
On Size Substitution and Its Role in Assortment and
Inventory Planning

Yi-Chun Akchen
School of Management, University College London, London E14 5AB, United Kingdom.

yi-chun.akchen@ucl.ac.uk

Felipe Caro
Anderson School of Management, University of California, Los Angeles, California 90095, United States.

felipe.caro@anderson.ucla.edu

Problem definition: How should (apparel) retailers manage product sizes? For example, if most customers
wearing a given shoe size, such as 9.5, are willing to accept a half-size up or down, is it necessary for a retailer
to carry that size at all? Additionally, while identical products in different sizes are treated as distinct SKUs
in inventory management, they are often aggregated for assortment and strategic planning. However, there is
no theoretical justification for this approach. In this paper, we address the fundamental questions about size
management that have remained largely unexplored in the operations literature. Methodology/results:

We propose a choice model where each customer forms a consideration set based on the in-stock availability
of products of her best-fit size and adjacent sizes. Using a real-world dataset from a large footwear retailer,
we show that nearly 25% of the unmet demand caused by stockouts spills over to adjacent sizes. We further
solve the assortment and inventory optimization problems under the proposed choice model. Our findings
demonstrate that the optimal assortment remains unchanged regardless of the likelihood that customers
might purchase adjacent sizes. We utilize this finding and further show that inventory policies that ignore
size substitution can be (asymptotically) optimal when the demand rate is high or the selling horizon is long.
We also propose a mixed-integer program to determine inventory levels that account for size substitution
and achieve higher profits in low-demand settings. Managerial implications: We show that the prevalent
size-aggregation approach employed in apparel retail operations is sensible in high-demand settings, such as
e-commerce. In contrast, when the expected demand over the selling horizon is low, size substitution can be
relevant and should be considered in stocking decisions.
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fashion; assortment and inventory optimization.
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1. Introduction
In recent years, firms and academia have witnessed the success of operational models in the apparel
industry. Various analytical models have been proposed to improve operations efficiency and create
value (Wen et al. 2019). A cornerstone of these models is product demand estimation, which informs
critical decisions such as inventory allocation (Caro and Gallien 2010), supply chain coordination
(Alom et al. 2024), and fulfillment decisions in online retail (Acimovic and Graves 2015).

The most common approach in the operations management literature for estimating demand and
product substitution is as follows. First, a “product” is viewed as the aggregation across sizes of
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stock keeping units (SKUs) of the same style. Second, demand is estimated based on the aggregated
units (Boada-Collado and Mart́ınez-de-Albéniz 2020). In this approach, demand substitution can only
happen between product styles. Note that the style encompasses all information about an apparel
product, including its brand, design, and color, except for its size. Put differently, the style includes
all the fashion characteristics of the product. The aggregation approach is particularly sensible when
considering a utility-based demand model, such as the multinomial (MNL) choice model, in which a
product’s utility is directly linked to its fashion design, rather than its size.

However, such a size-aggregation approach can easily overlook product substitutions that arise due
to the unavailability of specific sizes. It has been shown that the unavailability of sizes can cause the
broken assortment effect (Smith and Achabal 1998, Caro and Gallien 2010, 2012), which refers to
the empirical observation that a product’s sales rate decreases when the total inventory falls below
a certain threshold, possibly because some sizes are no longer available. Furthermore, research in
economics, marketing, and operations management has shown that failing to account for stockouts
biases demand estimation (Campo et al. 2000, Che et al. 2012, Deng et al. 2022) and negatively
impacts profitability (Musalem et al. 2010).

Most importantly, demand substitution can happen between sizes. When the desired product is
out of stock, customers may consider products of adjacent sizes with the same fashion style, which we
will refer to as size substitution from here onward. Using a difference-in-differences (DID) approach
and a dataset from one of the largest sports footwear retailers in China, Li et al. (2023) empirically
show that 28.6% of the unmet demand for an out-of-stock footwear product spills over to the adjacent
sizes of the same style. Demand models that aggregate across sizes cannot capture size substitution,
and therefore, are unable to evaluate its effect on store profits and operational performance.

Given that product sizes play a vital role in apparel retail operations and size substitution has been
observed in consumer choices, we posit the following research question: when does size substitution
matter and when can it be put aside? To illustrate this, imagine a retailer managing footwear inven-
tory. If most customers who wear size 9.5 are willing to accept a half-size up or down, is it necessary
to stock that size at all, or should the retailer allocate inventory to adjacent sizes instead, antic-
ipating substitution? More broadly, how does size-based demand substitution, alongside the more
commonly studied style-based substitution, influence downstream operational strategies? To address
these questions, we take a prescriptive approach: we first propose a choice model, estimate it using
real-world data, and analyze its implications for assortment and inventory optimization. Specifically,
the paper makes the following contributions:

1. A New Choice Model (Section 3): We propose a novel choice model, called the style-size
model, to model consumers’ decision-making process in purchasing apparel products. In this choice
model, each customer is characterized by a tuple (s, σ,α), where s is the customer’s best-fit size,
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σ ∈ {+,−} implies either the larger or the smaller adjacent size is the customer’s second best-fit size,
and α captures the customer’s sensitivity to the lack of fit, i.e., the disutility for wearing a shoe in
an adjacent size that does not fit perfectly. When facing a set of products, the customer (s, σ,α) first
forms a stock-induced consideration set based on the products available in the best-fit size s; if the
best-fit size is unavailable, the customer considers the adjacent size of the same style but penalizes
them with a utility discount α. The customer then follows a MNL model to select a product from
the consideration set.

2. Model Estimation (Section 4): We develop a computationally tractable expectation-
maximization (EM) algorithm to estimate the model parameters. Using a dataset from a large
footwear retailer, we estimate the style-size choice model and demonstrate that at least 24.9% of
unmet demand due to stockouts spills over to adjacent sizes of the same style. Furthermore, we
show that the proposed style-size choice model has strong representational power and outperforms
benchmark models in out-of-sample prediction accuracy. As noted earlier, Li et al. (2023) also esti-
mate substitution patterns using a different dataset and a DID framework. While both studies find
a comparable magnitude of size substitution, our choice modeling approach estimates a structural
demand model and enables prescriptive analysis of its operational implications.

3. Assortment and Inventory Optimization (Section 5): We consider the assortment and
inventory optimization problems under the proposed style-size choice model. We first show that the
optimal assortment is invariant to customers’ size sensitivity. That is, the optimal assortment is the
same regardless of whether customers are likely to switch to adjacent sizes or less likely to do so.
We then discuss the inventory optimization problem in which stockouts can trigger size substitution.
Building on our result on the optimal assortment, we show that the size substitution effect is negligible
when the planning horizon is long or customer demand is high, i.e., in the asymptotic regime. For the
non-asymptotic regime, we first show that size substitution can affect profits and should be taken into
account in stocking decisions. We propose a mixed-integer program for that purpose. In a numerical
study, we show that this policy performs well in the non-asymptotic regime, and subsequently prove
that it is asymptotically optimal. All in all, our results provide guidance on when size substitution
matters and when it does not.

In the following section, we review the related literature. We relegate all proofs and additional
numerical results to the appendix.

2. Literature Review
Early work in apparel retail operations often overlooked demand substitution, typically relying on
single-product models. However, economics and marketing science have shown that demand substi-
tution exists in consumer choice. A range of choice models has been developed to estimate demand
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substitution from data (Train 2009) and analyze its impact on operational decisions (Kök and Fisher
2007). Stockouts also influence demand, as customers may consider alternative products when their
desired item is unavailable. Researchers in operations management and marketing science have pro-
posed methodologies to estimate the impact of stockouts, showing that ignoring them may lead to
a biased estimation of product demand (Campo et al. 2000, Musalem et al. 2010, Che et al. 2012,
Deng et al. 2022). Musalem et al. (2010) further propose a price promotion policy that can miti-
gate the negative economic impact of stockouts. Our model aligns with this research by examining
stockout-driven size substitution in apparel products.

There is a growing interest in making effective inventory decisions in the event of stockouts. The
seminal work of Mahajan and Van Ryzin (2001) first demonstrated that the stockout-based inventory
optimization problem, also known as the dynamic inventory problem, is computationally challenging.
Honhon et al. (2010), Honhon and Seshadri (2013) approximate the dynamic inventory problem with
a continuous relaxation, discretize the time intervals according to the assortment change, and solve
the inventory problem using a dynamic program, assuming that customers follow a ranking-based
choice model to make decisions. Goyal et al. (2016) propose a fully polynomial-time approximation
scheme under the assumption that the choice model only consists of nested rankings. Aouad et al.
(2018) propose an approximation algorithm with ratio 0.139 for the capacitated MNL inventory
problem. Lee et al. (2016) discuss the stockout-based substitution and the inventory problem in the
context of textbook retailing. Ergin et al. (2022) empirically show that sales of a fashion product at a
focal store increase when the same product is out of stock at neighboring stores within the same retail
network. Our work is related to a recent study by Liang et al. (2021), which considers an MNL-based
demand model and demonstrates that the optimal inventory policy follows a gain-ordered structure
under the fluid approximation of the dynamic problem. They prove that the rounded solution from
the fluid approximation is asymptotically optimal with a nearly square-root convergence rate. For
the MNL model, more recent work by Zhang et al. (2024) further improves the optimality gap by
dropping the dependency on the number of products. Zhang et al. (2024) also provide an optimality
gap for the fluid approximation under general choice models.

In apparel, most papers focus solely on substitution between product styles, viewing a “product”
as the aggregate of all sizes (Boada-Collado and Mart́ınez-de-Albéniz 2020). In contrast, Li et al.
(2023) empirically find evidence of size substitution. We note that both our model and Li et al. (2023)
assume that size substitution occurs only between adjacent sizes (see Assumption 1 in Li et al. (2023)
and Section 3 of our paper). In our framework, this assumption is embedded directly through the
construction of the consideration sets and the specification of product utility (see Equations (1)–(3)).
While it is clear that product size plays an essential role in fashion retailing, very few papers have
discussed the validity of the usual aggregation approach or have addressed the operational challenges
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when stockout-based size substitution happens (Smith and Achabal 1998, Caro and Gallien 2012).
Our work aims to fill this gap in the literature.

3. Model
In this section, we propose a two-stage choice model that characterizes consumers’ apparel choice.

3.1. Product, Style, and Size

We define an apparel product as a style-size pair. In particular, let J be the set of product styles and
K be the set of product sizes. We consider a style-size pair (j, k) as an apparel product, where j ∈ J

and k ∈ K. The style contains all product information, including brand, design, and color, except
for its size. Put differently, if one views an SKU as a product, “style” summarizes all information
of the SKU except the size. Notice that product sizes form a complete order, as we can always
sort sizes in K as an increasing sequence. In addition, for a given size k ∈ K, we use adj+(k) and
adj−(k) to denote the larger and small-adjacent sizes of k in K, respectively. For example, consider
a footwear universe of two styles J = {Nike Air Max White,Nike Air Force White} and nine sizes
K = {6,6.5,7,7.5, . . . ,9.5,10}. Then in this universe, there are |J | × |K| = 18 products. The adjacent
sizes follow immediately. For instance, adj+(7) = 7.5 and adj−(7) = 6.5. Note that each middle size
in K can have two adjacent sizes, while the two boundary sizes can have only one adjacent size.

To ease notation, we define N ≡ {(j, k) | j ∈ J , k ∈ K} as the set of products, each represented as a
style–size pair. We also define (0,0) as the no-purchase option and N+ = N ∪ (0,0). In this paper, we
often use footwear and clothing products as illustrative examples to demonstrate the model definitions
and settings. More broadly, our framework applies to apparel products that can be represented as
style-size pairs. Products that do not fit our framework, such as scarves or jewelry accessories, are
beyond the scope of the paper.

3.2. Two-Stage Customer Choice Based on Available Sizes

We propose a two-stage choice model to capture how customers make apparel purchasing decisions.
We first assume that each customer can be depicted by a tuple (s, σ,α), where s ∈ K represents the
customers’ best-fit size in the size set K, σ ∈ {+,−} implies either the larger (+) or the smaller-
adjacent size (-) of s is the customer’s second best-fit size, and α ≥ 0 characterizes her sensitivity
toward size deviation.

Customers follow a two-step process to make the purchase decision. Upon seeing an assortment
of available products A ⊆ N , a customer first forms a consideration set based on her type, and
then either selects a product from this set or leaves without making a purchase. The notion of the
consideration set here is quite different from the one in the literature (Aouad et al. 2021, Jagabathula
et al. 2024). We will revisit this comparison in Section 3.5.
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First, consider the customer type τ = (s,+, α). The corresponding symmetric type, (s,−, α), will
be discussed subsequently. The two stages in the choice model are the following.

First stage: Consider. The customer τ forms a consideration set based on her type τ . For a
given style j ∈ J , the customer τ first considers the best-fit product, which is (j, s), and checks
whether it is available. If it is not available, the customer will consider the same style but in the
larger-adjacent size, i.e., (j, k) for k = adj+(s). Specifically, let Cτ (A) ⊆ A be the consideration set of
customer τ = (s,+, α). Then, Cτ (A) is the disjoint union of two sets, Cτ (A) ≡ C1

τ (A) ∪ C2
τ (A), where

C1
τ (A) = {(j, k) ∈ A | k = s, j ∈ J } (1)

C2
τ (A) = {(j, k) ∈ A | k = adj+(s), (j, s) /∈ A, j ∈ J }. (2)

Here C1
τ (A) is the collection of products in assortment A that are available in customer’s best-fit

size s, and C2
τ (A) is the collection of products in A of size adj+(s) for the styles unavailable in the

best-fit size s. A key observation is that for a given style, an adjacent size is considered only if the
customer’s best-fit size is not available. That is, the customer will not consider an adjacent size if
the same style is available in her best-fit size. The following example illustrates the formation of the
consideration set Cτ (A).

Example 1. (Consideration Set) Assume that a store provides three styles of shoes, J =
{X,Y,Z}. A customer whose best-fit size is 7 visits the store. When size 7 is not available, this cus-
tomer might consider the larger-adjacent size 7.5. In other words, her customer type is τ = (7,+, α),
for some utility discount α ≥ 0. At the store, the set of products in stock is

A = {(X,6.5), (X,7), (X,7.5), (Y,7.5), (Z,6.0), (Z,6.5)}.

Given assortment A, the customer forms the consideration set Cτ (A) = {(X,7), (Y,7.5)}, since
C1

τ (A) = {(X,7)} and C2
τ (A) = {(Y,7.5)}. Note that product (X,7.5) will not be considered since

the style X is available in the best-fit size 7. On the other hand, for style Y , the customer is willing
to consider the larger-adjacent size 7.5 since the best-fit size is unavailable, although it is assigned a
lower utility. Style Z will not be considered since the sizes available are too small. □

We note that, under our definition of consideration sets, the best-fit size is strictly preferred
to an adjacent size. This interpretation aligns with the standard definition of preference ordering
(Block and Marschak 1959, Farias et al. 2013, van Ryzin and Vulcano 2014). The model also allows
non-deterministic best-fit size behavior by mixing customer types (Section 3.3), which captures the
scenarios where adjacent sizes may occasionally become the perceived best-fit size due to inherent
variability in consumer choice.

Second stage: Choose. Once the customer forms the consideration set Cτ (A), she either selects
a product from Cτ (A) or leaves without a purchase, according to a MNL model. Specifically, we
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assume that the customer τ has random utility uτ
jk = vτ

jk + ϵτ
jk for product (j, k), where ϵτ

jk follows
an independent standard Gumbel distribution. The deterministic component vτ

jk is given by

vτ
jk =


vj , if (j, k) ∈ C1

τ (A),

vj − α, if (j, k) ∈ C2
τ (A),

−∞, if (j, k) /∈ Cτ (A) ≡ C1
τ (A) ∪ C2

τ (A),

(3)

That is, if style j is available in the customer’s best-fit size—i.e., (j, s) ∈ C1
τ (A) for customer type

τ = (s,+, α)—then its deterministic utility is simply vj . If product j is available in the larger-adjacent
size but not in size s—i.e., (j, s) ∈ C2

τ (A)—it is still deemed “acceptable” by the customer, albeit with
a utility discount α due to the size mismatch, yielding the deterministic utility vj − α. Any product
not included in the consideration set Cτ (A) is not considered and is assigned utility −∞. Following
standard convention, the no-purchase option has random utility ϵτ

00, with its deterministic component
set to zero. Equation (3) implies that the utility of an apparel item in the correct size depends only on
its style. This aligns with our modeling assumption that a style reflects all fashion-related attributes
of a product.

