

On Size Substitution and Its Role in Assortment and Inventory Planning

Yi-Chun Akchen

School of Management, University College London, London E14 5AB, United Kingdom.

yi-chun.akchen@ucl.ac.uk

Felipe Caro

Anderson School of Management, University of California, Los Angeles, California 90095, United States.

felipe.caro@anderson.ucla.edu

Problem definition: How should (apparel) retailers manage product sizes? For example, if most customers wearing a given shoe size, such as 9.5, are willing to accept a half-size up or down, is it necessary for a retailer to carry that size at all? Additionally, while identical products in different sizes are treated as distinct SKUs in inventory management, they are often aggregated for assortment and strategic planning. However, there is no theoretical justification for this approach. In this paper, we address the fundamental questions about size management that have remained largely unexplored in the operations literature. **Methodology/results:** We propose a choice model where each customer forms a consideration set based on the in-stock availability of products of her best-fit size and adjacent sizes. Using a real-world dataset from a large footwear retailer, we show that nearly 25% of the unmet demand caused by stockouts spills over to adjacent sizes. We further solve the assortment and inventory optimization problems under the proposed choice model. Our findings demonstrate that the optimal assortment remains unchanged regardless of the likelihood that customers might purchase adjacent sizes. We utilize this finding and further show that inventory policies that ignore size substitution can be (asymptotically) optimal when the demand rate is high or the selling horizon is long. We also propose a mixed-integer program to determine inventory levels that account for size substitution and achieve higher profits in low-demand settings. **Managerial implications:** We show that the prevalent size-aggregation approach employed in apparel retail operations is sensible in high-demand settings, such as e-commerce. In contrast, when the expected demand over the selling horizon is low, size substitution can be relevant and should be considered in stocking decisions.

Key words: retail operations; demand substitution; apparel product size; stockout; choice modeling; fashion; assortment and inventory optimization.

History: First version: November 22, 2023. Second version: March 25, 2025. This version: November 11, 2025. Forthcoming in *Manufacturing & Service Operations Management*.

1. Introduction

In recent years, firms and academia have witnessed the success of operational models in the apparel industry. Various analytical models have been proposed to improve operations efficiency and create value (Wen et al. 2019). A cornerstone of these models is product demand estimation, which informs critical decisions such as inventory allocation (Caro and Gallien 2010), supply chain coordination (Alom et al. 2024), and fulfillment decisions in online retail (Acimovic and Graves 2015).

The most common approach in the operations management literature for estimating demand and product substitution is as follows. First, a “product” is viewed as the aggregation across sizes of

stock keeping units (SKUs) of the same style. Second, demand is estimated based on the aggregated units (Boada-Collado and Martínez-de-Albéniz 2020). In this approach, demand substitution can only happen between product styles. Note that the style encompasses all information about an apparel product, including its brand, design, and color, except for its size. Put differently, the style includes all the fashion characteristics of the product. The aggregation approach is particularly sensible when considering a utility-based demand model, such as the multinomial (MNL) choice model, in which a product's utility is directly linked to its fashion design, rather than its size.

However, such a size-aggregation approach can easily overlook product substitutions that arise due to the unavailability of specific sizes. It has been shown that the unavailability of sizes can cause the broken assortment effect (Smith and Achabal 1998, Caro and Gallien 2010, 2012), which refers to the empirical observation that a product's sales rate decreases when the total inventory falls below a certain threshold, possibly because some sizes are no longer available. Furthermore, research in economics, marketing, and operations management has shown that failing to account for stockouts biases demand estimation (Campo et al. 2000, Che et al. 2012, Deng et al. 2022) and negatively impacts profitability (Musalem et al. 2010).

Most importantly, demand substitution can happen between sizes. When the desired product is out of stock, customers may consider products of adjacent sizes with the same fashion style, which we will refer to as *size substitution* from here onward. Using a difference-in-differences (DID) approach and a dataset from one of the largest sports footwear retailers in China, Li et al. (2023) empirically show that 28.6% of the unmet demand for an out-of-stock footwear product spills over to the adjacent sizes of the same style. Demand models that aggregate across sizes cannot capture size substitution, and therefore, are unable to evaluate its effect on store profits and operational performance.

Given that product sizes play a vital role in apparel retail operations and size substitution has been observed in consumer choices, we posit the following research question: *when does size substitution matter and when can it be put aside?* To illustrate this, imagine a retailer managing footwear inventory. If most customers who wear size 9.5 are willing to accept a half-size up or down, is it necessary to stock that size at all, or should the retailer allocate inventory to adjacent sizes instead, anticipating substitution? More broadly, how does size-based demand substitution, alongside the more commonly studied style-based substitution, influence downstream operational strategies? To address these questions, we take a prescriptive approach: we first propose a choice model, estimate it using real-world data, and analyze its implications for assortment and inventory optimization. Specifically, the paper makes the following contributions:

1. **A New Choice Model (Section 3):** We propose a novel choice model, called the *style-size* model, to model consumers' decision-making process in purchasing apparel products. In this choice model, each customer is characterized by a tuple (s, σ, α) , where s is the customer's best-fit size,

$\sigma \in \{+, -\}$ implies either the larger or the smaller adjacent size is the customer's second best-fit size, and α captures the customer's sensitivity to the lack of fit, i.e., the disutility for wearing a shoe in an adjacent size that does not fit perfectly. When facing a set of products, the customer (s, σ, α) first forms a *stock-induced consideration set* based on the products available in the best-fit size s ; if the best-fit size is unavailable, the customer considers the adjacent size of the same style but penalizes them with a utility discount α . The customer then follows a MNL model to select a product from the consideration set.

2. Model Estimation (Section 4): We develop a computationally tractable expectation-maximization (EM) algorithm to estimate the model parameters. Using a dataset from a large footwear retailer, we estimate the style-size choice model and demonstrate that at least 24.9% of unmet demand due to stockouts spills over to adjacent sizes of the same style. Furthermore, we show that the proposed style-size choice model has strong representational power and outperforms benchmark models in out-of-sample prediction accuracy. As noted earlier, Li et al. (2023) also estimate substitution patterns using a different dataset and a DID framework. While both studies find a comparable magnitude of size substitution, our choice modeling approach estimates a structural demand model and enables prescriptive analysis of its operational implications.

3. Assortment and Inventory Optimization (Section 5): We consider the assortment and inventory optimization problems under the proposed style-size choice model. We first show that the optimal assortment is invariant to customers' size sensitivity. That is, the optimal assortment is the same regardless of whether customers are likely to switch to adjacent sizes or less likely to do so. We then discuss the inventory optimization problem in which stockouts can trigger size substitution. Building on our result on the optimal assortment, we show that the size substitution effect is negligible when the planning horizon is long or customer demand is high, i.e., in the asymptotic regime. For the non-asymptotic regime, we first show that size substitution can affect profits and should be taken into account in stocking decisions. We propose a mixed-integer program for that purpose. In a numerical study, we show that this policy performs well in the non-asymptotic regime, and subsequently prove that it is asymptotically optimal. All in all, our results provide guidance on when size substitution matters and when it does not.

In the following section, we review the related literature. We relegate all proofs and additional numerical results to the appendix.

2. Literature Review

Early work in apparel retail operations often overlooked demand substitution, typically relying on single-product models. However, economics and marketing science have shown that demand substitution exists in consumer choice. A range of choice models has been developed to estimate demand

substitution from data (Train 2009) and analyze its impact on operational decisions (Kök and Fisher 2007). Stockouts also influence demand, as customers may consider alternative products when their desired item is unavailable. Researchers in operations management and marketing science have proposed methodologies to estimate the impact of stockouts, showing that ignoring them may lead to a biased estimation of product demand (Campo et al. 2000, Musalem et al. 2010, Che et al. 2012, Deng et al. 2022). Musalem et al. (2010) further propose a price promotion policy that can mitigate the negative economic impact of stockouts. Our model aligns with this research by examining stockout-driven size substitution in apparel products.

There is a growing interest in making effective inventory decisions in the event of stockouts. The seminal work of Mahajan and Van Ryzin (2001) first demonstrated that the stockout-based inventory optimization problem, also known as the *dynamic* inventory problem, is computationally challenging. Honhon et al. (2010), Honhon and Seshadri (2013) approximate the dynamic inventory problem with a continuous relaxation, discretize the time intervals according to the assortment change, and solve the inventory problem using a dynamic program, assuming that customers follow a ranking-based choice model to make decisions. Goyal et al. (2016) propose a fully polynomial-time approximation scheme under the assumption that the choice model only consists of nested rankings. Aouad et al. (2018) propose an approximation algorithm with ratio 0.139 for the capacitated MNL inventory problem. Lee et al. (2016) discuss the stockout-based substitution and the inventory problem in the context of textbook retailing. Ergin et al. (2022) empirically show that sales of a fashion product at a focal store increase when the same product is out of stock at neighboring stores within the same retail network. Our work is related to a recent study by Liang et al. (2021), which considers an MNL-based demand model and demonstrates that the optimal inventory policy follows a gain-ordered structure under the fluid approximation of the dynamic problem. They prove that the rounded solution from the fluid approximation is asymptotically optimal with a nearly square-root convergence rate. For the MNL model, more recent work by Zhang et al. (2024) further improves the optimality gap by dropping the dependency on the number of products. Zhang et al. (2024) also provide an optimality gap for the fluid approximation under general choice models.

In apparel, most papers focus solely on substitution between product styles, viewing a “product” as the aggregate of all sizes (Boada-Collado and Martínez-de-Albéniz 2020). In contrast, Li et al. (2023) empirically find evidence of size substitution. We note that both our model and Li et al. (2023) assume that size substitution occurs only between adjacent sizes (see Assumption 1 in Li et al. (2023) and Section 3 of our paper). In our framework, this assumption is embedded directly through the construction of the consideration sets and the specification of product utility (see Equations (1)–(3)). While it is clear that product size plays an essential role in fashion retailing, very few papers have discussed the validity of the usual aggregation approach or have addressed the operational challenges

when stockout-based size substitution happens (Smith and Achabal 1998, Caro and Gallien 2012). Our work aims to fill this gap in the literature.

3. Model

In this section, we propose a two-stage choice model that characterizes consumers' apparel choice.

3.1. Product, Style, and Size

We define an apparel product as a style-size pair. In particular, let \mathcal{J} be the set of product styles and \mathcal{K} be the set of product sizes. We consider a style-size pair (j, k) as an apparel product, where $j \in \mathcal{J}$ and $k \in \mathcal{K}$. The style contains all product information, including brand, design, and color, except for its size. Put differently, if one views an SKU as a product, “style” summarizes all information of the SKU except the size. Notice that product sizes form a complete order, as we can always sort sizes in \mathcal{K} as an increasing sequence. In addition, for a given size $k \in \mathcal{K}$, we use $\text{ADJ}_+(k)$ and $\text{ADJ}_-(k)$ to denote the larger and small-adjacent sizes of k in \mathcal{K} , respectively. For example, consider a footwear universe of two styles $\mathcal{J} = \{\text{Nike Air Max White}, \text{Nike Air Force White}\}$ and nine sizes $\mathcal{K} = \{6, 6.5, 7, 7.5, \dots, 9.5, 10\}$. Then in this universe, there are $|\mathcal{J}| \times |\mathcal{K}| = 18$ products. The adjacent sizes follow immediately. For instance, $\text{ADJ}_+(7) = 7.5$ and $\text{ADJ}_-(7) = 6.5$. Note that each middle size in \mathcal{K} can have two adjacent sizes, while the two boundary sizes can have only one adjacent size.

To ease notation, we define $\mathcal{N} \equiv \{(j, k) \mid j \in \mathcal{J}, k \in \mathcal{K}\}$ as the set of products, each represented as a style-size pair. We also define $(0, 0)$ as the no-purchase option and $\mathcal{N}_+ = \mathcal{N} \cup (0, 0)$. In this paper, we often use footwear and clothing products as illustrative examples to demonstrate the model definitions and settings. More broadly, our framework applies to apparel products that can be represented as style-size pairs. Products that do not fit our framework, such as scarves or jewelry accessories, are beyond the scope of the paper.

3.2. Two-Stage Customer Choice Based on Available Sizes

We propose a two-stage choice model to capture how customers make apparel purchasing decisions. We first assume that each customer can be depicted by a tuple (s, σ, α) , where $s \in \mathcal{K}$ represents the customers' best-fit size in the size set \mathcal{K} , $\sigma \in \{+, -\}$ implies either the larger (+) or the smaller-adjacent size (-) of s is the customer's second best-fit size, and $\alpha \geq 0$ characterizes her sensitivity toward size deviation.

Customers follow a two-step process to make the purchase decision. Upon seeing an assortment of available products $A \subseteq \mathcal{N}$, a customer first forms a consideration set based on her type, and then either selects a product from this set or leaves without making a purchase. The notion of the consideration set here is quite different from the one in the literature (Aouad et al. 2021, Jagabathula et al. 2024). We will revisit this comparison in Section 3.5.

First, consider the customer type $\tau = (s, +, \alpha)$. The corresponding symmetric type, $(s, -, \alpha)$, will be discussed subsequently. The two stages in the choice model are the following.

First stage: Consider. The customer τ forms a consideration set based on her type τ . For a given style $j \in \mathcal{J}$, the customer τ first considers the best-fit product, which is (j, s) , and checks whether it is available. If it is not available, the customer will consider the same style but in the larger-adjacent size, i.e., (j, k) for $k = \text{ADJ}_+(s)$. Specifically, let $C_\tau(A) \subseteq A$ be the consideration set of customer $\tau = (s, +, \alpha)$. Then, $C_\tau(A)$ is the disjoint union of two sets, $C_\tau(A) \equiv C_\tau^1(A) \cup C_\tau^2(A)$, where

$$C_\tau^1(A) = \{(j, k) \in A \mid k = s, j \in \mathcal{J}\} \quad (1)$$

$$C_\tau^2(A) = \{(j, k) \in A \mid k = \text{ADJ}_+(s), (j, s) \notin A, j \in \mathcal{J}\}. \quad (2)$$

Here $C_\tau^1(A)$ is the collection of products in assortment A that are available in customer's best-fit size s , and $C_\tau^2(A)$ is the collection of products in A of size $\text{ADJ}_+(s)$ for the styles unavailable in the best-fit size s . A key observation is that for a given style, an adjacent size is considered only if the customer's best-fit size is not available. That is, the customer will not consider an adjacent size if the same style is available in her best-fit size. The following example illustrates the formation of the consideration set $C_\tau(A)$.

EXAMPLE 1. (Consideration Set) Assume that a store provides three styles of shoes, $\mathcal{J} = \{X, Y, Z\}$. A customer whose best-fit size is 7 visits the store. When size 7 is not available, this customer might consider the larger-adjacent size 7.5. In other words, her customer type is $\tau = (7, +, \alpha)$, for some utility discount $\alpha \geq 0$. At the store, the set of products in stock is

$$A = \{(X, 6.5), (X, 7), (X, 7.5), (Y, 7.5), (Z, 6.0), (Z, 6.5)\}.$$

Given assortment A , the customer forms the consideration set $C_\tau(A) = \{(X, 7), (Y, 7.5)\}$, since $C_\tau^1(A) = \{(X, 7)\}$ and $C_\tau^2(A) = \{(Y, 7.5)\}$. Note that product $(X, 7.5)$ will not be considered since the style X is available in the best-fit size 7. On the other hand, for style Y , the customer is willing to consider the larger-adjacent size 7.5 since the best-fit size is unavailable, although it is assigned a lower utility. Style Z will not be considered since the sizes available are too small. \square

We note that, under our definition of consideration sets, the best-fit size is strictly preferred to an adjacent size. This interpretation aligns with the standard definition of preference ordering (Block and Marschak 1959, Farias et al. 2013, van Ryzin and Vulcano 2014). The model also allows non-deterministic best-fit size behavior by mixing customer types (Section 3.3), which captures the scenarios where adjacent sizes may occasionally become the perceived best-fit size due to inherent variability in consumer choice.

Second stage: Choose. Once the customer forms the consideration set $C_\tau(A)$, she either selects a product from $C_\tau(A)$ or leaves without a purchase, according to a MNL model. Specifically, we

assume that the customer τ has random utility $u_{jk}^\tau = v_{jk}^\tau + \epsilon_{jk}^\tau$ for product (j, k) , where ϵ_{jk}^τ follows an independent standard Gumbel distribution. The deterministic component v_{jk}^τ is given by

$$v_{jk}^\tau = \begin{cases} v_j, & \text{if } (j, k) \in C_\tau^1(A), \\ v_j - \alpha, & \text{if } (j, k) \in C_\tau^2(A), \\ -\infty, & \text{if } (j, k) \notin C_\tau(A) \equiv C_\tau^1(A) \cup C_\tau^2(A), \end{cases} \quad (3)$$

That is, if style j is available in the customer's best-fit size—i.e., $(j, s) \in C_\tau^1(A)$ for customer type $\tau = (s, +, \alpha)$ —then its deterministic utility is simply v_j . If product j is available in the larger-adjacent size but not in size s —i.e., $(j, s) \in C_\tau^2(A)$ —it is still deemed “acceptable” by the customer, albeit with a utility discount α due to the size mismatch, yielding the deterministic utility $v_j - \alpha$. Any product not included in the consideration set $C_\tau(A)$ is not considered and is assigned utility $-\infty$. Following standard convention, the no-purchase option has random utility ϵ_{00}^τ , with its deterministic component set to zero. Equation (3) implies that the utility of an apparel item in the correct size depends only on its style. This aligns with our modeling assumption that a style reflects all fashion-related attributes of a product.

From the MNL choice model, the probability of choosing product (j, k) for a customer of type $\tau = (s, +, \alpha)$ given an assortment A is

$$\mathbb{P}_\tau((j, k) | A) = \begin{cases} \frac{e^{v_j}}{1 + \sum_{(j', k') \in C_\tau^1(A)} e^{v_{j'}} + \sum_{(j', k') \in C_\tau^2(A)} e^{v_{j'} - \alpha}}, & \text{if } (j, k) \in C_\tau^1(A), \\ \frac{e^{v_j - \alpha}}{1 + \sum_{(j', k') \in C_\tau^1(A)} e^{v_{j'}} + \sum_{(j', k') \in C_\tau^2(A)} e^{v_{j'} - \alpha}}, & \text{if } (j, k) \in C_\tau^2(A), \\ 0, & \text{otherwise,} \end{cases} \quad (4)$$

with the no-purchase probability $\mathbb{P}_\tau((0, 0) | A) = 1 / \left(1 + \sum_{(j', k') \in C_\tau^1(A)} e^{v_{j'}} + \sum_{(j', k') \in C_\tau^2(A)} e^{v_{j'} - \alpha}\right)$.

Finally, the choice probability $\mathbb{P}_\tau((j, k) | A)$ for a customer of type $\tau = (s, -, \alpha)$ follows the same expression as Equation (4) except that $C_\tau^2(A) = \{(j, k) \in A \mid k = \text{ADJ}_-(s), (j, s) \notin A, j \in \mathcal{J}\}$.

3.3. The Style-Size Choice Model: The General and Average Cases

Let $\Gamma = \{(s, \sigma, \alpha) \mid s \in \mathcal{K}, \sigma \in \{+, -\}, \alpha \geq 0\}$ be the collection of all customer types. We further use μ_τ to represent the density of customer type $\tau \in \Gamma$ in the market. Along with the utility parameters v_j of styles $j \in \mathcal{J}$, we define the (general) style-size choice model as

$$[\text{General Model}]: \quad \mathbb{P}((j, k) | A) = \sum_{s \in \mathcal{K}, \sigma \in \{+, -\}} \int_0^\infty \mathbb{P}_{(s, \sigma, \alpha)}((j, k) | A) \cdot \mu_{(s, \sigma, \alpha)} d\alpha, \quad (5)$$

where the choice probability $\mathbb{P}_\tau((j, k) | A)$ is defined as in Equation (4).

In Equation (5), we seek a general representation of customers' experience on product sizes. In particular, the distribution μ_τ for $\tau = (s, \sigma, \alpha) \in \Gamma$ allows us to model a wide range of consumer

decisions in the context of apparel product sizes. Take type $(s, +, \alpha)$ and men's footwear as an example. The range of shoe sizes is usually $\{7, 7.5, 8, 8.5, \dots, 12.5, 13\}$. On the other hand, customers' actual foot sizes are *continuously* distributed in the range between, let's say, 25 cm (corresponding to size 7) and 30 cm (corresponding to size 13). A customer with a foot size of exactly 27.5 cm (size 10) may feel uncomfortable when trying on size 10.5, as it can be too loose. In that case, the corresponding α is bigger. On the contrary, consider a customer whose best-fit size is 10 and actual foot size is slightly longer than 27.5 cm. When size 10 is out of stock, he is more flexible in choosing the adjacent size, 10.5. In that case, the corresponding utility discount α is smaller. The distribution of customer types over α reflects the fact that the standardized retail sizes are approximations to each person's actual foot size (or body size for clothing).

