exist under modern environmental conditions?**

161

162 **(1) Was the species ever regionally present?**

163 Eligibility for reintroduction is typically dependent upon evidence that an extirpated
164 species was formerly native [33]. However, species might have been interpreted as
165 native based upon inference or misinterpretation of past data, but might not actually be
166 represented in regional environmental archives. If records exist, their quality and
167 resolution might be insufficient to confirm definite species identification, with possible
168 past occurrence based only upon provisional identifications from poorly-preserved
169 remains or vague historical accounts that do not necessarily refer to local populations.

170 **Example 1 (evidence of past status):** Bison were present in Britain across several
171 warm interglacial periods during previous Ice Age cycles over the past 400,000 years,
172 but Britain's former mammalian megafauna contained only the now-extinct species
173 *Bison priscus* and *B. schoetensacki* rather than the extant European bison *B. bonasus*
174 [42,43]. These species were associated with different environments and niches (*B.*
175 *priscus* was a grazer adapted to herbaceous steppe habitat, whereas *B. bonasus* is a more
176 generalist mixed feeder also adapted to forest environments), and are thus associated
177 with different functional roles and environmental impacts [44]. While the recent fossil
178 and zooarchaeological records provide extensive evidence of other large mammal
179 species present in Britain during recent millennia (e.g. aurochs *Bos primigenius*,
180 European elk *Alces alces*, red deer *Cervus elaphus*), there is no evidence that *B. bonasus*
181 ever colonised Britain during the current interglacial period [45,46].

182 **Example 2 (data uncertainty):** Bones from two British fossil sites have been
183 provisionally identified as black stork (*Ciconia nigra*). However, species-level
184 identification is difficult and they cannot be definitely distinguished from white stork (*C.
185 ciconia*), which is also recorded in British fossil and archaeological sites and historical
186 accounts [47].

187

188 **(2) Was the species present during the Holocene?**

189 The Holocene Epoch, the current interglacial period dating from the end of the last Ice
190 Age glaciation (11,700 years ago) to the present, has experienced relatively stable
191 'modern' bioclimatic conditions similar to current-day states, with species and
192 population losses during this period almost entirely associated with human activities
193 [48,49]. In contrast, the preceding Pleistocene Epoch experienced marked climatic and
194 environmental fluctuations between cold glacial and warm interglacial states, with
195 biotic communities and ecosystems often having no direct analogues to modern states,
196 and Pleistocene faunal turnover was associated with natural as well as anthropogenic
197 change [50]. Given these major environmental differences between time periods, it is
198 important to distinguish whether a species was regionally present during the Holocene
199 or only during the Late Pleistocene. Although the concept of rewilding was initially
200 proposed to restore Pleistocene megafaunal diversity and ecological function [51],
201 regionally extirpated species that disappeared before the Holocene may have been
202 adapted to environmental conditions that are very different from modern states, and
203 may have disappeared naturally in response to changing conditions. The quality of past
204 records, in terms of species identification or a lack of dates or dated contexts for fossil
205 material, might also be insufficient to confirm definite persistence or natural
206 recolonisation of Pleistocene species in the Holocene.

207 **Example 1 (evidence of past status):** Aesculapian snakes (*Zamenis longissimus*) are
208 recorded from several late Middle Pleistocene sites in southeast England, under
209 environmental conditions that were climatically different from today [52]. Although the
210 species is recorded as having occurred as far north as Denmark during the warmest
211 phase of the Holocene [53], unlike several other reptile species there is no evidence that
212 it naturally recolonised Britain at the start of the Holocene.

213 **Example 2 (data uncertainty):** The European tree frog (*Hyla arborea*) was present in
214 Britain during warm periods of the Pleistocene [54]. However, the only putative
215 evidence for postglacial presence is based upon brief sixteenth and seventeenth century
216 written accounts, which either do not definitely refer to the British fauna, simply
217 mention the presence of 'Green Tree Frog' alongside other amphibians in Britain with
218 no additional details, or discuss the species' contemporary medicinal use and suggest
219 the trade of animals into Britain [55,56]. There is no physical evidence for the former
220 presence of tree frogs in Britain during the Holocene, unlike other regionally extinct
221 amphibians that are present in zooarchaeological and fossil deposits [57].

222

223 **(3) Do past records reflect introductions of non-native species or knowledge from
224 other regions?**

225 Species have been deliberately or accidentally transported by past human activities for
226 thousands of years, both as living wild or captive individuals and as body parts for
227 purposes such as trade, and have often established persistent populations outside their
228 native ranges [58]. Written historical accounts and knowledge of animals or plants
229 could also potentially represent transferred knowledge of biodiversity from other
230 regions rather than local environmental conditions.

231 **Example 1 (evidence of past status):** The great bustard (*Otis tarda*) is known in Britain
232 from a single sixteenth-century zooarchaeological specimen from a royal palace in
233 London, and a historical breeding population that was hunted for food and became
234 extinct in the nineteenth century [47]. Although bones of large-bodied birds are much
235 more likely to be preserved and identified in the recent fossil and zooarchaeological
236 records due to well-known taphonomic biases [59], the species is otherwise only
237 recorded in Britain from the Late Glacial period of the Late Pleistocene and the
238 immediate postglacial period when landscapes were still open [47], and a suggested
239 Roman-era record was a misidentification [60]. Its absence from the Holocene record
240 suggests it probably disappeared naturally following climatic warming and the
241 associated shift from open grassland to closed forest habitats in Britain at the
242 Pleistocene–Holocene transition, and its historical-era reappearance is associated with
243 the expansion of deforested agricultural landscapes and probably represents human
244 introduction for hunting and consumption.

245 **Example 2 (data uncertainty):** The pygmy cormorant (*Microcarbo pygmaeus*) occurs
246 in southeast Europe and southwest Asia, but is also represented by two bones from a
247 late medieval British well that also contained historical kitchen waste, suggesting the
248 bird had been eaten [61]. These bones may have originated from a bird from an
249 otherwise unrecorded local wild population, or from historical trade in exotic birds for
250 food or pets [47].

251

252 **Theme B: If the species was definitely present, what was its status?**

253

254 **(4) Is the lost population distinct from surviving populations?**

255 Extirpated populations can show local morphological and genetic differentiation from
256 surviving populations, and are sometimes considered taxonomically distinct. Related
257 living populations may therefore not represent straightforward surrogates for potential
258 reintroduction on the basis of taxonomic congruence. Although most lost populations
259 can be assigned to well-defined species, their taxonomy can also be unclear, making it
260 difficult to establish whether they are really regionally extinct and/or whether
261 conspecific populations still exist elsewhere.

262 **Example 1 (evidence of past status):** Gadfly petrels (*Pterodroma* sp.) are recorded
263 from coastal Iron Age sites in Scotland, but these seabirds are now extinct in Britain.
264 Ancient DNA analysis reveals that the Scottish *Pterodroma* is a phylogenetically distinct
265 lineage closely related to living populations in Madeira and Cape Verde. Together, these
266 populations form part of a young evolutionary radiation and have not undergone
267 sufficient divergence to unambiguously represent distinct species [62], making it
268 unclear whether living populations can be interpreted as conspecific.