From the MNL choice model, the probability of choosing product (j, k) for a customer of type
τ = (s,+, α) given an assortment A is

Pτ ((j, k) | A) =



evj

1 +
∑

(j′,k′)∈C1
τ (A) evj′ +

∑
(j′,k′)∈C2

τ (A) evj′ −α , if (j, k) ∈ C1
τ (A),

evj−α

1 +
∑

(j′,k′)∈C1
τ (A) evj′ +

∑
(j′,k′)∈C2

τ (A) evj′ −α , if (j, k) ∈ C2
τ (A),

0, otherwise,

(4)

with the no-purchase probability Pτ ((0,0) | A) = 1/
(
1 +

∑
(j′,k′)∈C1

τ (A) evj′ +
∑

(j′,k′)∈C2
τ (A) evj′ −α

)
.

Finally, the choice probability Pτ ((j, k) | A) for a customer of type τ = (s,−, α) follows the same
expression as Equation (4) except that C2

τ (A) = {(j, k) ∈ A | k = adj−(s), (j, s) /∈ A, j ∈ J }.

3.3. The Style-Size Choice Model: The General and Average Cases

Let Γ = {(s, σ,α) | s ∈ K, σ ∈ {+,−}, α ≥ 0} be the collection of all customer types. We further use
µτ to represent the density of customer type τ ∈ Γ in the market. Along with the utility parameters
vj of styles j ∈ J , we define the (general) style-size choice model as

[General Model]: P((j, k) | A) =
∑

s∈K,σ∈{+,−}

∫ ∞

0
P(s,σ,α)((j, k) | A) · µ(s,σ,α)dα, (5)

where the choice probability Pτ ((j, k) | A) is defined as in Equation (4).
In Equation (5), we seek a general representation of customers’ experience on product sizes. In

particular, the distribution µτ for τ = (s,σ,α) ∈ Γ allows us to model a wide range of consumer
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decisions in the context of apparel product sizes. Take type (s,+, α) and men’s footwear as an
example. The range of shoe sizes is usually {7,7.5,8,8.5, . . . ,12.5,13}. On the other hand, customers’
actual foot sizes are continuously distributed in the range between, let’s say, 25 cm (corresponding
to size 7) and 30 cm (corresponding to size 13). A customer with a foot size of exactly 27.5 cm
(size 10) may feel uncomfortable when trying on size 10.5, as it can be too loose. In that case, the
corresponding α is bigger. On the contrary, consider a customer whose best-fit size is 10 and actual
foot size is slightly longer than 27.5 cm. When size 10 is out of stock, he is more flexible in choosing
the adjacent size, 10.5. In that case, the corresponding utility discount α is smaller. The distribution
of customer types over α reflects the fact that the standardized retail sizes are approximations to
each person’s actual foot size (or body size for clothing).

Later in Section 4, when we estimate the size substitution effect from a real-world dataset that
involves the inventory information for nearly five hundred apparel products over an eight-month
horizon, we consider an average case of the style-size choice model (5). In this average model, we
aim to obtain a more succinct and interpretable representation of model (5). Specifically, we first use
one parameter to represent the discomfort discount α = α0 of all customers, which will be estimated
from the dataset. Second, we assume that for each best-fit size s ∈ K, customers are equally likely
to be oversized (thus might consider the larger-adjacent size) or undersized (thus might consider the
smaller-adjacent size) compared to s. That is, we assume µ(s,+,α0) = µ(s,−,α0). With these reductions,
we obtain a more compact style-size choice model:

[Average Model]: P((j, k) | A;α0) =
∑
s∈K

µ̄s ·
(1

2 ·P(s,+,α0)((j, k) | A) + 1
2 ·P(s−,α0)((j, k) | A)

)
, (6)

where, with a slight abuse of notation, we write µ̄s ≡ µ(s,+,α0) + µ(s,−,α0) to represent the fraction of
customers whose best-fit size is s. We remark that the average model (6) can be fully characterized
by |J | + |K| + 1 parameters—namely, α0, (vj)j∈J and (µ̄s)s∈K.

3.4. Model Extension: Size Variation across Styles

Due to the diverse combinations of apparel styles, sizes, and customers’ actual body measurements,
it’s unlikely that all consumer choices in apparel retail can be fully captured by the general style-size
model (5). For instance, a baggy fit T-shirt is intentionally designed to be looser. A customer who
typically wears size L might find that size M offers the best fit in this case. When size definitions for
a particular style do not align with others, we can relabel sizes within K for that style to maintain
consistency. These adjustments can be easily implemented during inventory management.

In more extreme cases where substantial size variation exists across apparel styles, we might define
each customer type as a tuple (s,σ,α) = (sj , σj , αj)j∈J , where for each style j ∈ J , size sj ∈ K is
the customer’s best-fit size, σj ∈ {+,−} indicates which adjacent size would be considered, and αj
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represents the utility discount associated with choosing that adjacent size. The customer type (s, σ,α)
defined in Section 3.1 is a special case of this tuple, where sj , σj , and αj are fixed across all styles
j ∈ J . While we will not address this extension in depth due to the added notational complexity, we
will later show in Section 5 that our main results on assortment and inventory planning, Theorem 1
and Proposition 1, still apply under this extended model.

3.5. Comparison to Other Choice Models in the Literature

Now we compare the style-size choice model in Equation (5) with other existing choice models in
the literature. At first glance, the style-size choice model resembles the mixed-MNL model (Train
2009), which assumes that there are several customer types in the market and each customer type
makes decisions according to a distinct MNL model. The style-size choice model also allows customer
heterogeneity in Equation (5), but it differentiates itself from the mixed-MNL model by incorporating
the notion of a consideration set in the decision-making process. The consideration set structure
enables us to model the strict hierarchy between sizes, where there exists a most suitable size, an
adjacent size, and unacceptable sizes for each customer. In contrast, in the mixed-MNL model, it is
not possible to construct a hierarchy between sizes as long as each has a non-zero choice probability;
a customer may still buy a much larger or a much smaller size of a given style, even if the best-fit
size is offered.

The style-size choice model contributes to the growing literature on choice models with consid-
eration sets. In particular, Aouad et al. (2021) and Jagabathula et al. (2024) develop a consider-
then-choose (CTC) model, which is defined as a distribution over the product space of subsets and
rankings. In the CTC model, a customer type is characterized by a subset-ranking pair (C,σ). When
an assortment A is offered, customer type (C,σ) will choose arg mini∈C∩A [σ(i)], i.e., selecting the
product with the highest rank in the intersection of the consideration set C and the offered assort-
ment A. Our style-size choice model differs from the CTC model in several aspects. First, in the
’choose’ step, our model follows an MNL model, while the CTC model follows a ranking preference.
Second, the consideration set in the style-size choice model is stock-based, i.e., a function of stock. In
contrast, the consideration set in the CTC model is independent of the set of available products. Such
differences confer practical advantages to the style-size choice model. In the CTC model, the number
of customer types grows exponentially with the number of style-size pairs, whereas in the style-size
choice model, the number of customer types scales linearly with the number of sizes. This makes our
model more tractable and suitable for practical applications, where the number of style–size pairs
(i.e., products) may easily exceed hundreds. We refer readers to Section 4.3 for further discussion on
the number of parameters in the style-size choice model.

To further illustrate the distinction between the consideration sets in the style-size and CTC
models, we present the following example. Specifically, we show that the stock-based consideration
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set Cτ (A) defined in Section 3.2 cannot be represented as the intersection of the assortment A with
a fixed subset C of products, as assumed in the CTC model.

Example 2 (Stock-based Consideration Set). Consider a universe with one style, J =
{X}, and two adjacent sizes, K = {7,7.5}. Take customer type τ = (7,+, α) and the following assort-
ments: A1 = {(X,7), (X,7.5)}, A2 = {(X,7)}, and A3 = {(X,7.5)}. The corresponding consideration
sets are Cτ (A1) = {(X,7)}, Cτ (A2) = {(X,7)}, and Cτ (A3) = {(X,7.5)}.

Suppose, for the sake of contradiction, that Cτ (A) = C ∩A for a fixed consideration set C as in the
CTC model. Since Cτ (A2) = {(X,7)} and Cτ (A3) = {(X,7.5)}, both products would have to belong
to C, implying that C = {(X,7), (X,7.5)}. But then, C ∩A1 = {(X,7), (X,7.5)} ̸= Cτ (A1) = {(X,7)},
a contradiction. □

The style-size choice model is analogous to a context-dependent choice (Tversky and Simonson
1993), in which customers make decisions based on the products and their comparisons to one another
within the offered assortment. In the style-size choice model, a customer sees the set of available
products and decides not to consider adjacent sizes if the best-fit size of the same style is already
available in the assortment. One can also view the style-size choice model as cue-triggered consumer
behavior (Pennesi 2021) in which a stimulus from the environment drives consumers’ decisions. In
the style-size choice model, the unavailability of the best-fit size in the assortment triggers customers
to consider the adjacent sizes of the same style.

Finally, while the style-size choice model is analogous to the context-dependent choice models,
it still satisfies the substitutability property (or also called the stochastic rationalizability property;
see Jagabathula and Rusmevichientong (2019), Chen and Mǐsić (2022), Zhang et al. (2024)). The
property is a widely used axiom in the economics and decision theory literature (Rieskamp et al.
2006). It is satisfied by several popular choice models, including the mixed-MNL and ranking-based
models, and is defined as follows.

Definition 1. A choice model P over choices in N+ satisfies the substitutability property if P(m |
A ∪ {n}) ≤ P(m | A) for all assortments A and choices m and n such that n ∈ N \A.
The property implies that the probability of choosing any product will not increase if we enlarge
an assortment. The substitutability property is referred to as the least restrictive form of rational
choice and is sometimes dubbed “weak rationality.” However, it can still be violated when the choice
is context-dependent. One example is the decoy effect. In this marketing phenomenon, adding an
inferior “decoy” product to an assortment increases the appeal of a superior “target” product, making
consumers more likely to choose it (Huber et al. 1982). When a choice model violates the substi-
tutability property, it usually leads to computationally expensive methodologies for the downstream
applications (Akchen and Mǐsić 2021). Although the style-size choice model is context-dependent,
the following lemma shows that it satisfies the substitutability property.
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Lemma 1. The choice probability P(s,σ,α) satisfies the substitutability property if and only if α ≥ 0.

Lemma 1 leads to an intuitive inventory policy that is asymptotically optimal (cf. Section 5.4).

4. The Dataset and Estimation Outcome
In this section, we apply our model to real-world inventory and sales data.

4.1. Data

The dataset comes from a large footwear retailer. The company operates hundreds of stores and also
owns an e-commerce website. We focus on the data collected from brick-and-mortar stores. Notice
that the style-size combination is the most disaggregate product level observed in the dataset. We
follow Section 3 to define each style-size combination as a product or SKU.

The data spans 33 weeks in the 2019-2020 season from the end of July 2019 to mid-March 2020,
right before store traffic began to decline because of the coronavirus pandemic. The data is for 51
styles of women’s casual booties, which is a midsize category among 50+ categories overall. There
are nine shoe sizes ranging from size 6 to size 10, with half sizes in between. The dataset includes
the following information from each store m ∈ M and week t ∈ T :

Nmt: the number of visitors to store m during week t, collected by a traffic counter at the entrance
of each store. The weekly average was approximately 4,000 visitors per store.

Qmt
(j,k): the number of sold units of product (j, k) at store m during week t. On average, 30.8 units

were sold at each store per week. Hence, roughly 99% of the customers either bought a product
outside N or did not make a purchase.

Imt
(j,k): the number of stocked units of product (j, k) at store m and in week t. We also note that we

are aware of the replenished units. The time series of stocked units, units sold, and replenished units
are quite consistent, indicating that the inventory records are reliable. On average, a store stocked
453.8 units during a week.

Amt: the set of available products at store m in week t, i.e., Amt = {(j, k) ∈ N | Imt
(j,k) ≥ 1}. For

simplicity, we assume that Amt remains the same throughout the week. Hence, customers visiting
the store during the same week saw the same set of products. This is a reasonable assumption, as
we observe that only a small fraction of products were sold in a week, and thus the set of available
products Amt would not change significantly during the week. On average, there were 271.2 products
available, out of a total of 459 (= 51 × 9), and there were 6.4 sizes in stock (out of 9).

In Table 1 we report the weekly visitors Nmt, units stocked
∑

(j,k)∈N Imt
(j,k), products available |Amt|,

units sold
∑

(j,k)∈N Qmt
(j,k), and sizes offered, all averaged across stores m ∈ M. The sizes offered are

reported as the ratio between |Amt| and the number of styles in the assortment. We also show the
evolution of these quantities in Figure 1. From the figure, it can be seen that the number of visitors
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Mean Median Std. Dev. Min Max
Visitors 3,857.5 3,981.5 593.6 2,865.6 4,880.7
Units stocked 453.8 449.1 115.8 234.7 604.4
Products available 271.2 284.9 63.5 143.0 359.2
Units sold 30.8 30.5 18.5 6.5 77.3
Sizes offered 6.4 6.4 1.5 3.9 8.4

Table 1 Weekly summary statistics (averaged across stores)

2019/08 2019/11 2020/01 2020/03

101

102

103

104

Visitors
Units Stocked

Products Available
Units Sold

Sizes Offered

Figure 1 Evolution of visitors, units stocked, products available, units sold, and sizes offered from 2019 Fall to
2020 Spring averaged across stores

decreased gradually over the specified time horizon. Similarly, the number of sizes offered decreased
almost monotonically from 8.4 sizes to 3.9. In contrast, the stocked units and the number of available
products peaked in mid-October 2019, while the number of sold units peaked in November 2019, a
few weeks after the peak of the stocked units and just before the holiday season.

4.2. Estimation Method: The EM Algorithm

We propose an estimation method for the average style-size choice model (6) based on the expectation-
maximization (EM) algorithm. Due to space constraints, we defer the technical details to Appendix A
and provide a high-level summary below.

The EM algorithm is a widely used framework for maximum likelihood estimation in models with
latent variables. It alternates between two steps: an expectation (E) step, in which the expected values
of the missing or unobserved variables are computed given the observed data and current parameter
estimates, and a maximization (M) step, in which the expected values are used to (re)optimize the
model parameters. In our setting, the customer types τ are unobserved, making them natural latent
variables for an EM approach. In the E step, we compute the conditional expectation of customer-
type assignments using Bayes’ rule, based on the current model parameters and the observed sales
data (Nmt,{Qmt

(j,k)}(j,k)∈Amt)m∈M,t∈T . In the M step, we maximize the expected complete-data log-
likelihood with respect to the model parameters. This step further decomposes into two independent
optimization problems under the style-size choice model: one for estimating the distribution over



Akchen and Caro: On Size Substitution and Its Role in Assortment and Inventory Planning
13

customer types, which has a closed-form solution, and the other for estimating style utilities and
size sensitivity, which involves a concave maximization problem that can be solved efficiently. In
Appendix A, we derive the complete-data log-likelihood based on the style-size choice model (Sec-
tion A.1) and then develop the E and M steps in detail (Section A.2).

Examples of the EM algorithm include the estimation of the LC-MNL model (Train 2009), the
general attraction model (GAM) (Gallego et al. 2015), the ranking-based model (van Ryzin and
Vulcano 2014), and the decision forest model (Chen and Mǐsić 2022). Generally, the efficiency of the
EM algorithm depends on whether the M step can be solved easily. For example, in the LC-MNL
model, the M step requires solving K concave maximization problems, where K is the number of
customer types. In the GAM model, the M step cannot be solved as a concave maximization problem.
Gallego et al. (2015) thus consider minimizing the squared error by ignoring the no-purchase option.
In the ranking-based model, the M step involves solving a linear ordering problem, which is known
to be NP-hard. van Ryzin and Vulcano (2014) address it using a mixed-integer linear program.