Later in Section 4, when we estimate the size substitution effect from a real-world dataset that involves the inventory information for nearly five hundred apparel products over an eight-month horizon, we consider an *average* case of the style-size choice model (5). In this average model, we aim to obtain a more succinct and interpretable representation of model (5). Specifically, we first use one parameter to represent the discomfort discount $\alpha = \alpha_0$ of all customers, which will be estimated from the dataset. Second, we assume that for each best-fit size $s \in \mathcal{K}$, customers are equally likely to be oversized (thus might consider the larger-adjacent size) or undersized (thus might consider the smaller-adjacent size) compared to s . That is, we assume $\mu_{(s, +, \alpha_0)} = \mu_{(s, -, \alpha_0)}$. With these reductions, we obtain a more compact style-size choice model:

$$[\text{Average Model}]: \quad \mathbb{P}((j, k) | A; \alpha_0) = \sum_{s \in \mathcal{K}} \bar{\mu}_s \cdot \left(\frac{1}{2} \cdot \mathbb{P}_{(s, +, \alpha_0)}((j, k) | A) + \frac{1}{2} \cdot \mathbb{P}_{(s, -, \alpha_0)}((j, k) | A) \right), \quad (6)$$

where, with a slight abuse of notation, we write $\bar{\mu}_s \equiv \mu_{(s, +, \alpha_0)} + \mu_{(s, -, \alpha_0)}$ to represent the fraction of customers whose best-fit size is s . We remark that the average model (6) can be fully characterized by $|\mathcal{J}| + |\mathcal{K}| + 1$ parameters—namely, α_0 , $(v_j)_{j \in \mathcal{J}}$ and $(\bar{\mu}_s)_{s \in \mathcal{K}}$.

3.4. Model Extension: Size Variation across Styles

Due to the diverse combinations of apparel styles, sizes, and customers' actual body measurements, it's unlikely that all consumer choices in apparel retail can be fully captured by the general style-size model (5). For instance, a *baggy fit* T-shirt is intentionally designed to be looser. A customer who typically wears size L might find that size M offers the best fit in this case. When size definitions for a particular style do not align with others, we can relabel sizes within \mathcal{K} for that style to maintain consistency. These adjustments can be easily implemented during inventory management.

In more extreme cases where substantial size variation exists across apparel styles, we might define each customer type as a tuple $(\mathbf{s}, \boldsymbol{\sigma}, \boldsymbol{\alpha}) = (s_j, \sigma_j, \alpha_j)_{j \in \mathcal{J}}$, where for each style $j \in \mathcal{J}$, size $s_j \in \mathcal{K}$ is the customer's best-fit size, $\sigma_j \in \{+, -\}$ indicates which adjacent size would be considered, and α_j

represents the utility discount associated with choosing that adjacent size. The customer type (s, σ, α) defined in Section 3.1 is a special case of this tuple, where s_j , σ_j , and α_j are fixed across all styles $j \in \mathcal{J}$. While we will not address this extension in depth due to the added notational complexity, we will later show in Section 5 that our main results on assortment and inventory planning, Theorem 1 and Proposition 1, still apply under this extended model.

3.5. Comparison to Other Choice Models in the Literature

Now we compare the style-size choice model in Equation (5) with other existing choice models in the literature. At first glance, the style-size choice model resembles the mixed-MNL model (Train 2009), which assumes that there are several customer types in the market and each customer type makes decisions according to a distinct MNL model. The style-size choice model also allows customer heterogeneity in Equation (5), but it differentiates itself from the mixed-MNL model by incorporating the notion of a consideration set in the decision-making process. The consideration set structure enables us to model the strict hierarchy between sizes, where there exists a most suitable size, an adjacent size, and unacceptable sizes for each customer. In contrast, in the mixed-MNL model, it is not possible to construct a hierarchy between sizes as long as each has a non-zero choice probability; a customer may still buy a much larger or a much smaller size of a given style, even if the best-fit size is offered.

The style-size choice model contributes to the growing literature on choice models with consideration sets. In particular, Aouad et al. (2021) and Jagabathula et al. (2024) develop a consider-then-choose (CTC) model, which is defined as a distribution over the product space of subsets and rankings. In the CTC model, a customer type is characterized by a subset-ranking pair (C, σ) . When an assortment A is offered, customer type (C, σ) will choose $\arg \min_{i \in C \cap A} [\sigma(i)]$, i.e., selecting the product with the highest rank in the intersection of the consideration set C and the offered assortment A . Our style-size choice model differs from the CTC model in several aspects. First, in the 'choose' step, our model follows an MNL model, while the CTC model follows a ranking preference. Second, the consideration set in the style-size choice model is *stock-based*, i.e., a function of stock. In contrast, the consideration set in the CTC model is *independent* of the set of available products. Such differences confer practical advantages to the style-size choice model. In the CTC model, the number of customer types grows exponentially with the number of style-size pairs, whereas in the style-size choice model, the number of customer types scales linearly with the number of sizes. This makes our model more tractable and suitable for practical applications, where the number of style-size pairs (i.e., products) may easily exceed hundreds. We refer readers to Section 4.3 for further discussion on the number of parameters in the style-size choice model.

To further illustrate the distinction between the consideration sets in the style-size and CTC models, we present the following example. Specifically, we show that the stock-based consideration

set $C_\tau(A)$ defined in Section 3.2 cannot be represented as the intersection of the assortment A with a fixed subset C of products, as assumed in the CTC model.

EXAMPLE 2 (STOCK-BASED CONSIDERATION SET). Consider a universe with one style, $\mathcal{J} = \{X\}$, and two adjacent sizes, $\mathcal{K} = \{7, 7.5\}$. Take customer type $\tau = (7, +, \alpha)$ and the following assortments: $A_1 = \{(X, 7), (X, 7.5)\}$, $A_2 = \{(X, 7)\}$, and $A_3 = \{(X, 7.5)\}$. The corresponding consideration sets are $C_\tau(A_1) = \{(X, 7)\}$, $C_\tau(A_2) = \{(X, 7)\}$, and $C_\tau(A_3) = \{(X, 7.5)\}$.

Suppose, for the sake of contradiction, that $C_\tau(A) = C \cap A$ for a fixed consideration set C as in the CTC model. Since $C_\tau(A_2) = \{(X, 7)\}$ and $C_\tau(A_3) = \{(X, 7.5)\}$, both products would have to belong to C , implying that $C = \{(X, 7), (X, 7.5)\}$. But then, $C \cap A_1 = \{(X, 7), (X, 7.5)\} \neq C_\tau(A_1) = \{(X, 7)\}$, a contradiction. \square

The style-size choice model is analogous to a context-dependent choice (Tversky and Simonson 1993), in which customers make decisions based on the products and their comparisons to one another within the offered assortment. In the style-size choice model, a customer sees the set of available products and decides not to consider adjacent sizes if the best-fit size of the same style is already available in the assortment. One can also view the style-size choice model as cue-triggered consumer behavior (Pennesi 2021) in which a stimulus from the environment drives consumers' decisions. In the style-size choice model, the unavailability of the best-fit size in the assortment triggers customers to consider the adjacent sizes of the same style.

Finally, while the style-size choice model is analogous to the context-dependent choice models, it still satisfies the *substitutability* property (or also called the *stochastic rationalizability* property; see Jagabathula and Rusmevichientong (2019), Chen and Mišić (2022), Zhang et al. (2024)). The property is a widely used axiom in the economics and decision theory literature (Rieskamp et al. 2006). It is satisfied by several popular choice models, including the mixed-MNL and ranking-based models, and is defined as follows.

DEFINITION 1. A choice model \mathbb{P} over choices in \mathcal{N}_+ satisfies the *substitutability* property if $\mathbb{P}(m | A \cup \{n\}) \leq \mathbb{P}(m | A)$ for all assortments A and choices m and n such that $n \in \mathcal{N} \setminus A$.

The property implies that the probability of choosing any product will not increase if we enlarge an assortment. The substitutability property is referred to as the least restrictive form of rational choice and is sometimes dubbed “weak rationality.” However, it can still be violated when the choice is context-dependent. One example is the decoy effect. In this marketing phenomenon, adding an inferior “decoy” product to an assortment increases the appeal of a superior “target” product, making consumers more likely to choose it (Huber et al. 1982). When a choice model violates the substitutability property, it usually leads to computationally expensive methodologies for the downstream applications (Akchen and Mišić 2021). Although the style-size choice model is context-dependent, the following lemma shows that it satisfies the substitutability property.

LEMMA 1. *The choice probability $\mathbb{P}_{(s, \sigma, \alpha)}$ satisfies the substitutability property if and only if $\alpha \geq 0$.*

Lemma 1 leads to an intuitive inventory policy that is asymptotically optimal (cf. Section 5.4).

4. The Dataset and Estimation Outcome

In this section, we apply our model to real-world inventory and sales data.

4.1. Data

The dataset comes from a large footwear retailer. The company operates hundreds of stores and also owns an e-commerce website. We focus on the data collected from brick-and-mortar stores. Notice that the style-size combination is the most disaggregate product level observed in the dataset. We follow Section 3 to define each style-size combination as a product or SKU.

The data spans 33 weeks in the 2019-2020 season from the end of July 2019 to mid-March 2020, right before store traffic began to decline because of the coronavirus pandemic. The data is for 51 styles of women's casual booties, which is a midsize category among 50+ categories overall. There are nine shoe sizes ranging from size 6 to size 10, with half sizes in between. The dataset includes the following information from each store $m \in \mathcal{M}$ and week $t \in \mathcal{T}$:

N^{mt} : the number of visitors to store m during week t , collected by a traffic counter at the entrance of each store. The weekly average was approximately 4,000 visitors per store.

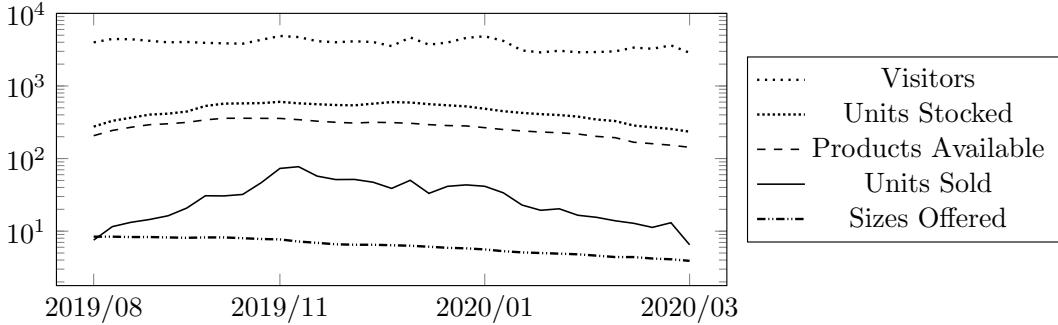
$Q_{(j,k)}^{mt}$: the number of sold units of product (j, k) at store m during week t . On average, 30.8 units were sold at each store per week. Hence, roughly 99% of the customers either bought a product outside \mathcal{N} or did not make a purchase.

$I_{(j,k)}^{mt}$: the number of stocked units of product (j, k) at store m and in week t . We also note that we are aware of the replenished units. The time series of stocked units, units sold, and replenished units are quite consistent, indicating that the inventory records are reliable. On average, a store stocked 453.8 units during a week.

A^{mt} : the set of available products at store m in week t , i.e., $A^{mt} = \{(j, k) \in \mathcal{N} \mid I_{(j,k)}^{mt} \geq 1\}$. For simplicity, we assume that A^{mt} remains the same throughout the week. Hence, customers visiting the store during the same week saw the same set of products. This is a reasonable assumption, as we observe that only a small fraction of products were sold in a week, and thus the set of available products A^{mt} would not change significantly during the week. On average, there were 271.2 products available, out of a total of 459 ($= 51 \times 9$), and there were 6.4 sizes in stock (out of 9).

In Table 1 we report the weekly visitors N^{mt} , units stocked $\sum_{(j,k) \in \mathcal{N}} I_{(j,k)}^{mt}$, products available $|A^{mt}|$, units sold $\sum_{(j,k) \in \mathcal{N}} Q_{(j,k)}^{mt}$, and sizes offered, all averaged across stores $m \in \mathcal{M}$. The sizes offered are reported as the ratio between $|A^{mt}|$ and the number of styles in the assortment. We also show the evolution of these quantities in Figure 1. From the figure, it can be seen that the number of visitors

	Mean	Median	Std. Dev.	Min	Max
Visitors	3,857.5	3,981.5	593.6	2,865.6	4,880.7
Units stocked	453.8	449.1	115.8	234.7	604.4
Products available	271.2	284.9	63.5	143.0	359.2
Units sold	30.8	30.5	18.5	6.5	77.3
Sizes offered	6.4	6.4	1.5	3.9	8.4

Table 1 Weekly summary statistics (averaged across stores)**Figure 1** Evolution of visitors, units stocked, products available, units sold, and sizes offered from 2019 Fall to 2020 Spring averaged across stores

decreased gradually over the specified time horizon. Similarly, the number of sizes offered decreased almost monotonically from 8.4 sizes to 3.9. In contrast, the stocked units and the number of available products peaked in mid-October 2019, while the number of sold units peaked in November 2019, a few weeks after the peak of the stocked units and just before the holiday season.

4.2. Estimation Method: The EM Algorithm

We propose an estimation method for the average style-size choice model (6) based on the expectation–maximization (EM) algorithm. Due to space constraints, we defer the technical details to Appendix A and provide a high-level summary below.

The EM algorithm is a widely used framework for maximum likelihood estimation in models with latent variables. It alternates between two steps: an expectation (E) step, in which the expected values of the missing or unobserved variables are computed given the observed data and current parameter estimates, and a maximization (M) step, in which the expected values are used to (re)optimize the model parameters. In our setting, the customer types τ are unobserved, making them natural latent variables for an EM approach. In the E step, we compute the conditional expectation of customer-type assignments using Bayes' rule, based on the current model parameters and the observed sales data $(N^{mt}, \{Q_{(j,k)}^{mt}\}_{(j,k) \in A^{mt}})_{m \in \mathcal{M}, t \in \mathcal{T}}$. In the M step, we maximize the expected complete-data log-likelihood with respect to the model parameters. This step further decomposes into two independent optimization problems under the style-size choice model: one for estimating the distribution over

customer types, which has a closed-form solution, and the other for estimating style utilities and size sensitivity, which involves a concave maximization problem that can be solved efficiently. In Appendix A, we derive the complete-data log-likelihood based on the style-size choice model (Section A.1) and then develop the E and M steps in detail (Section A.2).

Examples of the EM algorithm include the estimation of the LC-MNL model (Train 2009), the general attraction model (GAM) (Gallego et al. 2015), the ranking-based model (van Ryzin and Vulcano 2014), and the decision forest model (Chen and Mišić 2022). Generally, the efficiency of the EM algorithm depends on whether the M step can be solved easily. For example, in the LC-MNL model, the M step requires solving K concave maximization problems, where K is the number of customer types. In the GAM model, the M step cannot be solved as a concave maximization problem. Gallego et al. (2015) thus consider minimizing the squared error by ignoring the no-purchase option. In the ranking-based model, the M step involves solving a linear ordering problem, which is known to be NP-hard. van Ryzin and Vulcano (2014) address it using a mixed-integer linear program.

In contrast, the M step for the style-size choice model is surprisingly simple, as it only requires solving a single concave maximization problem P_2^{complete} . This simplicity stems from the model formulation, particularly from the design of the consideration sets $C_\tau^1(A)$ and $C_\tau^2(A)$, as well as the fact that the choice between the two sets can be separated in the log-likelihood function. Moreover, such a structure in the M step still exists even if we generalize the style-size model and incorporate store-specific parameters, such as a store intrinsic utility $(v_m)_{m \in \mathcal{M}}$ or a store-dependent best-fit distribution $(\mu_{m,\tau})_{m \in \mathcal{M}, \tau \in \Gamma}$. These parameters can help design localized assortments and local inventory levels (Fisher and Vaidyanathan 2014), which highlights the flexibility of the style-size choice model and its EM estimation procedure.

4.3. Estimation Outcome

We present the estimation outcome in Table 2, which compares the performance of four models, the size aggregation model, the nested logit model, the granular model, and the style-size model, under three metrics. The style-size model is the model proposed in this paper. As discussed at the beginning of Section 3.3, due to the large size of the dataset, we consider estimating the average style-size choice model (6).

The first benchmark, the size aggregation model (Size-Agg), refers to the traditional approach described in the introduction (Section 1). Specifically, in this approach, one aggregates all sizes (all SKUs) under the same style to create a “product” that is out of stock if none of the sizes are available. Following this approach, we estimate the utility v_j^{agg} of each style by first creating the aggregated products from the data and then estimating $(v_j^{\text{agg}})_{j \in \mathcal{J}}$ via maximum likelihood estimation. The choice probability for an apparel product (j, k) in the assortment A under the size aggregation model is

simply $\mathbb{P}((j, k) | A) = \exp(v_j^{\text{agg}}) / \left(1 + \sum_{j' \in \mathcal{J}, k' \in \mathcal{K}} \exp(v_{j'}^{\text{agg}})\right) \cdot \hat{\mu}_k$, where $\hat{\mu}_k$ is the fraction of sales of size k . In other words, under the size aggregation model, we assume that the demand of (j, k) is simply the demand of the style j times the market share of size k .

The second benchmark is the nested logit model (Train 2009), which has a natural structure that incorporates the apparel styles and sizes. Specifically, we consider a two-level nested logit model, where the first level encodes apparel sizes and the second level encodes styles. For simplicity, we only present one variant of the nested logit model. Another variant, in which styles are encoded first, is discussed in Appendix C, with Figure 4 illustrating both variants. In the same section, we discuss how the style-size choice model proposed in this paper differs from these two variants of the nested logit model. Note that the two variants have similar performance in terms of out-of-sample prediction in our numerical experiments.

The third and last benchmark model assumes that each product (j, k) has a random utility with deterministic component v_{jk} , and customers make purchase decisions according to the MNL model $\mathbb{P}((j, k) | S) = \exp(v_{jk}) / (1 + \sum_{(j, k) \in S} \exp(v_{jk}))$. We call it the granular model because it assigns model parameters at the most granular level, i.e., it assigns a parameter to each style-size pair. Notice that the granular model has $|\mathcal{J}||\mathcal{K}| = 459$ parameters, while the style-size model with average size sensitivity parameter considered in this section only has $|\mathcal{J}| + |\mathcal{K}| + 1 = 61$ parameters. Similarly, the nested logit model has $|\mathcal{J}| + |\mathcal{K}| + 1 = 61$ parameters while the size aggregation model has $|\mathcal{J}| + |\mathcal{K}| = 60$. Therefore, among all the models we consider in the numerical study, the granular model has the largest number of parameters. As the problem instance grows larger, the granular model can become more disadvantageous for practitioners in terms of interpreting consumer choice and designing business strategies.

In a sense, the granular model is neither practical nor compact, as it assumes that customers may substitute shoes of a very large size for shoes of a small size. While other stronger choice models exist, such as the LC-MNL model, the number of parameters in those models would further increase, making the comparison with the style-size choice model less informative. For example, a ten-class LC-MNL model would have 4590 parameters in contrast to 61 in the style-size choice model with average size sensitivity. When model complexities differ by up to eighty times, one can expect the more complex model to fit the data better; however, it may also be intractable and harder to implement in practice, with the risk of overfitting. In fact, in our experience, it is computationally intractable to estimate the LC-MNL model for the current dataset.

The first row in Table 2 presents the number of parameters in each model. The second row reports the estimated average size sensitivity parameter $\alpha_0 = 1.39$. The estimation passes the likelihood ratio test with a very small p -value against the style-size choice model of zero size substitution effect. In

Model	Size-Agg	Nested Logit	Style-Size	Granular
Number of Parameters	60	61	61	459
Size Sensitivity (α_0)	-	-	1.39***	-
KL Divergence (10^{-2})	1.88	1.72	1.66	1.67
Mean Absolute Error (10^{-3})	2.64	2.55	2.50	2.54
KL on No-Purchase (10^{-4})	8.25	6.97	6.87	6.96

*** Significant at the 0.1% level

Table 2 Estimation Results for the footwear products in the dataset

Section 4.4, we will provide insights on the value of the size sensitivity parameter and connect it to the spillover effect reported by Li et al. (2023).