269 **Example 2 (data uncertainty):** Coregonid whitefish exhibit complex variation and
270 taxonomy. Houting (*Coregonus oxyrinchus*), a long-snouted whitefish, formerly bred in
271 rivers in southeast England but became extinct in the nineteenth century. All long-
272 snouted migratory whitefish from the North Sea Basin were formerly regarded as
273 houting, but morphological and genetic studies of historical specimens have provided
274 varying conclusions over whether the houting was conspecific with another species still
275 present in Britain (*C. lavaretus*), or instead represented an extant evolutionarily
276 significant conservation unit showing local genetic adaptations, or a morphologically
277 distinct, now-extinct species [63-65].

278

279 **(5) Do we understand the species' past regional distribution and ecology?**

280 Records of former species occurrence may be limited due to sampling biases, hindering
281 our ability to reconstruct their past distribution or landscape use. Reconstructing key
282 ecological parameters of lost populations, such as their trophic or movement ecology
283 (e.g. past migration), can be complex and typically requires specialist approaches such
284 as stable isotope analysis [66,67]. These populations may also have occurred under
285 distinct bioclimatic or environmental conditions and differed in their local ecology from
286 extant populations surviving elsewhere, such that the species now exhibits niche
287 truncation across its remaining range, complicating the possibility of ecological
288 inference from modern populations [68].

289 **Example:** The moor frog (*Rana arvalis*) is known from a single definite Holocene record
290 and a second possible record from adjacent sites in southeast England [57], with its
291 wider possible British distribution remaining unknown due to a lack of assessment of
292 Holocene amphibian bone assemblages. These records represent the westernmost
293 European Holocene localities for this species [69], and it is therefore possible that the
294 lost British population was locally adapted to unique range-edge ecological conditions
295 [70], challenging our ability to understand its specific environmental tolerances and
296 habitat requirements.

297

298 **(6) Was the species formerly widespread or rare?**

299 Multiple definitions of 'common' and 'rare', based on different ecological parameters,
300 are available to guide conservation planning [71,72]. There is extensive debate around
301 the ecological roles of common and rare species, and keystone species such as top
302 predators can be uncommon within ecosystems [73,74], but locally rare populations
303 may be less likely to contribute to ecological functioning or to constitute a significant
304 component of species' global populations [75]. Several key ecological parameters for

305 past biotic communities, such as population abundance, are difficult or impossible to
306 reconstruct due to taphonomic and sampling biases such as time-averaging, preferential
307 preservation of larger skeletal elements, and postmortem transport [28,59], and
308 accumulation in the zooarchaeological record is influenced by past human-wildlife
309 interactions such as preferential hunting of certain species that are also challenging to
310 understand. However, presence or absence across multiple sites can be used as a proxy
311 for relative abundance in well-sampled taxonomic groups or systems, especially if
312 ecologically similar species are recorded in the same contexts and thus indicate higher
313 preservation and detection potential.

314 **Example:** Waterfowl bones are relatively abundant in freshwater wetland sites in the
315 British Holocene zooarchaeological and fossil records, due to extensive past human
316 hunting of waterfowl species and favourable preservational conditions [47]. All extant
317 British freshwater duck species are recorded from many Holocene sites, but the only
318 extirpated Holocene British duck, the red-crested pochard (*Netta rufina*), is reported
319 from a single postglacial site in Somerset [47], suggesting it had a much more restricted
320 distribution and abundance across British landscapes compared to other species.

321

322 **(7) *Were populations continuously present before extinction?***

323 Populations of some species have continuously occupied landscapes that were
324 environmentally stable through the Holocene, but the past regional status of other
325 species has undergone considerable natural spatiotemporal variation. A lack of past
326 long-term population continuity may have been driven by dynamic natural landscape-
327 level change, or wider-scale bioclimatic shifts that altered regional environmental
328 suitability. Complex patterns of population shifts in response to past change may be

329 evidenced by species with strong dispersal ability, and such species may have only been
330 present irregularly in some landscapes as intermittent populations.

331 **Example 1 (evidence of past status):** Sturgeon that formerly occurred in British
332 coastal and inland waters have traditionally been interpreted as European sturgeon
333 (*Acipenser sturio*). However, genetic analysis and examination of sturgeon scutes from
334 archaeological sites reveal that European sturgeon populations in northern Europe
335 were naturally replaced during the early medieval period by Atlantic sturgeon (*A.*
336 *oxyrinchus*) from North America. This species may have colonised in response to climate
337 change during the medieval 'Little Ice Age', when lower water temperatures shifted the
338 species-specific suitability of local spawning conditions [76].

339 **Example 2 (data uncertainty):** Dalmatian pelicans (*Pelecanus crispus*) are recorded
340 from several British wetland sites from the Bronze Age onward. However, southern
341 Britain represents the northwestern limit of this species' climatic tolerance, and
342 pelicans may have only colonised when winter temperatures became higher in the mid
343 or late Holocene. Wetland landscapes in southern England also experienced successive
344 marine inundations throughout the Holocene, making them periodically unsuitable for
345 pelicans, suggesting the species may have experienced a series of regional extirpations
346 and recolonisations [77] (figure 2).

347

348 **(8) Was the species dependent upon local habitats for key life-history stages?**

349 Individuals in now-lost populations may have remained present within a specific local
350 landscape or ecosystem for their entire life-cycle, or may have undergone predictable or
351 irregular geographic movements of varying magnitude, potentially in response to short-
352 term environmental change. Importantly, species may not have used target regions for
353 key life-history stages (e.g. regular breeding, staging or wintering areas) and may

354 instead have only been present as vagrant or transient individuals rather than as
355 permanent native populations. Identification of juvenile or immature remains may be
356 necessary to determine presence of former breeding populations.

357 **Example 1 (evidence of past status):** Little auks (*Alle alle*) breed in the high Arctic but
358 are recorded from a surprising number of Holocene land-based fossil sites across
359 Britain, including sites far inland in southern Britain [47]. The species is prone to
360 'wrecking', where large numbers of birds are blown inland by storms, and it is assumed
361 that British records represent 'wreck' events rather than a wider regular breeding or
362 wintering distribution [78].

363 **Example 2 (data uncertainty):** European and Atlantic sturgeons are both historically
364 recorded from British inland waters, but northwest European populations became
365 severely depleted during the medieval period through overfishing [79], and sturgeon
366 have only occurred as rare vagrants in Britain during recent centuries. Importantly,
367 there is no known evidence that sturgeon definitely bred in Britain, and it cannot be
368 ruled out that past British records may merely represent non-breeding individuals that
369 dispersed from continental European spawning rivers for temporary foraging [80].