In contrast, the M step for the style-size choice model is surprisingly simple, as it only requires
solving a single concave maximization problem P complete

2 . This simplicity stems from the model for-
mulation, particularly from the design of the consideration sets C1

τ (A) and C2
τ (A), as well as the

fact that the choice between the two sets can be separated in the log-likelihood function. Moreover,
such a structure in the M step still exists even if we generalize the style-size model and incorporate
store-specific parameters, such as a store intrinsic utility (vm)m∈M or a store-dependent best-fit dis-
tribution (µm,τ )

m∈M,τ∈Γ. These parameters can help design localized assortments and local inventory
levels (Fisher and Vaidyanathan 2014), which highlights the flexibility of the style-size choice model
and its EM estimation procedure.

4.3. Estimation Outcome

We present the estimation outcome in Table 2, which compares the performance of four models, the
size aggregation model, the nested logit model, the granular model, and the style-size model, under
three metrics. The style-size model is the model proposed in this paper. As discussed at the beginning
of Section 3.3, due to the large size of the dataset, we consider estimating the average style-size choice
model (6).

The first benchmark, the size aggregation model (Size-Agg), refers to the traditional approach
described in the introduction (Section 1). Specifically, in this approach, one aggregates all sizes (all
SKUs) under the same style to create a “product” that is out of stock if none of the sizes are available.
Following this approach, we estimate the utility vagg

j of each style by first creating the aggregated
products from the data and then estimating

(
vagg

j

)
j∈J via maximum likelihood estimation. The choice

probability for an apparel product (j, k) in the assortment A under the size aggregation model is
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simply P((j, k) | A)) = exp(vagg
j )/

(
1 +

∑
j′|∃(j′,k′)∈A exp(vagg

j′ )
)

· µ̂k, where µ̂k is the fraction of sales

of size k. In other words, under the size aggregation model, we assume that the demand of (j, k) is

simply the demand of the style j times the market share of size k.

The second benchmark is the nested logit model (Train 2009), which has a natural structure that

incorporates the apparel styles and sizes. Specifically, we consider a two-level nested logit model,

where the first level encodes apparel sizes and the second level encodes styles. For simplicity, we only

present one variant of the nested logit model. Another variant, in which styles are encoded first, is

discussed in Appendix C, with Figure 4 illustrating both variants. In the same section, we discuss

how the style-size choice model proposed in this paper differs from these two variants of the nested

logit model. Note that the two variants have similar performance in terms of out-of-sample prediction

in our numerical experiments.

The third and last benchmark model assumes that each product (j, k) has a random utility with

deterministic component vjk, and customers make purchase decisions according to the MNL model

P((j, k) | S) = exp(vjk)/(1+
∑

(j,k)∈S exp(vjk)). We call it the granular model because it assigns model

parameters at the most granular level, i.e., it assigns a parameter to each style-size pair. Notice

that the granular model has |J ||K| = 459 parameters, while the style-size model with average size

sensitivity parameter considered in this section only has |J | + |K| + 1 = 61 parameters. Similarly,

the nested logit model has |J | + |K| + 1 = 61 parameters while the size aggregation model has

|J | + |K| = 60. Therefore, among all the models we consider in the numerical study, the granular

model has the largest number of parameters. As the problem instance grows larger, the granular

model can become more disadvantageous for practitioners in terms of interpreting consumer choice

and designing business strategies.

In a sense, the granular model is neither practical nor compact, as it assumes that customers may

substitute shoes of a very large size for shoes of a small size. While other stronger choice models

exist, such as the LC-MNL model, the number of parameters in those models would further increase,

making the comparison with the style-size choice model less informative. For example, a ten-class LC-

MNL model would have 4590 parameters in contrast to 61 in the style-size choice model with average

size sensitivity. When model complexities differ by up to eighty times, one can expect the more

complex model to fit the data better; however, it may also be intractable and harder to implement

in practice, with the risk of overfitting. In fact, in our experience, it is computationally intractable

to estimate the LC-MNL model for the current dataset.

The first row in Table 2 presents the number of parameters in each model. The second row reports

the estimated average size sensitivity parameter α0 = 1.39. The estimation passes the likelihood ratio

test with a very small p-value against the style-size choice model of zero size substitution effect. In
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Model Size-Agg Nested Logit Style-Size Granular
Number of Parameters 60 61 61 459
Size Sensitivity (α0) - - 1.39*** -
KL Divergence (10−2) 1.88 1.72 1.66 1.67
Mean Absolute Error (10−3) 2.64 2.55 2.50 2.54
KL on No-Purchase (10−4) 8.25 6.97 6.87 6.96

*** Significant at the 0.1% level
Table 2 Estimation Results for the footwear products in the dataset

Section 4.4, we will provide insights on the value of the size sensitivity parameter and connect it to
the spillover effect reported by Li et al. (2023).

The last three rows report the predictive out-of-sample performance of each model. For simplicity,
in each trial of the experiment, we uniformly at random assign each store to be either in the training
group Mtrain or in the testing group Mtest. We then use sales data from the stores in the training
group Mtrain to learn the choice models and examine the performance of each model based on
the sales data from the testing group Mtest. We run the experiment forty times and report the
average performance. We use three different metrics. The first two metrics, the Kullback-Leibler
(KL) divergence and the Mean Absolute Error (MAE), are standard metrics used in the literature.
We define them as follows. Let p̃mt

(j,k) = P((j, k) | Amt) and p̂mt
(j,k) = Qmt

(j,k)/Nmt be the predicted and
empirical choice probability of product (j, k) in week t at store m. We write A+ ≡ A ∪ {0,0} for any
assortment A. The KL divergence is defined as

KL = −
( ∑

m∈Mtest

∑
t∈T

Nmt
∑

(j,k)∈Amt
+

p̂mt
(j,k) · log

(
p̃mt

(j,k)/p̂mt
(j,k)

))/( ∑
m∈Mtest

∑
t∈T

Nmt

)
. (7)

We further let Q̃mt
(j,k) be the predicted sales of product (j, k) in week t at store m. Then, the MAE

can be expressed as

MAE =
∑

m∈Mtest
∑

t∈T
∑

(j,k)∈Amt
+

∣∣Q̃mt
(j,k) − Qmt

(j,k)
∣∣∑

m∈Mtest
∑

t∈T Nmt
=
∑

m∈Mtest
∑

t∈T Nmt
∑

(j,k)∈Amt
+

∣∣p̃mt
(j,k) − p̂mt

(j,k)
∣∣∑

m∈Mtest
∑

t∈T Nmt

For both metrics, a smaller value implies better predictive performance.
Table 2 shows that the performance of the size aggregation model is significantly worse than the

other models. In particular, since the model overlooks the broken assortment effect caused by size
stockouts, it underestimates the style utility. When a customer cannot find her best size of a style,
the model misinterprets this as the style being unattractive, and thus undervalues it. This numerical
finding highlights the peril of aggregating sizes in demand estimation, especially in a setting as shown
in Table 1, where sizes are not always complete.

Among the three remaining models in Table 2, the proposed style-size model has the best perfor-
mance. Notably, it outperforms the nested logit model, which has the same number of parameters.
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When compared to the granular model, which has nearly eight times more parameters, the style-size
model demonstrates a clear advantage in predictive performance measured by the MAE score. In
terms of KL divergence, the style-size and granular models perform comparably. This is surprising,
as we initially expected the granular model to perform better due to its higher number of parameters.
To further investigate this result, we define a third metric, KL on No-Purchase, as

−
( ∑

m∈Mtest

∑
t∈T

Nmt

(
p̂mt

(0,0) · log
(

p̃mt
(0,0)

p̂mt
(0,0)

)
+ (1 − p̂mt

(0,0)) · log
(

1 − p̃mt
(0,0)

1 − p̂mt
(0,0)

)))/( ∑
m∈Mtest

∑
t∈T

Nmt

)
,

which measures how accurately a choice model can predict whether a customer would make a purchase
or not. Particularly, the KL on No-Purchase measures the information loss over purchase/no-purchase
decisions, p̂mt

(0,0) · log
(
p̃mt

(0,0)/p̂mt
(0,0)

)
+ (1 − p̂mt

(0,0)) · log
(
(1 − p̃mt

(0,0))/(1 − p̂mt
(0,0))

)
, instead of the loss over

all choice decisions in Amt
+ , i.e.,

∑
(j,k)∈Amt

+
p̂mt

(j,k) · log
(
p̃mt

(j,k)/p̂mt
(j,k)

)
, compared to Equation (7).

In the last row of Table 2, we observe that the style-size model predicts whether customers make
a purchase more accurately than both the nested logit and granular models. Moreover, while the
granular model significantly outperforms the nested logit model in terms of KL divergence for all
purchase decisions, this outperformance is not observed in the KL divergence for purchase versus
no-purchase decisions (KL on No-Purchase). This result suggests that the additional parameters
in the granular model improve its fit for consumer choices when purchases are made, but do not
effectively capture when and whether customers choose not to purchase. We attribute this to model
misspecification. In both the granular and nested logit models, customers may substitute shoes of
very distant sizes, leading to an underestimation of the no-purchase probability. In contrast, the
style-size model assumes that customers only substitute adjacent sizes, resulting in a more accurate
prediction of the no-purchase option.

We also note that one could design a more advanced version of the style–size choice model by
allowing each apparel product (j, k) to have its own utility parameter v(j,k), in addition to the
structure of the consideration sets and customer types. Such a model could potentially improve
predictive accuracy: the additional parameters help predict individual product demand if a customer
makes a purchase, as in the granular model, while the consideration set structure provides a realistic
way to account for size stockouts, as in our style–size choice model. We do not pursue this approach
here, as our goal is not to propose a model that maximizes prediction accuracy across all choice
models. Instead, we focus on a parsimonious model that captures the interplay between apparel styles
and sizes and provides operational insights (cf. Section 5).

Lastly, Figure 2 presents the uncensored distribution µ̄k ≡ µ(k,+,α0) + µ(k,−,α0) of customers’ best-
fit sizes (blue bars) in the estimated style-size choice model, and compares it with the censored
distribution (yellow bars), which is the fraction of units sold in each size µ̂k ∝

∑
mtj Qmt

(j,k). We
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Figure 2 The uncensored best-fit distribution µ̄k and the observed fraction of sales µ̂k.

observe that the uncensored distribution µ̄k is more even across sizes compared to the censored
sales distribution µ̂k. Indeed, the censored distribution µ̂k overestimates the probability mass of the
“major” sizes in the middle, i.e., k ∈ {7.5,8,8.5}, at the expense of the less popular “minor” sizes
at the extremes–namely, k ∈ {6,6.5,9.5,10}. The stocking decisions censor the demand for minor
sizes, which is reestablished by the EM algorithm. We also observe that both µ̄k and µ̂k are not
unimodal over k. For example, µ̄6.5 and µ̄9.5 are slightly smaller than µ̄6 and µ̄10, respectively. This
is a truncation effect since size 6 receives spillover demand from consumers who have a shoe size
slightly smaller than 6. A similar spillover happens with size 10.

4.4. Interpreting the estimated size sensitivity parameter

The estimated size sensitivity parameter is α0 = 1.39 (cf. Table 2). In this section, we relate our
estimations to the size substitution effect reported by Li et al. (2023). Consider the style-size choice
model estimated in Section 4.3, and fix a style j ∈ J . Assume a customer of type τ = (k,+, α0) visits
a store. Let us define two assortments A1 and A2, where A1 = A0 ∪ {(j, k) | k ∈ K}, A2 = A1\{(j, k)},
and A0 is any assortment composed of styles other than j. We can interpret A2 as the scenario in
which product (j, k) is out of stock. It is easy to verify that:

Pτ ((j, k′) | A2)
Pτ ((j, k) | A1) ≥ exp(−α0) = 24.9%, (8)

where k′ = adj+(k) is the larger-adjacent size of k. The inequality (8) holds for any style j, any
best-fit size k, and any customer type τ = (k,σ,α0) for σ ∈ {+.−}. Therefore, it implies that with
a probability of at least 24.9%, a customer will switch to an adjacent size of the same style when
the best-fit size is out of stock. If we adopt the classic interpretation of choice probabilities as the
demand rate, Equation (8) suggests that, on average, at least 24.9% of the unmet demand for an
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apparel product due to stockouts may be substituted for the adjacent sizes of the same style. From
the symmetry of the average style-size choice model, this substitution is evenly split: approximately
12.5% spills over to the larger-adjacent size, while the remaining 12.5% shifts to the smaller adjacent
size.

As mentioned in Section 2, the paper by Li et al. (2023) investigates similar consumer behavior
in size substitution under stockouts. They show that 16.7% and 11.9% of the unmet demand for
an out-of-stock SKU spills over to the adjacent larger and smaller sizes, respectively. Remarkably,
their estimates are quite comparable to ours, despite the differences in empirical approaches (DID
vs. choice modeling) and product categories (men’s sports shoes vs. women’s casual booties).

5. Assortment and Inventory Optimization
In this section, we examine how the size substitution effect may influence operational decisions in
assortment and inventory optimization problems.

5.1. Assortment Optimization
We first consider the assortment optimization problem under the proposed style-size choice model.
We assume that each product (j, k) ∈ N has a unit revenue rj , i.e., the unit revenue is independent
of product size. This is a reasonable assumption, as stores usually do not charge different prices for
products of the same style. Without loss of generality, we write that J ≡ {1,2, . . . , J}, and r1 ≥ r2 ≥
. . . ≥ rJ ≥ 0. Then, the assortment optimization problem is defined as

maximize
A⊆N

{
R(A) ≡

∑
(j,k)∈A

rj ·P((j, k) | A) =
∑

s∈K,σ∈{+,−}

∫ ∞

0
µ(s,σ,α) · R(s,σ,α)(A)dα

}
, (9)

where R(A) is the expected revenue of assortment A and Rτ (A) ≡
∑

(j,k)∈A rj · Pτ ((j, k) | A) is the
expected revenue collected from customer type τ = (s, σ,α), with Pτ defined in Equation (4). We
further write wj ≡ evj as the attraction parameter of style j and thus Rτ (A) is equal to

Rτ (A) =
∑

(j,k)∈C1
τ (A) rjwj +

∑
(j,k)∈C2

τ (A) e−αrjwj

1 +
∑

(j,k)∈C1
τ (A) wj +

∑
(j,k)∈C2

τ (A) e−αwj

.

In Section 4, we showed that size substitution happens. Remarkably, the following theorem demon-
strates that the size substitution effect has no impact on the assortment decision. Additionally, the
optimal policy has a revenue-ordered structure in product styles.

Theorem 1. Let {1,2, . . . , j∗} be the optimal assortment under the style-only MNL choice model:

{1,2, . . . , j∗} = arg max
Astyle⊆J

{ ∑
j∈Astyle

rjwj

1 +
∑

j∈Astyle
wj

}
. (10)

Then, there exists an optimal solution A∗ ⊆ N to the assortment problem (9) that takes the form

A∗ = {(1, k), (2, k), . . . , (j∗, k) | k ∈ K}. (11)

That is, it is optimal to offer all sizes of styles 1 to j∗ and not offer any sizes of other styles.
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Theorem 1 reveals a simplification in assortment planning under the style-size choice model.

Although demand substitution can occur both across apparel styles and sizes, which are inherently

“two-dimensional,” the optimal assortment follows a one-dimensional structure. Specifically, product

sizes and size-substitution effects can be ignored, and the optimal decision can be made solely at

the style level, mirroring the classic MNL assortment optimization problem (Talluri and Van Ryzin

2004) in Equation (10). Moreover, a priori, an apparel retailer may consider skipping some sizes for

less popular styles. That approach would contravene Theorem 1, which states that if it is optimal to

include a style in the assortment, then all sizes should be included, regardless of the style’s popularity.

Theorem 1 provides theoretical support for size aggregation in assortment optimization, a com-

mon approach in the operations management literature (cf. Section 2). Notably, the optimal assort-

ment (11) remains unchanged regardless of the distribution µτ over customer types τ = (s, σ,α). In

other words, the optimal assortment decision is independent of whether customers are more flexible

with size variations (µ(s,σ,α) concentrated at a low α) or more sensitive to them (µ(s,σ,α) concentrated

at a high α). Moreover, this result aligns with industry practices, where retailers typically focus on

style selection rather than size differentiation when designing catalogs or arranging store displays. In

Section 5.4, we show that Theorem 1 also leads to an asymptotically optimal inventory policy that

remains invariant to size substitution effects.