The last three rows report the predictive out-of-sample performance of each model. For simplicity, in each trial of the experiment, we uniformly at random assign each store to be either in the training group $\mathcal{M}^{\text{train}}$ or in the testing group $\mathcal{M}^{\text{test}}$. We then use sales data from the stores in the training group $\mathcal{M}^{\text{train}}$ to learn the choice models and examine the performance of each model based on the sales data from the testing group $\mathcal{M}^{\text{test}}$. We run the experiment forty times and report the average performance. We use three different metrics. The first two metrics, the Kullback-Leibler (KL) divergence and the Mean Absolute Error (MAE), are standard metrics used in the literature. We define them as follows. Let $\tilde{p}_{(j,k)}^{mt} = \mathbb{P}((j,k) | A^{mt})$ and $\hat{p}_{(j,k)}^{mt} = Q_{(j,k)}^{mt}/N^{mt}$ be the predicted and empirical choice probability of product (j,k) in week t at store m . We write $A_+ \equiv A \cup \{0,0\}$ for any assortment A . The KL divergence is defined as

$$\text{KL} = - \left(\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt} \sum_{(j,k) \in A_+^{mt}} \hat{p}_{(j,k)}^{mt} \cdot \log \left(\tilde{p}_{(j,k)}^{mt} / \hat{p}_{(j,k)}^{mt} \right) \right) / \left(\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt} \right). \quad (7)$$

We further let $\tilde{Q}_{(j,k)}^{mt}$ be the predicted sales of product (j,k) in week t at store m . Then, the MAE can be expressed as

$$\text{MAE} = \frac{\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} \sum_{(j,k) \in A_+^{mt}} |\tilde{Q}_{(j,k)}^{mt} - Q_{(j,k)}^{mt}|}{\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt}} = \frac{\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt} \sum_{(j,k) \in A_+^{mt}} |\tilde{p}_{(j,k)}^{mt} - \hat{p}_{(j,k)}^{mt}|}{\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt}}$$

For both metrics, a smaller value implies better predictive performance.

Table 2 shows that the performance of the size aggregation model is significantly worse than the other models. In particular, since the model overlooks the broken assortment effect caused by size stockouts, it underestimates the style utility. When a customer cannot find her best size of a style, the model misinterprets this as the style being unattractive, and thus undervalues it. This numerical finding highlights the peril of aggregating sizes in demand estimation, especially in a setting as shown in Table 1, where sizes are not always complete.

Among the three remaining models in Table 2, the proposed style-size model has the best performance. Notably, it outperforms the nested logit model, which has the same number of parameters.

When compared to the granular model, which has nearly eight times more parameters, the style-size model demonstrates a clear advantage in predictive performance measured by the MAE score. In terms of KL divergence, the style-size and granular models perform comparably. This is surprising, as we initially expected the granular model to perform better due to its higher number of parameters. To further investigate this result, we define a third metric, KL on No-Purchase, as

$$-\left(\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt} \left(\hat{p}_{(0,0)}^{mt} \cdot \log \left(\frac{\tilde{p}_{(0,0)}^{mt}}{\hat{p}_{(0,0)}^{mt}} \right) + (1 - \hat{p}_{(0,0)}^{mt}) \cdot \log \left(\frac{1 - \tilde{p}_{(0,0)}^{mt}}{1 - \hat{p}_{(0,0)}^{mt}} \right) \right) \right) / \left(\sum_{m \in \mathcal{M}^{\text{test}}} \sum_{t \in \mathcal{T}} N^{mt} \right),$$

which measures how accurately a choice model can predict whether a customer would make a purchase or not. Particularly, the KL on No-Purchase measures the information loss over purchase/no-purchase decisions, $\hat{p}_{(0,0)}^{mt} \cdot \log \left(\tilde{p}_{(0,0)}^{mt} / \hat{p}_{(0,0)}^{mt} \right) + (1 - \hat{p}_{(0,0)}^{mt}) \cdot \log \left((1 - \tilde{p}_{(0,0)}^{mt}) / (1 - \hat{p}_{(0,0)}^{mt}) \right)$, instead of the loss over all choice decisions in A_+^{mt} , i.e., $\sum_{(j,k) \in A_+^{mt}} \hat{p}_{(j,k)}^{mt} \cdot \log \left(\tilde{p}_{(j,k)}^{mt} / \hat{p}_{(j,k)}^{mt} \right)$, compared to Equation (7).

In the last row of Table 2, we observe that the style-size model predicts whether customers make a purchase more accurately than both the nested logit and granular models. Moreover, while the granular model significantly outperforms the nested logit model in terms of KL divergence for all purchase decisions, this outperformance is not observed in the KL divergence for purchase versus no-purchase decisions (KL on No-Purchase). This result suggests that the additional parameters in the granular model improve its fit for consumer choices when purchases are made, but do not effectively capture when and whether customers choose not to purchase. We attribute this to model misspecification. In both the granular and nested logit models, customers may substitute shoes of very distant sizes, leading to an underestimation of the no-purchase probability. In contrast, the style-size model assumes that customers only substitute adjacent sizes, resulting in a more accurate prediction of the no-purchase option.

We also note that one could design a more advanced version of the style-size choice model by allowing each apparel product (j, k) to have its own utility parameter $v_{(j,k)}$, in addition to the structure of the consideration sets and customer types. Such a model could potentially improve predictive accuracy: the additional parameters help predict individual product demand if a customer makes a purchase, as in the granular model, while the consideration set structure provides a realistic way to account for size stockouts, as in our style-size choice model. We do not pursue this approach here, as our goal is not to propose a model that maximizes prediction accuracy across all choice models. Instead, we focus on a parsimonious model that captures the interplay between apparel styles and sizes and provides operational insights (cf. Section 5).

Lastly, Figure 2 presents the uncensored distribution $\bar{\mu}_k \equiv \mu_{(k,+, \alpha_0)} + \mu_{(k,-, \alpha_0)}$ of customers' best-fit sizes (blue bars) in the estimated style-size choice model, and compares it with the censored distribution (yellow bars), which is the fraction of units sold in each size $\hat{\mu}_k \propto \sum_{mtj} Q_{(j,k)}^{mt}$. We

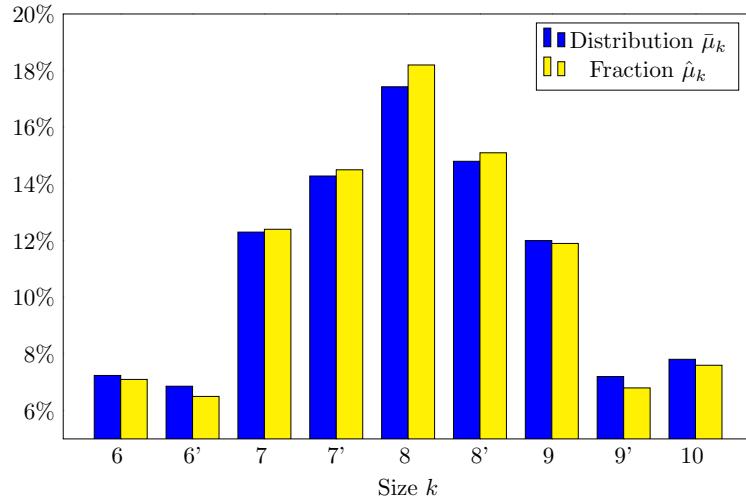


Figure 2 The uncensored best-fit distribution $\bar{\mu}_k$ and the observed fraction of sales $\hat{\mu}_k$.

observe that the uncensored distribution $\bar{\mu}_k$ is more even across sizes compared to the censored sales distribution $\hat{\mu}_k$. Indeed, the censored distribution $\hat{\mu}_k$ overestimates the probability mass of the “major” sizes in the middle, i.e., $k \in \{7.5, 8, 8.5\}$, at the expense of the less popular “minor” sizes at the extremes—namely, $k \in \{6, 6.5, 9.5, 10\}$. The stocking decisions censor the demand for minor sizes, which is reestablished by the EM algorithm. We also observe that both $\bar{\mu}_k$ and $\hat{\mu}_k$ are not unimodal over k . For example, $\bar{\mu}_{6.5}$ and $\bar{\mu}_{9.5}$ are slightly smaller than $\bar{\mu}_6$ and $\bar{\mu}_{10}$, respectively. This is a truncation effect since size 6 receives spillover demand from consumers who have a shoe size slightly smaller than 6. A similar spillover happens with size 10.

4.4. Interpreting the estimated size sensitivity parameter

The estimated size sensitivity parameter is $\alpha_0 = 1.39$ (cf. Table 2). In this section, we relate our estimations to the size substitution effect reported by Li et al. (2023). Consider the style-size choice model estimated in Section 4.3, and fix a style $j \in \mathcal{J}$. Assume a customer of type $\tau = (k, +, \alpha_0)$ visits a store. Let us define two assortments A_1 and A_2 , where $A_1 = A_0 \cup \{(j, k) \mid k \in \mathcal{K}\}$, $A_2 = A_1 \setminus \{(j, k)\}$, and A_0 is any assortment composed of styles other than j . We can interpret A_2 as the scenario in which product (j, k) is out of stock. It is easy to verify that:

$$\frac{\mathbb{P}_\tau((j, k') \mid A_2)}{\mathbb{P}_\tau((j, k) \mid A_1)} \geq \exp(-\alpha_0) = 24.9\%, \quad (8)$$

where $k' = \text{ADJ}_+(k)$ is the larger-adjacent size of k . The inequality (8) holds for any style j , any best-fit size k , and any customer type $\tau = (k, \sigma, \alpha_0)$ for $\sigma \in \{+,-\}$. Therefore, it implies that with a probability of at least 24.9%, a customer will switch to an adjacent size of the same style when the best-fit size is out of stock. If we adopt the classic interpretation of choice probabilities as the demand rate, Equation (8) suggests that, on average, at least 24.9% of the unmet demand for an

apparel product due to stockouts may be substituted for the adjacent sizes of the same style. From the symmetry of the average style-size choice model, this substitution is evenly split: approximately 12.5% spills over to the larger-adjacent size, while the remaining 12.5% shifts to the smaller adjacent size.

As mentioned in Section 2, the paper by Li et al. (2023) investigates similar consumer behavior in size substitution under stockouts. They show that 16.7% and 11.9% of the unmet demand for an out-of-stock SKU spills over to the adjacent larger and smaller sizes, respectively. Remarkably, their estimates are quite comparable to ours, despite the differences in empirical approaches (DID vs. choice modeling) and product categories (men's sports shoes vs. women's casual booties).

5. Assortment and Inventory Optimization

In this section, we examine how the size substitution effect may influence operational decisions in assortment and inventory optimization problems.

5.1. Assortment Optimization

We first consider the assortment optimization problem under the proposed style-size choice model. We assume that each product $(j, k) \in \mathcal{N}$ has a unit revenue r_j , i.e., the unit revenue is independent of product size. This is a reasonable assumption, as stores usually do not charge different prices for products of the same style. Without loss of generality, we write that $\mathcal{J} \equiv \{1, 2, \dots, J\}$, and $r_1 \geq r_2 \geq \dots \geq r_J \geq 0$. Then, the assortment optimization problem is defined as

$$\underset{A \subseteq \mathcal{N}}{\text{maximize}} \left\{ R(A) \equiv \sum_{(j, k) \in A} r_j \cdot \mathbb{P}((j, k) | A) = \sum_{s \in \mathcal{K}, \sigma \in \{+, -\}} \int_0^\infty \mu_{(s, \sigma, \alpha)} \cdot R_{(s, \sigma, \alpha)}(A) d\alpha \right\}, \quad (9)$$

where $R(A)$ is the expected revenue of assortment A and $R_\tau(A) \equiv \sum_{(j, k) \in A} r_j \cdot \mathbb{P}_\tau((j, k) | A)$ is the expected revenue collected from customer type $\tau = (s, \sigma, \alpha)$, with \mathbb{P}_τ defined in Equation (4). We further write $w_j \equiv e^{v_j}$ as the attraction parameter of style j and thus $R_\tau(A)$ is equal to

$$R_\tau(A) = \frac{\sum_{(j, k) \in C_\tau^1(A)} r_j w_j + \sum_{(j, k) \in C_\tau^2(A)} e^{-\alpha} r_j w_j}{1 + \sum_{(j, k) \in C_\tau^1(A)} w_j + \sum_{(j, k) \in C_\tau^2(A)} e^{-\alpha} w_j}.$$

In Section 4, we showed that size substitution happens. Remarkably, the following theorem demonstrates that the size substitution effect has no impact on the assortment decision. Additionally, the optimal policy has a revenue-ordered structure in product styles.

THEOREM 1. *Let $\{1, 2, \dots, j^*\}$ be the optimal assortment under the style-only MNL choice model:*

$$\{1, 2, \dots, j^*\} = \arg \max_{A_{\text{style}} \subseteq \mathcal{J}} \left\{ \frac{\sum_{j \in A_{\text{style}}} r_j w_j}{1 + \sum_{j \in A_{\text{style}}} w_j} \right\}. \quad (10)$$

Then, there exists an optimal solution $A^ \subseteq \mathcal{N}$ to the assortment problem (9) that takes the form*

$$A^* = \{(1, k), (2, k), \dots, (j^*, k) \mid k \in \mathcal{K}\}. \quad (11)$$

That is, it is optimal to offer all sizes of styles 1 to j^ and not offer any sizes of other styles.*

Theorem 1 reveals a simplification in assortment planning under the style-size choice model. Although demand substitution can occur both across apparel styles and sizes, which are inherently “two-dimensional,” the optimal assortment follows a one-dimensional structure. Specifically, product sizes and size-substitution effects can be ignored, and the optimal decision can be made solely at the style level, mirroring the classic MNL assortment optimization problem (Talluri and Van Ryzin 2004) in Equation (10). Moreover, *a priori*, an apparel retailer may consider skipping some sizes for less popular styles. That approach would contravene Theorem 1, which states that if it is optimal to include a style in the assortment, then all sizes should be included, regardless of the style’s popularity.

Theorem 1 provides theoretical support for size aggregation in assortment optimization, a common approach in the operations management literature (cf. Section 2). Notably, the optimal assortment (11) remains unchanged regardless of the distribution μ_τ over customer types $\tau = (s, \sigma, \alpha)$. In other words, the optimal assortment decision is independent of whether customers are more flexible with size variations ($\mu_{(s, \sigma, \alpha)}$ concentrated at a low α) or more sensitive to them ($\mu_{(s, \sigma, \alpha)}$ concentrated at a high α). Moreover, this result aligns with industry practices, where retailers typically focus on style selection rather than size differentiation when designing catalogs or arranging store displays. In Section 5.4, we show that Theorem 1 also leads to an asymptotically optimal inventory policy that remains invariant to size substitution effects.

We utilize the following three facts in the proof of Theorem 1: (i) The unit revenue or net profit of a product only depends on its style, not its size. (ii) The utility of a product only depends on its style and not on its size, as long as the product is of the correct size. (iii) A product has a lower utility to customers if it is of an adjacent size. Note that the second fact also relates to the formation of the consideration sets (Section 3.2). As long as we design the offered assortment to satisfy every customer’s first-best choice (here, the best-fit size), customers would behave according to a standard MNL at the style level. Hence, Theorem 1 actually holds for a more general setting of the style-size choice model. First, the theorem applies to the model extension described in Section 3.4, as the assortment A^* defined in Equation (11) remains optimal for a general customer type (s, σ, α) . Similarly, the theorem would also apply if a customer happens to have a third or fourth best-fit size. Indeed, second choices do not happen because the (first) best-fit size for every customer type is included in A^* . These two examples highlight the key strength of Theorem 1 – despite the combinatorial nature of style-size pairs, the optimal assortment still has a simple structure.

Finally, Theorem 1 extends the literature on assortment optimization. Recall that the style-size choice model resembles the mixed-MNL model, as it is a mixture of consider-then-choose models for various customer types in which the choice step follows an MNL. It is well-known that the optimal assortment of the mixed-MNL model generally does not have a revenue-ordered structure, and finding

the optimal assortment is NP-hard (Bront et al. 2009, Rusmevichientong et al. 2014). Thus, the style-size model is an interesting middle point between the classic MNL and mixed-MNL models.

We conclude this section by acknowledging the inherent simplifications and limitations of Theorem 1. In particular, the theorem assumes an idealized setting commonly used in the assortment optimization literature: (i) once a product is offered, it is available with unlimited inventory, and (ii) the cost of introducing a product is not considered. As we will show in the next section, relaxing these assumptions introduces more complex interactions between operational performance and the size substitution effect.

5.2. Inventory Optimization

We further consider a stockout-based inventory optimization problem under the proposed style-size choice model. By convention, we write $\mathbb{N} \equiv \{1, 2, \dots\}$ as the set of positive integers and $\mathbb{N}_+ \equiv \mathbb{N} \cup \{0\}$. We specify the inventory model as follows. Let $\ell = 1, 2, \dots$ be a sequence of customers. Each customer visits the store at time t^ℓ and makes a purchase decision $D^\ell \in \mathcal{N}_+$. We make two assumptions about the customers. First, we assume that the arrival time of customers $(t^\ell)_{\ell \in \mathbb{N}_+}$ follows a homogeneous Poisson process of rate $\lambda > 0$. For simplicity, we ignore seasonality. Second, we assume that customers' decisions D^ℓ follow the distribution $D^\ell \sim \mathbb{P}(\cdot | A^\ell)$, where A^ℓ is the set of available products when customer ℓ visits and $\mathbb{P}(\cdot | \cdot)$ is the proposed style-size choice model in Equation (5).

Let $I_{jk}^\ell \in \mathbb{N}_+$ be the remaining stock of product $(j, k) \in \mathcal{N}$ at time t^ℓ , i.e., at the time that ℓ -th customer visits. Then, the set of available products is defined as $A^\ell = \{(j, k) \in \mathcal{N} | I_{jk}^\ell > 0\}$. The stock $\mathbf{I}^\ell = (I_{jk}^\ell)_{(j, k) \in \mathcal{N}}$ follows the recursive equation: $I_{jk}^{\ell+1} = I_{jk}^\ell - 1$ if $D^\ell = (j, k)$; and $I_{jk}^{\ell+1} = I_{jk}^\ell$ otherwise. That is, if a customer chooses to buy a product of style j and size k , then the corresponding stock level decreases by one. Notice that $\mathbf{I}^{\ell+1} \geq \mathbf{0}$ for all $\ell \in \mathbb{N}_+$, as $\mathbb{P}((j, k) | A^\ell) = 0$ whenever $I_{jk}^\ell = 0$.

The store will make an inventory decision $\mathbf{I} \in \mathbb{N}_+^{|\mathcal{N}|}$ for the initial inventory depth, i.e., deciding $\mathbf{I} = \mathbf{I}^1$. Associated with the decision, the store pays a unit procurement cost of c_j to order each unit of product (j, k) and charges a unit price of p_j for each sale of (j, k) , which are assumed to be independent of the size k . We also write $p_0 = 0$ and $c_0 = 0$ for the no-purchase option. The goal of the store is to maximize the expected profit up to a given time T . Hence, the store maximizes

$$P_{\text{inv}} := \underset{\mathbf{I} \in \mathbb{N}_+^{|\mathcal{N}|}}{\text{maximize}} \quad \left[\Pi(\mathbf{I}) := \mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T] \right] - \sum_{(j, k) \in \mathcal{N}} c_j I_{jk} \right]. \quad (12)$$

The objective function $\Pi(\mathbf{I})$, which is the expected profit, consists of two terms, the expected revenue and the total cost. Notice that the revenue $\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T]$ is a random variable, as both customer arrival times and customers' decisions are random. We can also rewrite the expected revenue as follows. Let L be the number of customers that arrive during $[0, T]$. Then L is a Poisson random variable with parameter $T\lambda$ and thus $\mathbb{E}[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T]] = \mathbb{E}[\sum_{\ell=1}^L p_{D^\ell}]$. We use \mathbf{I}^*

and Π_{inv}^* to denote the optimal solution and the optimal objective value of the inventory problem P_{inv} , respectively. Without loss of generality, in this section, we write $\mathcal{J} \equiv \{1, 2, \dots, J\}$ and $\mathcal{K} \equiv \{1, 2, \dots, K\}$, where two sizes k and k' are adjacent if $|k - k'| = 1$. Let $w_j \equiv \exp(v_j)$ be the attraction parameter for style $j \in \mathcal{J}$. We also label product styles such that $\varrho_1 \equiv p_1 - c_1 \geq \varrho_2 \equiv p_2 - c_2 \geq \dots \geq \varrho_J \equiv p_J - c_J \geq 0$, i.e., styles are ordered in a decreasing order of their unit profits.

Notice that the *stockout-based* inventory optimization problem in Equation (12) is notoriously hard (Mahajan and Van Ryzin 2001). In fact, as Aouad et al. (2018) point out, given an initial inventory vector, the efficient evaluation of the expected revenue $\mathbb{E} \left[\sum_{\ell=1}^L p_{D^\ell} \right]$ is an open question even for the standard MNL model, due to the existence of stockout-based substitution. That is, the choice model $\mathbb{P}(\cdot | A^\ell)$ is contingent on the assortment A^ℓ available to each arriving customer, and it varies according to the stock availability of each product. That is why problem (12) is also referred to as the dynamic inventory problem with stockout-based substitution. In contrast, demand substitution in problem (9) is *assortment-based*, or static, because it assumes that demand is entirely determined by the products offered in the assortment, regardless of whether they are in stock at any particular point in time. Stockout-based substitution can impact inventory decisions, as illustrated in the following example.