370

371 **(9) Do we understand when and why the species disappeared?**

372 Varying information is available on the extinction chronologies and drivers of lost
373 species known from Holocene contexts. Many faunal records from archaeological or
374 fossil sites are undated or only have associated dates (indirect or inferred dates) instead
375 of direct radiometric dates, and possible historical accounts of species otherwise only
376 known from older sites may not be reliably identified. Importantly, dates for the last
377 known occurrence of now-extinct populations do not necessarily correspond with true
378 extinction dates, and probabilistic analysis of multiple available dates (incorporating

379 scoring criteria for non-definite or poorly constrained records) is necessary to estimate
380 potential extinction timings [81-83]. In the absence of a robust understanding of
381 extinction dates or historical accounts of human-wildlife interactions, it is not possible
382 to correlate population losses with potential causative drivers within chronological
383 frameworks, or to confirm that these threats are now mitigated and modern landscapes
384 are suitable to support the species.

385 **Example:** Lynx (*Lynx lynx*) were initially thought to have disappeared from Britain
386 during the early or mid Holocene, in response to natural environmental change or low-
387 intensity deforestation in the Mesolithic [84]. Radiocarbon dating instead indicates lynx
388 survival until c. 1500 years ago, suggesting that human pressures such as higher-
389 intensity deforestation, declining deer populations and/or persecution may instead
390 have been key extinction drivers [46]. Historical accounts from the seventh to sixteenth
391 centuries contain accounts or depictions of animals that may represent lynx, but the
392 identity of these animals (e.g. sixteenth century wild 'lions' in Scotland) is uncertain
393 [46]. The potential 'extinction window' for lynx thus spans more than a millennium, and
394 regional disappearance cannot be correlated easily with specific co-occurring extinction
395 drivers.

396

397 **4. Discussion**

398 Our critical evaluation of biodiversity archive information-content and quality
399 establishes a framework for evaluating our knowledge of multiple parameters of past
400 species status. Determining the quantity and certainty of information associated with
401 each parameter can define the strength of support for reintroduction across sets of
402 potential candidate species. This framework highlights how reintroduction assessment
403 requires a more nuanced consideration of past evidence beyond a straightforward

404 binary classification of former species presence or absence, and our exploration of the
405 variability and complexity of past evidence challenges easy categorisation of now-lost
406 species as being ‘native’ or not to a particular region [40].

407

408 **4.1. Using a historically-informed suitability framework to guide reintroduction**
409 **planning**

410 If a species is well-identified in environmental archives, was definitely native during the
411 Holocene, relied on local landscapes for key life-history stages, and had well-understood
412 extinction drivers that are now mitigated, we propose that it represents a better
413 reintroduction candidate compared to species with more poorly understood past status
414 or threats. Preferential reintroduction of species in these latter criteria can instead risk
415 promoting restoration targets that do not represent past biodiversity states. Evaluating
416 past population continuity, distribution, and abundance or rarity is also necessary, to
417 understand whether species were integral components of past ecosystems and/or had
418 very specific environmental requirements, providing further important baselines to
419 consider when selecting potential reintroduction candidates. In particular, it is very
420 hard to justify the introduction of species that cannot be confirmed as formerly native
421 under Holocene environmental conditions (i.e. do not meet criteria in Theme A of our
422 framework) under the definition of species reintroduction. We recommend that our
423 criteria are used as a set of objective open standards to assess species suitability for
424 reintroduction based upon current historical knowledge and data quality, for example
425 by defining high, medium and low-priority species groupings. They can also define
426 evidence and assumptions and help to articulate our uncertainty about available
427 evidence, and thus support formal approaches for setting reintroduction objectives and
428 priorities such as structured decision-making [85].

429 Our framework is intended to be scalable and flexible, to align with the focus and
430 scope of conservation efforts. We illustrate it using examples of lost species at a national
431 level, but it can also be used to evaluate past status of populations within particular
432 landscapes or systems of interest across different taxonomic and spatial scales (e.g. past
433 status of subspecies or ecomorphs; local-scale evidence for species known to have
434 occurred across wider regions). For example, European elk definitely occurred in
435 Britain during the Holocene [45], but its past presence in specific landscapes is less
436 certain (e.g. inferred presence in the East Anglian Fens is based upon dubiously
437 identified droppings that are probably referable to red deer [86]). This approach can
438 also assess evidence on past landscape or habitat states or ecosystem functions and
439 services, to guide regional restoration or restocking. Additional criteria can also
440 potentially be defined and evaluated, and the evidentiary thresholds we propose can be
441 modified depending upon biodiversity restoration goals. Further parameters could
442 include species' past resilience and ability to withstand anthropogenic pressures and
443 environmental change, or evidence that the ecology of reintroduced populations might
444 differ from that of historically lost populations in distinct ways (e.g. differing migratory
445 patterns, as shown by reintroduced white storks in Britain [87]). We define evidence for
446 presence or absence during the Holocene as an important and defensible threshold for
447 evaluating 'native' status, but we acknowledge that bioclimatic and environmental
448 states have not remained stable across the Holocene [49,50]. Other temporal thresholds
449 can thus potentially be used (e.g. more recent historical baselines) if these are
450 environmentally appropriate within the context of a particular project. However,
451 temporal thresholds for defining native status must be clearly defined and justified
452 based upon knowledge of past environmental change and how this relates to modern

453 restoration goals, otherwise a misunderstanding of past states and change could lead to
454 inappropriate restoration targets.

455 This systematic framework also identifies knowledge-gaps, and can thus be used to
456 guide targeted future research to improve our understanding of the past status of
457 poorly-known species. Such research can include further field excavations, assessment
458 of existing archival collections (e.g. ancient biomolecular or stable isotope analyses),
459 and evaluation of whether comparative inferences can be made from surviving
460 populations that exist elsewhere under potentially different ecological conditions and
461 contexts. Importantly, in contrast to many other actions that are impacted by
462 uncertainty in the urgent 'crisis discipline' of conservation [88], we often still have the
463 luxury of time to maximise information on past populations through further research,
464 and establish optimal evidentiary baselines to guide reintroduction planning before
465 practical activities need to commence.

466

467 **4.2. Incorporating historical evidence into wider reintroduction planning**

468 Our suitability framework should not be used in isolation to make decisions around
469 species selection for reintroduction, but must form part of a wider evaluative context
470 that also draws upon knowledge beyond environmental archives. Additional ecological
471 criteria must also be considered [33,89], including: are current-day habitats appropriate
472 and are threats mitigated, versus how much management is required to establish
473 suitable conditions and/or are novel threats now present; could the species recolonise
474 naturally or is human intervention essential; would reintroduction provide a substantial
475 benefit to the species' global status (e.g. is it globally threatened); and would
476 reintroduction provide wider benefits to other species or ecosystem interactions,
477 functions or services? Evaluation of ecological feasibility must include rigorous

478 population-level and landscape-level assessments (e.g. population viability analysis,
479 species distribution modelling, habitat connectivity analysis) to evaluate whether
480 candidate species could establish viable self-sustaining populations in current
481 environments and remain resilient to predicted future change [90-92]. As
482 reintroductions typically take place within human-occupied 'social-ecological'
483 landscapes and are dependent upon finite conservation resources, evaluation of the
484 socio-cultural, logistical and economic contexts, feasibility, suitability, value, competing
485 interests, and associated trade-offs is also essential. Such factors include local
486 community support or conflict, cost-benefit analysis, the potential for net future cultural
487 or economic benefits, and whether candidate species align with national-level or other
488 biodiversity targets [93,94].