We utilize the following three facts in the proof of Theorem 1: (i) The unit revenue or net profit

of a product only depends on its style, not its size. (ii) The utility of a product only depends on its

style and not on its size, as long as the product is of the correct size. (iii) A product has a lower

utility to customers if it is of an adjacent size. Note that the second fact also relates to the formation

of the consideration sets (Section 3.2). As long as we design the offered assortment to satisfy every

customer’s first-best choice (here, the best-fit size), customers would behave according to a standard

MNL at the style level. Hence, Theorem 1 actually holds for a more general setting of the style-

size choice model. First, the theorem applies to the model extension described in Section 3.4, as

the assortment A∗ defined in Equation (11) remains optimal for a general customer type (s,σ,α).

Similarly, the theorem would also apply if a customer happens to have a third or fourth best-

fit size. Indeed, second choices do not happen because the (first) best-fit size for every customer

type is included in A∗. These two examples highlight the key strength of Theorem 1 – despite the

combinatorial nature of style-size pairs, the optimal assortment still has a simple structure.

Finally, Theorem 1 extends the literature on assortment optimization. Recall that the style-size

choice model resembles the mixed-MNL model, as it is a mixture of consider-then-choose models for

various customer types in which the choice step follows an MNL. It is well-known that the optimal

assortment of the mixed-MNL model generally does not have a revenue-ordered structure, and finding
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the optimal assortment is NP-hard (Bront et al. 2009, Rusmevichientong et al. 2014). Thus, the
style-size model is an interesting middle point between the classic MNL and mixed-MNL models.

We conclude this section by acknowledging the inherent simplifications and limitations of The-
orem 1. In particular, the theorem assumes an idealized setting commonly used in the assortment
optimization literature: (i) once a product is offered, it is available with unlimited inventory, and (ii)
the cost of introducing a product is not considered. As we will show in the next section, relaxing
these assumptions introduces more complex interactions between operational performance and the
size substitution effect.

5.2. Inventory Optimization

We further consider a stockout-based inventory optimization problem under the proposed style-size
choice model. By convention, we write N≡ {1,2, . . .} as the set of positive integers and N+ ≡N∪{0}.
We specify the inventory model as follows. Let ℓ = 1,2, . . . be a sequence of customers. Each customer
visits the store at time tℓ and makes a purchase decision Dℓ ∈ N+. We make two assumptions about
the customers. First, we assume that the arrival time of customers (tℓ)ℓ∈N+

follows a homogeneous
Poisson process of rate λ > 0. For simplicity, we ignore seasonality. Second, we assume that customers’
decisions Dℓ follow the distribution Dℓ ∼ P(· | Aℓ), where Aℓ is the set of available products when
customer ℓ visits and P(· | ·) is the proposed style-size choice model in Equation (5).

Let Iℓ
jk ∈ N+ be the remaining stock of product (j, k) ∈ N at time tℓ, i.e., at the time that ℓ-th

customer visits. Then, the set of available products is defined as Aℓ = {(j, k) ∈ N | Iℓ
j,k > 0}. The stock

Iℓ =
(
Iℓ

jk

)
(j,k)∈N

follows the recursive equation: Iℓ+1
jk = Iℓ

jk −1 if Dℓ = (j, k); and Iℓ+1
jk = Iℓ

jk otherwise.
That is, if a customer chooses to buy a product of style j and size k, then the corresponding stock
level decreases by one. Notice that Iℓ+1 ≥ 0 for all ℓ ∈N+, as P((j, k) | Aℓ) = 0 whenever Iℓ

jk = 0.
The store will make an inventory decision I ∈ N|N |

+ for the initial inventory depth, i.e., deciding
I = I1. Associated with the decision, the store pays a unit procurement cost of cj to order each
unit of product (j, k) and charges a unit price of pj for each sale of (j, k), which are assumed to be
independent of the size k. We also write p0 = 0 and c0 = 0 for the no-purchase option. The goal of
the store is to maximize the expected profit up to a given time T . Hence, the store maximizes

Pinv := maximize
I∈N|N |

+

[
Π(I) :=E

[ ∞∑
ℓ=1

pDℓ · I [tℓ ≤ T ]
]

−
∑

(j,k)∈N

cjIjk

]
. (12)

The objective function Π(I), which is the expected profit, consists of two terms, the expected
revenue and the total cost. Notice that the revenue

∑∞
ℓ=1 pDℓ · I [tℓ ≤ T ] is a random variable, as

both customer arrival times and customers’ decisions are random. We can also rewrite the expected
revenue as follows. Let L be the number of customers that arrive during [0, T ]. Then L is a Poisson
random variable with parameter Tλ and thus E

[∑∞
ℓ=1 pDℓ · I [tℓ ≤ T ]

]
= E

[∑L
ℓ=1 pDℓ

]
. We use I∗
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and Π∗
inv to denote the optimal solution and the optimal objective value of the inventory problem

Pinv, respectively. Without loss of generality, in this section, we write J ≡ {1,2, . . . , J} and K ≡

{1,2, . . . ,K}, where two sizes k and k′ are adjacent if |k − k′| = 1. Let wj ≡ exp(vj) be the attraction
parameter for style j ∈ J . We also label product styles such that ϱ1 ≡ p1 − c1 ≥ ϱ2 ≡ p2 − c2 ≥ . . . ≥

ϱJ ≡ pJ − cJ ≥ 0, i.e., styles are ordered in a decreasing order of their unit profits.
Notice that the stockout-based inventory optimization problem in Equation (12) is notoriously hard

(Mahajan and Van Ryzin 2001). In fact, as Aouad et al. (2018) point out, given an initial inventory
vector, the efficient evaluation of the expected revenue E

[∑L
ℓ=1 pDℓ

]
is an open question even for

the standard MNL model, due to the existence of stockout-based substitution. That is, the choice
model P(· | Aℓ) is contingent on the assortment Aℓ available to each arriving customer, and it varies
according to the stock availability of each product. That is why problem (12) is also referred to as the
dynamic inventory problem with stockout-based substitution. In contrast, demand substitution in
problem (9) is assortment-based, or static, because it assumes that demand is entirely determined by
the products offered in the assortment, regardless of whether they are in stock at any particular point
in time. Stockout-based substitution can impact inventory decisions, as illustrated in the following
example.

Example 3. (Size Substitution Effect in a Stockout-based Setting) Consider a market with one
style of a T-shirt J = {1} and two sizes K = {Medium (M), Large(L)}. The style has an attraction
w1 = 3 and a unit price p1 = 1. Let all customers in the market have the same size substitution
parameter α0 and each customer type τ = (s, σ,α0) has weight 0.25 for s ∈ {M,L} and σ ∈ {+,−}. We
assume that only the M size is currently available and the L size is out of stock, i.e., Aℓ = {(1,M)}.
If we assume that the next customer ℓ will not consider adjacent sizes, i.e., β0 := exp(−α0) = 0, then
the expected revenue collected from this customer is p1 × (0.25 + 0.25) × (w1/(1 + w1)) = 0.375. In
contrast, if the customer will consider an adjacent size with a penalty β0 = 2/3, then the expected
revenue is 0.375 + p1 · 0.25 · βw1/(1 + βw1) = 0.525. Hence, ignoring size substitution leads to an
underestimation of the expected revenue, which may yield suboptimal inventory decisions, as the
firm would not stock the product at all if its cost c1 is greater than 0.375. □

5.3. An IP-Based Inventory Policy

Due to the computational challenges in stockout-based substitution, we first consider solving a lower
bound of Problem (12):

PLB : maximize
I∈NJK

+

[ ∑
(j,k)∈N

pj · min {Tλ · πjk(I) , Ijk} −
∑

(j,k)∈N

cj · Ijk

]
, (13)

where πjk(I) = P((j, k) | A(I)) is the choice probability of product (j, k) based on the set of available
products. The objective function in PLB is indeed a lower bound to the objective function Π in
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Equation (12). It first assumes that customers arrive in a deterministic manner and then approximates
a product’s demand based on its choice probability given the initial assortment. Such inventory
problems have been widely considered in the literature (Ryzin and Mahajan 1999, Topaloglu 2013)
due to their simplicity and tractability compared to the stockout-based substitution problems. In the
context of the style-size choice model, the lower bound in Equation (13) utilizes the size substitution
effect through the initial assortment. We further approximate this lower bound by assuming that the
style-size choice model has an average size sensitivity parameter α0, and then solve the corresponding
inventory problem using a linear mixed-integer program formulation. Therefore, the collection of
customer types considered in the approximation is Γ = {(s, σ,α0) | s ∈ K, σ ∈ {+,−}}. One can relax
this assumption by expanding Γ to incorporate customer types with different values of α, at the cost
of introducing additional model variables.

We define variables as follows. Let I ∈ NJK
+ be the inventory decision for stocking Ijk units of

product (j, k) and let ξ ∈RJK
+ be the sales of each product (j, k). A key step for solving problem (13)

is to connect the choice probability π = (πjk)j∈J ,k∈K with the choice model. Specifically, we use
x ∈ {0,1}JK to indicate whether each product (j, k) is available at time t = 0. We also define variables
y = (yj,τ )j∈J ,τ∈Γ for the construction of the consideration sets described in Section 3.2. Variable yj,τ

indicates whether a customer of type τ ∈ Γ will consider her adjacent size of style j. Consequently,
we have the following constraints for customer type τ = (s, σ,α0) ∈ Γ:

yj,τ ≤ xj,adjσ(s), yj,τ ≤ 1 − xj,s, xj,adjσ(s) − xj,s ≤ yj,τ . (14)

This constraint enforces that customer τ = (s, σ,α0) will not consider the adjacent size adjσ(s) unless
the best-fit size s of style j is not available. Next, to represent the choice probability (4) of each
customer type, which is a linear-fractional form, we use a classic linearization technique (Charnes
and Cooper 1962). For each customer type τ , we use hτ to denote its no-purchase probability and
further use θj,τ and ϕj,τ to denote the products xj,shτ and yj,τ hτ , respectively. We thus have the
following constraint system that linearizes hτ , θj,τ and ϕj,τ :

hτ +
∑
j∈J

wjθj,τ +
∑
j∈J

β0wjϕj,τ = 1, (15)

θj,τ ≤ hτ , θj,τ ≤ xj,s, hτ ≤ 1 + θj,τ − xj,s, (16)

ϕj,τ ≤ hτ , ϕj,τ ≤ yj,τ , hτ ≤ 1 + ϕj,τ − yj,τ . (17)

Finally, as the demand πjk for product (j, k) comes from customers whose best-fit size is k and from
customers of adjacent sizes, we have

πjk/wj =
∑

τ∈{(k,+,α0),(k,−,α0)}

µτ θj,τ +
∑

τ∈{(k−1,+,α0),(k+1,−,α0)}

β0µτ ϕj,τ , (18)
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where the second sum captures the size substitution from customers of adjacent sizes. With the

defined variables and constraints, we formulate the following mixed-integer linear program to solve

the lower bound model (13), which we refer to as the IP-based inventory policy.

PLB-IP := maximize
∑
k∈K

∑
j∈J

(pj · ξj,k − cj · Ijk) (19)

subject to ξjk ≤ Tλ · πjk, ξjk ≤ Ijk, xjk ≤ Ijk ≤ M · xjk ∀k ∈ K, j ∈ J ,

Constraints (14)-(18)

Ijk, ξjk ∈ N+, xjk ∈ {0,1}, πjk, yj,τ , hτ , θj,τ , ϕj,τ ∈ [0,1].

Here M is a large constant in the big-M notation. For the boundary cases of sizes, we simply set

xj,k−1 = 0 for k = 1 and xj,k+1 = 0 for k = K.

In the following numerical study, we examine the performance of the IP-based inventory policy

and highlight its advantages when the expected demand over the selling horizon is low, which con-

trasts with the asymptotic regime to be introduced in Section 5.4. We calibrate the choice model

parameters using the real-world dataset discussed in Section 4, including the utility vj for each style

j ∈ J and the fraction µτ of customer type τ . The dataset also provides the price pj for each style

j ∈ J , whereas the cost cj of the product is not available. To address this, we assume that the

firm implements a 120% markup pricing scheme. This assumption aligns with insights from prac-

titioners (Farra 2019, Claypoole 2019) that suggest firms typically markup products with a gross

margin of 120% to 150%. We vary the expected number of customers L̄ = Tλ to evaluate the per-

formance of the policies in the non-asymptotic regime. From Section 4.1, we know that each store

receives approximately W = 4000 visitors per week on average. Hence, we examine scenarios rang-

ing from one month (roughly four weeks) to eight months (roughly thirty-two weeks) by setting

L̄ ∈ {4W,8W,12W,16W,20W,24W,32W}, consistent with the scale we observed in Section 4.

We conduct a comparison between the IP-based inventory policy and two benchmark inventory

policies: the newsvendor policy and the fluid approximation (Zhang et al. 2024). Specifically, the

newsvendor policy is given by the standard quantile policy in which the demand of each product

(j, k) is treated independently. The fluid approximation stocks Ijk units of product (j, k) as IFA
jk =

⌈Tλ · P ((j, k) | A∗)⌉, where A∗ is the optimal assortment in Eqaution (9) with rj = ϱj ≡ pj − cj .

Note that both the newsvendor policy and the fluid approximation are size-substitution-invariant.

That is, the stocking decisions under both policies ignore the value of α0. For the newsvendor policy,

such property is obviously true as the policy views each product’s demand independently. For the

fluid approximation, since P(· | A∗) is invariant under α0 according to Theorem 1, we know that the

resulting stocking decision ⌈Tλ ·P (· | A∗)⌉ is also invariant.
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In what follows, we assess the performance of each inventory policy by evaluating the expected
profit generated by the corresponding inventory vector. Specifically, let IIP, IFA, and INV be the inven-
tory vector returned by the IP-based, fluid approximation, and newsvendor policies, respectively. To
evaluate the profit Π(·) associated with each inventory vector, we employ a Monte Carlo simula-
tion based on the stochastic process outlined in Section 5.2, along with common random number
techniques for variance reduction. We consider two values for β0 = exp(−α0) ∈ {24.9%,100.0%}. The
former corresponds to the estimated value α0 = 1.39 obtained from the dataset, whereas the latter
represents the maximum value that β0 can take, which happens when α = 0, as stated in Lemma 1.
It corresponds to the scenario in which adjacent sizes can completely compensate for demand loss
due to the stockout of the best-fit size.

β0 = 24.9%
Πper

BT NSize NProd

L̄ INV IFA IIP IIP IIP

4W -18.88 -18.65 0.11 3.0 3
8W -4.45 -3.89 0.79 2.7 30

12W -0.16 0.53 1.72 2.6 90
16W 1.30 2.09 2.49 3.7 162
20W 2.71 3.28 3.42 4.5 230
24W 3.02 3.53 3.59 5.4 275
32W 3.71 4.31 4.34 7.1 362

β0 = 100.0%
Πper

BT NSize NProd

L̄ INV IFA IIP IIP IIP

4W -18.88 -18.65 0.29 2.0 12
8W -3.07 -2.39 2.07 2.5 86

12W 1.57 2.34 3.74 3.2 161
16W 2.50 3.23 4.13 3.9 201
20W 3.51 4.16 4.69 4.6 235
24W 3.93 4.68 5.05 4.9 250
32W 4.98 5.54 5.67 5.6 286

Table 3 Expected profit per customer Πper
BT, sizes offered NSize, and products available NProd for varying demand

L̄ with β0 ∈ {24.9%, 100.0%}. The newsvendor and fluid approximation offer all products (and sizes).

Table 3 displays Πper
BT(·), the expected profit per customer visit to the casual booties category,

which is defined as Πper
BT(·) = Π(·)/L̄BT. Note that we do not have the exact customer traffic for casual

booties in the dataset. We thus approximate L̄BT by multiplying the total customer visits L̄ by the
fraction of sales of the casual booties category (roughly 2.8%), i.e., L̄BT = 0.028L̄. The table also
presents the number of sizes offered, NSize, and the number of products available, NProd, under the
IP-based policy. The newsvendor and fluid approximation offer all styles in all sizes, so the number
of products available under those policies is 51 × 9 = 459.