EXAMPLE 3. (Size Substitution Effect in a Stockout-based Setting) Consider a market with one style of a T-shirt $\mathcal{J} = \{1\}$ and two sizes $\mathcal{K} = \{\text{Medium (M)}, \text{Large (L)}\}$. The style has an attraction $w_1 = 3$ and a unit price $p_1 = 1$. Let all customers in the market have the same size substitution parameter α_0 and each customer type $\tau = (s, \sigma, \alpha_0)$ has weight 0.25 for $s \in \{M, L\}$ and $\sigma \in \{+, -\}$. We assume that only the M size is currently available and the L size is out of stock, i.e., $A_\ell = \{(1, M)\}$. If we assume that the next customer ℓ will not consider adjacent sizes, i.e., $\beta_0 := \exp(-\alpha_0) = 0$, then the expected revenue collected from this customer is $p_1 \times (0.25 + 0.25) \times (w_1 / (1 + w_1)) = 0.375$. In contrast, if the customer will consider an adjacent size with a penalty $\beta_0 = 2/3$, then the expected revenue is $0.375 + p_1 \cdot 0.25 \cdot \beta w_1 / (1 + \beta w_1) = 0.525$. Hence, ignoring size substitution leads to an underestimation of the expected revenue, which may yield suboptimal inventory decisions, as the firm would not stock the product at all if its cost c_1 is greater than 0.375. \square

5.3. An IP-Based Inventory Policy

Due to the computational challenges in stockout-based substitution, we first consider solving a lower bound of Problem (12):

$$P_{\text{LB}} : \underset{\mathbf{I} \in \mathbb{N}_+^{JK}}{\text{maximize}} \quad \left[\sum_{(j,k) \in \mathcal{N}} p_j \cdot \min \{T\lambda \cdot \pi_{jk}(\mathbf{I}), I_{jk}\} - \sum_{(j,k) \in \mathcal{N}} c_j \cdot I_{jk} \right], \quad (13)$$

where $\pi_{jk}(\mathbf{I}) = \mathbb{P}((j, k) | A(\mathbf{I}))$ is the choice probability of product (j, k) based on the set of available products. The objective function in P_{LB} is indeed a lower bound to the objective function Π in

Equation (12). It first assumes that customers arrive in a deterministic manner and then approximates a product's demand based on its choice probability given the initial assortment. Such inventory problems have been widely considered in the literature (Ryzin and Mahajan 1999, Topaloglu 2013) due to their simplicity and tractability compared to the stockout-based substitution problems. In the context of the style-size choice model, the lower bound in Equation (13) utilizes the size substitution effect through the initial assortment. We further approximate this lower bound by assuming that the style-size choice model has an average size sensitivity parameter α_0 , and then solve the corresponding inventory problem using a linear mixed-integer program formulation. Therefore, the collection of customer types considered in the approximation is $\Gamma = \{(s, \sigma, \alpha_0) \mid s \in \mathcal{K}, \sigma \in \{+, -\}\}$. One can relax this assumption by expanding Γ to incorporate customer types with different values of α , at the cost of introducing additional model variables.

We define variables as follows. Let $\mathbf{I} \in \mathbb{N}_+^{JK}$ be the inventory decision for stocking I_{jk} units of product (j, k) and let $\mathbf{\xi} \in \mathbb{R}_+^{JK}$ be the sales of each product (j, k) . A key step for solving problem (13) is to connect the choice probability $\boldsymbol{\pi} = (\pi_{jk})_{j \in \mathcal{J}, k \in \mathcal{K}}$ with the choice model. Specifically, we use $\mathbf{x} \in \{0, 1\}^{JK}$ to indicate whether each product (j, k) is available at time $t = 0$. We also define variables $\mathbf{y} = (y_{j,\tau})_{j \in \mathcal{J}, \tau \in \Gamma}$ for the construction of the consideration sets described in Section 3.2. Variable $y_{j,\tau}$ indicates whether a customer of type $\tau \in \Gamma$ will consider her adjacent size of style j . Consequently, we have the following constraints for customer type $\tau = (s, \sigma, \alpha_0) \in \Gamma$:

$$y_{j,\tau} \leq x_{j,\text{ADJ}_\sigma(s)}, \quad y_{j,\tau} \leq 1 - x_{j,s}, \quad x_{j,\text{ADJ}_\sigma(s)} - x_{j,s} \leq y_{j,\tau}. \quad (14)$$

This constraint enforces that customer $\tau = (s, \sigma, \alpha_0)$ will not consider the adjacent size $\text{ADJ}_\sigma(s)$ unless the best-fit size s of style j is not available. Next, to represent the choice probability (4) of each customer type, which is a linear-fractional form, we use a classic linearization technique (Charnes and Cooper 1962). For each customer type τ , we use h_τ to denote its no-purchase probability and further use $\theta_{j,\tau}$ and $\phi_{j,\tau}$ to denote the products $x_{j,s}h_\tau$ and $y_{j,\tau}h_\tau$, respectively. We thus have the following constraint system that linearizes h_τ , $\theta_{j,\tau}$ and $\phi_{j,\tau}$:

$$h_\tau + \sum_{j \in \mathcal{J}} w_j \theta_{j,\tau} + \sum_{j \in \mathcal{J}} \beta_0 w_j \phi_{j,\tau} = 1, \quad (15)$$

$$\theta_{j,\tau} \leq h_\tau, \quad \theta_{j,\tau} \leq x_{j,s}, \quad h_\tau \leq 1 + \theta_{j,\tau} - x_{j,s}, \quad (16)$$

$$\phi_{j,\tau} \leq h_\tau, \quad \phi_{j,\tau} \leq y_{j,\tau}, \quad h_\tau \leq 1 + \phi_{j,\tau} - y_{j,\tau}. \quad (17)$$

Finally, as the demand π_{jk} for product (j, k) comes from customers whose best-fit size is k and from customers of adjacent sizes, we have

$$\pi_{jk}/w_j = \sum_{\tau \in \{(k, +, \alpha_0), (k, -, \alpha_0)\}} \mu_\tau \theta_{j,\tau} + \sum_{\tau \in \{(k-1, +, \alpha_0), (k+1, -, \alpha_0)\}} \beta_0 \mu_\tau \phi_{j,\tau}, \quad (18)$$

where the second sum captures the size substitution from customers of adjacent sizes. With the defined variables and constraints, we formulate the following mixed-integer linear program to solve the lower bound model (13), which we refer to as the IP-based inventory policy.

$$\begin{aligned}
 P_{\text{LB-IP}} := & \text{ maximize } \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}} (p_j \cdot \xi_{j,k} - c_j \cdot I_{jk}) \\
 \text{subject to } & \xi_{jk} \leq T\lambda \cdot \pi_{jk}, \quad \xi_{jk} \leq I_{jk}, \quad x_{jk} \leq I_{jk} \leq M \cdot x_{jk} \quad \forall k \in \mathcal{K}, j \in \mathcal{J}, \\
 & \text{Constraints (14)-(18)} \\
 & I_{jk}, \xi_{jk} \in \mathbf{N}_+, \quad x_{jk} \in \{0, 1\}, \quad \pi_{jk}, y_{j,\tau}, h_\tau, \theta_{j,\tau}, \phi_{j,\tau} \in [0, 1].
 \end{aligned} \tag{19}$$

Here M is a large constant in the big- M notation. For the boundary cases of sizes, we simply set $x_{j,k-1} = 0$ for $k = 1$ and $x_{j,k+1} = 0$ for $k = K$.

In the following numerical study, we examine the performance of the IP-based inventory policy and highlight its advantages when the expected demand over the selling horizon is low, which contrasts with the asymptotic regime to be introduced in Section 5.4. We calibrate the choice model parameters using the real-world dataset discussed in Section 4, including the utility v_j for each style $j \in \mathcal{J}$ and the fraction μ_τ of customer type τ . The dataset also provides the price p_j for each style $j \in \mathcal{J}$, whereas the cost c_j of the product is not available. To address this, we assume that the firm implements a 120% markup pricing scheme. This assumption aligns with insights from practitioners (Farra 2019, Claypoole 2019) that suggest firms typically markup products with a gross margin of 120% to 150%. We vary the expected number of customers $\bar{L} = T\lambda$ to evaluate the performance of the policies in the non-asymptotic regime. From Section 4.1, we know that each store receives approximately $W = 4000$ visitors per week on average. Hence, we examine scenarios ranging from one month (roughly four weeks) to eight months (roughly thirty-two weeks) by setting $\bar{L} \in \{4W, 8W, 12W, 16W, 20W, 24W, 32W\}$, consistent with the scale we observed in Section 4.

We conduct a comparison between the IP-based inventory policy and two benchmark inventory policies: the newsvendor policy and the fluid approximation (Zhang et al. 2024). Specifically, the newsvendor policy is given by the standard quantile policy in which the demand of each product (j, k) is treated independently. The fluid approximation stocks I_{jk} units of product (j, k) as $I_{jk}^{\text{FA}} = [T\lambda \cdot \mathbb{P}((j, k) | A^*)]$, where A^* is the optimal assortment in Equation (9) with $r_j = \varrho_j \equiv p_j - c_j$. Note that both the newsvendor policy and the fluid approximation are *size-substitution-invariant*. That is, the stocking decisions under both policies ignore the value of α_0 . For the newsvendor policy, such property is obviously true as the policy views each product's demand independently. For the fluid approximation, since $\mathbb{P}(\cdot | A^*)$ is invariant under α_0 according to Theorem 1, we know that the resulting stocking decision $[T\lambda \cdot \mathbb{P}(\cdot | A^*)]$ is also invariant.

In what follows, we assess the performance of each inventory policy by evaluating the expected profit generated by the corresponding inventory vector. Specifically, let \mathbf{I}^{IP} , \mathbf{I}^{FA} , and \mathbf{I}^{NV} be the inventory vector returned by the IP-based, fluid approximation, and newsvendor policies, respectively. To evaluate the profit $\Pi(\cdot)$ associated with each inventory vector, we employ a Monte Carlo simulation based on the stochastic process outlined in Section 5.2, along with common random number techniques for variance reduction. We consider two values for $\beta_0 = \exp(-\alpha_0) \in \{24.9\%, 100.0\%\}$. The former corresponds to the estimated value $\alpha_0 = 1.39$ obtained from the dataset, whereas the latter represents the maximum value that β_0 can take, which happens when $\alpha = 0$, as stated in Lemma 1. It corresponds to the scenario in which adjacent sizes can completely compensate for demand loss due to the stockout of the best-fit size.

$\beta_0 = 24.9\%$						$\beta_0 = 100.0\%$					
\bar{L}	$\Pi_{\text{BT}}^{\text{per}}$			N_{Size}		\bar{L}	$\Pi_{\text{BT}}^{\text{per}}$			N_{Size}	
	\mathbf{I}^{NV}	\mathbf{I}^{FA}	\mathbf{I}^{IP}	\mathbf{I}^{IP}	\mathbf{I}^{IP}		\mathbf{I}^{NV}	\mathbf{I}^{FA}	\mathbf{I}^{IP}	\mathbf{I}^{IP}	\mathbf{I}^{IP}
4W	-18.88	-18.65	0.11	3.0	3	4W	-18.88	-18.65	0.29	2.0	12
8W	-4.45	-3.89	0.79	2.7	30	8W	-3.07	-2.39	2.07	2.5	86
12W	-0.16	0.53	1.72	2.6	90	12W	1.57	2.34	3.74	3.2	161
16W	1.30	2.09	2.49	3.7	162	16W	2.50	3.23	4.13	3.9	201
20W	2.71	3.28	3.42	4.5	230	20W	3.51	4.16	4.69	4.6	235
24W	3.02	3.53	3.59	5.4	275	24W	3.93	4.68	5.05	4.9	250
32W	3.71	4.31	4.34	7.1	362	32W	4.98	5.54	5.67	5.6	286

Table 3 Expected profit per customer $\Pi_{\text{BT}}^{\text{per}}$, sizes offered N_{Size} , and products available N_{Prod} for varying demand \bar{L} with $\beta_0 \in \{24.9\%, 100.0\%\}$. The newsvendor and fluid approximation offer all products (and sizes).

Table 3 displays $\Pi_{\text{BT}}^{\text{per}}(\cdot)$, the expected profit per customer visit to the casual booties category, which is defined as $\Pi_{\text{BT}}^{\text{per}}(\cdot) = \Pi(\cdot)/\bar{L}_{\text{BT}}$. Note that we do not have the exact customer traffic for casual booties in the dataset. We thus approximate \bar{L}_{BT} by multiplying the total customer visits \bar{L} by the fraction of sales of the casual booties category (roughly 2.8%), i.e., $\bar{L}_{\text{BT}} = 0.028\bar{L}$. The table also presents the number of sizes offered, N_{Size} , and the number of products available, N_{Prod} , under the IP-based policy. The newsvendor and fluid approximation offer all styles in all sizes, so the number of products available under those policies is $51 \times 9 = 459$.

In Table 3, we observe that all three inventory policies exhibit superior performance when \bar{L} is large, which can be attributed to the decreased demand volatility. However, when \bar{L} is small, both the newsvendor and fluid approximation perform poorly regardless of the level of size substitution given by the parameter β_0 . The reason is that these two policies stock too much – at least one unit for each size of each style – so substitution does not occur, in which case β_0 is irrelevant. In contrast, the IP-based policy incorporates size substitution and strategically offers a smaller set of sizes and styles to satisfy the demand, resulting in positive profits. Figure 3 visualizes the stocking decisions

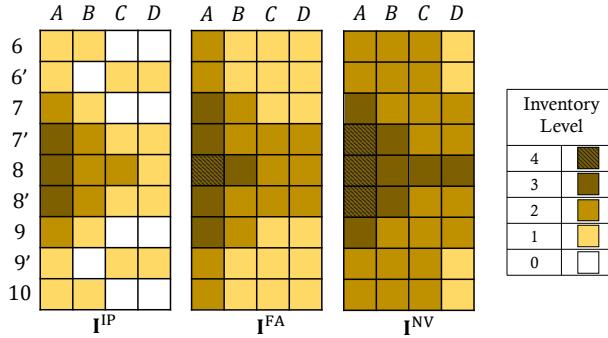


Figure 3 Inventory profile of the three policies for the four most popular styles (of the fifty-one) and nine sizes, with $\bar{L} = 12W$ and $\beta_0 = 24.9\%$ (where the prime sign represents half sizes)

made by the three inventory policies for the four most popular styles out of 51 in the dataset when $\bar{L} = 12W$ and $\beta_0 = 24.9\%$. Note that Style *A* is also the most expensive. The figure shows that, in contrast to the newsvendor and fluid approximation, the IP-based policy does not offer the complete range of sizes for all styles. Instead, it leverages the size substitution effect to fulfill unmet demand. For instance, it does not offer sizes 6 and 10 of Styles *C* and *D*, as the demand for these products can be covered by sizes 6.5 and 10.5 of the same style, respectively. The IP-based policy also holds less inventory: 1.5 units per product in Figure 3, whereas the fluid approximation and newsvendor hold 1.8 and 2.3 units per product, respectively.

The profitability of the IP-based policy is higher as size substitution becomes more prevalent. In the left panel of Table 3, we can see that the expected profit per customer of the IP-based policy is 19% higher compared to the fluid approximation when $\bar{L} = 16W$ and $\beta_0 = 24.9\%$. This advantage increases to 28% when $\beta_0 = 100.0\%$, as shown in the right panel. Similarly, while \mathbf{I}^{IP} and \mathbf{I}^{FA} statistically have similar performance when $\bar{L} = 32W$ and $\beta_0 = 24.9\%$, the former is strictly better than the latter for the same \bar{L} when $\beta_0 = 100.0\%$. This highlights the importance of incorporating size substitution when customers show a strong tendency to explore adjacent sizes. However, the advantage of the IP-based policy diminishes as \bar{L} increases. In the left panel where $\beta_0 = 24.9\%$, the advantage of \mathbf{I}^{IP} over \mathbf{I}^{FA} shrinks from 19% to 1% as \bar{L} increases from 16W to 32W. Moreover, we will show that the IP-based policy and the fluid approximation have the same asymptotic limit. Since the fluid approximation is size-substitution-invariant, the convergence of both policies suggests that the effect of size substitution shrinks as overall demand increases. We will revisit this discussion from a theoretical standpoint in Section 5.4.

It is hard to compare the IP-based policy to the (average) store performance reported in Table 1 because the latter includes inventory replenishment, and the styles were introduced in a staggered manner. However, it is worth noting that the maximum number of products available was 359.2 over a 33-week horizon. This contrasts with the IP-policy that suggests carrying 362 products when

$\bar{L} = 32W$ and $\beta_0 = 24.9\%$. In terms of sizes offered, the average store in Table 1 started with 8.4 sizes, whereas the IP-policy suggests 7.1. In other words, the IP-policy offers slightly fewer sizes, but they are distributed across a wider selection of styles. Indeed, all styles are initially available under the IP-policy since $362/7.1 = 51$, whereas a back-of-the-envelope calculation based on Table 1 gives $359.2/8.4 = 42.8$. More precisely, the 359.2 products in the average store came from 44.75 styles and 8.03 sizes.

We end the discussion with two additional remarks. First, the IP-based policy is computationally inexpensive. For all instances in Table 3, the mixed-integer linear program (19) was optimally solved within five minutes; see Appendix D.1 for more details. Given that these instances involve nearly five hundred products, this runtime highlights the compactness of the style-size choice model. Second, the IP-based policy is flexible in accommodating other business constraints. It offers the convenience of incorporating capacity limitations into product inventory, which can be based on factors such as style or size. For instance, one can enforce a distinction between major and minor sizes, ensuring that minor sizes are not offered unless all major sizes are available. This type of policy has already been successfully implemented in the fashion industry (Caro and Gallien 2010). In our study, we have incorporated such constraints into the IP-based policy and present its performance in Appendix D. Additionally, the IP-based policy allows for easy inclusion of initial stock or remaining stock from the previous period in the integer program. Combining these features with its favorable performance for short planning horizons, the IP-based policy can be an effective tool for making replenishment decisions during the sales season.

5.4. Asymptotically, Size Substitution Does Not Matter

In this section, we study the asymptotic regime in which the expected customer volume $\bar{L} = T\lambda$ approaches infinity. Recall that by Theorem 1, the fluid approximation can be expressed as $I_{jk}^{\text{FA}} = \lceil \bar{L} \cdot \mathbb{P}((j, k) | A^*) \rceil \equiv \lceil \bar{L} \delta_j \bar{\mu}_k \rceil$, where

$$\delta_j = \frac{w_j \cdot \mathbb{I}_{j \leq j^*}}{1 + \sum_{j \leq j^*} w_j} \quad \text{and} \quad \bar{\mu}_k = \int_0^\infty \sum_{\sigma \in \{+,-\}} \mu_{(k, \sigma, \alpha)} d\alpha. \quad (20)$$

Here j^* is defined as in the style-only assortment problem (10) with margin $r_j = \varrho_j \equiv p_j - c_j$. As mentioned, the fluid approximation is size-substitution-invariant because the quantities it prescribes are independent of the size sensitivity parameter α and its distribution. One can interpret the fluid approximation as follows. The firm first solves the style-only MNL assortment optimization problem (10) to decide which styles to offer. For each offered style $j \in \{1, 2, \dots, j^*\}$, the store will stock in total $\bar{L}\delta_j$ units based on the style-only MNL model. Furthermore, among these $\bar{L}\delta_j$ units of style j , the store allocates a fraction $\bar{\mu}_k$ of it to size k , i.e., it stocks $\bar{L}\delta_j \bar{\mu}_k$ units for product (j, k) , where $\bar{\mu}_k$ is

the fraction of customers whose best-fit size is k . The fluid approximation is actually an aggregation-disaggregation approach, as the firm first aggregates all products across sizes when deciding which styles to offer, and then disaggregates or “splits” the demand of each offered style among the various sizes. In the following proposition, we demonstrate that this aggregation-disaggregation approach is asymptotically optimal.

PROPOSITION 1. *Assume that the maximal product price $p_{\max} = \max_j p_j$ and the maximal product cost $c_{\max} = \max_j c_j$ are independent of both the horizon T and the customer arrival rate λ . For the stockout-based inventory optimization problem (12), the fluid approximation policy \mathbf{I}^{FA} has optimality gap $O(\sqrt{JK \cdot T\lambda})$ and it is asymptotically optimal.*

Note that the asymptotic performance is defined as the approximation ratio of an inventory policy relative to the optimal solution as $T\lambda \rightarrow \infty$. In Section B.3, where we prove the proposition, we show that the approximation ratio converges to one under the fluid approximation policy, implying the asymptotic optimality. Alternatively, Proposition 1 shows that as the customer volume increases, the profit loss *per customer* eventually reaches zero. This follows from the fact that while the optimality gap grows at a rate of $\sqrt{T\lambda}$, the expected number of customers scales as $T\lambda$.