489 Past evidence should be integrated alongside these other metrics within combined
490 evaluation frameworks, which could be developed for strategizing species
491 reintroduction priorities at regional or national levels. These different ways of assessing
492 reintroduction suitability are not additive, but must be considered carefully and
493 weighed up on a case-by-case basis. It is also important to distinguish clearly between
494 evidence and subjective value; both constitute valid components of reintroduction
495 decision-making, but it is crucial to recognise their different identities and roles [85].
496 For example, it may be preferable to prioritise species that provide keystone functions
497 and regulate ecosystem services, or those with minimal wider impacts on ecosystems;
498 or species that disappeared more recently [95]. Differing targets or 'types of species'
499 may be appropriate depending upon project context and goals, but it is essential to
500 recognise that this preference is subjective, and takes place within socio-cultural
501 landscapes of changing opportunity and interest.

502 Despite the importance of considering other eligibility criteria in addition to past
503 data, our framework demonstrates the critical need to evaluate environmental archives
504 at the outset of reintroduction planning. Importantly, whereas some species will be
505 identified as appropriate reintroduction candidates using past data, others will be
506 downweighted by knowledge about their former status, or because of poor,
507 contradictory or absent information that challenges the possibility of understanding
508 their former status. It is clearly crucial to understand whether some species were never
509 actually native, were naturally rare or intermittently present, or never used target
510 landscapes for major life-history stages, and the selection of such species for
511 introduction may not be justifiable if past evidence also identifies higher-priority
512 candidates. Similarly, why would a species be promoted for reintroduction if little is
513 known about its past occurrence, status, or reasons for previous disappearance in
514 contrast to other candidates? Whilst it can be argued that absence of evidence does not
515 in itself indicate evidence of former absence, this argument cannot justify or promote
516 the introduction of species for which information on past presence is lacking. Valid
517 reasons may exist for selecting such species on the basis of other environmental or
518 social-ecological benefits (e.g. ecosystem service restoration; as surrogates to maintain
519 ecosystem functionality) [96]. More radical conservation approaches are also
520 increasingly being explored, including conservation translocation outside species'
521 historical ranges or assisted colonisation in response to climate change [97]. However,
522 these actions cannot be prioritised on the basis of past data or even potentially justified
523 as reintroductions, and must be backed by strong evidence that they will support
524 functionality or other introduction goals without adverse effects on native biodiversity
525 caused by species that are not locally adapted to postglacial ecosystems.

526 In this light, it is important to recognise that several species that we highlight as
527 low-priority or inappropriate candidates on the basis of past data (European bison,
528 Aesculapian snake, European tree frog, great bustard) are the focus of current
529 translocation efforts or discussions in Britain. These species do not meet confirmed
530 native status under the criteria in Theme A: there is no evidence for native British
531 populations during the Holocene, and no evidence that European bison was ever
532 regionally present at all. However, they have either already been translocated in
533 projects framed at least partly as reintroduction programmes (European bison, great
534 bustard [91,98]), are now present in Britain as invasive populations that are discussed
535 in terms of their perceived former native status (Aesculapian snake [99]), or are
536 proposed as reintroduction candidates in the near future (European tree frog [100]).

537 Whilst these projects may provide other tangible environmental benefits such as
538 restoration of ecosystem processes, it is essential that such actions are explicit about
539 their objectives and evidence, and specifically the extent to which they have evaluated
540 information from environmental archives about past species status. Without such
541 clarity, they risk criticism as potentially unjustifiable from ecological, legislative and
542 ethical perspectives [44]. These activities thus highlight the need for wider adoption of
543 a comparative multi-species framework that ensures past data are critically evaluated
544 at the beginning of reintroduction project selection and development, to make
545 conservationists aware of the complex nature of past biodiversity change and the
546 differing ways that species might be regarded as native or non-native.

547 Our approach is not intended to be restrictive. Whilst we highlight species that fail
548 to meet our criteria or that illustrate complexities in aspects of their past status that
549 must be considered by decision-makers, historical evidence can also promote other
550 species as strong candidates for reintroduction (e.g. beaver *Castor fiber* in Britain [101])

551 (figure 1). Instead, our framework provides guidelines to alert decision-makers to
552 different criteria associated with past states and change that must be considered when
553 thinking about possible reintroductions, but are often not appreciated from a modern
554 ecological standpoint. We hope this framework can provide new perspectives that
555 inform strategic policy-making, such as planning by the England Species
556 Reintroductions Taskforce ([www.gov.uk/government/groups/england-species-](http://www.gov.uk/government/groups/england-species-reintroductions-taskforce)
557 [reintroductions-taskforce](#)), the Scottish Code for Reintroduction Translocations [102],
558 or the US National Park Service's Resist-Accept-Direct Framework
559 (www.nps.gov/subjects/climatechange/resistacceptdirect.htm). Data from
560 environmental archives can be used to guide reintroduction planning by thinking in
561 terms of "should we" as well as "can we", with our framework enabling assessment of
562 the relative suitability of different proposed actions across sets of candidate species
563 within a world of limited resources.

564 Our criteria highlight the importance of evaluating the confidence we have in our
565 understanding of key information necessary to restore past biodiversity. We
566 recommend thinking about historical ecology in terms of what we do know, what we
567 might know following further research, and what we potentially cannot ever know (and
568 whether the existence of knowledge in this final category might exclude some
569 reintroduction choices). Environmental archives vary hugely in the information they
570 provide about different species and systems [24,103], and different archives (e.g. with
571 different temporal resolutions) can provide varying, sometimes contradictory signals
572 about past species status, requiring expert assessment of their sources and biases. For
573 example, different taxonomic groups vary considerably in the ease with which species
574 can be reliably identified from ancient skeletal remains, and in availability of modern
575 comparative material to aid identification, with complex associated taxonomic biases in

576 the likelihood of accurate determination, misidentification, or under-reporting of past
577 species from zooarchaeological and fossil collections. These problems are compounded
578 by a lack of adequate published information about many collections, with species
579 inventories from many sites lacking diagnostic information or illustration of relevant
580 specimens, meaning that many past identifications remain unverified. For example,
581 diving duck bones are challenging to identify accurately to species level [104], and
582 although red-crested pochard (see criterion 6) was originally reported as definitely
583 identified from an Iron Age site in Somerset, it was included in a brief faunal list with no
584 accompanying information, with subsequent authors highlighting the difficulty of
585 diagnosing other diving duck bones from this site [105]. Synthesis and review of
586 available evidence is thus essential, taking into account issues around past data quality
587 and uncertainty [77,106].