In Table 3, we observe that all three inventory policies exhibit superior performance when L̄ is
large, which can be attributed to the decreased demand volatility. However, when L̄ is small, both
the newsvendor and fluid approximation perform poorly regardless of the level of size substitution
given by the parameter β0. The reason is that these two polices stock too much – at least one unit
for each size of each style – so substitution does not occur, in which case β0 is irrelevant. In contrast,
the IP-based policy incorporates size substitution and strategically offers a smaller set of sizes and
styles to satisfy the demand, resulting in positive profits. Figure 3 visualizes the stocking decisions
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Figure 3 Inventory profile of the three policies for the four most popular styles (of the fifty-one) and nine sizes,
with L̄ = 12W and β0 = 24.9% (where the prime sign represents half sizes)

made by the three inventory policies for the four most popular styles out of 51 in the dataset when
L̄ = 12W and β0 = 24.9%. Note that Style A is also the most expensive. The figure shows that, in
contrast to the newsvendor and fluid approximation, the IP-based policy does not offer the complete
range of sizes for all styles. Instead, it leverages the size substitution effect to fulfill unmet demand.
For instance, it does not offer sizes 6 and 10 of Styles C and D, as the demand for these products
can be covered by sizes 6.5 and 10.5 of the same style, respectively. The IP-based policy also holds
less inventory: 1.5 units per product in Figure 3, whereas the fluid approximation and newsvendor
hold 1.8 and 2.3 units per product, respectively.

The profitability of the IP-based policy is higher as size substitution becomes more prevalent.
In the left panel of Table 3, we can see that the expected profit per customer of the IP-based
policy is 19% higher compared to the fluid approximation when L̄ = 16W and β0 = 24.9%. This
advantage increases to 28% when β0 = 100.0%, as shown in the right panel. Similarly, while IIP and
IFA statistically have similar performance when L̄ = 32W and β0 = 24.9%, the former is strictly better
than the latter for the same L̄ when β0 = 100.0%. This highlights the importance of incorporating
size substitution when customers show a strong tendency to explore adjacent sizes. However, the
advantage of the IP-based policy diminishes as L̄ increases. In the left panel where β0 = 24.9%, the
advantage of IIP over IFA shrinks from 19% to 1% as L̄ increases from 16W to 32W . Moreover, we will
show that the IP-based policy and the fluid approximation have the same asymptotic limit. Since the
fluid approximation is size-substitution-invariant, the convergence of both policies suggests that the
effect of size substitution shrinks as overall demand increases. We will revisit this discussion from a
theoretical standpoint in Section 5.4.

It is hard to compare the IP-based policy to the (average) store performance reported in Table 1
because the latter includes inventory replenishment, and the styles were introduced in a staggered
manner. However, it is worth noting that the maximum number of products available was 359.2
over a 33-week horizon. This contrasts with the IP-policy that suggests carrying 362 products when
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L̄ = 32W and β0 = 24.9%. In terms of sizes offered, the average store in Table 1 started with 8.4

sizes, whereas the IP-policy suggests 7.1. In other words, the IP-policy offers slightly fewer sizes, but

they are distributed across a wider selection of styles. Indeed, all styles are initially available under

the IP-policy since 362/7.1 = 51, whereas a back-of-the-envelope calculation based on Table 1 gives

359.2/8.4 = 42.8. More precisely, the 359.2 products in the average store came from 44.75 styles and

8.03 sizes.

We end the discussion with two additional remarks. First, the IP-based policy is computationally

inexpensive. For all instances in Table 3, the mixed-integer linear program (19) was optimally solved

within five minutes; see Appendix D.1 for more details. Given that these instances involve nearly five

hundred products, this runtime highlights the compactness of the style-size choice model. Second,

the IP-based policy is flexible in accommodating other business constraints. It offers the convenience

of incorporating capacity limitations into product inventory, which can be based on factors such as

style or size. For instance, one can enforce a distinction between major and minor sizes, ensuring

that minor sizes are not offered unless all major sizes are available. This type of policy has already

been successfully implemented in the fashion industry (Caro and Gallien 2010). In our study, we have

incorporated such constraints into the IP-based policy and present its performance in Appendix D.

Additionally, the IP-based policy allows for easy inclusion of initial stock or remaining stock from

the previous period in the integer program. Combining these features with its favorable performance

for short planning horizons, the IP-based policy can be an effective tool for making replenishment

decisions during the sales season.

5.4. Asymptotically, Size Substitution Does Not Matter

In this section, we study the asymptotic regime in which the expected customer volume L̄ = Tλ

approaches infinity. Recall that by Theorem 1, the fluid approximation can be expressed as IFA
jk =

⌈L̄ ·P((j, k) | A∗)⌉ ≡ ⌈L̄δjµ̄k⌉, where

δj = wj · Ij≤j∗

1 +
∑

j≤j∗ wj

and µ̄k =
∫ ∞

0

∑
σ∈{+,−}

µ(k,σ,α)dα. (20)

Here j∗ is defined as in the style-only assortment problem (10) with margin rj = ϱj ≡ pj − cj . As

mentioned, the fluid approximation is size-substitution-invariant because the quantities it prescribes

are independent of the size sensitivity parameter α and its distribution. One can interpret the fluid

approximation as follows. The firm first solves the style-only MNL assortment optimization prob-

lem (10) to decide which styles to offer. For each offered style j ∈ {1,2, . . . , j∗}, the store will stock in

total L̄δj units based on the style-only MNL model. Furthermore, among these L̄δj units of style j,

the store allocates a fraction µ̄k of it to size k, i.e., it stocks L̄δjµ̄k units for product (j, k), where µ̄k is
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the fraction of customers whose best-fit size is k. The fluid approximation is actually an aggregation-
disaggregation approach, as the firm first aggregates all products across sizes when deciding which
styles to offer, and then disaggregates or “splits” the demand of each offered style among the various
sizes. In the following proposition, we demonstrate that this aggregation-disaggregation approach is
asymptotically optimal.

Proposition 1. Assume that the maximal product price pmax = maxj pj and the maximal product
cost cmax = maxj cj are independent of both the horizon T and the customer arrival rate λ. For the
stockout-based inventory optimization problem (12), the fluid approximation policy IFA has optimality
gap O

(√
JK · Tλ

)
and it is asymptotically optimal.

Note that the asymptotic performance is defined as the approximation ratio of an inventory policy
relative to the optimal solution as Tλ → ∞. In Section B.3, where we prove the proposition, we show
that the approximation ratio converges to one under the fluid approximation policy, implying the
asymptotic optimality. Alternatively, Proposition 1 shows that as the customer volume increases, the
profit loss per customer eventually reaches zero. This follows from the fact that while the optimality
gap grows at a rate of

√
Tλ, the expected number of customers scales as Tλ.

Proposition 1 has an intuitive interpretation: as customer volume increases, the stochasticity of
the problem diminishes because the standard deviation of demand grows at a slower rate, so just
stocking the mean becomes a sufficiently good strategy, which is akin to ignoring size substitution as
in Theorem 1. Formally, our proof follows the performance guarantee of the fluid approximation in
the inventory problem under choice models that satisfy the substitutability property (Zhang et al.
2024). Per Lemma 1, the result in Zhang et al. (2024) applies to our inventory problem, though a
modification is required to consider a random number of customer arrivals L, as Zhang et al. (2024)
assume that the number of customer visits is deterministic and known in advance.

We highlight that Proposition 1 supports the common practice of ignoring size substitution for
stocking purposes. However, ignoring both style and size substitutions, as in the newsvendor model,
could lead to poor performance. We demonstrate this observation in Appendix D.3. Another impor-
tant observation is given in the following proposition. It shows that the performance of the IP-based
solution IIP introduced in Section 5.3 and the fluid approximation IFA becomes indistinguishable when
the expected demand L̄ is sufficiently large.

Proposition 2. The IP-based policy and the fluid approximation have the same asymptotic per-
formance.

Proposition 2 gives an edge to the IP-based policy because it matches the asymptotic performance
of the fluid approximation, and per section 5.3, it has a better performance in the non-asymptotic
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regime. Put differently, in the asymptotic regime, a “wide-net” approach that stocks all sizes works
well, whereas in the non-asymptotic regime, a more targeted approach is more effective. One can
think that the former is more applicable to online settings, whereas the latter could make more sense
for brick-and-mortar stores. Finally, to complement Propositions 1 and 2, in Appendix E, we further
explore the asymptotic performance of a fluid-like policy under a general choice model environment
that may not follow the substitutability property of Lemma 1.

6. Conclusion and Future Directions
We introduced the style-size choice model to capture size substitution effects and demonstrated,
using real-world data, that unmet demand due to stockouts shifts to adjacent sizes of the same style.
We then analyzed assortment and inventory optimization under this model, showing that firms can
disregard size substitution in static (assortment-based) settings and in dynamic (stockout-based)
settings when demand is high. In the low-demand regime, we proposed an IP-based solution to lever-
age size substitution in a computationally tractable manner. Our work opens several directions for
future research, such as allowing for inventory replenishment or incorporating a goodwill cost when
customers like a style but cannot find a suitable size. The latter could lead to excessive leftover inven-
tory, adding an environmental dimension to the problem. Finally, from a theoretical perspective, an
important direction is to explore the complexity and approximability of the assortment optimiza-
tion problem (9) under additional operational constraints, such as cardinality limits. As noted in
Section 5.1, the style-size choice model lies between the MNL and mixed-MNL models. Examining
whether this insight carries over to more complex optimization environments is another promising
avenue for future research.
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Appendix A: The EM Algorithm

We use the notation introduced in Section 4. Let IE be the indicator function that equals one if event E is
true. By definition, Qmt

(0,0) = Nmt −
∑

(j,k)∈Amt Qmt
(j,k) is the number of customers who visited the store m at

week t but didn’t make a purchase (or made an outside choice).
Given that we do not observe customer types in the dataset, they can be considered a latent variable. We

employ an expectation-maximization (EM) approach, which is a popular procedure for estimating predictive
models with latent variables (McLachlan and Krishnan 2007). We also incorporate fixed effects for seasonality,
as our dataset comprises sales data spanning 33 weeks, covering both spring and fall sales seasons. To this
end, we replace vj with vj + vt in Equation (3) for product (j, k) in week t.



Akchen and Caro: On Size Substitution and Its Role in Assortment and Inventory Planning
29

A.1. The Complete Data Log-Likelihood Function

Recall that with the average style-size choice model (6), our goal is to estimate α = α0, the average size
sensitivity parameter, along with the style utility parameters (vj)j∈J , the seasonality parameters (vt)t∈T ,
and the distribution over customer types µτ , where a type is τ = (s,σ,α0). Note that in the average model,
the collection of customer types is reduced to Γ = {(s,σ,α0) | s ∈ K, σ ∈ {+,−}}.

For now, assume that we have the “complete” data
(

Nmt
τ ,{Qmt

τ,(j,k)}(j,k)∈Amt

)
τ∈Γ,m∈M,t∈T

, which includes
customers’ types. Here Nmt

τ is the number of type-τ visitors at store m during week t and Qmt
τ,(j,k) is the

number of sales of product (j, k) made by type-τ visitors at store m during week t. Obviously, we have
Nmt =

∑
τ∈Γ Nmt

τ and Qmt
(j,k) =

∑
τ∈Γ Qmt

τ,(j,k). The likelihood of the complete data for store m during week

t is fmt
complete = Nmt!∏

τ Nmt
τ ! ·

∏
τ

(µτ )Nmt
τ ·

∏
τ

fmt
τ,complete, where the factor (Nmt!/

∏
τ Nmt

τ !) ·
∏

τ (µτ )Nmt
τ is the

multinomial distribution of customer types and

fmt
τ,complete

(
Nmt

τ ,{Qmt
τ,(j,k)}(j,k)∈Amt

)
= Nmt

τ !(
Nmt

τ −
∑

(j,k)∈Amt Qmt
τ,(j,k)

)
! ·
∏

(j,k)∈Amt Qmt
τ,(j,k)!

·

( ∏
(j,k)∈Amt

Pmt
τ

(
(j, k) | Amt

)Qmt
τ,(j,k)

)
·
(

1 −
∑

(j,k)∈Amt

Pmt
τ

(
(j, k) | Amt

))Nmt
τ −

∑
(j,k)∈Amt Qmt

τ,(j,k)

.

Taking the logarithm of
∏

m,t fmt
complete, we obtain the complete data log likelihood, which is equal to a constant

plus Lcomplete = L1 + L2, where L1 ≡
∑

τ∈Γ

(∑
m,t Nmt

τ

)
· log (µτ ) and

L2 ≡
∑
m,t,τ

∑
(j,k)∈Amt

Qmt
τ,(j,k) ·

[
(vj + vt) · I(j,k)∈C1

τ (Amt) + (vj + vt − α0) · I(j,k)∈C2
τ (Amt)

]
−
∑
m,t,τ

Nmt
τ · log

(
1 +

∑
(j,k)∈C1

τ (Amt)

evj+vt +
∑

(j,k)∈C2
τ (Amt)

evj+vt−α0
)

.

Note that L1 only depends on µ = (µτ )τ∈Γ, whereas L2 only depends on (v, α0), where v ≡ ((vj)j∈J , (vt)t∈T ).
Therefore, to find the model parameter (µ,v, α0) that maximizes the complete data log likelihood Lcomplete,
we solve two separate optimization problems,

P complete
1 : maximize

1T µ=1, µ≥0

{
L1

∣∣∣∣ µ(s,+,α0) = µ(s,−,α0), ∀s ∈ K
}

and P complete
2 : maximize

α≥0,v

{
L2

}
,

where the constraints in P complete
1 come from the symmetric-weight assumption in the average style-size model.

Note that P complete
1 has a closed-form unique solution µ(k,+,α0) = µ(k,−,α0) =

∑
m,t

(
Nmt

(k,+,α0) + Nmt
(k,−,α0)

)
/
(
2 ·∑

m,t,τ Nmt
τ

)
. Meanwhile, the second problem P complete

2 is a concave maximization problem in (v, α0) that
can be solved using standard optimization software.

A.2. The E and M steps of the EM algorithm

Since we do not observe customer types in the data, the parameters Nmt
τ and Qmt

τ,(j,k) in optimization problems
P complete

1 and P complete
2 are not available. We will instead replace them with their conditionally expected

values given the choice model parameter ν = (µ,v, α0).
We start with any initial values of ν(0). In the EM algorithm, we generate a sequence of parameters

{ν(q), q = 1,2, . . .} until convergence. Assume that we are currently in the q-th iteration. We describe how
we generate model ν(q+1) based on ν(q) through an “E” step then an “M” step.
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The E Step: By Bayes’ rule, given an assortment Amt at store m during week t, product (j, k) ∈ Amt ∪

{(0,0)}, and parameters ν(q), we can infer the likelihood that a type-τ customer purchased item (j, k) via

Pmt(τ | Amt, (j, k),ν(q)) = Pmt
τ ((j, k) | Amt,v(q)) × µ(q)

τ∑
τ ′|(j,k)∈Cτ′ (Amt) Pmt

τ ′ ((j, k) | Amt,v(q)) × µ
(q)
τ ′

,

where Pmt
τ ((j, k) | Amt,v(q)) is defined in Equation (4) with α replaced by α

(q)
0 and vj replaced by v

(q)
j + v

(q)
t

since we consider fixed effects for seasonality. For a customer type τ such that (j, k) /∈ Cτ (Amt), the conditional
value is simply zero. With the conditional probability, we have that, for (j, k) ∈ Amt ∪ {(0,0)}, the expected
sales from customer type τ of product (j, k) at store m during week t is Q̂mt

τ,(j,k) = Qmt
(j,k) ·Pmt(τ | Amt, (j, k),ν(q))

and N̂mt
τ =

∑
(j,k)∈Amt∪{(0,0)} Q̂mt

τ,(j,k).
The M Step: Replace the parameters Nmt

τ and Qmt
τ,(j,k) in the complete data log-likelihood Lcomplete

from Section A.1 with the conditional expected values N̂mt
τ and Q̂mt

τ,(j,k) obtained in the E step, and
then optimize the log-likelihood. Therefore, ν(q+1) = (µ(q+1),v(q+1), α

(q+1)
0 ) is updated with µ(q+1)

τ =∑
m,t

(
N̂mt

(s,+,α0) + N̂mt
(s,−,α0)

)
/
(

2 ·
∑

m,t,τ ′ N̂mt
τ ′

)
if τ = (s,+, α0) or (s,−, α0), and (v(q+1), α

(q+1)
0 ) is the unique

optimizer of P complete
2 .