Proposition 1 has an intuitive interpretation: as customer volume increases, the stochasticity of the problem diminishes because the standard deviation of demand grows at a slower rate, so just stocking the mean becomes a sufficiently good strategy, which is akin to ignoring size substitution as in Theorem 1. Formally, our proof follows the performance guarantee of the fluid approximation in the inventory problem under choice models that satisfy the substitutability property (Zhang et al. 2024). Per Lemma 1, the result in Zhang et al. (2024) applies to our inventory problem, though a modification is required to consider a random number of customer arrivals L , as Zhang et al. (2024) assume that the number of customer visits is deterministic and known in advance.

We highlight that Proposition 1 supports the common practice of ignoring size substitution for stocking purposes. However, ignoring both style and size substitutions, as in the newsvendor model, could lead to poor performance. We demonstrate this observation in Appendix D.3. Another important observation is given in the following proposition. It shows that the performance of the IP-based solution \mathbf{I}^{IP} introduced in Section 5.3 and the fluid approximation \mathbf{I}^{FA} becomes indistinguishable when the expected demand \bar{L} is sufficiently large.

PROPOSITION 2. *The IP-based policy and the fluid approximation have the same asymptotic performance.*

Proposition 2 gives an edge to the IP-based policy because it matches the asymptotic performance of the fluid approximation, and per section 5.3, it has a better performance in the non-asymptotic

regime. Put differently, in the asymptotic regime, a “wide-net” approach that stocks all sizes works well, whereas in the non-asymptotic regime, a more targeted approach is more effective. One can think that the former is more applicable to online settings, whereas the latter could make more sense for brick-and-mortar stores. Finally, to complement Propositions 1 and 2, in Appendix E, we further explore the asymptotic performance of a fluid-like policy under a general choice model environment that may not follow the substitutability property of Lemma 1.

6. Conclusion and Future Directions

We introduced the style-size choice model to capture size substitution effects and demonstrated, using real-world data, that unmet demand due to stockouts shifts to adjacent sizes of the same style. We then analyzed assortment and inventory optimization under this model, showing that firms can disregard size substitution in static (assortment-based) settings and in dynamic (stockout-based) settings when demand is high. In the low-demand regime, we proposed an IP-based solution to leverage size substitution in a computationally tractable manner. Our work opens several directions for future research, such as allowing for inventory replenishment or incorporating a goodwill cost when customers like a style but cannot find a suitable size. The latter could lead to excessive leftover inventory, adding an environmental dimension to the problem. Finally, from a theoretical perspective, an important direction is to explore the complexity and approximability of the assortment optimization problem (9) under additional operational constraints, such as cardinality limits. As noted in Section 5.1, the style-size choice model lies between the MNL and mixed-MNL models. Examining whether this insight carries over to more complex optimization environments is another promising avenue for future research.

Acknowledgments

We are grateful to the footwear retailer mentioned in Section 4, whose name is anonymized, for sharing the dataset. We also thank the department editor, Feryal Erhun, the associate editor, and two anonymous referees for their valuable and constructive feedback, which has substantially strengthened this work. This work has benefited from the generous research support provided by the UCL School of Management and the UCLA Anderson School of Management.

Appendix A: The EM Algorithm

We use the notation introduced in Section 4. Let \mathbb{I}_E be the indicator function that equals one if event E is true. By definition, $Q_{(0,0)}^{mt} = N^{mt} - \sum_{(j,k) \in A^{mt}} Q_{(j,k)}^{mt}$ is the number of customers who visited the store m at week t but didn't make a purchase (or made an outside choice).

Given that we *do not* observe customer types in the dataset, they can be considered a latent variable. We employ an expectation-maximization (EM) approach, which is a popular procedure for estimating predictive models with latent variables (McLachlan and Krishnan 2007). We also incorporate fixed effects for seasonality, as our dataset comprises sales data spanning 33 weeks, covering both spring and fall sales seasons. To this end, we replace v_j with $v_j + v_t$ in Equation (3) for product (j, k) in week t .

A.1. The Complete Data Log-Likelihood Function

Recall that with the average style-size choice model (6), our goal is to estimate $\alpha = \alpha_0$, the average size sensitivity parameter, along with the style utility parameters $(v_j)_{j \in \mathcal{J}}$, the seasonality parameters $(v_t)_{t \in \mathcal{T}}$, and the distribution over customer types μ_τ , where a type is $\tau = (s, \sigma, \alpha_0)$. Note that in the average model, the collection of customer types is reduced to $\Gamma = \{(s, \sigma, \alpha_0) \mid s \in \mathcal{K}, \sigma \in \{+, -\}\}$.

For now, assume that we have the “complete” data $(N_\tau^{mt}, \{Q_{\tau,(j,k)}^{mt}\}_{(j,k) \in A^{mt}})_{\tau \in \Gamma, m \in \mathcal{M}, t \in \mathcal{T}}$, which includes customers’ types. Here N_τ^{mt} is the number of type- τ visitors at store m during week t and $Q_{\tau,(j,k)}^{mt}$ is the number of sales of product (j, k) made by type- τ visitors at store m during week t . Obviously, we have $N^{mt} = \sum_{\tau \in \Gamma} N_\tau^{mt}$ and $Q_{(j,k)}^{mt} = \sum_{\tau \in \Gamma} Q_{\tau,(j,k)}^{mt}$. The likelihood of the complete data for store m during week t is $f_{\text{complete}}^{mt} = \frac{N^{mt}!}{\prod_{\tau} N_\tau^{mt}!} \cdot \prod_{\tau} (\mu_\tau)^{N_\tau^{mt}} \cdot \prod_{\tau} f_{\tau, \text{complete}}^{mt}$, where the factor $(N^{mt}! / \prod_{\tau} N_\tau^{mt}!) \cdot \prod_{\tau} (\mu_\tau)^{N_\tau^{mt}}$ is the multinomial distribution of customer types and

$$f_{\tau, \text{complete}}^{mt} (N_\tau^{mt}, \{Q_{\tau,(j,k)}^{mt}\}_{(j,k) \in A^{mt}}) = \frac{N_\tau^{mt}!}{(N_\tau^{mt} - \sum_{(j,k) \in A^{mt}} Q_{\tau,(j,k)}^{mt})! \cdot \prod_{(j,k) \in A^{mt}} Q_{\tau,(j,k)}^{mt}!} \cdot \left(\prod_{(j,k) \in A^{mt}} \mathbb{P}_\tau^{mt} ((j, k) | A^{mt})^{Q_{\tau,(j,k)}^{mt}} \right) \cdot \left(1 - \sum_{(j,k) \in A^{mt}} \mathbb{P}_\tau^{mt} ((j, k) | A^{mt}) \right)^{N_\tau^{mt} - \sum_{(j,k) \in A^{mt}} Q_{\tau,(j,k)}^{mt}}.$$

Taking the logarithm of $\prod_{m,t} f_{\text{complete}}^{mt}$, we obtain the complete data log likelihood, which is equal to a constant plus $\mathcal{L}_{\text{complete}} = \mathcal{L}_1 + \mathcal{L}_2$, where $\mathcal{L}_1 \equiv \sum_{\tau \in \Gamma} \left(\sum_{m,t} N_\tau^{mt} \right) \cdot \log(\mu_\tau)$ and

$$\begin{aligned} \mathcal{L}_2 \equiv & \sum_{m,t,\tau} \sum_{(j,k) \in A^{mt}} Q_{\tau,(j,k)}^{mt} \cdot [(v_j + v_t) \cdot \mathbb{I}_{(j,k) \in C_\tau^1(A^{mt})} + (v_j + v_t - \alpha_0) \cdot \mathbb{I}_{(j,k) \in C_\tau^2(A^{mt})}] \\ & - \sum_{m,t,\tau} N_\tau^{mt} \cdot \log \left(1 + \sum_{(j,k) \in C_\tau^1(A^{mt})} e^{v_j + v_t} + \sum_{(j,k) \in C_\tau^2(A^{mt})} e^{v_j + v_t - \alpha_0} \right). \end{aligned}$$

Note that \mathcal{L}_1 only depends on $\mu = (\mu_\tau)_{\tau \in \Gamma}$, whereas \mathcal{L}_2 only depends on (\mathbf{v}, α_0) , where $\mathbf{v} \equiv ((v_j)_{j \in \mathcal{J}}, (v_t)_{t \in \mathcal{T}})$. Therefore, to find the model parameter $(\mu, \mathbf{v}, \alpha_0)$ that maximizes the complete data log likelihood $\mathcal{L}_{\text{complete}}$, we solve two separate optimization problems,

$$P_1^{\text{complete}} : \underset{\mathbf{1}^T \mu = 1, \mu \geq 0}{\text{maximize}} \left\{ \mathcal{L}_1 \mid \mu_{(s,+, \alpha_0)} = \mu_{(s, -, \alpha_0)}, \forall s \in \mathcal{K} \right\} \quad \text{and} \quad P_2^{\text{complete}} : \underset{\alpha \geq 0, \mathbf{v}}{\text{maximize}} \left\{ \mathcal{L}_2 \right\},$$

where the constraints in P_1^{complete} come from the symmetric-weight assumption in the average style-size model. Note that P_1^{complete} has a closed-form unique solution $\mu_{(k,+, \alpha_0)} = \mu_{(k, -, \alpha_0)} = \sum_{m,t} (N_{(k,+, \alpha_0)}^{mt} + N_{(k, -, \alpha_0)}^{mt}) / (2 \cdot \sum_{m,t,\tau} N_\tau^{mt})$. Meanwhile, the second problem P_2^{complete} is a concave maximization problem in (\mathbf{v}, α_0) that can be solved using standard optimization software.

A.2. The E and M steps of the EM algorithm

Since we do not observe customer types in the data, the parameters N_τ^{mt} and $Q_{\tau,(j,k)}^{mt}$ in optimization problems P_1^{complete} and P_2^{complete} are *not* available. We will instead replace them with their conditionally expected values given the choice model parameter $\nu = (\mu, \mathbf{v}, \alpha_0)$.

We start with any initial values of $\nu^{(0)}$. In the EM algorithm, we generate a sequence of parameters $\{\nu^{(q)}, q = 1, 2, \dots\}$ until convergence. Assume that we are currently in the q -th iteration. We describe how we generate model $\nu^{(q+1)}$ based on $\nu^{(q)}$ through an “E” step then an “M” step.

The E Step: By Bayes' rule, given an assortment A^{mt} at store m during week t , product $(j, k) \in A^{mt} \cup \{(0, 0)\}$, and parameters $\boldsymbol{\nu}^{(q)}$, we can infer the likelihood that a type- τ customer purchased item (j, k) via

$$\mathbb{P}^{mt}(\tau | A^{mt}, (j, k), \boldsymbol{\nu}^{(q)}) = \frac{\mathbb{P}^{mt}((j, k) | A^{mt}, \mathbf{v}^{(q)}) \times \mu_{\tau}^{(q)}}{\sum_{\tau' | (j, k) \in C_{\tau'}(A^{mt})} \mathbb{P}^{mt}((j, k) | A^{mt}, \mathbf{v}^{(q)}) \times \mu_{\tau'}^{(q)}},$$

where $\mathbb{P}^{mt}((j, k) | A^{mt}, \mathbf{v}^{(q)})$ is defined in Equation (4) with α replaced by $\alpha_0^{(q)}$ and v_j replaced by $v_j^{(q)} + v_t^{(q)}$ since we consider fixed effects for seasonality. For a customer type τ such that $(j, k) \notin C_{\tau}(A^{mt})$, the conditional value is simply zero. With the conditional probability, we have that, for $(j, k) \in A^{mt} \cup \{(0, 0)\}$, the expected sales from customer type τ of product (j, k) at store m during week t is $\hat{Q}_{\tau, (j, k)}^{mt} = Q_{(j, k)}^{mt} \cdot \mathbb{P}^{mt}(\tau | A^{mt}, (j, k), \boldsymbol{\nu}^{(q)})$ and $\hat{N}_{\tau}^{mt} = \sum_{(j, k) \in A^{mt} \cup \{(0, 0)\}} \hat{Q}_{\tau, (j, k)}^{mt}$.

The M Step: Replace the parameters N_{τ}^{mt} and $Q_{\tau, (j, k)}^{mt}$ in the complete data log-likelihood $\mathcal{L}_{\text{complete}}$ from Section A.1 with the conditional expected values \hat{N}_{τ}^{mt} and $\hat{Q}_{\tau, (j, k)}^{mt}$ obtained in the E step, and then optimize the log-likelihood. Therefore, $\boldsymbol{\nu}^{(q+1)} = (\boldsymbol{\mu}^{(q+1)}, \mathbf{v}^{(q+1)}, \alpha_0^{(q+1)})$ is updated with $\mu_{\tau}^{(q+1)} = \sum_{m, t} \left(\hat{N}_{(s, +, \alpha_0)}^{mt} + \hat{N}_{(s, -, \alpha_0)}^{mt} \right) / \left(2 \cdot \sum_{m, t, \tau'} \hat{N}_{\tau'}^{mt} \right)$ if $\tau = (s, +, \alpha_0)$ or $(s, -, \alpha_0)$, and $(\mathbf{v}^{(q+1)}, \alpha_0^{(q+1)})$ is the unique optimizer of P_2^{complete} .

The procedure alternates between the E and M steps until the model parameters $\boldsymbol{\nu}^{(q)}$ converge.

References

Jason Acimovic and Stephen C Graves. Making better fulfillment decisions on the fly in an online retail environment. *Manufacturing & Service Operations Management*, 17(1):34–51, 2015.

Yi-Chun Akchen and Velibor V Mišić. Assortment optimization under the decision forest model. *arXiv preprint*, 2021.

Safiu Alom, Sumanta Basu, Preetam Basu, and Raunak Joshi. Shipment policy and its impact on coordination of a fashion supply chain under production uncertainty. *Transportation Research Part E: Logistics and Transportation Review*, 192:103778, 2024.

Ali Aouad, Retsef Levi, and Danny Segev. Greedy-like algorithms for dynamic assortment planning under multinomial logit preferences. *Operations Research*, 66(5):1321–1345, 2018.

Ali Aouad, Vivek Farias, and Retsef Levi. Assortment optimization under consider-then-choose choice models. *Management Science*, 67(6):3368–3386, 2021.

Henry David Block and Jacob Marschak. Random orderings and stochastic theories of response. Technical report, Cowles Foundation for Research in Economics, Yale University, 1959.

Pol Boada-Collado and Victor Martínez-de-Albéniz. Estimating and optimizing the impact of inventory on consumer choices in a fashion retail setting. *Manufacturing & Service Operations Management*, 22(3):582–597, 2020.

Juan José Miranda Bront, Isabel Méndez-Díaz, and Gustavo Vulcano. A column generation algorithm for choice-based network revenue management. *Operations Research*, 57(3):769–784, 2009.

Katia Campo, Els Gijsbrechts, and Patricia Nisol. Towards understanding consumer response to stock-outs. *Journal of Retailing*, 76(2):219–242, 2000.

Felipe Caro and Jérémie Gallien. Inventory management of a fast-fashion retail network. *Operations Research*, 58(2):257–273, 2010.

Felipe Caro and Jérémie Gallien. Clearance pricing optimization for a fast-fashion retailer. *Operations Research*, 60(6):1404–1422, 2012.

Abraham Charnes and William W Cooper. Programming with linear fractional functionals. *Naval Research Logistics Quarterly*, 9(3-4):181–186, 1962.

Hai Che, Xinlei Chen, and Yuxin Chen. Investigating effects of out-of-stock on consumer stockkeeping unit choice. *Journal of Marketing Research*, 49(4):502–513, 2012.

Ningyuan Chen, Guillermo Gallego, and Zhuodong Tang. The use of binary choice forests to model and estimate discrete choices. *arXiv preprint*, 2019.

Yi-Chun Chen and Velibor V Mišić. Decision forest: A nonparametric approach to modeling irrational choice. *Management Science*, 68(10):7090–7111, 2022.

Cheryl Claypoole. What is the markup percentage for retail clothing? <https://smallbusiness.chron.com/markup-percentage-retail-clothing-80777>, 2019.

Yiting Deng, Yuexing Li, and Jing-Sheng Jeannette Song. A unified parsimonious model for structural demand estimation accounting for stockout and substitution. *Available at SSRN*, 2022.

Omar El Housni, Vineet Goyal, Salal Humair, Omar Mouchtaki, Ali Sadighian, and Jingchen Wu. Joint assortment and inventory planning for heavy tailed demand. 2021.

Elçin Ergin, Mehmet Gümüs, and Nathan Yang. An empirical analysis of intra-firm product substitutability in fashion retailing. *Production and Operations Management*, 31(2):607–621, 2022.

V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to modeling choice with limited data. *Management Science*, 59(2):305–322, 2013.

Emily Farra. What is the right price for fashion? <https://www.vogue.com/article/what-is-the-right-price-for-fashion>, 2019.

Marshall Fisher and Ramnath Vaidyanathan. A demand estimation procedure for retail assortment optimization with results from implementations. *Management Science*, 60(10):2401–2415, 2014.

Guillermo Gallego, Richard Ratliff, and Sergey Shebalov. A general attraction model and sales-based linear program for network revenue management under customer choice. *Operations Research*, 63(1):212–232, 2015.

Vineet Goyal, Retsef Levi, and Danny Segev. Near-optimal algorithms for the assortment planning problem under dynamic substitution and stochastic demand. *Operations Research*, 64(1):219–235, 2016.

Dorothée Honhon and Sridhar Seshadri. Fixed vs. random proportions demand models for the assortment planning problem under stockout-based substitution. *Manufacturing & Service Operations Management*, 15(3):378–386, 2013.

Dorothée Honhon, Vishal Gaur, and Sridhar Seshadri. Assortment planning and inventory decisions under stockout-based substitution. *Operations Research*, 58(5):1364–1379, 2010.

J. Huber, J. W. Payne, and C. Puto. Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. *Journal of Consumer Research*, 9(1):90–98, 1982.

Srikanth Jagabathula and Paat Rusmevichientong. The limit of rationality in choice modeling: Formulation, computation, and implications. *Management Science*, 65(5):2196–2215, 2019.

Srikanth Jagabathula, Dmitry Mitrofanov, and Gustavo Vulcano. Demand estimation under uncertain consideration sets. *Operations Research*, 72(1):19–42, 2024.

A Gürhan Kök and Marshall L Fisher. Demand estimation and assortment optimization under substitution: Methodology and application. *Operations Research*, 55(6):1001–1021, 2007.

Joonkyum Lee, Vishal Gaur, Suresh Muthulingam, and Gary F Swisher. Stockout-based substitution and inventory planning in textbook retailing. *Manufacturing & Service Operations Management*, 18(1):104–121, 2016.

Songtao Li, Lauren Xiaoyuan Lu, Susan F Lu, and Simin Huang. Estimating the stockout-based demand spillover effect in a fashion retail setting. *Manufacturing & Service Operations Management*, 25(2):468–488, 2023.

AJ Liang, Stefanus Jasin, and Joline Uichanco. Assortment and inventory planning under dynamic substitution with MNL model: An LP approach and an asymptotically optimal policy. *SSRN*, 2021.

Siddharth Mahajan and Garrett Van Ryzin. Stocking retail assortments under dynamic consumer substitution. *Operations Research*, 49(3):334–351, 2001.

Reza Yousefi Maragheh, Alexandra Chronopoulou, and James Mario Davis. A customer choice model with halo effect. *arXiv preprint*, 2018.

Geoffrey J McLachlan and Thriyambakam Krishnan. *The EM algorithm and extensions*. John Wiley & Sons, 2007.

Andrés Musalem, Marcelo Olivares, Eric T Bradlow, Christian Terwiesch, and Daniel Corsten. Structural estimation of the effect of out-of-stocks. *Management Science*, 56(7):1180–1197, 2010.

Daniele Pennesi. A foundation for cue-triggered behavior. *Management Science*, 67(4):2403–2419, 2021.

Jörg Rieskamp, Jerome R Busemeyer, and Barbara A Mellers. Extending the bounds of rationality: Evidence and theories of preferential choice. *Journal of Economic Literature*, 44(3):631–661, 2006.

Paat Rusmevichientong and Huseyin Topaloglu. Robust assortment optimization in revenue management under the multinomial logit choice model. *Operations Research*, 60(4):865–882, 2012.

Paat Rusmevichientong, David Shmoys, Chaoxu Tong, and Huseyin Topaloglu. Assortment optimization under the multinomial logit model with random choice parameters. *Production and Operations Management*, 23(11):2023–2039, 2014.

Garrett van Ryzin and Siddharth Mahajan. On the relationship between inventory costs and variety benefits in retail assortments. *Management Science*, 45(11):1496–1509, 1999.

Stephen A Smith and Dale D Achabal. Clearance pricing and inventory policies for retail chains. *Management Science*, 44(3):285–300, 1998.

Kalyan Talluri and Garrett Van Ryzin. Revenue management under a general discrete choice model of consumer behavior. *Management Science*, 50(1):15–33, 2004.

Huseyin Topaloglu. Joint stocking and product offer decisions under the multinomial logit model. *Production and Operations Management*, 22(5):1182–1199, 2013.