588 It is also important to remember that whilst we must work with the knowledge
589 available today, our understanding of past biodiversity is constantly improving. For
590 example, some British animal and plant species traditionally regarded as introductions
591 are now recognised as threatened or extirpated natives (e.g. pool frog *Pelophylax*
592 *lessonae*), whereas other species formerly considered native and designated as national
593 conservation priorities are now interpreted as probable or definite historical
594 introductions (e.g. white-clawed crayfish *Austropotamobius pallipes*) [107,108].
595 Rigorous morphometric and biomolecular identification methods for archival
596 specimens are increasingly accessible, and initiatives such as the Category F extension
597 to the British List of birds aim to make ecologists more familiar with past biodiversity
598 baselines [109]. We highlight the importance of re-evaluating historically archived
599 zooarchaeological and fossil collections that have not been investigated using modern
600 taxonomic approaches, especially for smaller vertebrates. However, although ongoing

601 investigation of old and new collections is essential to improve our knowledge of past
602 biodiversity, such activities are threatened by dwindling taxonomic expertise and
603 specimen-based identification skills amongst the current generation of researchers, and
604 insufficient recognition of the potential environmental relevance of many existing
605 collections [110,111]. Developing approaches that encourage greater engagement and
606 training in the use of specimen-based archives will be a key challenge facing
607 biodiversity practitioners in the twenty-first century.

608 Species reintroductions, ecological restoration and rewilding can be promoted and
609 initiated for many reasons, and it is crucial to understand the original motivations
610 underpinning such projects to evaluate how best to use past data as evidence in project
611 planning. Although these initiatives are all ultimately forward-looking [112,113],
612 without a good understanding of the past we risk misunderstanding fundamental
613 conservation parameters and making inappropriate or ineffective decisions. Indeed,
614 reintroductions often fail [114], highlighting the importance of drawing upon all
615 available knowledge baselines to make the best management and planning choices,
616 from candidate species selection onward. Environmental archives have been specifically
617 employed to inform and guide some proposed reintroductions [115,116], and the
618 importance of incorporating historical perspectives into interdisciplinary
619 reintroduction planning is promoted by some practitioners [117]. However, there
620 remains a major shortfall in extending conservation evidence to include lessons from
621 the past, by integrating data from environmental archives into environmental thinking
622 through a variety of potential approaches [29,118,119].

623 We encourage biologists, managers, decision-makers and policy planners to avoid
624 the pitfalls posed by shifting baselines, and to better align reintroduction, restoration
625 and rewilding programmes with the evidence-based conservation framework by

626 working more closely with researchers trained in historical disciplines. Evidence from
627 the past can inform decision-making and help to prioritize species reintroductions and
628 other environmental management actions, and a collaborative and interdisciplinary
629 approach is needed to maximise the effective interpretation and incorporation of this
630 crucial evidence within conservation. A new level of critical engagement with
631 environmental archives is essential to guide optimal restoration of lost biodiversity in a
632 changing world.

633

634 **Declaration of AI use.** We have not used AI-assisted technologies in creating this
635 article.

636

637 **Authors' contributions.** STT: Conceptualization, investigation, methodology, project
638 administration, resources, validation, visualization, writing-original draft, writing-
639 review & editing. JJC: Conceptualization, investigation, methodology, validation,
640 writing-review & editing. AMM: Investigation, validation, writing-review & editing. RJK:
641 Validation, writing-review & editing. MAH: Methodology, validation. RPY: Methodology,
642 validation, writing-review & editing.

643

644 **Conflict of interests.** We declare we have no competing interests.

645

646 **Funding.** This work was supported by Research England.

647

648 **Acknowledgements.** We thank John Ewen and Rebecca Young for helpful comments
649 and ideas.

650 **References**

651 1. Walsh JC, Dicks LV, Sutherland WJ. 2014 The effect of scientific evidence on
652 conservation practitioners' management decisions. *Conserv. Biol.* **29**, 88-98.

653 2. Christie AP *et al.* 2023 Assessing diverse evidence to improve conservation
654 decision-making. *Conserv. Sci. Pract.* **5**, e13024.

655 3. Segan DB, Bottrill MC, Baxter PWJ, Possingham HP. 2011 Using conservation
656 evidence to guide management. *Conserv. Biol.* **25**, 200-202.

657 4. Salafsky N *et al.* 2019 Defining and using evidence in conservation practice.
658 *Conserv. Sci. Pract.* **1**, e27.

659 5. Stephenson PJ, Stengel C. 2020 An inventory of biodiversity data sources for
660 conservation monitoring. *PLoS ONE* **15**, e0242923.

661 6. Miller DC, Scales IR, Mascia MB (eds.) 2023 *Conservation social science:
662 understanding people, conserving biodiversity*. Chichester, UK: Wiley.

663 7. Christie AP, Amano T, Martin PA, Petrovan SO, Shackelford GE, Simmons BI, Smith
664 RK, Williams DR, Wordley CFR, Sutherland WJ. 2021 The challenge of biased
665 evidence in conservation. *Conserv. Biol.* **35**, 249-262.

666 8. McRae L, Cornford R, Marconi V, Puleston H, Ledger SEH, Deinet S, Oppenheimer P,
667 Hoffmann M, Freeman R. 2025 The utility of the Living Planet Index as a policy
668 tool and for measuring nature recovery. *Philos. Trans. R. Soc. B* **380**, 20230207.

669 9. Bonebrake TC, Christensen J, Boggs CL, Ehrlich PR. 2010 Population decline
670 assessment, historical baselines, and conservation. *Conserv. Lett.* **3**, 371-378.

671 10. Rull V, Vegas-Vilarrúbia T. 2010 What is long-term in ecology? *Trends Ecol. Evol.*
672 **26**, 3-4.

673 11. Smith JA, Durham SR, Dietl GP. 2018 Conceptions of long-term data among marine
674 conservation biologists and what conservation paleobiologists need to know. In

675 *Marine conservation paleobiology* (eds. CL Tyler, CL Schneider), pp. 23-54. Cham,
676 Switzerland: Springer Nature.

677 12. Papworth SK, Rist J, Coad L, Milner-Gulland EJ. 2009 Evidence for shifting baseline
678 syndrome in conservation. *Conserv. Lett.* **2**, 93-100.

679 13. Faurby S, Svenning JC. 2015 Historic and prehistoric human-driven extinctions
680 have reshaped global mammal diversity patterns. *Divers. Distrib.* **21**, 1155-1166.

681 14. Turvey ST, Crees JJ. 2019 Extinction in the Anthropocene. *Curr. Biol.* **29**, R982-
682 R986.

683 15. Cooke R, Sayol F, Andermann T, Blackburn TM, Steinbauer MJ, Antonelli A, Faurby
684 S. 2023 Undiscovered bird extinctions obscure the true magnitude of human-
685 driven extinction waves. *Nat. Commun.* **14**, 8116.

686 16. McClenachan L, Ferretti F, Baum JK. 2012 From archives to conservation: why
687 historical data are needed to set baselines for marine animals and conservation.
688 *Conserv. Lett.* **5**, 349-359.

689 17. Barnosky AD *et al.* 2017 Merging paleobiology with conservation biology to guide
690 the future of terrestrial ecosystems. *Science* **355**, eaah4787.

691 18. Navarro LM *et al.* 2025. Integrating historical sources for long-term ecological
692 knowledge and biodiversity conservation. *Nat. Rev. Biodivers.*
693 doi.org/10.1038/s44358-025-00084-3

694 19. Balmford A. 1996 Extinction filters and current resilience: the significance of past
695 selection pressures for conservation biology. *Trends Ecol. Evol.* **11**, 193-196.