The procedure alternates between the E and M steps until the model parameters ν(q) converge.
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Electronic Companion: On Size Substitution and Its Role in
Assortment and Inventory Planning

Appendix B: Proofs

B.1. Proof for Lemma 1

We focus on a customer type (s,+, α). The proof for customer type (s,−, α) follows a similar argument. We
first prove the necessary condition. That is, we will show that P(s,+,α) satisfies the substitutablility property
if α ≥ 0. We first define functions Fj(A) ≡ I [(j, s) ∈ A]+β · I [(j, s) /∈ A] · I [(j,adj+(s)) ∈ A], for all assortment
A ⊆ N and style j ∈ J , where β = exp(−α). One can easily verify that Fj(A) will not decrease if we add a
new product to A as long as β ≤ 1.

Now we will show that the choice probability P(s,+,α)((j, k) | A) for a given product (j, k) will not increase
after adding any new product to the assortment A. For simplicity, we write wj = exp(vj) for all j ∈ J . We
consider three cases.

• Case 1: k = s. Then we can write P(s,+,α)((j, s) | A) = wj

1+wj+
∑

i̸=j
wiFi(A)

. Then, no matter which product
we add to A, P(s,+,α)((j, k) | A) will not increase due to the monotonicity of Fi(A) for all i ̸= j.

• Case 2: k = adj+(s). If (j, s) ∈ A, then P(s,+,α)((j, k) | A) = 0 stays as zero no matter what we add to A;
else if (j, s) /∈ A and we add (j, s) to A, then P(s,+,α)((j, k) | A) decreases to zero; else if (j, s) /∈ A and
we add a product other than (j, s) to A, then P(s,+,α)((j, k) | A) will not increase, since the denominator
in P(s,+,α)((j, k) | A) = βwj

1+βwj+
∑

i̸=j
wiFi(A)

will not decrease no matter what we add to the assortment.

• Case 3: k /∈ {s,adj+(s)}. The choice probability P(s,+,α)((j, k) | A) is always zero and thus will not
increase.

For the sufficient condition, it amounts to showing that if α < 0, then there exists an assortment A such
that the choice probability of an option increases as A enlarges. Consider A = {(j,adj+(s))}. Then we have
P(s,+,α) ((0,0) | A) = 1

1+βwj
< 1

wj
= P(s,+,α) ((0,0) | A ∪ {(j, s)}), where the inequality holds since β = e−α > 1

when α < 0 and the assortment A is enlarged by adding product (j, s). □

B.2. Proof of Theorem 1

The main idea is to show that the optimal revenue Rτ (A) from each customer type τ = (s,σ,α), where
s ∈ K, α ≥ 0, and σ ∈ {+,−}, is upper bounded by the optimal value z∗

MNL of the style-MNL assortment
optimization problem (10). Therefore, the overall expected revenue would be upper bounded by the same
value, i.e., R(A) =

∑
s,σ

∫∞
0 µ(s,σ,α) ·R(s,σ,α)(A)dα ≤

∑
s,σ

∫∞
0 µ(s,σ,α) ·z∗

MNLdα = z∗
MNL. We then show that this

upper bound is attained by the revenue-ordered assortment (11) in Theorem 1.
We first focus on the revenue collected from a fixed customer type τ = (s,+, α) and provide several lemmas

related to it. We denote β = exp(−α) and wj = exp(vj) for all j ∈ J to simplify the notation. Define N +
s =

{(j, k) | j ∈ J , k ∈ {s,adj+(s)}, which is a subset of N that includes all products of sizes s and adj+(s).
Note that function Rτ (A) can be written as

Rτ (A) =
∑

(j,k)∈C1
τ (A) rjwj +

∑
(j,k)∈C2

τ (A) βrjwj

1 +
∑

(j,k)∈C1
τ (A) wj +

∑
(j,k)∈C2

τ (A) βwj

.
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Notice that Rτ (A) = Rτ (A ∩ N +
s ) for any assortment A ⊆ N , since any product of sizes other than s and

adj+(s) will not be considered by customer τ = (s,+, α) and thus will not contribute to the revenue Rτ .
Therefore, to discuss the revenue Rτ (A), it suffices to only discuss Rτ (A) for A ⊆ N +

s .
The following lemma states that it is always beneficial to introduce a style of the correct size if it is more

profitable than the current assortment.

Lemma 2. Consider a fixed customer type τ = (s,+, α). Suppose A ⊆ N +
s and (i, s) /∈ A for a style j ∈ J .

If rj > Rτ (A), then Rτ (A ∪ {(j, s)}) > Rτ (A).

Proof: Denote the larger-adjacent size of the customer by ℓ = adj+(s). Let I(j,ℓ)∈A be the indicator of
whether the larger-adjacent size ℓ of style j is in the assortment A. We can write the revenue of Rτ (A∪{(j, s)})
as

Rτ (A ∪ {(j, s)}) =
rjwj +

∑
(i,k)∈C1

τ (A):i̸=j riwi +
∑

(i,k)∈C2
τ (A):i̸=j βriwi

1 + wj +
∑

(i,k)∈C1
τ (A):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

=
(

wj · (1 − I(j,ℓ)∈Aβ)
1 + wj +

∑
(i,k)∈C1

τ (A):i̸=j wi +
∑

(i,k)∈C2
τ (A):i̸=j βwi

)
· rj+(

βrjwjI(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i̸=j riwi +

∑
(i,k)∈C2

τ (A):i̸=j βriwi

1 + wj +
∑

(i,k)∈C1
τ (A):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

)

=
(

wj · (1 − I(j,ℓ)∈Aβ)
1 + wj +

∑
(i,k)∈C1

τ (A):i̸=j wi +
∑

(i,k)∈C2
τ (A):i̸=j βwi

)
· rj+(

1 + βwjI(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

1 + wj +
∑

(i,k)∈C1
τ (S):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

)
· Rτ (A)

where we note that the revenue function Rτ (A) can be re-written as

Rτ (A) =
βrjwjI(j,ℓ)∈A +

∑
(i,k)∈C1

τ (A):i̸=j riwi +
∑

(i,k)∈C2
τ (A):i̸=j βriwi

1 + βwjI(j,ℓ)∈A +
∑

(j,k)∈C1
τ (A):i̸=j wi +

∑
(j,k)∈C2

τ (A):i̸=j βwi

Therefore, Rτ (A ∪ {(j, s)}) is a convex combination of rj and Rτ (A). If rj > Rτ (A), then Rτ (A ∪ {(j, s)}) >

Rτ (A). □

The following lemma states that if a product is less profitable than the current assortment, regardless of
whether it is the correct size or an adjacent size, then it should be excluded from the current assortment.

Lemma 3. Consider a fixed customer type τ = (s,+, α). Suppose (j, k) ∈ A ⊆ N +
s for a style j ∈ J . If

rj ≤ Rτ (A), then Rτ (A\{(j, k)}) ≥ Rτ (A).

Proof: Again, we denote the larger-adjacent size of the customer by ℓ = adj+(s). Let I(j,ℓ)∈A be the indicator
of whether the larger-adjacent size ℓ of style j is in the assortment A. We consider two cases.

1. For k = s. Similar to the construction in the proof of Lemma 2, we have Rτ (A) = γ · rj + (1 − γ) ·

Rτ (A\{(j, s)}), where γ = wj ·(1−I(j,ℓ)∈Aβ)
1+wj+

∑
(i,k)∈C1

τ (A):i̸=j
wi+
∑

(i,k)∈C2
τ (A):i̸=j

βwi
and

Rτ (A\{(j, s)}) =
rjwjβ · I(j,ℓ)∈A +

∑
(i,k)∈C1

τ (A):i̸=j riwi +
∑

(i,k)∈C2
τ (A):i̸=j βriwi

1 + wjβ · I(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

Therefore, Rτ (A\{(j, s)}) = (Rτ (A) − γrj)/(1 − γ) ≥ (Rτ (A) − γRτ (A))/(1 − γ) = Rτ (A).
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2. For k = ℓ. Recall that ℓ = adj+(s). If (j, s) ∈ A, then Rτ (A\{(j, ℓ)}) = Rτ (A), as (j, ℓ) are already not
considered when (j, s) is available. Now we assume (j, s) /∈ A, and we have Rτ (A) = γ′ · rj + (1 − γ′) ·

Rτ (A\{(j, s)}), where γ′ = wjβ

1+wjβ+
∑

(i,k)∈C1
τ (A):i̸=j

wi+
∑

(i,k)∈C2
τ (A):i̸=j

βwi
and

Rτ (A\{(j, ℓ)}) =
∑

(i,k)∈C1
τ (A):i̸=j riwi +

∑
(i,k)∈C2

τ (A):i̸=j βriwi

1 +
∑

(i,k)∈C1
τ (A):i̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

Therefore, Rτ (A\{(j, ℓ)}) = (Rτ (A) − γ′rj)(1 − γ′) ≥ (Rτ (A) − γ′Rτ (A))(1 − γ′) = Rτ (A). □

The following lemma shows that given a customer type τ = (s,+, α), its expected revenue Rτ (A) is upper
bounded by z∗

MNL and the upper bound is attached by a revenue-ordered assortment of products of the
customer’s best-fit size s.

Lemma 4. Consider a customer type τ = (s,+, α). Denote z∗ ≡ maxA⊆N +
s

Rτ (A). Then Ao = {(j, k) | rj >

z∗, j ∈ J } is an optimal solution to the problem maxA⊆N +
s

Rτ (A). In addition,

z∗ = z∗
MNL ≡ max

j∈J

{ ∑j

i=1 riwi

1 +
∑j

i=1 wi

}
.

Proof: Obviously, z∗ exists and it is finite since N +
s is a finite set. We prove the first part of the statement

by contradiction. Suppose Ao is not an optimal solution, and let A be an optimal solution with the smallest
cardinality. The fact that A is optimal and z∗ = Rτ (A) > Rτ (Ao) imply that one of the following statements
must be true: (i) there exists a style j such that rj > z∗ and (j, s) /∈ A; and (ii) there exists a product
(j, k) ∈ A such that rj ≤ z∗ and k ∈ {s,adj+(s)}. Otherwise, if none of them is true, then (j, k) ∈ A for all
j ∈ J satisfying ri > z∗ and (j, k) /∈ A for all j satisfying rj ≤ z∗ and all k ∈ {s,adj+(s)}. One can then easily
verify that Rτ (A) = Rτ (Ao), which is a contradiction (that is to say, if none of (i) and (ii) is true, then A

and Ao would be only different from each other for size adj+(s) of styles j ∈ {j | rj > z∗}. Given that the
correct size s of these styles is already in both A and Ao, these products of the larger-adjacent size do not
change the expected revenue of A from A0. That means Rτ (A) = Rτ (A0), a contradiction.)

Now we know one of the statements (i) and (ii) about A must be true. However, if (i) is true, we can
conclude that Rτ (A ∪ {(j, s)}) > Rτ (A) by Lemma 2, which contradicts the fact that A is an optimal solution.
If (ii) is true, we can conclude from Lemma 3 that the assortment A\{(j, k)} has a no-worse revenue, i.e.,
Rτ (A\{(j, k)}) ≥ Rτ (A), but has a smaller cardinality than A, which would contradict the fact that A is
an optimal assortment with the smallest cardinality. Therefore, neither (i) nor (ii) is true, which leads to a
contradiction. Thus, A0 is an optimal solution.

For the second part of the theorem, we first notice that Ao ∈ Aorder, where Aorder is the collec-
tion of all revenue-ordered assortments that only consist of products of size k. Formally, we define
Aorder = {Aj

o | j ∈ J }, where Aj
o ≡ {(1, k), (2, k), . . . , (j, k)}. For each revenue-ordered assortment Aj

o,
we have Rτ (Aj

o) =
∑j

i=1 riwi/(1 +
∑j

i=1 wi). Therefore, z∗ = maxA⊆N +
k

Rτ (A) = maxAo∈Aorder Rτ (Ao) =
maxj∈J

{∑j

i=1 riwi/(1 +
∑j

i=1 wi)
}

, where the second equality follows the first part of the theorem that we
just proved. □

We note that Lemma 4 holds for any other customer types, as all the arguments in Lemmas 2 and 3 can
easily follow for customer types in the form of τ = (s,σ,α). In other words, maxA Rτ (A) = z∗

MNL for any
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τ = (s,σ,α) where s ∈ K, α ≥ 0, and σ ∈ {+,−}. It also holds when the best-fit size s is a boundary size
of K. For example, if kmax is the maximal size among K, then the corresponding customer type (s,σ,α) for
s = kmax behaves like a classic MNL model over products {(j, kmax) | j ∈ J }, as there is no larger-adjacent
size to substitute to, again implying that maxA Rτ (A) = z∗

MNL. Applying Lemma 4 to all customer types
τ = (s,σ,α), we simply prove Theorem 1 as follows.

Proof of Theorem 1: By Lemma 4 and the discussion above, we know that Rτ (A) ≤ z∗
MNL for all customer

types τ = (s,σ,α). Therefore, R(A) =
∑

s,σ

∫∞
0 µ(s,σ,α) · R(s,σ,α)(A)dα ≤

∑
s,σ

∫∞
0 µ(s,σ,α) · z∗

MNLdα = z∗
MNL.

On the other hand, one can easily verify that R(A∗) = z∗
MNL for the assortment defined in Equation (11).

Therefore, A∗ is an optimal solution. □

Lastly, we remark that our proof of Theorem 1 follows a first-principle argument to determine whether we
can further improve the expected revenue by adding or removing products from the assortment. The same
proof technique was used by Rusmevichientong and Topaloglu (2012) to show that the robust assortment
optimization under the MNL model has a revenue-ordered structure.

B.3. Proof of Proposition 1

Our proof closely follows the argument in Zhang et al. (2024); see the proof of Theorem 3.1 in the paper.
To simplify the expression, we label products in N as {1,2, . . . , n}. There, n = JK, where J represents the
number of styles and K represents the number of sizes. We consider an inventory problem under the following
assumption: Customers choose product i ∈ N according to the initial set S0 = {i | Ii ≥ 1} of available products.

If the product they choose is out of stock, then they leave without a purchase. We call this optimization
problem Pstatic. Given an inventory vector I, the profit of the inventory model is

Πstatic(I) =
∑
i∈N

pi ·E

{
min

{
Ii,

L∑
ℓ=1

Ciℓ(IFA)
}}

−
∑
i∈N

ciIi (21)

Here, L is a random variable that represents the number of customers visiting in period [0, T ] and Ciℓ(I) is
the indicator of whether customer ℓ would choose product i from S0. If the underlying choice model P(· | ·)
is a substitutive model (i.e., satisfying the substitutability property), then the profit Πstatic of this inventory
problem is a lower bound to the original dynamic inventory problem. This is because if a product is out
of stock, then the demand for other available products should increase (or stay the same) in the dynamic
inventory model. However, in Problem Pstatic, we assume that the demand for other products remains the
same. This implies an underestimation of the revenue collected after the stock-out occurs in problem Pstatic,
resulting in a lower bound for the dynamic problem. From here, we can also see why the same argument
does not apply to non-substitutive choice models. In non-substitutive models, other products’ demand could
shrink to a lower value after each stock-out, and the objective Πstatic is thus no longer a lower bound.

Define πi = P(i | A∗), the choice probability of product i under the optimal assortment A∗. We consider
bounding the gap between Πstatic(I) with I = IFA ≡ (⌈Tλπi⌉)i∈N and Vfluid = Tλ

∑n

i=1(pi −ci)πi. For simplicity,
we call IFL = (Tλπi)i∈N , which is a vector that consists of fractional numbers.