Kenneth E Train. *Discrete choice methods with simulation*. Cambridge University Press, 2009.

Amos Tversky and Itamar Simonson. Context-dependent preferences. *Management science*, 39(10):1179–1189, 1993.

G. van Ryzin and G. Vulcano. A market discovery algorithm to estimate a general class of nonparametric choice models. *Management Science*, 61(2):281–300, 2014.

Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*. Cambridge University Press, 2018.

Xin Wen, Tsan-Ming Choi, and Sai-Ho Chung. Fashion retail supply chain management: A review of operational models. *International Journal of Production Economics*, 207:34–55, 2019.

Jingwei Zhang, Will Ma, and Huseyin Topaloglu. Leveraging the degree of dynamic substitution in assortment and inventory planning. *Operations Research*, 2024.

Electronic Companion: On Size Substitution and Its Role in Assortment and Inventory Planning

Appendix B: Proofs

B.1. Proof for Lemma 1

We focus on a customer type $(s, +, \alpha)$. The proof for customer type $(s, -, \alpha)$ follows a similar argument. We first prove the necessary condition. That is, we will show that $\mathbb{P}_{(s, +, \alpha)}$ satisfies the substitutability property if $\alpha \geq 0$. We first define functions $F_j(A) \equiv \mathbb{I}[(j, s) \in A] + \beta \cdot \mathbb{I}[(j, s) \notin A] \cdot \mathbb{I}[(j, \text{ADJ}_+(s)) \in A]$, for all assortment $A \subseteq \mathcal{N}$ and style $j \in \mathcal{J}$, where $\beta = \exp(-\alpha)$. One can easily verify that $F_j(A)$ will not decrease if we add a new product to A as long as $\beta \leq 1$.

Now we will show that the choice probability $\mathbb{P}_{(s, +, \alpha)}((j, k) | A)$ for a given product (j, k) will not increase after adding any new product to the assortment A . For simplicity, we write $w_j = \exp(v_j)$ for all $j \in \mathcal{J}$. We consider three cases.

- Case 1: $k = s$. Then we can write $\mathbb{P}_{(s, +, \alpha)}((j, s) | A) = \frac{w_j}{1+w_j+\sum_{i \neq j} w_i F_i(A)}$. Then, no matter which product we add to A , $\mathbb{P}_{(s, +, \alpha)}((j, k) | A)$ will not increase due to the monotonicity of $F_i(A)$ for all $i \neq j$.
- Case 2: $k = \text{ADJ}_+(s)$. If $(j, s) \in A$, then $\mathbb{P}_{(s, +, \alpha)}((j, k) | A) = 0$ stays as zero no matter what we add to A ; else if $(j, s) \notin A$ and we add (j, s) to A , then $\mathbb{P}_{(s, +, \alpha)}((j, k) | A)$ decreases to zero; else if $(j, s) \notin A$ and we add a product other than (j, s) to A , then $\mathbb{P}_{(s, +, \alpha)}((j, k) | A)$ will not increase, since the denominator in $\mathbb{P}_{(s, +, \alpha)}((j, k) | A) = \frac{\beta w_j}{1+\beta w_j+\sum_{i \neq j} w_i F_i(A)}$ will not decrease no matter what we add to the assortment.
- Case 3: $k \notin \{s, \text{ADJ}_+(s)\}$. The choice probability $\mathbb{P}_{(s, +, \alpha)}((j, k) | A)$ is always zero and thus will not increase.

For the sufficient condition, it amounts to showing that if $\alpha < 0$, then there exists an assortment A such that the choice probability of an option increases as A enlarges. Consider $A = \{(j, \text{ADJ}_+(s))\}$. Then we have $\mathbb{P}_{(s, +, \alpha)}((0, 0) | A) = \frac{1}{1+\beta w_j} < \frac{1}{w_j} = \mathbb{P}_{(s, +, \alpha)}((0, 0) | A \cup \{(j, s)\})$, where the inequality holds since $\beta = e^{-\alpha} > 1$ when $\alpha < 0$ and the assortment A is enlarged by adding product (j, s) . \square

B.2. Proof of Theorem 1

The main idea is to show that the optimal revenue $R_\tau(A)$ from each customer type $\tau = (s, \sigma, \alpha)$, where $s \in \mathcal{K}$, $\alpha \geq 0$, and $\sigma \in \{+, -\}$, is upper bounded by the optimal value z_{MNL}^* of the style-MNL assortment optimization problem (10). Therefore, the overall expected revenue would be upper bounded by the same value, i.e., $R(A) = \sum_{s, \sigma} \int_0^\infty \mu_{(s, \sigma, \alpha)} \cdot R_{(s, \sigma, \alpha)}(A) d\alpha \leq \sum_{s, \sigma} \int_0^\infty \mu_{(s, \sigma, \alpha)} \cdot z_{\text{MNL}}^* d\alpha = z_{\text{MNL}}^*$. We then show that this upper bound is attained by the revenue-ordered assortment (11) in Theorem 1.

We first focus on the revenue collected from a fixed customer type $\tau = (s, +, \alpha)$ and provide several lemmas related to it. We denote $\beta = \exp(-\alpha)$ and $w_j = \exp(v_j)$ for all $j \in \mathcal{J}$ to simplify the notation. Define $\mathcal{N}_s^+ = \{(j, k) | j \in \mathcal{J}, k \in \{s, \text{ADJ}_+(s)\}\}$, which is a subset of \mathcal{N} that includes all products of sizes s and $\text{ADJ}_+(s)$. Note that function $R_\tau(A)$ can be written as

$$R_\tau(A) = \frac{\sum_{(j, k) \in C_\tau^1(A)} r_j w_j + \sum_{(j, k) \in C_\tau^2(A)} \beta r_j w_j}{1 + \sum_{(j, k) \in C_\tau^1(A)} w_j + \sum_{(j, k) \in C_\tau^2(A)} \beta w_j}.$$

Notice that $R_\tau(A) = R_\tau(A \cap \mathcal{N}_s^+)$ for any assortment $A \subseteq \mathcal{N}$, since any product of sizes other than s and $\text{ADJ}_+(s)$ will not be considered by customer $\tau = (s, +, \alpha)$ and thus will not contribute to the revenue R_τ . Therefore, to discuss the revenue $R_\tau(A)$, it suffices to only discuss $R_\tau(A)$ for $A \subseteq \mathcal{N}_s^+$.

The following lemma states that it is always beneficial to introduce a style of the correct size if it is more profitable than the current assortment.

LEMMA 2. *Consider a fixed customer type $\tau = (s, +, \alpha)$. Suppose $A \subseteq \mathcal{N}_s^+$ and $(i, s) \notin A$ for a style $j \in \mathcal{J}$. If $r_j > R_\tau(A)$, then $R_\tau(A \cup \{(j, s)\}) > R_\tau(A)$.*

Proof: Denote the larger-adjacent size of the customer by $\ell = \text{ADJ}_+(s)$. Let $\mathbb{I}_{(j, \ell) \in A}$ be the indicator of whether the larger-adjacent size ℓ of style j is in the assortment A . We can write the revenue of $R_\tau(A \cup \{(j, s)\})$ as

$$\begin{aligned} R_\tau(A \cup \{(j, s)\}) &= \frac{r_j w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} r_i w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta r_i w_i}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i} \\ &= \left(\frac{w_j \cdot (1 - \mathbb{I}_{(j, \ell) \in A} \beta)}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i} \right) \cdot r_j + \\ &\quad \left(\frac{\beta r_j w_j \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} r_i w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta r_i w_i}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i} \right) \\ &= \left(\frac{w_j \cdot (1 - \mathbb{I}_{(j, \ell) \in A} \beta)}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i} \right) \cdot r_j + \\ &\quad \left(\frac{1 + \beta w_j \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i} \right) \cdot R_\tau(A) \end{aligned}$$

where we note that the revenue function $R_\tau(A)$ can be re-written as

$$R_\tau(A) = \frac{\beta r_j w_j \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} r_i w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta r_i w_i}{1 + \beta w_j \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}$$

Therefore, $R_\tau(A \cup \{(j, s)\})$ is a convex combination of r_j and $R_\tau(A)$. If $r_j > R_\tau(A)$, then $R_\tau(A \cup \{(j, s)\}) > R_\tau(A)$. \square

The following lemma states that if a product is less profitable than the current assortment, regardless of whether it is the correct size or an adjacent size, then it should be excluded from the current assortment.

LEMMA 3. *Consider a fixed customer type $\tau = (s, +, \alpha)$. Suppose $(j, k) \in A \subseteq \mathcal{N}_s^+$ for a style $j \in \mathcal{J}$. If $r_j \leq R_\tau(A)$, then $R_\tau(A \setminus \{(j, k)\}) \geq R_\tau(A)$.*

Proof: Again, we denote the larger-adjacent size of the customer by $\ell = \text{ADJ}_+(s)$. Let $\mathbb{I}_{(j, \ell) \in A}$ be the indicator of whether the larger-adjacent size ℓ of style j is in the assortment A . We consider two cases.

1. For $k = s$. Similar to the construction in the proof of Lemma 2, we have $R_\tau(A) = \gamma \cdot r_j + (1 - \gamma) \cdot R_\tau(A \setminus \{(j, s)\})$, where $\gamma = \frac{w_j \cdot (1 - \mathbb{I}_{(j, \ell) \in A} \beta)}{1 + w_j + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}$ and

$$R_\tau(A \setminus \{(j, s)\}) = \frac{r_j w_j \beta \cdot \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} r_i w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta r_i w_i}{1 + w_j \beta \cdot \mathbb{I}_{(j, \ell) \in A} + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}$$

Therefore, $R_\tau(A \setminus \{(j, s)\}) = (R_\tau(A) - \gamma r_j) / (1 - \gamma) \geq (R_\tau(A) - \gamma R_\tau(A)) / (1 - \gamma) = R_\tau(A)$.

2. For $k = \ell$. Recall that $\ell = \text{ADJ}_+(s)$. If $(j, s) \in A$, then $R_\tau(A \setminus \{(j, \ell)\}) = R_\tau(A)$, as (j, ℓ) are already not considered when (j, s) is available. Now we assume $(j, s) \notin A$, and we have $R_\tau(A) = \gamma' \cdot r_j + (1 - \gamma') \cdot R_\tau(A \setminus \{(j, s)\})$, where $\gamma' = \frac{w_j \beta}{1 + w_j \beta + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}$ and

$$R_\tau(A \setminus \{(j, \ell)\}) = \frac{\sum_{(i, k) \in C_\tau^1(A): i \neq j} r_i w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta r_i w_i}{1 + \sum_{(i, k) \in C_\tau^1(A): i \neq j} w_i + \sum_{(i, k) \in C_\tau^2(A): i \neq j} \beta w_i}$$

Therefore, $R_\tau(A \setminus \{(j, \ell)\}) = (R_\tau(A) - \gamma' r_j)(1 - \gamma') \geq (R_\tau(A) - \gamma' R_\tau(A))(1 - \gamma') = R_\tau(A)$. \square

The following lemma shows that given a customer type $\tau = (s, +, \alpha)$, its expected revenue $R_\tau(A)$ is upper bounded by z_{MNL}^* and the upper bound is attached by a revenue-ordered assortment of products of the customer's best-fit size s .

LEMMA 4. *Consider a customer type $\tau = (s, +, \alpha)$. Denote $z^* \equiv \max_{A \subseteq \mathcal{N}_s^+} R_\tau(A)$. Then $A_o = \{(j, k) \mid r_j > z^*, j \in \mathcal{J}\}$ is an optimal solution to the problem $\max_{A \subseteq \mathcal{N}_s^+} R_\tau(A)$. In addition,*

$$z^* = z_{\text{MNL}}^* \equiv \max_{j \in \mathcal{J}} \left\{ \frac{\sum_{i=1}^j r_i w_i}{1 + \sum_{i=1}^j w_i} \right\}.$$

Proof: Obviously, z^* exists and it is finite since \mathcal{N}_s^+ is a finite set. We prove the first part of the statement by contradiction. Suppose A_o is not an optimal solution, and let A be an optimal solution with the smallest cardinality. The fact that A is optimal and $z^* = R_\tau(A) > R_\tau(A_o)$ imply that one of the following statements must be true: (i) there exists a style j such that $r_j > z^*$ and $(j, s) \notin A$; and (ii) there exists a product $(j, k) \in A$ such that $r_j \leq z^*$ and $k \in \{s, \text{ADJ}_+(s)\}$. Otherwise, if none of them is true, then $(j, k) \in A$ for all $j \in \mathcal{J}$ satisfying $r_j > z^*$ and $(j, k) \notin A$ for all j satisfying $r_j \leq z^*$ and all $k \in \{s, \text{ADJ}_+(s)\}$. One can then easily verify that $R_\tau(A) = R_\tau(A_o)$, which is a contradiction (that is to say, if none of (i) and (ii) is true, then A and A_o would be only different from each other for size $\text{ADJ}_+(s)$ of styles $j \in \{j \mid r_j > z^*\}$. Given that the correct size s of these styles is already in both A and A_o , these products of the larger-adjacent size do not change the expected revenue of A from A_o . That means $R_\tau(A) = R_\tau(A_o)$, a contradiction.)

Now we know one of the statements (i) and (ii) about A must be true. However, if (i) is true, we can conclude that $R_\tau(A \cup \{(j, s)\}) > R_\tau(A)$ by Lemma 2, which contradicts the fact that A is an optimal solution. If (ii) is true, we can conclude from Lemma 3 that the assortment $A \setminus \{(j, k)\}$ has a no-worse revenue, i.e., $R_\tau(A \setminus \{(j, k)\}) \geq R_\tau(A)$, but has a smaller cardinality than A , which would contradict the fact that A is an optimal assortment with the smallest cardinality. Therefore, neither (i) nor (ii) is true, which leads to a contradiction. Thus, A_o is an optimal solution.

For the second part of the theorem, we first notice that $A_o \in \mathcal{A}_{\text{order}}$, where $\mathcal{A}_{\text{order}}$ is the collection of all revenue-ordered assortments that only consist of products of size k . Formally, we define $\mathcal{A}_{\text{order}} = \{A_o^j \mid j \in \mathcal{J}\}$, where $A_o^j \equiv \{(1, k), (2, k), \dots, (j, k)\}$. For each revenue-ordered assortment A_o^j , we have $R_\tau(A_o^j) = \sum_{i=1}^j r_i w_i / (1 + \sum_{i=1}^j w_i)$. Therefore, $z^* = \max_{A \subseteq \mathcal{N}_k^+} R_\tau(A) = \max_{A_o \in \mathcal{A}_{\text{order}}} R_\tau(A_o) = \max_{j \in \mathcal{J}} \left\{ \sum_{i=1}^j r_i w_i / (1 + \sum_{i=1}^j w_i) \right\}$, where the second equality follows the first part of the theorem that we just proved. \square

We note that Lemma 4 holds for any other customer types, as all the arguments in Lemmas 2 and 3 can easily follow for customer types in the form of $\tau = (s, \sigma, \alpha)$. In other words, $\max_A R_\tau(A) = z_{\text{MNL}}^*$ for any

$\tau = (s, \sigma, \alpha)$ where $s \in \mathcal{K}$, $\alpha \geq 0$, and $\sigma \in \{+, -\}$. It also holds when the best-fit size s is a boundary size of \mathcal{K} . For example, if k_{\max} is the maximal size among \mathcal{K} , then the corresponding customer type (s, σ, α) for $s = k_{\max}$ behaves like a classic MNL model over products $\{(j, k_{\max}) \mid j \in \mathcal{J}\}$, as there is no larger-adjacent size to substitute to, again implying that $\max_A R_\tau(A) = z_{\text{MNL}}^*$. Applying Lemma 4 to all customer types $\tau = (s, \sigma, \alpha)$, we simply prove Theorem 1 as follows.

Proof of Theorem 1: By Lemma 4 and the discussion above, we know that $R_\tau(A) \leq z_{\text{MNL}}^*$ for all customer types $\tau = (s, \sigma, \alpha)$. Therefore, $R(A) = \sum_{s, \sigma} \int_0^\infty \mu_{(s, \sigma, \alpha)} \cdot R_{(s, \sigma, \alpha)}(A) d\alpha \leq \sum_{s, \sigma} \int_0^\infty \mu_{(s, \sigma, \alpha)} \cdot z_{\text{MNL}}^* d\alpha = z_{\text{MNL}}^*$. On the other hand, one can easily verify that $R(A^*) = z_{\text{MNL}}^*$ for the assortment defined in Equation (11). Therefore, A^* is an optimal solution. \square

Lastly, we remark that our proof of Theorem 1 follows a first-principle argument to determine whether we can further improve the expected revenue by adding or removing products from the assortment. The same proof technique was used by Rusmevichientong and Topaloglu (2012) to show that the robust assortment optimization under the MNL model has a revenue-ordered structure.

B.3. Proof of Proposition 1

Our proof closely follows the argument in Zhang et al. (2024); see the proof of Theorem 3.1 in the paper. To simplify the expression, we label products in \mathcal{N} as $\{1, 2, \dots, n\}$. There, $n = JK$, where J represents the number of styles and K represents the number of sizes. We consider an inventory problem under the following assumption: *Customers choose product $i \in \mathcal{N}$ according to the initial set $S_0 = \{i \mid I_i \geq 1\}$ of available products. If the product they choose is out of stock, then they leave without a purchase.* We call this optimization problem P_{static} . Given an inventory vector \mathbf{I} , the profit of the inventory model is

$$\Pi_{\text{static}}(\mathbf{I}) = \sum_{i \in \mathcal{N}} p_i \cdot \mathbb{E} \left\{ \min \left\{ I_i, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} - \sum_{i \in \mathcal{N}} c_i I_i \quad (21)$$

Here, L is a random variable that represents the number of customers visiting in period $[0, T]$ and $C_{i\ell}(\mathbf{I})$ is the indicator of whether customer ℓ would choose product i from S_0 . If the underlying choice model $\mathbb{P}(\cdot \mid \cdot)$ is a substitutive model (i.e., satisfying the substitutability property), then the profit Π_{static} of this inventory problem is a lower bound to the original dynamic inventory problem. This is because if a product is out of stock, then the demand for other available products should increase (or stay the same) in the dynamic inventory model. However, in Problem P_{static} , we assume that the demand for other products remains the same. This implies an underestimation of the revenue collected after the stock-out occurs in problem P_{static} , resulting in a lower bound for the dynamic problem. From here, we can also see why the same argument does not apply to non-substitutive choice models. In non-substitutive models, other products' demand could shrink to a lower value after each stock-out, and the objective Π_{static} is thus no longer a lower bound.