696 20. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB. 2010 Biodiversity baselines,
697 thresholds and resilience: testing predictions and assumptions using
698 palaeoecological data. *Trends Ecol. Evol.* **25**, 583-591.

699 21. Pearson S *et al.* 2015 Increasing the understanding and use of natural archives of
700 ecosystem services, resilience and thresholds to improve policy, science and
701 practice. *Holocene* **25**, 366-378.

702 22. Lyman RL. 2012 A warrant for applied palaeozoology. *Biol. Rev.* **87**, 513-525.

703 23. Szabó P. 2012 Historical ecology: past, present and future. *Biol. Rev.* **90**, 997-1014.

704 24. Dietl GP, Flessa KW (eds). 2018 *Conservation paleobiology: science and practice*.
705 Chicago, IL: University of Chicago Press.

706 25. Willis KJ, Birks HJB. 2006 What is natural? The need for a long-term perspective in
707 biodiversity conservation. *Science* **314**, 1261-1265.

708 26. Collins AC, Böhm M, Collen B. 2020 Choice of baseline affects historical population
709 trends in hunted mammals of North America. *Biol. Conserv.* **242**, 108421.

710 27. Rull V. 2010 Ecology and palaeoecology: two approaches, one objective. *Open Ecol.*
711 *J.* **3**, 1-5.

712 28. Briggs DEG, Crowther PR (eds). 2001 *Palaeobiology II*. Oxford, UK: Blackwell.

713 29. Turvey ST, McClune K. 2025 Expanding the historical baseline: using pre-modern
714 archives to inform conservation from ecological and human perspectives.
715 *BioScience* **75**, 240-250.

716 30. Currie A. 2018 *Rock, bone, and ruin: an optimist's guide to the historical sciences*.
717 Cambridge, MA: MIT Press.

718 31. Groff DV, McDonough MacKenzie C, Pier JQ, Shaffer AB, Dietl DP. 2023 Knowing
719 but not doing: quantifying the research-implementation gap in conservation
720 paleobiology. *Front. Ecol. Evol.* **11**, 1058992.

721 32. Carver S *et al.* 2021 Guiding principles for rewilding. *Conserv. Biol.* **35**, 1882-1893.

722 33. IUCN/SSC. 2013 *Guidelines for reintroductions and other conservation*
723 *translocations*. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission.

724 34. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM. 2007 Mammals on the
725 EDGE: conservation priorities based on threat and phylogeny. *PLoS ONE* **2**, e296.

726 35. Seddon PJ, Moehrenschlager A, Ewen J. 2014 Reintroducing resurrected species:
727 selecting DeExtinction candidates. *Trends Ecol. Evol.* **29**, 140-147.

728 36. IUCN. 2025 *The IUCN Red List of Threatened Species. Version 2025-1*.
729 <https://www.iucnredlist.org>

730 37. Seddon PJ, Soorae PS, Launay F. 2005 Taxonomic bias in reintroduction projects.
731 *Anim. Conserv.* **8**, 51-58.

732 38. Bajomi B, Pullin AS, Stewart GB, Takács-Sánta A. 2010 Bias and dispersal in the
733 animal reintroduction literature. *Oryx* **44**, 358-365.

734 39. Evans MJ *et al.* 2022 Reintroduction biology and the IUCN Red List: the dominance
735 of species of Least Concern in the peer-reviewed literature. *Glob. Ecol. Conserv.* **38**,
736 e02242.

737 40. Crees JJ, Turvey ST. 2015 What constitutes a 'native' species? Insights from the
738 Quaternary faunal record. *Biol. Conserv.* **186**, 143-148.

739 41. Lemoine RT, Svenning JC. 2022 Nativeness is not binary—a graduated
740 terminology for native and non-native species in the Anthropocene. *Restor. Ecol.*
741 **30**, e13636.

742 42. Palacio P, Berthonaud V, Guérin C, Lambourdière J, Maksud F, Philippe M, Plaire D,
743 Stafford T, Marsolier-Kergoat MC, Elalouf JM. 2017 Genome data on the extinct
744 *Bison schoetensacki* establish it as a sister species of the extant European bison
745 (*Bison bonasus*). *BMC Evol. Biol.* **17**, 48.

746 43. Schreve D. 2019 All is flux: the predictive power of fluctuating Quaternary
747 mammalian faunal-climate scenarios. *Philos. Trans. R. Soc. B* **374**, 20190213.

748 44. Nores C *et al.* 2024 Rewilding through inappropriate species introduction: the case
749 of European bison in Spain. *Conserv. Sci. Pract.* **6**, e13221.

750 45. Yalden DW. 1999 *The history of British mammals*. London, UK: T & AD Poyser.

751 46. O'Connor T, Sykes N (Eds). 2010 *Extinctions and invasions: a social history of*
752 *British fauna*. Oxford, UK: Windgather Press.

753 47. Yalden DW, Albarella U. 2009 *The history of British birds*. Oxford, UK: Oxford
754 University Press.

755 48. Turvey ST. 2009 *Holocene extinctions*. Oxford, UK: Oxford University Press.

756 49. Roberts N. 2014 *The Holocene: an environmental history*. Third edition. Chichester,
757 UK: Wiley-Blackwell.

758 50. Lowe JJ, Walker M. 2014 *Reconstructing Quaternary environments*. Third edition.
759 London, UK: Routledge.

760 51. Donlan CJ *et al.* 2006 Pleistocene rewilding: an optimistic agenda for twenty-first
761 century conservation. *Am. Nat.* **168**, 660-681.

762 52. Holman JA. 1994 A new record of the Aesculapian snake, *Elaphe longissima*
763 (Laurenti), from the Pleistocene of Britain. *British Herpetol. Soc. Bull.* **50**, 37-39.

764 53. Musilová R, Zavadil V, Marková S, Kotlík P. 2010 Relics of the Europe's warm past:
765 phylogeography of the Aesculapian snake. *Mol. Phylogenet. Evol.* **57**, 1245-1252.

766 54. Holman JA. 1998 *Pleistocene amphibians and reptiles in Britain and Europe*. New
767 York, NY: Oxford University Press.

768 55. Snell C. 2006 Status of the common tree frog in Britain. *Br. Wildl.* **17**, 153-160.

769 56. Raye L. 2017 Frogs in pre-industrial Britain. *Herpetol. J.* **27**, 368-378.

770 57. Gleed-Owen CP. 2000 Subfossil records of *Rana* cf. *lessonae*, *Rana arvalis* and *Rana*
771 cf. *dalmatina* from Middle Saxon (c. 600-950 AD) deposits in eastern England:
772 evidence for native status. *Amphib.-Reptil.* **21**, 57-65.

773 58. Hofman CA, Rick TC. 2018 Ancient biological invasions and island ecosystems:
774 tracking translocations of wild plants and animals. *J. Archaeol. Res.* **26**, 65-115.

775 59. Turvey ST, Blackburn TM. 2011 Determinants of species abundance in the
776 Quaternary vertebrate fossil record. *Paleobiol.* **37**, 537-546.