Vfluid − Πstatic(IFA) =
∑
i∈N

(pi − ci)IFL
i −

∑
i∈N

pi ·E

{
min

{
IFA

i ,

L∑
ℓ=1

Ciℓ(IFA)
}}

+
∑
i∈N

ciI
FA
i
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=
∑
i∈A∗

pi ·E

{
IFL

i − min
{

IFA
i ,

L∑
ℓ=1

Ciℓ(IFA)
}}

+
∑
i∈N

ci ·
(
IFA

i − IFL
i

)
≤
∑
i∈A∗

pi ·E

{
IFL

i − min
{

IFL
i ,

L∑
ℓ=1

Ciℓ(IFA)
}}

+
∑
i∈A∗

ci,

where in the last inequality we use the fact that IFL
i ≤ IFA

i < IFL
i + 1. The second term is upper bounded by

|A∗| · cmax. The first term can be bounded as follows.

∑
i∈A∗

pi ·E

{
IFL

i − min
{

IFL
i ,

L∑
ℓ=1

Ciℓ(IFA)
}}

≤
∑
i∈A∗

pi ·E

{∣∣∣∣IFL
i −

L∑
ℓ=1

Ciℓ(IFA)
∣∣∣∣
}

≤
∑
i∈A∗

pi ·

√√√√√E


(

IFL
i −

L∑
ℓ=1

Ciℓ(IFA)
)2


Notice that the random variable
∑L

ℓ=1 Ciℓ(IFA) has expectation E
[∑L

ℓ=1 Ciℓ(IFA)
]

=EL

[∑L

ℓ=1 E [Ciℓ(IFA)]
]

=

EL

[∑L

ℓ=1 πi

]
=EL [Lπi] = Tλπi = IFL

i . Therefore,

∑
i∈A∗

pi ·E

{
IFL

i − min
{

IFL
i ,

L∑
ℓ=1

Ciℓ(IFA)
}}

≤
∑
i∈A∗

pi ·

√√√√Var
{

L∑
ℓ=1

Ciℓ(IFA)
}

=
∑
i∈A∗

pi ·

√√√√EL

[
Var

{
L∑

ℓ=1

Ciℓ(IFA)
∣∣∣∣L
]}

=
∑
i∈A∗

pi ·
√
EL [Lπi(1 − πi)]

=
∑
i∈A∗

pi ·
√

Tλπi(1 − πi) ≤ pmax
√

Tλ ·
∑
i∈A∗

√
πi ≤ pmax

√
Tλ
√

|A∗|,

where the last step is obtained by Cauchy-Schwartz inequality
(∑

i∈A∗
√

π
)2 ≤

(∑
i∈A∗ 1

)
· (
∑

i∈A∗ π) = |A∗|.
Therefore, Vfluid − Πstatic(I) ≤ pmax

√
Tλn + cmaxn. Finally, we note that Π∗ ≤ Vfluid according to Lemma (6),

which is introduced below. Also, Π(IFA) ≥ Πstatic(IFA). Thus, Π∗ − Π(IFA) ≤ Vfluid − Πstatic(IFA) = O
(√

nTλ
)

.
Also, Π(IFA)/Π∗ ≥ Πstatic(IFA)/Vfluid = 1 − (Vfluid − Πstatic(IFA))/Vfluid → 1 as Tλ → ∞. □

B.4. Proof of Proposition 2

Define supp(I) as the support of an inventory vector I, i.e., supp(I) = {(j, k) | Ijk > 0}. We further define
C(A) as the class of inventory vectors with support S, i.e., C(A) = {I ∈NJK

+ | supp(I) = A}. We will first show
that when L̄ is sufficiently large, any inventory vector from class C(A′) for A′ ̸= A∗, where A∗ is the optimal
assortment, cannot be an optimal solution to Problem PLB. In particular, for any I ∈ ∪A̸=A∗L(A), we have

z′
LB = maximize

A̸=A∗,I∈C(A),I∈NJK
+

[∑
(j,k)

pj · min
{

L̄ · πjk(I) , Ijk

}
−
∑
(j,k)

cj · Ijk

]
≤ maximize

A̸=A∗,I∈C(A),I∈NJK
+

[∑
(j,k)

(pj − cj) · min
{

L̄ · πjk(I) , Ijk

}]
≤ maximize

A̸=A∗,I∈C(A),I∈NJK
+

[∑
(j,k)

(pj − cj) · L̄ · πjk(I)
]

≤ L̄ · maximize
A̸=A∗

[∑
(j,k)

(pj − cj) ·P ((j, k) | A)
]
.

Meanwhile, we consider the objective value of fluid policy IFA in Problem PLB as follows

zLB
(
IFA)=

∑
(j,k)∈N

pj · L̄ ·P((j, k) | A∗) −
∑

(j,k)∈N

cj ·
[
L̄ ·P((j, k) | A∗) +

(
⌈L̄ ·P((j, k) | A∗)⌉ − L̄ ·P((j, k) | A∗)

)]
≥

∑
(j,k)∈N

(pj − cj) · L̄ ·P((j, k) | A∗) −
∑

(j,k)∈N

cj = L̄Rasst(A∗) −
∑

(j,k)∈N

cj .
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Therefore, for sufficiently large L̄, we have z′
LB < zLB (IFA), which implies that the support of the optimal

solution of Problem PLB must be A∗ when L̄ is sufficiently large.
Now we shall show that IIP

jk/IFA
jk → 1 for all (j, k) ∈ A∗ when L̄ → ∞. This is equivalent to show that

IIP
jk/
(
L̄ ·P((j, k) | A∗)

)
→ 1 for all (j, k) ∈ A∗. Consider a sufficiently large L̄. As IIP returns the opti-

mal solution to PLB, we know that IIP has support A∗. Assume there exists a pair (j, k) such that
lim inf L̄ |IIP

jk/
(
L̄ ·P((j, k) | A∗)

)
− 1| > ϵ for a constant ϵ.

Then, as L̄ → ∞, either lim inf
{(

zLB(IFA) − zLB(IIP)/L̄
)}

> ϵ(pj − cj)P ((j, k) | A∗) > 0 or
lim inf

{(
zLB(IFA) − zLB(IIP)/L̄

)}
> ϵcjP ((j, k) | A∗) > 0 holds. In both cases, it contradicts the fact that IIP

maximizes zLB(·). Therefore, IIP
jk/IFA

jk → 1 for all (j, k) ∈ A∗ when L̄ → ∞. □

Appendix C: Comparing the Style-Size Choice Model and Nested Logit Model

To compare the style-size model with the nested logit model, we examine two variants of the nested logit
framework that incorporate the structure of apparel styles and sizes. Figure 4 illustrates these two config-
urations. In the left panel, nests (or baskets) are defined by apparel styles, while in the right panel, nests
are organized by apparel sizes. The size-basket variant (right panel) serves as a benchmark in Section 4.3,
as it includes |J | + |K| + 1 parameters, making it comparable to the style-size choice model and the size
aggregation approach. In contrast, the style-based variant (left panel) has 2|J |+1 parameters. We will delve
into the details of parameter counts for each variant shortly. Next, we demonstrate that both variants of the
nested logit model result in unrealistic demand substitution within the context of the apparel industry. This
highlights a key distinction between the nested logit models and the style-size choice model proposed in this
paper.

𝑗! ∅𝑗" 𝑗# 𝑗$ 𝑗%

𝑘! 𝑘" 𝑘#

𝑗#, 𝑘! 𝑗#, 𝑘" 𝑗#, 𝑘#

𝑘! ∅𝑘" 𝑘# 𝑘$ 𝑘%

𝑗! 𝑗" 𝑗#

𝑗!, 𝑘# 𝑗", 𝑘# 𝑗#, 𝑘#

Figure 4 Two variants of the nested logit model that encode the apparel style and size structure.

Let us first consider the variant of the nested logit model where each nest is defined with respect to style,
i.e., the model in Figure 4 (left). The model has 2|J |+1 parameters. The first |J | parameters correspond to
the utility parameters vj for each style j ∈ J . The second |J | parameters represent the similarity parameters
ηj ∈ (0,1] associated with each nest defined for j ∈ J . The final parameter, v0, captures the utility of the no-
purchase option. Unlike the MNL, mixed-MNL, and the style-size choice models, the presence of he similarity
parameters (ηj)j∈J prevents us from rescaling the utility of each style relative to v0 via vj − v0 to eliminate
v0 as a parameter.
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β0 = 24.9% β0 = 100.0%

L̄ T L̄ T

4W 0.1 4W 0.1
8W 0.2 8W 0.4

12W 0.4 12W 172.3
16W 0.6 16W 297.1
20W 0.6 20W 71.1
24W 42.0 24W 28.0
32W 11.3 32W 156.2

Table 4 The runtime T (sec) for solving the
mixed-integer program.

L INV IFA IIP

50 37.72% 16.86% 11.04%
100 27.71% 11.20% 9.91%
200 24.64% 4.97% 3.17%
400 27.19% 1.98% 1.79%
800 19.57% 1.27% 1.21%
1600 22.14% 0.54% 0.52%

Table 5 Bound on optimality gap for each inventory
policy.

Consider the following toy example. Suppose a store sells T-shirts in five sizes, K = {XS,S,M,L,XL}, where
we let k1 = XS and k5 = XL. Now, compare two assortments A1 = {(j1, k1)} and A2 = {(j1, k1), (j1, k5)}. In
assortment A2, an additional T-shirt of the same style but in size XL is available compared to assortment
A1. The choice probability (i.e., the demand) of product (j1, k1) given assortment A1 under the nested logit
model is

PNL ((j1, k1) | A1) = (evj1 )η1

ev0 + (evj1 )η1 .

Now we introduce product (j1, k5) to the assortment A1, resulting assortment A2. The choice probability of
product (j1, k1) follows as

PNL ((j1, k1) | A2) = (evj1 + evj1 )η1

ev0 + (evj1 + evj1 )η1 · evj1

evj1 + evj1
= 2η1 · (evj1 )η1

ev0 + 2η1 · (evj1 )η1 · 1
2 .

Since 2η1 ∈ (1,2], we have

PNL ((j1, k1) | A2) = 2η1 · (evj1 )η1

ev0 + 2η1 · (evj1 )η1 · 1
2 <

2 · (evj1 )η1

ev0 + (evj1 )η1 · 1
2 = PNL ((j1, k1) | A1) .

Therefore, it implies that, under the nested logit model, introducing a T-shirt in size XL would reduce the
demand for the size XS of the same style. However, this is unrealistic, as customers who wear size XL T-shirts
are unlikely to consider purchasing size XS.

Now, let us consider the second variant of the nested logit model, illustrated in Figure 4(right). In
this model, each size corresponds to a nest, with parameters (ηk)k∈K. Therefore, there are |J | + |K| + 1
parameters. Following the same setup for apparel products and assortments in the toy example, we have
PNL ((j1, k1) | A2) = (e

vj1 )η1

ev0 +(e
vj1 )η1 +(e

vj1 )η5 <
(e

vj1 )η1

ev0 +(e
vj1 )η1 = PNL ((j1, k1) | A1). Consequently, the T-shirt in size

XL once again reduces the demand for the size XS T-shirt of the same style, which is unrealistic.
Finally, it is easy to verify that in the proposed style-size choice model, we have P ((j1, k1) | A2) =

P ((j1, k1) | A1), implying the the demand of T-shirts of size XS and XL will not cannibalize each other. This
highlights the difference between the proposed model and the nested logit model.

Appendix D: Additional Numerical Results on Performance of Inventory Policies

D.1. Runtime of the IP-based Policy

Table 4 reports the runtime of optimally solving the MILP (19) in each instance listed in Table 3. Across all
instances, the runtime remains under five minutes on a MacBook Pro with an Apple M2 chip. The table also
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L̄ INV IFA IIP IIP2

4W -18.88 -18.65 0.11 0.03
8W -4.45 -3.89 0.79 0.41

12W -0.16 0.53 1.72 1.49
16W 1.30 2.09 2.49 2.44
20W 2.71 3.28 3.42 3.42
24W 3.02 3.53 3.59 3.59
32W 3.71 4.31 4.34 4.34

L̄ INV IFA IIP IIP2

4W -18.88 -18.65 0.29 0.22
8W -3.07 -2.39 2.07 0.67

12W 1.57 2.34 3.74 2.57
16W 2.50 3.23 4.13 3.52
20W 3.51 4.16 4.69 4.30
24W 3.93 4.68 5.05 4.87
32W 4.98 5.54 5.67 5.67

Table 6 Expected profit per customer of each inventory policy for a given T λ (β0 = 24.9% in the left panel and
β0 = 100.0% in the right panel)

shows that as α0 decreases (i.e., β0 = e−α0 increases), the runtime for optimally solving the MILP increases.
This trend arises because stronger size substitution (lower α0) enables the firm to leverage demand spillovers
across sizes, thereby better meeting customer needs. Consequently, the inventory optimization becomes more
complex, leading to longer runtimes.

D.2. Performance of the IP-based Policy under the Major-minor Size Constraint

In Table 6, we report the expected profit per customer ΠBT-per(·) to the casual booties sector for each
inventory policy. All notations follow Table 3, except that in each sub-table, we include the performance
of the IP-based policy that enforces the major-minor size constraint described in Section 5.3. We call the
resulting inventory vector IIP2.

We have the following observations from the table. First, the major-minor size constraint affects the
performance of the IP-policy more severely when β is larger, i.e., when the size substitution is more prevalent.
This is expected, since the constraint restricts how the IP can utilize the size substitution. Meanwhile, when
the number of customer visits is sufficiently large, this constraint does not impact the performance of the
IP-based policy, as shown in the case of L̄ = 32W . This is because the major-minor size constraint no longer
alters the optimal solution of the original integer program.

D.3. Performance on a Synthetic Setup: Don’t ignore both style and size substitutions

In this section, we consider a toy model to demonstrate that the newsvendor policy may exhibit poor
performance, as it overlooks style substitution. Notice that in Section 5.3, the attraction of products is low,
as fewer than 1% of customers purchase the casual booties. The resulting optimal assortment is to offer all
styles, and the difference between the newsvendor policy and the fluid approximation lies only in whether
to include a safety stock. In the following toy model, each product’s attraction is higher than the ones we
considered in Section 5.3, and thus the optimal strategy is not always to offer all styles.

Specifically, we assume that each style j ∈ J has the attraction wj ∼ U([0,2]) and price pj ∼ U([0,100]),
where U is the uniform distribution, with 100% markup pricing scheme. Note that with such a markup
scheme, we can isolate the performance of the newsvendor model from its safety stock strategy. For simplicity,
we assume the size distribution µ is uniform. We set both |J | and |K| to be five and set β0 = 24.9%,
which is the size substitution parameter we estimated in Section 4. We consider the following quantity,
G(I) ≡ (LR∗

asst − Π(I))/ (LR∗
asst), which is an upper bound on the optimality gap, where R∗

asst is defined in
Lemma 6. The same lemma shows that LR∗

asst is an upper bound to the inventory problem (12).
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We present the performance of the three inventory policies by showing their G value in Table 5 (on Page 39).
The results are quite consistent with what we have observed in Section 5.3 in terms of the relative performance
of the policies. Notably, the IP-based policy achieves the best performance, and the fluid approximation
catches up as the number of customers increases. In the table, we further observe that these two policies
can reach a small optimality gap, less than one percent, as the total number of customer visits increases.
Unlike Section 5.3, the newsvendor policy exhibits significantly worse performance compared to the other two
policies, as it fails to account for substitution between styles. In particular, it cannot narrow the optimality
gap below twenty percent even when the other two policies can reach small gaps. This demonstrates that,
while ignoring the size substitution as in the fluid approximation may not be fatal, ignoring both size and
style substitutions, as in the newsvendor policy, could be catastrophic and result in poor performance if
customers follow the style-size choice model to make decisions.