Define $\pi_i = \mathbb{P}(i \mid A^*)$, the choice probability of product i under the optimal assortment A^* . We consider bounding the gap between $\Pi_{\text{static}}(\mathbf{I})$ with $\mathbf{I} = \mathbf{I}^{\text{FA}} \equiv (\lceil T\lambda\pi_i \rceil)_{i \in \mathcal{N}}$ and $V_{\text{fluid}} = T\lambda \sum_{i=1}^n (p_i - c_i)\pi_i$. For simplicity, we call $\mathbf{I}^{\text{FL}} = (T\lambda\pi_i)_{i \in \mathcal{N}}$, which is a vector that consists of fractional numbers.

$$V_{\text{fluid}} - \Pi_{\text{static}}(\mathbf{I}^{\text{FA}}) = \sum_{i \in \mathcal{N}} (p_i - c_i) I_i^{\text{FL}} - \sum_{i \in \mathcal{N}} p_i \cdot \mathbb{E} \left\{ \min \left\{ I_i^{\text{FA}}, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} + \sum_{i \in \mathcal{N}} c_i I_i^{\text{FA}}$$

$$\begin{aligned}
&= \sum_{i \in A^*} p_i \cdot \mathbb{E} \left\{ I_i^{\text{FL}} - \min \left\{ I_i^{\text{FA}}, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} + \sum_{i \in \mathcal{N}} c_i \cdot (I_i^{\text{FA}} - I_i^{\text{FL}}) \\
&\leq \sum_{i \in A^*} p_i \cdot \mathbb{E} \left\{ I_i^{\text{FL}} - \min \left\{ I_i^{\text{FL}}, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} + \sum_{i \in A^*} c_i,
\end{aligned}$$

where in the last inequality we use the fact that $I_i^{\text{FL}} \leq I_i^{\text{FA}} < I_i^{\text{FL}} + 1$. The second term is upper bounded by $|A^*| \cdot c_{\max}$. The first term can be bounded as follows.

$$\sum_{i \in A^*} p_i \cdot \mathbb{E} \left\{ I_i^{\text{FL}} - \min \left\{ I_i^{\text{FL}}, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} \leq \sum_{i \in A^*} p_i \cdot \mathbb{E} \left\{ \left| I_i^{\text{FL}} - \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right| \right\} \leq \sum_{i \in A^*} p_i \cdot \sqrt{\mathbb{E} \left\{ \left(I_i^{\text{FL}} - \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right)^2 \right\}}$$

Notice that the random variable $\sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}})$ has expectation $\mathbb{E} \left[\sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right] = \mathbb{E}_L \left[\sum_{\ell=1}^L \mathbb{E} [C_{i\ell}(\mathbf{I}^{\text{FA}})] \right] = \mathbb{E}_L \left[\sum_{\ell=1}^L \pi_i \right] = \mathbb{E}_L [L\pi_i] = T\lambda\pi_i = I_i^{\text{FL}}$. Therefore,

$$\begin{aligned}
\sum_{i \in A^*} p_i \cdot \mathbb{E} \left\{ I_i^{\text{FL}} - \min \left\{ I_i^{\text{FL}}, \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\} \right\} &\leq \sum_{i \in A^*} p_i \cdot \sqrt{\text{Var} \left\{ \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \right\}} \\
&= \sum_{i \in A^*} p_i \cdot \sqrt{\mathbb{E}_L \left[\text{Var} \left\{ \sum_{\ell=1}^L C_{i\ell}(\mathbf{I}^{\text{FA}}) \mid L \right\} \right]} \\
&= \sum_{i \in A^*} p_i \cdot \sqrt{\mathbb{E}_L [L\pi_i(1 - \pi_i)]} \\
&= \sum_{i \in A^*} p_i \cdot \sqrt{T\lambda\pi_i(1 - \pi_i)} \leq p_{\max} \sqrt{T\lambda} \cdot \sum_{i \in A^*} \sqrt{\pi_i} \leq p_{\max} \sqrt{T\lambda} \sqrt{|A^*|},
\end{aligned}$$

where the last step is obtained by Cauchy-Schwartz inequality $(\sum_{i \in A^*} \sqrt{\pi})^2 \leq (\sum_{i \in A^*} 1) \cdot (\sum_{i \in A^*} \pi) = |A^*|$. Therefore, $V_{\text{fluid}} - \Pi_{\text{static}}(\mathbf{I}) \leq p_{\max} \sqrt{T\lambda n} + c_{\max} n$. Finally, we note that $\Pi^* \leq V_{\text{fluid}}$ according to Lemma (6), which is introduced below. Also, $\Pi(\mathbf{I}^{\text{FA}}) \geq \Pi_{\text{static}}(\mathbf{I}^{\text{FA}})$. Thus, $\Pi^* - \Pi(\mathbf{I}^{\text{FA}}) \leq V_{\text{fluid}} - \Pi_{\text{static}}(\mathbf{I}^{\text{FA}}) = O(\sqrt{nT\lambda})$. Also, $\Pi(\mathbf{I}^{\text{FA}})/\Pi^* \geq \Pi_{\text{static}}(\mathbf{I}^{\text{FA}})/V_{\text{fluid}} = 1 - (V_{\text{fluid}} - \Pi_{\text{static}}(\mathbf{I}^{\text{FA}}))/V_{\text{fluid}} \rightarrow 1$ as $T\lambda \rightarrow \infty$. \square

B.4. Proof of Proposition 2

Define $\text{supp}(\mathbf{I})$ as the support of an inventory vector \mathbf{I} , i.e., $\text{supp}(\mathbf{I}) = \{(j, k) \mid I_{jk} > 0\}$. We further define $\mathcal{C}(A)$ as the class of inventory vectors with support S , i.e., $\mathcal{C}(A) = \{\mathbf{I} \in \mathbb{N}_+^{JK} \mid \text{supp}(\mathbf{I}) = A\}$. We will first show that when \bar{L} is sufficiently large, any inventory vector from class $\mathcal{C}(A')$ for $A' \neq A^*$, where A^* is the optimal assortment, cannot be an optimal solution to Problem P_{LB} . In particular, for any $\mathbf{I} \in \cup_{A \neq A^*} \mathcal{L}(A)$, we have

$$\begin{aligned}
z'_{\text{LB}} &= \underset{A \neq A^*, \mathbf{I} \in \mathcal{C}(A), \mathbf{I} \in \mathbb{N}_+^{JK}}{\text{maximize}} \left[\sum_{(j,k)} p_j \cdot \min \{ \bar{L} \cdot \pi_{jk}(\mathbf{I}), I_{jk} \} - \sum_{(j,k)} c_j \cdot I_{jk} \right] \\
&\leq \underset{A \neq A^*, \mathbf{I} \in \mathcal{C}(A), \mathbf{I} \in \mathbb{N}_+^{JK}}{\text{maximize}} \left[\sum_{(j,k)} (p_j - c_j) \cdot \min \{ \bar{L} \cdot \pi_{jk}(\mathbf{I}), I_{jk} \} \right] \\
&\leq \underset{A \neq A^*, \mathbf{I} \in \mathcal{C}(A), \mathbf{I} \in \mathbb{N}_+^{JK}}{\text{maximize}} \left[\sum_{(j,k)} (p_j - c_j) \cdot \bar{L} \cdot \pi_{jk}(\mathbf{I}) \right] \leq \bar{L} \cdot \underset{A \neq A^*}{\text{maximize}} \left[\sum_{(j,k)} (p_j - c_j) \cdot \mathbb{P}((j, k) \mid A) \right].
\end{aligned}$$

Meanwhile, we consider the objective value of fluid policy \mathbf{I}^{FA} in Problem P_{LB} as follows

$$\begin{aligned}
z_{\text{LB}}(\mathbf{I}^{\text{FA}}) &= \sum_{(j,k) \in \mathcal{N}} p_j \cdot \bar{L} \cdot \mathbb{P}((j, k) \mid A^*) - \sum_{(j,k) \in \mathcal{N}} c_j \cdot \left[\bar{L} \cdot \mathbb{P}((j, k) \mid A^*) + (\lceil \bar{L} \cdot \mathbb{P}((j, k) \mid A^*) \rceil - \bar{L} \cdot \mathbb{P}((j, k) \mid A^*)) \right] \\
&\geq \sum_{(j,k) \in \mathcal{N}} (p_j - c_j) \cdot \bar{L} \cdot \mathbb{P}((j, k) \mid A^*) - \sum_{(j,k) \in \mathcal{N}} c_j = \bar{L} R_{\text{assst}}(A^*) - \sum_{(j,k) \in \mathcal{N}} c_j.
\end{aligned}$$

Therefore, for sufficiently large \bar{L} , we have $z'_{\text{LB}} < z_{\text{LB}}(\mathbf{I}^{\text{FA}})$, which implies that the support of the optimal solution of Problem P_{LB} must be A^* when \bar{L} is sufficiently large.

Now we shall show that $I_{jk}^{\text{IP}}/I_{jk}^{\text{FA}} \rightarrow 1$ for all $(j, k) \in A^*$ when $\bar{L} \rightarrow \infty$. This is equivalent to show that $I_{jk}^{\text{IP}}/(\bar{L} \cdot \mathbb{P}((j, k) | A^*)) \rightarrow 1$ for all $(j, k) \in A^*$. Consider a sufficiently large \bar{L} . As \mathbf{I}^{IP} returns the optimal solution to P_{LB} , we know that \mathbf{I}^{IP} has support A^* . Assume there exists a pair (j, k) such that $\liminf_{\bar{L}} |I_{jk}^{\text{IP}}/(\bar{L} \cdot \mathbb{P}((j, k) | A^*)) - 1| > \epsilon$ for a constant ϵ .

Then, as $\bar{L} \rightarrow \infty$, either $\liminf \{(z_{\text{LB}}(\mathbf{I}^{\text{FA}}) - z_{\text{LB}}(\mathbf{I}^{\text{IP}})/\bar{L})\} > \epsilon(p_j - c_j)\mathbb{P}((j, k) | A^*) > 0$ or $\liminf \{(z_{\text{LB}}(\mathbf{I}^{\text{FA}}) - z_{\text{LB}}(\mathbf{I}^{\text{IP}})/\bar{L})\} > \epsilon c_j \mathbb{P}((j, k) | A^*) > 0$ holds. In both cases, it contradicts the fact that \mathbf{I}^{IP} maximizes $z_{\text{LB}}(\cdot)$. Therefore, $I_{jk}^{\text{IP}}/I_{jk}^{\text{FA}} \rightarrow 1$ for all $(j, k) \in A^*$ when $\bar{L} \rightarrow \infty$. \square

Appendix C: Comparing the Style-Size Choice Model and Nested Logit Model

To compare the style-size model with the nested logit model, we examine two variants of the nested logit framework that incorporate the structure of apparel styles and sizes. Figure 4 illustrates these two configurations. In the left panel, nests (or baskets) are defined by apparel styles, while in the right panel, nests are organized by apparel sizes. The size-basket variant (right panel) serves as a benchmark in Section 4.3, as it includes $|\mathcal{J}| + |\mathcal{K}| + 1$ parameters, making it comparable to the style-size choice model and the size aggregation approach. In contrast, the style-based variant (left panel) has $2|\mathcal{J}| + 1$ parameters. We will delve into the details of parameter counts for each variant shortly. Next, we demonstrate that both variants of the nested logit model result in unrealistic demand substitution within the context of the apparel industry. This highlights a key distinction between the nested logit models and the style-size choice model proposed in this paper.

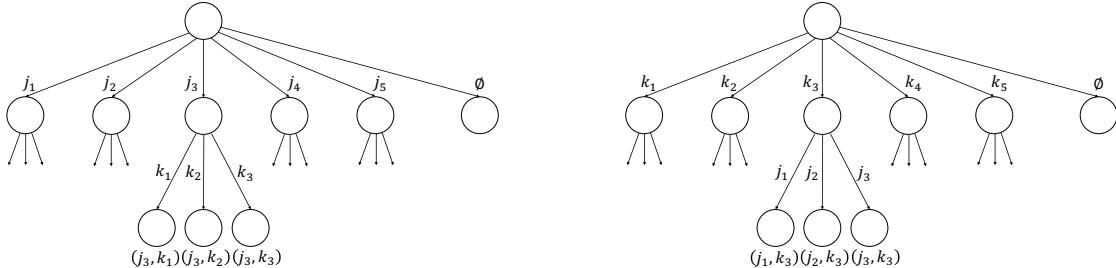


Figure 4 Two variants of the nested logit model that encode the apparel style and size structure.

Let us first consider the variant of the nested logit model where each nest is defined with respect to style, i.e., the model in Figure 4 (left). The model has $2|\mathcal{J}| + 1$ parameters. The first $|\mathcal{J}|$ parameters correspond to the utility parameters v_j for each style $j \in \mathcal{J}$. The second $|\mathcal{J}|$ parameters represent the similarity parameters $\eta_j \in (0, 1]$ associated with each nest defined for $j \in \mathcal{J}$. The final parameter, v_0 , captures the utility of the no-purchase option. Unlike the MNL, mixed-MNL, and the style-size choice models, the presence of the similarity parameters $(\eta_j)_{j \in \mathcal{J}}$ prevents us from rescaling the utility of each style relative to v_0 via $v_j - v_0$ to eliminate v_0 as a parameter.

$\beta_0 = 24.9\%$		$\beta_0 = 100.0\%$	
\bar{L}	T	\bar{L}	T
4W	0.1	4W	0.1
8W	0.2	8W	0.4
12W	0.4	12W	172.3
16W	0.6	16W	297.1
20W	0.6	20W	71.1
24W	42.0	24W	28.0
32W	11.3	32W	156.2

Table 4 The runtime T (sec) for solving the mixed-integer program.

L	\mathbf{I}^{NV}	\mathbf{I}^{FA}	\mathbf{I}^{IP}
50	37.72%	16.86%	11.04%
100	27.71%	11.20%	9.91%
200	24.64%	4.97%	3.17%
400	27.19%	1.98%	1.79%
800	19.57%	1.27%	1.21%
1600	22.14%	0.54%	0.52%

Table 5 Bound on optimality gap for each inventory policy.

Consider the following toy example. Suppose a store sells T-shirts in five sizes, $\mathcal{K} = \{\text{XS}, \text{S}, \text{M}, \text{L}, \text{XL}\}$, where we let $k_1 = \text{XS}$ and $k_5 = \text{XL}$. Now, compare two assortments $A_1 = \{(j_1, k_1)\}$ and $A_2 = \{(j_1, k_1), (j_1, k_5)\}$. In assortment A_2 , an additional T-shirt of the same style but in size XL is available compared to assortment A_1 . The choice probability (i.e., the demand) of product (j_1, k_1) given assortment A_1 under the nested logit model is

$$\mathbb{P}^{\text{NL}}((j_1, k_1) | A_1) = \frac{(e^{v_{j_1}})^{\eta_1}}{e^{v_0} + (e^{v_{j_1}})^{\eta_1}}.$$

Now we introduce product (j_1, k_5) to the assortment A_1 , resulting assortment A_2 . The choice probability of product (j_1, k_1) follows as

$$\mathbb{P}^{\text{NL}}((j_1, k_1) | A_2) = \frac{(e^{v_{j_1}} + e^{v_{j_1}})^{\eta_1}}{e^{v_0} + (e^{v_{j_1}} + e^{v_{j_1}})^{\eta_1}} \cdot \frac{e^{v_{j_1}}}{e^{v_{j_1}} + e^{v_{j_1}}} = \frac{2^{\eta_1} \cdot (e^{v_{j_1}})^{\eta_1}}{e^{v_0} + 2^{\eta_1} \cdot (e^{v_{j_1}})^{\eta_1}} \cdot \frac{1}{2}.$$

Since $2^{\eta_1} \in (1, 2]$, we have

$$\mathbb{P}^{\text{NL}}((j_1, k_1) | A_2) = \frac{2^{\eta_1} \cdot (e^{v_{j_1}})^{\eta_1}}{e^{v_0} + 2^{\eta_1} \cdot (e^{v_{j_1}})^{\eta_1}} \cdot \frac{1}{2} < \frac{2 \cdot (e^{v_{j_1}})^{\eta_1}}{e^{v_0} + (e^{v_{j_1}})^{\eta_1}} \cdot \frac{1}{2} = \mathbb{P}^{\text{NL}}((j_1, k_1) | A_1).$$

Therefore, it implies that, under the nested logit model, introducing a T-shirt in size XL would reduce the demand for the size XS of the same style. However, this is unrealistic, as customers who wear size XL T-shirts are unlikely to consider purchasing size XS.

Now, let us consider the second variant of the nested logit model, illustrated in Figure 4(right). In this model, each size corresponds to a nest, with parameters $(\eta_k)_{k \in \mathcal{K}}$. Therefore, there are $|\mathcal{J}| + |\mathcal{K}| + 1$ parameters. Following the same setup for apparel products and assortments in the toy example, we have $\mathbb{P}^{\text{NL}}((j_1, k_1) | A_2) = \frac{(e^{v_{j_1}})^{\eta_1}}{e^{v_0} + (e^{v_{j_1}})^{\eta_1} + (e^{v_{j_1}})^{\eta_5}} < \frac{(e^{v_{j_1}})^{\eta_1}}{e^{v_0} + (e^{v_{j_1}})^{\eta_1}} = \mathbb{P}^{\text{NL}}((j_1, k_1) | A_1)$. Consequently, the T-shirt in size XL once again reduces the demand for the size XS T-shirt of the same style, which is unrealistic.

Finally, it is easy to verify that in the proposed style-size choice model, we have $\mathbb{P}((j_1, k_1) | A_2) = \mathbb{P}((j_1, k_1) | A_1)$, implying the the demand of T-shirts of size XS and XL will not cannibalize each other. This highlights the difference between the proposed model and the nested logit model.

Appendix D: Additional Numerical Results on Performance of Inventory Policies

D.1. Runtime of the IP-based Policy

Table 4 reports the runtime of optimally solving the MILP (19) in each instance listed in Table 3. Across all instances, the runtime remains under five minutes on a MacBook Pro with an Apple M2 chip. The table also

\bar{L}	\mathbf{I}^{NV}	\mathbf{I}^{FA}	\mathbf{I}^{IP}	\mathbf{I}^{IP2}	\bar{L}	\mathbf{I}^{NV}	\mathbf{I}^{FA}	\mathbf{I}^{IP}	\mathbf{I}^{IP2}
4W	-18.88	-18.65	0.11	0.03	4W	-18.88	-18.65	0.29	0.22
8W	-4.45	-3.89	0.79	0.41	8W	-3.07	-2.39	2.07	0.67
12W	-0.16	0.53	1.72	1.49	12W	1.57	2.34	3.74	2.57
16W	1.30	2.09	2.49	2.44	16W	2.50	3.23	4.13	3.52
20W	2.71	3.28	3.42	3.42	20W	3.51	4.16	4.69	4.30
24W	3.02	3.53	3.59	3.59	24W	3.93	4.68	5.05	4.87
32W	3.71	4.31	4.34	4.34	32W	4.98	5.54	5.67	5.67

Table 6 Expected profit per customer of each inventory policy for a given $T\lambda$ ($\beta_0 = 24.9\%$ in the left panel and $\beta_0 = 100.0\%$ in the right panel)

shows that as α_0 decreases (i.e., $\beta_0 = e^{-\alpha_0}$ increases), the runtime for optimally solving the MILP increases. This trend arises because stronger size substitution (lower α_0) enables the firm to leverage demand spillovers across sizes, thereby better meeting customer needs. Consequently, the inventory optimization becomes more complex, leading to longer runtimes.

D.2. Performance of the IP-based Policy under the Major-minor Size Constraint

In Table 6, we report the expected profit per customer $\Pi_{\text{BT-per}}(\cdot)$ to the casual booties sector for each inventory policy. All notations follow Table 3, except that in each sub-table, we include the performance of the IP-based policy that enforces the major-minor size constraint described in Section 5.3. We call the resulting inventory vector \mathbf{I}^{IP2} .

We have the following observations from the table. First, the major-minor size constraint affects the performance of the IP-policy more severely when β is larger, i.e., when the size substitution is more prevalent. This is expected, since the constraint restricts how the IP can utilize the size substitution. Meanwhile, when the number of customer visits is sufficiently large, this constraint does not impact the performance of the IP-based policy, as shown in the case of $\bar{L} = 32W$. This is because the major-minor size constraint no longer alters the optimal solution of the original integer program.

D.3. Performance on a Synthetic Setup: Don't ignore both style and size substitutions

In this section, we consider a toy model to demonstrate that the newsvendor policy may exhibit poor performance, as it overlooks style substitution. Notice that in Section 5.3, the attraction of products is low, as fewer than 1% of customers purchase the casual booties. The resulting optimal assortment is to offer all styles, and the difference between the newsvendor policy and the fluid approximation lies only in whether to include a safety stock. In the following toy model, each product's attraction is higher than the ones we considered in Section 5.3, and thus the optimal strategy is not always to offer all styles.

Specifically, we assume that each style $j \in \mathcal{J}$ has the attraction $w_j \sim U([0, 2])$ and price $p_j \sim U([0, 100])$, where U is the uniform distribution, with 100% markup pricing scheme. Note that with such a markup scheme, we can isolate the performance of the newsvendor model from its safety stock strategy. For simplicity, we assume the size distribution μ is uniform. We set both $|\mathcal{J}|$ and $|\mathcal{K}|$ to be five and set $\beta_0 = 24.9\%$, which is the size substitution parameter we estimated in Section 4. We consider the following quantity, $G(\mathbf{I}) \equiv (LR_{\text{asst}}^* - \Pi(\mathbf{I})) / (LR_{\text{asst}}^*)$, which is an upper bound on the optimality gap, where R_{asst}^* is defined in Lemma 6. The same lemma shows that LR_{asst}^* is an upper bound to the inventory problem (12).

We present the performance of the three inventory policies by showing their G value in Table 5 (on Page 39). The results are quite consistent with what we have observed in Section 5.3 in terms of the relative performance of the policies. Notably, the IP-based policy achieves the best performance, and the fluid approximation catches up as the number of customers increases. In the table, we further observe that these two policies can reach a small optimality gap, less than one percent, as the total number of customer visits increases. Unlike Section 5.3, the newsvendor policy exhibits significantly worse performance compared to the other two policies, as it fails to account for substitution between styles. In particular, it cannot narrow the optimality gap below twenty percent even when the other two policies can reach small gaps. This demonstrates that, while ignoring the size substitution as in the fluid approximation may not be fatal, ignoring both size and style substitutions, as in the newsvendor policy, could be catastrophic and result in poor performance if customers follow the style-size choice model to make decisions.