777 60. Allen MG. 2009 The re-identification of great bustard (*Otis tarda*) from Fishbourne
778 Roman Palace, Chichester, West Sussex, as common crane (*Grus grus*). *Environ.*
779 *Archaeol.* **14**, 184-190.

780 61. Cowles GS. 1981 The first evidence of demoiselle crane *Anthropoides virgo* and
781 pygmy cormorant *Phalacrocorax pygmaeus* in Britain. *Bull. B.O.C.* **101**, 383-386.

782 62. Brace S, Barnes I, Kitchener AC, Serjeantson D, Turvey ST. 2014 Late Holocene
783 range collapse in a former British seabird species. *J. Biogeogr.* **41**, 1583-1589.

784 63. Freyhof J, Schöter C. 2005 The houting *Coregonus oxyrinchus* (L.) (Salmoniformes:
785 Coregonidae), a globally extinct species from the North Sea basin. *J. Fish Biol.* **67**,
786 713-729.

787 64. Kroes R, Winkel Y, Breeuwer JAJ, van Loon EE, Loader SP, Maclaine JS,
788 Verdonschot PFM, van der Geest HG. 2023 Phylogenetic analysis of museum
789 specimens of houting *Coregonus oxyrinchus* shows the need for a revision of its
790 extinct status. *BMC Ecol. Evol.* **23**, 57.

791 65. Tengstedt ANB, Liu S, Jacobsen MW, Gundlund C, Møller PR, Berg S, Bekkevold D,
792 Hansen MM. 2024 Genomic insights on conservation priorities for North Sea
793 houting and European lake whitefish (*Coregonus* spp.). *Molec. Ecol.*
794 doi.org/10.1111/mec.17367

795 66. Wood JR, Perry DLW, Wilmhurst JM. 2017 Using palaeoecology to determine
796 baseline ecological requirements and interaction networks for de-extinction
797 candidate species. *Funct. Ecol.* **31**, 1012-1020.

798 67. Heddell-Stevens P, Jöris O, Britton K, Matthies T, Lucas M, Scott E, Le Roux P,
799 Meller H, Roberts P. 2024 Multi-isotope reconstruction of Late Pleistocene large-
800 herbivore biogeography and mobility patterns in Central Europe. *Commun. Biol.* **7**,
801 568.

802 68. Britnell JA, Zhu Y, Kerley GIH, Shultz S. 2023 Ecological marginalization is
803 widespread and increases extinction risk in mammals. *Proc. Natl Acad. Sci. USA*
804 **120**, e2205315120.

805 69. Roček Z, Šandera M. 2008 Distribution of *Rana arvalis* in Europe: a historical
806 perspective. *Zeitschrift für Feldherp. Suppl.* **13**, 135-150.

807 70. Rehm EM, Olivas P, Stroud J, Feeley KJ. 2015 Losing your edge: climate change and
808 the conservation value of range-edge populations. *Ecol. Evol.* **5**, 4315-4326.

809 71. Rabinowitz D. 1981 Seven forms of rarity. In *The biological aspects of rare plant*
810 *conservation* (ed. H Syngle), pp. 205-217. Chichester, UK: Wiley.

811 72. Crisfield VE, Blanchet FG, Raudsepp-Hearne C, Gravel D. 2024 How and why
812 species are rare: towards an understanding of the ecological causes of rarity.
813 *Ecography* **2024**, e07037.

814 73. Lyons KG, Brigham CA, Traut BH, Schwartz MW. 2005 Rare species and ecosystem
815 functioning. *Conserv. Biol.* **19**, 1019-1024.

816 74. Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB. 2019 When do ecosystem
817 services depend on rare species? *Trends Ecol. Evol.* **34**, 746-758.

818 75. Ridder B. 2008 Questioning the ecosystem services argument for biodiversity
819 conservation. *Biodivers. Conserv.* **17**, 781-790.

820 76. Ludwig A, Debus L, Lieckfeldt D, Wirgin I, Benecke N, Jenneckens I, Williot P,
821 Waldman JR, Pitra C. 2002 When the American sea sturgeon swam east. *Nature*
822 **419**, 447-448.

823 77. Crees JJ, Oxley VA, Schreve DC, Turvey ST. 2023 Challenges for incorporating long-
824 term baselines into biodiversity restoration: a case study of the Dalmatian pelican
825 (*Pelecanus crispus*) in Britain. *Ibis* **165**, 365-387.

826 78. Stewart J. 2002 Sea-birds from coastal and non-coastal, archaeological and
827 "natural" Pleistocene deposits or not all unexpected deposition is of human origin.
828 *Acta Zool. Cracov.* **45**, 167-178.

829 79. Hoffmann RC. 2023 *The catch: an environmental history of medieval European*
830 *fisheries*. Cambridge, UK: Cambridge University Press.

831 80. Nunn AD, Ainsworth RF, Walton S, Bean CW, Hatton-Ellis TW, Brown A, Evans R,
832 Atterborne A, Ottewell D, Noble RAA. 2023 Extinction risks and threats facing the
833 freshwater fishes of Britain. *Aquat. Conserv. Mar. Freshw. Ecosyst.* **33**, 1460-1476.

834 81. Rodríguez-Rey M *et al.* 2015 Criteria for assessing the quality of Middle
835 Pleistocene to Holocene vertebrate fossil ages. *Quat. Geochronol.* **30A**, 69-79.

836 82. Brook BW, Buettel JC, Jarić I. 2019 A fast re-sampling method for using reliability
837 ratings of sightings with extinction-date estimators. *Ecology* **100**, e02787.

838 83. Herrando-Pérez S, Saltré F. 2024 Estimating extinction time using radiocarbon
839 dates. *Quat. Geochronol.* **79**, 101489.

840 84. Jenkinson RDS. 1983 The recent history of northern lynx (*Lynx lynx* Linné) in the
841 British Isles. *Quat. Newsletter* **41**, 1-7.

842 85. Martin J, Runge MC, Nichols JD, Lubow BC, Kendall WL. 2009 Structured decision
843 making as a conceptual framework to identify thresholds for conservation and
844 management. *Ecol. Appl.* **19**, 1079-1090.

845 86. Lister AM 1984 The fossil record of elk (*Alces alces* (L.)) in Britain. *Quat.*
846 *Newsletter* **44**, 1-7.

847 87. Mayall E, Groves L, Kennerley R, Hudson M, Franco A. 2023 Demographic
848 consequences of management actions for the successful reintroduction of the
849 white stork *Ciconia ciconia* to the UK. *Bird Conserv. Int.* **33**, e47.

850 88. Grantham HS, Wilson KA, Moilanen A, Rebelo T, Possingham HP. 2009 Delaying
851 conservation actions for improved knowledge: how long should we wait? *Ecol.*
852 *Lett.* **12**, 293-301.

853 89. Akçakaya HR *et al.* 2020 Assessing ecological function in the context of species
854 recovery. *Conserv. Biol.* **34**, 561-571.

855 90. Carroll MJ, Anderson BJ, Brereton TM, Knight SJ, Kudrna O, Thomas CD. 2009
856 Climate change and translocations: the potential to re-establish two regionally-
857 extinct butterfly species in Britain. *Biol. Conserv.* **142**, 2114-2121.