Appendix E: Asymptotic Performance of Fluid Policies under General Choice Models

We end this paper by discussing an extension result for the asymptotic performance of fluid-like inventory
policies under general choice models. The literature has mainly focused on choice models that satisfy the
substitutability property (Definition 1). For example, Honhon and Seshadri (2013) show that if the underlying
choice model is a ranking-based model, a fluid-like approximation solved by a dynamic program proposed
by Honhon et al. (2010) can has an O(n

√
Q) optimality gap, where n is the number of products and Q is

the total order quantity over these n products. El Housni et al. (2021) achieve an O
(

n +
√

nLD log (nLD)
)

gap using fluid approximation and sample-average approximation, where LD is the deterministic number of
customer visits. Zhang et al. (2024) improve the optimality gap to O(

√
nLD) by exploring the gap between

the full relaxation upper bound and a lower bound like Problem (13). Given the emerging literature on general
choice models that do not satisfy the substitutability property, such as tree-based models (Akchen and Mǐsić
2021, Chen and Mǐsić 2022, Chen et al. 2019) and models inspired by behavioral economics (Maragheh et al.
2018), providing an encompassing performance guarantee can be valuable. We present our result as follows
for a general choice model, and then discuss its application to our style-size choice model.

Proposition 3. Let P (· | ·) be any choice model over n products. Assume that pmax = maxi=1,...,n pi and
cmax = maxi=1,...,n ci are independent of L̄ = Tλ and n. Let A∗ be the optimal assortment and define πi =
P(i | A∗). Consider the inventory policy I =

(
⌈L̄(πi + ϵ)⌉ · Ii∈A∗

)
i=1,...,n

, where

ϵ = 1
2 ·

√√√√√ log(L̃)
L̃

·

1 − 2

√
e log(L̃)

L̃
− 1

L̃

−1

with L̃ = max{L̄, e4}. Then, the policy I in the stockout-based inventory problem (12) has an O(n
√

L̄ log L̄)
optimality gap and thus it is asymptotically optimal.

We prove the proposition by recognizing that the first stockout is a stopping time and quantifying the
revenue collected until the point of the first stockout through a series of concentration inequalities (Vershynin
2018). Compared to the fluid approximation, the inventory policy in Proposition 3 introduces a safety stock
L̄ϵ = O

(√
L̄ · log

(
L̄
))

, which prevents the stockouts from happening too early. Asymptotically, this safety
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stock is negligible compared to L̄πi, making the inventory policy in Proposition 3 converge to the fluid
approximation as L̄ tends to infinity. When applying this policy to the style-size choice model (5), we again
obtain a size-substitution-invariant inventory policy that is asymptotically optimal, although the theoretical
optimality gap is larger than the gap of the fluid approximation shown in Proposition 1. On the other hand,
in contrast to Proposition 1, the result in Proposition 3 applies to the case when the substitutability property
does not hold. One of such examples includes the scenario that some customers’ utility discount α is negative,
i.e., there exists a customer type τ = (s,σ,α) such that α < 0 with nonzero weight µτ > 0.

E.1. Proof of Proposition 3

We define [n] ≡ {1,2, . . . , n} throughout the proof. We first state two lemmas. The first lemma, Lemma 5,
concerns the first stockout time for a specifically constructed inventory vector.

Lemma 5. Assume ϵ and ϵ′ are two positive constants. Let l be an integer that satisfies l ∈ (T (λ −

ϵ′), T (λ + ϵ′)). Let {Xℓ} be a sequence of IID multinomial random variables such that P(Xℓ = m) = νm for
m ∈ 0,1, . . . ,M , where

∑M

m=0 νm = 1. For m = 1, . . . ,M , we denote Zℓ
m =

∑ℓ

i=1 I [Xi = m] as the recurrence
of outcome m up to random variable Xℓ and let Um := ⌈Tλ(νm + ϵ)⌉. We define

τ = inf{ℓ | ∃m ∈ {1, . . . ,M} such that Zℓ
m ≥ Um}

as the first time that one of the Zℓ
m hits the corresponding bound Um. Then, we have

P [τ ≤ ⌊l − Tϵ′⌋] ≤ M · exp
(
−2 · (Tλ − 2Tϵ′ − 1) · ϵ2) .

Proof: Define l′ = ⌊l − Tϵ′⌋. Event {τ ≤ l′} is equivalent to event {∃m ∈ {1, . . . ,M} such that Z l′

m ≥ Um}.
Therefore, by union bound, P [τ ≤ l′] ≤

∑M

m=1 P[Z l′

m ≥ Um := ⌈Tλ(νm + ϵ)⌉]. On the other hand, we know that
Z l′

m ∼ B(l′, νm), a binomial distribution of l′ trials with νm success rate. Therefore, by Hoeffding’s inequality,

P
[
Z l′

m ≥ ⌈Tλ(νm + ϵ)⌉
]

≤ exp
(

−2 · l′ ·
(

νm − ⌈Tλ(νm + ϵ)⌉
l′

)2
)

≤ exp
(

−2 · l′ ·
(

νm − Tλ(νm + ϵ)
Tλ

)2
)

≤ exp
(
−2 · (Tλ − 2Tϵ′ − 1) · ϵ2) .

As a result, P [τ ≤ l − Tϵ′] ≤
∑M

m=1 P
[
Z l

m ≥ Um

]
≤ M exp (−2 · (Tλ − 2Tϵ′ − 1) · ϵ2). □

The second lemma, Lemma 6, provides an upper bound to the inventory problem (12).

Lemma 6. Define R∗
asst = maxA⊆N

{∑
j∈S ϱj ·P (j | A)

}
as the optimal objective value of the assortment

problem with margin ϱj = pj − cj. Then for any inventory vector I, its expected profit follows P(I) ≤ TλR∗
asst.

Proof: We utilize the fact that the fluid formulation provides an upper bound to the discrete-time process
with discrete choice; see, for example, El Housni et al. (2021). We thus omit the proof. □

Now, we are ready to prove Proposition 3.
Proof of Proposition 3: Define A∗ as the optimal assortment defined in Lemma 6 and R∗

asst as its expected
profit. Now we show that the inventory vector I defined in Proposition 3 is asymptotically optimal with
rate O

(
n
√

L̄ log
(
L̄
))

. We separate the discussion into the following three parts: (a) bounding the expected
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revenue E
[∑L

ℓ=1 pDℓ

]
from below; (b) bounding the cost

∑
j cjIj from above; and (c) bounding the optimality

gap.
(a) Bound the expected revenue. Recall that L is the number of arrived customers in time [0, T ]. The

expected revenue follows as

E

[
∞∑

ℓ=1

pDℓ · I [tℓ ≤ T ]
]

=
∞∑

l=0

E

[
L∑

ℓ=1

pDℓ

∣∣∣∣L = l

]
·P [L = l] ≥

⌊T (λ+ϵ1)⌋∑
l=⌈T (λ−ϵ1)⌉

E

[
l∑

ℓ=1

pDℓ

]
·P [L = l] ,

where we will choose ϵ1 carefully later. If there exists a lower bound R̃low that is independent of l and satisfy
R̃low ≤E

[∑l

ℓ=1 pDℓ

]
for any positive integer l ∈ (T (λ − ϵ1), T (λ + ϵ1)), then

E

[
∞∑

ℓ=1

pDℓ · I [tℓ ≤ T ]
]

≥
∑

l∈N+:l∈(T (λ−ϵ1),T (λ+ϵ1))

E

[
l∑

ℓ=1

pDℓ

]
·P [L = l]

≥
∑

l∈N+:l∈(T (λ−ϵ1),T (λ+ϵ1))

R̃low ·P [L = l]

≥ R̃low ·P
[
L ∈ (T (λ − ϵ1), T (λ + ϵ1))

]
= R̃low ·

(
1 −P

[
|L − Tλ| ≥ Tϵ1

])
≥ R̃low ·

(
1 − 2exp

(
− (Tϵ1)2

2(Tλ + Tϵ1)

))
, (22)

where in the last inequality, we use the concentration inequality for the Poisson random variable (Vershynin
2018). By choosing ϵ1 = λ ·

√
e log(L̄)/L̄, we have,

exp
(

− (Tϵ1)2

2(Tλ + Tϵ1)

)
= exp

−1
2 · e · log(L̄)

1 +
√

e·log(L̄)
L̄

≤ exp
(

−e log(L̄)
4

)
≤ exp

(
− log(L̄)

2

)
= 1√

L̄
,

where the first inequality follows since e log x ≤ x whenever x ≥ e. Therefore, as long as we have the lower
bound R̃low, then the expected revenue follows as E [

∑∞
ℓ=1 pDℓ · I [tℓ ≤ T ]] ≥ R̃low ·

(
1 − 2√

L̄

)
.

Now we will obtain the lower bound R̃low for E
[∑l

ℓ=1 pDℓ

]
for any positive integer l ∈ (T (λ−ϵ1), T (λ+ϵ1)).

We define Zℓ
j =

∑ℓ

i=1 I [Di = j] as the number of times that product j ∈ A∗ is chosen by the first ℓ customers.
We further define a random variable τ = inf

{
ℓ | ∃ product j ∈ A∗ such that Zℓ

j = ⌈L̄(πj + ϵ)⌉
}

, which is the
first customer such that after she makes the decision, one of the products in the optimal assortment A∗ is out
of stock. More importantly, τ is a stopping time. Additionally, it depends solely on customers’ decisions and
is independent of their arrival times. Notice that for a fixed l ∈ (T (λ−ϵ1), T (λ+ϵ1)), we have E

[∑l

ℓ=1 pDℓ

]
≥

E
[∑min{⌊l−T ϵ1⌋,τ}

ℓ=1 pDℓ

]
. We will use a Wald equation-like argument to calculate the right-hand side. Notice

that we cannot directly apply Wald’s equation here, as {Dℓ}ℓ∈N is not a sequence of IID random variables.
Indeed, as we discussed above, the set of available products Aℓ that customer ℓ sees is not the same for all ℓ

and thus the distribution of Dℓ is not fixed.
Let l′ = ⌊l − Tϵ1⌋. Define R̃∗

asst :=
∑

j∈A∗ pj ·P(j | A∗) as the “revenue” part of the optimal assortment A∗

(instead of profit, which doesn’t have a tilde in the notation). For a given integer l ∈ (T (λ − ϵ1), T (λ + ϵ1)),
we have

E

min{l′,τ}∑
ℓ=1

pDℓ

=E

[
∞∑

ℓ=1

pDℓ · I [ℓ ≤ l′] · I [ℓ ≤ τ ]
]
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=
∞∑

ℓ=1

E
[
pDℓ · I [ℓ ≤ l′] · I [ℓ ≤ τ ]

]
(Fubini’s theorem )

=
∞∑

ℓ=1

E
[
E
[
I [ℓ ≤ l′] · I [ℓ ≤ τ ] · pDℓ

∣∣∣∣D1,D2, . . . ,Dℓ−1
]]

(the towel property)

=
∞∑

ℓ=1

E
[
I [ℓ ≤ l′] · I [ℓ ≤ τ ] ·E

[
pDℓ

∣∣∣∣D1,D2, . . . ,Dℓ−1
]]

(τ is a stopping time)

=
∞∑

ℓ=1

E
[
I [ℓ ≤ l′] · I [ℓ ≤ τ ] · R̃∗

asst
]

= R̃∗
asst ·E

[
min{l′, τ}

]
.

Here, the fifth equality follows an observation: given that no products are out of stock after the first ℓ − 1
customers’ visits, the set Aℓ of available products that the ℓ-th customer will see remains the same as A1,
which is the optimal assortment A∗, according to the construction of the inventory decision I. Therefore,
if ℓ ≤ τ , then E

[
pDℓ | D1, . . . ,Dℓ−1] = E

[
pDℓ | Aℓ

]
= E [pDℓ | A∗] = R̃∗

asst. Now we will further lower bound
E [min{l′, τ}] for any fixed l′ = ⌊l − Tϵ1⌋ for l ∈ (T (λ − ϵ1), T (λ + ϵ1)) by Lemma 5. Notice that

E
[

min{l′, τ}
]

=E
[

min{l′, τ} | l′ ≥ τ

]
·P [l′ ≥ τ ] +E

[
min{l′, τ} | l′ < τ

]
·P [l′ < τ ]

=E
[
τ | l′ ≥ τ

]
·P [l′ ≥ τ ] +E

[
l′ | l′ < τ

]
·P [l′ < τ ]

≥l′ ·P [l′ < τ ]

≥l′ ·
(
1 − |A∗| · exp

(
−2(Tλ − 2Tϵ1 − 1) · ϵ2))

≥l′ ·

(
1 − |A∗| ·

√
1

Tλ

)

≥(Tλ − 2Tϵ1 − 1) ·

(
1 − |A∗| ·

√
1

Tλ

)
= L̄ ·

1 − 2

√
e log(L̄)

L̄
− 1

L̄

 ·

(
1 − |A∗| ·

√
1
L̄

)
where the first inequality follows as l′ is a constant, and the second inequality follows by Lemma 5 and
the construction of inventory vector I and τ . In particular, before the hitting time happens, the consumer
decision Dℓ follows Dℓ = j with probability P(j | A∗) = πj . The last two inequalities follow as l > T (λ − ϵ1),
l′ ≥ Tλ − 2Tϵ1 − 1, and ϵ = 0.5 ·

√
log(Tλ)/(Tλ − 2Tϵ1 − 1). Combining all elements, we have

E

[
l∑

ℓ=1

pDℓ

]
≥E

min{l′,τ}∑
ℓ=1

pDℓ

= R̃∗
asst ·E

[
min{l′, τ}

]
≥ R̃∗

asst · Tλ

1 − 2

√
e log(L̄)

L̄
− 1

L̄

 ·

(
1 − n

√
1
L̄

)
:= R̃low,

whenever l ∈ (T (λ− ϵ1), T (λ+ ϵ1)). Therefore, going back to Equation (22) and plugging in the defined R̃low,
we have the expected revenue bounded below as

E

[
∞∑

ℓ=1

pDℓ · I [tℓ ≤ T ]
]

≥ R̃low ·
(

1 − 2√
L̄

)
≥ R̃∗

asst · L̄ ·

1 − 2

√
e log(L̄)

L̄
− 1

L̄
− n ·

√
1
L̄

− 2√
L̄


(b) Bound the cost. We have

∑
j∈[n] cj · Ij ≤

∑
j∈A∗ cj · (1 + L̄(πj + ϵ)). Notice that whenever L̄ ≥ e4, ϵ1 =

λ ·
√

e log(L̄)/L̄ ≤ λ
√

e · 4/e4 ≤ 0.45 · λ, which results in

ϵ = 0.5 ·

√√√√√ log(L̄)

L̄

[
1 − 2

√
e log(L̄)/L̄ − 1/L̄

] ≤ 0.5√
1 − 2 × 0.45 − exp(−4)

·

√
log(L̄)

L̄
≤ 1.8 ·

√
log(L̄)

L̄
.
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Plugging the upper bound for ϵ, we have the upper bound for the total procurement cost whenever Tλ ≥ e4

as
∑

j∈[n] cj · Ij ≤ ncmax + L̄
∑

j∈A∗ cjπj + 1.8ncmax

√
L̄ · log(L̄).

(c) Approximate. Following the discussion in (a) and (b), the expected profit Π(I), which is the expected
revenue minus the cost, has a lower bound

Π(I) ≥R̃∗
asst · L̄ ·

1 − 2

√
e log(L̄)

L̄
− 1

L̄
− n ·

√
1
L̄

− 2√
L̄

−

(
ncmax + L̄

∑
j∈A∗

cjπj + 1.8n · cmax ·
√

L̄ · log(L̄)
)

=R∗
asst · L̄ − O

(
(pmax + cmax) · n ·

√
L̄ log L̄

)
,

where we use the fact R̃∗
asst ≤ pmax and R̃∗

asst −
∑

j∈A∗ cjπj =
∑

j∈A∗(pj −cj)πj = R∗
asst. Therefore, the inventory

vector I has an optimality gap Π∗ −Π(I) ≤ L̄R∗
asst −Π(I) ≤ O

(
n ·
√

L̄ log L̄
)

, where the first inequality follows
Lemma 6 and the second inequality follows that both pmax and cmax are independent of L̄. Finally, we argue
that I is asymptotically optimal as follows:

Π(I)
Π∗ ≥ Π(I)

L̄R∗
asst

≥ 1 − n

R∗
asst

· O

√ log(L̄)
L̄

→ 1 as L̄ → ∞.

□