Appendix E: Asymptotic Performance of Fluid Policies under General Choice Models

We end this paper by discussing an extension result for the asymptotic performance of fluid-like inventory policies under general choice models. The literature has mainly focused on choice models that satisfy the substitutability property (Definition 1). For example, Honhon and Seshadri (2013) show that if the underlying choice model is a ranking-based model, a fluid-like approximation solved by a dynamic program proposed by Honhon et al. (2010) can have an $O(n\sqrt{Q})$ optimality gap, where n is the number of products and Q is the total order quantity over these n products. El Housni et al. (2021) achieve an $O\left(n + \sqrt{nL_D \log(nL_D)}\right)$ gap using fluid approximation and sample-average approximation, where L_D is the deterministic number of customer visits. Zhang et al. (2024) improve the optimality gap to $O(\sqrt{nL_D})$ by exploring the gap between the full relaxation upper bound and a lower bound like Problem (13). Given the emerging literature on general choice models that do not satisfy the substitutability property, such as tree-based models (Akchen and Mišić 2021, Chen and Mišić 2022, Chen et al. 2019) and models inspired by behavioral economics (Maragheh et al. 2018), providing an encompassing performance guarantee can be valuable. We present our result as follows for a general choice model, and then discuss its application to our style-size choice model.

PROPOSITION 3. *Let $P(\cdot | \cdot)$ be any choice model over n products. Assume that $p_{\max} = \max_{i=1,\dots,n} p_i$ and $c_{\max} = \max_{i=1,\dots,n} c_i$ are independent of $\bar{L} = T\lambda$ and n . Let A^* be the optimal assortment and define $\pi_i = \mathbb{P}(i | A^*)$. Consider the inventory policy $\mathbf{I} = \left(\lfloor \bar{L}(\pi_i + \epsilon) \rfloor \cdot \mathbb{I}_{i \in A^*}\right)_{i=1,\dots,n}$, where*

$$\epsilon = \frac{1}{2} \cdot \sqrt{\frac{\log(\tilde{L})}{\tilde{L}}} \cdot \left(1 - 2\sqrt{\frac{e \log(\tilde{L})}{\tilde{L}}} - \frac{1}{\tilde{L}}\right)^{-1}$$

with $\tilde{L} = \max\{\bar{L}, e^4\}$. Then, the policy \mathbf{I} in the stockout-based inventory problem (12) has an $O(n\sqrt{\bar{L} \log \bar{L}})$ optimality gap and thus it is asymptotically optimal.

We prove the proposition by recognizing that the first stockout is a stopping time and quantifying the revenue collected until the point of the first stockout through a series of concentration inequalities (Vershynin 2018). Compared to the fluid approximation, the inventory policy in Proposition 3 introduces a safety stock $\bar{L}\epsilon = O\left(\sqrt{\bar{L} \cdot \log(\bar{L})}\right)$, which prevents the stockouts from happening too early. Asymptotically, this safety

stock is negligible compared to $\bar{L}\pi_i$, making the inventory policy in Proposition 3 converge to the fluid approximation as \bar{L} tends to infinity. When applying this policy to the style-size choice model (5), we again obtain a size-substitution-invariant inventory policy that is asymptotically optimal, although the theoretical optimality gap is larger than the gap of the fluid approximation shown in Proposition 1. On the other hand, in contrast to Proposition 1, the result in Proposition 3 applies to the case when the substitutability property does not hold. One of such examples includes the scenario that some customers' utility discount α is negative, i.e., there exists a customer type $\tau = (s, \sigma, \alpha)$ such that $\alpha < 0$ with nonzero weight $\mu_\tau > 0$.

E.1. Proof of Proposition 3

We define $[n] \equiv \{1, 2, \dots, n\}$ throughout the proof. We first state two lemmas. The first lemma, Lemma 5, concerns the first stockout time for a specifically constructed inventory vector.

LEMMA 5. *Assume ϵ and ϵ' are two positive constants. Let l be an integer that satisfies $l \in (T(\lambda - \epsilon'), T(\lambda + \epsilon'))$. Let $\{X_\ell\}$ be a sequence of IID multinomial random variables such that $\mathbb{P}(X_\ell = m) = \nu_m$ for $m \in 0, 1, \dots, M$, where $\sum_{m=0}^M \nu_m = 1$. For $m = 1, \dots, M$, we denote $Z_m^\ell = \sum_{i=1}^\ell \mathbb{I}[X_i = m]$ as the recurrence of outcome m up to random variable X_ℓ and let $U_m := \lceil T\lambda(\nu_m + \epsilon) \rceil$. We define*

$$\tau = \inf\{\ell \mid \exists m \in \{1, \dots, M\} \text{ such that } Z_m^\ell \geq U_m\}$$

as the first time that one of the Z_m^ℓ hits the corresponding bound U_m . Then, we have

$$\mathbb{P}[\tau \leq \lfloor l - T\epsilon' \rfloor] \leq M \cdot \exp(-2 \cdot (T\lambda - 2T\epsilon' - 1) \cdot \epsilon^2).$$

Proof: Define $l' = \lfloor l - T\epsilon' \rfloor$. Event $\{\tau \leq l'\}$ is equivalent to event $\{\exists m \in \{1, \dots, M\} \text{ such that } Z_m^{l'} \geq U_m\}$. Therefore, by union bound, $\mathbb{P}[\tau \leq l'] \leq \sum_{m=1}^M \mathbb{P}[Z_m^{l'} \geq U_m := \lceil T\lambda(\nu_m + \epsilon) \rceil]$. On the other hand, we know that $Z_m^{l'} \sim B(l', \nu_m)$, a binomial distribution of l' trials with ν_m success rate. Therefore, by Hoeffding's inequality,

$$\begin{aligned} \mathbb{P}\left[Z_m^{l'} \geq \lceil T\lambda(\nu_m + \epsilon) \rceil\right] &\leq \exp\left(-2 \cdot l' \cdot \left(\nu_m - \frac{\lceil T\lambda(\nu_m + \epsilon) \rceil}{l'}\right)^2\right) \\ &\leq \exp\left(-2 \cdot l' \cdot \left(\nu_m - \frac{T\lambda(\nu_m + \epsilon)}{T\lambda}\right)^2\right) \leq \exp(-2 \cdot (T\lambda - 2T\epsilon' - 1) \cdot \epsilon^2). \end{aligned}$$

As a result, $\mathbb{P}[\tau \leq l - T\epsilon'] \leq \sum_{m=1}^M \mathbb{P}\left[Z_m^l \geq U_m\right] \leq M \exp(-2 \cdot (T\lambda - 2T\epsilon' - 1) \cdot \epsilon^2)$. \square

The second lemma, Lemma 6, provides an upper bound to the inventory problem (12).

LEMMA 6. *Define $R_{\text{asst}}^* = \max_{A \subseteq \mathcal{N}} \left\{ \sum_{j \in S} \varrho_j \cdot \mathbb{P}(j \mid A) \right\}$ as the optimal objective value of the assortment problem with margin $\varrho_j = p_j - c_j$. Then for any inventory vector \mathbf{I} , its expected profit follows $\mathcal{P}(\mathbf{I}) \leq T\lambda R_{\text{asst}}^*$.*

Proof: We utilize the fact that the fluid formulation provides an upper bound to the discrete-time process with discrete choice; see, for example, El Housni et al. (2021). We thus omit the proof. \square

Now, we are ready to prove Proposition 3.

Proof of Proposition 3: Define A^* as the optimal assortment defined in Lemma 6 and R_{asst}^* as its expected profit. Now we show that the inventory vector \mathbf{I} defined in Proposition 3 is asymptotically optimal with rate $O\left(n\sqrt{\bar{L} \log(\bar{L})}\right)$. We separate the discussion into the following three parts: (a) bounding the expected

revenue $\mathbb{E} \left[\sum_{\ell=1}^L p_{D^\ell} \right]$ from below; (b) bounding the cost $\sum_j c_j I_j$ from above; and (c) bounding the optimality gap.

(a) Bound the expected revenue. Recall that L is the number of arrived customers in time $[0, T]$. The expected revenue follows as

$$\mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T] \right] = \sum_{l=0}^{\infty} \mathbb{E} \left[\sum_{\ell=1}^L p_{D^\ell} \mid L = l \right] \cdot \mathbb{P}[L = l] \geq \sum_{l=\lceil T(\lambda - \epsilon_1) \rceil}^{\lfloor T(\lambda + \epsilon_1) \rfloor} \mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right] \cdot \mathbb{P}[L = l],$$

where we will choose ϵ_1 carefully later. If there exists a lower bound \tilde{R}_{low} that is independent of l and satisfy $\tilde{R}_{\text{low}} \leq \mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right]$ for any positive integer $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$, then

$$\begin{aligned} \mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T] \right] &\geq \sum_{l \in \mathbb{N}_+: l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))} \mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right] \cdot \mathbb{P}[L = l] \\ &\geq \sum_{l \in \mathbb{N}_+: l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))} \tilde{R}_{\text{low}} \cdot \mathbb{P}[L = l] \\ &\geq \tilde{R}_{\text{low}} \cdot \mathbb{P} \left[L \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1)) \right] \\ &= \tilde{R}_{\text{low}} \cdot \left(1 - \mathbb{P} \left[|L - T\lambda| \geq T\epsilon_1 \right] \right) \geq \tilde{R}_{\text{low}} \cdot \left(1 - 2 \exp \left(-\frac{(T\epsilon_1)^2}{2(T\lambda + T\epsilon_1)} \right) \right), \end{aligned} \quad (22)$$

where in the last inequality, we use the concentration inequality for the Poisson random variable (Vershynin 2018). By choosing $\epsilon_1 = \lambda \cdot \sqrt{e \log(\bar{L}) / \bar{L}}$, we have,

$$\exp \left(-\frac{(T\epsilon_1)^2}{2(T\lambda + T\epsilon_1)} \right) = \exp \left(-\frac{1}{2} \cdot \frac{e \cdot \log(\bar{L})}{1 + \sqrt{\frac{e \cdot \log(\bar{L})}{\bar{L}}}} \right) \leq \exp \left(-\frac{e \log(\bar{L})}{4} \right) \leq \exp \left(-\frac{\log(\bar{L})}{2} \right) = \frac{1}{\sqrt{\bar{L}}},$$

where the first inequality follows since $e \log x \leq x$ whenever $x \geq e$. Therefore, as long as we have the lower bound \tilde{R}_{low} , then the expected revenue follows as $\mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[t_\ell \leq T] \right] \geq \tilde{R}_{\text{low}} \cdot \left(1 - \frac{2}{\sqrt{\bar{L}}} \right)$.

Now we will obtain the lower bound \tilde{R}_{low} for $\mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right]$ for any positive integer $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$. We define $Z_j^\ell = \sum_{i=1}^\ell \mathbb{I}[D^i = j]$ as the number of times that product $j \in A^*$ is chosen by the first ℓ customers. We further define a random variable $\tau = \inf \{ \ell \mid \exists \text{ product } j \in A^* \text{ such that } Z_j^\ell = \lceil \bar{L}(\pi_j + \epsilon) \rceil \}$, which is the first customer such that after she makes the decision, one of the products in the optimal assortment A^* is out of stock. More importantly, τ is a *stopping time*. Additionally, it depends solely on customers' decisions and is independent of their arrival times. Notice that for a fixed $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$, we have $\mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right] \geq \mathbb{E} \left[\sum_{\ell=1}^{\min\{l-T\epsilon_1, \tau\}} p_{D^\ell} \right]$. We will use a *Wald equation*-like argument to calculate the right-hand side. Notice that we cannot directly apply Wald's equation here, as $\{D^\ell\}_{\ell \in \mathbb{N}}$ is not a sequence of IID random variables. Indeed, as we discussed above, the set of available products A^ℓ that customer ℓ sees is not the same for all ℓ and thus the distribution of D^ℓ is not fixed.

Let $l' = \lfloor l - T\epsilon_1 \rfloor$. Define $\tilde{R}_{\text{ass}}^* := \sum_{j \in A^*} p_j \cdot \mathbb{P}(j \mid A^*)$ as the "revenue" part of the optimal assortment A^* (instead of profit, which doesn't have a tilde in the notation). For a given integer $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$, we have

$$\mathbb{E} \left[\sum_{\ell=1}^{\min\{l', \tau\}} p_{D^\ell} \right] = \mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[\ell \leq l'] \cdot \mathbb{I}[\ell \leq \tau] \right]$$

$$\begin{aligned}
&= \sum_{\ell=1}^{\infty} \mathbb{E} \left[p_{D^\ell} \cdot \mathbb{I}[\ell \leq l'] \cdot \mathbb{I}[\ell \leq \tau] \right] && \text{(Fubini's theorem)} \\
&= \sum_{\ell=1}^{\infty} \mathbb{E} \left[\mathbb{E} \left[\mathbb{I}[\ell \leq l'] \cdot \mathbb{I}[\ell \leq \tau] \cdot p_{D^\ell} \mid D^1, D^2, \dots, D^{\ell-1} \right] \right] && \text{(the tower property)} \\
&= \sum_{\ell=1}^{\infty} \mathbb{E} \left[\mathbb{I}[\ell \leq l'] \cdot \mathbb{I}[\ell \leq \tau] \cdot \mathbb{E} \left[p_{D^\ell} \mid D^1, D^2, \dots, D^{\ell-1} \right] \right] && (\tau \text{ is a stopping time}) \\
&= \sum_{\ell=1}^{\infty} \mathbb{E} \left[\mathbb{I}[\ell \leq l'] \cdot \mathbb{I}[\ell \leq \tau] \cdot \tilde{R}_{\text{asst}}^* \right] = \tilde{R}_{\text{asst}}^* \cdot \mathbb{E} \left[\min\{l', \tau\} \right].
\end{aligned}$$

Here, the fifth equality follows an observation: given that no products are out of stock after the first $\ell-1$ customers' visits, the set A^ℓ of available products that the ℓ -th customer will see remains the same as A^1 , which is the optimal assortment A^* , according to the construction of the inventory decision **I**. Therefore, if $\ell \leq \tau$, then $\mathbb{E} [p_{D^\ell} \mid D^1, \dots, D^{\ell-1}] = \mathbb{E} [p_{D^\ell} \mid A^\ell] = \mathbb{E} [p_{D^\ell} \mid A^*] = \tilde{R}_{\text{asst}}^*$. Now we will further lower bound $\mathbb{E} [\min\{l', \tau\}]$ for any fixed $l' = \lfloor l - T\epsilon_1 \rfloor$ for $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$ by Lemma 5. Notice that

$$\begin{aligned}
\mathbb{E} \left[\min\{l', \tau\} \right] &= \mathbb{E} \left[\min\{l', \tau\} \mid l' \geq \tau \right] \cdot \mathbb{P}[l' \geq \tau] + \mathbb{E} \left[\min\{l', \tau\} \mid l' < \tau \right] \cdot \mathbb{P}[l' < \tau] \\
&= \mathbb{E} \left[\tau \mid l' \geq \tau \right] \cdot \mathbb{P}[l' \geq \tau] + \mathbb{E} \left[l' \mid l' < \tau \right] \cdot \mathbb{P}[l' < \tau] \\
&\geq l' \cdot \mathbb{P}[l' < \tau] \\
&\geq l' \cdot (1 - |A^*| \cdot \exp(-2(T\lambda - 2T\epsilon_1 - 1) \cdot \epsilon^2)) \\
&\geq l' \cdot \left(1 - |A^*| \cdot \sqrt{\frac{1}{T\lambda}} \right) \\
&\geq (T\lambda - 2T\epsilon_1 - 1) \cdot \left(1 - |A^*| \cdot \sqrt{\frac{1}{T\lambda}} \right) = \bar{L} \cdot \left(1 - 2\sqrt{\frac{e \log(\bar{L})}{\bar{L}}} - \frac{1}{\bar{L}} \right) \cdot \left(1 - |A^*| \cdot \sqrt{\frac{1}{\bar{L}}} \right)
\end{aligned}$$

where the first inequality follows as l' is a constant, and the second inequality follows by Lemma 5 and the construction of inventory vector \mathbb{I} and τ . In particular, before the hitting time happens, the consumer decision D^ℓ follows $D^\ell = j$ with probability $\mathbb{P}(j \mid A^*) = \pi_j$. The last two inequalities follow as $l > T(\lambda - \epsilon_1)$, $l' \geq T\lambda - 2T\epsilon_1 - 1$, and $\epsilon = 0.5 \cdot \sqrt{\log(T\lambda) / (T\lambda - 2T\epsilon_1 - 1)}$. Combining all elements, we have

$$\mathbb{E} \left[\sum_{\ell=1}^l p_{D^\ell} \right] \geq \mathbb{E} \left[\sum_{\ell=1}^{\min\{l', \tau\}} p_{D^\ell} \right] = \tilde{R}_{\text{asst}}^* \cdot \mathbb{E} \left[\min\{l', \tau\} \right] \geq \tilde{R}_{\text{asst}}^* \cdot T\lambda \left(1 - 2\sqrt{\frac{e \log(\bar{L})}{\bar{L}}} - \frac{1}{\bar{L}} \right) \cdot \left(1 - n\sqrt{\frac{1}{\bar{L}}} \right) := \tilde{R}_{\text{low}},$$

whenever $l \in (T(\lambda - \epsilon_1), T(\lambda + \epsilon_1))$. Therefore, going back to Equation (22) and plugging in the defined \tilde{R}_{low} , we have the expected revenue bounded below as

$$\mathbb{E} \left[\sum_{\ell=1}^{\infty} p_{D^\ell} \cdot \mathbb{I}[\ell \leq T] \right] \geq \tilde{R}_{\text{low}} \cdot \left(1 - \frac{2}{\sqrt{\bar{L}}} \right) \geq \tilde{R}_{\text{asst}}^* \cdot \bar{L} \cdot \left(1 - 2\sqrt{\frac{e \log(\bar{L})}{\bar{L}}} - \frac{1}{\bar{L}} - n \cdot \sqrt{\frac{1}{\bar{L}}} - \frac{2}{\sqrt{\bar{L}}} \right)$$

(b) Bound the cost. We have $\sum_{j \in [n]} c_j \cdot I_j \leq \sum_{j \in A^*} c_j \cdot (1 + \bar{L}(\pi_j + \epsilon))$. Notice that whenever $\bar{L} \geq e^4$, $\epsilon_1 = \lambda \cdot \sqrt{e \log(\bar{L}) / \bar{L}} \leq \lambda \sqrt{e \cdot 4 / e^4} \leq 0.45 \cdot \lambda$, which results in

$$\epsilon = 0.5 \cdot \sqrt{\frac{\log(\bar{L})}{\bar{L} \left[1 - 2\sqrt{e \log(\bar{L}) / \bar{L}} - 1 / \bar{L} \right]}} \leq \frac{0.5}{\sqrt{1 - 2 \times 0.45 - \exp(-4)}} \cdot \sqrt{\frac{\log(\bar{L})}{\bar{L}}} \leq 1.8 \cdot \sqrt{\frac{\log(\bar{L})}{\bar{L}}}.$$

Plugging the upper bound for ϵ , we have the upper bound for the total procurement cost whenever $T\lambda \geq e^4$ as $\sum_{j \in [n]} c_j \cdot I_j \leq nc_{\max} + \bar{L} \sum_{j \in A^*} c_j \pi_j + 1.8nc_{\max} \sqrt{\bar{L} \cdot \log(\bar{L})}$.

(c) Approximate. Following the discussion in (a) and (b), the expected profit $\Pi(\mathbf{I})$, which is the expected revenue minus the cost, has a lower bound

$$\begin{aligned} \Pi(\mathbf{I}) &\geq \tilde{R}_{\text{asst}}^* \cdot \bar{L} \cdot \left(1 - 2\sqrt{\frac{e \log(\bar{L})}{\bar{L}}} - \frac{1}{\bar{L}} - n \cdot \sqrt{\frac{1}{\bar{L}} - \frac{2}{\sqrt{\bar{L}}}} \right) - \left(nc_{\max} + \bar{L} \sum_{j \in A^*} c_j \pi_j + 1.8n \cdot c_{\max} \cdot \sqrt{\bar{L} \cdot \log(\bar{L})} \right) \\ &= R_{\text{asst}}^* \cdot \bar{L} - O\left((p_{\max} + c_{\max}) \cdot n \cdot \sqrt{\bar{L} \log \bar{L}}\right), \end{aligned}$$

where we use the fact $\tilde{R}_{\text{asst}}^* \leq p_{\max}$ and $\tilde{R}_{\text{asst}}^* - \sum_{j \in A^*} c_j \pi_j = \sum_{j \in A^*} (p_j - c_j) \pi_j = R_{\text{asst}}^*$. Therefore, the inventory vector \mathbf{I} has an optimality gap $\Pi^* - \Pi(\mathbf{I}) \leq \bar{L} R_{\text{asst}}^* - \Pi(\mathbf{I}) \leq O\left(n \cdot \sqrt{\bar{L} \log \bar{L}}\right)$, where the first inequality follows Lemma 6 and the second inequality follows that both p_{\max} and c_{\max} are independent of \bar{L} . Finally, we argue that \mathbf{I} is asymptotically optimal as follows:

$$\frac{\Pi(\mathbf{I})}{\Pi^*} \geq \frac{\Pi(\mathbf{I})}{\bar{L} R_{\text{asst}}^*} \geq 1 - \frac{n}{R_{\text{asst}}^*} \cdot O\left(\sqrt{\frac{\log(\bar{L})}{\bar{L}}}\right) \rightarrow 1 \quad \text{as } \bar{L} \rightarrow \infty.$$

□