858 91. Ashbrook K, Taylor A, Jane L, Carter I, Székely T. 2016 Impacts of survival and
859 reproductive success on the long-term population viability of reintroduced great
860 bustards *Otis tarda* in the UK. *Oryx* **50**, 583-592.

861 92. Johnson R, Greenwood S. 2020 Assessing the ecological feasibility of reintroducing
862 the Eurasian lynx (*Lynx lynx*) to southern Scotland, England and Wales. *Biodivers.*
863 *Conserv.* **29**, 771-797.

864 93. Converse SJ, Moore CT, Folk MJ, Runge MC. 2013 A matter of tradeoffs:
865 reintroduction as a multiple objective decision. *J. Wildl. Manage.* **77**, 1145-1156.

866 94. Dando TR, Crowley SL, Young RP, Carter SP, McDonald RA. 2022 Social feasibility
867 assessments in conservation translocations. *Trends Ecol. Evol.* **38**, 459-472.

868 95. Polak T, Saltz D. 2011 Reintroduction as an ecosystem restoration technique.
869 *Conserv. Biol.* **25**, 424.

870 96. Svenning JC, Buitenwerf R, Le Roux E. 2024 Trophic rewilling as a restoration
871 approach under emerging novel biosphere conditions. *Curr. Biol.* **34**, 435-451.

872 97. Thomas CD. 2011 Translocation of species, climate change, and the end of trying to
873 recreate past ecological communities. *Trends Ecol. Evol.* **26**, 216-221.

874 98. Carrington D. 2020 Wild bison to return to UK for first time in 6,000 years. *The
875 Guardian*, 10 July 2020.
876 [https://www.theguardian.com/environment/2020/jul/10/wild-bison-to-return-
877 to-uk-kent](https://www.theguardian.com/environment/2020/jul/10/wild-bison-to-return-to-uk-kent)

878 99. Major T, Wüster W. 2025 Britain has a new snake species – should climate change
879 mean it is allowed to stay? *The Conversation*, 7 February 2025.
880 [https://theconversation.com/britain-has-a-new-snake-species-should-climate-
881 change-mean-it-is-allowed-to-stay-249043](https://theconversation.com/britain-has-a-new-snake-species-should-climate-change-mean-it-is-allowed-to-stay-249043)

882 100. Cockburn H. 2021 Rewilding: can Britain's long lost tree frogs bounce back? *The
883 Independent*, 3 February 2021. [https://www.independent.co.uk/news/uk/home-
884 news/tree-frogs-rewilding-biodiversity-beavers-b1797072.html](https://www.independent.co.uk/news/uk/home-news/tree-frogs-rewilding-biodiversity-beavers-b1797072.html)

885 101. Coles B. 2006 *Beavers in Britain's past*. Oxford, UK: Oxbow Books.

886 102. National Species Reintroduction Forum. 2014 *The Scottish code for conservation
887 translocations: best practice guidelines for conservation translocations in Scotland*.
888 Inverness, UK: Scottish Natural Heritage.

889 103. Crees JJ, Collen B, Turvey ST. 2019 Bias, incompleteness, and the “known
890 unknowns” in the Holocene faunal record. *Philos. Trans. R. Soc. B* **374**, 20190216.

891 104. Serjeantson D. 2023 *The archaeology of wild birds in Britain and Ireland*. Oxford,
892 UK: Oxbow Books.

893 105. Coles JM. 1987 *Meare Village East: the excavations of A. Bulleid and H. St George
894 Gray 1932–1956*. Thorverton, UK: Somerset Levels Project.

895 106. O'Regan HJ. 2018 The presence of the brown bear *Ursus arctos* in Holocene
896 Britain: a review of the evidence. *Mammal Rev.* **48**, 229-244.

897 107. Beebee TJC *et al.* 2005 Neglected native or undesirable alien? Resolution of a
898 conservation dilemma concerning the pool frog *Rana lessonae*. *Biodivers. Conserv.*
899 **14**, 1607-1626.

900 108. Holdich DM, Palmer M, Sibley PJ. 2009 The indigenous status of *Austropotamobius*
901 *pallipes* (Lereboullet) in Britain. In *Crayfish conservation in the British Isles* (eds. J
902 Brickland, DM Holdich, EM Imhoff), pp. 1-11. Leeds, UK: Peak Ecology Ltd, British
903 Waterways, Crayfish Survey and Research, International Association of
904 Astacology.

905 109. Cooper JH, Stewart JR, Serjeantson D. 2022 The birds of ancient Britain: first
906 recommendations for Category F of the British List. *Ibis* **164**, 911-923.

907 110. St. Amand F, Childs ST, Reitz EJ, Heller S, Newsom B, Rick TC, Sandweiss DH,
908 Wheeler R. 2020 Leveraging legacy archaeological collections as proxies for
909 climate and environmental research. *Proc. Natl Acad. Sci. USA* **117**, 8287-8294.

910 111. Engel MS *et al.* The taxonomic impediment: a shortage of taxonomists, not the lack
911 of technical approaches. *Zool. J. Linn. Soc.* **193**, 381-387.

912 112. Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP. 2014 Reversing defaunation:
913 restoring species in a changing world. *Science* **345**, 406-412.

914 113. Prior J, Ward KJ. 2016 Rethinking rewilding: a response to Jørgensen. *Geoforum*
915 **69**, 132-135.

916 114. Bubac CM, Johnson AC, Fox JA, Cullingham CI. 2019 Conservation translocations
917 and post-release monitoring: identifying trends in failures, biases, and challenges
918 from around the world. *Biol. Conserv.* **238**, 108239.

919 115. Thornton DH, Murray DL. 2024 Modeling range dynamics through time to inform
920 conservation planning: Canada lynx in the contiguous United States. *Biol. Conserv.*
921 **292**, 110541.

922 116. McInturff A *et al.* 2025 Triangulating habitat suitability for the locally extirpated
923 California grizzly bear. *Biol. Conserv.* **303**, 110989.

924 117. Forbes ES *et al.* 2020 Analogies for a no-analog world: tackling uncertainties in
925 reintroduction planning. *Trends Ecol. Evol.* **35**, P551-P554.

926 118. Pooley S. 2013 Historians are from Venus, ecologists are from Mars. *Conserv. Biol.*
927 **27**, 1481-1483.

928 119. Goben JQ, Mychajliw AM, Olson OL, Dietl GP. 2025 Using the past to tell more
929 persuasive conservation stories. *Conserv. Biol.* **39**, e70057.

930

931 **Figure 1.** Framework of biological and ecological criteria relevant to decision-making
932 on species reintroductions that can be uniquely informed by past data, grouped under
933 two themes and illustrated using examples of species from the British vertebrate
934 record. Beaver (*Castor fiber*) used as a comparison, as the past status and history of this
935 species in Britain is well-understood compared to other examples [101].

936

937 **Figure 2.** Evaluation of reintroduction criteria for extirpated British population of
938 Dalmatian pelican (*Pelecanus crispus*), demonstrating information-content and quality
939 of past evidence that can inform potential reintroduction suitability under current level
940 of knowledge.